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Abstract 

 

The boreal forest covers 11% of the earth’s land surface and contains 37 percent of the planet’s 

terrestrial carbon, which is more than the combined total of both the tropical and the 

temperate forests [1].  This estimate translates to 703 Pg of carbon with the vast majority 

contained within the organic soils and peat layers [2-4].  The western-north American boreal 

forest is a fire ecosystem [2, 5-7] where fires typically occur every 50 to 200 years [8, 9], allowing 

vast quantities of carbon to re-enter the atmosphere.  Understanding and estimating past fire 

history and the related changes in carbon budget [3, 4, 7, 10] in this biome is of significant 

importance for climate researchers as they attempt to model for future changes in the planet’s 

climate [2, 4, 11-14]. 

Many techniques are available to remotely sense wildfires - using optical, thermal and passive 

microwave remote sensors - during and immediately after an event - although resolution and 

availability of images due to cloud cover can make these techniques operationally challenging.  

Radar remote sensing can provide a complement to these optical and passive microwave 
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techniques, since radar is not affected by cloud cover and solar illumination levels.  The 

Advanced Land Observatory Satellite (ALOS) operates a phased array L band synthetic aperture 

radar (PALSAR) and Canada’s Radarsat-2 contains a C-Band  (SAR) instrument.  These radar 

satellites can be used to detect information about the boreal forest environment including the 

effects of wildfire.  Polarimetric radar is an emerging technology whose full potential is still 

being actively explored and discovered.  More specifically, this research is ground-breaking since 

very little work has been performed investigating the relationship between polarimetric radar 

data and historical boreal wildfire events. This area of investigation is a complex marriage of 

forestry, geospatial information and radar engineering that requires an extensive array of data 

sets to facilitate analysis.  

This research has demonstrated that both PALSAR  L-Band and Canada’s Radarsat-2 C-Band  full 

polarimetric radars can be used to detect and classify wildfire scars within individual images.  

The boreal forest is a dynamic ecosystem where both the level of burn severity and the 

subsequent regeneration of the forest is affected by many factors that can vary widely across 

small distances.  This work contributes to the understanding of the relationships between 

remotely sensed quad-pol radar signals and both the boreal ecosystem and how wildfire 

interacts in this environment.  
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Glossary 

Anisotropy – property describing directionally dependent scattering. 

Azimuth - The azimuth is defined as the along track dimension of the radar system. 

Backward Scattering Alignment –A right handed coordinate system where the Z axis pointing 
towards the target.  By IEEE convention this is the alignment of choice for monostatic systems.  

Bistatic system – a radar system where two separate antennas are used for transmit and 
receive.  

Decomposition - a  technique to extract physical target information of the the averaged 
dominant scattering mechanism  from either the three by three coherency matix or the four by 
four meuller matrix of scattering data 

DEM – Digital Elevation Model . 

Error of commission – a classification error where a pixel is incorrectly classified (a false 
positive) – values below the diagonal in a confusion matrix. 

Error of omission – a classification error where a pixel is not correctly classified ( a false 
negative) – values above the diagonal in a confusion matrix. 

Forward Scattering Alignment –A right handed coordinate system where the Z axis is pointing 
towards the receiver.  This alignment is useful for bistatic radar systems . 

Faraday rotation – the rotational effect caused as a radar signal passes through the ionosphere. 

Fuel  loads – The amount of accumulated biomass in the forest that is available as fuel  for a 
wildfire.  

Hermitian Matrix – A square matrix with complex values where the matrix is equal to its own 
conjugate transpose. 

Satellite Image – An individual image of a scene (location) acquired by a spacecraft. 

Isotropy – property describing identical scattering in all directions. 

Left handed coordinate system - a coordinate system defined using the left hand where the 
thumb points in the positive Z axis direction and the fingers curl from the positive X axis to the 
positive Y axis.  

Look Angle – the angle at which a radar system looks at the surface of the earth. The angle is 
considered steep in the near range (close to nadir) and is shallow in the far range. 
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Looks – individual looks as groups of signal samples in a SAR processor that splits the full 
synthetic aperture into several sub-apertures, each representing an independent look of the 
identical scene.  

Monostatic system - a radar system where a single antenna is used to transmit and receive. 

Multilook Radar Data – the incoherent summing of single look complex data that produces an 
image with less speckle and decreased resolution. 

Nadir- the direction pointing directly below a satellite towards earth. 

Orthorectification – the process of geometrically correcting the pixels of an image to a map 
projection with an uniform scale 

Polarization orientation – The orientation angle of an electromagnetic wave’s lines of electric 
flux 

Positive Semi-definite Matrix – A matrix where all the eigenvalues are greater than or equal to 
zero. 

Range  - The radar range is defined as direction perpendicular to the direction of travel. 

Rank of Matrix – largest number of linearly independent column or row vectors of a matrix. 

Right-Handed Coordinate System – The coordinate system defined using the right hand where 
the thumb points in the positive Z axis direction and the fingers curl from the positive X axis to 
the positive Y axis.  

Radar Cross Section – A ratio of the amount of energy retransmitted by a target verses the 
amount reaching the target. 

Radar Vegetation Index – is a eigenvalue derived index that correlates the amount of vegetation 
or biomass with a range of values [0 , 4/3]. 

Scene – a predetermined geographic set of co-ordinates that correspond to the location of a 
satellite image which is dictated by the orbital characteristics. One can have multiple individual 
images of different dates of a single scene (location). 

Sigma naught (Σ0) – the amount of energy in deciBels received by the instrument divided by the 
amount of energy transmitted. 

Single Look Complex – A format of deliverd radar data where the SAR processor has split the 
synthetic aperature radar into sub-aperatures, with each providing a look of the same scene.  
This product provides the highest possible resolution but is prone to speckle noise. 

https://earth.esa.int/handbooks/asar/CNTR5-2.html#eph.asar.gloss.radsar:SAR
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Site Index – A factor that describes the productivity of a forest area that encompasses soil type, 
nutrient availability, moisture availability, climate, and topography. 

Slant range – the distance from the radar system to the point on the ground. 

Span – total received scattered power, which is equal to the sum of the absolute value of square 
of all the elements of the S matrix. 

Swath Width - The swath width is the range length of the area of illumination. 

TEC – Total electron content of the Ionosphere which is responsible for the Faraday rotation of 
radar signals that pass through it. 

Trace – equivalent to the span.  
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1.0 Introduction 

The boreal forest covers 11% of the Earth’s land surface -  1.4 billion hectares (ha) - and contains 

37% of the planet's terrestrial carbon reservoir, which is more than the combined total of both 

the tropical and temperate forests [1, 4]. This estimate translates to 703 Petagrams (Pg) of 

carbon with the vast majority contained within organic soils, and peat. Much of this carbon has 

been sequestered, until now, within the peat bogs and permafrost layers for millennia [2, 3, 9, 

11]. 

 

Figure 1 - Canadian boreal forest extent overlaid on 2009 Landsat 5/7 composite image. 

 The western North American boreal forest is a wildfire ecosystem [2, 5-7, 15] where fires 

typically occur every 50 to 200 years [8, 9] allowing vast quantities of carbon to re-enter the 
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atmosphere. Understanding and estimating past fire history and the related changes in the 

carbon budget [3, 4, 7, 10, 16-18] in this biome is of significant importance for climate 

researchers as they attempt to model and predict future changes in the planet's climate [2, 4, 

11-14]. Moreover, in this crucially important ecosystem, public and private forest resource 

managers have an interest in past fire history to predict fuel loads [19] and to develop 

management strategies [10, 20, 21] to adapt to a changing climate [4, 22].  

 

Figure 2 - Boreal wildfires greater than 200 ha between 2000 and 2011 

The documented effects of climate change in the northern latitudes includes an increase in 

summer temperature and a decrease in moisture availability over the past fifty years [7, 22-24] 

which has created a positive feedback mechanism [3, 11-13, 15] within the boreal ecosystem 
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between wildfires and climate change [3]. In the past 20 years, the area burned by wildfires has 

increased by 100 percent in the North American boreal forest and surface air temperatures have 

increased by 0.3⁰C each decade [3].  Wildfire is a dynamic process, which can vary greatly in 

intensity and its effects on the landscape [7, 8, 21, 25]. Canadian boreal wildfires burn between 

1 and 4 million ha of forest each year releasing an average of 27 Teragrams (Tg) of carbon 

directly into the atmosphere [15]. Post fire decomposition may well equal the direct releases 

and it can take between 10 and 30 years for the net carbon flux of the forest to return to pre-

fire levels [15]. Intense wildfire events can burn not only the above ground vegetation, but also 

the protective layer of peat which acts as an insulator for the sequestered carbon of the 

permafrost layers [8, 22]. The loss of the insulating peat layer has a major impact on the soil 

temperature and hence amount of carbon that is released from the permafrost layers for 

between 10 and 50 years after the original fire event [8].  

Many techniques are available to remotely sense wildfires during and immediately after an 

event. Real time detection is done operationally with Moderate Resolution Imaging 

Spectroradiometer (MODIS) data but the resolution is low (500m to 1km) and the results can be 

biased by cloud cover and thus neglect low intensity fires [4]. The Advanced Very High 

Resolution Radiometer (AVHRR) [2, 4, 6, 26], and Advanced Space Borne Thermal Emission and 

Reflection Radiometer (ASTER) have also been used to map forest fires but again the resolution 

is quite low [6]. Optical systems such as Landsat can be used to map recent forest fires and 

estimate burn severity using the Normalized Burn Ratio (NBR) [27, 28] or by differencing the 

Normalized Difference Vegetation Index (NDVI) calculated from pre- and post-fire images to 

create a differenced Normalized Burn Ratio (dNBR) [25, 29-32]. While useful, this technique can 

be operationally challenging to obtain two quality images at the correct time intervals due to 
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environmental conditions and solar illumination angles in northern latitudes [25]. Synthetic 

aperture radar (SAR) systems, which are sensitive to moisture differences and structural 

changes in the forest, have been used to map fire scars for up 13 years after an event with the 

C-Band European Remote Sensing Satellite (ERS-1) [2, 11] and both the Canadian C-Band 

Radarsat-1 [2, 33], Radarsat-2 [34]and Japan’s Advanced Land Observing Satellite (ALOS) L-Band 

Phased Array Synthetic Aperture Radar  (PALSAR) [16, 34]. 

 

Figure 3 - Comparative images for 2002 Keg River Fir. A) RGB (Bands 543)2002 Landsat image 
immediately after fire, B) dNBR image generated from 2 Landsat images pre and post fire, C) 
Alpha, Entropy, Lambda 2009 PALSAR decomposition as Hue, Saturation ,Value image, and D) 
2009 RGB (Bands 543) Landsat image with fire scar barely visible 6 years after the event. 

Polarimetric synthetic aperture radar (PolSAR) is a relatively new tool available to remote 

sensing scientists. Preliminary analysis suggests that Polarimetric radar can be useful for 

detecting historical fire scars in the boreal forest [35]. L-Band full polarimetric radar possesses 

characteristics, which make it well suited to assist in this challenge. First its relatively long 
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wavelength ” approximately 23.6 cm with a center frequency of 1270 MHz [36] “ allows it to 

penetrate the structure of the forest and provide more information than C-Band Radarsat-2.  

Canada’s Radarsat2 has a shorter wavelength of 5.6 cm with a center frequency of 5.3 GHz [37] 

which penetrates far less into the structure of the forest [38], p.340], but can still be useful as 

we shall demonstrate.  Research performed by the Advanced Forest Technologies (AFT) group at 

the Pacific Forestry Centre of the Canadian Forest Service (CFS), under the direction of Dr. David 

Goodenough, using C-Band Polarimetric radar with a six meter resolution Airborne 

 

Figure 4 - PAULI decomposition of C-Band Polarimetric radar collected over Hinton Alberta 
with crescent shaped 50 year old fire scar visible on the right hand side of the image 

Synthetic Aperture Radar (ASAR) data collected in 2004 demonstrated the ability to detect 50 

year old fire scars over Hinton in the southern foothills of Alberta [39]. 

Active radar systems, unlike passive optical satellite systems, allow data to be collected in all 

seasons, day, night and in cloudy weather conditions [38], p.5]. Being able to detect and 

inventory past fire events in an accurate and efficient manner would be valuable information for 
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resource managers and carbon and climate scientists. The research questions of this thesis 

centers on: 

1) How can we extract historical fire scar information from polarimetric SAR? 

2) Can polarimetric SAR be used to detect and date historical wildfire events in the 

boreal forest of western North America?  

3) Can polarimetric SAR be used to assess the severity of past wildfire events on the 

boreal landscape with particular attention to the area burned? 

Work thus far using Japan’s ALOS Phased Array type L-band Synthetic Aperture Radar 

(PALSAR)and Radarsat-2 data sets has yielded strong linear correlations between various L Band 

and C Band polarimetric decomposition parameters and the year in which a boreal fire event 

occurred in an area of northern Canada bordering the provinces of British Columbia and Alberta 

[16]. While these correlations are promising, the inversion of this simple linear model reveals 

that the variation within the measured parameters of a single known fire event can often span 

several decades This research will provide new insights into the potential of full polarimetric 

radar’s ability to derive important information about the fire history of the boreal forest.  

Interrogating radar images to detect historic fire scars is a highly involved process that 

requires a vast array of data sets which we shall introduce in the next chapter.  Furthermore, the 

multistage process of constructing radar products ready for analysis is not static. Many choices 

can be made that affect the information content of the final product.  To elucidate these 

choices, chapter three will provide a background in radar physics that will provide the 

mathematical foundation required to appreciate the decisions that were made at each stage of 

the processing and analysis.  Chapter four will describe the computing infrastructure and the 

process chain used. Chapter five will provide both a description of the various experiments 

performed and a summary of the results with this extensive set of radar data. Chapter six will 
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discuss the final conclusions of this project and address the previously stated research 

questions. Finally chapter seven will recommend some possible dirrections for further research 

in this area.  
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2.0 Study Area and Data Sets 

 Polarimetric radar is an emerging technology whose full potential is still being actively explored 

and discovered.  This research is ground-breaking since very little work has been performed 

investigating polarimetric radar for historical boreal wildfire information. This area of 

investigation is a complex marriage of forestry, geospatial information and radar engineering 

that requires an extensive array of data sets to facilitate analysis. This chapter will introduce all 

the various data sets that were necessary for this project. 

 

Figure 5 - Study Area centered on Chinchaga wildfire with PALSAR image footprints 

The primary study area selected for this project is a subarea in the northern portion of the 

Canadian province of Alberta bordering British Columbia, Saskatchewan and the Northwest 
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Territories.  This area is centered on the Chinchaga fire of 1950 (a major wildfire event located in 

this area) which burned 1.5 million hectares over a five-month period. This area was selected 

due to the high density and frequency of wildfires in this area and the availability of historic 

wildfire information available from the government of Alberta. 

The study area was expanded to include several more recent fires, which aided in the analysis 

phase of this project. These recent fires included the 2007 Blue Sheep Creek fire in northern 

British Columbia (BC),   the Moosehead fire of northeastern Alberta in 2008, and the 2006 Sandy 

Lake fire of the Northwest Territories. Ancillary datasets generated from extensive fieldwork by 

Parks Canada in the Wood Buffalo National Park and UBC master’s student Nick Sorvino in the 

Sandy Lake fires were of particular interest in exploring the connection between observed fire 

severity on the ground using the US Forest Services Composite Burn Index (CBI) and the 

polarimetric radar signatures.   

2.1 Polarimetric Data Sets 

This work focuses on full polarimetric radar data of the C-Band Radarsat-2 and the L-Band 

PolSAR satellite radar platforms. Table 1 presents a condensed summary of the most commonly 

used microwave radar bands and their physical characteristics. The size of a radar signal’s 

wavelength determines the minimum size of an object that can scatter the electromagnetic 

energy back to the antenna. 

This project examined 18 full polarimetric PALSAR L-Band and 6 Radarsat-2 C-Band images over 

the broader study area. The PALSAR images were acquired between the fall of 2007 and spring 

of 2009. Other 2009 PALSAR images were acquired over the 2007 Moose Head fire, the 2008 
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Table 1 - Summary of the most common radar microwave bands and their physical 
characteristics. 

Band Name Frequency Range Wavelength range 
P Band < 300Mhz > 1 m 
L Band 1-2 GHz 15-30 cm 
S Band 2-4 GHz 7.5-15 cm 
C Band 4 -8 GHz 3.75-7.5 cm 
X Band 8-12 2.5-3.75 cm 

K, Ka, Ku Bands 12-40 GHz 0.75 -2.5 cm 
 

Blue Sheep Creek fire, the 2006 Sandy Lake fire, and multiple fires over Wood Buffalo Provincial 

Park. The Radarsat -2 C Band full polarimetric images were all obtained over the 2002 Keg River 

Fire within the eastern section of the 1952 Chinchaga fire event in northern Alberta. All six of 

the Radarsat-2 images were obtained over the 2002 Keg River fire over the course of a single 

growing season providing a unique opportunity to explore the seasonal variation of radar 

responses for boreal wildfire scars.  

2.2 Federal, Provincial, and Territorial GIS Fire Data Sets 

British Columbia, Alberta and the Northwest Territories governments all maintain GIS wildfire 

databases. These data consist of polygons with attributes describing ignition sources, ignition 

dates, hectares burned, and other relevant statistics. These data were used to identify fire scars 

and assist in the analysis of radar signatures with respect to ignition dates. While these data sets 

were useful, they do not always accurately capture the exact boundaries of fire events, which 

can be complex due to the existence of unburned “islands” and further they do not account for 

the level of burn severity with a fire event.  
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2.3 NFDB National Fire Database 

The Canadian National Fire Database (NFDB) records all wildfires larger than 200 ha that occur in 

designated forested areas [6, 15]. This database is maintained by the Canadian Forest 

Service(CFS) using data provided by provincial, territorial and federal agencies which includes 

spatial information of areas burned and attribution such as ignition date and source, and 

suppression actions [15]. The database is reasonably accurate for all large fires that occurred 

since 1959 and efforts have been made to include historical wildfire events that occurred prior 

to this time [15]. The data were collected using a wide variety of tools and techniques including 

ground surveys and both airborne and satellite optical data [15]. The previously stated issues of 

accuracy apply to the NFDB since most of the information originated with the data sets of 

Section 2.2.  

2.4 Landsat 4, Landsat 5 and Landsat 7Optical Imagery and Burn 
Indexes 

Landsat 4,5 and 7 are optical multispectral satellites with a spatial resolution of 30 m operated 

by the U.S. National Aeronautics and Space Administration (NASA) and the U. S. Geological 

Survey (USGS). Since the beginning of 2009, the Landsat archive has been freely available for 

download. The Forest Geomatics Group of the Canadian Forest Service has been involved in 

generating rule based composite images for all Canada to take advantage of all this freely 

available public data [40].  A series of over 85,000 images have been acquired for the years 1984 

through 2012 and Best Available Pixel (BAP) composites were generated for each year based on 

a target date of August 1.  For areas of interest, a Normalized Burn Ratio (NBR) was calculated 

for each year.  A normalized burn ratio is calculated using this formula  

𝑁𝑁𝑁 =  (𝑅4−𝑅7)
(𝑅4+𝑅7)  (1) 
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where Ri refers to the reflectance and the subscript refers to the  ith spectral band of the Landsat 

sensor. Band four is the red band (wavelength bandwidth of 0.631-0.692 μm) and band seven is 

the Short Wave Infrared (SWIR) (wavelength bandwidth of 2.064 -2.345 μm). A differenced 

Normalized Burn Ratio (dNBR) was generated by differencing 2 sequential years NBR values (one 

pre and one post fire) as follows: 

𝑑𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −  𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 .  (2) 

The values of the dNBR can be interpreted using Table 2. 

Table 2 - Summary of Interpreted dNBR values 

Severity Level dNBR Value Range 
Enhanced Regrowth High -500 to -251 
Enhanced Regrowth Low -250 to -101 

Unburned -100 to 99 
Low severity 100 to 269 

Moderate – Low Severity 270-439 
Moderate – High Severity 440 to 659 

High Severity 660 to 1300 
 

Best Available Pixel (BAP) [40] composites were used to determine land cover and burn indexes 

were calculated to aid in the selection of sample points within the study areas. 

2. 5 Parks Canada Ground Survey Data for Wood Buffalo 
National Park 

Parks Canada has been accumulating ground reference data of wildfire burn severity known as 

the composite burn index (CBI) for several years. These data provided a unique opportunity to 

explore the possible connection between the observed variability within radar signatures and 

the burn severity of a wildfire event. The vast majority of these data were collected within the 
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boundaries of Wood Buffalo National Park. The composite burn index stratifies the landscape 

into 5 categories:  

4) Substrates,  

5) Herbs and low shrubs (<1m), 

6) Tall Shrubs and trees ( 1-5 m),  

7) Intermediate trees (sub-canopy), and 

8) Big trees (Upper canopy, dominant trees).  

 

A field surveyor then attempts to quantify the level of severity of the wildfire event with a value 

of 1 to 5 for each of the landscape strata. An example of a CBI field survey data sheet is included 

in Appendix A. 

2.6 NTDB Digital Elevation Model 

The Canadian Digital Elevation Data (CDED) were obtained at a scale of 1:50,000 from the 

Canadian Government’s GeoBase web portal [41]. These data sets were required to transform 

these radar images from slant range into a geo-referenced format. These data were downloaded 

as National Topographic System (NTS) individual map sheets and then fused together as 

required to create a complete DEM coverage for each radar image.  
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3.0 Methods and Analysis Theory 

Full-polarimetric radar imaging analysis is a nascent area of research that has an extremely 

complex multistage process depending on the choices made at each stage.    To appreciate the 

process nuances, it is highly valuable to have knowledge of the underlying physics and 

engineering choices made to produce these images.  Furthermore, to completely understand 

and appreciate the processing paths that are chosen one must understand mathematical 

theories and principles that underpin the basics of radar engineering.  This chapter, first, will 

introduce the reader to the basic physical notations and then explore the various processing 

options and products available at the various stages. It should be emphasized, that several 

pseudo-equivalent electromagnetic signal representations will be presented each with their own 

unique characteristics.  For example the Stokes vector is an instantaneous real valued 

measurement whereas the representation of a signal on the Poincare sphere is a continuous 

value in time recorded in spherical coordinates. 

3.1 Radar Introduction 

Radar is defined as Radio Detection and Ranging of microwave electromagnetic radiation. In its 

simplest form, a radar system emits an electromagnetic pulse and any reflected energy from a 

target is measured for both direction and elapsed time from transmission to determine the 

distance (range) from the time element which combined with the measured direction element 

allows the system to ascertain the reflected source’s position relative to the system [42, 43], p. 

341]. Modern radar systems use several techniques to improve the information content of the 

imagery produced. The exact processing techniques required to generate an image from the raw 

received radar signal are well beyond the scope of this project, but an introduction to some of 

the fundamental concepts is a valuable exercise.  
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Synthetic Aperture Radar (SAR) leverages the relative motion of a radar system’s antenna with 

respect to the target to achieve a finer azimuth resolution [38], p. 9,[42], p. 340]. This is 

accomplished by utilizing Doppler beam sharpening of the radar signal [38, 42]. A transmitted 

radar signal expands as it moves away from the receiver illuminating a large area orthogonal to 

the direction of travel. Thus a given target area generates a series of reflected signals as the 

platform moves past it. By using the Doppler shift these signals can be combined to enhance the 

information within the target area. [38, 42]. A phased array antenna consists of an array of 

spatially distributed antennas which can achieve the same result as a SAR system [43].  Another 

enhancement technique of modern radar systems is to emit a longer radar pulse as a “chirp” in 

 

 

Figure 6 - Example of chirped radar pulse where both the phase and amplitude vary with time 

 

which the frequency and amplitude are shifted [38]. Generally a longer radar pulse improves the 

amount of energy reflected back to the system at the expense of range resolution. The chirped 

signal has the benefits of 1) increasing the signal to noise ratio (SNR), 2) improving the range 
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resolution by compressing the signal in the time domain using a Fourier transformation and 3) it 

consumes less power than simply using a longer pulse [38].  

It should be noted that modern satellite radar systems are known as side-looking. That is,  they 

transmit their beam at an oblique angle perpendicular to the direction of travel [38]. The radar 

range is defined as direction perpendicular to the direction of travel. The azimuth is defined as 

the along track dimension of the radar system. The swath width is the range length of the area 

of illumination [38]. Generally, most radar images are delivered from the satellite provider in 

single look complex format and in a slant range basis coordinate system which is not a standard 

geographic basis. A complex transformation is required to generate a geo-located image from 

this slant range product. 

Polarimetric radar data refers to the transmission of polarized or linearly oriented 

electromagnetic waves [43]. The linear aspect of these systems’ signals provides the opportunity 

to analyze radar signals using classic algebraic techniques to derive far more information than 

was previously possible from earlier radar systems [38]. 

3.2 Radar Polarimetry 

Polarimetry is defined as the measurement and analysis of polarized electromagnetic waves 

[42]. Electromagnetic waves have both an electric field component and an orthogonal magnetic 

field component [42]. This dissertation will focus solely on polarized electrical fields generated 

and received by a radar system and will not specifically address the magnetic nature of these 

systems.  
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When an electrical plane wave strikes a target, a current is induced within that object that is 

related to the object’s dielectric properties and its orientation with respect to the original signal 

[42].  This reactionary current in turn produces a reflected electrical plane wave which carries 

both information from the original signal and the properties of the irradiated target. This 

process is referred to as scattering [42].  Radar polarimetry for this thesis refers specifically to 

the transmission and reception of linearly polarized microwave signals which possess both a 

phase, amplitude, and an orientation in space [42].  The linear orientation allows for the 

definition of a three dimensional basis transverse to the direction of propagation which can be 

used to describe the properties of the electromagnetic wave. This basis can provide a frame of 

reference to observe and interpret the scattered wave with respect to the properties of the 

target [42]. 

 

 

 

 

 

Figure 7 - Linear polarized electromagnetic plane wave and reference frame basis 

 

Polarized microwave radiation can be described as an electromagnetic plane wave whose 

properties can be described by any orthogonal basis defined to be transverse to the direction of 

propagation [38]. 

Direction of propagation 
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The generalized equation describing the electric field properties of a linearly polarized wave 

travelling along an arbitrary defined axis z can be described by this equation [42]: 

𝐸𝐼𝐼𝐼𝑝𝐼𝑝𝐼𝑝 =  �
1
1
0

� 𝐸𝑒−𝑝𝑖𝑝 = 𝐸(sin(𝜔𝜔 + δ𝑥) + 𝑖 ∗ cos�𝜔𝜔 + δ𝑦�)    (3) 

where E is the amplitude of the electric field and 𝛚 is the angular frequency of the 

electromagnetic wave and δ is the phase constant.  When an electromagnetic wave encounters 

 

Figure 8 - Geometry of an incident electromagnetic wave and the resultant scattered wave 
after encountering a target[42](p46) 

 

an object it induces a current within the object which retransmits the wave energy, some of 

which is directed back at the source antenna [42].  The resultant wave will be deflected from its 

original linear orientation based on the structural and dielectric properties of the target 

encountered [38].  The scattered wave 𝐸𝑝𝐼𝑝𝑝���������⃑  obeys the equation: 
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𝐸𝑝𝐼𝑝𝑝���������⃑ =  �
𝐸𝑥
𝐸𝑦
0

� 𝑒−𝑝𝑖𝑝 =  �
𝐸𝑥����⃑ sin((𝜔𝜔 + δ𝑥) + 𝑖 ∗ cos (𝜔𝜔 + δ𝑥)) 
𝐸𝑦����⃑ sin(�𝜔𝜔 + δ𝑦� +  𝑖 ∗ cos (𝜔𝜔 + δ𝑦)) 

0
�  (4) 

where 𝐸𝑥����⃑  𝑎𝑎𝑑 𝐸𝑦����⃑  are the respective x and y maximum amplitude components of the scattered 

 

Figure 9 - Example of polar co-ordinate system for vector r 

 

wave [38]. The matrix form of the equation 4 is referred to as the Jones Vector [38]. 

It should be emphasized that orthogonal X-Y basis can be defined arbitrarily in any number of 

ways as long as the direction of propagation is orthogonal to this basis. This dimensional 

freedom allows for any number of transformations to be applied [38].  

For convenience a back scattering alignment (BSA) where the basis is defined with respect to the 

incident wave source is employed. This simplifies the analysis since the source and receiving 
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antenna are co-aligned [38]].  Due to the 4-dimensional nature in space and time, 

electromagnetic waves can also be described in terms of spherical coordinates [38]. 

3.2.1 Poincare sphere 

Any vector can be described as a function of its radius r, the angle θ with respect to the x axis 

and angle ϕ with respect to the z axis and time  t. The Poincare sphere is a graphical formulation 

based on the spherical coordinates that allows for the graphical representation of polarized 

electromagnetic waves [42]. The premise that any electromagnetic wave can be traced on this 

sphere allows for simple visualization of the various states of polarized electromagnetic 

radiation. 

 

Figure 10 - Poincare sphere for visualization of polarized electromagnetic waves.  
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This model allows for a direct visualization of how an electromagnetic wave moves through 

space. We are primarily concerned with linearly polarized waves which are always located on 

the equator of the sphere. Horizontal polarized waves lie flat on the equator while vertically 

polarized waves are orthogonal to the equator on the opposite (antipodal) side of the sphere 

[42]. 

3.2.2 Stokes Vector g 

Polarized electromagnetic waves can also be described in terms of the four real Stokes 

Parameters [42]. These parameters can be combined to create the Stokes Vector given by the 

equation: 

𝑔 = [𝐼 𝑄 𝑈 𝑉]𝑇 .  (5) 

The value of the individual parameters is measured intensity at the following points on the 

Poincare sphere. The Stokes parameters  have unique definitions that describe their relationship 

to polarizations visualized on the Poincare sphere as shown in Tables 3 and 4 [38]. 

Table 3 - Stokes parameters.. I stands for the real valued measured intensity of the signal. The 
degrees stated in the I() function represent the orientation of the antenna. RCP and LCP stand 
for right and left circular polarization. The phase constant δ is equal to δx - δy 

 

I 𝐸𝑥
2+𝐸𝑦

2 Intensity 
Q 𝐸𝑥

2-𝐸𝑦
2 I(0⁰) – I(90⁰) 

U 2𝐸𝑥𝐸𝑦cos(δ) I(45⁰) – I(135⁰) 
V 2𝐸𝑥𝐸𝑦sin(δ) I(RCP) – I(LCP) 
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Table 4 - Stokes vector and polarization states 

 

3.3 Full Polarimetric Radar Characterizations 

Most modern polarimetric radar systems have many different modes of operation. These 

systems can vary the look angle of the system as well as the polarization orientation of the 

transmitted signal [38]. Quad-pol or full polarimetric mode refers to the transmission of 

alternately polarized horizontal (H) and vertical (V) signals which are reflected off a target and 

then both signals are received on both the horizontal and vertical antennas. This configuration 

produces four complex channels of data which are labeled HH, HV, VH, and VV where the first 

letter describes the transmit polarization and the second letter indicates the receive 

polarization. The quad-pol mode provides the most robust scattering information at the cost of 

spatial resolution since the pulse repetition frequency (PRT) must be decreased to 

accommodate two different polarization transmit/receive cycles [44]. 

3.3.1 Sinclair Scattering Matrix  

The transmit and receive signals of a radar system can be represented in a format known as the 

Sinclair scattering matrix [38]: 
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The subscripts in this equation represent the transmit and receive polarizations respectively for 

each channel of the radar system where H (or 1) represents the horizontal polarization and V (or 

2) represents the vertical polarization. Each complex channel contains amplitude and relative 

phase information. Each received signal carries information in both the total power returned but 

also the signal's relative phase with respect to the transmitted phase for each of four complex 

data channels.  

The co-pol channels are defined as SHH and SVV whereas the cross-pol channels are the SHV and 

SVH elements. By convention a coordinate system basis is defined such that for the transmit 𝑆𝑝𝐼𝐼 

the cross pol channels are zero [42]. 

3.3.2 Mueller matrix  

In the case of a single coherent target, both the polarized source �⃑�𝑝𝐼𝐼 and the scattered 

�⃑�𝑝𝐼  wave can be measured in terms of the Stokes vectors. There must exist a real 4 by 4 matrix 

to perform a transform between the two vectors in the forward scattering alignment. This is 

known as the Mueller [M] matrix and is defined by [42]: 

�⃑�𝑝𝐼  = M�⃑�𝑝𝐼𝐼=�

𝑀11 𝑀12 𝑀13 𝑀14
𝑀21 𝑀22 𝑀23 𝑀24
𝑀31 𝑀32 𝑀33 𝑀34
𝑀41 𝑀42 𝑀43 𝑀44

� �

𝐼
𝑄
𝑈
𝑉

�.  (7) 
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This representation is useful as it defines the scattering matrix solely in terms of power and 

eliminates the need to consider phase in the analysis. This relation is only valid in the case of 

single scattering target. In the case of ‘ n ‘ independent scattering objects, the scattered wave 

would be a superposition of all the independent distributed targets’ induced waves with 

independent amplitude and phase:  

�⃑�𝑝𝐼 =  
𝑎
∑

𝑖 = 1
�⃑�𝑝𝐼𝑖 =  (

𝑎
∑

𝑖 = 1
𝑀𝑝)𝑔����⃑ 𝑝𝐼𝐼 . (8) 

3.3.3 Kennaugh matrix  

The Kennaugh matrix [K] is identical to the Mueller matrix except that it is defined in terms of 

the backscattering alignment (BSA).  Both the Mueller and Kennaugh matrices can also be 

defined using the Kronecker tensor matrix product [38].  

K =  A∗(S⦻S∗)A−1     (9) 

where  

S⦻S∗ =  �SHHS∗ SVHS∗

SHVS∗ SVVS∗�    (10) 

and  

A =  �

1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

� .     (11) 
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3.3.4 Relationship between the Mueller and Sinclair Matrix 

The previously introduced four by four  real valued Mueller matrix can be generated from the 

Sinclair matrix using the following set of equations: 

M11= ¼(SHHSHH*+ SHVSHV*+ SVHSVH*+ SVVSVV*) ,                             (12) 

M12= ¼(SHHSHH*- SHVSHV*+ SVHSVH*- SVVSVV*),           (13) 

M13= ½ ( Re(SHH*SHV) + Re( SVVSVH*)),                          (14) 

M14= ½ ( Im(SHH*SHV) + Im( SVVSVH*)),                          (15) 

M21`= ¼(SHHSHH*- SHVSHV*+ SVHSVH*- SVVSVV*),                         (16) 

M22= ¼(SHHSHH*- SHVSHV*- SVHSVH*+ SVVSVV*),            (17) 

M23= ½ ( Re(SHH*SHV) - Re( SVVSVH*)),             (18) 

M24= ½ ( Im(SHH*SHV) - Im( SVVSVH*)),                                (19) 

M31 = ½ ( Re(SHH*SHV) + Re( SVVSVH*)),                                 (20) 

M32 = ½ ( Re(SHH*SHV) - Re( SVVSVH*)),                                 (21) 

M33 = ½ ( Re(SHV*SVH) + Re( SHH*SVV)),                                  (22) 

M34= ½ ( Im(SHH*SHV) - Im( SHV*SVH)),                                  (23) 

M41= ½ ( Im(SHH*SHV) + Im( SVVSVH*)),                                 (24) 

M42= ½ ( Im(SHH*SHV) + Im( SVVSVH*)),                                 (25) 

M43= ½ ( Im(SHH*SVV) + Im(SHV*SVH)), and                                  (26) 

M44 = ½ ( Re(SHV*SVH) - Re( SHH*SVV)).                                  (27) 

3.3.5 Scattering Target Vectors 

To extract the physical information from the Sinclair matrix S it is desirable to construct a linear 

vector by employing a complex basis of 2 by 2 matrices [38]. The Lexicographic basis and Pauli 

matrices are both commonly used and will be described in detail in the following sections. 
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3.3.5.1 Lexicographic Vector Representation of Scattering 

The Lexicographic basis is defined as [38]: 

𝛹𝐿 = �2 �1 0
0 0� 2 �0 1

0 0�  2 �0 0
1 0�   2 �0 0

0 1��.    (28) 

Hence, the scattering Lexicographic feature vector becomes [38]: 

𝛺 =  [𝑆𝐻𝐻 𝑆𝐻𝐻 𝑆𝐻𝐻 𝑆𝐻𝐻]𝑇 .                                (29) 

Since we will be dealing with the monostatic case we can assume the vector reciprocity theorem 

holds, thus the back scattering alignment of the scattering matrix [S] must be symmetric such 

that  𝑆𝐻𝐻 =   𝑆𝐻𝐻 and the vector can be simplified [38]: 

𝛺 =  �𝑆𝐻𝐻 √2𝑆𝐻𝐻 𝑆𝐻𝐻�𝑇
.         (30) 

3.3.5.2 Pauli Vector Representation of Scattering 

The Pauli matrix is another useful representation of the scattering matrix for single-look 

complex data [45]. It is generated by transforming the scattering matrix S and then applying the 

Pauli spin matrix basis set 𝛹𝑝 where 

𝛹𝑝 = �√2 �1 0
0 1� √2 �1 0

0 −1�  √2 �0 1
1 0�   √2 �0 −1

1 0 �� = [𝑆𝑎  𝑆𝑏  𝑆𝐼 𝑆 𝐼 ].     (31) 

Similarly, reciprocity dictates that the fourth element 𝑆𝐼  can be neglected. The scattering matrix 

can be expressed as: 

𝑆 = �𝑆𝐻𝐻 𝑆𝐻𝐻
𝑆𝐻𝐻 𝑆𝐻𝐻

� =  𝛼𝑆𝑎 +𝛽𝑆𝑏 +𝛾𝑆𝐼                                         (32) 
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where 

𝛼 = 𝑆𝐻𝐻+𝑆𝑉𝑉

√2
 ′                   (33) 

𝛽 = 𝑆𝐻𝐻−𝑆𝑉𝑉

√2
  ‘ and                   (34) 

𝛾 = √2 𝑆𝐻𝐻 .                     (35) 

Thus the Pauli basis vectorization of the scattering matrix S can be expressed [38]: 

𝑘 = 1
√2

�
𝑆𝐻𝐻 + 𝑆𝐻𝐻
𝑆𝐻𝐻 − 𝑆𝐻𝐻

2𝑆𝐻𝐻

�  .          (36) 

The Pauli representation has many useful interpretations and is the basis of some of the more 

common transformation and decomposition techniques used to analyze polarimetric data.  The 

elements in the Pauli representation can be interpreted as  single or odd bounce(Sa),  double or 

even bounce (Sb), and volume scattering (Sc ) such as one would encounter in the forest canopy. 

This symmetry also guarantees that any rotation through an angle θ will be the same for both 

the transmit and receive co-ordinate systems. 

3.3.6 The Covariance Matrix C 

The covariance matrix C is formed by taking the cross product of the Lexicographic vector 𝛺 and 

its’ conjugate transpose 𝛺 *T and taking an ensemble average of the elements in the space or 

time domain denoted by the 〈 〉 brackets.  Assuming reciprocity, we shall limit ourselves to the 

derivation of the three by three case. The formula for C3 is: 
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𝐶3 =  〈𝛺⦻𝛺∗𝑇〉 = �
〈|𝑆𝐻𝐻|2〉 √2〈|𝑆𝐻𝐻𝑆𝐻𝐻

∗|2〉 〈|𝑆𝐻𝐻𝑆𝐻𝐻
∗|2〉

√2〈|𝑆𝐻𝐻𝑆𝐻𝐻
∗|2〉 2〈|𝑆𝐻𝐻|2〉 √2〈|𝑆𝐻𝐻𝑆𝐻𝐻

∗|2〉
〈|𝑆𝐻𝐻𝑆𝐻𝐻

∗|2〉 √2〈|𝑆𝐻𝐻𝑆𝐻𝐻
∗|2〉 〈|𝑆𝐻𝐻|2〉

�. (37) 

 

3.3.7 Coherency Matrix T 

In a similar fashion to the covariance matrix, the coherence matrix T is formed by taking the 

cross product of the Pauli vector k and its’ conjugate transpose k*T and taking an ensemble 

average of the elements in the space or time domain denoted by the 〈 〉 brackets.  One again, 

assuming reciprocity, we shall limit ourselves to the derivation of the 3 by 3 case. 

𝑇3 =  〈𝑘⦻𝑘∗𝑇〉 =

1
2

 �
〈|𝑆𝐻𝐻 + 𝑆𝐻𝐻|2〉 〈(𝑆𝐻𝐻 + 𝑆𝐻𝐻)(𝑆𝐻𝐻 − 𝑆𝐻𝐻)∗〉 2〈(𝑆𝐻𝐻 + 𝑆𝐻𝐻)𝑆𝐻𝐻

∗〉
〈(𝑆𝐻𝐻 − 𝑆𝐻𝐻)(𝑆𝐻𝐻 + 𝑆𝐻𝐻)∗〉 〈|𝑆𝐻𝐻 − 𝑆𝐻𝐻|2〉 2〈(𝑆𝐻𝐻 − 𝑆𝐻𝐻)𝑆𝐻𝐻

∗〉
2〈𝑆𝐻𝐻(𝑆𝐻𝐻 + 𝑆𝐻𝐻)∗〉 2〈𝑆𝐻𝐻(𝑆𝐻𝐻 − 𝑆𝐻𝐻)∗〉 4〈|𝑆𝐻𝐻|2〉

� .(38) 

Both the coherence T and the covariance C matrices are Hermitian positive semi-definite 

matrices that share the same real non-negative eigenvalues and orthogonal eigenvectors [38]. 

3.3.8 Other Representations of the Coherency and Covariance 
Matrices 

In terms of defining and separating the dominant scattering mechanisms, it is useful to define 

the coherency matrix in an alternate form as follows: 

[𝑇] =  𝑘𝑃∗𝑘𝑃
∗ =  �

𝐴0 − 𝐴 𝐶 − 𝑖𝑖 𝐻 + 𝑖𝑖 𝐼 − 𝑖𝑖
𝐶 + 𝑖𝑖 𝑁0 + 𝑁 𝐸 + 𝑖𝑖 𝐾 − 𝑖𝑖
𝐻 − 𝑖𝑖 𝐸 − 𝑖𝑖 𝑁0 − 𝑁 𝑀 + 𝑖𝑁
𝐼 + 𝑖𝑖 𝐾 + 𝑖𝑖 𝑀 − 𝑖𝑁 𝐴0 − 𝐴

� . (39) 
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Following from this definition of the coherency matrix, the Mueller Matrix can be expressed as: 

[𝑀] =  �

𝐴0 + 𝑁0 𝐶 + 𝑁 𝐻 + 𝑖 𝑖 + 𝐼
𝐶 − 𝑁 𝐴 + 𝑁 𝐸 + 𝑖 𝑖 + 𝐾
𝐻 − 𝑖 𝐸 − 𝑖 𝐴 − 𝑁 𝑀 + 𝑖
𝐼 − 𝑖 𝑖 − 𝐾 𝑀 − 𝑖 𝐴0 − 𝑁0

�.                             (40) 

If the vector theory of reciprocity is applied, the coherency matrix reduces to 

[𝑇] =  𝑘𝑃∗𝑘𝑃
∗ =  �

𝐴0 − 𝐴 𝐶 − 𝑖𝑖 𝐻 + 𝑖𝑖 𝐼 − 𝑖𝑖
𝐶 + 𝑖𝑖 𝑁0 + 𝑁 𝐸 + 𝑖𝑖 𝐾 − 𝑖𝑖

0 0 0 0
𝐼 + 𝑖𝑖 𝐾 + 𝑖𝑖 𝑀 − 𝑖𝑁 𝐴0 − 𝐴

� .      (41) 

The 3 by 3 coherency matrix can be expressed as follows: 

[𝑇3] = �
𝐴0 + 𝐴 𝐶 − 𝑖𝑖 𝐼 − 𝑖𝑖
𝐶 + 𝑖𝑖 2𝑁0 𝐾 − 𝑖𝑖
𝐼 + 𝑖𝑖 𝐾 + 𝑖𝑖 𝐴0 − 𝐴

�  .                             (42) 

Similarly, applying reciprocity the Mueller matrix reduces to  

[𝑀] =   �

𝐴0 + 𝑁0 𝐶 𝑖 𝐼
𝐶 𝐴 + 𝑁0 𝑖 𝐾

−𝑖 −𝑖 𝐴 − 𝑁0 𝑖
𝐼 𝐾 −𝑖 𝐴0 − 𝑁0

�.  (43) 

These definitions will prove to be useful in the following sections where the decomposition 

theories are explored in more detail. 

3.3.9 SPAN of SAR Data 

Another useful representation is the SPAN, or total power of the Scatting matrix, which can be 

defined using the elements of the Sinclair scattering matrix as: 
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𝑆𝑆𝐴𝑁 =  |𝑆𝐻𝐻|2 +  |𝑆𝐻𝐻|2 + 2 |𝑆𝐻𝐻|2 .                      (44) 

It can also be computed from the Pauli coefficients as follows: 

𝑆𝑆𝐴𝑁 =  |𝛼|2 +  |𝛽|2 +  |𝛾|2 .                      (45) 

Analysis cannot begin until several pre-processing steps have been performed to correct for 

various distortions, system noise and terrain effects that can bias the radar signal. It should be 

noted, that the Trace of both the covariance and coherency matrices are equal since the total 

power must remain constant under these transformations. 

3.4 Pre-processing and Transformations of PolSAR Radar Data 

3.4.1 Faraday Rotation 

Satellite based radar systems are affected by Faraday rotation as the signal passes through the 

ionosphere [46-49]. The amount of rotation is dependent on the “total integrated electron 

concentration (TEC) along the radar path and its interaction with the local magnetic field vector” 

[50].  This effect causes the radar signal to undergo a propagation rotational transformation by 

an angle theta Ɵ which can be calculated from the data [46-50].   

Table 5 - Maximum values for Faraday Rotation Angles for various wavelengths under peak 
TEC conditions 

Band Wavelength (cm) Frequency Faraday Rotation (°) 

C 5. 6 4-8 GHz 2. 5 
L 23. 6 1-2 GHz 40 

P 68 300 MHz-1GHz 321 
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The Faraday rotation is wavelength dependent with longer wavelengths undergoing a larger 

transformation as Table 5 demonstrates [46]. Assuming all other distortions are negligible, the 

Faraday rotation by an angle Ω on the S scattering matrix is described by the measured matrix 

[𝑚] as follows [48, 50]: 

𝑚 = �
𝑚𝐻𝐻 𝑚𝐻𝐻
𝑚𝐻𝐻 𝑚𝐻𝐻

� = 𝑁𝐹 𝑆 𝑁𝐹 =  � 𝑐𝑐𝑐Ω 𝑐𝑖𝑎Ω
−𝑐𝑖𝑎Ω 𝑐𝑐𝑐Ω� �𝑆𝐻𝐻 𝑆𝐻𝐻

𝑆𝐻𝐻 𝑆𝐻𝐻
� � 𝑐𝑐𝑐Ω 𝑐𝑖𝑎Ω

−𝑐𝑖𝑎Ω 𝑐𝑐𝑐Ω� . (46) 

The Law of reciprocity states that SVH equals SHV, but after Faraday rotation, this relation no 

longer holds and thus can be used to calculate the Faraday rotation angle Ω as follows [50]: 

( )( )( )
22

*
1 Re2

tan
4
1

VHHVVVHH

VVHHVHHV

SSSS
SSSS

−−+

+−−
=Ω − .     (47) 

Once Ω is calculated, it is straightforward to apply standard rotation matrices to the observed 

Sinclair matrix and correct this affect as demonstrated in equation 48 [47-50]: 

𝑆 = �𝑆𝐻𝐻 𝑆𝐻𝐻
𝑆𝐻𝐻 𝑆𝐻𝐻

� =  �𝑐𝑐𝑐Ω −𝑐𝑖𝑎Ω
𝑐𝑖𝑎Ω 𝑐𝑐𝑐Ω � �

𝑚𝐻𝐻 𝑚𝐻𝐻
𝑚𝐻𝐻 𝑚𝐻𝐻

� �𝑐𝑐𝑐Ω −𝑐𝑖𝑎Ω
𝑐𝑖𝑎Ω 𝑐𝑐𝑐Ω � .    (48) 

3.4.2 Terrain Induced Orientation Angle Correction  

The local incident angle of the azimuthal slope of the terrain induces a transformation of both 

the strength and the relative phase of the radar return signal for all the polarimetric channels 

[51-54]. The orientation angle deflection of the scattered polarized signal θ is a function of the 

radar look angle φ, the target azimuthal slope 𝛚, and to a lesser extent the range slope γ as 

described by the following equation 49 [54]: 
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𝜔𝑎𝑎 𝜃 = 𝑝𝑎𝐼 𝑖
𝑝𝑎𝐼 𝛾 𝐼𝑝𝑝 𝜑−𝑝𝑝𝐼 𝜑

  .     (49) 

Thus the rotation of the scattering matrix S by an angle θ is described by equation 50: 

�̃� =  � 𝑐𝑐𝑐θ 𝑐𝑖𝑎θ
−𝑐𝑖𝑎θ 𝑐𝑐𝑐θ� �𝑆𝐻𝐻 𝑆𝐻𝐻

𝑆𝐻𝐻 𝑆𝐻𝐻
� �𝑐𝑐𝑐θ −𝑐𝑖𝑎θ

𝑐𝑖𝑎θ 𝑐𝑐𝑐θ �  ,     (50) 

where �̃� is the terrain slope augmented matrix. 

Several approaches have been developed to correct for this, terrain orientation shift [51-54]. 

The local incident angle theta 𝜃 of the target can be calculated using a DEM with equation (49) 

or it can be derived from the elements of the Sinclair matrix as follows [34, 54]: 

𝜃 =  �
𝜂, 𝑖𝑖 𝜂 ≤  𝜋/4

𝜂 − 𝜋
2

, 𝑖𝑖 𝜂 > 𝜋/4     ‘     (51) 

where 

𝜂 = 1
4

�tan−1 � −4𝑅𝑝(〈(𝑆𝐻𝐻−𝑆𝑉𝑉)𝑆𝐻𝑉
∗ 〉)

−〈|𝑆𝐻𝐻−𝑆𝑉𝑉|2〉+4〈|𝑆𝐻𝑉|2〉� + 𝜋�  .  (52) 

The observed Sinclair matrix can then be corrected by applying rotational matrices with the 

angle 𝜃 [53] using the equation:   

𝑆 = �𝑆𝐻𝐻 𝑆𝐻𝐻
𝑆𝐻𝐻 𝑆𝐻𝐻

� =  � 𝑐𝑐𝑐𝜃 𝑐𝑖𝑎𝜃
−𝑐𝑖𝑎𝜃 𝑐𝑐𝑐𝜃� ��̃�𝐻𝐻 �̃�𝐻𝐻

�̃�𝐻𝐻 �̃�𝐻𝐻
� �𝑐𝑐𝑐𝜃 −𝑐𝑖𝑎𝜃

𝑐𝑖𝑎𝜃 𝑐𝑐𝑐𝜃 � ,   (53) 

where 𝑺�  is the observed terrain affected scattering matrix. 
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For the purposes of this project, a custom script was developed to perform a correction ofthis 

terrain induced distortion.  

3.4.3 Speckle Filtering 

Radar data is susceptible to the phenomenon known as speckle which is due to constructive 

interference between adjacent wave fronts. Speckle noise is a major impediment to the analysis 

and classification of SAR images. Many techniques have been developed to reduce the effect of 

speckle from radar imagery [38].  Most speckle filtering approaches have some drawbacks.  The 

spatial resolution is degraded and several inherent scattering characteristics are altered which 

can affect the subsequent decompositions to be performed in the analysis process [38]. 

Specifically the parameters of the Cloude-Pottier Entropy-Alpha decomposition are changed if 

an insufficient number of looks are available since the process requires an ensemble averaging. 

These effects include an under estimation of entropy, an over estimation of anisotropy, and an 

averaging of the alpha angle [38].  It is crucial that the speckle filtering of complex data be 

performed independently on the amplitude and phase information since averaging the complex 

number would fundamentally alter the scattering information. Due to the requirement of the 

independent averaging of amplitude and phase information, speckle filtering must be on either 

the three by three covariance C or the coherence T matrix [38, 55].  

3.4.4 Multi-look Average Processing  

A moving radar system obtains several looks at the same area because a radar pulse expands as 

an arc as it travels through space. This arcing behavior illuminates the area both behind and in 

front of the main target area. Thus, the radar system gets several looks at the same location on 

the ground as it travels past a point. Multi-look radar image data is formed during SAR 

processing by independently processing each individual radar received pulse separately for a 
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given area such that the image data could contain up to four individual looks in the azimuth 

direction[43]. Multi-look averaging combines these individual looks into one pixel and eliminates 

the speckle effect at the expense of azimuthal resolution [43]. 

3.4.5 Boxcar Speckle Filter 

A boxcar filter is one of the more common approaches where an averaging window is used to 

detect and remove speckle from the radar image [38, 53, 56]. This average filtering has the 

effect of decreasing the resolution but increasing the SNR of the final product. The boxcar filter 

has the advantage of being straight forward to apply and use, and works well over homogenous 

areas but reduces the resolution and blurs edges.  

3.4.6 Enhanced Lee Speckle Filter 

An Enhanced Lee filter limits the aforementioned blurring effect by employing two 

superimposed windows of different non-square sizes where the smaller inner window is given a 

greater weighting[53]. This allows the filter to detect edges and build masks using sub (localized) 

means to protect the integrity of edge boundaries within an image [38, 53].  

3.4.7 Noise Coherence Averaging 

System noise can often reduce the coherency of a radar image. Testing a radar image for system 

and processing noise is advisable. This test is accomplished using the 3 by 3 coherency matrix to 

calculate a coherency factor γ as follows [34, 42]: 

γ = |C23|
�C22C33

= �〈|SHVSVV
∗|2〉�

2�2〈|SHH−SVV|2〉〈|SVV|2〉
    .   (54) 
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The coherence factor has an optimum value of one, which indicates that the image has a high 

level of coherence. The value of this coherency factor describes the level of noise present in the 

data and can be used to correct the elements of the coherence matrix before decomposition 

and analysis can begin [34, 42].  

3.4.8 Decompositions 

In natural systems such as forest ecosystems, multiple distributed targets exhibit a wide variety 

of scattering mechanisms. According to Cloude [55] these scattering mechanisms can be divided 

into five classes. They are as follows:  

1) surface scattering,  

2) low order multiple scattering from orthogonal surfaces,  

3) volume scattering due to interaction with the forest canopy,  

4) a combination of surface and volume scattering, and  

5) anisotropic (directional) scattering due to the shape and structure such as the 

interaction with a single tree trunk. 

It is useful to consider decomposition as a technique to extract the averaged dominant 

scattering mechanism within a cluster of pixels to assist in describing a target that will be 

invariant through changes in the radar line of sight and various other transformations.  

Over the past 30 years, many types of decomposition theorems have been developed by various 

researchers to extract information of the multiple distributed targets present in each pixel of the 

radar signal [38, 55, 57-59].  The mathematical description of these techniques is extremely 

complex and involved and thus is considered beyond the scope of this thesis. The following will 

present an overview of the evolution of these techniques without delving into the actual 

mathematical description of these decompositions. 
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Lee [38] classifies decompositions into four main classes as follows: 

1) Decompositions based on the dichotomy of the Kennaugh matrix (Huynen). 

2) Model based decompositions (Freeman- Durden). 

3) Eigen based decompositions (Cloude-Pottier). 

4) Coherent decomposition of the S matrix. 

Chandrasekhar[60] pioneered the work of vector radiative transfer (VRT) theory by modeling 

the effects on wave propagation through a cloud of random anisotropic particles. He noted that 

a polarized wave interacts with these scattering elements in 3 fundamental ways:  

1) propagation,  

2) attenuation, and  

3) scattering.  

 

He postulated that the interaction of a wave with random media could be described as a sum of 

the interaction of the individual elements [55].  

Huynen’s Ph. D. thesis[61] built upon Chandrasekhar’s work and he developed the concept of 

extracting a single “pure” target Mueller matrix from which he could define a rank one 

coherency matrix and a single S scattering matrix [55]. The remainder of this extraction would 

be a Mueller matrix representing the remaining distributed non-symmetric targets (N-target) 

that would be invariant after a rotation around the radar line of sight. While insightful, the 

Huynen decomposition is limited by the requirement that there be a negative correlation 

between SHH and SVV scattering elements [38].  Further there are at least three unique pure 

target Mueller matrices that could be potentially extracted, which is less than ideal [55]. 
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The Freeman–Durden three-component decomposition[62] was developed to classify forested 

ecosystem land classes based on the idea that there are three dominant scattering mechanisms 

in a natural forested environment [38, 62]. They are surface scattering, multiple bounce, and 

volume scattering.  While useful at describing the physics of radar scattering, this technique is 

limited by the fact that the three-component scattering model is not always applicable as it 

assumes reflection symmetry, (〈𝑆𝐻𝐻𝑆𝐻𝐻
∗ 〉= 〈𝑆𝐻𝐻𝑆𝐻𝐻

∗ 〉  = 0, which is not always the case [38]. 

Coherent decompositions [38] utilize a basis set matrices (i.e. – Pauli basis set) to decompose 

the radar signal and neglect the effect of speckle, which can be a serious issue in natural systems 

with polarimetric data. Speckle filtering averages the data, which perturbs the underlying 

assumption of coherency. For this reason, this class of decompositions was not considered for 

this project. 

3.4.9 Eigen-based decompositions 

Eigen-based decompositions of the coherency matrix were first proposed by Cloude et al.(1996, 

1999) [55, 63]. The strength of this approach lies in the fact that an Eigen decomposition is by its 

nature basis invariant but the results cannot be interpreted by a physical model [38].  The Eigen 

decomposition of the coherency matrix T3 can be expressed as: 

𝑇3 =  𝑈3∑ 𝑈3
−1     (55) 

where ∑  is a three by three diagonal matrix of positive real values and U3 defines the three 

orthogonal unit eigenvectors [ u1, u2,u3] [38].  The three by three matrix  ∑ has diagonal values 

that are the three related eigenvalues.  The orthogonal eigenvectors each describe a scattering 
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mechanism while the largest eigenvalue and related vector denote the dominant scattering 

mechanism.  

If one takes the largest eigenvalue  𝜆 1 and the related vector 𝑢1, a decomposed coherency 

matrix can be expressed [34, 38] as: 

𝑇01 =  𝜆 1𝑢1𝑢1
∗𝑇 =  𝑘1𝑘1

∗𝑇   (56) 

where the target vector k1 can be described using the generalized polarimetric parameterization 

defined previously as [38]: 

𝑘1 = �𝜆1𝑢1 = 𝑝𝑖𝑖

�2𝐴0
�

2𝐴0
𝐶 + 𝑖𝑖
𝐻 − 𝑖𝑖

� =  𝑒𝑝𝜑

⎣
⎢
⎢
⎢
⎡ �2𝐴0

�𝑁0 + 𝑁𝑒𝑝𝑎𝑝𝐼𝑝𝑎𝐼(𝐷
𝐶)

�𝑁0 + 𝑁𝑒−𝑝𝑎𝑝𝐼𝑝𝑎𝐼(𝐺
𝐻)⎦

⎥
⎥
⎥
⎤
 .    (57) 

The three general types of scattering mechanisms can be characterized as follows [38]: 

Surface scattering:  A0 >> B0 + B, B0-B,     

Dihedral scattering:  B0 + B >> A0  , B0-B, and 

Volume Scattering B0 - B >> A0  , B0+B. 

Building on Cloude’s earlier work, the Cloude-Pottier Entropy-Alpha decomposition [64]employs 

an eigenvalue  based analysis of the coherency matrix [38, 64]. This Eigen-decomposition of the 

Hermitian coherency matrix provides an orthogonal basis where each vector represents a 

different type of scattering mechanism[38, 64]. The strength of this approach is that it does not 
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rely on a predefined statistical distribution of physical canonical models [38]. Several useful 

rotationally invariant parameters arise from this method which aid in the description of the 

dominant target scattering mechanism. 

3.4.9.1 Entropy (H) Decomposition Parameter 

From the Eigen decomposition, it is possible to calculate a Von Neumann Entropy H by 

calculating the logarithmic sum of the eigenvalues of the coherency matrix [34, 38] as follows: 

𝐻 =  ∑ −𝑆𝑝 log𝐼 𝑆𝑝   𝑤ℎ𝑒𝑒𝑒 𝑆𝑝 =  𝜆𝑖
∑ 𝜆𝑖

𝑛
𝑖=1

n
𝑝=1   .  (58) 

This entropy value H will have a range between 0 and 1. This value is significant in that it 

describes scattering characteristics of the target. If entropy is low the target is weakly 

depolarizing and it is possible to extract a dominant target matrix from the largest eigenvector 

and ignore the other Eigen components. If on the other hand the entropy is high, the target is 

strongly depolarizing and the full Eigen spectrum must be considered[38]. In the case where H = 

1 the polarized information is zero and the signal can be assumed to be pure noise.  

3.4.9.2 Alpha (α) Parameter 

If we define the eigenvector ui [34] as: 

ui =  [cos α𝑝 e−iϕ𝑖 sin ∝𝑝 cos β𝑝 e−i(δ𝑖+ϕ𝑖) sin ∝𝑝 sin β𝑝 e−i(γ𝑖+ϕ𝑖)]T  . (59) 

It can be shown that under rotation around the radar line of sight the parameter alpha α will 

always remain invariant and is directly related to the scattering mechanism of the target [38]. 

The value of alpha gives the ratio of the different polarization scattering components within 

each pixel. Cloude et al. (2007) claimed that: 



40 

 “This makes it a robust parameter for classification and parameter estimation as it is 

based not on local data statistics but on the physics of wave scattering” [50]. 

The value of alpha falls within the range of values from [0 to π/2]. When alpha  equals 0 the 

dominant mechanism is a Bragg surface scattering such as over water. An Alpha  value of π/4 

indicates a dipole scattering whereas when alpha equal to 𝜋/2 , indicates the scattering 

mechanism  of a dihedral target [34, 38]. 

3.4.9.3 Anisotropy 

If we define the eigenvalues as λ1> λ2 > λ3> 0 then polarimetric Anisotropy can be defined [34]  

as: 

𝐴 =  𝜆2− λ3
𝜆2+ λ3

 .   (60) 

Anisotropy is useful when Entropy is high ( > 0.7) but decreases in importance as the value of  

𝜆2and λ3 become smaller and are increasingly affected by signal noise [38]. 

3.4.9.4 Single ( and Double) Bounce eigenvalue  Relative Difference 
(SERD and DERD) 

This Eigen-based parameter was proposed by Allain [38], and leverages assumptions of natural 

system targets, in which the correlation between co-polar and cross-polar channels is zero. 

Allain defines three non-ordered size (NOS) eigenvalues and calculates an alpha parameter for 

each of these eigenvalues. If the associated alpha is less than or equal to 𝝿/4 it is considered 

single bounce (αS and λs) and if greater than or equal to π/4 it is double bounce ( αD and λD).  

He then defines the following two relations [38] as follows: 
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SERD = 𝜆𝑆− λ𝑁𝑁𝑆3
𝜆𝑆+ λ𝑁𝑁𝑆3

 , and (61) 

DERD = 𝜆𝐷− λ𝑁𝑁𝑆3
𝜆𝐷+ λ𝑁𝑁𝑆3

  (62) 

These parameters which have a range of values from -1 to +1 are useful in discriminating natural 

systems providing more unique information than is present within the Entropy or Anisotropy 

parameters alone [38]. 

3.4.9.5 Shannon Entropy 

Shannon entropy SE is the sum of the contributions to the entropy by both intensity and degree 

of polarization [38]. It is useful as a discriminator in that it directly relates the degree of 

randomness to the intrinsic degrees of coherence [65]. This provides a unique parameter which 

can be useful in discriminating between various scattering targets. 

3.4.9.6 Polarization Fraction 

The polarization fraction is defined [38] as follows: 

𝑆𝑖 = 1 −  3𝜆3
𝜆1+ 𝜆2+𝜆3

 . (63) 

If 𝜆3 is 0, then the return is completely polarized, and then as the value of 𝜆3 increases the 

polarized fraction decreases [38]. 

3.4.9.7 Polarization Asymmetry 

Polarization Asymmetry is a measure of the ratio of the sum and difference of the two 

eigenvalues of the polarized return [38]. Polarization Asymmetry is defined as follows: 
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𝑆𝐴 =   𝜆1− 𝜆2
𝜆1+ 𝜆2−2𝜆3

  .(64) 

3.4.9.8 Radar Vegetation Index 

Radar vegetation index is defined by the following equation: 

𝑁𝑉𝐼 =   4𝜆3
𝜆1+ 𝜆2+𝜆3

 .  (65) 

The radar vegetation index has an inclusive range of values from [0 to 4/3]  The value of the 

radar vegetation index increases as the size of the trees increase[38]. 

3.4.9.9 Pseudo Probabilities (P1, P2, P3) 

The Pseudo probability PN is defined as the ratio of an eigenvalue divided by the sum of all the 

eigenvalues:  

𝑆𝑁 =   𝜆𝑁
𝜆1+ 𝜆2+𝜆3

  .  (66) 

3.4.9.10 Pedestal Height 

The pedestal height is a measure of a randomness of the scattering processes.  It is defined as:  

𝑆𝐻 =  𝜆3
𝜆1

  .  (67) 

3.4.9.11 Beta (β), Delta (𝛅), Gamma (𝛄) 

The previously presented eigenvector ui definition was: 

ui =  [cos α𝑝 e−jϕ𝑖 sin ∝𝑝 cos β𝑝 e−j(δ𝑖+ϕ𝑖) sin ∝𝑝 sin β𝑝 e−j(γ𝑖+ϕ𝑖)]T   (68) 
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and also defines three additional parameters Beta (β), Delta (δ),  and Gamma(γ). It should be 

noted that that these decomposition parameters, unlike Alpha, are roll variant and can provide 

information on the polarization orientation angle of the target [38], p. 234]. 

3.4.9.11 Epsilon (ε) and Nu (𝛎 ) Decomposition Parameters 

If we consider the special case of the scattering matrix of a group of anisotropic particles, which 

can be described as: 

𝑆 =  �𝑎 0
0 𝑏� .       (69) 

A rotational matrix by an angle θ is defined as: 

𝑁(𝜃) = �
1 0 0
0 𝑐𝑐𝑐2𝜃 𝑐𝑖𝑎2𝜃
0 −𝑐𝑖𝑎2𝜃 𝑐𝑐𝑐2𝜃

�  .   (70) 

A coherence matrix rotated by θ can be defined as:  

𝑇(𝜃) = 𝑁(𝜃) �
𝜀 𝜇 0

𝜇∗ 𝜈 0
0 0 0

� 𝑁(𝜃)−1  ,   (71) 

where 

𝜀 =  1
2

|𝑎 + 𝑏|2  ,  (72) 

𝜈 =  1
2

|𝑎 − 𝑏|2  , and  (73) 

𝜇 =  1
2

(𝑎 + 𝑏)(𝑎 − 𝑏)∗.   (74) 
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Integrating the rotated coherency matrix from 0 to 2π provides: 

〈𝑇(𝜃)〉 = ∫ 𝑇(𝜃)𝑆(𝜃)2𝜋
0 𝑑𝜃 =  1

2
�
2𝜀 0 0
0 𝜈 0
0 0 𝜈

� .  (75) 

If a single scattering mechanism dominates, then it can easily be identified from the following 

three cases: 

Table 6 - Relationship between scattering mechanism and eigenvector decompositions 

Scattering Mechanism A and B Relationship eigenvector 
Dihedral Scattering a = -b [ 0 1 0 ]T 

Dipole scattering a>>b [ 0.707 0.707  0 ]T 

Surface Scattering a = b [ 1 0 0 ]T 

 

These averaged Epsilon (ε) and  Nu (𝛎) are thus rotationally stable and can be used to define the 

physical characteristics of a given target [38]. 

3.4.9.12 Combinations of Entropy (H) and Anisotropy(A) 

The polarimetric radar software-processing package POLSARPRO offers a selection of 

decomposition parameters that are non-linear combinations of Entropy and Anisotropy. These 

parameters include the following combinations [66]: 

1) (1-H)*A. (76)  

2) (1-A)*H.  (77)      

3) (1-H)*(1-A). (78)    

4) H*A.   (79) 

Large H*A values correspond to A and H values and indicate two dominant scattering 

mechanisms with two related dominant eigenvalues and vectors. A large value for either  H*(1-
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A) or (1-H)*A or (1-H)*(1-A) indicates no dominant eigenvalue  and implies a random scattering 

target [66]. 

3.4.9.13 Luneburg Anisotropy  

Luneburg Anisotropy is defined as [67]: 

𝑖𝐴 = �3
2

� 𝜆2
2 + 𝜆3

2

𝜆1
2+ 𝜆2

2 + 𝜆3
2       (80) 

where LA has valid values between [0 , 1] inclusively. Luneburg Anisotropy is an index-based 

measure that uses the second and third eigenvalues (which represent volumetric and 

anisotropic scattering) to assist in describing a scattering target. This can be useful as entropy 

increases in mature forest stands. 

3.5 Geolocation and Orthorectification 

The final step in the preprocessing of the radar data consists of transposing the data into a geo- 

referenced domain to correct for terrain effects and for analysis with Geographic Information 

Systems (GIS) data sets. This step is generally performed using a Digital Elevation Model (DEM) 

and orbital parameters to generate a synthesized SAR intensity image[68]. Ground control 

points (GCP) can then be collected by comparing the two images. Another important step in this 

process is to use the DEM to calculate shadow and layover effects created by the side looking 

nature of radar. Once identified, the shadow and layover areas in the geo-located radar image 

must be masked and excluded from further analysis. An open source software package, Map 

Ready (built by the Alaskan Satellite Facility (ASF)) is an example of software designed to 

perform this task [69].  
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The algorithm uses a DEM and orbital parameters to generate a simulated SAR image to use in 

the transformation. The side looking nature of satellite radar systems is complicated in 

mountainous regions where effects known as shadow and layover can occur [38].  Shadowing 

occurs when the back slope of a mountain is steeper than the radar look angle and thus is not 

visible to the radar system [38]. 

Layover occurs when the front slope of a mountain with respect to the radar system is steeper 

  

Figure 11 - PALSAR Blue Sheep Creek Alpha, Entropy, Lambda2&3 HSV decomposition image 
that has been geolocated on left while the image on the right displays the same image with a 
red shadow /layover mask in overlaid. All of the data under the mask must be excluded from 
analyses. 

than the radar look angle [38].  In this case the top of the mountain appears to be closer to the 

sensor than the bottom of the mountain and it is impossible to correctly locate these pixels 

within a geo-located image. In both the cases of shadow and layover, the solution is to generate 

a mask for both areas and exclude those pixels from analysis. The open source software tool ASF 

MapReady will generate these masks as a by-product of the geo-location process [69].  
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3.6 Visualizations 

3.6.1 Alpha, Entropy, Lambda as Hue, Saturation, and Value  

Shane Cloude et al.(2007) [50] have developed a technique to improve visualization of natural 

forested ecosystems for topologically challenging areas [50]. The three input channels are Alpha, 

Entropy, and eigenvalues Lambda (λ2+ λ3) using a Hue-Saturation-Value (HSV) model to create 

an image.  The Alpha channel is used to generate a hue value, starting with low Alpha values as 

blue, green for medium Alpha values, and increasing to red for higher values [50].  Entropy is 

used as the saturation variable, hence strongly depolarizing areas appear as either black or 

white [50].  The value channel is generated using the sum of the smallest eigenvalues λ2+ λ3 

which reduces the amplitude modulation due to topographic effects [50].  This technique 

provides a useful tool to identify various features in forested areas.  Polarized returns are black 

identifying open areas and water features.  The boreal forest areas appear as green (with L-

Band) due to the dominance of dipole scattering within the vegetation canopy.  Recently burned 

areas appear as blue (with L-Band) since there is low entropy and low alpha values. Figure 11 is 

an example of Cloude et al.(2007) [50]Alpha, Entropy, and Lambda HSV visualization. 

3.6.2 Pauli Visualization  

The Pauli vector discussed in Section 3.3.6.1 is used to generate a visually appealing RGB image. 

The red channel is represented by HH+VV while the green and blue channels are created using 

HH-VV and 2HV respectively [50].  These channels correspond to the elements of the Pauli 

vector and coincidentally the diagonal elements T11, T22, T33 of the  coherency matrix [38].  

Theoretically they represent single bounce for HH+VV, double bounce for HH-VV and 45° 

rotated double bounce for 2HV [70]. 
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3.6.3 Freeman-Durden Image Visualization  

The Freeman-Durden decomposition is used to create another useful visual interpretation of 

Polarimetric radar images in forested ecosystems.  The three parameters generated by the 

Freeman-Durden decomposition are single bounce related to surface scattering, double bounce 

related to ground tree trunk reflections, and volume scattering from the canopy [38].  These 

three components are used (double, volume, and single scattering) to represent the RGB 

channels of the image respectively.  Hence, open areas and water are blue, closed forested 

areas are green and more open forested areas and urban environments are red [71].   

3.6.4 Entropy-Alpha Plane  

The entropy alpha plane is a useful representation of the main roll invariant Cloude-Pottier 

decomposition parameters. The plane can be divided into 9 areas each representing a unique  

 

Figure 12 - Entropy-Alpha Plane Graph of Mature Forest.  Each of 8 feasible regions in the 
plane represent a different type of scattering target allowing for a physical interpretation of 
the target’s physical characteristics. 
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type of scattering target. Figure 12 demonstrates the power of this classification to aid in the 

discrimination of various scattering mechanisms of given targets. 
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4.0 Computer Systems, Data Flow and Software 
Environment 

To complete this project a diverse set of software tools was required to: 

1) Acquire relevant data, 

2) Pre-process the data, and  

3) Analyze the data. 

This chapter will guide the reader through all of these steps and describe the software used to 

accomplish the given tasks.  

4.1 Introduction 

A large amount of data (~ 5TB) was employed as input for this project. A total of 18 quad-pol 

ALOS – 1 PALSAR images and six quad-pol Radarsat-2 images were selected for this 

investigation. DEMS for the entire study area were required for the orthorectification. Landsat 

optical data were acquired for NBR and dNBR calculations for each fire event. Landsat data were 

used for visualization and validation of the orthorectified Radar images. Polygonal GIS data of 

the historic wildfire events also were required for selection validation and verification phases of 

the project. 

Each one of the 24 raw quad-pol images contains four complex floating point channels of data. 

Processing each one of these images requires four intermediate stages where the data storage 

requirements increase tenfold before even beginning to perform the decompositions into the 65 

different products. Next these 65 products needed to be orthorectified..  This does not include 

the testing of various filters and visualizations that were also investigated.  Analysis, and 

classification and modelling products increased storage requirements further. In total over five 

Terabytes of data were generated for this project which challenged the limits of computing 
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systems especially when this project began in 2008. The following sections will describe in detail 

the complete data process from acquisition to fire mapping products. 

4.2 Software 

A large selection of open source and proprietary software was used for this project. The 

following is a brief description of all the various software tools that were used. 

POLSARPRO [72] was used to unpack, transform, apply speckle filters and to generate 

decomposition parameters, and classifications for PALSAR imagery. It was also used to generate 

Entropy/Alpha and Entropy/Anisotropy graphs [72].  POLSARPRO is described as a  

“Polarimetric SAR Data Processing and educational tool that aims to facilitate the 

accessibility and exploitation of multi polarized SAR data sets … with the objective to 

provide a tool for self education … and a comprehensive suite of functions for SAR data 

analysis” [72].  

 POLSARPRO provides tools for SAR data extraction, basis conversion, speckle filtering, various 

decompositions, classifications, and image generation.  POLSARPRO provides tools for 

interferometric SAR analysis as well.  POLSARPRO is an open source project developed under the 

GNU General Public License V2 with contributions from various governmental organizations and 

universities including ESA, Natural Resources Canada, NASA, the Alaska SAR Facility, JAXA, and 

the U.S. Naval Research Laboratory.  POLSARPRO runs on various Windows, Linux and 

Macintosh operating systems.  POLSARPRO provides a GUI interface to run the underlying code 

(which is written in C) and individual executables can be executed from the command line or 

from custom designed scripts. 
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The Radarsat2 Toolbox (RSTB) [73] was used for data extraction, basis transformation, to apply 

speckle filters, to generate decomposition parameters, to apply terrain corrections and to 

orthorectify Radarsat-2 imagery..  Radarsat2 Toolbox was developed by Array Systems 

Computing Inc. under contract from the Canadian Space Agency (CSA) in collaboration with the 

Canadian Forest Service and the Geological Survey of Canada (GSC).  The objective was to 

provide an open source toolbox for processing visualizing, and analyzing Radarsat2 SAR Products 

to maximize the utilization of Radarsat2 data.  The Radarsat2 toolbox was built using the next 

ESA SAR toolbox (NEST) application programming interface (API).  This  toolbox provides tools to 

perform data extraction, basis conversions, speckle filtering, radiometric correction due to 

atmospheric and topographical influences, speckle filtering, image orthorectification, and image 

classification and analysis.  While not used in this project, the Radarsat2Toolbox also provided 

interferometric tools for Radarsat2 data analysis.  NEST and the Radarsat-Toolbox were 

developed under the GNU General Public License V2. They are written in Java and can be used 

on various Windows, Linux, and Macintosh operating systems. 

ASF MapReady [69] Remote Sensing Toolkit was employed to apply terrain corrections and 

orthorectify the decomposition parameters generated from the PALSAR data. Shadow and 

layover masks were generated using the MapReady toolkit..  MapReady was developed by the 

Alaska SAR Facility to provide tools data extraction, radiometric and terrain correction, image 

orthorectification, and polarimetric decomposition for level one SAR data. MapReady is 

distributed free of charge under the specific licensing terms of ASF with or without modification.  

The underlying source code is written in C and C++ and the GUI can be run on both Windows 

and Linux operating systems while the executables theoretically can be run on Macintosh 

operating systems but are not specifically supported.   
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Statistica [74] was used for statistical analysis, including multiple linear regression of the 

decomposition parameters for the purpose of identifying the most significant factors for 

describing boreal forest age for modelling..  Statistica is a proprietary software package created 

by StatSoft which has recently been purchased by Dell.  Originally released in 1986, Statistica has 

continued to grow and evolve with version 12 released in 2013.  It is described as a numerical 

analysis package that provides tools for data analysis, data management, statistics, data mining 

and visualization.  The licensing is proprietary and no information is available regarding the 

source code implementation, although an API is available to access objects for scripting in 

languages such as R, Java, Visual Basic, and C#. 

ENVI/ IDL [75] was used to build batch scripting routines for generating dNBR burn maps, data 

extraction and model application to generate forest age maps.  These tools were also used for 

visualization, statistical analysis and data manipulation.  IDL stands for interactive data language. 

It was released by Research Systems Inc (RSI) in 1979 and ran on PDP-11 computer systems.  

Two years later a VAX-11 Macro and FORTRAN version was released.  In 1987, a C version of IDL 

was released for providing cross platform for accessibility to modern PC based operating 

systems.  ENVI which stands for Environment for Visualizing Images was built using IDL and 

released in 1994.  It was specifically designed for geospatial applications in remote sensing.  

ENVI and IDL leverages several large scientific computing libraries including BLAS (Basic Linear 

Algebra Subprograms) and SCALPAC (SCAlable Linear Algebra PACkage) developed by the Oak 

Ridge National Laboratory, thus providing multithreaded computing for enhanced performance.  

One of the major advantages of IDL and ENVI is that it supports matrix algebra equations which 

it processes in a multithreaded model.  IDL also provides a command line interpreter which 

facilitates streamlined code prototyping and debugging. 
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ESRI’s ArcInfo [76] was used for visualization, quality control and figure generation of 

intermediate and resultant products. The ESRI Arcpy python module routines were used for 

batch processing of ancillary data sets such as the NFDB data  ESRI stands for Environmental 

Systems Research Inc. ArcINFO is one application of a family of Geographic Information Systems 

(GIS) products that can be used for spatial analysis and visualization of both vector and raster 

based data.  The most current desktop version is 10.4 and runs only on a minimum of Windows 

7 SP1 operating systems.  The python Arcpy module – developed by ESRI - allows for direct 

access to a scripting API of the ARC objects with Python 2.7. 

PCI Geomatica  [77]and PCI’s scripting language EASI [77] was used for visualization, quality 

control, classifications, orthorectification, mosaicking, statistical analysis, and file manipulation 

of various ancillary and radar decomposition datasets.  PCI Geomatica is a proprietary desktop 

software application for remote sensing and is distributed by PCI Geomatics Inc., which was 

founded in 1982.   The current version of the core visualization application is Geomatica 2014.  It 

provides a scripting API called EASI that allows for command line functionality and batch 

processing capabilities, which is supported by modern Windows operating systems of 7 or 

greater.  The original concepts for the software application were created at the Canada Centre 

for Remote Sensing (CCRS) in the 1970s. 

GoogleEarthPro [78]was used as a visual reference aid in selecting PALSAR and Radarsat2 

imagery.  GoogleEarthPro is a virtual GIS mapping system that automatically drapes modern 

satellite imagery on 3-D model of earth by default.  Originally developed by Keyhole Inc, it was 

acquired by Google in 2004.  Unlike the freeware version GoogleEarth, the pro version allowed 

for the loading of both raster and vector based imagery into the application which facilitated the 

selection of candidate images in an expeditious manner.  GoogleEarth is supported by Windows, 
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Linux and Macintosh operating systems running a minimum of a Pentium III processor 500 MHz 

with at least 256 MB of RAM. 

The free statistical programming language R and in particular the glmutil package [79] was used 

to investigate quality of various models built using the decomposition parameters [80].  R is an 

implementation of the statistical programming language S developed at Bell Labs by John 

Chambers.  R is distributed under the GNU General Public License V2 and was written in C and 

FORTRAN.  Like IDL, R provides matrix arithmetic functionality and a command line interpreter, 

which allows for fast code development and powerful debugging capabilities.  The 

Comprehensive R Archive Network (CRAN) provides access to over 5800 user created packages 

with over 120,000 functions. The glmulit package, which stands for General Linear Model 

Utilities was written by Vincent Calcagno and performs “automated model selection and model 

averaging…  generating all possible models under various user constraints and finds the best 

model in terms of a specified information criteria using a genetic algorithm”.  Glmutil depends 

upon seven other R packages in the CRAN repository. 

Mathwork’s Matlab [81] was utilized to generate scripts to handle high level matrix 

manipulations of the radar data such as correcting coherence noise, Faraday rotation and 

terrain induced distortions.  Matlab stands for matrix laboratory, and was originally conceived in 

the 1970’s by Cleve Moler as an educational tool at the University of New Mexico.  It is fourth 

generation programming language that supports matrix arithmetic and provides a command line 

interpreter like both IDL and the R programming language.  Matlab is written in C and 

distributed by MathWorks as a proprietary software product. Matlab runs on all modern 

Windows, Linux, and Macintosh operating systems.  Matlab leverages the LAPACK (Linear 

Algebra Package) libraries designed to exploit modern cache-based computing systems. 
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Microsoft Office Excel [82] was used for data manipulation, statistical analysis and image 

generation of results.  Excel 2003 and 2010 are licensed as a proprietary software product of 

Microsoft Corp. and run solely on windows based operating systems. 

Custom scripts in R, Python, EASI,  IDL, C and C++ were developed within the CFS Advanced 

Forest Technologies group and by the author. These scripts were used to perform noise 

coherence averaging, data extraction, statistical analysis, and generating batch scripting 

routines. 

4.3 Image Acquisition Process 

Radar image acquisitions were made in two ways but in both cases the first step is to identify 

potential areas of interest. The NFDB, the Alberta historical fire data, and the satellite scene 

footprint data sets - in the form of polygonal GIS ESRI shape files - were viewed both within 

ESRI’s ARCMap and GoogleEarthPro where potential areas of interest were identified. Next data 

could either be requested for acquisition or the archive could be searched to identify previously 

acquired candidate images. For this project both methods were used to obtain imagery. In the 

case of PALSAR data all scene requests were made through the Alaskan Satellite Facility (ASF). 

The requests were made by supplying a list of possible scenes (locations) and the desired mode 

of acquisition. This request had to fall within the parameters of the predefined satellite 

acquisition schedule. ASF then prepared a proposed acquisition schedule based on client 

requests which was forwarded to the Japanese Space Agency (JAXA) who ultimately decided 



57 

 

Figure 13 - Radar Image Acquisition Process 
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which scenes would be acquired. The Radarsat-2 requests were made in a similar fashion with 

the Natural Resources Canada Radarsat Order Desk acting as the coordinator between the 

clients and the satellite operator, Macdonald Dettwiler Associates (MDA). If all went well, the 

requested scenes were acquired when not pre-empted by higher priority acquisitions. As 

previously noted, the image archives could be searched for previously acquired images over the 

study areas but only a very few scenes were available in this manner. Ultimately if the images 

became available, they could be purchased and downloaded. Figure 13 presents a graphical 

interpretation of this process for clarity.  

4.4 PALSAR Pre-processing 

Once the images were acquired, a complex system of  pre-processing steps was performed to 

generate geolocated decomposition images, along with shadow and layover masks where 

required in topographically challenging areas.  Figure 14 displays the processing methodology 

that was applied to the PALSAR images. Over the course of this project a wide variety of 

computing systems both Windows and Linux-based were used for processing. The Windows-

based systems included both XP 32 bit and more recently in Windows 7 64 bit systems. The 

Linux system used was Scientific Linux 5.1.4 known as Boron. All of the software packages used 

for this project were compatible with both the Windows and Linux systems unless otherwise 

noted. 

Both PALSAR and Radarsat-2 radar data were delivered in a compressed format that required 

extraction before they could be used.  ESA’s POLSARPRO was used for the POLSAR images while 

the Radarsat-2 Toolbox was used for the Radarsat-2 images. This extraction process could take 

anywhere from 5 to 30 minutes depending on the system being used.  
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 Once extracted the data was converted to the four by four covariance matrix usin Equation 37 

for further processing using a modified version of a custom script developed by the Advanced 

Forest Technologies (AFT) group at the Pacific Forestry Centre (PFC) of the Canadian Forest 

Service (CFS) based on the direction of Dr. Shane Cloude and Dr. David Goodenough.  Appendix 

B presents a basic version of this script. This script performed three main functions;  

1) Estimated noise and the coherence ( and corrected the data based on this estimate as 

discussed in Section 3.4.7, 

2) Calculated and corrected for the Faraday rotation as described in Section 3.4.1, and  

3) Performed a terrain induced polarization angle shift correction as discussed in Section 

3.4.2.  

This process could take anywhere from 30 minutes to 2 hours per image depending on the 

computer system being used. 

Once all of the corrections had been applied it was then possible to perform speckle filtering on 

the single-look data.  An enhanced Lee speckle filter (Section 3.4.6) was applied to the images 

based on a seven by seven and three by three moving window pair.  The enhanced Lee filter was 

selected due to its ability to preserve the edges within the data. This process required anywhere 

from 15 minutes to over an hour per image depending on the system being used.  The filtering 

for PALSAR images was performed using ESA’s POLSARPRO software The Radarsat-2 data was 

processed with the Radarsat Toolbox software package using a Windows based system since this 

software was specifically optimized for Radarsat-2 data.
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Figure 13 - PALSAR Processing Chain used for this project. Noise coherency and correction of Faraday rotation and shadow and layover masks. 
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Once the filtering was complete, the previously discussed polarimetric decompositions could be 

performed. The PALSAR images were decomposed using the POLSARPRO software whereas the 

Radarsat-2 images were processed with the Radarsat Toolbox in a Windows-based system.  It 

should be noted that the Radarsat Toolbox only offered a limited set of decomposition 

parameters in comparison to the POLSARPRO software package.   

The final step in the pre-processing involved generating geolocated, orthorectified 

decomposition images as well as shadow and layover masks so that a random sample of points 

within known fire events could be obtained. The Windows-based ASF MapReady software 

package was used for PALSAR images while the Radarsat Toolbox was used for the Radarsat-2 

mages. The process required a DEM as an input. In the case of the Radarsat Toolbox these 

DEM’s were automatically downloaded.  For the MapReady process these DEM’s needed to be 

downloaded, mosaicked together, and transformed to a UTM projection and a WGS84 datum 

with square pixels for the process to run correctly. The windows based PCI Geomatics software 

package was used for the mosaicking and reprojection for the DEM preparation. 

Multiple python scripts were developed to automate and semi-automate the processing 

wherever possible using native system calls to the built in functions in POLSARPRO and the ASF 

MapReady radar software processing tools.  

4.5 Sample Selection 

In order to identify the best parameters for the discrimination of dated historical wildfire events 

it was crucial to select stable points within known fire events with a sufficient buffer so as to 

accommodate the ensemble averaging that is performed during the speckle filtering/ multi-look 

step of pre-processing stage for the radar images.  The sample selection process was further  
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Figure 14 - Sample Point Selection



63 

complicated due to the dynamic nature of wildfire events. The level of burn severity within an 

individual event can vary widely within a few 100 m due to factors such as terrain, fuel load, 

moisture levels and micro-climate.  

Sample points were selected based on a demonstration of high burn severity by using a 

combination of optical data from the CFS Landsat BAP dataset and yearly dNBR indexes. The CFS 

National Fire Database and Alberta the fire polygons were employed to guide the sample point 

selection, for wildfire events prior to the launch of Landsat-4 in 1984 when no optical data was 

available. Due to the nature of the selection process not all of the available PALSAR images 

provided an acceptable set of sample points and were excluded from further analysis. 

Appendix C and D present ENVI/IDL code that was used to generate NBR, and dNBR indices from 

optical BAP data that was used to assist in the sample point selection process. Figure 14 

presents the process workflow employed for the sample selection phase of the project. 

4.6 Analysis, Classification, and Modeling Methodology 

Once a set of sample points was selected for analysis, a custom script extracted the 

decomposition values for a PALSAR scene from all of the decomposition products produced in 

the preprocessing stage. These samples were then analyzed using several different software 

packages include Statistica, Microsoft Excel and R to identify those decomposition parameters 

with the highest correlation with respect to the year of the wildfire event.  All of these processes 

were performed with a Windows-based environment. The justification for using the different 

software packages was because each one provided unique results and confidence matrix 

providing a more complete picture for this phase of the analysis. Initial analysis has focused on 

identifying historical fire scars within various PALSAR images and extracting the average values 
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of various decomposition parameters from these wildfire events. These values were then 

analyzed using linear regression with respect to the year in which the wildfire event occurred. 

The challenge has been to invert these correlations to obtain an estimated date of ignition for 

 

Figure 15 - Geolocated PALSAR Alpha, Entropy, Alpha HSV image acquired on May 15, 2009.   
The image has been generated using a Hue, Saturation, Value colour mapping respectively to 
Entropy, Alpha(1) and Lambda 2 plus 3 decomposition parameters of the Cloude-Pottier 
Entropy –Alpha decomposition. Sample points used for analysis are denoted in red.  Alberta 
fire polygons are overlaid on the image. 

 

these fire events. This problem is created by the variability within an individual fire event and is 

probably due to the range of severity occurring within the forested environment by the dynamic 
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processes of the wildfire event. The goal was to identify a unique independent set of parameters 

that can both detect and provide a reasonable estimate of the age of a wildfire event.  

 

 

The Figure 16 - Analysis Phase Process Steps  

The most significant decomposition parameters were identified with respect to the wildfire age, 

from the linear regression analysis. These significant decomposition parameters were then used 

as input channels for both a parametric Maximum Likelihood Classification (MLC) using PCI and a 

non-parametric LOGIT classifiers written in Fortran which could be run within PCI’s EASI scripting 

environment.   
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Figure 17 - Classification Process Flow to Create Fire Scar Map 
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5 Methodology and Analysis Results 

Once the radars scenes were processed, the first step was to select the optimal datasets for 

further analysis, which will be the focus of the beginning of this chapter.  Next, several different 

experiments were performed to address issues such as correlation to observed burn severity, 

and the importance of seasonality image of acquisition.  The first phase of analysis focused 

primarily on the L-Band PALSAR data decompositions with respect the date of historic wildfire 

within individual images. Finally the potential of Canada’s C-Band Radarsat-2 full polarimetric 

fine view acquired data will be tested using 6 temporal images of the 2002 Keg River fire. Since 

each image is unique with respect to the targets available and hence the exact method of 

interrogation that can occur, it was decided for clarity to co-locate the methodology and results 

together for each image experiment.  It is the author’s hope that this presentation approach will 

be easier to for the reader to assimilate. 

5.1 PALSAR Scene Acquisition 

The following PALSAR scenes were acquired in the study area to be used for analysis as 

displayed in Table 7. These images were selected based on their location with respect to the 

Chinchaga fire event and more recent fires to provide a dynamic range of fire events for 

sampling.  Figure 12 displays the footprint of the 18 PALSAR images that are listed in table five. 
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Table 7 - PALSAR Image Summary 

ID Scene Id Incidenc
e Angle 

Date of 
Acquisition 

Scene 
Centre 
Latitud
e 

Scene 
Centre 
Longitud
e 

Mode 

1 ALPSRP06260119
0 21.5 Mar 

29,2007 59.376 -112.555 Quad-pol 

2 ALPSRP14750114
0 23.1 Oct 

30,2008 56.982 -120.779 Quad-pol 

3 ALPSRP16763114
0 21.5 Mar 

18,2009 56.937 -121.132 Quad-pol 

4 ALPSRP16792115
0 21.5 Mar 

20,2009 57.424 -117.051 Quad-pol 

5 ALPSRP16865115
0 21.5 Mar 

25,2009 57.423 -118.665 Quad-pol 

6 ALPSRP16938114
0 21.5 Mar 

30,2009 56.937 -120.055 Quad-pol 

7 ALPSRP17040115
0 21.5 Apr 

06,2009 57.427 -117.59 Quad-pol 

8 ALPSRP17113121
0 21.5 Apr 

11,2009 60.343 -120.568 Quad-pol 

9 ALPSRP17113122
0 21.5 Apr 

11,2009 60.828 -120.807 Quad-pol 

10 ALPSRP17171114
0 21.5 April 15, 

2009 56.941 -110.392 Quad-pol 

11 ALPSRP17492118
0 23.1 May 

07,2009 58.934 -113.016 Quad-pol 

12 ALPSRP17536115
0 23.1 May 

10,2009 57.472 -118.278 Quad-pol 

13 ALPSRP17609116
0 23.1 May 

15,2009 57.961 -120.086 Quad-pol 

14 ALPSRP17609114
0 23.1 May 

15,2009 56.985 -119.678 Quad-pol 

15 ALPSRP17726118
0 23.1 May 

23,2009 58.935 -128.052 Quad-pol 

16 ALPSRP17915118
0 23.1 Jun 

05,2009 58.935 -112.484 Quad-pol 

17 ALPSRP17930114
0 23.1 Jun 

06,2009 56.983 -121.839 Quad-pol 

18 ALPSRP17959115
0 23.1 Jun 

08,2009 57.473 -117.746 Quad-pol 
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Figure 18 - PALSAR study images – The numbers complement the ID values from Table 7. The 
closest weather stations to the acquired scenes are also noted in this figure. 

5.1.1 Weather conditions for PALSAR Scene Acquisitions 

While radar systems can operate in all weather conditions, the radar signal can be significantly 

affected by rain, snow and soil moisture.  Weather data from the closest Environment Canada 

weather stations was acquired to assist in the selection of the most viable images for further 

investigation.  A complete table of the weather conditions on the date of acquisition for the 

PALSAR images can be found in Appendix E. To remove any doubt about the existence of snow 

and high soil moisture (due to melting snow) any scene acquired when the mean temperature 

that was below five degrees Celsius was removed from consideration. This included all the images 
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acquired in the months of March, April, and October even though some of the early analysis 

results indicated strong correlations.  The May 7th image was removed from consideration due to 

rainfall recorded on the day of acquisition.  Soil moisture was more difficult to determine due to 

no direct measurements but it was noted that no significant rainfall was recorded at the nearest 

weather station on both the day or in the week prior to acquisition for all of the remaining 

images.   

  

Figure 19 - PALSAR study images – The numbers compliment the ID values from Table 4. The 
closest weather stations to the acquired scenes are also noted in this figure. 
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5.1.2 Terrestrial Ecoregions and Ecozones for PALSAR Scene 
Acquisitions 

The PALSAR images all located within the boreal forest in three distinct ecozones that vary in both 

climate and tree species represented.  The vast majority of the PALSAR images are located in the 

Boreal Planes Ecozone.  This ecozone averages 400 mm of precipitation and mean daily July air 

temperatures of between 12 and 17 degrees Celsius [83].  This region is dominated by the conifer 

species, white and black spruce, jack pine and tamarack.  Broadleaf trees such as white birch, 

trembling aspen and balsam poplar are also found in this area [83].  The two PALSAR images of 

 

Figure 20 - Three main Ecozones within the study area.  The Ecozones are denoted by the red 
borders. 
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the Sandy Lake fire in the Yukon Territory are located in the Taiga Plains Ecozone.  The climate of 

this area is semiarid and cold with precipitation ranging from 400 mm in the south to 200 mm in 

the north and average July air temperature between 10 and 15° C [83].  The mixed wood forest on 

the southern range of this ecozone includes white and black spruce, tamarack, white birch, 

trembling aspen, balsam poplar and lodgepole pine.  The PALSAR image over the Blue Sheep 

Creek fire is located in the Boreal Cordillera ecozone.  This mountainous region averages 600 mm 

of precipitation and average July air temperatures between 13 and 18° C.  Sub- alpine tree species 

include lodgepole pine, alpine fir, and Engelmann spruce [83].  Figure 9 presents the study area 

within the context of the Ecozones represented. 

5.2 Analysis  

The complete set of PALSAR images was visually compared with the Alberta and NFDB fire history 

data sets. Four PALSAR images were selected based on the previously discussed weather 

considerations, their co-location within the same ecozone (the Boreal Plains) to provide the 

broadest possible age range of wildfire events.  These four PALSAR images were acquired on May 

15th (2 – North and South), June 6th, and June 8th, and shall henceforth be referred to by their 

date of acquisition. 

5.2.1 Observed Composite Burn Index and PALSAR Decomposition 
Parameters 

One early area of investigation focused on the relationship between the Polarimetric 

decomposition parameters of a PALSAR scene and the actual ground observations of burn severity 

that were quantified using the US Forest Services Composite Burn Index or CBI, which estimates 

the level of burn severity experienced throughout the five levels of strata within the forest.   The 
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author was fortunate to obtain composite burn index field data collected by Parks Canada at the 

site of the 2005 Peace Point and 2007 Boyer Rapids wildfire events in Wood Buffalo National Park.  

The CBI data collected was stratified into five distinct categories as previously discussed in Section 

2.5. While Wood Buffalo National Park was not within the main Chinchaga study area, it was 

within the same Ecozone ( the Boreal Plains) and equal latitude.   The Composite Burn Index varies 

on a scale from 0 to 3 where a maximum value of 3 indicates highest level of burn severity.  Each 

of these classes was then assigned a CBI value based on the severity of damage to this class.  

These five values were then used to generate an overall CBI value for each plot.  The overall CBI 

values were averaged equally between the five strata . A second approach, calculated a weighted 

CBI using the observed proportion that each stratified class contributes to the overall composition 

of the forest within each plot. Further CBI values were calculated separately for over-story and 

the under-story.  

Thus there were a total of nine distinct CBI values that were available be compared to the radar 

decomposition parameters. Figure 24 presents an Alpha Entropy Lambda Hue Saturation Value 

decomposition image of the PALSAR June 5, 2009 acquisition over the Boyer and Peace point 

wildfires with the field sampling plots where CBI data was available. In total, between the two 

wildfire events there were 98 viable plots with CBI data available for analysis.   
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Figure 21 - Hue Saturation Value (HSV) image of  Alpha, Entropy, Lambda2&3 (AHL) 
decomposition image of PALSAR June, 5, 2009 over Wood Buffalo National Park with sample 
plots from field measurements with accompanying images 

The nine CBI values were compared to the decomposition parameters by calculating the Pearson 

correlation coefficient for all the decomposition parameters and the results are presented in 

Appendix F. These results suggest that there was a correlation between wild fire effects in the 

upper strata of the forest (intermediate and large trees) and their related CBI values. This 

relationship between radar decomposition parameters appears to be consistently strongest with 

the dominant trees at the forest stand level.  Relationships between the CBI values and radar 

decomposition parameters such as the second and third eigenvalues, probabilities and their 

subsequent derived values such as RVI, SERD, Pedestal, and polarization fraction all exhibit high R2 
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values. Similarly the various Entropy values, Alpha and Anisotropy also appear to be relatively 

sensitive to the severity of a given wild fire event.  

It should be noted that CBI is a human interpreted value based on observation and is therefore 

subject to variances based on individual biases. Thus CBI values may not be as stable between 

sites, especially if different survey teams recorded the measurements, but the results from this 

analysis were encouraging.  

Overall, this area of analysis demonstrated that radar decomposition parameters appeared to be 

moderately sensitive to burn severity within single fire events which suggests that some 

consideration should be made for this fact during both the classification and modelling phases of 

this work. Further since it has been demonstrated that CBI and dNBR have a strong correlation 

[84], it follows that dNBR data calculated from Landsat data could be used to identify areas of 

high burn severity for sample points to be used for the Polarimetric decomposition analyses. 

5.2.2 Temporal Stability between Acquisition Dates 

Another early question to be addressed the stability of the decomposition parameters with 

respect to the seasonality of an image’s acquisition. This information could indicate the 

parameters that are the most temporally stable for dating historic wildfire events. The PALSAR 

images acquired on April 6, 2009 and June 8, 2009 overlapped and provided an opportunity to 

investigate this question of temporal stability between early and late spring images.  While the 

look angle was different by 1.6 degrees between the two images, it was not considered significant 

enough to invalidate this analysis. Three different land cover types (2002 fire scar, forest, and 

clearcut) were equally sampled and statistics and histograms for Alpha, Entropy, RVI and 

Luneburg Anisotropy were generated. The results of this analysis can be found in Appendix G. 
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Entropy, RVI and Luneburg Anisotropy all increased in the June image by approximately 10% as 

did the standard deviation of these parameters. Alpha also increased slightly by 3% in the later 

June image.  This suggests that seasonality of an image can affect the signal response of a 

Polarimetric radar acquisition, it is not known if the stability of calibration within the instrument 

between the two dates might be responsible for some of the observed differences.  One final note 

was that the overall histograms of the overlapping area of the April image displayed a bimodal 

distribution whereas the June image did not.  While not conclusive this bimodal distribution could 

be due to snow accumulations present within the image. 

5.2.3 Entropy/Alpha and Entropy/Anisotropy graphs of selected Forest 
types in PALSAR Quad-pol Image June 6, 2009  

Two of the more useful tools for visualizing polarimetric data are the entropy/alpha and 

entropy/anisotropy diagrams.  These diagrams can provide insight into the separability of classes 

with various classification techniques.  The PALSAR image on June 6, 2009 on the western end of 

the Chinchaga wildfire event in northeastern BC yielded an unexpected result with a previously 

unknown fire event in British Columbia.  A very large wildfire event G80381 occurred 3 years 

earlier and was easily distinguished by its radar signature and the subsequent decompositions. 

This image provided distinct sample areas that represented four distinct boreal forest 

successional stages. They were  

1) Mature forest – not known to have burned since at least 1940, 

2) Intermediate forest burned in Chinchaga fire in 1952, 

3) Immature forest harvested in 1991 ( observed from Landsat BAP images), and 

4) Recent fire scar from 2006 event. 

Figure 16 displays a 2007 Landsat BAP image on the left with an Entropy Alpha Lambda 

decomposition on the right. In the same figure, the bottom panels present both Entropy-
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Anisotropy and Entropy-Alpha graphs of the four selected areas of interest. The four sample 

regions are all clearly distinguishable within these graphing planes. Both Entropy and the Alpha 

values steadily increase with the age of the forest due to an increase in volume scattering, 

although this is less discernable between the two older classes of forest. The Anisotropy was 

observed to be changing slightly across all four samples with the values being inversely 

proportional to the age of the forest.  These diagrams suggest that it may be possible to separate 

these four successional stages using various classification techniques. 

 

Figure 22 - Landsat optical image immediately after 2006 BC Wildfire G80381.  Entropy-
Anisotropy, and Entropy-Alpha diagrams of 2006 BC Wildfire G80381 and surrounding forested 
and harvested areas. The scale for H and A is zero to one and zero to ninety degrees for alpha. 
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5.2.2 PALSAR Quad-pol Image March 25, 2009  

While not included in the final overall analysis due to weather considerations as noted previously, 

the results from the analysis for the March 25 image are included here to demonstrate the issues 

with the ability of polarimetric radar to accurately detect fire scars in early season.   The full 

polarimetric PALSAR image acquired on March 25, 2009 provided a wide array of boreal wildfire 

events to sample. There were wildfire events from  1952, 1969, 1980, 1994, and 1995. A total of 

fifty sample areas within these fire events were randomly selected across the image and values 

were then extracted for all 60 different radar decomposition parameters. These parameters were 

analyzed using linear regression to identify the most sensitive with respect to the age of the 

wildfire events. 

Table 8 - Results of Linear Analysis of decomposition Parameters for March 25, 2009 PALSAR 
quad-pol image 

Parameter R² 
P2 0.47 
Alpha 0.48 
Anisotropy12 0.46 
(1- H) (1-A) 0.45 
Luneburg  Anisotropy 0.44 
Alpha1 0.50 
P1 0.42 
Asymmetry 0.47 
Alpha2 0.48 
Entropy 0.39 
Pedestal 0.38 
SERD 0.37 
P3 0.35 
RVI 0.35 
Polarisation Fraction 0.34 

 

The Table 8 presents the results of this regression analysis for all the parameters with a R2 value 

greater than 0.3. The results of the linear regression indicate that there is a weak  
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Figure 23 - HSV of Alpha, Entropy and Lambda of PALSAR image for March 25, 2009 
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relationship between some of the decomposition parameters and number of years since a wildfire 

event, even for a radar image acquired in the early spring.   It will be shown in subsequent analysis 

of the late spring PALSAR images demonstrated much higher correlations than this early season 

image.   

5.2.3 PALSAR Quad-pol Image May 15, 2009 – South 

The quad-pol PALSAR image acquired on May 15 on the southern border of the Chinchaga wildfire 

event was another target rich image with fire events in the years 1950, 1958, 1982, 1987, and 

1993. Fifty random sample plots were selected (10 for each event) and statistics were extracted 

with a 10 by 10 pixels window over each sample. A linear regression was performed on these 

samples with 60 decomposition parameters and the best results are presented in Table 6.  

Table 9 - Linear regression results for May 15, 2009 PALSAR image 

 

 

Parameter R2 
Pedestal 0.95 
Luneburg  Anisotropy 0.94 
SERD 0.94 
Anisotropy12 0.93 
RVI 0.92 
P3 0.92 
Polarisation Fraction 0.92 
P1 0.92 
Alpha 0.90 
P3 0.90 
Alpha1 0.89 
Alpha2 0.86 
H(1-A) 0.85 
Entropy 0.82 
Asymmetry 0.78 
L1 0.78 
(1-H)(1-A) 0.77 
(1-H)A 0.76 
L3 0.75 
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The R2 results were very encouraging with 19 parameters scoring 0.75 or better. Entropy and 

Alpha R2 were 0.82 and 0.90 respectively. Once again, the eigenvalues, their probabilities and  

 

 

Figure 24 - HSV- Alpha, Entropy, Lambda PALSAR decomposition image acquired May 15, 2009 
with Sample plots 
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their derived parameters all show a strong linear relationship to the date of wild fire events and 

the subsequent regeneration. 

5.2.4 PALSAR Quad-pol Image May 15, 2009 – North 

A second PALSAR quad-pol image was acquired on the 15th of May intersecting the northern 

boundary of the Chinchaga fie event. The scene also offered a rich target environment with fire 

events occurring in 1950, 1982, 1993, and 2002. Once again, a random set of 10 sample plots was 

created for each event including 20 plots in what was considered unburned for at least 100 years.  

A 10 by 10 window was used to extract mean values of all the 60 decomposition parameters that 

were generated by POLSARPRO and a linear regression analysis was performed. The high scoring 

Radar Cross Section RCS parameter is a measure of the signal intensity and is highly sensitive to 

topographic variation and hence could only be used in images acquired over relatively flat areas.  

It should be noted that this northern image appears to cover an area with less dense vegetation 

than the previously discussed images.  This observation could explain the high correlation of the  

Table 10 - R2 results of linear regression analysis over the Northern May 15, 2009 PALSAR image 

Parameters R2 
Max Radar Cross Section 0.99 
Pedestal height 0.99 
P3 0.98 
Max Radar Cross Section (Phi) 0.97 
Alpha 0.82 
Alpha 3 0.80 
H(1-A) 0.74 
Anisotropy 34 0.63 
Luneburg Anisotropy 0.60 
Beta1 0.59 
RVI 0.54 
Entropy 0.42 
Alpha 1 0.41 
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RCS; if the low density forest allowed surface scattering to be the dominant scattering mechanism 

in this image.  

 

Figure 25 - HSV- Alpha, Entropy, Lambda PALSAR decomposition image acquired May 15, 2009 
with Sample plots 
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5.2.5 PALSAR Quad-pol Image June 8, 2009  

The June 8, 2009 PALSAR image was located directly over the 2002 Keg River Fire and some 

smaller historic wildfire events in 1952, 1990, 1961, 1985, 1998. 

 

Figure 26 - HSV Alpha, Entropy Lambda Image of PALSAR June 8th, 2009 acquistion 
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A series of sample points from all of the various fires were selected based on the previously 

presented methodology. A linear regression was then performed with respect to the various 

decomposition parameters and the date of the wildfire events. The results of this analysis are 

presented in Table 11. 

Table 11 - R2 results from linear regression of Decomposition parameters of PALSAR June 8th 
image. 

Parameter R² 
SERD 0.942 
Pedestal Height 0.936 
Radar Vegetation Index 0.928 
Polarisation Fraction 0.923 
Luneburg Anisotropy 0.921 
Alpha 0.895 
Anisotropy12 0.890 
Entropy 0.839 

 

5.2.6 Summary analysis of the Selected PALSAR images 

The next phase of analysis was to combine all the extracted decomposition parameters from four 

PALSAR images (May 15th north and south, and June 6th and 8th) which combined to sample 13 

different wildfire events over a span of 70 years. 

A linear regression analysis was performed on these combined data. The results of this analysis 

are displayed in Table 12.  The combined analysis for the four images yielded lower results than 

what was observed within the individual images, with the highest R2 values not exceeding 0.35. 

This was likely due to many factors all of which have been previously noted. Radar signals are 

highly attenuated by water, thus differences in soils moisture could play a role in the increased 

variability between scenes. As well differences in calibration of the radar instrument between 

scenes could also be a factor in the lower correlations observed. The variability, the severity of 
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wildfire event, and its effect on the subsequent regeneration could also play a role in this process.  

Regeneration can be highly variable as it is sensitive to a host of environmental factors such as 

topography, wind, moisture availability, and forest age.  Some of these factors can vary within a 

few hundred meters thus making decomposition signature extension for classification from one 

image to another more challenging.  Based on these observations it was decided to focus solely 

on the classification of individual images which will be presented in the following sections. 

Table 12 - Linear Regression R2 results of combined analysis of four PALSAR images examining 
13 different wildfire events over 70 years. 

Parameter R² 
Alpha3 0.34 
Alpha 0.32 

Alpha1 0.32 
SERD 0.32 

Pedestal Height 0.31 
Polarisation 

Fraction 0.31 
RVI 0.30 
P3 0.30 

Delta2 0.30 
Luneburg 

Anisotropy 0.30 
P1 0.29 

Alpha2 0.29 
Anisotropy12 0.28 

Entropy 0.27 
Combination_H1mA 0.27 

P2 0.26 
 

5.3 Parametric and Non-parametric Classifications 

The linear regression results presented previously were used to select the most descriptive 

parameters to be used in various classification approaches.  The main challenge was the high 

correlation between these parameters as displayed. 
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These high correlations in Table 12 were not unexpected since these parameters are all derived 

from the 3 original complex radar signals (HH, VV, HV) and their subsequent Eigen 

decompositions.  Following the example of Cloude et al. (2007) [50] an entropy, alpha, anisotropy 

combination of parameters was selected for input into various classification frameworks. It should 

be noted that Luneburg Anisotropy and RVI were also employed as inputs due to their high 

correlation with a fire event age.   

Table 13 - Correlation between extracted decomposition parameters for 18 fire events over the 
70-year span. 

 
   Alpha 

   
Luneburg 
Anisotropy 

   
Entropy 

  
Pedestal 

  
Polarization   RVI SERD 

     Alpha 1.00 0.95 0.94 0.90 -0.91 0.92 -0.93 

     L. Anisotropy 0.95 1.00 0.96 0.98 -0.97 0.97 -0.93 

     Entropy 0.94 0.96 1.00 0.93 -0.96 0.97 -0.89 

    Pedestal 0.90 0.98 0.93 1.00 -0.99 0.99 -0.92 

    Polarization -0.91 -0.97 -0.96 -0.99 1.00 -1.00 0.92 

    RVI 0.92 0.97 0.97 0.99 -1.00 1.00 -0.92 

    SERD -0.93 -0.93 -0.89 -0.92 0.92 -0.92 1.00 
 

Two supervised classification techniques were investigated: PCI Geomatica’s parametric 

maximum likelihood and a non-parametric LOGIT classifier. The reason for using two different 

types of classifiers was to test and compare their performance with these data sets.  The four late 

spring PALSAR images of June 6, 2009, June 8, 2009 and the two May 15th images were selected 

for classification. This focusing on the late spring images was based on the assumption that the 

selection of a late spring image would minimize the influence of high soil moisture that possibly 

could affect the decomposition parameters and the subsequent classification of the earlier spring 
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images. Four classes were selected for a MLC process: forest, clear-cut, agricultural, water, and 

the most recent fire scar depending on the image.  It should be noted that all four images did not 

necessarily contain exemplars of all the training classes. The PCI Geomatica supervised maximum 

likelihood classification application was used for this process.  The results were positive with best 

overall classification results exceeding 97 % with the MLC classifier.    

5.3.1 June 6, 2009 PALSAR Classification Results  

The PALSAR image acquired on June 6, 2009 provided four main classes to be tested.  First, the 

2006 B.C. wildfire G80381 provided an excellent exemplar of a three year old boreal fire scar.  

Within the scene there was also mature forest, clearcuts, and some agricultural land cover.  There  

Figure 27 - Maximum Likelihood Classification results of June 6, 2009 PALSAR image.  Optical image on 
the left for reference and the classification image on the right 
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were what appeared to be some oil and gas anthropogenic structures within the scene, but they 

were too small to be classified separately, especially when one considered the amount of 

averaging that was applied to the radar image due to multi-looking and speckle filtering.  There 

was also a small amount of shadow and layover present in the scene.  These areas were excluded 

from the classification process.  The best result was achieved using all four input channels (Alpha, 

Entropy, Radar Vegetation Index and Luneburg Anisotropy) in a Maximum Likelihood 

Classification framework.  Overall accuracy of 97% was achieved for the four classes used in this 

image.  The resultant classification image is displayed in Figure 26. 

Visually one can see in the classification image that there was some confusion between fire and 

some errors of commission for fire in topographically challenging and agricultural areas.  The 

confusion matrix for this classification is presented. 

Table 14 - Confusion Matrix Four Maximum Likelihood Classification of June 6 PALSAR image 
using Alpha, Entropy, Radar Vegetation Index and Luneburg Anisotropy 

Code Pixels Forest Clearcut Fire Agriculture 

      Forest 2752 98 2 0 0 
Clearcut 1106 0.18 96.84 2.98 0 
Fire 1814 0 1.16 98.46 0.39 
Agriculture 236 0 1.69 0 98.31 

      Average accuracy = 97.9 % 
 Overall accuracy = 97.94 % 
  

The greatest amount of confusion was between agricultural, clearcut and recent fire land cover 

types.  Other Maximum Likelihood Classifications using a subset of the previously mentioned 

input channels yielded results with an overall accuracy path of between 90 and 95%.  Within this 
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set of classifications, the maximum amount of confusion was primarily between the non-forested 

classes (fire, clearcut, and agriculture) present in the image.  A complete set of all these results 

can be viewed in Appendix H. 

A Non-parametric LOGIT classification was also performed on the same image with the same 

input channels and the same class exemplars as discussed for the MLC phase.  In this series of 

tests the best classification results with an overall accuracy of 92% was achieved using Alpha, 

Entropy and Radar Vegetation Index as input channels.  The main source of error within this  

 

Figure 28 - LOGIT classification of Alpha entropy and the radar vegetation index for the June 6, 
2009 PALSAR image 
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classification occurred as a result of errors of commission whereby clear-cut pixels were classified 

as forest.  Errors of commission also occurred to a lesser extent where agriculture pixels were 

classified as fire.  When the Luneburg Anisotropy was substituted for radar vegetation index as an 

input channel overall accuracy dropped to 78%. 

In the LOGIT test, errors of commission were forest pixels mistakenly classified as clear-cut, but 

the converse result which was observed in the MLC tests discussed prevoiously was completely 

absent.  The other main source of confusion occurred between the clear-cut and the fire class.  

Figure 27 presents the classification image and the associated confusion matrix for the class 

exemplars.   Other LOGIT classifications were performed but the overall accuracies were between 

10 and 15% lower than with the Alpha, Entropy and RVI input channels alone.  The complete 

results of these LOGIT classifications can be viewed in Appendix I. 

5.3.2 June 8, 2009 PALSAR Classification Results  

The June 8 2009 PALSAR image provided five land cover classes for testing.  In this image there 

was a seven year old Keg River fire scar, as well as mature forest, clear cuts, agricultural areas, and 

water.  The same four input channels (Alpha, Entropy, Radar Vegetation Index, and Luneburg 

Anisotropy) were used together and in subsets for both Maximum Likelihood and LOGIT 

classification tests.  Like the June 6 image, the best results were achieved using a maximum 

likelihood classifier using all four channels.  

The maximum likelihood classification results were between 77 and 70% overall accuracy.  The 

confusion matrix for the best MLC result is presented in Figure 28.The greatest source of 

confusion in this classification was errors of commission whereby clear-cut was incorrectly 

assigned to the forest or fire class.  There was also moderate confusion between agricultural and 
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Figure 29 - MLC result for Alpha, Entropy, RVI, and Luneburg Anisotropy for June 8th PALSAR 
Image 

the water class, probably due to similarities in their surface scattering characteristics and 

potentially high moisture contents in the agricultural soils.  The best LOGIT classification with an 

overall accuracy of 73% was using the input channels Alpha, Entropy, and Luneburg Anisotropy. 

Once again the highest source of confusion was with errors of commission within the clear-cut 

class being assigned to forest and confusion with water pixels being assigned to the agricultural 

class.  The complete results for all of the classification tests of the June 8 image can be found in 

Appendix J. 
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Figure 30 - LOGIT result with Alpha, Entropy, Luneburg Anisotropy for June 8 PALSAR image 

5.3.3 May 15, 2009 South PALSAR Classification Results  

The May 15 south PALSAR image offered a wide array of fire events occurring in 1952, 1958, 1982, 

1987, and 1993.  Four land classes were selected for training and classification: fire (1993), mature 

forest, clearcut, and water.  The same four input channels were used in the previous two 

classification tests described.  The best results were achieved with an ML classifier using the input 

channels Alpha, Entropy, and RVI with an overall classification accuracy of 87%.  Figure 30 

presents the best classification image achieved for the May 15 south PALSAR image. 
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Figure 31 - Landsat BAP and MLC result of PALSAR May 15 south Image using Alpha, Entropy, 
and RVI 

For the best MLC result, the only confusion occurred between the forest and fire classes.  This 

could possibly be due to unburned islands accidentally included in the 1993 fire exemplar, or 

vigorous regeneration may have occurred. Neither possibility was definitively confirmed in the 

BAP optical image.  This scene demonstrates some of the challenges of detecting and classifying 

historic wildfire events.  The optical image appears to show very little regeneration in any of the 

fire events including the 70 year old Chinchaga fire.  This is probably due to poor site index values 

(lack of organic matter due to severe ground fires or too much water as evidenced by the high 

percentage of lakes in the northern half of the image) both of which would hinder regeneration.  

It appears that all of these historic fires were classified with the more recent fire events. The 

confusion matrix for the best MLC classification is presented in Table 15.   
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Table 15 - Confusion Matrix for MLC classification using Alpha, Entropy, and RVI for May 15 set 
of PALSAR image 

Code Pixels Forest Clearcut Fire Agriculture Water 

       
Forest 3875 82.04 0 17.26 0 0.7 

Clearcut 1007 0 100 0 0 0 

Fire 2179 11.93 0 88.07 0 0 

Agriculture 0 0 0 0 0 0 

Water 266 0 0 0 0 100 

       
Average accuracy = 92.53 % 

  
Overall accuracy = 86.95 % 

   

The LOGIT classification tests were much lower with overall accuracies averaging approximately 

40%. The complete results for all of the classification tests for the May 15th, 2009 PALSAR image 

can be found in Appendix K.  

5.3.4 May 15, 2009 North PALSAR Classification Results  

The May 15th, 2009 North PASAR scene also offered a rich target environment with fire events 

occurring in 1982, 1993, and 2002.  The same training classes were used as previously except 

there were no agricultural or recent clearcut exemplars available for classification and training.  

The first classification tests class focused on the 2002 wildfire event present in the image. The 

input channels tested were identical to those used in the previous classifications. The results in 

this area were lower than in the previous classification tests for the other PALSAR images.  The 

best result was achieved with a ML classifier with Alpha, Entropy, and Luneburg Anisotropy with 

an overall accuracy of 65%. A MLC test with Alpha, Entropy, and RVI demonstrated an overall 
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accuracy of 62%. In both these 3 channel classifications the main confusion was between the fire 

and forest classes.  Most interesting was the result for the MLC process when all four input 

channels were used; the overall accuracy dropped to 42% with majority of the errors being errors 

of commission with respect to the forest class pixels being misclassified as fire. The LOGIT results 

ranged from an overall accuracy of 19 to 57 percent.   The best LOGIT result – 57% - was with 

Alpha, Entropy, and Luneburg Anisotropy.  Once again the majority of the confusion was between 

the fire and forest classes. These classification results were viewed with suspicion – due to the 

lower values than the other images - and hence several sets of different training classes were 

created and tested but the results remained consistent and stable between classification tests 

with different training exemplars.  The complete results for these tests can be seen in Appendix L.  

A series of classification tests was also performed using 4 unique fire classes for 1952, 1982, 1993, 

and 2002 wildfire events. 

The MLC classifications for these events displayed overall accuracies in the range of 24-27% and 

the LOGIT classifier failed to provide any meaningful results. The results for these tests can be 

found in Appendix M. 

5.3.5 May 15, 2009 North PALSAR Classification Results Using An 
Expanded Set of Input Parameters 

Since the classification results for May 15th north image were disappointing, it was decided to 

explore other parameters with high linear regression R² values. Maximum Radar Cross Section and 

Pedestal Height were selected to be included in this series of classification tests. As previously 

noted  intensity based parameters like RCS are sensitive to topography but this was not an issue in 

the May 15 north image which had relatively low topographic variation.  The training classes were 

also reviewed and it was discovered using the BAP data set that the clearcuts in the image were 
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not as recent as first considered. The clearcut class was replaced with an exposed land class with 

several good exemplars available for training and validating in the northern portion of the image. 

A water training class was also included although there was a very limited amount of exemplars 

available.  It was also decided to solely test with the MLC classifier since the LOGIT results from 

the expanded number of classes failed to  

 
Figure 32 - MLC results for Alpha, Pedestal Height, Polarization Fraction, and RCS Max for 4 
Different Wildfire Events for May 15th North PALSAR image 
 

provide reliable results.  The initial MLC results were excellent with overall accuracies with 2 fire 

classes 2002 and 1993 reaching 97.5% with Alpha, Entropy, RVI, Luneburg Anisotropy, Pedestal 

Height, and RCS max as input channels.  A small amount of confusion ( < 5%) was noted between 

the two fire classes and the exposed land class which was probably due to different regeneration 

rates caused by variances in site index. These results can be viewed in Appendix N.  Next the 

number of fire classes was expanded to three 1982, 1993, and 2002 using these new parameters.  
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The results were again very positive with an overall accuracy of 85% using Alpha, Entropy, RVI, 

Luneburg Anisotropy, Pedestal Height, and RCS.  Once again the main source of confusion (10 to 

35%) was between the various fire classes and to a lesser extent (5%) between the exposed land 

class and the most recent 2002 fire, probably for the same reasons noted with respect to 

regeneration rates.  The figure 31 the best classification results as discussed previously for three 

fire classes.  It should be noted that the 1952 wildfire was excluded from testing due to the small 

area present in the image, and the lack of confidence in the historic fire polygons based on a 

visual assessment using a 1984 BAP image. The complete results can be viewed in Appendix O. 

5.3.6 May 15, 2009 South PALSAR Classification Results Using An 
Expanded Set of Input Parameters 

Following on the positive results of employing an expanded set of input parameter in the May 15th 

northern image it was decided to revisit the May 15th southern image for classification testing, 

since it displayed minimal topographic variation and provided a rich set of potential wildfire 

exemplars of various ages.  After reviewing the linear regression results for the image, it was 

decided to include Polarisation Fraction as well as RCSmax and Pedestal Height along with the 

initial input channels of Alpha, Entropy, RVI, and Luneburg Anisotropy.  Training exemplars 

included Forest, Water, and four wildfire classes for the years 1993, 1987, 1982, and 1958 were 

generated for these tests.  As with the previous northern image, the clearcut exemplar was 

removed from the test classes, since they appeared to be older than previously believed upon 

validation with the BAP data set. The author was not confident in defining any exposed land 

exemplar pixels to replace the clearcut in this image. The MLC results were consistent for all the 

combinations of input channels tested, ranging from 72-78% overall accuracy of the four different 

wildfire events.  The best result was achieved using Alpha, Pedestal Height, Polarization Fraction 

and RCS max.  Figure 33 presents the classification image and the resulting confusion matrix.  
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Figure 33 - MLC results for Alpha, Pedestal Height, Polarization Fraction, and RCS Max for 4 
Different Wildfire Events for May 15th South PALSAR image 

 

Thirty percent of the 1958 wildfire events were classified as forested. The most recent fire, the 26 

year old 1993 event, was classified to 95% overall accuracy with the other 5% erroneously 

committed to the 1987 event that occurred 5 years prior.  This was the main challenge to the 

classifier in this image; three of the four events occurred within a ten year span.  This confusion is 

ultimately tied to the variations in the forest regeneration rates due to site index. This was 

exacerbated by the low regeneration rates observed in this area as previously discussed in Section 

5.3.3. The complete set of results for the May 15th south image, with the expanded set of input 

channels, can be found in Appendix P. 
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5.4 Radarsat-2 C-Band For Wildfire Detection 

The Canadian Satellite Radarsat-2 was launched in 2007 and carries a C-Band Full Polarimetric 

radar instrument. While C-Band is not the best wavelength (6cm) to image the forest, protocol 

dictates that some investigation into the ability to map wildfire scars would be prudent. The 

author was extremely fortunate to have access to a multi-temporal series of Radarsat-2 Fine 

Quad-pol images over the 2002 Keg River Fire during the growing season of 2013. 

5.4.1 Temporal Analysis over the 2006 Keg River Wildfire 

 First the seasonal variability of C-Band Radarsat-2 images over the 2002 Keg River Wildfire event 

is explored. A total of six images were selected and processed according to the previously 

described processing steps using the Radarsat-Toolbox suite of tools. The figure 34 presents a HSV 

transformation Alpha, Entropy and Lambda2+Lambda3 decomposition image of the six images for 

a visual comparison. The colours of these C-Band images are a departure from the previously 

presented L-Band images due to the different scattering properties of the shorter wavelength C-

Band radar signal. Two 100 pixel by 100 pixel sample areas were selected, one within the Keg 

River fire event of 2006 and an adjacent forest stand burned during 1950 Chinchaga fire event.  

The values of alpha, anisotropy and entropy were extracted and averaged for each temporal 

image. The results are presented in the Figure 35.  The values of Sigma naught (σ0), which 

describes the strength of the return radar signal, were also extracted from all six images and the 

results are presented in Table 14. 
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Figure 34 - 2013 Temporal Series of Radarsat-2 images over the 2006 Keg River Fire. All images 
were created as HSV of Alpha, Entropy, Lambda decompositions.  

This temporal series provides an insight into seasonal variability of C-Band radar images in 

forested environments.  Radar signals are highly sensitive to moisture as water is a high 

attenuating factor.  Since σ 0is reported as decibels (dB), the lower the value the higher the 

amplitude of the received backscatter radar signal.  As such, the maximum value can potentially 

be used as a proxy for moisture content in the forest environment. 

 

Figure 35 - Graphs of Temporal variation of Radarsat six images for Anisotropy, Entropy, and 
Alpha for sample area within the Keg River wildfire and nearby Forest 
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Table 16 - σ 0statistics for temporal Radarsat-2 images 

 

 

 

Entropy was relatively stable across the temporal span of the images while both anisotropy and 

alpha were highly variable but were not correlated with the variation in sigma naught.  With both 

Anisotropy and entropy distinct values were observed between the forest post Chinchaga and the 

recent Keg River fire event. This is promising, although the variability within the anisotropy could 

cause confusion within classifiers with C band radar images.   

5.4.2 Parametric Classification of Radarsat-2 for 2002 Keg River 
Wildfire 

The analysis presented in the previous section suggests that the late season September 22, 2013 

image would provide the maximum separability based on the parameters selected between both 

the forest and fires classes. Training exemplars for this image were defined as follows: mature 

forest, water, fire (2002), and agriculture.  The input channels selected for the classification tests 

included Alpha, Entropy, RVI, Luneburg Anisotropy, and Lambda2+3. Based on the previous test 

results, only MLC tests were performed.  The classification accuracies were low for the tests 

involving combinations of Alpha, Entropy, RVI, and Luneburg Anisotropy attempting to correctly 

classify the eleven year old fire scar.  Interestingly the results improved dramatically when the 

Date Max(dB) Min(dB) Mean(dB) 
March 14, 2013 11.1 93.3 78.1 
April 7, 2013 6.0 93.3 77.5 
May 25, 2013 10 93.3 77.3 
June 18, 2013 11.1 93.3 77.7 
August 5, 2013 6.0 93.3 76.6 
September 22, 2113 6.0 93.3 76.6 
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Lambda2+3 channel (created for the HSV visualization image) was included in the classification 

rk.  

Figure 36 - September 22, 2013 RS2 MLC image and confusion Matrix using Alpha, Entropy, 
Luneburg Anisotropy, and Lambda2+3 input channels 

framework. 

Using the input channels of Alpha, Entropy, Luneburg Anisotropy, and Lambda2+3, the overall 

accuracy reached 89%. The main source of confusion was errors of commission of fire to the 

forested class and agriculture to the Fire class.  Figure 34 displays the best MLC results on the 

previous page.  A complete set of the classification test for this Radarsat-2 image can be found in 

Appendix Q.  For completeness MLC tests were performed on the June 18, 2013 Radarsat-2 image 

and the overall accuracy results were lower by 3-15% using the same input channels.  The results 

are presented in Table 17. This result demonstrates that Radarsat-2 can be used to detect recent 

boreal fire scars with a reasonable accuracy depending on the season of acquisition. 
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Table 17 - Comparison of Classification Results Between September 22 and June 18  2013 
Radatsat-2 images 

Inputs September 22, 2013 June 18, 2013 
Alpha, 

Entropy,  
L. 

Anisotropy 
RVI, 

Lambda2+3 

Overall accuracy = 
75.27 % 

Overall accuracy = 
72.01 % 

Alpha, 
Entropy,  

RVI, 
Lambda2+3 

Overall accuracy = 
88.58 % 

Overall accuracy = 
71.75 % 

Alpha, 
Entropy,  

Lambda2+3 

Overall accuracy = 
87.92 % 

Overall accuracy = 
71.57 % 
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5 Discussion and Conclusion 

The central questions of this thesis are: 

5) How can we extract historical fire scar information from polarimetric SAR?   

6) Can polarimetric SAR be used to detect and date historical wildfire events in the boreal forest 

of western North America?  

7) Can polarimetric SAR be used to assess the severity of past wildfire events on the boreal 

landscape with particular attention to the area burned? 

  Linear regression analysis comparing the Polarimetric decomposition parameters of PALSAR late 

spring images to the date of historic wildfire events produced R² values of up to 0.95 for various 

parameters. The eigenvalue derived parameters such as Radar Vegetation Index, Polarisation 

Fraction, Pedestal Height, Single Bounce eigenvalue Relative Difference, Radar Vegetation Index, 

Entropy, and Luneburg Anisotropy consistently demonstrated the highest R² values with respect 

to the date of a historic wildfire event for all four of the late spring PALSAR images available.  The 

Alpha parameter also performed well with respect to its correlation with the date of historic 

wildfire events.  Several tests were undertaken to classify a combination of decomposition 

channels of various L-Band PALSAR images using both a Gaussian Maximum Likelihood 

Classification and non-parametric LOGIT classification algorithms.  The Maximum Likelihood 

Classifier out-performed the non-parametric classifier in all tests. This result suggests that even 

though the original distribution of these decomposition parameters was Poisson.  After multiple 

averaging windows are applied , the data can be approximated by a Gaussian distribution allowing 

a parametric classifier to perform well.   
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A high degree of accuracy (< 90%) was achieved when classifying a single recent fire event with 

the input channels Alpha, Entropy, RVI, and Luneburg Anisotropy for both the parametric MLC 

and non- parametric LOGIT classifiers for the four late spring PALSAR images. The MLC 

classifications were consistently higher than those of the LOGIT classifier.   

It was also found that successful classifications of multiple historic fire events from different years 

within single images were possible.  Two PALSAR images acquired on May 15 provided an 

excellent set of historic fire exemplars that could be used for testing.  The northern image 

contained historic fire events from 7, 16, and 27 years prior to the acquisition date of the PALSAR 

image.  In this image classification, results exceeded 85% accuracy in dating these three events.  

The southern PALSAR image contained four historic fire events from 51, 27, 22, and 16 years prior 

to the acquisition date.  In this case overall accuracies exceeded 78% with the data using a 

maximum likelihood classifier.  The key to the higher accuracy with the multiple wildfire events 

was in part due to the addition to the input channels of Pedestal Height, Polarisation Fraction and 

Radar Cross Section as well as the previously discussed channels of Alpha, Entropy, RVI, and 

Luneburg Anisotropy.   

The final phase of the project investigated the ability of Radarsat-2 C-Band data to detect fire 

scars.  Six Radarsat-2 fine quad-pol images were acquired over the 2002 Keg River fire during the 

growing season of 2013.  Initial analysis suggested that the September 22nd image would provide 

the highest degree of separability for the classifier.  Classification results were extremely positive 

with overall accuracies exceeding 88% for classifying this single eleven year old historic fire event.  

In this case the inclusion of a channel that was the sum of the second and third eigenvalues 

dramatically improved the quality of the result. This is due to the second and third eigenvalues 

being related to volumetric and anisotropic scattering. 
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This research provided several valuable insights into the relationship between the radar full 

polarimetric L band PALSAR and C-band Radarsat-2 decomposition parameters and the effects of 

fire in the boreal forest.  Seasonality plays a crucial role in the ability of full polarimetric radar to 

detect and classify historic wildfire scars.  This was demonstrated by the results of linear 

regression analysis of various decomposition parameters and the dates of wildfire events on 

several PALSAR images. The R² values (< 0.5) obtained for the early spring March 25, 2009 image 

were significantly lower when compared to the high R² values (> 0.9) of all four of the late spring 

PALSAR images.  The six Radarsat-2 images acquired over the growing season of 2013 supported 

this observation with the highest degree of separability observed to be with the late fall image. 

This work also demonstrated the utility of the Eigen decomposition theory and the various 

parameters derived from the eigenvalues of this decomposition.  All of these parameters 

demonstrated a high degree of correlation to the age of a historic wildfire event with polarimetric 

radar image parameters. While these results are encouraging, challenges remain. Radar signals 

are not temporally invariant. Variations in calibration of the instrument and environmental 

variations due to moisture levels and seasonal phenological changes can all affect the quality of 

the radar image and ultimately the decomposition parameters that are generated This temporal 

instability as was demonstrated in with PALSAR L-Band data in Sections 5.2.2.  and with Radarsat-

2 C-Band data in Section 5.4.1. This issue makes it difficult to extend the results from one image to 

another (signature extension). 

Within the context of wildfire classifications, the major source of confusion between the different 

wildfire class exemplars was suspected to be due to differences in the regeneration rates within 

these wildfire events.  The boreal forest is a complex biological system that can be influenced by 

many factors. Geographic factors such as site index, topography and climate such as moisture 
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levels and wind can produce wide variations in how wildfires spread across the landscape and the 

level of burn severity that they inflict on the forest environment. These same factors affect the 

structural composition of the forest and its ability to regenerate after a wildfire has occurred.  The 

seasonality can also affect both the type and severity of a wildfire event due to phenological and 

moisture variations. The wildfire history of individual sites also affects wildfire behavior since the 

age of the stand and the fuel load all are directly dependent on the recent fire history of an area. 

The results of this project demonstrated that boreal wildfire scars can be identified and classified 

to a high level of accuracy within individual scenes.  The more complex challenge of modeling 

forest age across multiple scenes proved more difficult.  Many questions remain on how to 

improve the level of accuracy that can be achieved by mitigating the variations in the radar 

signatures due to differences in moisture levels, regeneration rates and burn severity.  These 

could be used in conjunction with other remote sensing techniques for fires to improve estimates 

of burn severity and subsequent regeneration rates, both of which could prove useful to climate 

and carbon modeling researchers in the future. 
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7 Future Work  

There are several avenues of investigation that could provide insights into the utility of full 

polarimetric radar remote sensing for historical mapping of boreal wildfires.  One area would be 

to investigate further the effect of moisture levels within the environment and how these affect 

the returned radar signals.  Passive microwave data from sensors such as AVHRR’s snow water 

equivalents (SWE) data or the new SMAP (soil moisture active passive) satellite could provide 

additional information on soil moisture that could be used to calibrate the radar data and its 

decomposition parameters.  Study areas could also be located closer to existing weather stations 

that could provide more precise data coincident with acquisition dates and times. 

The ongoing Landsat BAP project could also provide a more detailed analysis of the immediate 

effects of fire on the landscape and a more accurate mapping of burn severity variation within a 

single fire event using NBR and dNBR indices.  This data could be used as an additional source of 

information for modelling which could potentially improve the results.  In addition an 

investigation of the correlation between the observed CBI values, the optical dNBR indexes and 

the various radar decomposition parameters could provide insights into fire scar mapping and 

regeneration rates within the boreal forest.  

Compact polarimetry radar which transmits a single circular polarization and receives two linear 

orthogonal polarizations is a very active area of research [85, 86].  Canada’s future Radarsat 

Constellation Mission (RCM) of three C-Band compact polarimetry satellites to be launched in 

2018 will be a new important source of terrestrial radar data for the boreal forest. Recent studies 

by Chen, Goodenough, and Cloude[85, 86] using simulated compact polarimetry have 

demonstrated that this type of radar data can be used to map land cover and to detect and map 

boreal fires scars . 
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Other valuable areas of investigation include quantifying the variance of radar signals between all 

of the various boreal ecozones across multiple seasons.   
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Appendix A. CBI Fire Survey Worksheet 
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Appendix B. Radar_correction.m 

This Matlab script, provided by Ashlin Richardson, performs 3 phases of the preprocessing for 
the Radar data.  
It calculates and corrects for coherency noise. (Section 3.4.7) 
It calculates and corrects for Faraday rotation (Section 3.4.1) 
It performs a terrain orientation radiometric correction (Section 3.4.2) 
. 
 
function generateT3 (input_directory) 
output_directory = strcat(char(input_directory), 'Out/'); 
config_file = [char(input_directory),'config.txt']; 
config_file 
config = textread(config_file, '%s', 'delimiter', '\n', 'whitespace', ' \b\t'); 
 
NRow = str2num(char(config(2))); 
NCol = str2num(char(config(5))); 
%NRow 
%NCol 
disp 'Opening C4 files ...' 
input_directory=strcat(input_directory,'C4/'); 
 
fC11=fopen(strcat(input_directory,'C11.bin'),'rb'); 
 
fC12_r=fopen(strcat(input_directory,'C12_real.bin'),'rb'); 
fC12_i=fopen(strcat(input_directory,'C12_imag.bin'),'rb'); 
 
fC13_r=fopen(strcat(input_directory,'C13_real.bin'),'rb'); 
fC13_i=fopen(strcat(input_directory,'C13_imag.bin'),'rb'); 
 
fC14_r=fopen(strcat(input_directory,'C14_real.bin'),'rb'); 
fC14_i=fopen(strcat(input_directory,'C14_imag.bin'),'rb'); 
 
fC22=fopen(strcat(input_directory,'C22.bin'),'rb'); 
 
fC23_r=fopen(strcat(input_directory,'C23_real.bin'),'rb'); 
fC23_i=fopen(strcat(input_directory,'C23_imag.bin'),'rb'); 
 
fC24_r=fopen(strcat(input_directory,'C24_real.bin'),'rb'); 
fC24_i=fopen(strcat(input_directory,'C24_imag.bin'),'rb'); 
 
fC33=fopen(strcat(input_directory,'C33.bin'),'rb'); 
 
fC34_r=fopen(strcat(input_directory,'C34_real.bin'),'rb'); 
fC34_i=fopen(strcat(input_directory,'C34_imag.bin'),'rb'); 
 
fC44=fopen(strcat(input_directory,'C44.bin'),'rb'); 



121 

 
 
oT11=fopen(strcat(output_directory,'T11.bin'),'wb'); 
 
oT12_r=fopen(strcat(output_directory,'T12_real.bin'),'wb'); 
oT12_i=fopen(strcat(output_directory,'T12_imag.bin'),'wb'); 
 
oT13_r=fopen(strcat(output_directory,'T13_real.bin'),'wb'); 
oT13_i=fopen(strcat(output_directory,'T13_imag.bin'),'wb'); 
 
oT22=fopen(strcat(output_directory,'T22.bin'),'wb'); 
 
oT23_r=fopen(strcat(output_directory,'T23_real.bin'),'wb'); 
oT23_i=fopen(strcat(output_directory,'T23_imag.bin'),'wb'); 
 
oT33=fopen(strcat(output_directory,'T33.bin'),'wb'); 
%output_directory 
ogamx = fopen(strcat(output_directory,'gamx.bin'),'wb'); 
 
disp 'Reading C4 files ...' 
C11=fread(fC11, NRow*NCol, 'single'); 
 
C12r=fread(fC12_r, NRow*NCol, 'single'); 
C12i=fread(fC12_i, NRow*NCol, 'single'); 
C12 = C12r +i*C12i; 
 
C13r=fread(fC13_r, NRow*NCol, 'single'); 
C13i=fread(fC13_i, NRow*NCol, 'single'); 
C13 = C13r + i* C13i; 
 
C14r=fread(fC14_r, NRow*NCol, 'single'); 
C14i=fread(fC14_i, NRow*NCol, 'single'); 
C14 = C14r + i*C14i; 
 
C22=fread(fC22, NRow*NCol, 'single'); 
 
C23r=fread(fC23_r, NRow*NCol, 'single'); 
C23i=fread(fC23_i, NRow*NCol, 'single'); 
C23 = C23r + i*C23i; 
 
C24r=fread(fC24_r, NRow*NCol, 'single'); 
C24i=fread(fC24_i, NRow*NCol, 'single'); 
C24 = C24r + i*C24i; 
 
C33=fread(fC33, NRow*NCol, 'single'); 
 
C34r=fread(fC34_r, NRow*NCol, 'single'); 
C34i=fread(fC34_i, NRow*NCol, 'single'); 
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C34 = C34r + i*C34i; 
 
C44=fread(fC44, NRow*NCol, 'single'); 
 
%compute gamx 
disp 'Computing the complex coherency and plotting it ...' 
gamx = C23./sqrt(C22.*C33); 
plot(gamx,'o','MarkerSize',2); 
hold on; 
t = 0:pi/100:2*pi; 
plot(exp(i*t),'r'); 
axis equal 
hold off; 
gamx = abs(gamx); 
%convert to T4 
disp 'Converting C4 to T4 ...' 
T = cell(4,4); 
T{1,1} = C11 + C14 + conj(C14) + C44; 
T{1,2} = C11 - C14 + conj(C14) - C44; 
T{1,3} = C12 + C13 + conj(C24) + conj(C34); 
T{1,4} = C12 - C13 + conj(C24) - conj(C34); 
T{2,2} = C11 - C14 - conj(C14) + C44; 
T{2,3} = C12 + C13 - conj(C24) - conj(C34); 
T{2,4} = C12 - C13 - conj(C24) + conj(C34); 
T{3,3} = C22 + C23 + conj(C23) + C33; 
T{3,4} = C22 - C33 + conj(C23) - C33; 
T{4,4} = C22 - C33 - conj(C23) + C33; 
disp 'Radiometric Correction of T4 ...' 
 %radiometric correction of T4 
 for k=1:4, 
     for j=1:4, 
         T {k,j} = 0.5*T{k,j}; 
     end 
 end 
 disp 'Estimate Faraday Rotation from T4' 
 mask = gamx > 0.5; 
 faraday=0.25*angle(T{1,1}-T{4,4}+i*2*T{4,4}); 
 faraday = faraday.*mask; 
 disp '  Mean Faraday Rotation: '  
 FR_mean = mean(nonzeros(faraday)) 
 c = cos(-2*FR_mean); 
 s = sin(-2*FR_mean); 
  
 disp 'Correct Faraday rotation in T3' 
 t11f = c*c*T{1,1} - s*c*(T{1,4}+conj(T{1,4})) + s*s*T{4,4}; 
 t12f = c*T{1,2} - s*conj(T{2,4}); 
 t13f = c*T{1,3} - s*conj(T{1,4}); 
 t14f = s*c*(T{1,1} - T{4,4}) + c*c*T{1,4} - s*s*conj(T{1,4}); 
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 t44f = s*s*T{1,1} + s*c*(T{1,4}+conj(T{1,4})) + c*c*T{4,4}; 
 T{1,1} = t11f; 
 T{1,2} = t12f; 
 T{1,3} = t13f; 
 T{1,4} = t14f; 
 T{4,4} = t44f; 
  
 disp 'Correct for SNR in T3 HV channels ... ' 
 %correct for SNR in T3 
 T{3,3} = gamx.*T{3,3}; 
 T{2,3} = sqrt(gamx).*T{2,3}; 
 T{1,3} = sqrt(gamx).*T{1,3}; 
 
 disp 'Correcting for Azimuth Slope/Oriented Volume ...' 
  
 theta = -0.25*atan2(2*real(T{2,3}),T{2,2}-T{3,3}+eps); 
 c = cos(2*theta); 
 s=sin(2*theta); 
 r12 = T{1,2}.*c - T{1,3}.*s; 
 r13 = T{1,2}.*s + T{1,3}.*c; 
 r22 = T{2,2}.*c.*c + T{3,3}.*s.*s -2*real(T{2,3}).*s.*c; 
 r23 = (T{2,2} - T{3,3}).*s.*c + T{2,3}.*c.*c -conj(T{2,3}).*s.*s; 
 r33 = T{2,2}.*s.*s + T{3,3}.*c.*c + 2*real(T{2,3}).*s.*c; 
 
 T{1,2} = r12; 
 T{1,3} = r13; 
 T{2,2} = r22; 
 T{2,3} = r23; 
 T{3,3} = r33; 
 disp 'Check - The average of T23 must be zero: ' 
 mean(real(T{2,3}(:))) 
  
 disp 'Rotation by 45 degrees if T33 > T22 ...' 
 mask = T{3,3} > T{2,2}; 
 theta2 = mask*pi/4; 
 c=cos(2*theta2); 
 s=sin(2*theta2); 
 r12 = T{1,2}.*c - T{1,3}.*s; 
 r13 = T{1,2}.*s + T{1,3}.*c; 
 r22 = T{2,2}.*c.*c + T{3,3}.*s.*s -2*real(T{2,3}).*s.*c; 
 r23 = (T{2,2} - T{3,3}).*s.*c + T{2,3}.*c.*c -conj(T{2,3}).*s.*s; 
 r33 = T{2,2}.*s.*s + T{3,3}.*c.*c + 2*real(T{2,3}).*s.*c; 
 T{1,2} = r12; 
 T{1,3} = r13; 
 T{2,2} = r22; 
 T{2,3} = r23; 
 T{3,3} = r33; 
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 disp 'Writing into files ... ' 
 fwrite(ogamx, real(gamx), 'single'); 
 
 fwrite(oT11, T{1,1},  'single'); 
 fwrite(oT12_r, real(T{1,2}),  'single'); 
 fwrite(oT12_i, imag(T{1,2}),  'single'); 
 fwrite(oT13_r, real(T{1,3}),  'single'); 
 fwrite(oT13_i, imag(T{1,3}),  'single'); 
 
 
 fwrite(oT22, T{2,2},  'single'); 
 fwrite(oT23_r, real(T{2,3}),  'single'); 
 fwrite(oT23_i, imag(T{2,3}),  'single'); 
 
 fwrite(oT33, T{3,3},  'single'); 
 
 disp 'Closing files ...' 
 fclose(fC11); 
 
 fclose(fC12_r); 
 fclose(fC12_i); 
 
 fclose(fC13_r); 
 fclose(fC13_i); 
 
 fclose(fC14_r); 
 fclose(fC14_i); 
 
 fclose(fC22); 
 
 fclose(fC23_r); 
 fclose(fC23_i); 
 
 fclose(fC24_r); 
 fclose(fC24_i); 
 
 fclose(fC33); 
 
 fclose(fC34_r); 
 fclose(fC34_i); 
 
 fclose(fC44); 
 
 
 fclose(oT11); 
 
 fclose(oT12_r); 
 fclose(oT12_i); 
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 fclose(oT13_r); 
 fclose(oT13_i); 
 
 
 fclose(oT22); 
 
 fclose(oT23_r); 
 fclose(oT23_i); 
 
 fclose(oT33); 
 
 fclose(ogamx); 
 disp ‘Process complete. ' 
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Appendix C. do_dnbr_ca.pro   

This code takes a stack of 26 (1984 – 2009) years of Landsat BAP composite optical data and generates 
NBR and dNBR images for 25 years as per Section 2.4 
 
pro do_dnbr_ca   
      compile_opt idl2   
      RT_DIR = 'G:\new_bap\UTM12' 
      PROV = 'AB' 
      DIR_LIST = list(PROV) 
     
      dirHt = hash() 
      BASE_DIR =  FILEPATH('',ROOT_DIR = RT_DIR)  
      TARGET_YEARS = indgen(29)+1984 
      print, TARGET_YEARS 
         
      cd , BASE_DIR 
      srs = file_search('SRef_UTM*CC*.dat', count=count, /test_read) 
      proj_file = 'G:\new_bap\UTM12\SRef_UTM12S_1984_CC_w_13_11.dat' 
      ENVI_OPEN_FILE,proj_file, r_fid=pr_fid, /NO_REALIZE 
      ENVI_FILE_QUERY, pr_fid, ns=prns, nl=prnl, nb=prnb, dims=prdims,  BBL=prbbl  
                        
      srHt = hash() 
      for i= 0, n_elements(srs)-1 do begin 
            indx = strsplit(srs[i],'_') 
            strYr = strmid(srs[i],indx[2],4) 
             
            yr = fix(strYr) 
            print, yr 
            srHt[yr] = srs[i] 
       
      endfor    
       
      past = '' 
      current = '' 
       
      plyr = '' 
      clyr = '' 
       
      cmg='' 
      pmg ='' 
      pns= '' 
      pnl='' 
       
      for i = 0 , n_elements(TARGET_YEARS )-2  do begin 
          yr = TARGET_YEARS[i] 
          print , yr 
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          if i EQ 0 then begin 
              fin = srHt[yr] 
              past = FILEPATH(fin,ROOT_DIR = BASE_DIR) 
               
              ENVI_OPEN_FILE, past, r_fid=p_fid, /NO_REALIZE 
              ENVI_FILE_QUERY, p_fid, ns=pns, nl=pnl, nb=pnb, dims=pdims, BBL=pbbl  
       
              pmg  = make_array(prns,prnl,2 , /uint, value = 0 ) 
               
              print , 'done  phase 1' 
              cmg = make_array(prns,prnl,2 , /uint, value = 0 ) 
              print , 'done  phase 2' 
              rmg = make_array(prns,prnl,2 , /integer, value = 0 ) 
              print , 'done  phase 3' 
               
              xf1 = [0,pns-1] 
              yf1 = [0,pnl-1]  
                                                 
              envi_convert_file_coordinates, p_fid, xf1, yf1, wkg_xmap, wkg_ymap , /to_map 
              envi_convert_file_coordinates,pr_fid, wkg_xf1, wkg_yf1, wkg_xmap, wkg_ymap  
                                     
               
              pmg[wkg_xf1[0]:wkg_xf1[1],wkg_yf1[0]:wkg_yf1[1],0] = uint(ENVI_GET_DATA( fid=p_fid ,  
dims=pdims, pos = 3 )) 
              pmg[wkg_xf1[0]:wkg_xf1[1],wkg_yf1[0]:wkg_yf1[1],1] = uint(ENVI_GET_DATA( fid=p_fid ,  
dims=pdims, pos = 5 )) 
               
               
              denom = float(pmg[*,*,0])-float(pmg[*,*,1]) 
              numer = float(pmg[*,*,0])+float(pmg[*,*,1]) 
               
              pnbr = (float(denom)/float(numer))*1000.0 
              print , 'done  phase 4' 
          endif else begin 
              past = current 
              pmg = cmg 
              pnbr = cnbr 
          endelse 
           
          current = FILEPATH(srHt[TARGET_YEARS[i+1]],ROOT_DIR = BASE_DIR) 
          ENVI_OPEN_FILE, current, r_fid=c_fid, /NO_REALIZE 
          ENVI_FILE_QUERY, c_fid, ns=cns, nl=cnl, nb=cnb, dims=cdims, BBL=cbbl 
          xf1 = [0,cns-1] 
          yf1 = [0,cnl-1]  
                                                 
          envi_convert_file_coordinates, c_fid, xf1, yf1, wkg_xmap, wkg_ymap , /to_map 
          envi_convert_file_coordinates,pr_fid, wkg_xf1, wkg_yf1, wkg_xmap, wkg_ymap  
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          cmg[wkg_xf1[0]:wkg_xf1[1],wkg_yf1[0]:wkg_yf1[1],0] = uint(ENVI_GET_DATA( fid=c_fid ,  
dims=cdims, pos = 3 )) 
          cmg[wkg_xf1[0]:wkg_xf1[1],wkg_yf1[0]:wkg_yf1[1],1] = uint(ENVI_GET_DATA( fid=c_fid ,  
dims=cdims, pos = 5 )) 
           
         print, "Past " + past 
         print, "Current " + current 
           
          wkg_mask = cmg[*,*,0] NE 0 and cmg[*,*,1]NE 0 
          cdenom = float(cmg[*,*,0])*wkg_mask -float(cmg[*,*,1])*wkg_mask 
          cnumer = float(cmg[*,*,0])*wkg_mask +float(cmg[*,*,1])*wkg_mask 
           
          print , 'getting nbr'    
          cnbr = (float(cdenom)/float(cnumer))*1000.0 
          fdnbr = pnbr-cnbr 
          dnbr = fix(fdnbr)  
           
          rmg[*,*,0] = fix(cnbr) 
          rmg[*,*,1] = dnbr 
          print , 'writing ' 
          ndbr_path  = FILEPATH("dNBR_"+PROV+"_"+strtrim(TARGET_YEARS[i+1],2)+".dat",ROOT_DIR = 
'c:\deleteme')  
          ENVI_WRITE_ENVI_FILE, rmg, DATA_TYPE= 2 , NB= 2, NL= cnl, NS=cns,  $ 
               OFFSET=0, INTERLEAVE=0 ,OUT_NAME=ndbr_path,  R_FID=outfid 
          ENVI_WRITE_FILE_HEADER, outfid  
           
           
          res = do_set_inheritance(current, ndbr_path, 2, 2 )                 
      endfor 
       
      print , 'all done'     
          
  end 
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Appendix D. build_burn_mask.pro 

This script takes 25 years dNBR masks and creates a single byte layer where the most significant digit 
represents the year and the least significant digit represents the level of burn severity observed.  
 
pro build_burn_mask   
 
      compile_opt idl2   
      ;inpath = 'V:\Landsat\scripts\batch\epoch2_2010.txt'  
      RT_DIR = 'f:' 
      PROV = 'PAL' 
      dirHt = hash() 
      BASE_DIR = 'F:\Landsat_BAP'; FILEPATH('',ROOT_DIR = RT_DIR, SUBDIRECTORY= [dir_list.toArray()])  
      TARGET_YEARS = indgen(22)+1990 
      print, TARGET_YEARS 
      debug =1  
      SC_DIR = 'F:\PAL\scenes' 
      SC_DIR = 'F:\RS2' 
      cd , SC_DIR 
      srs = file_search('ALPSRP*.dat') 
      srs= list('RS2_footprint.dat') 
      BR_DIR = 'F:\dNBR' 
      cd , BR_DIR 
      brs = file_search('dNBR_PAL_*.dat', count=count, /test_read) 
      brHt = hash() 
      for i= 0, n_elements(brs)-1 do begin 
            sc = brs[i] 
            print, sc 
            indx = strsplit(sc,'_') 
            strYr = strmid(sc,indx[2],4) 
            yr = fix(strYr) 
            print, yr 
            brHt[yr] = sc 
       
      endfor   
      
       
       
       
      numyr = n_elements(TARGET_YEARS) 
       
      for i= 0, n_elements(srs)-1 do begin 
            tgt =filepath(srs[i],root_dir=sc_dir) 
            print, tgt 
            envi_open_file, tgt, r_fid=t_fid , /NO_REALIZE    
            ENVI_FILE_QUERY, t_fid, ns=tns, nl=tnl, nb=tnb, dims=tdims, BBL=tbbl 
            tgt_proj = envi_get_projection(fid=t_fid, pixel_size=tps) 
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            wkg_xf1 = '' 
            wkg_yf1 = '' 
             
            br_image = make_array( tns,tnl ,1, /byte, value = 0 ) 
            bandNames = list()  
            for j = 0 , n_elements(TARGET_YEARS)-1  do begin 
               
              yr = TARGET_YEARS[j] 
              bandNames.add,strtrim(yr,2) 
              print , yr 
              cbr = filepath(brHt[yr], ROOT_DIR = BR_DIR) 
              flist = list(tgt,cbr) 
              tmp_pth = FILEPATH("wkg_"+strtrim(yr,2)+'_'+srs[i] ,ROOT_DIR = SC_DIR )  
              ;if file_test(tmp_pth, /read) NE 1 then begin 
                    build_multi_file_stack_excl,flist , tmp_pth ,tgt 
              ;endif 
               
              print ,cbr 
              envi_open_file, tmp_pth, r_fid=b_fid , /NO_REALIZE    
               
              wkg_lyr =  ENVI_GET_DATA( fid=b_fid ,  dims = tdims, pos = 2 ) 
                                 
              brn_mask = wkg_lyr GE 100 
              update_mask = wkg_lyr GE 100 
                    
              wkg_dnbr = fix(wkg_lyr*brn_mask)- 100 
              sev_scale = wkg_dnbr/150 
              ovr_sev = sev_scale GT 9 
              sev_scale = sev_scale*(ovr_sev eq 0)+sev_scale*(ovr_sev)*9 
 
                
               updt_vals = sev_scale + byte((j+1)*10)*update_mask  
               cmplt_image = br_image GT 0 
               
              br_image = br_image*(cmplt_image) + updt_vals*update_mask*(cmplt_image EQ 0) 
               
              
          endfor     
               
          print , 'writing ' 
          br_path  = FILEPATH('BAR_fire_map_'+srs[i],ROOT_DIR = 
'F:\RS2\RS2_RESULTS\RS2_results\Burn_maps')  
          ;br_path = 'F:\RS2\BAP_KegRiver_year_fire_map.dat' 
          ENVI_WRITE_ENVI_FILE, br_image, DATA_TYPE= 1 , NB= 1, NL= tnl, NS=tns,  $ 
               OFFSET=0, INTERLEAVE=0 ,OUT_NAME=br_path,  R_FID=outfid 
          ENVI_WRITE_FILE_HEADER, outfid  
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          res = do_set_inheritance(tgt, br_path, 1, 1 )                 
      endfor 
       
      print , 'all done'     
end 
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Appendix E. Environment Canada Weather Data from Nearby Stations 

ID     High Level Fort St. John   
Closest Weather 
Station 

  
Palsar Scene Name Date 

Mean 
Temp  
(°C) 

Snow 
 (cm) 

Percip 
(mm) 

Mean 
Temp  
(°C) 

Snow 
 (cm) 

Percip 
(mm) Station  

Mean 
Temp  
(°C) 

Snow 
 (cm) 

Percip 
(mm) 

1 ALPSRP062601190 Mar 29,2007 3.1 0 0 3.2 0 0 Mildred Lake 1.7 0 0 

2 ALPSRP147501140 Oct 30,2008 -5.3 0 0 0.5 0 0         

3 ALPSRP167631140 Mar 18,2009 -22 0.2 0 -12 0.2 0         

4 ALPSRP167921150 Mar 20,2009 -14.2 0 0 -10.6 8.2 0         

5 ALPSRP168651150 Mar 25,2009 -13.3 5.4 0 -13.4 4.2 0         

6 ALPSRP169381140 Mar 30,2009 -1.7 0 0 1 0 0         

7 ALPSRP170401150 Apr 06,2009 4.8 0 0 5 0 0         

8 ALPSRP171131210 Apr 11,2009 3.4 0 0 5.1 0 0 Trout Lake -1.3 0 0 

9 ALPSRP171131220 Apr 11,2009 3.4 0 0 5.1 0 0 Trout Lake -1.3 0 0 

10 ALPSRP171711140 Apr 15, 2009 3 0 0 5 0 0 
Fort 
McMurray 3.3 0 0 

11 ALPSRP174921180 May 07,2009 10.1   0.2 7.8 0 0.4 Mildred Lake 7.1 0 0 

12 ALPSRP175361150 May 10,2009 10.2 0 0 10.8 0 0         

13 ALPSRP176091160 May 15,2009 4.4 0 0 7.1 0 0         

14 ALPSRP176091140 May 15,2009 4.4 0 0 7.1 0 0         

15 ALPSRP177261180 May 23,2009 11.4 0 0 12.5 0 0 Watson Lake 12.8 0 1 

16 ALPSRP179151180 Jun 05,2009 7.3 0 0 11.4 0 0 Mildred Lake 7 0 0 

17 ALPSRP179301140 Jun 06,2009 7.3 0 0 8.8 0 0         



133 

18 ALPSRP179591150 Jun 08,2009 12.2 0 0 11.6 0 0         
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Appendix F. Results of linear regression for various 
Polarimetric SAR parameters versus field measured  
Composite Burn Index (CBI) 

R² results of CBI for both 2005 Peace Point Wildfire Event and CBI 2007 Boyer Rapids Wildfire verses 
the radar decomposition parameters.   CBI values range from [0,3] with 3 being the highest level of 
burn severity. 

  

S1-
CBI 

S2-
CBI 

S3-
CBI 

S4-
CBI 

S5-
CBI 

Weighted 
CBI 

CBI 
total 

CBI 
overstory 

CBI 
understory 

Max Y 
(CBI) 
Standard 
Error 

Pedestal 0.07 0.01 0.06 0.38 0.48 0.14 0.23 0.46 0.78 0.77 

RVI 0.07 0.02 0.07 0.38 0.47 0.14 0.23 0.45 0.78 0.76 

Polarisation Fraction 0.07 0.02 0.07 0.38 0.47 0.14 0.23 0.45 0.77 0.76 

p3 0.07 0.02 0.07 0.38 0.47 0.14 0.23 0.45 0.82 0.76 

SERD 0.06 0.01 0.04 0.35 0.47 0.14 0.22 0.45 0.78 0.77 

p1 0.05 0.00 0.03 0.34 0.45 0.11 0.20 0.44 0.79 0.78 

Entropy 0.04 0.01 0.04 0.33 0.44 0.11 0.19 0.43 0.74 0.78 

Anisotropy Luneburg 0.05 0.00 0.03 0.33 0.44 0.10 0.19 0.43 0.76 0.78 

Entropy Shannon 0.03 0.01 0.05 0.30 0.40 0.10 0.18 0.40 0.76 0.82 

Anisotropy 12 0.04 0.00 0.02 0.29 0.40 0.09 0.16 0.39 0.76 0.79 

l3 0.20 0.11 0.22 0.43 0.38 0.29 0.35 0.38 0.78 0.74 

p2 0.03 0.00 0.01 0.27 0.37 0.08 0.14 0.36 0.79 0.79 

Combination H1mA 0.06 0.02 0.08 0.32 0.38 0.13 0.21 0.36 0.77 0.77 

l2 0.17 0.07 0.12 0.34 0.32 0.21 0.27 0.32 0.69 0.78 

Alpha 0.00 0.02 0.00 0.30 0.33 0.01 0.06 0.31 0.81 0.82 

Combination 1mH1mA 0.01 0.00 0.02 0.21 0.30 0.05 0.10 0.29 0.77 0.81 

Combination 1mHA 0.07 0.03 0.05 0.32 0.27 0.12 0.17 0.27 0.83 0.81 
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 R² results of CBI 2005 Peace Point Wildfire Event verses the radar decomposition parameters.  CBI 
values range from [0,3] with 3 being the highest level of burn severity. 

 

 

  

S1-
CBI 

S2-
CBI 

S3-
CBI 

S4-
CBI 

S5-
CBI 

Weighted 
CBI 

CBI 
total 

CBI 
overstory 

CBI 
understory 

Max Y 
(CBI) 

Standard 
Error 

p1 0.08 0.35 0.19 0.45 0.48 0.47 0.43 0.48  0.25 0.71 

Anisotropy Luneburg 0.09 0.37 0.18 0.45 0.47 0.48 0.43 0.48 0.26 0.72 

Pedestal 0.11 0.27 0.20 0.41 0.49 0.45 0.42 0.47 0.25 0.68 

Alpha 0.04 0.28 0.23 0.44 0.46 0.43 0.39 0.46 0.21 0.76 

Entropy 0.06 0.30 0.19 0.41 0.45 0.43 0.40 0.45 0.23 0.70 

Anisotropy 12 0.07 0.36 0.16 0.43 0.44 0.44 0.40 0.45 0.23 0.74 

l3 0.19 0.36 0.39 0.42 0.46 0.48 0.47 0.45 0.39 0.74 

Polarisation Fraction 0.09 0.22 0.20 0.37 0.46 0.42 0.39 0.43 0.24 0.68 

RVI 0.09 0.22 0.20 0.37 0.46 0.42 0.39 0.43 0.24 0.68 

p3 0.09 0.22 0.20 0.37 0.46 0.42 0.39 0.43 0.24 0.68 

l2 0.17 0.47 0.29 0.43 0.41 0.48 0.45 0.42 0.38 0.80 

p2 0.06 0.36 0.15 0.41 0.41 0.42 0.38 0.42 0.22 0.75 

SERD 0.07 0.22 0.12 0.37 0.43 0.38 0.34 0.42 0.17 0.64 

Entropy Shannon 0.03 0.24 0.17 0.35 0.40 0.37 0.34 0.39 0.19 0.83 

Combination 1mH1mA 0.03 0.31 0.15 0.36 0.37 0.37 0.33 0.37 0.18 0.79 

Combination H1mA 0.07 0.13 0.17 0.26 0.35 0.30 0.28 0.32 0.17 0.72 

Delta1 0.11 0.20 0.14 0.32 0.31 0.31 0.31 0.32 0.21 0.91 

Asymmetry 0.03 0.30 0.08 0.29 0.24 0.28 0.25 0.27 0.14 0.85 
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R square results of CBI 2007 Boyer Rapids Wildfire Event northern sampling area verses the radar 
decomposition parameters. CBI values range from [0,3] with 3 being the highest level of burn severity. 

 

 

  

S1-
CBI 

S2-
CBI 

S3-
CBI 

S4-
CBI 

S5-
CBI 

Weighted 
CBI 

CBI 
total 

CBI 
understory 

CBI 
overstory 

Max Y 
(CBI) 

Standard 
Error 

Entropy Shannon 0.22 0.00 0.01 0.46 0.61 0.14 0.30 0.04 0.63 0.86 

Entropy 0.22 0.00 0.01 0.43 0.60 0.13 0.29 0.04 0.62 0.77 

SERD 0.29 0.01 0.05 0.44 0.60 0.21 0.37 0.10 0.61 0.78 

RVI 0.22 0.01 0.06 0.54 0.57 0.16 0.34 0.08 0.59 0.76 

Polarisation Fraction 0.22 0.01 0.06 0.54 0.57 0.16 0.34 0.08 0.59 0.76 

p3 0.22 0.01 0.06 0.54 0.57 0.16 0.34 0.08 0.59 0.76 

Pedestal 0.22 0.00 0.04 0.46 0.56 0.14 0.31 0.07 0.57 0.74 

Alpha 0.22 0.00 0.02 0.47 0.55 0.15 0.30 0.05 0.57 0.76 

p1 0.22 0.01 0.00 0.35 0.54 0.11 0.26 0.03 0.55 0.75 

Anisotropy Luneburg 0.20 0.01 0.00 0.29 0.50 0.09 0.22 0.02 0.50 0.75 

Combination H1mA 0.17 0.03 0.10 0.55 0.46 0.16 0.31 0.10 0.48 0.84 

Combination 1mH1mA 0.15 0.02 0.00 0.26 0.48 0.08 0.19 0.01 0.48 0.83 

l3 0.32 0.01 0.00 0.48 0.45 0.19 0.29 0.09 0.47 0.76 

Anisotropy 12 0.18 0.02 0.00 0.22 0.46 0.08 0.19 0.01 0.45 0.78 

p2 0.17 0.02 0.00 0.18 0.44 0.07 0.17 0.01 0.43 0.80 

Combination 1mHA 0.15 0.02 0.03 0.54 0.28 0.11 0.21 0.07 0.30 0.89 
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Appendix G. Temporal comparison of Overlapping PALSAR 
decomposition parameters between June 8 and April 6 images 
acquired in 2009. 
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Appendix H. Maximum Likelihood Classification results for 
June 6, 2009 PALSAR image. 
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Appendix I. LOGIT Classification results for June 6, 2009 
PALSAR image. 
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Appendix J. MLC and LOGIT results for June 8, 2009 
PALSAR image. 
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Appendix K. MLC and LOGIT results for May 15, 2009 South 
PALSAR image 
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Appendix L. MLC and LOGIT results for May 15, 2009 North 
PALSAR image 
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Appendix M. PALSAR May15 North Classification Results for 
4 Fire Classes 
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Appendix N. PALSAR May15 North Classification Results for 
2 Fire Classes with Additional Input Channels 
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Appendix O. PALSAR May15 North Classification Results for 
3 Fire Classes with Additional Input Channels 
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Appendix P. PALSAR May 15 South Classification Results for 
4 Fire Classes 
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Appendix Q. Radarsat-2  Sept. 22 Classification Results  
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