
ABSTRACT

KNOTS IN THE STRING OF TIME: ADAPTING COMPUTER GAME

PROTOTYPING TOOLS FOR INTERACTIVE MUSIC

By

Nick H. Venden

May 2015

 This project is an effort to adapt computer game prototyping tools as

controls for interactive digital music. Secondarily it is an investigation of a social

aspect of interactive music. Meaning, is it possible to give the game-player-listeners the

ability to structure the music interactively and become the composers of their own game

experience? Throughout the process these social and aesthetic questions countered and

informed the technical questions.

 In every media composer’s digital studio the tools of creation and

rising demand for mediated interactive experiences.

 The conclusions are decisive. Contemporary game prototyping

programming techniques—even those limited to WebGL-enabled browser applications—

are highly effective tools for the creation and control of interactive digital music.

KNOTS IN THE STRING OF TIME: ADAPTING COMPUTER GAME

PROTOTYPING TOOLS FOR INTERACTIVE MUSIC

A PROJECT REPORT

Presented to the Bob Cole Conservatory of Music

California State University, Long Beach

of the Requirements for the Degree

Master of Music

Concentration in Composition with Interactive Technology

Committee Members:

Martin Herman, Ph.D. (Chair)
Alan Shockley, Ph.D.
Alicia Doyle, Ph.D.

College Designee:

Carolyn Bremer, Ph.D.

By Nick H. Venden

M.M., 1976, Roosevelt University, Chicago

May 2015

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1588653
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

UMI Number: 1588653

iii

TABLE OF CONTENTS

LIST OF FIGURES..

TYPOGRAPHICAL CONVENTIONS...

LIST OF WORKS..

CHAPTER

 1. THE COMPOSITIONAL PROCESS..

 The Project in its Social Context..
 Technical Problems Begin..

 Heuristics--The Game World as a 2d Grid...................................
 The Gameworld as a Dynamic Grid--2D to 3D............................
 Types of 2D Graphs in Unity..
 PointGraph Graphs (Way Point Navigation)................................
 GridGraphs...
 NavMesh Graphs..
 Recast Graphs...

 Adding Behavior and Other Complexities...
 Programming Languages in Unity3D..
 Choosing an AudioEditorInterface...

 2. CASE STUDIES...
.
 Case Study 1--Ice Caves: A Meltable Terrain...

 The Process--The Search for the Variable..
 Case Study 2--Audio in 3D Space
 Using the Unity API to Create Multi-Channel Effects.......................
 Return to the Thesis Question and Conclusions.......................................

Page

iv

vi

vii

1

1
12
16
17
18
20
20
22
25
26
26
27
28
29

34

34
34
35
40
40
42

iv

APPENDIX: RECITAL PROGRAM...

BIBLIOGRAPHY...

Page

45

50

v

LIST OF FIGURES

FIGURE Page

1. The chess-playing Mechanical Turk, designed by Austrian Wolfgang von
 Kempelenin 1770...

2. My 3D mesh model of a neuron in the Unity Editor......................................

3. Two single splines in 3D space..

4. A Voronoi 3D spline...

6. Two instances of a complex prefab with dozens of spline nodes attached....

7. Value-weighted grid Tilings and Grid Nodes for A*.....................................

8. PointGraph--a more complex SplineController...

9. Two audioClips as as antecedent-consequent..

10. Code snippet showing a collision-and-play function...................................

11. Code snippet showing a collision-and-play function...................................

12. A simple plane with obstacles..

13. After RayCasting--HeightScanning..

14. Auto-Generated NavMesh (as a Georges Braque cubist painting)..............

15. Unity 3D editor--SceneView showing splineControls with nodes...............

16.

17. One eventScript in Unity’s Inspector..

6

9

13

13

14

15

18

20

21

22

22

23

24

25

29

32

32

vi

18. Spline nodes--each with event scripts..

19. The Hierarchy in Unity’s Editor..

20. Light_Flicker open in MonoDevelop..

21. Light_Flicker.js code snippet..

22. My adapted script for Light_Flicker.js..

23. An additional PitchShift script for Light_Flicker.js....................................

24. My adapted script for Light_Flicker.js and the corresponding game
 object in Unity’s inspector...

25. Unity’s well-documented API with code examples.....................................

26. Script example from Unity’s API..

27. Code snippet for a surround-sound effect..

28. Inside the Myelin Sheath - Navigating to the Soma Core...........................

29. Approaching the Core..

30. Peering Into the Soma Core - Where Shiva, Choked by a Snake, sits in
 Meditation..

33

35

36

36

38

38

37

39

40

41

43

43

44

FIGURE Page

vii

TYPOGRAPHICAL CONVENTIONS

In order to indicate the various syntactic components of the programming
languages C# and JavaScript, this paper uses the following conventions:

Constant width

Italic

camelCaseConstantWidth

Indicates code examples, code snippets,
variable names and parameter names. These
are shown in 10 point monospace courier as is
the convention of technical publishers such as
Wiley Press, O’Reilly Media, Inc.

Indicates function names, method names,
class names, package names, URLs (except

.swf. In
addition to being italicized in the body text,
method and function names are also followed
by parentheses, such as duplicateMovieClip().

To avoid confusion when referencing
the Unity3d editor interface, program
components of Unity3D such as AudioSource,
PlayClipAtPoint, etc., are indicated in
camel case to correspond to Unity3D’s own
conventions and spaceless typesetting.

viii

LIST OF WORKS

1. KnotsInTheStringOfTime_01-Venden.mp4 (17.3MB)

 This is a brief video-audio demonstration taken directly from a scene named

The Court of Ishtar. It was created directly from the Unity project with a frame-capture

utility. The software and technology for is project is evolving very rapidly; as such, there

are versions of this project rendered for the Oculus head-mounted display for immersive

stereoptic 3D. The latest full version of Knots in the String of Time is a large 22GB+

package available from the author. For a download key please contact NickVenden@

gmail.com or NickVenden.com.1

Dissertations and Theses database.

1

CHAPTER 1

THE COMPOSITIONAL PROCESS

The Project in its Social Context

The genesis of Knots in the String of Time was a comment by Ivica Bukvic who

claimed that “the [video] Gaming industry has prototyping tools that could be adapted

for the development of interactive art installations.”1 Could those tools be adapted to

create control for interactive digital music? A second question came as a response to the

contemporary conceptual artist Joseph Beuys who claimed that:

Every human being is endowed with creativity, an inborn, universally distributed
faculty which lies fallow in most people. The social task of professional artists is
to liberate this repressed creative potential until all human labor deserves to be
called artistic. Essential to his belief in creativity is that it is future-oriented: it
has the performative structure of a promise.2

Beuys has charged me with a “social task.” Could I build a project which would

allow a non-professional to structure time, to sequence affect, to create cause-and-effect

(musical meaning) through the use of harmonic language, rhythm, and other musical

elements, and do what composers do?3

1. Ivica Bukvic is currently the director of the Digital Interactive Sound and
Intermedia Studio (DISIS) at Virginia Tech University. For more information see: Ivica
Bukvic, “Innovation, Interaction, Imagination,” in Proceedings of the International
Computer Music Association (San Francisco: International Computer Music Association,
2011), 56.

2. Thierry De Duve, “Why Was Modernism Born in France?” ArtForum 52, no.5

(January 2014): 192.

3. For general information see: Leonard B. Meyer, Emotion and Meaning in
Music (Chicago: Chicago University Press, 1956).

2

The CSULB degree program, Composition with Interactive Technology,

enforces a reading of these questions strictly within the context of Interactivity; within

that context lie questions about the presentational vs. the participatory, authorship,

art as appropriation, and intellectual property, among others. These and other social

and aesthetic questions are more important than the technical, not merely because the

technology explored in this paper will be outdated before the binding on the paper is dry,

CUNY lecturer and art critic Claire Bishop, in her landmark essay on digital

art The Digital Divide, asks: “How many artists who use digital technology actually

the digitization of our existence?”4 For a composer the most intriguing of Bishop’s

while suggesting there can be interactive music that is both intrinsic and unique to the

digital experience. Although this paper is primarily technical, its proper subject is how

all these questions are linked—how each guided the others during the creation of this

project.

commodity, meaning that today’s listener is conditioned to, and expects to have, an

active role in the music itself. Film theory speaks of the omnipresent human tendency to

4. Claire Bishop, “Digital Divide,” ArtForum 51, no. 1 (September 2012): 436.

3

apprehend meaning by creating narratives out of sensory data.5 A new form of (narrative)

aleatoric composition, driven by the listener’s choices, may be one possible solution to

Beuy’s challenge, but a complex narrative requiring hundreds of 3D models was out of

the scope of this project. However there is something subtle and attractive in the notion

of simply “creating narratives out of sensory data.” This notion also provides method and

constraint.

Contemporary Swiss installation artist Thomas Hirshorn states, “I do not want to

do an interactive work. I want to do an active work. To me, the most important activity

that an art work can provoke is the activity of thinking.”6 Therefore, in Hirshorn’s view,

Thomas Hirshorn, Pierre Huyghe, Santiago Sierra, Rirkrit Tiravanija, and other artists

with a social-political practice activate their viewer, but their works do not use seductive,

theatrical, and shallow interactive digital technology.7 Viewers move through their

installations and encounter surprising juxtapositions—new meanings in quotidian

elements.

Their installation viewer-listener is Baudelaire’s or Flaubert’s Frédéric

in L’Éducation sentimentale wandering the arcades of nineteenth-century Paris looking

5. This is called The Kuleshov Effect named after Lev Vladimirovich Kuleshov

Stephen Prince and Wayne E. Hensley, “The Kuleshov Effect: Recreating the Classic
Experiment,” Cinema Journal 31, no. 2 (Winter 1992): 59-75.

6. Claire Bishop, “Antagonism and Relational Aesthetics,” October 110 (Fall
2004): 61.

7. Benjamin H. D. Buchloh, “An Interview with Thomas Hirschhorn,” October

113 (Summer 2005): 77-100.

4

at and listening to the kaleidoscopic manifestations of life in 1869.8 One hundred years

later this “wandering” is a practice of the Situationist Internationale movement in Paris

in the late 1960s—Guy DeBord’s logic of the dérive:9 The dérive is the act of selecting

on the basis of chance, anecdote, and coincidence. This has given way to the twenty-

while navigating the web. Today the dérive

internet—a practice and precondition of my audience.

With all these things as guides, I imagined Knots in the String of Time as a digital

landscape for the listener to explore with the logic of the dérive. By moving through the

digital space the listener triggers sequences of affect which are both musical and visual.

The listener encounters isolated objects and apprehends meaning by creating narratives

out of sensory data. And for Beuys’s injunction, hopefully, the listener joyfully structures

musical events along Knots in the String of Time and becomes the project’s composer.

Why do this? For me the attraction is not the 64-billion dollar game industry.

In digital music studios today the tools of creation and distribution have elided; work

the current Chrome and Mozilla internet browsers—capable of rendering interactive,

animated 3D graphics and multi-channel audio in real time—offer ubiquity and an

astounding level of access to potential audiences.10 This should not be interpreted as
8. James Wood, How Fiction Works (New York: Farrar, Straus and Giroux, 2008),

86.

9. Ken Knabb, ed. and trans., Situationist International Anthology (Berkeley:
Bureau of Public Secrets, 1995), 50.

10. WebGL (Web Graphics Library) is a JavaScript API (application program
interface) for rendering interactive 3D graphics and 2D graphics within any compatible

5

meaning; where no contemporary sculptor believes the world needs another object; where

cynical and disillusioned MFA students work at dematerialized projects based on their

purported “social practice”; where a graduate composer of one more harmonic change

for aesthetic effect has been made to feel ridiculous. A composer in such a world needs a

social conscience.

render in WebGL within an internet browser in real time. The smaller-scale and more

Audio events must be attached to simpler 3D visual elements such as formalist-geometric

replace the more CPU-intensive dynamic surface-shaders. Most importantly, the use of

high resolution 3D models must be very limited. I tried applying these constraints. Few

of them actually worked, and the reasons had to do with the process of working in new

media.

The process of generative design does not begin with formal questions, but with

the observation of phenomena.11 Generative Art12—because it feels symbiotic with
web browser without the use of plug-ins.WebGL is integrated completely into all the
web standards of the browser allowing GPU accelerated usage of physics and image
processing and effects as part of the web page canvas. For more information see Khronos
Group: http://www.khronos.org/. Examples of my target delivery WebGL platform can
be found at http://www.chromeexperiments.com/webGL/ (accessed April 26, 2014).

11. Hartmut Bohnacker, Generative Design (New York: Princeton Architectural

Press, 2012), 10.

12. Generative Art refers to art created with autonomous systems, but it is not
strictly computer generated. The fugues of J.S. Bach, algorithmic compositions of
Iannis Xenakis, and the graphite pencil wall-drawings of Sol LeWitt are all considered

6

digital music, is produced procedurally (mathematically), and does not require memory-

expensive models—seemed like a good place to begin. In new InterMedia (digital music

+ 3D game) as in Generative design, it is nearly impossible to conceptualize before

observing what is possible. This was exactly my experience as I began building limited

visual objects in Unity3D and writing JavaScript code to enhance Unity’s own audio

implementations.13 It was clear that conforming this process to a few vague conceptual

Before moving to my survey and details of my derived process, I must lay a

intelligent machines) and its relationship to interactivity.

generative art. However, contemporary generative design is primarily created with
software tools such as Processing, Quartz Composer, and Jitter.

13. For information on this game development platform see: http://Unity3D.com.

FIGURE 1. The chess-playing Mechanical Turk, designed by Austrian Wolfgang von
Kempelenin 1770. Images of a copper engravings from Karl Gottlieb von Windisch’s
1783 book Briefe über den Schachspieler des Hrn. von Kempelen, nebst drei Kupfer-
stichen die diese berühmte Maschine vorstellen.

7

The Mechanical Turk (Figure 1 above) fascinated and deceived audiences for

for Industrial Era human-machine symbiosis, twentieth-century cybernetics, and today’s

fascination for the intelligent “other” embedded in contemporary game play.

Criteria for judging the entertainment value of a computer game is not complex.

Players often judge a game as fun or boring on one simple factor: Has the game made

the player feel empowered through gaining knowledge of its system—knowledge of the

other which is present inside the game? Because of this I felt that any purely formalist

approach—for example one where an audio process would mimic or track a Generative

persona.

It has become a convention of game authors to describe their game objects in

of its narrative structure, the logic of its cause-and-effect relationships, and its lack of

circumstantial error. For music theorists and philosophers such as Leonard Meyer,

meaning in music is derived from these very same concerns. 14

As human beings we tend to create meaning by creating narrative: when we

apprehend the unknown or the other in our environment, we tend to explain its presence

by creating story-forms. These forms are not merely the province of psychologists.

 14. Meyer, Emotion and Meaning in Music, 83-127. Meyer discusses
cause-and-effect in music in his chapter, Principles of Pattern Perception: The
Law of Good Continuation.

8

generated, and we experience the simple joy of just being surprised. Meyer speaks of

this at length. The creation of cause-and-effect, antecedent-consequent relationship, and

frustration of expectation, are controllable processes for a composer working in linear

time. But for the author of music in an interactive visual landscape where the listener is

in control, there are unique problems.

A computer program is almost completely composed of such cause-and-effect,

antecedent-consequent relationships. Look at the jargon: if-then-else, switch-

case, (the ternary statement) message = health > 0 ? “Player is Alive” :

“Player is Dead”; and my personal favorite: if “Player is Dead” = true, print

(“You are Dead! Continue?”). The logic for creating a complex interactive narrative

was available, but all I needed was a sparse visual structure on which to hang musical

events: a game-space matrix of objects which could imply a subtle narrative, collect

meaning to themselves in a poetic and metaphoric way, and provide the missing affect.

To repeat Claire Bishop: “How many artists who use digital technology actually confront

15 I also wanted to

keep Bishop’s challenge in mind.

So in the manner of the Situationist’s dérive, I searched online sources hoping

16 There were many comic possiblities including animated

sperm which could search my game space, futurist buildings, and hundreds of Medieval

15. Bishop, “Digital Divide,” 436.

16. The Unity3D website lists sources for free and paid textures, models,

packages, etc. See http://answers.unity3d.com/questions/16650/game-asset-website-list-
free-and-paid-textures-mod.html. (accessed April 28, 2014).

9

neuron complete with nucleus, soma, dendrites, axon, and Myelin sheaths. After

purchase (sixty-dollars) I had to adapt the interior of the dendrites to be passageways into

the soma or strings for pearls in a net.

For years I have been fascinated by the Hindu concept called The Net of Prince

I saw my 3D model neuron as a single node in Indra’s jeweled net. I could

multiply that single node into a matrix—a visual realization of an ancient philosophic

concept but also a metaphor for our overly-mediated and networked contemporary lives.

I also saw the potential for non-tempered-tuned ethnic orchestration. But what would

FIGURE 2. My 3D mesh model of a neuron in the Unity Editor. Illustration: a screenshot
from the author’s computer.

10

It seemed obvious: our comically failed expressions of the Divine: a descending

of disembodied eyeballs as an expression of omniscience (and a perfect metaphor for

the encroaching NSA);17 a quietly meditating Shiva with a potentially lethal constrictive

snake around his neck; a spherical space with inner surfaces showing nothing but self-

Now that I had a potentially beautiful visual world linked to a compelling

concept, I thought the real work of music composition could begin. I altered the mesh

model in a companion program called Cinema4D to create portals at the end of the

dendrites.18 The listener could now travel up through the dendrites and into the nucleus to

encounter the miniature narrative scene inside.

For an object to travel and to have convincing physical behavior, it must

accelerate correctly and be affected by collisions, gravity, wind, and other forces.

Unity3D, a prototyping system widely used by independent game developers, has

a built-in physics “engine” that provides for this behavior.19 I knew that I would be

using Unity3D’s physics to start, stop, and scale musical processes, but I had severely

behavior—the very things which create the sense of an intelligent other embedded in the

game. This other is my listener’s only antagonist.

17. Michel Foucault used the panopticon as a metaphor for modern disciplinary
societies. See: Michel Foucault, “Panopticism,” in Discipline and Punish, translated by
Alan Sheridan (New York: Random House, 1978), 195-230.

18. http://www.maxon.net/en/products.html (accessed April 29, 2014).

19. An engine is a collection or ‘library’ of separate modules of code.

11

and attraction-avoidance can also be used to control musical elements. In Unity3D’s

with triggers, collisions, and external forces, creates a rich set of tools for controlling

music.

so I decided to design a gravity-free 3D world which could be navigated as in Blizzard

Entertainment’s World of Warcraft.20 Then, however things became too free. With no

listener through the game automatically, while providing composed and synchronized

music; but in doing so I would be inserting authorship and destroying the dérive.

At these junctures in my process the thesis challenge had to be re-considered.

Ericka Fischer-Lichte in referring to John Cage’s untitled event at Black Mountain

College explained that:

The spectators did not need to search for given meanings or struggle to decipher

as an activity, a doing, according to their particular patterns of perception,
their associations and memories as well as on the discourses in which they
participated.21

By removing some control from the listener I would be authoring meaning and

disallowing the listener’s particular patterns of perception. However, this would provide
World of Warcraft on September 2,

2001. For more information: http://us.battle.net/wow/en/ (accessed March 8, 2015).

 21. Erika Fischer-Lichte, “Performance Art and Ritual: Bodies in
Performance,” Theater Research International 22 (1997): 25.

12

of the musical architecture.22 Fancy words for computer game music? No. Film-goers

and game-players routinely listen to, and are affected by, complex contemporary music

they would otherwise never tolerate.

One of the challenges and excitements of programming Knots was to create

an ability to swap out entire (intolerable) musical genres without having to alter the

programmatic structure. Meaning, if a sound-set proved too esoteric, it could be replaced

with something commercial. But generating new visual elements procedurally with each

new runtime was beyond my capabilities. However, I plan to link procedurally generated

visual-audio sets in future iterations of this project.

Technical Problems Begin

The next challenge was how to remove control from the listener programmatically,

constrain it to a path, then restore control so the listener was free to explore again.

SplinePath Controllers are computationally cheap and can constrain a game object to

a pre-determined path—a type of roller coaster ride with programmable pause-stop-

continue nodes along the journey. Some spline paths are bi-directional and looping.

They range from simple startPoint-endPoint movement to lengthy controllers which give

the illusion of complex behavior such as “pausing to look around.” Spline paths are not

long variable-speed control paths, and they are responsive because a grid does not have

to be pre-calculated for heuristics.23

spline control. If used extensively, a spline-controlled game is called an On-Rails Game.

 22. Steven Stucky, (Cambridge: Cambridge
University Press, 1981), 109.

23. Heuristics is discussed on page 17.

13

Because the programmer can predetermine the duration of the “ride,” and make

the movement through the nodes metronomic, an accurately constructed spline can create

rhythmically accurate musical events.24 Meaning, if equidistantly distributed along a

path, audio sources or triggers can create regular pulses whose tempo is dependent on the

programmable duration of the ride. Additionally, variations in the proximity to the nodes

can control dynamics, timbre, or various other musical parameters.
 24. Time.deltaTime is a method for smoothing physics movements in

animation. It creates interpolations which are independent of the often erratic frame rate
in real time rendering. Unity3D’s website tutorial: http://unity3d.com/learn/tutorials/
modules/beginner/scripting/delta-time (accessed April 29, 2014).

FIGURE 4. A Voronoi 3D spline. Illustration by Alex Pol (used with permission)

FIGURE 3. Two single splines in 3D space. Illustrations by the author.

Time --->

14

musical event which recedes from the listener while panning to the right.

These types of musical-visual (acoustic-spatial) structures are easy to build in

Unity3D, and can be exploited for their musical effects within Unity’s multi-channel

audio. If used subtlely these techniques can be musically expressive, not merely

companions for cinematic experiences.

SplinePath Controllers seemed a perfect solution. Unity has a built-in spline

component but it was too simple for my purposes. Through Unity’s User Forum I found

and installed a freeware Hermite Spline controller.25

I created and positioned all of the spline nodes and their associated musical

functionality in my single 3D neuron. I was eager to multiply my single 3D neuron into a

of game objects sharing functionality—or later be forced to add code to individual objects

scattered throughout the entire game world.
25. Hermite here means an orthogonal polynomial sequence. It takes its name

from the mathematician Charles Hermite (1822-1901). For more information see: http://
mathworld.wolfram.com/OrthogonalPolynomials.html (accessed March 7, 2015).

The D
ow

n B
eat

15

One beauty of Object Oriented Programming is the ability to create a reusable

class from a complex object—in this case a reusable Unity Prefab from my 3D neuron

mesh, its surface qualities, all of the positions, rotations, behaviors, musical triggers, and

programming syntax as I worked through these problems.26

Unfortunately the freeware Hermite controller had no ability to vary speed

(tempo) between nodes, pause for a variable time on a node (caesura), “ease out”

(accelerando), brake or “ease” when approaching a node (ritard), or “look at” a given

transform point in 3D space (dynamic L/R panning). With enough time I could have

programed this functionality but I suspected that someone had already done it for me.
26. The programming language of Unity3D is called C# (pronounced “C

sharp”). It is an object oriented language which inherits the best features of
C++ and Microsoft Visual Basic, but inherits few of their inconsistencies and
anachronisms.

FIGURE 6. Two instances of a complex prefab with dozens of spline nodes attached.
Screenshot of Unity’s editor panel from the author’s computer.

16

Also based on splines, camera path animators are generally used to create Cut-

Scenes or demonstration movies of games. Users themselves often create their own

lengthy Cut-Scenes within interactive narrative games and then post them online as

personalized solutions to storylines. A camera path animator would also have the

potential to record a (musical) journey through my project. The only commercial plugin

for Unity that had all of the functionality I needed (variable tempo, caesuras, ritards,

accelerandos, and panning) was CameraPath Animator-v3.x written by Jasper Stocker.27

In combination with proximity sensing28 and Unity’s physics engine, this plugin had real

musical potential.

But Stocker’s CameraPath Animator-v3 plugin required that I upgrade the host

Unity from 4.2.1 to 4.3.4. I expected everything to blow up, and it did. The other existing

plugins, including the principle MasterAudio, had to be updated and reinstalled. In

addition the spline nodes that I had meticulously created and positioned could not be

‘dropped onto’ my new CameraPath Animator. I was forced to recreate them. Once that

machines), and at its simplest it resembles decisions about movement on a 2D grid

such as the Mechanical Turk’s chess board. It is no use to develop complex systems

27. http://forum.unity3d.com/threads/227416-Camera-Path-Animator-3-0-
Released-Animate-in-Unity-with-Ease (accessed March 5, 2015).

28. Unity implements a type of proximity sensing in their DopplerShift

component on AudioSources.

17

to implement that decision. On the other hand if an AI agent can understand how to

maneuver around obstacles in the virtual world, even simple decision-making structures

can look impressive—giving a sense of the embedded ‘other,’ the listener’s antagonist.

Heuristics--The Game World as a 2d Grid

In computer science heuristics is a method of trading optimality, completeness, and

precision for speed. In its more developed form the method involves self-educating

processes.

Dijkstra’s Algorithm for Single-Source Shortest Paths, conceived by Dutch

computer scientist Edsger Dijkstra in 1956 and published in 1959, is a graph-search

algorithm that solves the single-source shortest path problem for a graph with non-

negative edge path costs, producing a shortest path tree. Bellman-Ford (1958) and

algorithms include A* (pronounced “A star”). As Harika Reddy explains:

As A* traverses a graph, it follows a path of the lowest known cost, keeping a
sorted priority queue of alternate path segments along the way. If, at any point,
a segment of the path being traversed has a higher cost than another encountered
path segment, it abandons the higher-cost path segment and traverses the lower-
cost path segment instead. This process continues until the goal is reached.29

29. Harika Reddy. PATH FINDING - Dijkstra’s and A* Algorithms, December 13,
2013. http://cs.indstate.edu/hgopireddy/algor.pdf (accessed March 14, 2014).

18

The drawback of A* is the lagtime at the start as A* calculates the entire grid.

Adaptive A* and D* were classes of techniques developed to overcome this.30 The

game’s author assigns areas of the game a ‘weight’ or a ‘cost.’ In simpler game-play

terms, a ‘weighted’ area of a grid could be an elevated terrain, a soggy bog, or a dark

forest. The algorithm then calculates the least costly Heuristic path.

As game author I could link high-cost areas of the grid to the more dissonant or

irrational musical elements; I could map a hierarchy of navigation costs onto a hierarchy

of harmonic dissonance; thus, concrete visual elements could be mapped onto areas of

musical, human affect. In a sense, these mapping techniques satisfy Claire Bishop’s

31

The Gameworld as a Dynamic Grid--2D to 3D

Computer scientists have researched the problems of a dynamically changing grid

30. For an introduction to A* search algorithms see: http://theory.stanford.
edu/~amitp/GameProgramming/AStarComparison.html (accessed March 6, 2015).

.
31. Bishop, “Digital Divide,” 436.

FIGURE 7. Value-weighted grid Tilings and Grid Nodes for A*. Ilustrations from:

(accessed March 7, 2015).

19

for 20 years. For simple recalculations there was D* (1994), Focused D* (1995), and

D* (2007), Theta* (2007), Incremental Phi (2009). Today’s advanced Adaptive A*, for

target points which move, is based on research from 2008-2011. The research continues

to evolve. For my purposes, a PathFinding system is an inter-related set of scripts which

use the arrays of nodes created by these various generators to calculate paths to a variable

target position in 3D space.32

editor-plugin for game authoring. The Unity3D version is now at v3.4. On his older

2012 blog Granberg discusses esoterica such as Core Graphs, Funnel Corridors, Tiled

Recast Graphs, methods for Navmesh Cutting, and Delauney Criteria, which are all built

into his software products.33 Any independent game author with one-hundred dollars now

has access to advanced computer game theory navigation techniques.

Although I had decided to navigate in a primarily gravity-free world, I wanted

small areas inside the nucleus to contain a gravity-bound 2D planar surface. The objects

and their behaviors on that surface—the objects which would “metaphorically imply

a subtle narrative”—could then take on a quotidian, real quality. For that I needed 2D

graph system navigation. Before discussing the musical implications of graph-based

32. A more detailed discussion is beyond the scope of this paper. For a theoretical
computer science question-and-answer site for computer scientists, see: http://cstheory.

for-changing-graphs-d-d-l (accessed March 6, 2015).

33. http://www.arongranberg.com/ (accessed March 15, 2014).

20

Types of 2D Graphs in Unity34

A graph system such as Granberg’s is considered a separate system from the Unity

as Vector3 transforms and other basic structures in the game, but it programmatically

(and visually) resembles an overlay. The two systems are linked through a game object

referred to as an AI. Scripts describing intelligent behavior are attached to an AI. The

most common AI is a character controller protagonist—to keep with my narrative

interpretation—but an AI can be any non-static game object. Programmable 2D path

PointGraphs, Grid Graph, and NavMesh Graph (short for navigation mesh). A fourth

more complex type, a RecastGraph, is a grid generator based on voxelization—a type of

rasterization which generates cubes resembling pixels in a 3D space.35

PointGraph Graphs (Way Point Navigation)

Similar to simple spline controllers discussed earlier, a PointGraph consists

of lists of interconnected points in space, waypoints, or nodes. It can be viewed as

intersecting lists of nodes. The diagram (Figure.8) is the best explanation.

34. http://arongranberg.com/astar/docs/getstarted2.php (accessed April 16, 2014).

35. For an example see: http://forum.unity3d.com/threads/released-ruaumoko-
iso-surface-voxel-mesh-generation-and-terrain-engine.180298/ (accessed March 6, 2014).

FIGURE 8. PointGraph--a more complex SplineController. Illustration taken from Aaron

graph_types.php (accessed March 6, 2015).

21

The musical implications are clear: if the listener is forced to reverse direction in

order to reach a tangential path (at one of the intersecting lists of nodes), then the musical

events assigned to the sequences of nodes must all sound logical in retrograde. In the

illustration above, the node which is shared by two lists could contain musical material

Danny Elfman the listener could chase along in E minor, reach the hinge node/pitch (a

unison B natural), then charge off in another direction (in G sharp minor); or in a purely

electronic music genre, one granulation technique could then be swapped for another.

This is clever but what about compositional issues such as phrases that are meant to

complement each other or create a dialogue effect? Imagine the player as a conductor

moving through the space and cueing musical events—two phrases: antecedent and

consequent:

Here it is possible for the player-conductor to trigger, or cue, the antecedent or

consequent music by colliding with an object containing either of the two scripts below.36

36. You can see that Unity’s naming conventions in C# make function(al) blocks
of code like this extremely legible.

FIGURE 9. Two audioClips as antecedent-consequent. Illustraion by the author.

22

 public AudioClip audioClipAntecedent;
 void OnCollisionEnter() {
 audio.PlayOneShot(audioClipAntecedent, 0.7F);
 }

 public AudioClip audioClipConsequent;
 void OnCollisionEnter() {
 audio.PlayOneShot(audioClipConsequent, 0.7F);
 }

The argument to PlayOneShot is the name of the actual AudioClip which will play; the

value 0.7F which follows the argument scales the object’s AudioSource volume by 70%.

Placing simplistic antecedent/consequent musical events along a uni-directional

spline resembles composing on a traditional, variable-tempo timeline. But how could I

effect retrograde inversions or other valuable compositional methods? Spline controls

offered automation but not solutions for complex musical problems.

GridGraph Graphs

A GridGraph consists of a collection of nodes arranged in a grid-like pattern.

testing during the raycast determines how high an obstacle has to be before it is excluded

if an obstacle is moved or destroyed. An obstacle can be any game object not just a

geometric structure, and for my purposes that object can be a sound source.

FIGURE 11. Code snippet showing a collision-and-play function.

FIGURE 10. Code snippet showing a collision-and-play function.

23

Re-scanning the grid each time a dynamic (non-kinematic) obstacle moves is

computationally expensive with a potential to slow down frame rate.37

Variations in frame rate jeopardize musical rhythmic values, so MonoBehaviour.

FixedUpdate and physics timings must be used instead of MonoBehavior.Update frame

rates.38

37. A good introduction to physics in Unity3D: http://unity3d.com/learn/tutorials/
modules/beginner/physics. Switching objects to a non-kinematic state relieves the CPU
of constantly recalculating its position. This is a confusing use of the familiar word
“kinematic.” For more information see Unity3D’s website tutorials: http://unity3d.
com/learn/tutorials/modules and the scripting reference: http://docs.unity3d.com/
Documentation/ScriptReference/Rigidbody-isKinematic.html (accessed March 7, 2015).

38. MonoBehaviour.FixedUpdate() This function is called every framerate

frame, if the MonoBehaviour is enabled. FixedUpdate should be used instead of Update
when dealing with Rigidbody. For example when adding a force to a rigidbody, you have

FixedUpdate instead of every frame inside
Update.

FIGURE 12. A simple plane with obstacles.

arongranberg.com/astar/docs/graph_types.php (accessed March 6, 2015).

24

example: Maneuvering or automating an object’s movement across an evenly spaced

2D GridGraph at a steady speed implies any music with tight rhythmic structures such

as Balinese Gamelan, or minimalist pattern music. Maneuvering several objects across

2D grid nodes which trigger short percussion sounds with interlocking patterns has the

potential to create hocketing, poly-rhythmic patterns. Swapping out those sounds for

African instruments such as balafon, berimba, inanga, kora, djembe, and sanza has the

potential to create an African musical landscape that is ‘played’ by passing through it.

Maneuvering those objects at slightly different speeds (phase) has the potential to create

the phasing effects as in Steve Reich’s African inspired Drumming (1970/71). I will

discuss this and the creation of an African landscape in a later section.

FIGURE 13. After RayCasting--HeightScanning.

arongranberg.com/astar/docs/graph_types.php (accessed March 6, 2015).

25

NavMesh Graphs

a surface that an AI object can maneuver through. These polygons can be modelled

by hand or automatically generated. Given a mesh (pre-drawn to exclude obstacles),

a NavMesh generator returns a (random looking) array of nodes centered within the

triangulated polygons.

What are the musical implications? If the polygons on the surfaces in the

illustration above are modeled by the game author-composer, then navigable paths and

consequent musical events can be more tightly controlled by the author-composer. For

instance, in Figure 14, a node which is shared by adjacent polygons could serve as a

cadential point with an ambiguous resolution. Placing a chord such as a German-Sixth—

which can resolve in multiple directions—on that node would offer pathways to new

harmonic areas.

FIGURE 14. Auto-Generated NavMesh (as a Georges Braque cubist painting). Illustra-
-

granberg.com/astar/docs/graph_types.php (accessed March 6, 2015).

26

RecastGraphs

A RecastGraph is a type of generator which takes all existing graphs and returns

a complex graph which describes things such as walkable height, walkable climb,

maximum slope, edge length (of generated polygons), and boundaries.39 A RecastGraph

offers limitation for audio dynamics, compression-limiters, dissonance, and many other

musical parameters.

Adding visual elements to a purely musical experience is risky because the visual

with the auditory; the temporal structure of the experience will by dictated by the visual

elements; the entire 3D world and its the visual experience can subsume the musical

experience. Why not distribute triggerable, invisible, sound sources in a nearly blank,

audience expects a rich and mediated (or inter-media) experience. Claire Bishop points

40 In this context graph systems

(and requisite) antagonist in Knots. What was missing was autonomous behavior. To

create game decision-making and intelligent looking movement, it was necessary to add

39. Granberg website: http://arongranberg.com/astar/ (accessed March 14, 2014).

 40. Bishop, “Digital Divide,” 436.

27

Adding Behavior and Other Complexities

target value, the behavior is called Flocking-Following. If all of those same objects have

a lookAt script which forces them to look at the same target, plus a physics script which

starts to look intelligent. But what does this mean for interactive music?

I asked this same question precisely at this point in the development process.

How can I derive musical uses from Flocking-Following? How can I synchronize music

to this visual functionality? The creative work, the work that kept pulling me forward,

formulating a complex if-and-then-else statement.

Here’s a simple example: If each object in a Flock is a freely moving agent

which implements collision physics, and each object has an AudioSource (dissimilar

to all the others) which plays on collision, then the sequence created by their collisions

is in effect a random pitch and rhythm generator. It follows that: altering the speed of

the objects’ movement, the size of their constraining space, and the relationship of all

their pitches, resembles altering distribution and seeding in pseudo-random-number

generation. In addition, Unity can map collision-force to pitch-shift. Taken together,

all these techniques begin to resemble a playable musical instrument, a digital synthesis

engine, embedded in game prototyping software—one of the goals of this project.

This process—prose translated to logical statement translated to actual C# code—

is a common method for constructing algorithms. I only qualify as an ‘enhanced-cut-

and-paste’ programmer but the pedagogical value was clear: C# scripts—components of

28

Object Oriented Programming—can quickly and correctly be comprehended as behavior

in Unity’s 3D visual world. This process is also future-oriented and proves a common

pedagogical maxim: I can participate in the aesthetic, the search for beauty, only if I

improve my programming skills. I was eager for more.

Programming Languages in Unity

Unity3D supports three languages, C#, JavaScript, and Boo. Programmers

prefer C# because it is more strictly typed, its variable and method scope must always be

declared, it implements namespaces; and although it is more verbose, it is faster and safer.

I began this project with modest JavaScript skills but was forced to learn the C# syntax.41

Happily the two languages are very similar.

Of the hundreds of Unity3d online tutorials, most were dedicated to trivial audio:

“when your projectile strikes,” “enter the forest zone and hear birds”, “synchronize your

character’s footsteps,” and others. One of Unity’s own website tutorials showed an

otherwise brilliant instructor stumbling through a presentation on AudioSource while

confessing he didn’t understand waveforms. However, with online C# programming

tutorials I learned to write scripts as components of AudioSource objects, use

physics library collisions, and even write esoteric methods such as GameObject[dot]

GetComponent(ScriptName)which addresses and triggers functions within scripts on

any object in the game regardless of its proximity, physics collisions, or triggers.

In the illustration below (Figure 15), the small circles represent nodes on

splineControls; each circle represents an audio collision zone. If I were to multiply this

single (base) neuron into a matrix—the net of Indra’s Pearls—my audio functionality

 41. See Microsoft Developer Network at http://msdn.microsoft.com/en-us/
library/ms173104.aspx (accessed March 6, 2015).

29

would be distributed chaotically all over the gameSpace and I would never be able to

locate and manage the audio programming.

Choosing an AudioEditorInterface

From the beginning I was aware I might need an audio editor interface plugin.

AudioEditors such as FMod and WWise are used in the industry by sound designer-

Sound designer-composers usually cede control of their designs and music to these other

editors in the later stages of game development. WWise and FMod would not give me

access to methods for audio design at the script-component level. Additionally, FMod

and WWise did not give me access to Unity’s own Echo, Distortion, High/Low Pass, or

FIGURE 15. Unity 3D editor--SceneView showing splineControls with nodes.
Illustration is a screenshot of Unity’s editor panel from the author’s computer.

30

often confusing GUI (graphical user interface).

Audio Technologies at Berkeley) for any work on a Unity 3D audio editor interface. I

found toolkits such as Bukvic’s [myu] for interfacing Max/MSP/Jitter to Unity through

TCP network packets and other interesting interfaces but no audio editor interface. Even

if I had found one, I could not use it. Using Max/MSP/Jitter or PureData would require

users of my project to install and maintain esoteric software that could not be ported to

 As could be expected in a 64-billion dollar industry, there are a lot of gaming

assets for sale. I learned early on not to trust everything. After purchasing an animated

Forum. The publisher, O4karitO, had merely repackaged something a programmer had

offered to the community for free. There were software packages using the buzz word

“procedural audio” that offered the functionality of a vintage Arp260042 complete with

Max-style patchcord editing, SFX players that offer randomization of pitch and volume,

and other useful plugins available but nothing with the complexity I needed.43

Then I found Brian Hunsaker’s audio interface for Unity. His audio editor

plugin, MasterAudio, pools audio resources and their controls into one component in the

Documentation/ScriptReference/Rigidbody-isKinematic.html (accessed May 20, 2014).

43. https://www.assetstore.unity3d.com/#/content/2647 or http://unity.clockstone.
com/assetStore-audioToolkit_Tutorial.html (accessed April 10, 2014).

31

game hierarchy.44 Its GUI is clean and intuitive. His Synkro feature offers synchronous

multitrack audio with dynamic cross-fading, meaning a complete multi-voiced score

could be started, individual tracks could be featured, and then cross-faded to other tracks.

This is not unique to Master Audio. It is a common technique in WWise and FMod

for footsteps on gravel changing to footsteps on concrete, or the changing angle of a

snowboard on hardpack snow. Brian Hunsaker’s implementations and the structure of his

GUI seemed tailored for music, plus it maintained the availabilty of all the non-synced

techniques.

How does Master Audio pool audio resources and their control into one game

component? First an explanation of 2D vs. 3D sounds: 2D AudioSources are normally

stationary sounds such as the music score; 3D AudioSources emanate from a precise

point in the 3D space. Sound effects are generally 3D.

Both 3D AudioSources and their listener can be in motion; the effect of that in

two-channel audio is a simple pan; in multi-channel surround (up to 7.1), 3D sounds are

always heard relative to their positions in 3D space. A familiar use is a car chase. In

a scene with moving vehicles Hunsaker’s Master Audio says in effect, “I have the 3D

audioClip for the passing vehicle here in an audio bin, I will play it as it passes but I will

play it at the Caller Location.” The caller is the passing vehicle itself.

shows one of Master Audio’s EventSounds scripts in Unity’s inspector. EventSounds is a

long and complex C# script which exposes its public variables in the inspector. Note the

Sound Spawn Mode at the top and the list of controls below.

44. Dark Tonic Games Studio at: http://www.darktonic.com (accessed March 7,
2015).

32

screenshot from the author’s computer showing MasterAudio group bins.

FIGURE 17. One eventScript in Unity’s Inspector. Illustration: a screenshot from the
author’s computer of Unity’s editor inspector.

33

FIGURE 18. Spline nodes--each with event scripts. Illustration: a screenshot from the
author’s computer of Unity’s editor panel.

34

CHAPTER 2

CASE STUDIES

Case Study 1--Ice Caves: A Meltable Terrain

This is a case study of how to adapt an existing asset—in this case an entire scene

and procedurally generated and destroyed walls of ice.

Ice Caves is a small navigable environment without audio written by Dr.

Benjamin Day Smith, Professor of Computational Design at Case Western Reserve

University. It is bundled with an editor suite of C# scripts called Ruaumoko which I

purchased from him through the Unity3D website AssetStore.1 There are scripts in Ice

Caves which procedurally generate environments which can be altered or destroyed with

other deformation scripts. These deformation scripts are attached to a raycast laser beam

or to mouse point-and-click operations.2 The gameplay requires the player to melt his

way out of an ice-enclosure with a raycast laser beam—a fanciful plasma cutter. I wanted

to use lines of Smith’s C# code to generate interactive musical elements synchronous

1. https://www.assetstore.unity3d.com (accessed March 10, 2014).

 2. For more information on raycasting see: http://docs.unity3d.com/
ScriptReference/Physics.Raycast.html (accessed March 7, 2015).

35

The Process--Search for the Variable

the player, it was a matter of drilling down into the hierarchical structure of the scene and

Light1 or Light2 (Figure 19). Unity 3D’s companion Script Editor is MonoDevelop—a

cross-platform IDE (integrated development environment) primarily designed for C# and

other .NET languages.3 It is a source code editor, compiler, and debugger. Attached to

each of the two lights in Ice Caves’s FPC heirarchy was a JavaScript component named

“Light_Flicker.js.” Double-clicking on a script component in Unity’s inspector opens it

in MonoDevelop for editing.

3. http://monodevelop.com/ (accessed April 27, 2014).

FIGURE 19. The Hierarchy in Unity’s Editor. Screenshot from the author’s computer.

36

FIGURE 20. Light_Flicker open in MonoDevelop. Screenshot from the author’s
computer.

//Light_Flicker.js

function Start () {

 if(light){
 InvokeRepeating(“OneLightChange”, time, time);

 }
 else{
 print(“Please add a light component for light

 }
}

function OneLightChange () {
 light.range = Random.Range(min,max);
}

 function PlayAudio () {

FIGURE 21. Light_Flicker.js

37

In the play mode the Light_Flicker.js script generates a near-metronomic

value that, for a composer, feels like 16th notes at @70 bpm—useful for music.

To translate the JavaScript code above: when the script is started, presumably by

the FPC, the Start function calls a cycling function named InvokeRepeating. This in

turn invokes a co-routine named OneLightChange repeatedly during the time the light

is on. Unity3D’s documentation describes a light’s diameter as its range; so here range

in light.range is assigned to a number which varies randomly between min and max.

diameter is altered by Random.Range(min,max).

I altered the original script by adding public variables for PitchMin,PitchMax,

SoundSyncToLight, and cutoffFrequency, all bound up in the co-routines playAudio

and pitchShift shown at the bottom of the script.

FIGURE 24. My adapted script for Light_Flicker.js and the corresponding game
object in Unity’s inspector. Screenshot from the author’s computer.

38

 audio.PlayOneShot(soundSyncToLight);
 }

 function PitchShift () {
 audio.pitch = Random.Range(min, max);
 audio.volume = Random.Range(min, max);
 GetComponent(AudioLowPassFilter).cutoffFrequency =

 }

//Light_Flicker.js

var soundSyncToLight : AudioClip;

function Start () {

 if(light){
 InvokeRepeating(“OneLightChange”, time, time);
 InvokeRepeating(“PitchShift”, time, time);
 InvokeRepeating(“PlayAudio”, time, time);
 }
 else{
 print(“Please add a light component for light

 }
}
function OneLightChange () {
 light.range = Random.Range(min,max);
}
 function PlayAudio () {
 audio.PlayOneShot(soundSyncToLight);
 }
 function PitchShift () {
 audio.pitch = Random.Range(min, max);
 audio.volume = Random.Range(min, max);
 //GetComponent(AudioLowPassFilter).cutoffFrequency

 }

FIGURE 22. My adapted script for Light_Flicker.js.

FIGURE 23. An additional PitchShift script for Light_Flicker.js.

39

Figure 24 above shows my adapted script on the left and Unity’s inspector for

Light1 on the right. My four new public variables from the top of the script are exposed

in the inspector. My adapted script’s new user variable SoundSyncToLight takes an

AudioClip., meaning, the sound for the Light_Flicker can be changed by drag/

dropping any audio clip that has been loaded into the project’s asset folder onto the name

way—or better yet changed dynamically with other scripts during the game play. For

instance, the script’s GetComponent(AudioLowPassFilter).cutoffFrequency =

 is a way of accessing the cutoff frequency

of the LowPassFilter component attached to this same object.

The time, time arguments in the InvokeRepeating(“OneLightChange”,

time, time) were unfamiliar to me, but found I found a description and example code

in Unity’s application programming interface (API):

FIGURE 25. Unity’s well-documented API with code examples. Screenshot from au-
thor’s computer.

40

Case Study 2--Audio in 3D Space

Using the Unity’s API to Create Multi-Channel Effects

Here is a look at the scripting reference for one component (AudioSource) and

one of its assignable behaviors called the (PlayClipAtPoint) method.

The Unity scripting reference in Figure 26 is very clear: when this script is

enabled, a sound emanates from a point 5 meters to the right, 1 meter above, and 2 meters

forward of the center of the game’s world. How could this be used? The programmer

could create a portal in space that can enable this script. If the player crosses the portal

this script is enabled with the (Start() function), and the player hears a musical phrase

FIGURE 26. Script example from Unity’s API. Screenshot from the author’s computer.

41

Here is a variation: the programmer can add additional audio sources (clips 1-4)

and alter their positions to form a square around the center of the world (see Figure 27):

 public AudioClip clip4;

 void Start()
 {

 }

If the player is at the center of the world (0,1,0) when the script is enabled, the

player hears a quadraphonic surround-sound effect. If the audio clips are taken from true

multi-channel, surround-sound recordings, the effect could be stunning.

I have always considered multi-channel surround sound to be an expressive tool

in a composer’s kit. It is largely misused. In the 1970’s Roger Reynolds from UC San

Diego announced exciting new quadrophonic re-mixes of all his previous electronic

music. But listeners still sat passively and received his authorial presence—from two

additional directions. And what can we make of Kraftwerk’s recent surround-sound,

stereoptic concerts for Disney Hall’s passive Society of the Spectacle audience?

FIGURE 27. Code snippet for a surround-sound effect. From the author’s computer.

42

Guy DeBord railed against this dangerous passivity in 1967, saying: “In societies

where modern conditions of production prevail, all of life presents itself as an immense

accumulation of spectacles. Everything that was directly lived has moved away into a

representation.”1

Intermedia? Interactivity? Interactive Musical Composition in Game Prototyping

Software? Can any of this move art praxis toward social practice—or even viable music?

Return to the Thesis Questions and Conclusions

So returning to the thesis question—“Could computer game prototyping software

tools be adapted to create controls for interactive digital music?”—and to the challenges

given by Joseph Beuys and Claire Bishop, what conclusions has my work led me to

so far? Throughout the paper I’ve tried to force the technical issues to interrogate the

aesthetic questions; to have them “speak up to” any social (wide-audience) uses of an

interactive musical composition in a popular and free WebGL player; to have the users

of Knots feel empowered through gaining knowledge of its system—knowledge of the

intelligent other which is present inside the game; and to feel they are the composers of

their own musical-visual experience.

I was discovering. It seemed that any parameter of Unity’s visual world—any dynamic

generated surface—could be accessed and used for musical purposes. It would take more

programming skill than I possess now, but the challenge and potential is exciting.
1. https://www.marxists.org/reference/archive/debord/society.htm (accessed

March 7, 2015).

43

In its present version Knots is a neural network resembling the Hindu concept

of the Pearls of Indra—a visual realization of an ancient philosophic concept but also a

metaphor for our overly-mediated and networked contemporary lives. It is both a micro-

world and a cosmology.

FIGURE 29. Approaching the Core. Screenshot from the author’s computer.

FIGURE 28. Inside the Myelin Sheath - Navigating to the Soma Core. Screenshot from
the author’s computer.

44

FIGURE 30. Peering Into the Soma Core--Where Shiva, Choked by a Snake, sits in
Meditation. Screenshot from the author’s computer.

45

APPENDIX

RECITAL PROGRAM

46

PLEASE SILENCE ALL ELECTRONIC MOBILE DEVICES.

WEDNESDAY , MAY 14, 2014

WITH GUEST ARTISTS

 CHRISTINE LI, Soprano

LUC KLEINER, Baritone

GERALD R. DANIEL RECITAL HALL

NICK VENDEN
Media Composer

IN A
GRADUATE RECITAL

AND ALUMINUM SKIN

47

PROGRAM
Please hold applause until the end of group

Although I Remember the Sound (2013)poetry by robert Huff

Let It Be Forgotten (2013)...................................... poetry by Sara Teasdale

Crazy jane Talks with the Bishop (2013).....................poetry by W. B. Yeats

Luc Kleiner—baritone
Nick Venden—piano

* * *

The Wild Iris...poetry by Louise Gluck

Christine Li—soprano
Nick Venden—piano

* * *
Although I Remember the Sound—Remediated (2014)........poetry by Robert Huff

The Voyeur—video (2012).
Images and Score by Nick Venden

Home Home Home—video (2013)
Images and Score by Nick Venden

Kaija Rose Hansen—violin
Pham duc Thanh—dan bau

Data Fetish Cave—multimedia with xBox kinect camera contollers (2012)

No Horizon—Film (2012-13)...Keenan J Mock
Score by Nick Venden

INTERMISSION
Aluminum Skin—a Hyperopera (2014) ...collaboration

Christine Li—soprano
Eric Malczewski—projectionist

2

48

PROGRAM NOTES
The Voyeur represented CSULB in the state-wide Media Arts Showcase
2013. Everything—cinematography, script, direction, editing, ADR
engineering, musical score—is by Nick Venden.

 Home Home Home is from an installation at the Vilcek Foundation Gallery
NYC 2013. The AfterEffects-composited images were a commission from
artist Brian Doan. Thank you to the Vilcek Foundation for their permission.

Data Fetish Cave was composed for the CCM Laptop ensemble and employs
four xBox 360 kinect cameras as controllers. The video is the score.

No Horizon
multiple revisions and was featured in the Newport Beach Film Festival
2013.

Aluminum Skin—a hyper opera written in collaboration by Kaija Hansen,

video, motion graphics, and editing by Nick Venden.

Additional video production by Eric Pham, Gustavo Silveira, and Zaq

 PERSONNEL

ALUMINUM SKIN
Kaija Hansen—violin

Eric Pham—guitars, vocal
Gustavo Silveira—guitar, keyoards
Nick Venden—keyboards

3

49

For ticket information please call 562.985.7000 or visit the web at:

This concert is funded in part by the INSTRUCTIONALLY RELATED ACTIVITIES FUNDS (IRA) provided by California State University, Long Beach.

Nick Venden is a student of Dr. Adriana Verdié de Vas-Romero
and has studied with

Dr. Alan Shockley, Dr. Martin Herman, George Wheeler,
and Perry La Marca

the
MASTER OF MUSIC DEGREE

with an option in
COMPOSITION WITH INTERACTIVE TECHNOLOGY

For the entire compostion faculty and student-colleagues at the CCM
thank you.

50

BIBLIOGRAPHY

51

BIBLIOGRAPHY

Auslander, Phillip. Liveness: Performance in a Mediatized Culture.
 New York: Routledge, 2004.

Baker, George. “Relations and Counter-Relations: An Open Letter to
 Nicolas Bourriaud.” In Contextualize/zusammenhängend herstellen. Köln:
 Kunstverein Hamburg/Dumont Verlag, 2002.

Barthes, Roland. Image, Music, Text. Edited and translated by Stephen Heath.
 New York: Hill & Wang, 1977.

Bishop, Claire. “Antagonism and Relational Aesthetics.” October 110 (Fall 2004):
 51-80.

Bishop, Claire. “Digital Divide.” ArtForum 51, no.1 (September 2012):
 436.

Bohnacker, Hartmut. Generative Design. New York: Princeton Architectural
 Press, 2012.

Bourriaud, Nicolas. Relational Aesthetics. Translated by Simon Pleasance, Fronza
 Woods, and Mathieu Copeland. Dijon, France: Les Presses Du
 Reel, 2002.

______. “Berlin Letter about Relational Aesthetics.” In Berlin Biennale 2001,
 edited by Annie Flethcher and Bos Sasakia. Köln: Oktagon Verlag,
 2001.

______. Postproduction: Culture as Screenplay: How Art Reprograms the world.
 Edited by Caroline Schneider. Translated by Jeanine Herman.
 New York: Lukas & Sternberg, 2005.

Buchloh, Benjamin H. D. “An Interview with Thomas Hirschhorn.”
 October 113 (Summer 2005): 77-100.

52

Bukvic, Ivica. “Innovation, Interaction, Imagination.”
 In Proceedings of the International Computer Music Association. San
 Francisco: International Computer Music Association, 2011.

 In Proceedings of the 35th International Computer Music
 Conference. San Francisco: International Computer Music
 Association, 2009.

Bukvic, Ivica and Scott Betz. “Using Gaming Engine for Virtual
 Prototyping and Impact Assessment of Complex Interactive Art
 Installations.” Edited by Monty Adkins and Ben Isaacs.
 Proceedings of the International Computer Music Association. San
 Francisco: International Computer Music Association, 2011.

Dean, Tacita. (untitled) October 100 (Spring 2002): 26-27.

De Duve, Thierry. “Why Was Modernism Born in France?” ArtForum 52, no.5
 (January 2014): 192.

Deweppe, Alexander. “A Methodological Framework for the Development and
 Evaluation of User-centered Art Installations.” Journal of Interdisciplinary
 Music Studies 5, no.1 (Spring 2011): 19-39.

Erika Fischer-Lichte, “Performance Art and Ritual: Bodies in Performance.”
 Theater Research International 22 (1997): 25.

Fischer-Lichte, Erika. Performance Art and Ritual: Bodies in Performance.
 Edited by Philip Auslander. New York: Routledge, 2003.

Foster, Hal. “An Archival Impulse.” October 110 (Fall 2004): 3-22.

Foucault, Michel. Discipline and Punish. Translated by Alan Sheridan. New York:
 Random House, 1978.

Fried, Michael. “Art and Objecthood.” ArtForum 5, no.10 (June, 1967):
 12-23.

Gough, Maria. “Kentridge’s Nose.” October 134 (Fall 2010): 3-27.

Kelsey, John. “Next-Level Spleen.” ArtForum 51, no.1 (September, 2012):
 412-415.

53

Kentridge, William. “Some Thoughts on Obsolescence.” October 100
 (Spring 2002): 16-18.

Knabb, Ken, ed. Situationist International Anthology. Berkley: Bureau of Public
 Secrets, 1995.

Kolbowski, Silvia. (untitled) October 100 (Spring 2002): 36-39.

Kotz, Liz. “Post-Cagean Aesthetics and the ‘Event’ Score.” October 95
 (Winter 2001): 54-90.

Krauss, Rosalind. “Video: the Aesthetics of Narcissism.” October 1
 (Spring 1976): 50-64.

Manovich, Lev. The Language of New Media. Cambridge, MA: MIT Press, 2001.

Marks, Laura U. The Skin of the Film: Intercultural Cinema, Embodiment,
 and the Senses. Durham: Duke University Press, 2000.

Michelson, Annette. “The Sound of Music: A Conversation with Michael Snow.”
 October 114 (Fall 2005): 43-60.

Pare, Andre-Louis. “Humour, Games, and Playfulness: What Are We Playing?”
 Espace 77 (August 2006): 8-14.

Merleau-Ponty, Maurice. “Eye and Mind.” The Primacy of Perception.
 Edited by James M. Edie. Translated by CarletonDallery. Evanston:
 Northwestern University Press, 1964.

Meyer, Leonard B. Emotion and Meaning in Music. Chicago: Chicago University
 Press, 1956.

Prince, Stephen and Wayne E. Hensley. “The Kuleshov Effect:
 Recreating the Classic Experiment.” Cinema Journal 31, no. 2
 (Winter 1992): 59-75.

Rancière, Jacques. The Politics of Aesthetics: The Distribution of the Sensible.
 London and New York: Continuum, 2004.

______. Malaise dans l’Esthétique. Paris: Galilée, 2004.

______. “Problems and Transformations in Critical Art.” In Participation, edited
 by Claire Bishop, 83-93. White Chapel: Documents of Contemporary Art.
 Cambridge, MA: MIT Press, 2006.

54

______. “The Art of the Possible.” ArtForum 45, no. 7 (March 2007):
 256-269.

______. The Future of the Image. London and New York: Versa, 2007.

______. The Emancipated Spectator. Translated by Gregory Eliot. London
 and New York: Versa, 2009.

Ragona, Melissa. “Hidden Noise: Strategies of Sound Montage in the Future
 of Hollis Frampton.” October 109 (Summer 2004): 96-118.

Reddy, Harika. PATH FINDING - Dijkstra’s and A* Algorithms, December 13, 2013.
 http://cs.indstate.edu/hgopireddy/algor.pdf (accessed March 8, 2015).

Rubenstein, Helena. Play’s the Thing: Critical and Transgressive Practices in
 Contemporary Art. New York: Whitney, 2001.

Shusterman, Richard. Performing Live. Aesthetic Alternative for the Ends of Art.
 Ithaca and London: Cornel University Press, 2000.

Singerman, Howard. “Sherrie Levine’s Art History.” October 101 (Summer
 2002): 96-121.

Stucky, Steven. Cambridge: Cambridge University
 Press, 1981.

Wood, James. How Fiction Works. New York: Farrar, Straus and Giroux,
 2008.

