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Abstract
Prognostic Health Assessment of an Automotive Proton Exchange Membrane Fuel

Cell System

Christopher J. Rukas

Supervising Professor: Dr. Jason Kolodziej

Proton exchange membrane fuel cells are a promising technology for the automotive in-

dustry. However, it is necessary to develop effective diagnostic tools to improve system

reliability and operational life to be competitive in the automotive market. Early detection

and diagnosis of fuel cell faults may lead to increased system reliability and performance.

An efficient on-line diagnosis system may prevent irreparable damage due to poor con-

trol and system fatigue. Current attempts to monitor fuel cell stack health are limited to

specialized tests that require numerous parameters. An increased effort exists to minimize

parameter input and maximize diagnostic robustness. Most methods use complex models

or black-box methods to determine a singular fault mode. Limited research exists with

pre-processing or statistical methods. This research examines the effectiveness of a Naı̈ve

Bayes classifier on determining multiple states of health; such as healthy, dry, degraded

catalyst, and inert gas build-up. Independent component analysis and principal compo-

nent analysis are investigated for preprocessing. An automotive style fuel cell model is

developed to generate data for these purposes. Since automotive applications have limited

computational power, a system that minimizes the number of inputs and computational

complexity is preferred.
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Chapter 1

Introduction

The Proton exchange membrane fuel cell (PEMFC) is an electrochemical device that con-

verts chemical energy from a gaseous fuel to generate electricity and heat. The fuel cell is

an alternative form of energy production for stationary and transportation applications. In

this case, hydrogen (H2) is the fuel and oxygen (O2), supplied by ambient air, is the oxidant

in the reduction reaction. The PEMFC was first developed for NASA’s early manned space

vehicles by General Electric in the 1960s [1]. It has great potential in the transportation in-

dustry today and is considered more developed for ground vehicle applications than other

fuel cell types [2].

Fuel cells are actively studied for use in the automotive industry, for auxiliary power

units (APUs) in heavy duty trucks and RVs, for propelling automobiles, generating elec-

tricity for individual homeowners, and commercial energy production [1]. In this research,

a PEMFC is the focus for propulsion of automotive vehicles. PEM fuel cells are com-

monly used for automotive applications as high efficiency at partial load makes them likely

candidates for urban and highway driving scenarios.

The fuel cell market may decrease our dependencies on fossil fuels with the develop-

ment of a hydrogen infrastructure and an energy market based off of renewable sources

such as wind, hydroelectric, geothermal, or solar power [3, 4]. This has huge implications

for national security and sustainable energy practices by removing dependencies on foreign

oil.

PEMFC technology is relatively new and limited research exists in PEMFC fault de-

tection. This study will describe the components of a PEM fuel cell stack and the typical
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Figure 1.1: Fuel Cell Stack Assembly

equipment required to operate it in an automotive setting. Later, a control orientated auto-

motive fuel cell model is enhanced for use in fault detection and state of health research.

1.1 Proton Exchange Membrane Fuel Cell Stack

The proton exchange membrane fuel cell stack is an assembly of PEM fuel cells grouped

together in series and attached by bipolar plates which increases the available voltage. A

series assembly also allows for compression of the components thus increasing power den-

sity. As shown in Figure 1.1, two end plates compress the membrane electrode assemblies,

bipolar plates, and cooling plates placed between small assembly groups. A seal is placed

between the membrane electrode assembly and the flow field plates thus concluding the

fuel cell stack assembly.

1.1.1 Membrane Electrode Assembly

The membrane electrode assembly (MEA) is the composition of the anode, membrane,

and cathode with their appropriate catalysts. The overall reaction in Equation (1.1) occurs

across the MEA. The configuration is shown in Figure 1.2, along with the reaction. Hy-

drogen ions move across the membrane electrode assembly and bond with oxygen ions to
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Figure 1.2: Fuel Cell Diagram
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generate water, electricity, and heat.

2H2 + O2 → 2H2O (1.1)

Polymer Electrolyte Membrane

The polymer electrolyte membrane (PEM) is used to move H+ ions. Sulphonated flouropoly-

mers, usually flouroethylene, are often used as the membrane. One of the most common

membranes is Nafion, a product of DuPont, it is considered an industry standard [1].

In constructing a membrane, polyethylene undergoes perflourination and the hydrogen

is replaced by flourine generating tetraflouroethylene, also known as Teflon. The material

is highly hydrophobic, which helps prevent flooding during operation. The tetrafluoroethy-

lene undergoes sulfonation (addition of a HSO3) to create pockets that are extremely hy-

drophyllic. Since the HSO3 is bonded ionically, the end of the chain becomes SO–
3. This

means the membrane is a mixture of hydrophobic and hydrophyllic regions.

The hydrophyllic regions of the membrane are separated by hydrophobic regions. As

the hydrophyllic regions retain water, the distance between them decreases and H+ ions

can move more easily. This improves fuel cell performance. Respectively, if the water

content decreases the resistance of the membrane will increase, decreasing the fuel cell

performance.

Electrodes

An electrode is a component that passes current between a metallic part and a non-metallic

part in an electrical circuit. An electrode can be an anode or a cathode. Oxidation occurs

at the anode, which is the loss of an electron. Reduction occurs at the cathode, which is

the gain of an electron. Electrons move from the anode to the cathode, but conventional

positive current flows from the cathode to the anode.

The surface area of an electrode in an electrochemical cell is important. The surface

area in a PEM electrode cannot be determined by a simple length times width calculation.

Roughness is increased so that the real surface area is many times greater than the length

times width. Increasing the real surface area increases catalyst utilization by generating
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more activity sites.

The anode side is exposed to the fuel hydrogen. The surface of the electrolyte and the

electrode ionizes hydrogen and creates the reaction in Equation 1.2.

2 H2→ 4 H+ + 4 e− (1.2)

The cathode side of the MEA is exposed to ambient air (for access to O2). As hydrogen

protons move through the membrane towards the cathode water is formed by the reaction

in Equation 1.3.

O2 + 4 H+ + 4 e−→ 2 H2O (1.3)

Catalyst

A catalyst is added to the PEM to improve the rate of the electrochemical reaction. PEM-

FCs suffer from inadequate performance on the cathode [5]. Platinum is the most effective

catalyst for the electrodes in a PEMFC [1]. Currently, platinum-alloy catalysts are the most

practical due to their durability and effectiveness, but non-precious metal catalysts are stud-

ied too [5, 6]. Early PEMFC designs required 28 mg/cm2 of Platinum, but this has since

been significantly reduced to an approximate 0.2 mg/cm2 [1].

1.1.2 Additional Hardware

Bi-Polar Plate

The bi-polar plate (BPP) is an interconnecting device with multiple functions. It provides

channels for hydrogen and air on either side, and sometimes contains coolant channels. A

variety of flow patterns exist for the reactants. There are a variety of materials and methods

used to create the BPP which accounts for 30% of the cost and 80% of the weight in the

fuel cell stack.

Several flow pattern designs are presented in Figure 1.3. Each flow pattern has its own

advantages and disadvantages. Water droplets are not pushed out effectively in parallel de-

signs (see Figure 1.3b). The serpentine design has more saturation and higher temperatures

at the exit than other designs (see Figure 1.3a). The mixed design (Figure 1.3c) attempts
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(a) Serpentine (b) Parallel (c) Mixed

Figure 1.3: Flow Path Patterns

to minimize these problems. The channel cross sections are typically square, even though

other designs have been explored. A more in-depth review is found in [7].

Cooling Plate

The cooling plate (when used) is interspersed between groups of fuel cells as shown in

Figure 1.1 [7] . The cooling plate is used to remove heat generated from the fuel cell stack.

The spacing is optimized to reduce thermal stresses without introducing excess material.

In some situations, the cooling plate is integrated into the BPP.

Deionized water or a similar low conductivity fluid flows through the cooling plate. A

coolant with low conductivity minimizes electrical losses in the system.

End Plate

The end plate is similiar to the bipolar plate, except that it will only disperse a reactant on

one side [7, 8]. It is important that the end plates generate uniform compression on the fuel

cell stack. Non-uniform pressure distributions caused by non-uniform compression will

cause a non-uniform current distribution [8]. Non-uniform currents lead to hot spots which

may destroy the MEA.

1.2 Balance of Plant

The balance of plant (BOP) of a fuel cell stack varies depending on operating pressures,

temperatures, and energy production. Many configurations exist but most are comprised

of the following elements. Pumps exist for recirculating hydrogen, moving coolant, and

moving air. Air can be compressed or blown. A humidification system can be included
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to humidify the inlet air and inlet hydrogen. An on-board computer (electronic controller)

is used to manipulate the various pumps and valves involved. An example configuration

is shown in Figure 1.4 where two coolant loops exist to maintain stack temperature and

reduce compressed air temperature. A hydrogen humidification system is incorporated to

improve anode humidity, and a similiar system exists for the cathode. The cathode also

includes a water recovery unit to humidify cathode inlet air.

Gas Management

Gas can be moved through a variety of methods. These include pumps, compressors, ejec-

tors, and fans. Compressors offer large changes in pressure. Fans move significantly less

air and have very little change in pressure. Ejectors are a method of circulating hydrogen
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by releasing a high pressure source into a low pressure volume.

Hydrogen is compressed into high pressure cylinders unless some method of fuel ref-

ormation is involved. A pressure regulating valve is used to maintain operating pressure at

the anode. Since the hydrogen fuel is compressed, ejectors can be used instead of fans or

pumps to encourage hydrogen circulation.

A blower or compressor is used to increase the air flow rate and pressure across the fuel

cell. Increased air flow decreases activation losses. A compressor is used to improve the

fuel cell reaction rate, improving fuel cell efficiency [9].

Water Management

Water management is the control of liquid and vapor water within the fuel cell stack. Hu-

midifying the gases prevents dehydration of the MEA but overhumidification causes reac-

tant starvation due to liquid water accumulation in the reactant flow channels [10]. Ion con-

ductivity is improved with a well hydrated MEA, improving fuel cell efficiency [1, 10, 11].

De-ionized water is required for the humidifier to minimize contamination of the fuel cell

[9].

Two types of gas humidification exist, external and internal humidification. Membrane

humidifiers, steam injectors, bubblers, enthalpy wheels, and sprayers are all external hu-

midifiers. These methods have high parasitic losses and increase system complexity and

cost [10]. Internal humidification can be accomplished by re-using the reactant gas. Air

that exits the fuel cell is at a higher temperature and higher humidity. This air can be mixed

with the inlet air to increase the humidity [10]. Internal humidification does not work well

during start-up when the MEA is dry [11]. However, diffusive humidifiers are cheap in

comparison to external humidification techniques [11].

Thermal Management

The temperature is controlled either by coolant or cathode air flow. Larger stacks that

generate more heat require some sort of coolant system. Small stacks can be cooled by ad-

justing the cathode air flow rate. Just like the humidification system, the coolant is required



9

to be de-ionized [9].

If coolant is used to maintain stack temperature, the system will have a radiator, a fan,

a pump, a bypass loop, and a heat exchanger for the compressor output. The bypass loop

is used to keep coolant flowing through the fuel cell stack (to encourage a uniform temper-

ature distribution) while neglecting the heat exchanger. The coolant flow rate through the

heat exchanger is controlled to increase or decrease coolant temperature, thus controlling

stack temperature.

Controller & Electrical Equipment

Fuel cells have a variety of electrical components ranging from sensors, heaters, and con-

trollers. Hybrid systems of fuel cells and batteries/capacitors are used to improve transient

responses [12].

1.3 Voltage Characteristics

Proton exchange membrane fuel cell voltages are defined by their voltage losses. These

losses can be temporary and recoverable or permanent. A recoverable voltage loss rep-

resents a temporary loss in efficiency due to removable contaminants, humidity issues, or

control related issues. A permanent voltage loss may occur from contamination or physical

degradation due to aging or poor control. This research seeks to differentiate the three main

voltage loss regions. These are activation, ohmic, and mass transport (concentration, fuel

starvation) losses. Figure 1.5 shows each loss and how it affects the polarization curve. The

activation losses take effect at low current densities. Ohmic losses linearly increase with

current and dominate the center of a polarization curve, while mass transport losses take

effect at high current densities. These each degrade from the open circuit voltage.

The equation to model the polarization curve follows

V = E0 −∆VActivation −∆VOhmic −∆VMassTransport (1.4)
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Figure 1.5: Polarization Curve Components and Their Cumulative Effect

where V is the output voltage

E0 is the open circuit voltage

∆VActivation is the voltage loss due to activation

∆VOhmic is the voltage loss due to resistance

∆VMassTransport is the voltage loss due to reactant starvation

Open Circuit Voltage

The theoretical energy available from a fuel cell is determined by ‘Gibbs free energy.’

This can be defined as, ‘energy available to do external work, neglecting any work done
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by changes in pressure and/or volume [1].’ The chemical energy released is equal to the

change in Gibbs free energy (∆Gf in kJ).

For

H2 +
1

2
O2 → H2O

the change in specific Gibbs free energy (∆ḡf ) in kJ/mol is given by

∆ḡf = ḡf of products− ḡf of reactants = (ḡf )H2O − (ḡf )H2
− 1

2
(ḡf )O2

(1.5)

where ḡf is the gibbs free energy per mole.

The change in Gibbs free energy depends on both temperature (Tfc) and pressure (p).

∆ḡf = ∆ḡf
0 − R̄Tfc ln(

pH2
p

1
2
O2

pH2O

) (1.6)

It is known that two electrons complete the circuit for every water molecule that passes

through the membrane. If NA is the Avagadro’s Number, 2NA electrons pass the circuit for

every mole of hydrogen. If −e is the charge of one electron, then

−2NAe = −2F (1.7)

where F is the Faraday constant (electric charge per mole of electrons).

This determines the electrical work to move a charge around circuit.

Electrical work done = charge× voltage = −2FE joules

where E is the voltage of the fuel cell

If the system is completely reversible and experiences no losses, the electrical work is equal

to the energy released. This is given by

∆ḡf = −2FE

which can be rearranged as

E =
−∆ḡf

2F
(1.8)
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This can be used to determine the open circuit voltage of a fuel cell at a specific oper-

ating temperature. For example, a hydrogen fuel cell operating at 80◦ C has a ∆ḡf =

−226.1 kJ/mol resulting in an open circuit voltage of

E =
226, 100

2× 96485
= 1.17V (1.9)

Losses

A variety of losses exist in the fuel cell, and they dominate at different current densities.

These losses include internal currents, fuel crossover, activation losses, ohmic losses, and

mass transport losses. Internal currents and fuel crossover reduce the operational voltage

even at open circuit conditions. Activation losses build quickly at low current densities.

The ohmic losses are realized during operational range (when loaded). Mass transport

losses are typically avoided due to their harmful effect on the MEA. The mass transport

loss is seen at high current densities, but can occur whenever fuel cannot reach the MEA.

An internal current is the loss of an electron through the MEA. This means the elec-

tron is not used by load, but rather is conducted through the membrane. These are more

significant in low temperature fuel cells (such as PEM). Fuel crossover is the leakage of

hydrogen through the MEA without ionization. This is the diffusion of hydrogen across

the membrane.

Activation losses (also called overvoltage or overpotential) is the voltage superimposed

on the ideal voltage and applies to the difference generated at the electrode. The activation

energy necessary to start the reaction towards the formation of water and electricity is the

activation loss. This loss decreases with increased operational temperature [1].

Ohmic losses primarily caused by the electrolyte, the cell interconnects, and bipolar

plates increase linearly with current density. The ohmic loss can be reduced by using elec-

trodes with high conductivity, addressing the design of the bipolar plate, and by making the

electrolyte as thin as possible. The ohmic loss is highly influenced by the humidification of

the electrolyte. Proton conductivity improves with decreased distance between hydrophyl-

lic regions. The hydrophyllic regions grow when they absorb water, reducing the distance

between each other.
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Figure 1.6: Charge Double Layer
at surface of fuel cell cathode

Mass transport losses occur when there is no longer a sufficient concentration of fuel

or oxygen at the anode or cathode. This occurs when the fuel is being used faster than it

can be supplied. These losses are responsible for the rapid voltage drop at high current

densities [9]. Condensation within the flow channels can block hydrogen flow, creating an

environment deprived of fuel.

This research focuses on activation loss and ohmic losses for classification purposes.

These two losses are unavoidable in an automotive fuel cell, while mass transport losses

are typically avoided by limiting the maximum current draw. An automotive fuel cell will

deteoriate over time, or may even be damaged in production, and the identification of an

issue may help prevent further damage through operation of the fuel cell.

Charge Double Layer

The charge double layer represented in Figure 1.6 is a phenomenon in which a build-up

of charge occurs on the surfaces of two different materials in contact. The layer acts as

a capacitor, when current increases charge increases and when current decreases charge

decreases. This double layer effect gives an explanation for the activation overvoltage. The

charge double layer must be present for a reaction to occur. It creates a high density of H+

ions and electrons at the electrode/electrolyte interface. The chance of a reaction occuring
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Figure 1.7: Fuel Cell Equivalent Circuit

depends on the density of the charge, electrons, and H+ ions. Note: The charge double

layer effect was ignored in Pukrushpan’s model due to its fast transients. The dynamics are

reported to be in the order of 10−19 seconds [4].

C
dvc
dt

+
vc − v0

Ract +Rconc

= i (1.10)

vfc = E − vc − iRohm (1.11)

1.3.1 Recoverable Voltage Loss

Humidification

Humidification of a PEMFC is important for optimal efficiency [13]. The ability to carry

protons improves as water is retained because the distance between hydrophillic sections

decreases [1]. The oxidation reduction reaction generates H2O on the cathode side, natu-

rally humidifying it. The anode does experience some humidification through this process.

Protons moving through the aqueous environment of the MEA will carry water from the

anode towards the cathode, this is called electro-osmotic drag.

The humidification on the anode side dries out without humidification of the hydrogen

gas at higher loads [9]. At low loads back-diffusion will prevail to humidify the anode. It

has been shown that a well hydrated membrane has up to 300 times more conductivity than

a dry membrane. Low humidity not only increases resistance, but also minimizes access to

reacting sites at the three-phase boundary layer, thus increasing activation losses as well as

ohmic losses. Obviously, a wet membrane is preferred.

The accumulation of liquid water in the flow channels is just as detrimental. Flooding
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hinders gas diffusion. In designs that incorporate parallel flows flooding will cause an

unequal distribution of gas flow [14]. It has been observed that as water accumulates in the

channels there is a slowly increasing voltage drop, and as the droplets aggregate to block

reactants a rapid voltage drop is incurred.

Contamination

Contamination sources can come from either reactant gas, fuel cell stack components, or

balance of plant equipment. Carbon monoxide (CO) is a major contaminant that can affect

platinum (Pt) bonding sites[15, 16]. CO may come from impure fuel sources (particularly

reformate) or from the air. CO from the air can crossover through the membrane. CO

will occupy the reaction sites; it has higher kinetics and a slower reaction than hydrogen

causing loss of efficiency. A single CO molecule can acquire two hydrogen bonding sites.

Mitigation of CO can be achieved by running the fuel cell at higher operating temperatures

or by running air/oxygen through the anode. Puffing air/oxygen through the anode can

also reduce nitrogen dioxide NO2 contamination (which is not catalyst related and fully

reversible).

Fuel cell stack components can introduce contaminants to the membrane as well such

as Fe+
3 , Ni+

2 , Cu+
2 , Cr+

3 , and Si. Deionized water from the coolant system can introduce Si,

Al, S, K, Fe, Cu, Cl, V, and Cr. While the compressor (if a part of the system) can introduce

a variety of oils.

Nitrogen Build-Up

Inert gases such as nitrogen (N2) exist within H2 stores. Nitrogen also permeates through

the MEA from the cathode to the anode due to pressure differentials. As fuel is supplied

to the anode a small supply of N2 is released into the system. Dead-end anode systems are

often used to improve H2 utilization with periodic opening of an exhaust valve to purge the

inert gases and water droplets [17]. The partial pressure of inert gases from the fuel source

builds linearly with fuel usage. This decreases the partial pressure of H2, thus increasing

mass transport losses [18]. It can be difficult to optimize the timing of purging. Frequent
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purging improves stack performance but increases parasitic losses, while low frequency

purging increases the chance of water droplet formation of damage to the fuel cell. Adap-

tive controls based off of load requirements are best to achieve system stability and low

system losses [19].

Transient Mass Transport Loss

Mass transport losses occur when the reactants drop in pressure on the surface of the elec-

trodes. When H2 or O2 cannot be supplied quickly, a pressure drop occurs. During a

transient, voltages may overshoot or undershoot the desired voltage. This can be a combi-

nation of the charge double layer effect and mass transfer effects [12]. A fuel cell cannot

always supply the necessary power for the load, hence hybrid systems are developed.

1.3.2 Non-Recoverable Voltage Loss

Not all losses are recoverable or repairable. Throughout the life of a fuel cell it will experi-

ence damaging effects that degrade its performance. These can be exerted from mechanical

forces or chemical reactions. An automotive fuel cell is exposed to a variety of potentially

damaging chemicals from the atmosphere, it experiences shock and vibration from the road,

and thermally cycles with each use. These losses may be repairable through refurbishment

or replacement in a stack and their classification may extend the useful life of the fuel cell

system.

Mechanical

Perforations, cracks, pin-holes, or tears can cause early failure in PEMFC life. Thermal

cycling and humidity cycling cause mechanical stresses leading to MEA tears and pinholes.

Fuel crossover occurs with the existence of a tear or hole in an MEA. This leads to a highly

exothermic reaction between the reactants generating hot spots causing further degradation

[20, 21, 14]. Thermal cycling can also lead to increased contact resistance between the

membrane and electrodes. Increased contact resistance will increase the ohmic loss.
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Chemical/Electrochemical

As shown earlier, chemical modifications of the catalyst layer can cause a degraded state of

the fuel cell. Hydrogen sulfide and sulfur dioxide are contaminants that cause irreversible

bonds on the Pt catalyst [15]. Besides contamination, the Pt activity sites may reduce

in number. Pt particles detach from their carbon supports and dissolve in the electrolyte

without redeposition. The Pt particles may also agglomerate by redepositing on existing Pt

sites [16, 18]. This is called Ostwald Ripening.

The performance of Nafion is limited above 80◦ Celcius. At high temperatures Nafion

membranes decompose [20].

Fuel starvation causes the oxidation of the carbon supports [14]. The oxidation of car-

bon causes agglomeration of Pt particles, surface oxides CO and CO2 form, and oxygen

containing groups (carboxyl, carbonyl, hydroxyl, phenol, etc.) can be formed on the sur-

face at high temperatures and/or high potentials [22]. Surface oxidation also increases

hydrophilicity of the surface decreasing the gas permeability. Liquids fill the pores more

easily and prevent gas transport. The oxidation causes an increase in electrode resistance

by increasing the contact resistance.

These nonrecoverable losses at the activation and ohmic regions are a focus of this

research. The ability to discriminate between recoverable and non-recoverable voltage is a

goal and these must be modeled to create data for this activity.

1.4 Pattern Classification

Pattern classification is the assignment of a class or label based off of measurement(s).

Some sort of sensory system takes these measurements. This system could be composed of

thermometers, lasers, cameras, or other measurement devices. Fuel cell sensory measure-

ments typically include stack coolant temperature, cathode inlet humidity, cathode/anode

manifold pressures, cell and/or stack voltage, and stack current draw. These measurements

are transformable by various pre-processing techniques. Features are extracted at this point.
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These features are used to discriminate between classes using a variety of techniques rang-

ing from support vector machines, neural networks, clustering, statistical methods, etc [23].

1.4.1 Fuel Cell Fault Recognition

Recent years have seen an increase in state of health (SOH) and fault recognition research

[24]. State of health research is the analysis of remaining useful life (RUL) and fault recog-

nition is the determination of the cause. This research tends to focus on determining fuel

cell age, humidification, or balance of plant as seen in [25, 26, 27, 28]. Fault recognition

is not easy in fuel cells due to the difficulty of discriminating faults. Fouquet et al. [29]

shows this by presenting the polarization curve of a flooded membrane and a dry membrane

overlapped. The curves are indistinguishable. Fouquet et al. determined that flooding and

drying out can cause the same voltage drop.

Fouquet et al. used electrochemical impedance spectroscopy (EIS) measurements to

effectively discriminate between flooded and dried cells. It is a technique that applies small

currents to the fuel cell and returns frequency data. However, EIS measurements are time

consuming, expensive, and difficult to implement in high power fuel cell systems.

Figure 1.8: Current Interrupt Test
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The current interupt (CI) technique is used to determine the ohmic drop in the fuel cell.

Due to the capacitance effect discussed earlier, two voltage transients are seen when the

current is interrupted [1]. Figure 1.8 shows an immediate change in voltage (Vr) due to the

ohmic resistance, while a gradual change is due to the capacitance effect of the fuel cell.

This method is difficult to apply in high power fuel cells and is inaccurate at low current

densities [13].

Pressure drop across the cathode (where water is produced) can help determine flooding

[30, 31]. An erratic voltage evolution due to the sudden evacuation of water can also

determine a flooded state. This is difficult to employ in a fuel cell stack as pressure is not

typically recorded on a cell by cell basis.

1.4.2 Classification

Previous studies used EIS measurements to determine fuel cell operating time. Onanena

et al. [25] used feature extraction on a combination of EIS measurements and polarization

curves to improve the FC operating time estimate. They show polarization curves vary

with time. Their feature extraction on polarization curves estimated parameters for each

polarization curve. Feature extraction on EIS measurements is achieved by plotting the

real and imaginary portions separately.

Kim et al. [24] investigated state-of-health diagnosis with output voltage patterns and

a hamming neural network. The output node states the relative health of the cell, ranging

from zero to one. No fault classification is determined. Steiner et al. [26] introduced a novel

approach to determining hydration from the voltage transients by applying the wavelet

transformation. Two features are extracted from the wavelet decomposition to effectively

discriminate between flooding and no flooding. The algorithm was trained and tested on

collected data and did not work for real-time diagnosis. Steiner et al. [27] explored neu-

ral network modeling to discriminate flooding and modeling using voltage, pressure drop,

current, stack temperatures, and air flow rate. The neural network discriminated flooding

and dry states successfully.
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1.5 Proposed Research

The proposed thesis improves the automotive fuel cell model developed by Pukrushpan

et al. [3, 4] of the University of Michigan. The proposed thesis continues by using the

enhanced automotive fuel cell model to develop fuel cell fault classification techniques.

Pukrushpan developed a model for control theory and did not include system responses to

transients beside reactant gases in his scope of work.

This research includes the development of multi-cell deviation by simulating an addi-

tional cell in parallel with the fuel cell stack. The additional cell allows for seeded fault

testing without significantly affecting stack dynamics. A thermal model is developed to

track fuel cell temperature in response to changing current draw. The thermal model ne-

glects anode and cathode convection and convection external to the fuel cell stack assembly.

Humidification controls are implemented to maintain a set cathode outlet humidity by con-

trolling the thermal model. Nitrogen permeation across the membrane is incorporated for

its effect on voltage, oxygen permeation and hydrogen permeation are neglected. An anode

manifold is developed as an outlet flow path for anode gases, and an anode purging control

system is implemented to maintain a set hydrogen mole fraction. Each of these changes

create transients that will impact the fuel cell stack voltage.

The enhanced automotive fuel cell model is used to generate data for the development of

fault classification techniques. A polarization curve test is applied to the enhanced automo-

tive fuel cell model to study its state of health. Seeded faults are applied to the deviated cell

to modify its activation losses and ohmic losses. The effectiveness of a Naı̈ve Bayes classi-

fier in determining the fuel cell state of health is studied. Principal component analysis and

independent component analysis are investigated for their effectiveness as preprocessing

tools for the Naı̈ve Bayes classifier.
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Chapter 2

Fuel Cell System Model

2.1 Fuel Cell Model

Pukrushpan et al. [9] developed an automotive fuel cell system for studying control strate-

gies, particularly in regards to reactant gases. This model expands on the voltage model

developed by Amphlett et al. [32]. This model is used because it is well accepted in liter-

ature; it is found in many journals as the starting point of additional research. Pukrushpan

et al. used data from the FORD P2000 at the Ford Research Laboratory to validate his

model. A review of the automotive fuel cell model is given in this chapter, for a more

in depth analysis see [9]. The model is idealized and lacks important real world effects.

These include a lack of cell to cell deviation (as one cell is modeled and multiplied by Nfc

to create a stack), no thermal dynamics, and no effects from impurities in the fuel and air.

2.1.1 Fuel Cell Voltage

Fuel cell operating voltage is a function of many things: temperature, pressure, and humid-

ification to name a few. The three well documented losses are activation loss, ohmic loss,

and concentration loss. Each loss is discussed and then combined with the reversible open

circuit voltage in this section to create the voltage model.

The reversible open circuit voltage (also known as ”Nernst Voltage”) is the theoretical

maximum voltage of a fuel cell. The basis of this calculation comes from the gibbs free

energy analysis seen in the previous chapter. At standard temperature and pressure the

maximum open circuit voltage is 1.229 volts. As temperature or pressure changes so does

the reversible open circuit voltage (E).
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E = 1.229− 0.85× 10−3(Tfc − 298.15) + 4.3085× 10−5Tfc[ln(pH2 +
1

2
ln(pO2)] (2.1)

where Tfc is the fuel cell temperature in Kelvin, pressure of hydrogen (pH2) and oxygen

(pO2) are expressed in atm. The reversible open circuit voltage cannot be maintained during

the fuel cell’s operation. The fuel cell’s terminal voltage during operation is a combination

of the open circuit voltage and the following losses.

Activation loss (vact) is typically determined with the Tafel equation,

vact = a ln(
i

i0
) (2.2)

where i is the cell current density and i0 is the exchange current density [1]. However,

since the Tafel equation is only valid for current densities greater than the exchange current

density (i > i0), a new model is required. Eq. (2.3) is derived empirically,

vact = v0 + va(1− e−c1i) (2.3)

with the values of voltage drop at zero current density (v0) and constants va and c1 deter-

mined from data fits to Ford fuel cell data.

The ohmic loss (vohm) is a function of resistance (Rohm) and current (i),

vohm = iRohm (2.4)

where the resistance incorporates the electrodes, the membrane, and the various fuel cell

stack components. Membrane humidification changes the ion conductivity of the mem-

brane, so resistance becomes a function of humidification and temperature.

Rohm =
tm
σm

(2.5)

where tm is membrane thickness and σm is a function of membrane water content (λm) and

fuel cell temperature (Tfc)

σm = b1e
b2( 1

303
− 1
Tfc

)
(2.6)
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where b2 is a constant and b1 is a function of λm,

b1 = b11λm − b12 (2.7)

with b11 and b12 as empirically determined constants.

The rapid voltage loss at high current densities is due to mass transport losses, also

known as concentration loss (vconc). Hydrogen cannot access the activity sites as quickly

as current is drawn. This is governed by:

vconc = i(c2
i

imax
)c3 (2.8)

where c2, c3, and imax are constants that depend on the reactant partial pressures and the

temperature. Eq. (2.9) shows the combined losses used in determining the operating volt-

age. This equation can be used to generate a polarization curve.

V = E − [v0 + va(1− e−c1i)]− [iRohm]− [i(c2
i

imax
)c3 ] (2.9)

The constant values for fuel cell terminal voltage are determined with parameter esti-

mation techniques to Ballard fuel cell data [32].

E = 1.229− 8.5 ∗ 10−4(Tfc − 298.15)

+ 5.308 ∗ 10−5Tfc[ln(
pH2

1.01325
) +

1

2
ln(

pO2

1.01325
)] (2.10)

v0 = 0.279− 8.5 + 10−4(Tfc − 298.15)

+ 4.308 ∗ 10−5[ln(
pca − psat
1.01325

)− 1

2
ln(

0.1173(pca − psat)
1.01325

) (2.11)

va = (−1.618 ∗ 10−5(Tfc + 1.618 ∗ 10−2)(
pO2

0.1173
+ psat)

2

+ (1.8 ∗ 10−4Tfc − 0.166)(
pO2

0.1173
+ psat) + (−5.8 ∗ 10−4Tfc + 0.5736) (2.12)
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c1 = 10

c3 = 2

tm = 0.0125

imax = 2.2

b11 = 0.005139

b12 = 0.00326

b2 = 350

c2 =



(7.16 ∗ 10−4Tfc − 0.622)(
pO2

0.1173
+ psat)

+(−1.45 ∗ 10−3Tfc + 1.68 for (
pO2

0.1173
+ psat) < 2 atm

(8.66 ∗ 10−5Tfc − 0.068)(
pO2

0.1173
+ psat)

+(−1.60 ∗ 10−4Tfc + 0.54 for (
pO2

0.1173
+ psat) ≥ 2 atm

2.1.2 Reactant Flow

Reactant flow is modeled using the principles of mass conservation, psychrometrics, and

thermodynamics. All gases are assumed to behave as ideal gases. All outlet measurements

are assumed to be uniform throughout the stack. All flows denoted with a ṁ have the units

kg/sec. The subscripts c and a refer to the cathode and anode respectively. Inlet flows use

the subscript i and outlet flows use o. The following is a recreation of the equations used

by Pukrushpan et al. for the automotive fuel cell model. For more detail please see [9].

Below, some key variables are defined.
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ṁ refers to mass flow rate in kg/sec

T refers to temperature in degrees Kelvin

P refers to pressure in Pascals

φ refers to relative humidity, a ratio from 0 to 1

y refers to a mole fraction, a ratio from 0 to 1

x refers to a mass fraction, a ratio from 0 to 1

M refers to Molar mass in g/mol

m refers to mass in kg

V refers to volume

R refers to gas constants

Cathode

The cathode model takes the inputs of stack current (Ist), stack temperature (Tst), water

flow across the membrane (ṁv,membr), downstream pressure (prm), and inlet flow proper-

ties such as temperature (Tc,i), pressure (pc,i), mass flow rate (ṁc,i), humidity (φc,i), and

oxygen mole fraction (yO2,c,i
). The cathode and anode are each treated as one volume.

Perfect mixing is assumed thus the outlet variables are equivalent to the stack variables for

temperature, pressure, humidity, and oxygen mole fraction.

Three state equations are developed by mass conservation at the cathode.

dmO2,ca

dt
= ṁO2,c,i

− ṁO2,c,o
− ṁO2,rx

(2.13)

dmN2,ca

dt
= ṁN2,c,i

− ṁN2,c,o
(2.14)

dmw,ca

dt
= ṁv,c,i − ṁv,c,o + ṁv,c,gen + ṁv,membr + ṁl,c,o (2.15)
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Where ṁO2,c,i
is the mass flow rate of oxygen gas entering the cathode

ṁO2,c,o
is the mass flow rate of oxygen gas leaving the cathode

ṁO2,rx
is the rate of oxygen reacted

ṁN2,c,i
is the mass flow rate of nitrogen gas entering the cathode

ṁN2,c,o
is the mass flow rate of nitrogen gas leaving the cathode

ṁv,c,i is the mass flow rate of vapor entering the cathode

ṁv,c,o is the mass flow rate of vapor leaving the cathode

ṁv,c,gen is the rate of vapor generated in the fuel cell reaction

ṁv,membr is the mass flow rate of water transfer across the membrane

ṁl,c,o is the rate of liquid water leaving the cathode
The maximum mass of vapor (mv,max,ca) held in the cathode volume can be calculated with

mv,max,ca =
psatVca
RvTst

(2.16)

If the mass of the water calculated in Eq. 2.15 is greater than the maximum mass of vapor

the gas can hold the mass of vapor and liquid are calculated by:

mv,ca = mv,max,ca (2.17)

ml,ca = mw,ca −mv,max,ca (2.18)

else, the mass of liquid water is equal to zero and mv,ca = mw,ca.

The pressure and relative humidity of the gas inside the cathode can be determined using

the masses of oxygen, nitrogen, stack temperature, pressure, and vapor. Oxygen, nitrogen,

and vapor partial pressures are determined from the masses currently in the system.

Oxygen partial pressure:

pO2,ca
=
mO2,ca

RO2
Tst

Vca
(2.19)

Nitrogen partial pressure:

pN2,ca
=
mN2,ca

RN2
Tst

Vca
(2.20)

Vapor partial pressure:

pv,ca =
mv,caRvTst

Vca
(2.21)
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Partial pressure of dry air:

pair,ca = pO2,ca
+ pN2,ca

(2.22)

Cathode pressure:

pc = pair,c + pv,c (2.23)

Oxygen mole fraction:

yO2,c
=
pO2,ca

pair,c
(2.24)

Relative humidity:

φca =
pv,ca
psatTst

(2.25)

Vapor pressure:

pv,c,i = φc,ipsatTc,i (2.26)

Dry air partial pressure:

pair,c,i = pc,i − pv,c,i (2.27)

Humidity ratio:

ωc,i =
Mv

Mair,c,i

pv,c,i
pair,c,i

(2.28)

Air molar mass:

Mair,c,i = yO2,c,iMO2 + (1− yO2,c,i)MN2 (2.29)

Dry air mass flow rate:

ṁair,c,i =
1

1 + ωc,i
ṁc,i (2.30)

Vapor flow rate:

ṁv,c,i = ṁc,i − ṁair,c,i (2.31)

Oxygen mass flow rate:

ṁO2,c,i
= xO2,c,i

ṁair,c,i (2.32)

Nitrogen mass flow rate:

ṁN2,c,i
= (1− xO2,c,i

)ṁair,c,i (2.33)
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Oxygen mass fraction:

xO2,c,i
=

mO2

mdryair

=
yO2,c,i

ṁair,c,i

yO2,c,i
MO2

+ (1− yO2,c,i
)MN2

(2.34)

A simplified orifice equation is used to determine cathode mass flow rate out

ṁc,o = kc,o(pca − prm) (2.35)

The following equations are used to determine the cathode outlet flows.

Mair,c = yO2,ca
MO2

+ (1− yO2,c
)MN2

(2.36a)

ωc,i =
Mv

Mair,c

pv,ca
pair,c

(2.36b)

ṁair,c,o =
1

1 + ωc,o
ṁc,o (2.36c)

ṁv,c,o = ṁc,o − ṁair,c,o (2.36d)

xO2,c,i
=

mO2

mdryair

=
yO2,c,i

ṁair,c,i

yO2,c,i
MO2

+ (1− yO2,c,i
)MN2

(2.36e)

ṁO2,c,o
= xO2,ca

ṁair,c,o (2.36f)

ṁN2,c,o
= (1− xO2,ca

)ṁair,c,o (2.36g)

The amount of vapor generated (ṁv,ca,gen) and the amount of oxygen reacted (ṁO2,rx
)

are calculated as a function of current. For oxygen usage, it is known that four electrons

are transfered for each mole of oxygen.

charge = 4F × amount of O2 (2.37)

where F is farads. If we rearrange for O2 and divide by time,

O2 usage =
I

4F
moles s−1 (2.38)

then convert from moles/sec to to kg/sec and multiply by Nfc cells for a stack, we achieve

ṁO2,rx
= MO2

NfcIst
4F

(2.39)
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This same process can be followed for water production, but per equation 1.3 only 2 elec-

trons are involved per mole of H2O.

ṁv,ca,gen = Mv
NfcIst

2F
(2.40)

Anode Flow

Two state equations are developed by mass conservation for the anode.

dmH2,an

dt
= ṁH2,a,i

− ṁH2,a,o
− ṁH2,rx

(2.41)

dmw,ca

dt
= ṁv,a,i − ṁv,a,o − ṁv,membr − ṁl,a,o (2.42)

Where ṁH2,c,i
is the mass flow rate of hydrogen gas entering the anode

ṁH2,c,o
is the mass flow rate of hydrogen gas leaving the anode

ṁH2,rx
is the rate of hydrogen reacted

ṁv,a,i is the mass flow rate of vapor entering the anode

ṁv,a,o is the mass flow rate of vapor leaving the anode

ṁv,membr is the mass flow rate of water transfer across the membrane

ṁl,a,o is the rate of liquid water leaving the anode
The maximum mass of vapor held in the anode volume can be calculated with

mv,max,an =
psatVan
RvTst

(2.43)

If the mass of the water calculated in Eq. 2.42 is greater than the maximum mass of

vapor the gas can hold the mass of vapor and liquid are calculated by:

mv,an = mv,max,an (2.44)

ml,an = mw,an −mv,max,an (2.45)

else, the mass of liquid water is equal to zero and mv,an = mw,an.

Hydrogen partial presure in anode:

pH2,an
=
mH2,an

RH2
Tst

Van
(2.46)
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Vapor partial pressure:

pv,an =
mv,anRvTst

Van
(2.47)

Anode pressure:

pan = pH2,an
+ pv,an (2.48)

Relative Humidity:

φan =
pv,an
psatTst

(2.49)

Vapor pressure:

pv,a,i = φa,ipsatTa,i (2.50)

Hydrogen partial pressure at anode inlet:

pH2,a,i
= pa,i − pv,a,i (2.51)

Anode humidity ratio:

ωa,i =
Mv

MH2

pv,an
pa,an

(2.52)

Flow rates of hydrogen and vapor:

ṁH2,a,i
=

1

1 + ωa,i
ṁa,i (2.53)

ṁv,a,i = ṁa,i − ṁH2,a,i
(2.54)

Derived from equation 1.2 the mass flow rate of H2 can be determined:

ṁH2,rx
= MH2

NfcI

2F
(2.55)

If an anode purge rate is known, hydrogen and vapor mass flow rate are given by:

ṁH2,a,o
=

1

1 + ωa,o
ṁa,o (2.56)

ṁv,a,o = ṁa,o − ṁH2,a,o
(2.57)

where

ωa,o =
Mv

MH2

pv,an
pH2,ca

(2.58)
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2.1.3 Membrane Hydration

The membrane hydration model determines the water content in the membrane and the rate

of water mass flow (N ) across the membrane. The model does not account for mass transfer

of nitrogen or other contaminants. Uniform water content and mass flow are assumed

across the membrane. Both are functions of stack current and relative humidity inside the

anode and cathode flow channels.

Two phenomena are involved in the transport of water across the membrane. Electro-

osmotic drag by the H+ ions brings water from the anode to cathode. Nv,osmotic in mol/(sec*cm2)

is the net water flow from anode to cathode due to electro-osmotic drag.

Nv,osmotic = nd
i

F
(2.59)

where i (A/cm2) is the stack current density.

Back-diffusion of water from the cathode to the anode occurs due to the difference in

humidity across the membrane. The membrane water concentration gradient is assumed

to be linear. The net water flow from cathode to anode due to back diffusion (Nv,diff ) is

shown.

Nv,diff = nd
dcv
dy

(2.60)

where cv (mol/cm3) is the water concentration, y (cm) is the distance in the direction normal

to the membrane, and Dw (cm2/sec) is the diffusion coefficient of water in the membrane.

Combining the two equations, assuming positive flow from anode to cathode and a

linear water coefficient gradient, gives us the net flow of water (Nv,membr) in mol/(sec*cm2).

Nv,membr = nd
i

F
−Dw

(cv,ca − cv,an)

tm
(2.61)

This can be used to determine the the total stack mass flow rate across the membrane.

ṁv,membr = Nv,membr ×Mv × Afc ×Nfc (2.62)

where Mv is the vapor molar mass, Afc (cm2) is the fuel cell active area, and Nfc is the

number of cells in the stack.
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2.2 Balance of Plant

The balance of plant created by Pukrushpan et al. consists of everything that supports the

fuel cell stack. This includes the air compressor, the air cooler, piping (inlet and outlet

manifolds), and the humidification system. Stack thermal transients and the cooling system

are ignored by Pukrushpan for their slower transients. The various accessories can be seen

in Figure 2.1.
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Figure 2.1: System Block Diagram (Recreated from [9])

The compressor model is built in two parts. The first is a compressor map to determine

air flow rate, exit temperature, and required compressor power. The second part represents

compressor and motor inertia to define compressor speed. The inputs include air pressure

(pcp,i), air temperature (Tcp,i), voltage command (vcm), and downstream pressure (pcp,out).

Inlet air is assumed atmospheric and 25◦ C. The normalized compressor flow rate (Φ) is

given by

Φ = Φmax[1− exp(β(
ψ

ψmax
− 1))] (2.63)
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where the Jensen and Kristensen method is used to determine the dimensionless head pa-

rameter ψ.

ψ = CpTcp,i[(
pcp,o
pcp,i

)
γ−1
γ − 1]/(

U2
cp

2
) (2.64)

Tcp,i is the air inlet temperature in Kelvin, γ is the ratio of specific heats at constant pressure

(Cp/Cv), and the compressor blade tip speed Ucp is given by

Ucp =
π

60
dcNcr (2.65)

where dc is the compressor diameter (0.2286 m) and Ncr is the corrected compressor speed

(rpm). The corrected compressor speed is equivalent to the compressor speed (rpm), Ncr =

Ncp/
√
θ where the corrected temperature θ = Tcp,i/288 Kelvin. The variables φmax, β, and

ψmax are functions of the Mach number (Ma).

φmax = a4Ma4 + a3Ma3 + a2Ma2 + a1Ma+ a0 (2.66)

β = b2Ma2 + b1Ma+ b0 (2.67)

ψmax = ci5Ma5 + c4Ma4 + c3Ma3 + c2Ma2 + c1Ma+ c0 (2.68)

The Mach number can be solved by

Ma =
Ucp√

γRairTcp,i
(2.69)

where the air gas constant Rair = 286.9 J/(kg K). This is all used to determine the mass

flow rate of air (ṁcr) in kg/sec

ṁcr = φρair
π

4
d2
cUcp (2.70)

The compressor outlet temperature Tcp,o is calculated by

Tcp,o = Tcp,i +
Tcp,i
ηcp

[(
pcp,o
pcp,i

)
γ−1
γ − 1] = Tatm +

Tatm
ηcp

[(
psm
patm

)
γ−1
γ − 1] (2.71)

where the efficiency of the compressor ηcp is determined from a look up table based off the

mass flow rate and pressure ratio across the compressor. The compressor drive torque (τcp)
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in N-m is found with

τcp =
CpTatm
ωcpηcp

[(
psm
patm

)
γ−1
γ − 1]ṁcp (2.72)

where Cp is the specific heat capacity of air in J/(kg K) and γ is the ratio of specific heats

of air. This torque is used in a lumped rotational model of the compressor and motor.

Jcp
dωcp
dt

= τcm − τcp (2.73)

where Jcp is inertia of both the compressor and motor in kg m2, ωcp is the compressor speed

in rad/sec, Tcm and Tcp are the compressor motor torque input and the torque required to

drive the compressor in N-m. A static motor equation is used to determine the compressor

motor torque (τcm).

τcm = ηcm
kt
Tcm

(vcm − kvωcp) (2.74)

where kt, kv, and Rcm are motor constants and ηcm is the mechanical efficiency of the

motor.

Manifold dynamics represent the inlet manifold and outlet manifolds. The inlet mani-

fold comprises the volumes of pipes between the compressor and the fuel cell stack, includ-

ing the volume of the air cooler and humidifier. The return manifold represents the volume

of the fuel cell stack exhaust. Each manifold follows the conservation of mass principle.

dm

dt
= ṁi − ṁo (2.75)

wherem is the mass in the manifold, ṁi represents the mass flow rate in, and ṁo represents

the mass flow rate out. The inlet manifold is not assumed to be isothermal, thus T 6= Ti.

The manifold pressure is modeled by

γRa

V
(ṁiTi − ṁoTo) (2.76)

The manifold outlet flow is governed by a two part nozzle equation that is dependent on

the critical pressure ratio:
p2

p1 crit

= (
2

γ + 1
)

γ
γ−1 (2.77)



35

If the pressure drop is less than the critical pressure, the flow is subcritical and governed by

ṁ =
CDATp1√

R̄T1

(
p2

p1

)
1
γ [

2γ

γ − 1
[1− (

p2

p1

)
γ−1
γ ]]

1
2 (2.78)

while critical flow is determined by

ṁ =
CDATp1√

R̄T1

γ
1
2 (

2

γ + 1
)

γ+1
2(γ−1) (2.79)

where CD is the discharge coefficient of the nozzle, AT is the nozzle opening (m2), and R̄

is the universal gas constant. But when the pressure drop is relatively small, a linearized

form can be calculated for subcritical nozzle flow. This nozzle outlet flow ṁ is given by

ṁ = k(p1 − p2) (2.80)

where k is the nozzle constant.

The supply manifold has a relatively small pressure drop between the manifold and the

cathode, so a linearized form is used for the supply manifold’s outlet mass flow (ṁsm,o).

ṁsm,o = ksm,o(psm − pc) (2.81)

where psm is the supply manifold pressure, pca is the cathode pressure, and ksm,o is the

supply manifold outlet flow constant. The temperature is expected to drop in the supply

manifold since the air compressor outlet temperature is assumed to be high. Thus the

following equations model the supply manifold.

dmsm

dt
= ṁcp − ṁsm,o (2.82)

dpsm
dt

=
γRair

Vsm
(ṁcpTcp,o − ṁsm,oTsm) (2.83)

where Vsm is the supply manifold volume and Tsm is the supply manifold temperature. The

return manifold however, has a small temperature change and a large pressure drop. This

is the opposite of the inlet manifold. As such the return manifold pressure is modeled with

dprm
dt

=
RairTrm
Vrm

(ṁc,o − ṁrm,o) (2.84)
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where Trm is the return manifold temperature and Vrm is the return manifold volume. The

nonlinear nozzle equation for subcritical flow is given by

ṁrm,o =
CD,rmAT,rmprm√

RTrm
(
patm
prm

)
1
γ [

2γ

γ − 1
[1− (

patm
prm

)
γ−1
γ ]]

1
2 (2.85)

and critical flow is given by

ṁrm,o =
CD,rmAT,rmprm√

RTrm
γ

1
2 (

2

γ + 1
)

γ+1
2(γ−1) (2.86)

where CD,rm and AT,rm are constants. AT,rm can be a variable for regulating return mani-

fold pressure, effecting cathode pressure.

The air entering the stack must be cooled as it leaves the compressor. Heat transfer

effects are not studied in the model and an ideal cooler is assumed that maintains the tem-

perature at 80◦ C. However, temperate change does effect humidity of the gas. The pressure

drop across the air cooler is considered negligible. The air cooler humidity (φcl) is calcu-

lated as follows:

φcl =
pv,cl
psatTcl

=
pclpv,atm
patmpsatTcl

=
pclφatmpsat
patmpsatTcl

(2.87)

The mass of the gas does not change with temperature, thus the air cooler mass flow rate is

equivalent to the supply manifold outlet mass flow rate.

Water vapor is injected into the air flow exiting the air cooler, just before entering the

fuel cell stack. The volume of the humidifier is small and thus treated as a part of the

supply manifold volume. The air temperature is considered constant during this process.

With a knowledge of the air flow exiting the humidifier, the dry mass air flow rate ṁair,cl,

the vapor mass flow rate ṁv,cl, and the dry air pressure pair,cl can be determined through

thermodynamic equations. The vapor saturation pressure pv,cl is determined by

pv,cl = φclpsatTcl (2.88)

and the difference between total pressure and vapor pressure will determine the dry air

pressure pair,cl by

pair,cl = pcl − pv,cl (2.89)
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leading to the humidity ratio (ωcl) with

ωcl =
Mvpv,cl
Mairpair,cl

(2.90)

where Mair is the molar mass of dry air and Mv is the molar mass of vapor. Once the

humidity ratio is determined the mass flow rate of dry air and vapor can be determined with

the following

ṁair,cl =
1

1 + ωcl
ṁcl (2.91)

ṁv,cl = ṁcl − ṁair,cl (2.92)

The mass flow rate of air does not change in the humidifier, but the additional water vapor

increases the mass flow rate of vapor

ṁv,hm = ṁv,cl + ṁv,inj (2.93)

where ṁv,inj is injected water vapor. Increasing the vapor mass also increases the vapor

pressure (pv,hm) which is determined by

pv,hm =
ṁv,hmMair

ṁair,clMv

pair,cl (2.94)

allowing for the calculation of the humidifier exit humidity (φhm)

φhm =
pv,hm
psatThm

=
pv,hm
psatTcl

(2.95)

The total pressure in the humidifier increases because the vapor pressure increases, thus

phm = pair,cl + pv,hm (2.96)

where pair,cl is the cooler dry air pressure and pv,hm is the humidifier vapor pressure. The

humidifier exit flow mass continuity is given by

ṁhm = ṁair,cl + ṁv,cl + ṁv,inj (2.97)

where ṁair,cl and ṁv,cl are the air and vapor entering the humidifier and ṁv,inj is the added
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water vapor. The exit flow from the humidifier is the cathode inlet flow.

2.3 Model Deficiencies

The automotive fuel cell model by Pukrushpan et al. [3] is excellent for studying reactant

gas control strategies but lacks the capability for a more detailed analysis, particularly a

single cell failure. Long transients such as thermal changes and inert gas build-up are also

ignored. The small time transient of the charge double layer is also neglected. Each of

these can temporarily effect a fuel cell voltage reading. Thus, a direct reading of fuel cell

voltage at a given current does not give enough information to describe the system health.

Each deficiency addressed in this thesis is discussed in this section.

Cell Variation

This model simulates a single fuel cell and generates a stack by multiplying the one cell by

Nfc. A real system has variations between cells due to manufacturing and design. Other

variations may occur due to non-uniform stack temperature, non-uniform distribution of

reactants, or degradation. Without a separation of cell model, a parameter change will

effect the entire stack, thus affecting the system controls more significantly than a single

cell with modified parameters.

Thermal Subsystem

A thermal system will impact the response of the fuel cell stack. Operational temperature

has a direct effect on operational voltage. Parasitic losses are also effected as pumps and

valves are actuated. Vasu et al. [33] explored a thermal model for an automotive fuel

cell stack. Results show different voltage patterns when the thermal system is accounted.

The stack settling time is approximately 50 min in an open-loop scenario and with tuning,

approximately 6 min in a closed-loop scenario.
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Inert Gas Build-up

Inert gasses can limit fuel cell performance. These gases, particularly nitrogen, can build

up on the anode side of the fuel cell. Nitrogen enters through both non-pure hydrogen fuel

cells and by permeation through the MEA [34]. Fuel cells do not operate at 100% fuel uti-

lization per pass, and thus spent anode gas is recycled to the anode inlet. This recirculation

compounds the inert gas build up. Nitrogen can be controlled by periodic or continuous

purging. The purge should be minimized because the hydrogen is lost irrecoverably. It may

also have to be treated to avoid a safety hazard. Nitrogen build up decreases the hydrogen

partial pressure, reducing hydrogen fuel utilization.

Charge Double Layer

The charge double layer phenomena is not incorporated into the Pukrushpan fuel cell

model. There is debate about the importance of the effect of the charge double layer [35].

Pukrushpan decided to neglect the charge double layer because the time constant is signif-

icantly smaller than reactant gas transients. However, the time constant referenced is for

a single cell and not a stack. Introducing the charge double layer effect also allows for an

effective technique to determine a cell’s ohmic resistance.

Liquid Water

Liquid water is ignored in the automotive fuel cell model. Liquid water can cause abnormal

pressure drops, starvation of the MEA, and irregular voltage patterns. Liquid water is more

prevalent on the cathode than the anode due to the production of H2O on the cathode. It is

possible for the cathode channels to be flooded while the anode channels are dry, creating

an environment of difficult water management. Liquid water transients are shown to be on

a time scale of twenty minutes [13]. The model as designed often contains a quantity of

liquid water throughout operation, and the membrane humidification is kept at a constant

100% humidity.



40

Humidity Control

Humidity control is neglected and perfect humidification is assumed, despite containing

a humidification model. Humidity is often controlled by manipulating stack temperature.

This is not possible without a thermal model. Modifying stack temperature to maintain a

healthy membrane will effect the voltage and thus should be included.
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Chapter 3

Model Enhancements

Additional features are added to Pukrushpan’s fuel cell model to implement classification

techniques on a more complex system. Pukrushpan et al. [3] did not include various fea-

tures since they were outside of his scope. These features are necessary to more realistically

model an automotive proton exchange membrane fuel cell. Transient information may be

useful in fault classification. It may also cause difficulties in fault classification by creating

outliers in the data. These are challenges in classification that must be addressed.

The most critical addition is the development of a multi-cell model. It is necessary to

understand how a single dysfunctional cell can impact the dynamics of an entire stack, if

at all. In addition to the multi-cell model a thermal system is highly critical. A fuel cell

stack experiences temperature swings as power demands change. The system will attempt

to maintain a consistent stack temperature but it provides an easy means to modifying the

relative humidity of the stack. This is of extreme importance to maintaining membrane

health. Inert gas build-up is also a significant issue for automotive PEMFCs. Maintaining

a high hydrogen fuel efficiency requires a dead-end mode or recycling of the fuel. In both

these scenarios nitrogen builds up either through impure fuel sources or through nitrogen

crossover. This is mitigated when a system vents directly to atmosphere.

Each of these effects are a part of normal operation and will decrease a fuel cell’s

voltage. An efficient and effective classifier must be capable of discriminating between

normal operation (recoverable voltage losses) and deteriorated operation (non-recoverable

voltage loss).
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3.1 Multi-Cell Development

The fuel cell system model is enhanced by supplementing the fuel cell stack assembly with

an additional single cell model. This enables the analysis of a single cell in various failure

modes in a fuel cell system. The fuel cell cathode and anode volumes corresponded to a

381 cell system. As such the fuel cell volumes were reduced respectively. The stack was

reduced to 380 cells and a single cell was added in parallel. The cathode and anode mass

flow rates are split with a ratio of 380/381 of the flow entering the stack, and 1/381 entering

the single cell. The fuel cell temperature and relative humidities entering the stack and cell

are not modified. Upon leaving the stack and cell, the mass flow rates are added to each

other. The temperatures and relative humidities exiting are proportionately combined. It is

possible to test the effect of reduced temperature and/or relative humidity on a single cell.

Figure 3.1 demonstrates the separation of inlet flows and the combination of outlet flows.

The various failure modes are generated with gains in the single cell model only. These

gains modify the ohmic loss, the concentration loss, and activation loss in the stack voltage

model. The nitrogen permeation model includes a gain to modify nitrogen permeation rate.

Another set of gains modify the flow of hydrogen to both the stack and the single cell. In

the event of a blockage, excess hydrogen may enter the fuel cell stack rather than the single

fuel cell.

The stack voltage model and individual cell model are compared to validate the results

of the single cell. Small variations in data occur on a scale of 10−7 or less. This variation

Figure 3.1: Diagram of Stack and Cell Flow Separation
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is due to the limited nature of a numerical analysis. A plot of error versus time can be seen

in Figure 3.2.

3.2 Double Charge Layer

The effect of the double charge layer is included in the enhanced automotive fuel cell

model. The capacitive effect is modeled by

C
dVdyn
dt

= Amembri(1−
Vdyn

Vact + Vconc
) (3.1)

The overall voltage equation must be restated with the dynamic voltage loss term

V = E − Vdyn − Vohm (3.2)

Pukrushpan states that the charge double layer effect is negligible due to its small time

constant. Meyer et al. [35] determined the effect is only important when interested in time

scales smaller than the 2% settling time. The 2% settling time varies with the capacitance

of the system, in Meyer et al. this is a few tenths of a second. A fuel cell typically has a

capacitance in the range of a few farads [1]. For the purposes of this research a 3 farad

capacitance is selected.

The double charge layer effect is included to expand the functionality of the model. The

current stop test shown in Figure 1.8 explains how this effect could be used to determine

the ohmic loss at a specific current density. This information could represent an additional

feature for pattern recognition in health classification.

3.3 Nitrogen Permeation

Nitrogen has two methods of entering the anode. Nitrogen may enter through as a part of

the fuel supply since pure hydrogen is difficult to obtain. In this model the H2 storage tanks

are assumed to be 99.925% pure. The second method of transport is permeation across the

MEA. According to Ahluwalia et al. [34] the permeation of nitrogen per unit area dNN2
/dA

can be expressed in the form



45

dNN2

dA
=
ψN2

δm
(P c

N2
− P a

N2
) (3.3)

Where ψN2
is the permeance in mol/(cm*s*bar)

δm is the thickness of the membrane in cm

P c
N2

is the nitrogen pressure at the cathode in bar

P a
N2

is the nitrogen pressure at the anode in bar

ψN2
= (0.0295 + 1.21fv − 19.3f 2

v )× 10−11 × exp[
EN2

RN2

(
1

Tref
− 1

Tfc
)] (3.4)

where fv is the volume fraction of water

EN2
is 24 kJ/mol

RN2 is the nitrogen gas constant kJ/(kg K)

Tref is 303K

The volume fraction of water is determined by manipulating the term λm, a ratio of H2O

to SO–
3. The automotive fuel cell model incorporates λm as a component of the membrane

humidification model. The volume fraction of water is defined from percolation theory:

fv =
Vwater

Vwater + (Vd − Vp)
(3.5)

where Vwater is the volume fraction of water

Vd is volume of the dry membrane

Vp is volume of the membrane that does not interact with water
The volume Vp is considered negligible. Vd is taken from the thickness of the membrane

(0.007 in) and the cross sectional area (280 cm2). The volume of water is a little more

difficult to calculate.

Given that Nafion 117 is C7HF13O5SC2F4 and the activity site is the SO–
3 portion, a

molar mass ratio can be determined.

molar mass ratio =
SO−3

C7HF13O5SC2F4

=
80.0632

544.139
= 0.147137 (3.6)
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where Carbon is 12.0107 g/mol

Hydrogen is 1.00794 g/mol

Flourine is 18.9984032 g/mol

Oxygen is 15.9994 g/mol

Sulfur is 32.065 g/mol
This is compared to the mass ratio to determine the mass of the activity sites.

molar mass ratio =
moles of SO−3

moles of C7HF13O5SC2F4

(3.7)

With the known volume and density of nafion 117, the moles of C7HF13O5SC2F4 are

determined. With an active area of 280 cm2, a thickness of 0.0178 cm, and a density of

2 g/cm3, the mass of the sulphates is 1.466661616 grams.

moles of H2O = λm × 0.018318798 moles of SO−3 (3.8)

Equation 3.8 is used to determine the number of moles of H2O in the membrane. This

leads to the water mass. A water volume is calculated at 80 degrees Celsius in one atmo-

sphere of pressure. The volume fraction of water is determined using Equation 3.5, and

used to calculate the permeance in Equation 3.4, which is used to calculate the permeation

of nitrogen through the fuel cell in Equation 3.3.

The nitrogen model is included in the enhanced fuel cell model due to its effect on

voltage. It represents one more degree of difficulty for the classifier. Figure 3.3 presents

the gas flow rates going into and out of the anode volume, and nitrogen permeation across

the MEA. The permeation rate increases as the polarization curve test draws more current.

This is due in part to the increased anode and cathode pressures. The anode flow rates and

nitrogen permeation plots are separated due to their different scales.

3.4 Anode Purge

An anode purge model is incorporated in the model to allow the release of nitrogen. This

model reproduces the cathode outlet manifold model and incorporates it as the anode outlet
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Figure 3.3: Nitrogen Permeation Rate during a Polarization Curve Test

manifold model. The area of the outlet manifold nozzle is used to control the flow rate

of the hydrogen. An anode purge control system manipulates the flow to obtain different

humidities, pressures, and to operate in anode cleansing operations.

The anode outlet manifold has a small temperature drop and a large pressure drop, thus

modeled by
dprm,a
dt

=
Rrm,aTrm,a
Vrm,a

(ṁa,o − ṁrm,a,o) (3.9)

where Vrm,a is the volume of the anode return manifold and Trm,a is the temperature of the

anode return manifold gasses. Rrm,a is a composition of the nitrogen gas constant (RN2),

the water vapor gas constant (Rv), and the hydrogen gas constant (RH2). The nonlinear

nozzle equation for subcritical flow is given by

ṁrm,a,o =
CD,rm,aAT,rm,aprm,a√

R̄Trm,a
(
patm
prm,a

)
1
γ [

2γ

γ − 1
[1− (

patm
prm,a

)
γ−1
γ ]]

1
2 (3.10)

and critical flow is given by

ṁrm,a,o =
CD,rm,aAT,rm,aprm,a√

R̄Trm,a
γ

1
2 (

2

γ + 1
)

γ+1
2(γ−1) (3.11)

where CD,rm,a is a constant and AT,rm,a is the controllable value for purging. γ is a ratio
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Figure 3.4: Voltage Effects during Anode Purging

for specific heat.

Control methods are not the intent of the study; as such a simple threshold based purging

design is employed. Each time the nitrogen content crosses a high threshold, the valve

opens until the nitrogen content has been reduced to a low threshold. These values create

different voltage characteristics when adjusted. If a relatively low nitrogen content is used

as the high threshold, purging operations will occur often and rapidly. A high nitrogen

content as a threshold leads to large voltage swings unless the purge rate is kept low. Some

of these characteristics could be controlled or modified by leading the purge with increased

hydrogen pressure. For this work the relay attempts to hold the hydrogen mole fraction

between 85% and 97%.

The effect of a purge at steady state can be seen in Figure 3.4. In this figure current
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draw is stepped up near the beginning of the time frame. The system then reaches steady

state where it cycles between high and low voltages. The lowest voltages are reached at

the end of the purge. During a purge operation hydrogen pressure is decreased creating

a temporary activation loss. Humidity is also expelled from the system increasing ohmic

resistance. After the purge operation ceases voltages climb rapidly as hydrogen pressure

returns and humidity returns to normal. However, nitrogen content also increases steadily

through this transient eventually creating larger losses, and the system is purged again.

3.5 Humidification Controls

Fuel cell membrane humidification is important to a fuel cell system but it is difficult to

measure and control. Relative humidity is measured at the outlet of the cathode and this

feeds a PI controller in the thermal system. Manipulating the thermal temperature of a

fuel cell stack can rapidly change the water content within the system. The fuel cell stack

temperature controller attempts to maintain a stack temperature of 353 degrees Kelvin.

This temperature is modified as needed by the humidifier controller to achieve a desired

relative humidity.

Humidity sensors cannot react instantaneously to changes. Depending on the type, tem-

perature range, and humidity range their response times can vary from seconds to minutes

[36]. As such, a time lag is applied to the model’s calculated humidity by the transfer

function below. Equation 3.12 approximates a 30 second time constant.

TF =
1

30s+ 1
(3.12)

3.6 Thermal Model

The enhanced automotive fuel cell model incorporates a thermal subsystem to model tran-

sient behavior. Fuel cell voltage is effected by stack temperature. The Pukrushpan model

does not incorporate these dynamics as their time constant is outside of his scope. By in-

corporating a thermal model a method for humidification control becomes available. This
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Figure 3.5: Relative Humidity Sensor Results for Humidity Control

is important as it introduces new transients to the system.

The energy in each control volume (cathode, anode, stack) is modeled by the conserva-

tion of energy. Enthalpy is used to replace the sum of thermal energy and flow work per

unit mass. The kinetic and potential energy effects of the gas are assumed negligible. This

simplifies the equation to
dEs
dt

= ṁ(i)in − ṁ(i)out + q (3.13)

where ṁ is the mass flow rate in kg/s and q is heat transfer in watts.

3.6.1 Stack and Channels

Employing conservation of energy on the anode channel leads to

dEa
dt

= ṁH2,i
hH2,i

+ ṁN2,i
hN2,i

+ ṁH2O,ihH2O,i

− ṁH2,o
hH2,o

− ṁN2,o
hN2,o

− ṁH2O,ohH2O,o

− ṁH2,rx
hH2,rx

+ ṁN2,diff
hN2,diff

− ṁH2O,diffhH2O,diff (3.14)
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Where ṁH2,i
is the mass flow rate in of hydrogen entering the anode

hH2,i
is the specific enthalpy of hydrogen entering the anode

ṁN2,i
is mass flow rate of nitrogen entering the anode

hN2,i
is the specific enthalpy of nitrogen entering the anode

ṁH2O,i is the mass flow rate of water entering the anode

hH2O,i is the specific enthalpy of water entering the anode

ṁH2,o
is the mass flow rate in of hydrogen exiting the anode

hH2,o
is the specific enthalpy of hydrogen exiting the anode

ṁN2,o
is mass flow rate of nitrogen exiting the anode

hN2,o
is the specific enthalpy of nitrogen exiting the anode

ṁH2O,o is the mass flow rate of water exiting the anode

hH2O,o is the specific enthalpy of water exiting the anode

ṁH2,rx
is the mass flow rate of hydrogen reacting across the membrane

hH2,rx
is the specific enthalpy of hydrogen reacting across the membrane

ṁN2,diff
is mass flow rate of nitrogen diffusing across the membrane

hN2,diff
is the specific enthalpy of nitrogen diffusing across the membrane

ṁH2O,diff is the mass flow rate of water diffusing across the membrane

hH2O,diff is the specific enthalpy of water diffusing across the membrane

The cathode control volume utilizes a similar analysis that leads to

dEc
dt

= ṁO2,i
hO2,i

+ ṁN2,i
hN2,i

+ ṁH2O,ihH2O,i

− ṁO2,o
hO2,o

− ṁN2,o
hN2,o

− ṁH2O,ohH2O,o

− ṁO2,rx
hO2,rx

− ṁN2,diff
hN2,diff

+ ṁH2O,diffhH2O,diff + ṁH2O,genhH2O,gen (3.15)

The temperature in both the anode and cathode are determined by dividing the energy

term by the thermal mass of each system.

The fuel cell body consists of multiple volumes and masses such as the cooling chan-

nels, anode volume, cathode volume, bipolar plates, cooling plates, membranes, etc. It is
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assumed the mass transfer into and out of the diffusion layers are neglible and that conser-

vation of energy is more practical than conservation of mass on the fuel cell body. Conser-

vation of energy in the fuel cell body leads to

mfccv,fc
dTfc
dt

= ṁH2,rx
Cp,H2

(Ta − Tfc) + ṁH2,co
hH2

(Ta)+

ṁO2,rx
Cp,O2

(Tc − Tfc) + ṁO2,co
hO2

(Tc)

− ṁH2O,membr→ahf,H2O(Tfc)− ṁH2O,membr→chf,H2O(Tfc)

− hc,aAa(Tfc − Ta)− hc,cAc(Tfc − Tc)

− hc,ambAfc(Tfc − Tamb)− hc,clt,fcAclt,fc(Tfc − Tclt,fc)

+NfcAmembri(Eth − V ) (3.16)

Where mfc is the mass of the fuel cell

cv,fc is the average specific heat at constant volume of the fuel cell

ṁH2,rx
is mass flow of hydrogen reacting

Cp,H2
is average specific heat of hydrogen

Ta is temperature of the anode

Tfc is the temperature of the cathode

ṁH2,co
is the mass flow rate of hydrogen crossover

hH2
is the specific enthalpy of hydrogen

ṁO2,rx
is mass flow rate of oxygen reacting

Cp,O2
is average specific heat of oxygen

Tc is the temperature of the cathode

ṁO2,co
is the mass flow rate of oxygen crossover

hO2,o
is the specific enthalpy of oxygen

ṁH2O,membr→a is mass flow of water from the membrane to the anode

hl,H2O is specific enthalpy of liquid water

ṁH2O,membr→c is mass flow of water from the membrane to the cathode
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hc,a is convective heat transfer coefficient in the anode

Aa is area of the anode

hc,c is convective heat transfer coefficient in the cathode

Ac is the area of the cathode

hc,amb is convective heat transfer coefficient to ambient air

Afc is area of the fuel cell in ambient air

hc,clt,fc is convective heat transfer coefficient of the fuel cell coolant

Aclt,fc is area the coolant contacts the fuel cell

Tclt,fc is temperature of the fuel cell coolant

Nfc is the number of cells

Amembr is the area of the membrane

i is current

Eth is reversible voltage

V is fuel cell voltage

However, for the purposes of this research the anode and cathode control volumes can

be assumed equivalent to the stack temperature. The difference is considered negligible.

This negates the concern for convection within the anode and cathode channels. Further

research could investigate the effects of convection, which would likely have the greatest

effect at high flow rates. Oxygen crossover and hydrogen crossover are neglected as well.

The focus is the coolant flow and heat generated. This reduces the previous equation to the

following

mfccv,fc
dTfc
dt

= −hc,clt,fcAclt,fc(Tfc − Tclt,fc) +NfcI(Eth − V ) (3.17)

3.6.2 Coolant Loop

The coolant loop seen in Figure 3.6 is modeled by the equations below. Four control

volumes are used to model the coolant loop. These are the cooling channels within the

fuel cell, the cooling channels within the heat exchanger, the air volume around the heat

exchanger, and the heat exchanger body.
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mclt,fccv,clt
dTclt,fc
dt

= ṁclthclt(Tclt,fc,i − Tclt,fc) + hc,clt,fcAclt,fc(Tfc − Tclt,fc) (3.18)

mclt,hexcv,clt
dTclt,hex
dt

= ṁclthcltTclt,fc − ṁclthcltTclt,hex + hc,clt,hexAclt,hex(Tclt,hex − Thex)

(3.19)

mha,hexcv,ha,hex
dTha,hex
dt

= ṁha,hexhhaTha,i−ṁha,hexhhaTha,hex+hc,ha,hexAha,hex(Thex−Tha,hex)

(3.20)

mhexcv,hex
dThex
dt

= hc,clt,hexAclt,hex(Tclt,hex − Thex)− hc,air,hexAha,hex(Thex − Tha,hex)

(3.21)

The fuel cell coolant Tclt,fc and heat exchanger coolant Tclt,hex are mixed by a propor-

tional valve control. This mixing changes the fuel cell inlet temperature Tclt,fc,i.

Tclt,fc,i = uTclt,hex + (1− u)Tclt,fc (3.22)

where u is the percent of mass flow through the heat exchanger.

A PI controller is used to manage the fuel cell coolant temperature at 353 degrees

Kelvin. A pump runs at a continuous flow of 1.4 kg/s through the coolant system. A

controller modifies a valve position to separate flow between the heat exchanger and recir-

culating through the fuel cell body. The recirculation through the fuel cell body prevents

hot spots during operation. Water is only sent through the heat exchanger when the coolant

temperature is too high. A mass flow rate of air across the heat exchanger is assumed at

1.25 kg/s.
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Figure 3.6: Coolant Loop

3.7 Membrane Hydration Correction

While working through Pukrushpan’s model a strange phenomenon would occur at higher

current densities. This phenomena caused a rapid voltage drop as membrane humidifi-

cation crossed a certain threshold. The water diffiusion coefficient used in calculating

electro-osmotic flow is non-continuous. Pukrushpan et al. used the following equations

to determine determine molar flow rates of water through the membrane.

Dω = Dλe
2416( 1

303
− 1
Tfc

)
(3.23)

where Dω is the water diffusion coefficient and Tfc is the stack temperature.

Dλ =



10−6 λm < 2 (3.24a)

10−6(1 + 2(λm − 2)) 2 ≤ λm ≤ 3 (3.24b)

10−6(3− 1.67(λm − 3)) 3 < λm < 4.5 (3.24c)

1.25 ∗ 10−6 λm ≥ 4.5 (3.24d)
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where λm is membrane water content.

Equation 3.24c is possibly incorrect with one coefficient and is rewritten as

Dλ = { 10−6(3− 1.167(λm − 3)) 3 < λm < 4.5 (3.25)

Figure 3.7 demonstrates the difference between the non-continuous and continuous

equations. Pukrushpan et al. [4] discusses the use of his model at 100% humidification

(λm = 14) due to ”considerable drops in fuel cell voltage.” The need to model the effects

of varying membrane hydration led to this modification.
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Figure 3.7: Water Diffusion Coefficient Original and Modified Comparison

3.8 Model Enhancement Results

The enhanced automotive fuel cell model successfully models the effects of the double

charge layer, nitrogen permeation, anode purging, humidification controls, and thermal

transients along with the capability to modify an individual cell. Figure 3.8 shows a step

response of the average stack voltage and the step response of an individual cell with a 3%

activation loss controlled at 87% humidification. The system experiences a drastic change



57

Figure 3.8: Average Stack Voltage and Lossy Cell Voltage Transients During a Current Step Increase
and Anode Purging

as the stack current draw is increased. Hydrogen is let into the anode at an increased rate

and cathode compressor spools up to maintain fuel cell operation. As the power draw

increases the stack temperature and membrane water content increase, thus raising volt-

age. As the thermal system and membrane humidification respond the voltage reaches an

oscillitory steady state. These oscillations are due to the periodic anode purging.

Figure 3.9 presents the temperature swings over the same time period as the step change

in Figure 3.8. The stack fuel cell temperature is highest, followed by the fuel cell coolant

outlet temperature. There is a large temperature difference between the fuel cell coolant

and heat exchanger coolant. This is due to the bypass valve seen in Figure 3.6. Much of

the fuel cell coolant loops back towards itself to maintain the correct temperature. The heat

exchanger is the next highest temperature component, followed by the ambient temperature

of air. Small variation in the temperatures can be seen as the system tries to maintain the

cathode humidity near 87%. This is part of the response to the anode purging.

Figure 3.10 demonstrates the membrane water content response to both an increase in

current draw and anode purging. During an increase in current draw the system generates
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Figure 3.9: Thermal System Response to a Current Step Increase and Anode Purging

more water, increasing membrane humidification. It can be seen with each purge that

membrane humidification significantly drops. The voltage loss during a purging operation

is due to both the hydrogen pressure drop increasing the activation loss and the membrane

humidification drop increasing the ohmic losses.

Figure 3.11 clearly shows the effect of a purging operation on the partial pressures

within the anode volume. Vapor pressure is maintained at a fairly constant level throughout

the fuel cell operation, while hydrogen pressure and nitrogen pressure significantly change.

The nonlinear effect of the anode return manifold outlet nozzle is visible in the nitrogen

partial pressure.
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2

Figure 3.10: Membrane Water Content Response to Current Step Increase and Anode Purging

Figure 3.11: Anode Partial Pressure Response to a Current Step Increase and Anode Purging



60

Chapter 4

Prognostic Health Management

Prognostic health management (PHM) is a beneficial tool to optimize maintenance re-

sources. It is used when condition based maintenance (CBM) is desired instead of a fixed

schedule maintenance routine. PHM employs a variety of techniques to determine a sys-

tem’s or a component’s state of health. These techniques include physics based models,

artificial intelligence techniques, and probabilistic approaches [37]. Large complicated

systems are difficult to model, in these circumstances a data based method is easier to

implement.

Figure 4.1 shows the general concept behind a PHM system. Training data from known

failure modes are the basis of the prognostic health management system. A component or

system will produce outputs that are processed, features are selected, and if they fall within

certain conditions a fault classification is determined. If a classification is not determined,

the information is used for further training.

The development of a data-based prognostic health system requires training data to cre-

ate the relationship between features and failure modes. These features are direct system

outputs or transformations of the data via pre-processing techniques such as independent

component analysis and principal component analysis. After training, a PHM system mon-

itors system outputs and classifies the system state of health in real time. In adaptive sys-

tems, the classifications are used to adjust control strategies to improve remaining useful

life.
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Figure 4.1: Prognostic Health Management Flow Chart
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4.1 Preprocessing

Preprocessing improves the performance of data mining and machine learning. These pro-

cesses cleanse, normalize, transform, or extract features from data. Data cleaning is the

removal of incomplete, incorrect, and irrelevant data. This is important to prevent outliers

from negatively effecting the training process. Normalization implies scaling and shifting

of data, which prevents one feature from outweighing another. A transformation changes

the axes a data set is plotted against. Principal component analysis and independent com-

ponent analysis can transform the axes of data and reduce the number of axes (feature

reduction). Feature reduction reduces the computational cost while possibly improving

the effectiveness of a classifier. High dimensionality systems require significant data to

effectively train, thus providing another advantage of reducing dimensionality.

4.1.1 Independent Component Analysis

Independent component analysis (ICA) is a technique to find directions on data that are

most independent from each other. It is an expansion on blind source separation. FastICA

is a package for MATLAB programmed at the Helsinki University of Technology [38]. It

offers a computationally efficient method to determine the independent components in a

data set. It works on a fixed-point iteration scheme to maximize non-Gaussianity.

The following is a brief summary and example of the fastICA algorithm. Please see

[38] to gain a deeper understanding. To maximize the non-Gaussianity of the projection

wTx, of a given data set x. Choose an initial weight vector wp.

wp+1 = Exg(wTx)− Eg′(wTx)w (4.1)

wnew =
wp+1

||wp+1||
(4.2)

Repeat these steps until the non-Gaussianity has converged. The non-gaussianity cost

function may be found at [38].

To give an example of the fastICA tool two sinusoidal signals are combined and then
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seperated. Let

y1 = sin(t) (4.3)

y2 = sin(3 ∗ π ∗ t) (4.4)

and

ymix1 = 0.6 ∗ y1 + 0.4 ∗ y2 (4.5)

ymix2 = 0.6 ∗ y1 + 0.8 ∗ y2 (4.6)

In Figure 4.2a the original signals of a sinusoids are shown. In Figure 4.2b the two

signals are combined with Equation 4.5 and Equation 4.6. In Figure 4.2c the original

signals are decorrelated by fastICA with reasonable success. This example illustrates the

capability the fastICA algorithm.

4.1.2 Principal Component Analysis

Principal component analysis (PCA) is an unsupervised orthogonal linear transformation

that projects data onto a new coordinate system where the data with the greatest variance

lies in the first coordinate and the least variance lies in the last coordinate. Since high

dimensionality data cannot be visualized easily, or represented graphically, PCA becomes

a powerful tool. It orders data in decreasing variance and allows a (lossy) compression of

data by removing low variance data.

To perform PCA analysis, the data set is normalized by subtracting the mean (µ). Then

the covariance matrix is determined.

Assume the data set

[X, Y ] =


X1 Y1

X2 Y2

...
...

Xi Yi

 (4.7)

The mean is removed from the data

Xnorm,i = Xi − µx (4.8)
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(a) Original Data (b) PCA Analyzed (c) Dimension Reduction

Figure 4.3: PCA Analysis

Ynorm,i = Yi − µy (4.9)

Let C be the covariance of the normalized data set [X, Y ]

C = cov(Xnorm, Ynorm) = E[(Xnorm − µx,norm)(Ynorm − µy,norm)] (4.10)

The eigenvalues (λ) are determined from the covariance matrix

det(C− λI) = 0 (4.11)

and so are eigenvectors (v)

(C− λI)v = 0 (4.12)

The eigenvectors are transposed and sorted by largest eigenvalue first to sort by most vari-

ance. The transformed data (Z) is calculated by

Z = v′ ∗ [XnormYnorm]′ (4.13)

About 90% of the variance is typically kept when reducing the dimensionality. The equa-

tion below determines how many rows to keep, where k is the number of rows required to

meet the condition, while n is all of the rows of the matrix.

0.9 >=

∑k
i λi∑n
i λi

(4.14)

An example of the transformation is presented in Figure 4.3 where random data is gener-

ated along a line, transformed, and reduced. Figure 4.3b shows the data along new axes

that contain the most variance. Figure 4.3c reduces the dimensionality, maintaining at least
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90% of the variance. The reduced dimensionality system simplifies a classification scheme

by reducing the complexity of the boundaries.

4.2 Naı̈ve Bayes Classifier

The Naı̈ve Bayes classifier is a technique in pattern classification. Suppose we have a set

Ω = {ω1, ω2, ..., ωk} of K classes that are mutually exclusive. Their prior probability is

defined by P (ωk). Since the sum of the probabilities must equal one, we have the following

equation.
K∑
k=1

P (ωk) = 1 (4.15)

A measurement vector z with dimension N is produced by a sensory system. p(z|ωk) is

the conditional probability density function of measurement vector z. If an unknown class

gives a measurement vector z, its density is given by p(z). Below, the unconditional density

is derived from the conditional densities and weighting them by their prior probabilities.

p(z) =
K∑
k=1

p(z|ωk)P (ωk) (4.16)

Bayes’ theorem is used to determine the probability of a specific class (ω) given a measure-

ment vector (z). This is written as

P (ωk|z) =
p(z|ωk)P (ωk)

p(z)
(4.17)

The previous information, i.e. prior probabilities and conditional probabilities, is enough to

design a basic classifier. However, to improve the classifier a cost function can be applied.

A quantity called the conditional risk may be determined for assigning a class to a mea-

surement vector. The conditional risk is determined by the expectation of the cost.

R(ω̂i|z) = E[C(ω̂i|ωk)|z] =
K∑
k=1

C(ω̂i|ωk)P (ωk|z) (4.18)
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The optimal classifier has the minimal risk. This is stated as:

ω̂BAY ES(z) = ω̂i such that: R(ω̂i|z) ≤ R(ω̂j|z)i, j = 1, 2, ..., K (4.19)

To briefly express this

ω̂BAY ES(z) = argmin
ω∈Ω

{R(ω|z)} (4.20)

Through a few substitutions the following is achieved

ω̂BAY ES(z) = argmin
ω∈Ω

{
K∑
k=1

C(ω|ωk)p(z|ωk)P (ωk)} (4.21)

This classification technique is called Bayesian Classification, or Minimum Risk Classifi-

cation.

MAP Classification

If the cost function is uniform for a misclassified object, and zero cost when there is a

correct classification, the bayes decision function becomes the maximum a posteriori prob-

ability classifier (MAP classifier). First, the cost function can be written with the Kronecker

delta function δ(i, k) as

C(ω̂i|ωk) = 1− δ(i, k) with: δ(i, k) =

 1 if i = k

0 elsewhere
(4.22)

When this is incorporated into conditional risk, the maximization of the posterior probabil-

ity P (ω̂i|z) is equivalent to the minimization of the risk. This creates the MAP classifier.

ω̂MAP (z) = argmax
ω∈Ω

{P (ω|z)} (4.23)

This can be rewritten in a more usable form as

ω̂MAP (z) = argmax
ω∈Ω

{p(z|ω)P (ω)} (4.24)

The Naı̈ve Bayes classifier implemented with feature extraction from independent com-

ponent analysis and principal component analysis represents a powerful tool in pattern
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recognition. The features extracted represent the measurement vector (z). Each class (ω)

represents a state of health for the enhanced automotive fuel cell model. These tools and

their effectiveness are a focus of this research.
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Chapter 5

Fuel Cell Fault Detection

A methodology is developed to determine the capability of a Naı̈ve Bayes classifier for fuel

cell fault classification. The feature enhanced automotive fuel cell model is used to generate

data for a completely healthy stack at various humidification levels. The model is then used

to create conditions where one cell is deteriorated by 1 to 10% in activation losses, ohmic

losses, and concentration losses. For the purposes of this research only healthy stacks,

activation losses, and ohmic losses are classified. Their features are selected and reduced

when capable for classification.

5.1 Data Generation

The model, which consists of a 380 cell stack and a single modifiable cell, is driven under

a polarization curve. It is necessary to run the model through a warm-up period near full

power to remove any transient conditions such as its thermal load and membrane humidi-

fication. The model begins at a forty amp draw and over a ten minute ascension reaches a

load of 200 amps. This is held for ten minutes. Following the warm up period is a standard

polarization curve test. The current draw is reduced to thirty amps. As seen in Figure 5.1

the system is stepped regularly at every sixteen minutes. This is done until reaching a full

power draw at 250 amps. The process repeats in the opposite direction and decreases to 30

amps. The polarization curve is tested in both directions because different transients occur.

The modifiable cell has adjustable gains for activation loss, ohmic loss, and concen-

tration loss. The concentration loss region in a fuel cell is typically not reached in an

automotive fuel cell environment. For this reason the focus of this research is in the ac-

tivation loss and ohmic loss regions. The model is driven through the polarization curve
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Figure 5.1: Fuel Cell System Current Draw

described previously while the gain is modified for each test. A healthy stack polarization

curve with a damaged cell polarization curve is recorded with each test. The system out-

puts are also recorded. A target relative humidity is set with each operation. The stack

maintains a higher temperature when a lesser relative humidity is desired.

Figure 5.2 demonstrates a full polarization curve including warm up and shut down pe-

riods. Polarization curves are displayed for several different states of health, these include

healthy at 90% humidification, a 5% ohmic loss at 90% humidification, healthy at 83%

humidification, and concentration loss at 83% humidification. The abnormal data in this

plot is due to the warm up and cool down periods in the polarization curve test. Large step

changes in current draw can drastically affect the fuel cell stack’s voltage response. These

are removed out in the next figure.

Figure 5.3 reduces the information to the polarization curve test. The equidistant spikes

visible in this figure are due to thermal cycling and anode purging. The effects of reduced

humidification, ohmic loss, and concentration loss are visible in this plot. The 90% humid-

ified polarization curves mantain higher voltages than the reduced humidification curves.
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Figure 5.2: Full Polarization Curve Test Data Including Warmup and Shutdown

Figure 5.3: Polarization Curve Test Data with Warmup and Shutdown Removed

The healthy cell and 5% ohmic loss cell track well together at low current draw but sepa-

rate towards higher currents. The 83% humidified curves track almost perfectly at low and

medium current draw. The 5% concentration loss does not have the significant voltage drop

like the ohmic loss.

A tremendous amount of information is available from the model. These outputs in-

clude compressor dynamics, membrane dynamics, thermal dynamics, controller outputs,

inlet and outlet manifold dynamics for the cathode and anode, along with anode and cath-

ode flow rates, stoichiometry, and pressures. Anode and cathode outputs are available from

both the stack and the ’healthy’ or ’damaged’ cell.
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Despite this high quantity of data, only several variables are of importance to this re-

search. These variables are the ones commonly measured in an automotive fuel cell. The

variables selected for data mining include the fuel cell voltage, the stack outlet coolant tem-

perature, the stack cathode relative humidity, current draw, and whether or not the anode

manifold is purging.

The type of data collected and the current steps implemented would likely be a service

test taken after a set amount of hours of operation. Just like a vehicle has a set period of

miles between oil changes, a service inspection could be set after a set number of opera-

tional hours. This inspection would monitor the previously described set of outputs and

process them for classification.

The healthy test data records the stack outputs and the voltage from the single healthy

cell separated from the healthy stack. The activation loss modifier and ohmic loss modifier

are kept at a nominal value of one. The targeted humidification is kept at 90% humidity.

The activation loss test data is generated with a single cell experiencing a greater activation

loss, while the remaining 380 cells remain nominal. This setup should not significantly

effect system outputs. This same procedure is repeated for the ohmic loss test data.

5.2 Data Processing

The data processed comes from the feature enhanced automotive fuel cell, but future im-

plementation of these techniques should be applied to actual fuel cell data. Any fuel cell

data analyzed will need to include what the failure mode is of each failed cell in a stack.

This will require a post mortem analysis of the assembly. The data obtained from these

analyses would replace the simulated data used in training.

5.2.1 Pre-processing

The preprocessing techniques require the healthy and unhealthy data in the same signal to

determine the necessary transformations. This creates a plot similar to Figure 5.4. The plot

consists of a healthy stack and healthy cell, appended by a healthy stack with an activation

loss cell, appended by another healthy stack with an ohmic loss cell. The same current load
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is applied to each simulation.

Figure 5.4: Combined Windowed data before preprocessing techniques are applied.

The data is processed by generating ’windows.’ Each window is a snapshot of a set

period of time. For this research a ten second rectangular window is used. The windows

do not overlap. If frequency data is needed (perhaps while analyzing transients) a different

windowing technique may be required. Under these circumstances the windows may even

overlap to avoid missing information.

This model is not calculated through a fixed time step analysis, so each ten second

window may contain more or less data points than another window. A uniform feature set

is created by averaging each of the values collected from the window. This feature set (z)

represents a five dimensional point.

z =
(
E(V ) E(Tfc,clt) E(φc) E(I) E(Pb)

)
(5.1)

This research is focused on steady state fuel cell data. Each window must be selected to

specifically target steady state. An example of a non-steady state window is located in Fig-

ure 5.5a and a steady state window is presented in Figure 5.5b. The input current is known

and the windows can be related to this information. Each current step allowed 16 minutes
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of settling time. These 960 seconds create 96 windows. The first two windows are ignored

while the remaining 94 windows from each step are used for training and classification.

This implies some voltage swing from the thermal system because it has not yet reached

steady state, but the fastest transients have occurred. Throughout this time period multiple

anode purges will occur effecting fuel cell voltages and temperatures.

The Naı̈ve Bayes classifier could be implemented at this point but further pre-processing

through ICA or PCA, as shown in Chapter 4, may be beneficial. Implementing the fas-

tICA algorithm iteratively searches for the most independent signals possible. The iterative

search begins with randomly selected weights and continues until the non-gaussianity is

maximized. This can create slightly different transformation matrices on each use of the

fastICA algorithm. The different transformation matrices did not significantly impact clas-

sification results (+/- 0.5%).

The entire data set is brought through indepedent component analysis. The ICA tech-

nique removes the mixed signals and creates an output seen in Figure 5.6. The data pre-

sented no longer represents anything in physical units and can only be referenced by chan-

nel or feature. However, it could be presumed that Feature 2 represents the signal from

current and Feature 4 represents the purging signal. The transformed data is presented to

the Naı̈ve Bayes classifier to create prior probabilities for each class. This will be discussed

later.

Principal component analysis is also investigated. Figure 5.7 through Figure 5.11 show

the implementation on the same set of data. These features are ordered by their variance.

(a) Non-steady State Window (b) Steady State Window

Figure 5.5: Comparison of 10 Second Windows between Steady State and Non Steady Current
Draws
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Figure 5.6: Independent Component Analysis Modified Data

Feature 1 has the most variance, followed by Feature 2, and so on. This information can be

used when applying dimensionality reduction. Although the first feature may have the most

variance it does not imply it is most related to health classification. The amount of variance

is determined by the eigenvalues which are displayed in Table 5.1. Feature 1 dominates

the variance of the data. Upon examining Figure 5.7 it appears highly correlated with the

purging operation due to its extremely high rate of oscillation and consistent magnitude.

The remaining features have less and less variance. Features 3 and 4 have small eigen-

values, and feature 5 is almost negligible. PCA is sensitive to the magnitude of the signals,

possibly ranking less important features first. Applying different normalization schemes

may improve the feature weighting and feature reduction.

The transformed data set generated by principal component analysis is used as the fea-

ture set in the Naı̈ve Bayes classifier.

Data Eigenvalue % Variance
Feature 1 2.31341 ∗ 10−1 76.64%
Feature 2 6.95776 ∗ 10−2 23.05%
Feature 3 7.21272 ∗ 10−4 00.23%
Feature 4 2.13798 ∗ 10−4 00.07%
Feature 5 6.01549 ∗ 10−7 00.00%

Table 5.1: Principal Component Eigenvalues Calculated by Equation 4.11
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Figure 5.7: Principal Component Analysis Modified Data: Feature 1

5.3 Naı̈ve Bayes Classification

Each of the scenarios stated in the Data Processing section provide a different set of data

to analyze in the Naı̈ve Bayes classifier. These scenarios include: no preprocessing, PCA

preprocessing, and ICA preprocessing. The implementation of PCA allows for dimension-

ality reduction and an analysis of the variance of each feature. These features are presented

to the Naı̈ve Bayes classifier for training. The classifier assumes a normal gaussian distri-

bution for each class. Alternative distributions are possible to create a non-gaussian Naı̈ve

Bayes classifier. A mean and variance are calculated for each feature of each state of health

(healthy, activation loss, ohmic loss). These values are calculated from the training win-

dows supplied. Of the 94 windows used per current step, 47 are used for training with the

other 47 used for validation.

The variance and mean of each feature for each validation window are calculated. Their

probability of belonging to each class given each feature is determined. The classifier does

not weight one class more than another. The prior probabilities are equally split, with three

cases each prior probability is 1/3. Future work could modify the prior probability based

upon the age of the fuel cell and other available information. As discussed earlier, this

becomes a subset of the Naı̈ve Bayes classifier, a MAP classifier. This implies the cost
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Figure 5.8: Principal Component Analysis Modified Data: Feature 2

Figure 5.9: Principal Component Analysis Modified Data: Feature 3
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Figure 5.10: Principal Component Analysis Modified Data: Feature 4

Figure 5.11: Principal Component Analysis Modified Data: Feature 5
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function is the identity matrix. The probability of the window belonging to each class is

compared and the highest probability class is selected. The results of the validation data

are presented in the following tables.

The results of no preprocessing are presented in Table 5.2. The headings represent the

states: healthy, activation loss, and ohmic loss. In the no preprocessing scenario the values

from cell voltage, coolant, relative humidity, stack current, and purging are are normal-

ized before their means and variances are determined. The results are not promising. A

failing three class classification method would statistically offer a 33% success rate. In

both healthy and activation loss classifications the classifier fails to choose the correct state

of health. All three classification attempts choose the ohmic loss region. This makes the

correct decision for the ohmic loss region questionable.

Classified Health

Modeled
Health

H A O
H 28.00% 28.04% 43.96%
A 24.73% 22.26% 53.01%
O 22.36% 13.45% 64.19%

Table 5.2: Five Feature No Preprocessing Bayes Classifier Results on 10% Losses

Classified Health

Modeled
Health

H A O
H 93.84% 06.16% 00.00%
A 14.16% 79.44% 06.40%
O 00.85% 07.15% 91.99%

Table 5.3: Five Feature ICA Preprocessed Bayes’ Classifier Results on 10% Losses

Classified Health

Modeled
Health

H A O
H 84.32% 15.68% 00.00%
A 15.63% 76.03% 08.34%
O 02.13% 06.87% 91.00%

Table 5.4: Five Feature ICA Preprocessed Bayes’ Classifier Results on 7% Losses

Table 5.3 through Table 5.5 demonstrate the capability of the ICA technique. By im-

plementing the data mining technique the success rate of classification improved to an
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Classified Health

Modeled
Health

H A O
H 73.99% 25.68% 00.33%
A 16.82% 70.01% 13.17%
O 05.45% 06.16% 88.39%

Table 5.5: Five Feature ICA Preprocessed Bayes’ Classifier Results on 5% Losses

exceptional level. The classification of each state of health is successful when identifying

the healthy, 10% activation loss, and 10% ohmic loss states. This classification is repeated

with 7% losses and 5% losses. In all cases the results are promising. It is noted that as the

losses deviate further from healthy, the classification results become more successful. This

is understandable as the mean of each feature departs from state of health to state of health.

This is visible in Figure 5.6.

Classified Health

Modeled
Health

H A O
H 87.02% 12.98% 00.00%
A 11.80% 85.93% 02.27%
O 00.00% 10.99% 89.01%

Table 5.6: Five Feature PCA Preprocessed Bayes’ Classifier Results on 10% Losses

Classified Health

Modeled
Health

H A O
H 74.66% 25.25% 00.09%
A 13.07% 83.66% 03.27%
O 01.94% 22.55% 75.51%

Table 5.7: Five Feature PCA Preprocessed Bayes’ Classifier Results on 7% Losses

Principal component analysis is also investigated for its pre-processing ability. Table 5.6

through Table 5.8 show the classification success rate without feature reduction. Again,

this is very successful in comparison to no preprocessing. The results are comparable

with the ICA preprocessing results. However, classification appears more consistent with

PCA than ICA. ICA successfully identified healthy cells at a 94% sucess rate while PCA

only obtained 87%, but ICA only identified an activation loss correctly 80% of the time

as opposed to PCA identifying activation loss correctly 85% of the time. This consistency
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Classified Health

Modeled
Health

H A O
H 67.79% 31.45% 00.76%
A 14.54% 77.78% 07.67%
O 02.65% 30.13% 67.22%

Table 5.8: Five Feature PCA Preprocessed Bayes’ Classifier Results on 5% Losses

continues as the losses become more negligible. The trend of increasing success rates with

increasing losses is also consistent across all three classifications.

Classified Health

Modeled
Health

H A O
H 86.93% 13.07% 00.00%
A 12.08% 85.60% 02.32%
O 00.00% 11.23% 88.77%

Table 5.9: Three Feature PCA Preprocessed Bayes’ Classifier Results on 10% Losses

Classified Health

Modeled
Health

H A O
H 75.94% 24.02% 00.05%
A 12.08% 81.24% 04.88%
O 01.94% 21.51% 76.55%

Table 5.10: Three Feature PCA Preprocessed Bayes’ Classifier Results on 7% Losses

PCA is capable of reducing features based on their amount of variance. Features with

the largest variance are kept and those with the least are removed. The number of features

retained is determined by selecting the number of rows desired, or by calculating a desired

percentage of variance from the original data set to keep. Reducing the number of features

in analysis simplifies the classification system and reduces computational power. This is

particularly important when the number of features can reach the hundreds. An example of

this is the reduction of fourier transform coefficients.

The results of the Naı̈ve Bayes classifier on reduced feature sets are shown in Table 5.9

through Table 5.11. The three feature classification rate at 10% losses are slightly below the

five feature classification results, but only by approximately 1%. As noted before the suc-

cess rate of the classifier increases as the percentage loss increases from nominal. Healthy
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Classified Health

Modeled
Health

H A O
H 71.34% 26.58% 02.08%
A 18.85% 69.68% 11.46%
O 03.88% 26.76% 69.35%

Table 5.11: Three Feature PCA Preprocessed Bayes’ Classifier Results on 5% Losses

classifications succeed almost 87% of the time with a 10% loss compared to just 71% of

the tiem at a 5% loss.

5.4 Conclusion

The enhanced automotive fuel cell model developed in this research provided an effective

tool for developing fault recognition techniques on proton exchange membrane fuel cell

technology. This research effectively incorporated cell deviation for analyzing a single

cell. The single cell model tracks with negligible error (on the order of 10−7) in nominal

conditions. The charge double layer completes the dynamic electrical effects in the en-

hanced model. The addition of a thermal model introduces long term transients as the stack

is no longer idealized at 80◦C. The control of cathode humidification by manipulating the

thermal model’s target temperature effectively prevents liquid water from forming in the

cathode channels. Inert gas build-up due to nitrogen permeation and impure fuel sources is

successfully modeled, reducing the output voltage as the nitrogen accumulates. The anode

outlet manifold successfully models the purging transients, introducing yet another auto-

motive fuel cell transient. Each of these effects have the ability to increase and decrease

the operational fuel cell voltage making fuel cell fault classification more complicated.

The Naı̈ve Bayes classifier successfully identified the faults of activation losses and in-

creased ohmic losses on the enhanced automotive fuel cell model. The classifier requires

preprocessing to the recorded outputs to obtain correct classifications. Independent compo-

nent analysis through the fastICA algorithm and principal component analysis both proved

to be successful tools in data preprocessing. Their classification performance is not sig-

nificantly different. As the faults grew from nominal, the success rate of the classifier
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improved.

5.4.1 Future Work

The enhanced automotive fuel cell model opens an array of new research opportunities,

both within the model itself and for additional fault classification. The enhanced model may

be used to study more control techniques, particularly for anode purging. The system could

benefit from optimization techniques. A continuous purge system could be implemented

in its place to compare effects. The feed forward fuel controls could also be adjusted to

minimize voltage drop during a purge event.

The thermal model also lends itself to some possible improvements. These include the

incorporation of anode and cathode convection within their volumes. The bypass valve

controls could also be improved to adjust in advance to changes in power draw. The effect

of a pump should also be included in the parasitic losses of the system.

Nitrogen is only one of the permeable gases. Fuel crossover does occur as hydrogen

can permeate from anode to cathode. Oxygen permeation from cathode to anode occurs as

well, instantly reacting with hydrogen to produce water without generating useful power.

As more information becomes available the membrane humidification model can be en-

hanced to account for membrane water uptake. The model currently calculates membrane

humidification as a function of cathode and anode humidification and doesnt account for

the uptake transient.

Additional research can continue without further model enhancements for state of health

classification as well. The more complicated system opens a variety of adjustable parame-

ters for future faults. The scope of this work detected a difference between cells in different

health states, but a more complex classification system should be capable of discerning fuel

cell faults from balance of plant faults. The classifier complexity can also take into account

different prior probabilities, or priors that change with fuel cell operation. Different proba-

bilities may also be investigated for each feature to more accurately describe each feature’s

distribution. Exciting opportunities exist to further the research in both the enhanced auto-

motive fuel cell model and the fault recognition techniques applied in this research.
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Appendix A

Miscellanous Parameters

Parameter Value Units
Ra 286.9 J/(kg K)
pa 1.23 kg/m3

dc 0.2286 m

Table A.1: Compressor map parameters

Parameter Value
a0 2.21195 ∗ 10−3

a1 −4.63685 ∗ 10−5

a2 −5.36235 ∗ 10−4

a3 2.70399 ∗ 10−4

a4 −3.69906 ∗ 10−5

b0 2.44419

b1 −1.34837

b2 1.76567

c0 0.43331

c1 −0.68344

c2 0.80121

c3 −0.42937

c4 0.10581

c5 −9.78755 ∗ 10−3

Table A.2: Compressor map regression coefficients

Parameter Value Units
kv 0.0153 V/(Rad/s)
kt 0.0153 N-m/A
Rcm 0.82 Ω

ηcm 98 %

Table A.3: Compressor motor parameters
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Parameter Value Units
patm 101.325 kPa
Tatm 298.15 K
γair 1.4
Cp,air 1004 J/(mol K)
ρair 1.23 kg/m3

R̄ 8.3145 J/(mol K)
Rair 286.9 J/(mol K)
RH2 4124.3 J/(mol K)
RN2 296.8 J/(mol K)
RO2 259.8 J/(mol K)
Rv 461.5 J/(mol K)
MH2 2.016 ∗ 10−3 kg/mol
MN2 28 ∗ 10−3 kg/mol
MO2 31 ∗ 10−3 kg/mol
Mv 18.02 ∗ 10−3 kg/mol
F 96485 Coulombs

Table A.4: Thermodynamic constants in base model

Parameter Value Units
pmembr,dry 0.002 kg/cm3

Mmembr,dry 1.1 kg/mol
tmembr 0.01275 cm
Nfc 381
Afc 280 cm2

Jcp 5 ∗ 10−5 kg m2

Va 0.005 m3

Vc 0.01 m3

Vsm 0.02 m3

Vrm,a 0.005 m3

Vrm,c 0.005 m3

CDrm,a 0.0124
CDrm,c 0.0124
AT,rm,a 0.002/450 m2

AT,rm,c 0.002 m2

ksm,o 0.3629 ∗ 10−3 kg/(s Pa)
ka,o 0.2177 ∗ 10−3 kg/(s Pa)
kc,o 0.2177 ∗ 10−3 kg/(s Pa)

Table A.5: Fuel cell component parameters
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Parameter Value Units
Cv,air @ 65◦C 717.8 J/(kg K)
Cv,clt @ 65◦C 395 J/(kg K)

Cv,fc 1000 J/(kg K)
Cv,hex 1000 J/(kg K)

hc,clt,fcAclt,fc 28000 W/K
hc,clt,hexAclt,hex 6445 W/K

ṁclt 1.4 kg/s
ṁair 1.25 kg/s

mair,hex 0.4334 kg
mclt,fc 15.6 kg
mfc 400 kg
mhex 20.4 kg

Table A.6: Thermal system parameters

Parameter Value Units
MCarbon 12.0107 g/mol
MFlourine 18.9984032 g/mol
MHydrogen 1.00794 g/mol
MNitrogen 28.0134 g/mol
MOxygen 15.9994 g/mol
MSulfur 32.065 g/mol

Table A.7: Nitrogen permeation parameters




