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ABSTRACT 

 

SUBGROUP ANALYSIS BASED ON PROGNOSTIC AND PREDICTIVE GENE 

SIGNATURES FOR ADJUVANT CHEMOTHERAPY IN EARLY-STAGE  

NON-SMALL-CELL LUNG CANCER PATIENTS 

By 

Dustin Pluta 

May 2015 

In treating patients diagnosed with Stage I non-small-cell lung cancer, doctors 

must choose between surgery and Adjuvant Cisplatin-Based Chemotherapy (ACT).  For 

patients with resected stages IB to IIIA, clinical trials have shown a survival advantage 

from 4-15% with the adoption of ACT.  However, due to the inherent toxicity of 

chemotherapy, it is necessary for doctors to identify patients whose chance of success 

with ACT is sufficient to justify the risks.  This project seeks to use gene expression 

profiling in the development of a statistical decision-making algorithm to identify 

patients whose survival rates will improve from ACT treatment.  Using data from the 

National Cancer Institute, the Cox-Proportional-Hazards regression model will be used to 

determine a feasible number of genes that are strongly associated with the treatment-

related patient survival.  Considering treatment groups separately, patients are assigned a 

risk category determined by survival time.  These risk categories are used to develop a 
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random forest classification model to identify patients who are likely to benefit 

from chemotherapy treatment.  The probability of significant benefit from chemotherapy 

is then predicted using a regression survival tree.  This model allows the prediction of a 

new patient’s prognosis and the likelihood of survival benefit from ACT treatment based 

on a small number of gene expression levels. 
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CHAPTER 1 

 

INTRODUCTION 

In a clinical setting, doctors must frequently weigh both conventional and non-

conventional medical options to optimize the quality of life and chances of survival for 

their patients.  For patients currently diagnosed with Stage I non-small-cell lung cancer 

(NSCLC), the standard treatment remains as surgery alone.  However, it has been 

statistically proven that 30 to 40% of this sample population will relapse, demonstrating 

that patients with a poorer prognosis would benefit from Adjuvant Cisplatin-Based 

Chemotherapy (ACT) (Zhu et al. 2010).  Additionally, current practice is to treat all 

Stage II patients with ACT, but it is not evident that all such patients receive benefit from 

ACT. 

The adoption of ACT for patients with resected stages IB to IIIA NSCLC was 

greatly boosted by clinical trials which showed a 5-year survival advantage ranging from 

4% in the International Adjuvant Lung trial to 15% in National Cancer Institute of 

Canada Clinical Trials (Zhu et al. 2010).  However, the toxicity of ACT is inevitable.  

The goal of the present analysis is to use gene expression profiling to identify stage-

independent groups of patients who will benefit from ACT, and distinguish other groups 

of patients who will need to discontinue or forgo ACT treatment to avoid unnecessary 

toxicity.  This will lead to a more accurate treatment decisions, thereby improving the 

efficacy of ACT treatment. 
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Numerous previous studies have sought to identify prognostic gene signatures in 

NSCLC patients (Lu et al. 2006; Raponi et al. 2006; Chen et al. 2007).  In particular, the 

study by Zhu et al. (2010) identified a 15 gene signature able to classify NSCLC patients 

into high-risk and low-risk groups from four independent data sets.  The results of their 

analysis showed that high-risk patients who received ACT resulted in an improved 

prognosis, while the low-risk group showed no benefit from ACT, with the treatment 

possibly having a detrimental effect.  The effectiveness of the gene signature found by 

Zhu et al. strengthens the possibility of developing personalized treatment plans for 

cancer patients from patient-specific genetic data. 

We here apply a modification of the “virtual twins” regression (VTR) method 

proposed by Foster, Taylor, and Ruberg (2011) for the identification of a subgroup of 

patients who are at greater likelihood of receiving significant survival benefit from ACT 

treatment.   

As part of the first stage of this method, we develop a random forest classification 

algorithm of NSCLC patients based on microarray data of gene expression levels that is 

prognostic of survival for patients receiving surgery only, and also predictive of benefit 

from ACT treatment in the JBR.10 data set, which is the result of a randomized phase III 

clinical trial for comparing ACT treatment against surgery alone.  After detailing the 

construction of the development of the patient categorizations and random forest model, 

we summarize the classification as an algorithm for determining whether a patient should 

receive ACT treatment.  Model accuracy is estimated via cross validation and accuracy 

for prognosis of survival without ACT treatment is further validated through application 

to an independent test set that was generated to validate the results of Zhu et al (2010). 
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The second stage of the VTR method uses treatment effect estimates calculated in 

the first stage as response variables in a regression tree, with gene expression levels as 

predictors.  From the regression tree, a region of enhanced treatment effect is identified as 

a subset of the predictor space, defined by a small number of genes.  The magnitude of 

the enhanced treatment effect for this region is estimated using the bias-corrected 

bootstrap method proposed by Foster, Taylor, and Ruberg (2011).
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CHAPTER 2 

STATISTICAL BACKGROUND 

2.1 CART Algorithm 

The classification and regression tree (CART) algorithm introduced by Breiman 

et al. (1984) offers a nonparametric approach to classification and regression problems, 

and can also be adapted for survival data.  Considering a classification problem with 𝑘 

classes, 𝑝 predictors, and 𝑛 observations, the CART algorithm begins with a root node 

containing all observations.  This node is split into two child nodes according to a 

splitting criterion determined based on one predictor such that the split minimizes an 

impurity measure.  For classification problems, the impurity measure is the Gini impurity 

index, which is calculated as 𝑖(𝑡) = 1 −  ∑ 𝑝2(𝑘|𝑡)𝑘  for a node 𝑡 (Ahn and Moon 2010).  

Nodes are recursively split by choosing the next split to maximize the reduction in 

impurity, defined as ∆𝑖(𝜃, 𝑡) =  𝑖(𝑡) − [𝑝𝑙𝑖(𝑙) + 𝑝𝑟𝑖(𝑟)], where 𝜃 is a split of node 𝑡 into 

nodes 𝑙 and 𝑟 with a proportion 𝑝𝑙 of observations in 𝑡 going to 𝑙, and proportion 𝑝𝑟 

going to 𝑟 (Ahn and Moon 2010).  Splitting continues until a stopping criterion is 

reached.  The default stopping criterion suggested by Breiman et al. (1984) is terminate 

the algorithm when all nodes either contain a single class or have size 𝑁(𝑡) ≤ 5 for all 

nodes 𝑡, where 𝑁(𝑡) is the number of observations in 𝑡; the R implementation of CART 

in the package rpart uses a default stopping criterion of 𝑁(𝑡) = 20.  The optimal 
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minimum node size can be determined using cross-validation.  For prediction in 

classification problems, each terminal node (also known as leaf nodes) in the resulting 

tree is assigned an overall class equal to the majority class in the node.  The predicted 

class of a new observation is the class of the terminal node that the new observation 

belongs to.  For regression and survival data, the CART algorithm can be applied using 

different impurity measures, typically mean-square error for regression, and the log-rank 

test statistic for survival data. 

 One potential problem of the CART algorithm is overfitting the training data, 

which occurs when trees are grown too deeply, resulting in decision boundaries that 

closely track the classes of the training sample.  A common approach to avoiding this 

problem is the application of cost-complexity pruning.  For a tree 𝑇, let 𝑅(𝑇) be an 

estimate of the tree misclassification rate, and |�̃�| be the number of terminal nodes in the 

tree.  For a predefined complexity parameter 𝛼, the cost-complexity measure 𝑅𝛼(𝑇) is 

defined as 

𝑅𝛼(𝑇) = 𝑅(𝑇) +  𝛼|�̃�|. 

Starting with a deeply grown tree, cost-complexity pruning constructs a nested sequence 

of subtrees by successively deleting branches to minimize 𝑅𝛼(𝑇) (Tibshirani, Friedman, 

and Hastie, 2009).  The resulting tree with minimum 𝑅𝛼(𝑇) will producer coarser 

decision boundaries (due to fewer terminal nodes) and thus be less prone to overfitting. 

A related problem for CART is high-variance in the tree structure with respect to 

changes in the sample data (Bou-Hamad, Larocque, and Ben-Ameur 2011).  The decision 

boundaries produced by the CART algorithm are rectilinear boundaries parallel to the 
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variable axes.  Small variations in the data can produce changes in the tree structure by 

causing splits with different predictors or introducing additional splits.  Changes in the 

tree structure are likely to result in large shifts in the decision boundaries, with the result 

that small changes in the training data can result in significantly different predictions.  

This high-variance is of particular concern when working with noisy data or data with 

many predictors that are not strongly correlated with the response, as is the case with 

microarray data. 

2.2 Random Forests 

Ensemble methods such as bootstrap-aggregating (“bagging”), random forests, 

and boosting have been shown to effectively reduce the variance of CART and improve 

the overall predictive accuracy (Tibshirani, Friedman, and Hastie 2009; Bou-Hamad, 

Larocque, and Ben-Ameur 2011).  Boosting is the basis for the effective AdaBoost 

algorithm (Tibshirani, Friedman, and Hastie 2009), which grows a sequence of small 

trees, with each tree fitted to the residuals of the previous tree, instead of the response 

itself.  Alternatively, bagging produces an ensemble of trees, each grown from a 

bootstrapped sample of the original training data.  From this ensemble, the predicted class 

of a new observation is determined by majority vote of the predictions of the trees in the 

ensemble.  Random forests are a modification of the bagging method that improves 

performance through decorrelating the trees in the ensemble (Breiman 2001). 

The bagging method grows each tree by considering all 𝑝 predictors from the data 

set, consequently the structures of the trees in the ensemble are highly correlated.  

Because of this correlation, the most significant predictors are likely to occur in many 
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trees in the ensemble, and thus bagging may still be susceptible to high-variance and 

dependency on the training data.  For the random forest method proposed by Breiman 

(2001), instead of considering all predictors for every tree, each tree is grown considering 

a random selection of 𝑚 predictors from the total set of predictors.  By randomly 

selecting a subset of predictors, the correlation of the trees in the ensemble is reduced, 

leading to a greater reduction in variance for the random forest model compared to simple 

bagging.   

To see how decorrelation improves performance, consider a sample of 𝐵 

identically distributed (but not independent) random variables 𝑋𝑖, 𝑖 = 1, … , 𝐵, with 

variance 𝜎2 and positive pairwise correlation 𝜌.  The variance of the average is 

                      𝑉𝑎𝑟 (
1

𝐵
∑ 𝑋𝑖

𝐵
𝑖=1 ) =  

1

𝐵2 [∑ 𝑉𝑎𝑟(𝑋𝑖
𝐵
𝑖=1 ) + 2 ∑ ∑ 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)𝑖−1

𝑗=1
𝐵
𝑖=1 ] 

                                                 =  
1

𝐵2
[𝐵𝜎2 + 2𝜌𝜎2 ∑ (𝑖 − 1)𝐵

𝑖=2 ] 

                                                  =
𝜎2

𝐵2 [𝐵 + 2𝜌 (
𝐵(𝐵−1)

2
)] 

                                                   = 𝜎2 [
1

𝐵
+ 𝜌

(𝐵−1)

𝐵
] 

                            𝑉𝑎𝑟 (
1

𝐵
∑ 𝑋𝑖

𝐵
𝑖=1 ) = 𝜌𝜎2 + 

1− 𝜌

𝐵
𝜎2 

Since the variance of the average performance of an ensemble of predictions increases as 

the correlation of the predictions increases, the benefits of averaging the bagged trees is 

limited by the correlation of the trees.   

As an additional advantage over CART, bagging, and boosting, Breiman (2001) 

proved random forests do not overfit the data, even for a very large number of trees.  

Random forest decision boundaries tend to be axis-oriented due to the nature of the tree 
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decision boundaries, but the ensemble voting allows for much more dynamic boundaries 

than sharp rectilinear edges.  A thorough analysis of the operation of random forests is 

given in Tibshirani, Friedman, and Hastie (2009). 

The main parameters for the random forest method are the number of trees to 

grow, 𝑛𝑡𝑟𝑒𝑒, and the number of predictors to try per tree, 𝑚.  These values can be chosen 

to minimize the estimated classification error using cross-validation.  The random forest 

method is implemented in the R package randomForest; for classification problems the 

default parameters are 𝑛𝑡𝑟𝑒𝑒 = 500, 𝑚 =  √𝑝.  These values have been shown to have 

consistently good results across a variety of problems (Ahn and Moon 2010). 

2.3 Virtual Twins Regression 

Virtual twins regression is a statistical approach to the problem of estimating the 

effect of a treatment on a population of patients proposed by Foster, Taylor, and Ruberg 

(2011) (e.g., lung cancer patients undergoing chemotherapy).  Assume our data consists 

of 𝑛 =  𝑛0 + 𝑛1 total patients, with 𝑛0 control group patients and 𝑛1 treatment group 

patients, such that each patient 𝑖 is assigned a treatment Ti  ∈ {0, 1}, with Ti = 0 

corresponding to the control group, Ti = 1 corresponding to the treatment group.  Let 

Yi  ∈ {0, 1} be the response for patient 𝑖; we here consider Yi = 1 to be a negative disease 

outcome, such as death.  A region of enhanced treatment effect 𝐴 is a region of the 

predictor space such that patients who are classified in 𝐴 are at greater likelihood of 

benefit from the treatment Ti = 1.   

Virtual twins regression estimates this region by �̂� with a two-stage model.  The 

first stage of VTR builds independent random forests from both treatment groups.  The 
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treatment effect estimate 𝑍𝑖 for patient 𝑖, with predictors Xi is Zi = P̂1i − P̂0i, where P̂0i =

P(Yi  = 1 | Ti = 0, Xi) and P̂1i = P(Yi  = 1 | Ti = 1, Xi).  If the true treatment for patient i 

is Ti = j, then P̂ji is estimated by the out-of-bag estimate from the random forest for T =

j, and P̂(1−j)i is estimated by applying the random forest for T = 1 − j and setting  P̂(1−j)i 

equal to the percentage of votes that predict Yi = 1. 

These estimated treatment effects are then used as response variables in a 

regression tree, trained on the union of treatment groups, and including all predictors 

considered in the random forests.  The terminal nodes with predicted effect greater than 

some threshold c define the estimated enhanced treatment effect region �̂�, which will 

depend on a small number of predictors.  Foster, Taylor, and Ruberg (2011) recommend 

picking 𝑐 =  𝛿 − 0.05 or 𝑐 =  𝛿 − 0.1, where 𝛿 = 𝑃(𝑌 = 1 | 𝑇 = 1) − 𝑃(𝑌 = 1 | 𝑇 =

 0) is the estimate of the population treatment effect.  In the sequel we adopt 𝑐 =  𝛿 −

0.05. 

2.4 Bias-corrected Bootstrap 

The enhanced treatment effect of the VTR model can be estimated using the bias-

corrected bootstrap method, which has been shown to produce more accurate estimates in 

most instances compared to competing methods (Foster, Taylor, and Ruberg 2011).  We 

first examine the general structure of the bias-corrected bootstrap method, followed by 

the specific application to the VTR model.  Consider 𝑛 discrete random variables 𝑋 =

 (𝑋1,  𝑋2, … , 𝑋𝑛), with unknown true distribution 𝑝(𝑋).  For given data 𝐷 sampled from 

𝑋, the basic bootstrap procedure constructs 𝐵 bootstrap samples 𝐷(𝑏), 𝑏 = 1, … , 𝐵.  

Define the empirical distribution of 𝐷 as 𝑝(𝑥) = 𝑛(𝑥)/𝑛, where 𝑛(𝑥) is the frequency of 
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𝑥  in 𝐷.  From these bootstrapped samples, a statistic 𝑇(𝑋) can be estimated by �̂�(𝑋) =

 
1

𝐵
∑ 𝑇(𝐵

𝑏=1 𝐷(𝑏)), where 𝑇(𝐷(𝑏)) is computed from the empirical distribution 𝑝�̂� of 𝐷(𝑏).  

The estimated bias of the statistic 𝑇 is Bias�̂� = 𝐸𝑏[𝑇(𝐷(𝑏))] − 𝑇(�̂�).  The bias-corrected 

bootstrap estimate of the statistic 𝑇 is then calculated from the sample 𝐷 as 𝑇𝐵𝐶(𝐷) =

 𝑇(𝐷) −  Bias𝑇 (Steck and Jaakkola 2003; Efron and Tibshirani 1993). 

Foster, Taylor, and Ruberg (2011) adapt the bias-correct bootstrap method given 

above to the case of estimating the treatment effect of the estimated enhanced treatment 

effect region.  For a region of the predictor space 𝑅, let the enhanced treatment effect 

measure for region 𝑅 be defined as 

𝑄(𝑅) = (𝑃(𝑌 = 1|𝑇 = 1, 𝑋 ∈ 𝑅) − 𝑃(𝑌 = 1|𝑇 = 0, 𝑋 ∈ 𝑅)) − 

(𝑃(𝑌 = 1|𝑇 = 1) − 𝑃(𝑌 = 1|𝑇 = 0)). 

For the estimated enhanced treatment effect region Â, Q(Â) is the estimate of the 

treatment effect for this region.  The bias corrected bootstrap procedure first creates 20 

bootstrap resamplings (with replacement) of the original data, with each sample 

containing 𝑛0 patients sampled from the control gorup and 𝑛1 patients sampled from the 

treatment group.  The estimate Q(Â) is computed for each bootstrap sample by (Q from 

original data applied to original Â) + (Q from original data applied to new Â) – (Q from 

new data applied to new Â), and the results of these sample computations are averaged 

for the final estimate (Foster, Taylor, and Ruberg 2011).
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CHAPTER 3 

CLINICAL BACKGROUND 

Due to the ineffectiveness of individual genes as prognostic markers (Zhu, et al. 

2010), researchers have turned to multi-gene signatures as a means of improving 

predictive power in identifying those patients with a poor prognosis, for whom ACT 

could be considered.  Previous studies have applied the classification and regression tree 

(CART) algorithm developed by Breiman et al. (1984) to cancer patient data.  CART has 

the advantage of producing an easily interpretable model from which one can identify a 

multi-gene signature. 

Hess et al. (1999) applied the CART algorithm to predict survival time of 1000 

patients with unknown primary carcinoma based on 26 clinical factors.  The CART 

algorithm was chosen for its ability to identify prognostic subgroups by classifying 

patients based explicitly on the covariates, in a manner that can easily be adapted for 

practical clinical use.  The resulting classification tree determined by the basic CART 

algorithm produced 10 terminal subgroups of patients with similar estimated survival 

characteristics.  To examine the effect of alternative splits on the structure of the tree, two 

additional trees were constructed from 500 bootstrapped samples generated from the 

original data.  The results of the bootstrap analysis showed that the CART algorithm 

consistently chooses important covariates for the initial split; a primary split on liver 

involvement was chosen for 41% of samples, a primary split on histology type was 
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chosen for 27% of samples, and a primary split on lymph node involvement was chosen 

for 23% of samples.  Hess et al (1999) remarked that visual inspection of the three trees 

indicated that the overall tree structure might be driven by interactions among the 

covariates.  This suggests that a potential drawback of the CART procedure is an inability 

to model all significant interactions with appropriate weight. 

Despite the flexibility of the CART algorithm, studies (Bou-Hamad et al. 2011; 

van Dijk et al. 2004) have shown it to exhibit a sensitivity to the characteristics of the 

training sample, particularly for small sample sizes.  Kollmannsberger et al. (2000) apply 

CART to identify poor prognosis subgroups among 332 nonseminomatous germ cell 

cancer patients.  To evaluate the performance of the Kollmansberger tree, van Dijk et al. 

(2004) applied the classification scheme to 456 poor prognosis patients in the 

International Germ Cell Consensus Collaborative Group (IGCCCG) patient database.  

Clinical covariates and follow-up times for the Kollmansberger and IGCCCG patients 

were similarly distributed; 2-year survival was 56% for the Kollmansberger patients and 

72% for the IGCCCG patients.  As measured by the concordance statistic (c-statistic)1, 

applying the Kollmansberger tree to the IGCCCG patients produced a lower 

discriminative ability compared to the original data, with c=0.56 on the IGCCCG patients 

compared to c=0.63 on the original data set.  To compare the performance of the 

Kollmansberger tree, van Dijk et al. (2004) produced a new classification tree from the 

456 IGCCCG patients, which exhibited a similar discriminative ability at c=0.59.  For 

                                                                 
1 For binary response data, the c-statistic is equivalent to the area under the ROC 

curve.  The c-statistic ranges from 0.5 (no predictive value) to 1.0 (perfect discrimination 

of differing survival) (Grunkemeier and Jin 2001). 
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comparison, the discriminative ability for a Cox regression model applied to the 

IGCCCG data was c=0.61.  The two trees showed very different structures and included 

different covariates for the primary splits, indicating different covariate effects and 

interactions across the two samples.  The significant variation in the trees generated by 

the two patient sets led van Dijk et al. (2004) to conclude that the generated trees were 

unsatisfactory for clinical use, and that a more stable method such as Cox regression may 

be preferred, especially with small data sets. 

In attempting to classify patients according to survival characteristics, an 

additional problem with the application of survival trees is the potential for distinct 

terminal nodes of the tree to exhibit similar survival profiles.  Tsai et al. (2007) proposed 

a modification to the CART algorithm through agglomerative hierarchical clustering in 

an attempt to group terminal subgroups with statistically equivalent survival.  After 

building the survival tree, the agglomerative hierarchical clustering procedure 

successively combines terminal subgroups with the most similar survival profiles as 

determined by the log-rank test (Tsai et al. 2007).  The procedure continues until all 

statistically similar groups have been combined (according to a pre-specified cutoff for 

the log-rank p-value or simply until all nodes have been merged); the order of grouping 

the terminal nodes results in a dendrogram (nested clusters) of the initial CART terminal 

nodes, from which prognostic categories can be formed (e.g., the final two separate 

groups can be considered as high-risk and low-risk subgroups based on median survival).  

To evaluate the performance of the integrated tree classification scheme, Tsai et al. 

(2007) proposed a k-fold cross validation scheme wherein the classification of the test 
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data was compared to the training data via the log-rank test to estimate the efficacy of the 

classification on independent data.  As an illustration of the procedure, Tsai et al. (2007) 

produced a classification of 13,268 melanoma patients from the American Joint 

Committee on Cancer (AJCC) Melanoma Database based on six clinical and pathological 

variables.  The initial survival tree produced 11 terminal subgroups; visual inspection of 

the Kaplan-Meier survival curves of these subgroups revealed some similar survival 

characteristics across subgroups, illustrating the limitation of the survival tree 

classification.  Applying agglomerative hierarchical clustering with a cutoff of P=0.05 

merged four subgroups, resulting in seven final subgroups, each with significantly 

different survival profiles as measured by the log-rank test.  The resulting seven 

subgroups had highly significant differences in survival curves (log-rank p-value < 

0.0001).  The effectiveness of the model was verified through cross-validation analysis, 

which showed the survival profiles of the test data subgroups were not significantly 

different from the same subgroups of the training data (Tsai et al. 2007). 

The study by Tsai et al. (2007) supported the use of survival trees for subgroup 

analysis.  However, the training set included 13,268 patients, which is a much larger 

sample size than is typically available.  As found by van Dijk et al. (2004), the efficacy of 

the survival tree method is questionable for smaller data sets.  Furthermore, a 

comparative study by Bou-Hamad et al. (2011) showed that a single survival tree has 

poor predictive performance relative to more robust methods.  In particular, the results of 

Bou-Hamad et al. showed the random forest algorithm shows the best performance in 

predicting survival of patients with primary biliary cirrhosis of the liver as measured by 
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the Integrated Brier Score.  By building many bootstrapped survival trees and producing 

an ensemble prediction, the random forest algorithm is able to reduce the sensitivity to 

the sample data inherent in a single survival tree model.   

A current problem of clinical interest is to identify personalized treatment plans 

for patients, which requires the identification of patient subgroups with high likelihood of 

benefit from a given treatment.  In considering this problem, Foster, Taylor, and Ruberg 

(2011) suggested a two-stage model, which first constructs a random forest to estimate 

the treatment effect for each patient; and second, applies the CART algorithm to the 

predictors and treatment effect estimates from the first stage to determine a small number 

of predictors that are associated with the treatment effect.  This model was shown to 

perform well on clinical trial data and simulated data, as verified through many different 

validation methods (Foster, Taylor, and Ruberg 2011).  The simulation study suggested 

that the most effective validation method of those considered was the bias corrected 

bootstrap method applied to simulated data generated from the original sample (Foster, 

Taylor, and Ruberg 2011).
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CHAPTER 4 

PATIENTS AND METHODS 

The JBR.10 data set used by Zhu et al. (2010) is the result of a randomized phase 

III controlled trial of adjuvant vinorelbine/cisplatin chemotherapy versus observation 

alone (Winton et al. 2005).  The goal of the JBR.10 study was to determine whether 

patients with completely resected non-small-cell lung cancer receive survival benefit 

from adjuvant vinorelbine plus cisplatin treatment.  A total of 482 were randomly 

assigned to either observation with no chemotherapy, or a regimen of ACT treatment.  

The median age of patients was 61 years, 65% of patients were men, 53% had 

adenocarcinomas; approximately 45% of patients were stage IB, 15% were stage IIA 

patients, and 40% were stage IIB patients.  Numerous toxic effects occurred as a result of 

the chemotherapy treatment in a large portion of the patients under study, including 

fatigue (81% of patients), nausea (80%), and anorexia (55%).  However, sever toxic 

effects occurred in less than 10% of the ACT patients.  The chemotherapy group 

exhibited significantly prolonged overall survival with median survival at 94 months and 

73 months for the chemotherapy and observation groups respectively; the Cox regression 

hazard ratio of death for chemotherapy vs observation was 0.69, P=0.04 (Winton et al. 

2005).  Subgroup analysis performed by Winton et al. showed that the greatest survival 

advantage was exhibited by stage II patients, although they note that the number of stage 
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IB patients was small, and the stage-by-treatment interaction was not significant 

(P=0.13).  A follow up analysis was conducted by Butts et al. (2009), which showed a 

continued survival advantage in stage II patients, but no significant survival difference in 

stage IB patients; a Cox regression model on stage, treatment, and stage-treatment 

interaction showed borderline significance (P=0.09) (Butts et al. 2009). 

Frozen tumor tissue samples were collected from 169 of the 482 patients in the 

JBR.10 data set.  Gene expression profiling was conducted for 133 of these samples by 

the Affymetrix HG-U133A technology at Center for Cancer Genome Discovery, Dana-

Farber Cancer Institute.  Of the 133 patients, 71 received adjuvant chemotherapy (ACT), 

while 62 patients were under observation only (OBS). 

4.1 Probe Set Preprocessing and Screening 

The raw CEL data for this study was obtained from the Gene Expression 

Omnibus (National Center for Biotechnology Information 2009) and preprocessed using 

the Robust Microchip Analysis (RMA) method using the R package Affy (Bioconductor 

2014).  The RMA algorithm processes probe set expression values by performing a 

background adjustment calculated from probe intensities, followed by quantile 

normalization, and summarization of probe set intensities into a single expression value 

(Dziuda 2010).  The data were then centered to the mean and scaled to unit variance 

following RMA normalization.  

Initial screening of the probe sets is employed using a univariate Cox proportional 

hazards model and leave-one-out cross-validation significance scores, screening 

separately for the OBS patients and ACT patients.  For each treatment group, one patient 
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at a time was excluded, and each probe set tested for significance at the 𝛼 = 0.05 level.  

The significance scores of a probe set were calculated as the number of times the probe 

set was found to be significant in the cross-validation procedure for each treatment group.  

Using a minimum score cutoff of 2 for both treatment groups, there were 496 probe sets 

from the OBS patients, and 406 probe sets selected from the ACT patients.  For the 

selected probe sets, differential expression analysis was performed using the GEO2R tool 

from the Gene Expression Omnibus to ensure similar expression levels across treatment 

groups for the selected probe sets (National Center for Biotechnology Information 2014).  

The GEO2R tool is built using the Linear Models for Microarray Data (limma) package 

(Bioconductor 2013).  The limma algorithm calculates an adjusted t statistic from a linear 

model fit to each gene.  A two-sample t test is then applied with an adjustment for 

multiple comparisons; we here used the default GEO2R multiple comparison adjustment 

method, the Benjamini and Hochberg procedure (Dziuda 2010).  Visual examination of 

boxplots of probe set expression values showed average probe set expression values were 

similarly distributed across all patients (FIGURE 7). 

4.2 Model Design 

4.2.1 Summary 

We now describe the design of a model to predict a patient’s survival benefit from 

ACT treatment from probe set expression levels, and which identifies a subgroup of 

patients who are likely to have significant benefit from ACT treatment.  Adapting the 

design suggested by Foster, Taylor, and Ruberg (2011), we build a predictive model 

composed of two main stages.  The first stage consists of a random forest trained on each 
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treatment group separately.  The response variable is the patient treatment 

recommendation, determined by their time to follow-up or censoring relative to the 

median of the respective treatment group.  We use these random forest predictions to 

generate a treatment recommendation for a patient based on their microarray data, 

namely ACT treatment recommended (CHEMO-REC) or ACT treatment not 

recommended (CHEMO-NOTREC).  This gives a coarse prediction of whether a patient 

is likely to receive survival benefit from ACT treatment. 

The random forests do not provide an estimate of the strength of the treatment 

effect, nor is it possible to clearly identify subgroups of patients with similar responses to 

ACT treatment.  To refine the random forest model, we follow the “virtual twins” method 

given by Foster, Taylor, and Ruberg (2011).  This method estimates the treatment effect 

𝑍𝑖 for patient i from the random forests, which can then be used as the response in a 

regression tree.  This tree provides a prediction estimate of a new patient’s benefit from 

ACT treatment, and also identifies a subgroup of patients with a higher likelihood of 

benefit from treatment. 

4.2.2 Prognostic Classification of Patients 

In order to train a random forest on these selected probe sets, we applied 

classification labels to the patients based on their treatment group and survival results.  

The OBS patients had median overall survival of 3.815 years; the ACT patients had 

median overall survival of 5.81 years.  From this, OBS patients with survival less than 

3.815 years were classified as CHEMO-REC and OBS patients with survival at least 

3.815 years were classified as CHEMO-NOTREC.  Similarly, ACT patients with survival 
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less than 5.81 years were classified as CHEMO-NOTREC, and ACT patients with 

survival at least 5.81 years were classified as CHEMO-REC.  We note that the median 

survival for ACT patients is 2 years more than that of OBS patients. 

 

TABLE 1.  Given Classes for Patients by Treatment Group 

Treatment Survival Given Class 

ACT 

OS < 

5.81 yrs 
CHEMO-NOTREC 

OS >= 

5.81 yrs 
CHEMO-REC 

OBS 

OS < 

3.815 
CHEMO-REC 

OS >= 

3.815 
CHEMO-NOTREC 

 

 

 

4.2.3 Random Forests for Each Treatment Group 

Following a modification of the approach used by Foster, Taylor, and Ruberg 

(2011), we use these classifications and patient microarray data to create two random 

forests, one for each patient treatment subgroup.  The OBS random forest is trained on 

the OBS patients and significant OBS genes, and classifies patients as CHEMO-NOTREC 

or CHEMO-REC, and thus estimates the risk of early death for future patients based if 

they undergo surgery without chemotherapy treatment.  The ACT random forest is 

trained on the ACT patients and significant ACT genes, and classifies patients as 

CHEMO-NOTREC or CHEMO-REC, classifying future patients on their predicted 
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survival under ACT treatment.  From this we derive the predictive categories: when both 

the OBS and ACT random forests agree in their predictions a patient is classified 

accordingly as CHEMO-NOTREC or CHEMO-REC; when the two random forest 

produce conflicting classifications, the patient is classified as inconclusive, patient’s or 

doctor’s choice (CHOICE). 

The parameters random forests are tuned using leave-one-out cross-validation to 

estimate the optimal number of trees grown and number of predictors consider per tree.  

Specifically, the parameter values for number of trees and number of predictors per tree 

are iterated over a range of values, and model accuracy is evaluated using LOOCV for 

each of the considered parameter values.  The results of this cross-validation suggest 

using 500 trees and 25 predictors per tree as model parameters. 

4.2.4 Enhanced Treatment Effect Subgroup with VTR 

To identify a subgroup of patients for whom ACT treatment is likely to be 

particularly effective, we follow the VTR model by first estimating the treatment effect Zi 

for patient i as Zi = P̂1i − P̂0i, where P̂1i is the probability of early death for patient i 

under ACT treatment, and P̂0i is the probability of early death under surgery alone.  The 

probabilities P̂1i and P̂0i are calculated by applying both random forests to each patient 

and assigning patient i probabilities according to the percentage of trees that classify a 

patient as either REC or NOTREC respectively (using the out-of-bag estimate when 

applying the random forest of a patients true treatment group). 

 The treatment effect estimates Zi are then used as response variables for a 

regression tree, trained on all patients and the union of predictors from the OBS and ACT 
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random forests.  The regression tree is computed using the R package rpart, with minimal 

terminal node size 20 and complexity parameter 0.02, as suggested by Foster, Taylor, and 

Ruberg (2011).  The terminal nodes (and their associated branches) with estimated 

treatment effect < c =  δ − 0.05 define the estimated enhanced treatment effect region Â.  

This region depends on a small number of probe set values, and provides a clearer 

indication of important genes and their relationships than is possible with the random 

forests.  The bias-corrected bootstrap is then applied to estimate the treatment effect for 

this region Q(Â).  Patients whose probe set values place them in the enhanced treatment 

effect region are at a higher likelihood of survival benefit from chemotherapy treatment, 

with the estimated benefit Q(Â) equal to the predicted reduction in likelihood of early 

death under chemotherapy treatment compared to surgery alone.
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CHAPTER 5 

RESULTS 

5.1 Internal Validation of Random Forest Stage 

Due to the random nature of the random forest algorithm (both through 

bootstrapping samples and from random selection of predictors), every application of the 

model yields slightly different results.  This makes the reporting of performance 

measures (e.g., accuracy, specificity, sensitivity) slightly more complicated, but this 

complication is mitigated by the low-variance expected with the random forest model.  

We present here the results of a “typical” application of the model, followed by the 

average results of 100 runs of the model. 

5.1.1 Comparison of Survival Characteristics by Treatment and Model Predictions 

Employing leave-one-out cross-validation on both the OBS and ACT random 

forests to classify all patients as either CHEMO-REC, CHEMO-NOTREC, or INC, we 

consider survival differences among these groups as measured by the log-rank test.  Of 

prime interest is the comparison of those patients who received the correct treatment 

(according to the model prediction), versus those who did not receive the correct 

treatment.  The correct treatment group consists of those OBS patients classified as 

CHEMO-NOTREC and those ACT patients classified as CHEMO-REC.  The incorrect 

treatment group consists of OBS patients classified as CHEMO-REC (meaning they 

should have taken ACT treatment) and ACT patients classified as CHEMO-NOTREC 
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(meaning they should not have taken ACT treatment).  These groups show a significant 

overall survival difference (log rank P=0.0002, χ2 = 13.856; FIGURE 1), with the correct 

treatment group showing much better survival times than the incorrect treatment group. 

The log rank test also shows significant survival differences in other comparisons of 

interest.  Comparing ACT patients predicted as CHEMO-REC to ACT patients predicted 

as CHEMO-NOTREC shows a significant survival difference (log rank P=0.0012, χ2 = 

10.4; FIGURE 8), with ACT CHEMO-REC patients having better survival.  This 

indicates the model is effective at distinguishing patients who will receive benefit from 

chemotherapy treatment from those who will not. 

OBS patients classified by the model as CHEMO-NOTREC compared with OBS 

patients classified as CHEMO-REC shows a significant survival difference (log rank 

P=0.0052, χ2 = 7.8; FIGURE 9), with OBS CHEMO-NOTREC patients exhibiting  

greater overall survival for the duration of the study.  This suggests the model is able to 

predict the prognosis of a patient under surgery alone, with no chemotherapy treatment. 

Comparing ACT patients classified as CHEMO-REC to OBS patients classified as 

CHEMO-REC also showed significantly different survivals (log rank P=0.0015, χ2 = 

10.1; FIGURE 10), with the overall survival of OBS CHEMO-REC patients markedly 

lower than that of ACT CHEMO-REC patients.  ACT CHEMO-NOTREC patients had 

significantly lower survival compared to that of OBS CHEMO-NOTREC (log rank 

P=0.0097, χ2 = 6.7; FIGURE 11).  It is of note that the ACT CHEMO-NOTREC group 

shows a steep drop in survival after approximately 5 years, which may be due to late 

toxicities associated with cisplatin-based chemotherapy (Fossa et al. 2007).   
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TABLE 2.  Summary of LOOCV Log-rank Comparisons 

Comparison Log-rank Test P-values χ2 

Right TX vs Wrong TX 0.0002 13.856 

ACT CHEMO-REC vs  

ACT CHEMO-

NOTREC  

0.0012 10.4 

 

OBS CHEMO-REC vs  

OBS CHEMO-

NOTREC  

0.0052 7.8 

ACT CHEMO-REC vs  

OBS CHEMO-REC 

0.0015 10.1 

ACT CHEMO-

NOTREC vs OBS 

CHEMO-NOTREC 

0.0097 6.7 

 

 

5.1.2 Predictive Performance Measures 

The confusion matrix resulting from the cross-validation procedure is given in 

TABLE 1.  The estimated performance of the classification algorithm is accuracy 68.8%, 

sensitivity 62.9%, specificity 75.9%, and false-discovery rate 24.1%.  Of the 133 patients 

classified by the model, 29 were classified as CHEMO-REC, 35 were classified as 

CHEMO-NOTREC, and 69 patients produced inconclusive results.  These results show 

the model exhibits significantly greater accuracy in identifying patients who should not 

take chemotherapy, and so is conservative with respect to the recommendation of 

chemotherapy treatment.  This is in addition to inherent conservatism built into the model 

through returning inconclusive results for many patients.  As a consequence, the model 

has a relatively high positive predictive value (PPV) at 75.9%.  For the purposes of 
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clinical applications, this model behavior is preferred over a more aggressive approach 

due to the toxicity of the chemotherapy treatment.  The application of this classification 

algorithm could potentially allow healthcare practitioners to more selectively apply ACT 

treatment and thereby reduce deaths due to treatment toxicity. 

 

 

 
FIGURE 1.  Survival curves for Right Treatment vs Wrong Treatment groups as predicted 

by the model. 
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TABLE 3.  Cross-Validation Confusion Matrix, Single Run of the Model. 

 True 

CHEMO-REC 

True  

CHEMO-

NOTREC 

 

Predicted 

CHEMO-REC 

22 7 PPV: 

0.7586 

Predicted 

CHEMO-

NOTREC 

13 22 NPV: 

0.6286 

 TPR: 

0.6286 

TNR: 

0.7586 

ACC: 

0.6875 

 FNR: 

0.3714 

FPR: 

0.24 

 

 

5.1.3 Subgroup Analysis by Stage 

Standard treatment options for Stage I and Stage II NSCLC patients include 

surgery and chemotherapy following surgery (National Cancer Institute 2015).  Statistical 

analysis of the JBR.10 trial showed a significant positive benefit of chemotherapy for 

Stage II patients, but the degree of benefit, if any, for stage I patients remains unclear 

(Winton et al. 2005).  Considering the patient population stratified by stages, a key issue 

in improving NSCLC treatment is the identification of subgroups within a stage that 

exhibit a higher likelihood of benefit from ACT treatment.  The 15 gene signature 

derived by Zhu et al. showed that high-risk (as determined by the gene signature) stage 

IB patients did receive survival benefit from ACT patients, while low-risk patients 

showed a possibly detrimental effect as a result of chemotherapy (Zhu et al. 2010). 

Stratifying the patients by stage, we compare the survival of patients who received the 

correct treatment (as predicted by the model) to those who received the incorrect 

treatment.  The model classification of stage I patients from the JBR.10 data set showed 
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that patients who received the correct treatment exhibited significantly prolonged survival 

(log rank P=0.0335, χ2 = 4.5; FIGURE 2). 

Stage II patients showed survival benefit among the correct treatment subgroup 

(log rank P=0.0073, χ2 = 7.2; FIGURE 3).  The model offers an alternative categorization 

of patients relative to cancer stage, and may thus be of use in the development of 

personalized treatments for patients based on their gene expression levels.  

 

 
FIGURE 2.  Survival curves for Right Treatment vs Wrong Treatment for Stage I 

patients. 
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FIGURE 3.  Survival curves for Right Treatment vs Wrong Treatment for Stage II 

patients. 
 

5.2 Average Model Performance 

 

Due to the random nature of the random forest model, which relies on bootstrap 

aggregation of survival trees, each instance of the model will have different performance 

measures.  Random forests have been shown to have relatively low variance, so we 

expect each individual instance to provide a good indication of overall performance.  To 

better understand the approximate average model performance and variance of the 

performance measures, we constructed 100 instances of the random forest classification 

model and calculated performance measures for each instance.   

Summary numbers are provided in Tables 3-4.  The boxplots of log-rank chi-

squared values are given in FIGURE 4; boxplots of accuracy measures are provided in 

FIGURE 5.  The boxplots and means indicate that the classifications produced by the 
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model consistently have significantly different survival characteristics with an acceptable 

amount of variation across the model instances.  The critical value for 95% significance 

under a log-rank test with one degree of freedom is 3.8415.  We consider the five 

comparisons of patient classifications as above. 

The Right TX vs Wrong TX prediction groups have survival curves that are well 

separated at a high level of significance (average log rank P=0.0002, χ2 = 13.856).  From 

the 100 instances constructed, the minimum log-rank P-value was 0.0032.  Thus the 

models produced by this scheme consistently classify patients in a way that yields a 

significant separation of survival curves for those patients who adopted the correct 

treatment according to the model compared to those patients who did not adopt the 

correct treatment according to the model.  This is the most important comparison 

considered as it evaluates the overall effectiveness of the model in recommending the 

treatment that will produce the greatest survival benefit for the patient. 

Other group comparisons yield significant survival separation on average, but at a 

weaker level than the overall Right TX vs Wrong TX group.  Of the four subgroup 

comparisons, two were found to have non-significant differences for some of the 

computed model instances: ACT-REC vs ACT-NOTREC had equivalent survival for 4% 

of models; ACT-NOTREC vs OBS-NOTREC had equivalent survival for 25% of models.  

The two remaining comparisons showed significantly different survival for all computed 

models, with minimum P-values P=0.0337 for ACT-REC vs OBS-REC, and P=0.0358 

for OBS-REC vs OBS-NOTREC. 
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The poorest performance was for the ACT NOTREC patients against the OBS 

NOTREC patients.  This is a comparison of patients who took chemotherapy but should 

not have (according to the model) to patients who did not take chemotherapy and should 

not have.  The difficulty of the model to produce good separation of survival curves in 

this case may be expected, and is possibly due to the different average survival of ACT 

patients compared to OBS patients, which is reflected in the different cutoff values for 

classifying ACT patients and OBS patients for the a priori REC and NOTREC categories.  

One possible interpretation here is that the survivability of patients who will not benefit 

from chemotherapy and opt for surgery only is still only marginally better than those 

patients who receive chemotherapy but are not expected to have survival benefit 

according to the model. 

For the subgroup comparisons, the model performs about equally well for ACT-

REC vs OBS-REC, and for OBS-REC vs OBS-NOTREC.  Good performance for the 

former comparison indicates that the model is effective at identifying patients who have 

good survivability under ACT treatment and poor survivability under surgery alone.  

Good performance in the latter category shows the model’s effectiveness in 

distinguishing patients who have good survivability under surgery alone from those who 

have poor survivability under surgery alone.  This latter subgroup comparison is of note 

since the ability to identify high-risk patients may be of clinical use in its own right, apart 

from considerations of chemotherapy treatment. 
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FIGURE 4.  Boxplots of log-rank chi-square values for 100 model instances. 

 

TABLE 4.  Mean and Standard Deviation for Log-rank Chi-square Test Statistics from 

100 Model Instances 

 Mean  

(P-value) 

Standard 

Deviation 

Right TX vs. 

Wrong TX 

13.8560 

(0.0002) 

2.6113 

ACT-REC vs 

ACT-NOTREC 

7.121 

(0.0076) 

2.0408 

ACT-REC vs 

OBS-REC 

9.1007 

(0.0026) 

2.1969 

ACT-NOTREC 

vs OBS-

NOTREC 

4.8305 

(0.0280) 

1.2462 

OBS-REC vs 

OBS-NOTREC 

8.0024 

(0.0047) 

1.7164 
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TABLE 5.  Average Log-rank Chi-square (P-values) for 100 Model Instances 

 Min. 1st Quartile Median 3rd Quartile Max. 

Right TX vs. 

Wrong TX 

8.6241 

(0.0032) 

11.9888 

(0.0005) 

13.9083 

(0.0002) 

15.5828 

(<0.0001) 

20.6592 

(<0.0001) 

ACT-REC vs 

ACT-NOTREC 

2.9261 

(0.0872) 

5.7144 

(0.0168) 

7.2151 

(0.0072) 

7.9535 

(0.0048) 

10.9429 

(0.0009) 

ACT-REC vs 

OBS-REC 

4.5112 

(0.0337) 

7.2744 

(0.0070) 

9.3246 

(0.0023) 

10.4465 

(0.0012) 

14.5416 

(0.0001) 

ACT-NOTREC 

vs OBS-

NOTREC 

2.1312 

(0.1443) 

3.8413 

(0.0500) 

4.8484 

(0.0277) 

5.5162 

(0.0188) 

7.9334 

(0.0049) 

OBS-REC vs 

OBS-NOTREC 

4.4067 

(0.0358) 

6.7974 

(0.0091) 

8.0135 

(0.0046) 

8.9032 

(0.0028) 

11.2206 

(0.0008) 

 

 

 
FIGURE 5.  Boxplots of LOOCV model accuracies.  Accuracy: acc; true positive rate: 

tpr; true negative rate: tnr; positive predictive value: ppv; negative predictive value: npv. 

 

 

 

 



 

34 

  

TABLE 6.  Mean and Standard Deviation for Log-rank Chi-square Test Statistics from 

100 Model Instances. 

 Mean  

(P-value) 

Standard 

Deviation 

Accuracy 0.6899 0.0217 

TPR 0.6612 0.0285 

TNR 0.7161 0.0293 

PPV 0.6787 0.0287 

NPV 0.7000 0.0254 

 

 

TABLE 7.  Average Predictive Performance Over 100 Model Instances. 

 Min. 1st 

Quartile 

Median 3rd Quartile Max. 

Accuracy 0.6389 0.6716 0.6893 0.7059 0.7424 

TPR 0.5938 0.6407 0.6562 0.6774 0.7272 

TNR 0.6316 0.6944 0.7143 0.7429 0.7879 

PPV 0.6111 0.6563 0.6774 0.7000 0.7500 

NPV 0.6389 0.6850 0.6998 0.7161 0.7500 

 

5.3 Estimate of Enhanced Treatment Effect Subgroup 

To apply the virtual twins regression method described by Foster, Taylor, and 

Ruberg (2011), we estimate the treatment Zi effect for patient i as Zi = P̂1i − P̂0i, where 

P̂1i is the probability of early death for patient i under ACT treatment, and P̂0i is the 

probability of early death under surgery alone.  The probabilities P̂1i and P̂0i are 

calculated by applying both random forests to each patient and assigning patient i 

probabilities according to the percentage of trees that classify a patient as either REC or 

NOTREC respectively. 

These Zi are used as the response variable in a regression tree trained on the union 

of all ACT and OBS patients (FIGURE 6).  From the regression tree, we identify the 

region of enhanced treatment effect as defined by those terminal nodes with predicted 
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treatment effect less than the threshold c = δ − 0.05 = -0.1113 where δ =  −0.0613 is 

the estimated treatment effect for the patient population.  In FIGURE 6, the nodes with 

estimated treatment effects −0.46, −0.19, −0.33, −0.27 define the estimated enhanced 

treatment effect region.  In terms of probe set expression values, the estimated region 

Â contains patients whose data satisfy one of the following criteria: i) (X214798_at <

 −0.44) ⋂  (X217100_s_at < 0.78);  ii) (X214798_at ≥  −0.44) ⋂  (X218295_s_at <

 −0.44) ⋂  (X214146_s_at < 0.13); iii) (X214798_at ≥  −0.44) ⋂  (X218295_s_at ≥

 −0.44) ⋂  (X203998_s_at ≥ 0.15). 

 
FIGURE 6.  Regression tree for treatment effect estimation. 
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Applying the bias corrected bootstrap for the region Â described above, we 

calculate the treatment effect for the enhanced effect region to be -0.3583.  This can be 

interpreted as a 35.83% reduction in likelihood of early death under ACT treatment 

compared to no ACT treatment.  Thus the enhanced treatment effect region defines a 

subgroup of the patient population that has a higher predicted likelihood of survival 

benefit from chemotherapy treatment, independent of cancer stage. 

5.4 External Validation with an Independent Test Set 

5.4.1 Test Set Data Description 

The UHN181 independent validation set generated for a follow-up validation of 

the 15 gene prognostic signature found by Zhu et al. (2010) includes 181 early stage non-

small-cell lung cancer patients who underwent surgery alone, and did not receive ACT 

therapy (Der et al. 2014).  For this data set, tumor samples were obtained from NSCLC 

patients who underwent surgical resection at University Health Network during 1996-

2005.  The snap frozen tumor samples were retrieved from the UHN tumor bank, and 

total RNA was extracted following the same methods of the original study.  Processing 

was performed with Affymetrix U133 2.0 Plus arrays.  The resulting microarray data 

were normalized using RMA and deposited with GEO (GSE50081). 

Although the JBR.10 cohort contains only stage IB and II patients, the UHN181 

cohort contains stage IA, IB, and stage II patients.  JBR.10 is composed of 55% stage IB 

and 45% stage II patients, while UHN181 is 71% stage I and 29% stage II patients.  A 

comparison of the demographics of UHN181 and the training data set JBR.10 are given 

in TABLE 8.  The processed UHN181 data for this study were retrieved from GEO.  
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After centering and scaling, we applied the classification algorithm to the test data and 

considered the resulting classification groups for 5-year survival difference, following the 

validation procedure of Der et al. (2014). 

 

 

 

 

 

TABLE 8.  Comparison of Clinical Characteristics for JBR.10 and UHN181. 

 

Variable JBR.10 (n=62) UHN181 (n=181) 
 

Age 

Median age (range) 61 (35-77) 69.7 (40.2-87.9) 

<65 years 43 (69%) 59 (33%) 

>=65 years 19 (31%) 122 (67%) 
 

Sex 

Female 18 (29%) 83 (46%) 

Male 44 (71%) 98 (54%) 
 

Histology 

Adenocarcinoma 32 (52%) 128 (71%) 

Squamous cell carcinoma 26 (42%) 43 (24%) 

Others 4 (6%) 10 (6%) 
 

Stage 

IA 0 48 (27%) 

IB 34 (55%) 79 (44%) 

IIA 28 (45%) 9 (5%) 

IIB 0 45 (25%) 
 

 

 

5.4.2 Test Set Results 

The OBS random forest algorithm separates the independent test set into 

subgroups CHEMO-REC (n=89) and CHEMO-NOTREC (n=92), but these subgroups did 

not exhibit a significant 5-year survival difference (P=0.125).  Kaplan-Meier survival 
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curves for each subgroup are given in Figure 9.  We see that the two curves cross twice 

prior to two years, but that overall the CHEMO-NOTREC group appears to have higher 

5-year survival, which supports the performance of the model.  The accuracy of the OBS 

random forest applied to the test data is 52.5%, much lower than the accuracy estimated 

via cross-validation on the training set of 68.99%. 

Due to a lack of suitable studies providing genetic data for an independent set of 

ACT patients, we were unable to verify the ACT random forest in a similar manner. 

5.5 Identification of Important Probe Sets 

The random forest classifications permit a measure of covariate importance 

through mean decrease in accuracy and mean decrease in the Gini coefficient.  Plots of 

the most important probe sets by these measures are given in Figures 13 and 14, and 

identified in Tables 9 and 10.  The mean decrease in accuracy for each probe is calculated 

by comparing the predictive performance of the original forest on the out-of-bag data to 

the predictive performance after permuting each predictor.  The second measure is 

calculated as the mean decrease in Gini coefficient from splitting on the predictor, 

averaged over all trees in the random forest.   

The functions of these identified important probe sets listed in the tables show 

many potential links with cell growth and cell regulation.  Considering the three most 

important probe sets from the OBS random forest, NUP107 is related to activity of the 

cell nuclear core, DSCC1 is associated with DNA replication, and YEATS4 has been 

shown to have amplified expression in tumors.  The most important probe set from the 

ACT random forest is MPP2, which produces a mean decrease in accuracy of 14.407, 
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much larger than any other probe set in either of the forests.  MPP2 is responsible for 

regulate cell replication and signaling pathways within the cell (Weizman Institue of 

Science 2012). 

Table 11 identifies the name and some basic function of the five gene signature 

that forms the VTR estimated enhanced treatment effect region.  These probe sets are 

disjoint from those identified by the random forests, but there is some similarity in cell 

functions in many of the identified genes.  The most important gene from the VTR tree is 

identified by the root node split on probe set 213270_at, corresponding to gene ATP2C2.  

This gene is related to ATP processing, and along with SYT1, is involved in calcium 

transport and binding.  NUP50 and SYT1 are membrane proteins responsible for 

vesicular transport and protein import across the cell membrane.  NUP50 and PPBP play 

a role in cell proliferation, with PPBP also related to DNA synthesis, mitosis, along with 

a number of other functions  (Weizman Institue of Science 2012). 

Future work could consider the function of these genes in more detail as they 

relate to tumor growth and patient response to chemotherapy.  These genes are disjoint 

from those identified in the 15-gene signature of Zhu (as is common with gene signature 

studies), but it may be that these genes serve similar roles or are related in functioning to 

the genes found in previous gene signatures; future clinical work could be done to 

develop a better understanding of how the disjoint gene signatures found in different 

studies are related. 
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TABLE 9.  Important Probe Sets, OBS Random Forest 

Probe Set ID Mean 

Decrease  

Accuracy 

Mean 

Decrease 

Gini 

Gene 

Symbol 

Function 

218768_at 7.906 0.922 NUP107 Component of 

nuclear core 

complex. 

219000_s_at 7.594 2.016 DSCC1 DNA replication and 

sister chromatid 

cohesion 1. 

218911_at 5.021 0.945 YEATS4  Thought to be 

required for RNA 

transcription, 

amplified in tumors. 

214829_at 3.706 0.372 AASS  

203147_s_at 3.546 0.708 TRIM14  

212663_at 3.544 0.336 FKBP15  

201947_s_at 3.311 0.515 CCT2 Molecular 

chaperone, assists in 

folding of proteins. 

220076_at 3.019 0.750 ANKH Regulates intra and 

extraceullar levels of 

inorganic 

compounds. 

212528_at 2.996 0.769 DESl1  
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TABLE 10: Important Probe Sets, ACT Random Forest 

Probe Set 

ID 

Mean 

Decrease 

Accuracy 

Mean 

Decrease 

Gini 

Gene 

Symbol 

Function 

213270_at 14.407 3.286 MPP2 Regulates cell 

proliferation, signaling 

pathways. 

210300_at 8.674 1.927 REM1 Promotes endothelial 

cell sprouting. 

220406_at 7.917 1.352 SNPH  

205104_at 6.415 1.552 TGFB2 Transforming growth 

factor. 

203730_s_at 4.763 1.016 ZKSCAN5 Zinc finger protein, 

DNA binding 

transcription factor 

activity. 

217544_at 4.745 0.622 LOC729806  

 

 

TABLE 11: Important Probe Sets, VTR Enhanced Treatment Region 

Probe Set ID Gene Symbol Function 

214798_at  ATP2C2 Protein coding, calcium transport. 

217100_s_at UBXN7 Protein coding, transcription factor 

binding. 

218295_s_at NUP50 Nucleoporin 50kDa, nuclear pore complex 

protein related to protein import.  Related 

to CDKN1B, which controls cell 

proliferation. 

214146_s_at PPBP Platelet-derived growth factor, stimulates 

DNA synthesis, mitosis, and glycolysis. 

203998_s_at SYT1 Membrane protein, related to calcium 

binding and synapse triggering for 

vesicular processing. 
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CHAPTER 6 

CONCLUSION 

The main difficulty in identifying genes that are predictive of benefit from ACT 

treatment is validation of the performance of the prediction algorithm, particularly in the 

absence of independent validation sets from randomized controlled experiments similar 

to the study used to generate the JBR.10 data set.  In lieu of an independent ACT data set, 

we have used leave-one-out cross-validation to estimate the predictive performance of the 

classification scheme on independent data.  LOOCV estimators have been shown to have 

low bias, but potentially high variance (Tibshirani, Friedman, and Hastie 2009, 243).  The 

LOOCV estimates here show very good performance of the classifiers, suggesting that 

the classification scheme may be effective, despite potentially high variance of the 

LOOCV estimators.   

In classifying microarray data, random forests have been shown to produce good 

results, often with lower variance than competing methods, such as a classification tree.  

This lower variance may be of particular importance in these studies owing to the 

common difficulty of reproducing and verify the identified gene signature.  For the 

present model design, the analysis of average model performance gives a strong 

indication that the model variability is acceptably small, such that multiple model 

instances produce approximately similar results with respect to predictive accuracy and 
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separation of survival characteristics for relevant subgroup comparisons.  Even with the 

worst performing comparison for ACT-NOTREC vs OBS-NOTREC, 75% of the model 

instances produced classifications with significantly different survival characteristics for 

these subgroups.  The most important comparison, Right TX vs Wrong TX, showed the 

strongest results, with a minimum P-value of P=0.0033 for the sample instances 

constructed, thus the model appears to be effective in recommending the treatment for a 

patient that will lead to greatest survival benefit.  The trade-off with the random forest is 

an increase in bias and a decreased interpretability in the relationships of significant 

genes.  We can still achieve some idea of which genes are most significant by measuring 

the mean decrease in accuracy and mean decrease in Gini coefficient for the probe sets. 

The regression tree calculated in the second stage of the model provides a further 

identification of a significant set of genes through the estimated enhanced treatment 

effect region, which is defined by expression levels on six probe sets only.  Using the bias 

corrected bootstrap method, the estimated treatment effect for the enhanced region is       

-0.3583, which can be interpreted as the reduction in probability of early death under 

ACT treatment over no ACT treatment.   

While the cross-validation results supported the effectiveness of the proposed 

classification model, the results of applying the algorithm to the test data were fairly 

weak.  Even though it is anticipated, it is not clear what may be the reason for the large 

decrease in predictive accuracy and overall nonsignificant separation of survival curves 

for the classification subgroups.  One possible cause may be batch effect error in 

comparing microarray data from separate studies; however, the validation data set was 
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generated via the same methods as the training set specifically for validation of the gene 

signature based on the JBR.10 data (Zhu et al. 2010; Der et al. 2014), so this source of 

error may be unlikely.  A future analysis of the data could consider processing the 

training and test data sets to remove possible batch effects, as suggested by (Luo et al. 

2010). 

The results of the present study largely corroborate the findings of Zhu et al. 

(2010) and provide an alternative approach to the identification of a gene signature that is 

predictive of survival benefit from ACT treatment.  These results can be used to develop 

targeted therapies for patients based on their gene expression levels and their likelihood 

of survival benefit from chemotherapy treatment.  While ACT treatment is the standard 

of care for stage II patients, the use of ACT for stage I patients remains controversial 

(Zhu et al. 2010).  Also in accordance with the results from Zhu et al. (2010), the 

predictive model presented here shows the plausibility of adopting different treatment 

strategies for stage I patients based on their likelihood of survival benefit as predicted by 

their microarray data.  This is of particular importance since chemotherapy treatment 

clearly shows an overall survival benefit in the JBR.10 data set, but, as shown by Zhu et 

al. (2010), low-risk stage I patients may actually have decreased survival from ACT 

treatment. 

The possibility of developing personalized treatment plans for early-stage NSCLC 

patients from microarray data using a random forest based classification appears to be 

feasible.  In order to develop the results here into a practical clinical method, more 

validation is needed, ideally with independent data sets that result from similar trials and 
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laboratory analysis as the JBR.10 study.  A more thorough analysis of the characteristics 

of the test data set UHN181 with respect to the training data set may be warranted to 

determine possible causes for the poorer performance with the test data.  As more data 

from appropriate randomized clinical trials comparing ACT treatment with an 

observation group become available, the model could be retrained with larger samples to 

improve the power and accuracy of the resulting predictions.  Future work may also 

consider refinements of the model presented here through a finer use of survival and 

censoring information with a regression or survival random forest as opposed to a 

classification random forest; and through modifications of the model parameters, for 

instance changing the survival cutoffs of classification groups.  The model decision 

scheme could also be adapted to more aggressively prescribe ACT treatment for 

chemotherapy by classifying the CHOICE patients as CHEOM-REC instead.
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ADDITIONAL FIGURES 
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FIGURE 7.  Boxplots of probe set expression value distributions by patient. 

 
FIGURE 8.  Survival curves for ACT-REC vs ACT-NOTREC. 
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FIGURE 9.  Survival curves for OBS-REC vs OBS-NOTREC. 
 

 
FIGURE 10.  Survival curves for ACT-REC vs OBS-REC. 
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FIGURE 11.  Survival curves for ACT-NOTREC vs OBS-NOTREC. 
 

 

FIGURE 12.  Kaplan-Meier survival estimates for model predicted classes on the test 

data. 
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FIGURE 13.  Variable importance measures from OBS random forest. 

 

 

 
FIGURE 14.  Variable importance measures from ACT random forest. 
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APPENDIX B 

 

R CODE 
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library(randomForest) 

library(survival) 

 

############################################################# 

#                                                           # 

#  Functions:                                               # 

#    1. getcvResults(predictors, survival.data)             # 

#                                                           # 

############################################################# 

 

getcvResults <- function(predictors, survival.data, ntree.param, mtry.param) { 

  predictors <- scale(predictors) 

  correct = 0 

  misclass = 0 

  patient.classes <- rep('', nrow(survival.data)) 

  names(patient.classes) <- rownames(survival.data) 

  for(i in 1:nrow(survival.data)) { 

    loocv.predictors <- predictors[-i, ] 

    loocv.survival <- survival.data[-i,] 

    test.patient.predictors <- predictors[i,] 

    loocv.rf.data <- data.frame(loocv.predictors, given.class=loocv.survival$given.class, 

OS=loocv.survival$OS) 

    loocv.rf <- randomForest(as.formula(paste('given.class ~', 

paste(colnames(loocv.predictors), collapse='+'))),  

                             data=loocv.rf.data, importance=TRUE, proximity=TRUE, 

ntree=ntree.param, mtry=mtry.param) 

    loocv.predicted <- predict(loocv.rf, predictors) 

    test.patient.predicted <- loocv.predicted[i] 

     

    if (test.patient.predicted == survival.data$given.class[i]) { 

      correct = correct + 1 

    } else { 

      misclass = misclass + 1 

    } 

     

    patient.classes[i] <- test.patient.predicted 

  } 

  return(patient.classes) 
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} 

 

cvTuning <- function(obs.scaled, act.scaled, obs.survival, act.survival,  

                     mtry.start, mtry.end, mtry.inc=10, ntree.start,  

                     ntree.end, ntree.inc=10) { 

  cntr <- 0 

  mtry.seq <- seq(mtry.start, mtry.end, mtry.inc) 

  ntree.seq <- seq(ntree.start, ntree.end, ntree.inc) 

  results <- matrix(, nrow=length(mtry.seq)*length(ntree.seq), ncol=5) 

  for(mtry in mtry.seq){ 

    for(ntree in ntree.seq){ 

      cntr <- cntr + 1 

      obs.correct <- c() 

      act.correct <- c() 

      obs.choice <- c() 

      act.choice <- c() 

      act.cv.results <- getcvResults(act.scaled, act.survival, mtry.param=mtry,  

                                     ntree.param=ntree) 

      obs.cv.results <- getcvResults(obs.scaled, obs.survival, mtry.param=mtry,  

                                     ntree.param=ntree) 

       

      obs.rf.data <- data.frame(obs.scaled,  

                                given.class=obs.survival$given.class,  

                                OS=obs.survival$OS, stringsAsFactors=TRUE) 

      obs.rf <- randomForest(as.formula(paste('given.class ~',  

                                              paste(colnames(obs),  

                                                    collapse='+'))),  

                             data=obs.rf.data, importance=TRUE,  

                             proximity=TRUE, ntree=1000, mtry=150,  

                             norm.votes=TRUE) 

       

      act.rf.data <- data.frame(act.scaled,  

                                given.class=act.survival$given.class,  

                                OS=act.survival$OS) 

      act.rf <- randomForest(as.formula(paste('given.class ~',  

                                              paste(colnames(act.scaled),  

                                                    collapse='+'))),  

                             data=act.rf.data, importance=TRUE, proximity=TRUE,  

                             ntree=1000, mtry=150) 
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      act.cv.results <- c(act.cv.results, predict(act.rf,  

                                                  obs.predictors.for.actrf)) 

      obs.cv.results <- c(obs.cv.results, predict(obs.rf,  

                                                  act.predictors.for.obsrf)) 

       

      reclist <- rep('', 62) 

      names(reclist) <- rownames(obs.survival) 

      for (patient in rownames(obs.survival)){ 

        if (act.cv.results[patient] == '2' & obs.cv.results[patient] == '2') { 

          reclist[patient] <- 'REC' 

        } else if (act.cv.results[patient] == '1' & obs.cv.results[patient] == '1') { 

          reclist[patient] <- 'NOTREC' 

        } else if (act.cv.results[patient] == '1' & obs.cv.results[patient] == '2') { 

          reclist[patient] <- 'CHOICE' 

        } else if (act.cv.results[patient] == '2' & obs.cv.results[patient] == '1') { 

          reclist[patient] <- 'CHOICE' 

        } 

      } 

      obs.survival$recommendation <- reclist 

       

      reclist <- rep('', 71) 

      names(reclist) <- rownames(act.survival) 

      for (patient in rownames(act.survival)){ 

        if (act.cv.results[patient] == '2' & obs.cv.results[patient] == '2') { 

          reclist[patient] <- 'REC' 

        } else if (act.cv.results[patient] == '1' & obs.cv.results[patient] == '1') { 

          reclist[patient] <- 'NOTREC' 

        } else if (act.cv.results[patient] == '1' & obs.cv.results[patient] == '2') { 

          reclist[patient] <- 'CHOICE' 

        } else if (act.cv.results[patient] == '2' & obs.cv.results[patient] == '1') { 

          reclist[patient] <- 'CHOICE' 

        } 

      } 

      act.survival$recommendation <- reclist 

    

      for(patient in rownames(act.survival)){ 

        if(act.survival[patient, 'recommendation']=='CHOICE'){ 

          act.choice <- c(act.choice, patient) 
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        } else if(act.survival[patient, 'recommendation'] == act.survival[patient, 

'given.class']){ 

          act.correct <- c(act.correct, patient) 

          if(act.survival[patient, 'given.class']=='REC'){ 

            rec.correct <- c(rec.correct, patient) 

          } else if(act.survival[patient, 'given.class']=='NOTREC') { 

            notrec.correct <- c(notrec.correct, patient) 

          }  

        } else { 

          act.misclass <- c(act.misclass, patient) 

          if(act.survival[patient, 'given.class']=='REC'){ 

            rec.misclass <- c(rec.misclass, patient) 

          } else if(act.survival[patient, 'given.class']=='NOTREC'){ 

            notrec.misclass <- c(notrec.misclass, patient) 

          } 

        } 

      } 

       

      for(patient in rownames(obs.survival)){ 

        if(obs.survival[patient, 'recommendation']=='CHOICE'){ 

          obs.choice <- c(obs.choice, patient) 

        } else if(obs.survival[patient, 'recommendation'] == obs.survival[patient, 

'given.class']){ 

          obs.correct <- c(obs.correct, patient) 

          if(obs.survival[patient, 'given.class']=='REC'){ 

            rec.correct <- c(rec.correct, patient) 

          } else if(obs.survival[patient, 'given.class']=='NOTREC') { 

            notrec.correct <- c(notrec.correct, patient) 

          }  

        } else { 

          obs.misclass <- c(obs.misclass, patient) 

          if(obs.survival[patient, 'given.class']=='REC'){ 

            rec.misclass <- c(rec.misclass, patient) 

          } else if(obs.survival[patient, 'given.class']=='NOTREC'){ 

            notrec.misclass <- c(notrec.misclass, patient) 

          } 

        } 

      } 
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      results[cntr, 1] <- (length(act.correct)+length(obs.correct))/(133-length(act.choice)-

length(obs.choice)) 

      results[cntr, 2] <- length(act.correct)+length(obs.correct) 

      results[cntr, 3] <- length(act.choice)+length(obs.choice) 

      results[cntr, 4] <- mtry 

      results[cntr, 5] <- ntree 

      print(results[cntr,]) 

    } 

  } 

  return(results) 

} 

 

cvTuning.results <- cvTuning(obs.scaled, act.scaled, obs.survival,  

                               act.survival, 25, 25, 0, 400, 2000, 100) 

 

######################################### 

#                                       # 

#  Data input and setup                 # 

#                                       # 

######################################### 

 

#bothTX <- read.csv('Data/bothTX_all_predictors.csv', row.names=1) 

act <- read.csv('Data/act_selected_predictors.csv', row.names=1) 

obs <- read.csv('Data/obs_selected_predictors.csv', row.names=1) 

act.survival <- read.csv('Data/gse14814_act_survival.csv', stringsAsFactors=F, 

colClasses=c('character', 'character', 'character', 'numeric', 'character', 'character', 

'character', 'numeric', 'character', 'numeric'), row.names=1) 

obs.survival <- read.csv('Data/gse14814_obs_survival.csv', stringsAsFactors=F, 

colClasses=c('character', 'character', 'character', 'numeric', 'character', 'character', 

'character', 'numeric', 'character', 'numeric'), row.names=1) 

act.scaled <- scale(act) 

obs.scaled <- scale(obs) 

 

act.predictors.for.obsrf <- scale(bothTX[rownames(act), colnames(obs)]) 

obs.predictors.for.actrf <- scale(bothTX[rownames(obs), colnames(act)]) 

 

test.obs.predictors <- read.csv('Data/gse50081_obs_predictors.csv', row.names=1, 

colClasses=c('character', rep('numeric', 496)), header=T) 

test.obs.scaled <- scale(test.obs.predictors) 
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test.act.predictors <- read.csv('Data/gse50081_act_predictors.csv', row.names=1, 

colClasses=c('character', rep('numeric', 406)), header=T) 

test.act.scaled <- scale(test.act.predictors) 

test.survival <- read.csv('Data/gse50081_survival.csv', row.names=1, header=T, 

stringsAsFactors=F, colClasses=c(rep('character', 4), rep('numeric', 3))) 

 

obs.survival.cutoff <- 3.815 

obs.survival$given.class[obs.survival$OS > obs.survival.cutoff] <- 'NOTREC' 

obs.survival$given.class[obs.survival$OS <= obs.survival.cutoff] <- 'REC' 

act.survival.cutoff <- 5.81 

act.survival$given.class[act.survival$OS > act.survival.cutoff] <- 'REC' 

act.survival$given.class[act.survival$OS <= act.survival.cutoff] <- 'NOTREC' 

 

######################################### 

#                                       # 

#           CV Tuning                   # 

#                                       # 

######################################### 

 

cv.tuning.results <- cvTuning(obs.scaled, act.scaled, obs.survival,  

                              act.survival, mtry.start=100, mtry.end=101,  

                              mtry.inc=1, ntree.start=1000, ntree.end=1001,  

                              ntree.inc=1) 

######################################### 

#                                       # 

#  Make and view the OBS.RF             # 

#                                       # 

######################################### 

 

obs.rf.data <- data.frame(obs.scaled, given.class=obs.survival$given.class,  

                          OS=obs.survival$OS, stringsAsFactors=TRUE) 

obs.rf <- randomForest(as.formula(paste('given.class ~', paste(colnames(obs),  

                      collapse='+'))), data=obs.rf.data, importance=TRUE,  

                      proximity=TRUE, ntree=500, mtry=25, norm.votes=TRUE) 

obs.rf 

 

######################################### 

#                                       # 

#  Make and view the ACT.RF             # 
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#                                       # 

######################################### 

 

act.rf.data <- data.frame(act.scaled, given.class=act.survival$given.class, 

OS=act.survival$OS) 

act.rf <- randomForest(as.formula(paste('given.class ~', paste(colnames(act.scaled), 

collapse='+'))),  

                       data=act.rf.data, importance=TRUE, proximity=TRUE, ntree=500, 

mtry=25) 

act.rf 

 

######################################### 

#                                       # 

#  Validate OBS.RF                      # 

#    and ACT.RF via LOOCV               # 

#                                       # 

######################################### 

 

#1=NOTREC, 2=REC 

act.cv.results <- getcvResults(act.scaled, act.survival, ntree.param=500, mtry.param=25) 

obs.cv.results <- getcvResults(obs.scaled, obs.survival, ntree.param=500, 

mtry.param=25) 

 

act.cv.results <- c(act.cv.results, predict(act.rf, obs.predictors.for.actrf)) 

obs.cv.results <- c(obs.cv.results, predict(obs.rf, act.predictors.for.obsrf)) 

 

reclist <- rep('', 62) 

names(reclist) <- rownames(obs.survival) 

for (patient in rownames(obs.survival)){ 

  if (act.cv.results[patient] == '2' & obs.cv.results[patient] == '2') { 

    reclist[patient] <- 'REC' 

  } else if (act.cv.results[patient] == '1' & obs.cv.results[patient] == '1') { 

    reclist[patient] <- 'NOTREC' 

  } else if (act.cv.results[patient] == '1' & obs.cv.results[patient] == '2') { 

    reclist[patient] <- 'CHOICE' 

  } else if (act.cv.results[patient] == '2' & obs.cv.results[patient] == '1') { 

    reclist[patient] <- 'CHOICE' 

  } 

} 
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obs.survival$recommendation <- reclist 

 

reclist <- rep('', 71) 

names(reclist) <- rownames(act.survival) 

for (patient in rownames(act.survival)) { 

  if (act.cv.results[patient] == '2' & obs.cv.results[patient] == '2') { 

    reclist[patient] <- 'REC' 

  } else if (act.cv.results[patient] == '1' & obs.cv.results[patient] == '1') { 

    reclist[patient] <- 'NOTREC' 

  } else if (act.cv.results[patient] == '1' & obs.cv.results[patient] == '2') { 

    reclist[patient] <- 'CHOICE' 

  } else if (act.cv.results[patient] == '2' & obs.cv.results[patient] == '1') { 

    reclist[patient] <- 'CHOICE' 

  } 

} 

act.survival$recommendation <- reclist 

 

act.fit.notrec <- survfit(Surv(OS, OSCens)~recommendation, 

data=act.survival[act.survival$recommendation=='NOTREC',], conf.int=F) 

act.fit.rec <- survfit(Surv(OS, OSCens)~recommendation, 

data=act.survival[act.survival$recommendation=='REC',], conf.int=F) 

 

obs.fit.rec <- survfit(Surv(OS, OSCens)~recommendation, 

data=obs.survival[obs.survival$recommendation=='REC',], conf.int=F) 

obs.fit.notrec <- survfit(Surv(OS, OSCens)~recommendation, 

data=obs.survival[obs.survival$recommendation=='NOTREC',], conf.int=F) 

 

rec.survival <- rbind(act.survival[act.survival$recommendation=='REC',],  

                      obs.survival[obs.survival$recommendation=='REC',]) 

 

notrec.survival <- rbind(act.survival[act.survival$recommendation=='NOTREC',],  

                         obs.survival[obs.survival$recommendation=='NOTREC',]) 

 

 

correct.survival <- rbind(act.survival[act.survival$recommendation=='REC',], 

                          obs.survival[obs.survival$recommendation=='NOTREC',]) 

misclass.survival <- rbind(act.survival[act.survival$recommendation=='NOTREC',], 

                          obs.survival[obs.survival$recommendation=='REC',]) 
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#OBS-REC v OBS-NOTREC with INC 

survdiff(Surv(OS, OSCens)~recommendation, data=obs.survival) 

plot(survfit(Surv(OS, OSCens)~recommendation, data=obs.survival), col=c(4,6,11), 

lt=1:3) 

legend(1, 0.3, lty=c(2, 1, 3), col=c(6, 4, 11), legend=c('NOTREC', 'INC', 'REC')) 

title(main="OBS-REC v OBS-NOTREC (including INC)") 

 

#OBS-REC v OBS-NOTREC without INC 

survdiff(Surv(OS, OSCens)~recommendation, 

data=obs.survival[!(obs.survival$recommendation=='CHOICE'),]) 

plot(survfit(Surv(OS, OSCens)~recommendation, 

data=obs.survival[!(obs.survival$recommendation=='CHOICE'),]), col=c(6,11), lt=2:3) 

legend(1, 0.3, lty=2:3, col=c(6, 11), legend=c('NOTREC', 'REC')) 

title(main="OBS-REC v OBS-NOTREC (without INC)") 

 

#ACT-REC v ACT-NOTREC 

survdiff(Surv(OS, OSCens)~recommendation, 

data=act.survival[!(act.survival$recommendation=='CHOICE'),]) 

plot(survfit(Surv(OS, OSCens)~recommendation, 

data=act.survival[!(act.survival$recommendation=='CHOICE'),]), col=c(4,6,11), lt=1:3) 

legend(1, 0.3, lty=c(2,1), col=c(6,4), legend=c('ACT-REC', 'ACT-NOTREC')) 

title(main="ACT-REC v ACT-NOTREC") 

 

#ACT-REC v OBS-REC 

survdiff(Surv(OS, OSCens)~TX, data=rec.survival) 

plot(survfit(Surv(OS, OSCens)~TX, data=rec.survival), col=c(4,11), lt=1:2) 

legend(1, 0.3, lty=1:2, col=c(4, 11), legend=c('ACT-REC', 'OBS-REC')) 

title(main="ACT-REC vs OBS-REC") 

 

#ACT-NOTREC v OBS-NOTREC 

survdiff(Surv(OS, OSCens)~TX, data=notrec.survival) 

plot(survfit(Surv(OS, OSCens)~TX, data=notrec.survival), col=c(4,11), lt=1:2) 

legend(1, 0.3, lty=2:1, col=c(11, 4), legend=c('OBS-NOTREC', 'ACT-NOTREC')) 

title(main="ACT-NOTREC vs OBS-NOTREC") 

 

# RIGHT v WRONG TX 

right.wrong.fit <- survfit(Surv(OS, OSCens)~ 

                             rep(1:2, c(nrow(correct.survival),  

                                        nrow(misclass.survival))),  
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                           data=rbind(correct.survival, misclass.survival)) 

plot(right.wrong.fit, col=c(4,11), lt=1:2) 

legend(1, 0.3, lty=1:2, col=c(4, 11), legend=c('Right TX', 'Wrong TX')) 

title(main="Right TX vs Wrong TX Taken (according to model)") 

survdiff(Surv(OS, OSCens)~ 

           rep(1:2, c(nrow(correct.survival),  

                      nrow(misclass.survival))),  

         data=rbind(correct.survival, misclass.survival)) 

 

right.wrong.5year <- rbind(correct.survival, misclass.survival) 

right.wrong.5year[right.wrong.5year$OS > 5,]$OSCens <- 0 

right.wrong.5year.survfit <- survfit(Surv(right.wrong.5year$OS, 

right.wrong.5year$OSCens) ~ rep(1:2, c(nrow(correct.survival),  

                                                                                                       

nrow(misclass.survival))),  

                                     data=rbind(correct.survival, misclass.survival)) 

plot(right.wrong.5year.survfit, col=3:8, lt=1:2) 

legend(7.5, 0.3, lty=1:2, col=3:8, legend=c('Correct', 'Misclass')) 

survdiff(Surv(right.wrong.5year$OS, right.wrong.5year$OSCens) ~ rep(1:2, 

c(nrow(correct.survival),  

                                                                           nrow(misclass.survival))),  

         data=rbind(correct.survival, misclass.survival), rho=0) 

 

#################################################################### 

#                                                                  # 

#    Subgroup analysis by stage                                    # 

#                                                                  # 

#################################################################### 

 

#Stage I 

 

correct.survival.stage1 <- 

correct.survival[correct.survival$Stage==1|correct.survival$Stage=='1B',] 

misclass.survival.stage1 <- 

misclass.survival[misclass.survival$Stage==1|misclass.survival$Stage=='1B',] 

 

right.wrong.fit.stage1 <-  

  survfit(Surv(OS, OSCens)~ rep(1:2, c(nrow(correct.survival.stage1),  

                                       nrow(misclass.survival.stage1))),  
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          data=rbind(correct.survival.stage1,  

                     misclass.survival.stage1)) 

plot(right.wrong.fit.stage1, col=c(4,11), lt=1:2) 

legend(1, 0.3, lty=1:2, col=c(4, 11), legend=c('Right TX', 'Wrong TX')) 

title(main="Stage 1 Patients: Right TX vs Wrong TX Taken (according to model)") 

survdiff(Surv(OS, OSCens)~ 

           rep(1:2, c(nrow(correct.survival.stage1),  

                      nrow(misclass.survival.stage1))),  

         data=rbind(correct.survival.stage1, misclass.survival.stage1)) 

 

#Stage II 

 

correct.survival.stage2 <- 

correct.survival[correct.survival$Stage==1|correct.survival$Stage=='2A'|correct.survival

$Stage=='2B',] 

misclass.survival.stage2 <- 

misclass.survival[misclass.survival$Stage==2|misclass.survival$Stage=='2A'|correct.surv

ival$Stage=='2B',] 

 

right.wrong.fit.stage2 <-  

  survfit(Surv(OS, OSCens)~ rep(1:2, c(nrow(correct.survival.stage2),  

                                       nrow(misclass.survival.stage2))),  

          data=rbind(correct.survival.stage2,  

                     misclass.survival.stage2)) 

plot(right.wrong.fit.stage2, col=c(4,11), lt=1:2) 

legend(1, 0.3, lty=1:2, col=c(4, 11), legend=c('Right TX', 'Wrong TX')) 

title(main="Stage 2 Patients: Right TX vs Wrong TX Taken (according to model)") 

survdiff(Surv(OS, OSCens)~ 

           rep(1:2, c(nrow(correct.survival.stage2),  

                      nrow(misclass.survival.stage2))),  

         data=rbind(correct.survival.stage2, misclass.survival.stage2)) 

 

 

#################################################################### 

#                                                                  # 

#    Compute measures of model performance                         # 

#                                                                  # 

#################################################################### 
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rec.correct <- c() 

rec.misclass <- c() 

notrec.correct <- c() 

notrec.misclass <- c() 

act.correct <- c() 

act.misclass <- c() 

obs.correct <- c() 

obs.misclass <- c() 

act.choice <- c() 

obs.choice <- c() 

 

 

for(patient in rownames(act.survival)){ 

  if(act.survival[patient, 'recommendation']=='CHOICE'){ 

    act.choice <- c(act.choice) 

  } else if(act.survival[patient, 'recommendation'] == act.survival[patient, 'given.class']){ 

    act.correct <- c(act.correct, patient) 

    if(act.survival[patient, 'given.class']=='REC'){ 

      rec.correct <- c(rec.correct, patient) 

    } else if(act.survival[patient, 'given.class']=='NOTREC') { 

      notrec.correct <- c(notrec.correct, patient) 

    }  

  } else { 

    act.misclass <- c(act.misclass, patient) 

    if(act.survival[patient, 'given.class']=='REC'){ 

      rec.misclass <- c(rec.misclass, patient) 

    } else if(act.survival[patient, 'given.class']=='NOTREC'){ 

      notrec.misclass <- c(notrec.misclass, patient) 

    } 

  } 

} 

 

for(patient in rownames(obs.survival)){ 

  if(obs.survival[patient, 'recommendation']=='CHOICE'){ 

    obs.choice <- c(obs.choice) 

  } else if(obs.survival[patient, 'recommendation'] == obs.survival[patient, 'given.class']){ 

    obs.correct <- c(obs.correct, patient) 

    if(obs.survival[patient, 'given.class']=='REC'){ 

      rec.correct <- c(rec.correct, patient) 
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    } else if(obs.survival[patient, 'given.class']=='NOTREC') { 

      notrec.correct <- c(notrec.correct, patient) 

    }  

  } else { 

    obs.misclass <- c(obs.misclass, patient) 

    if(obs.survival[patient, 'given.class']=='REC'){ 

      rec.misclass <- c(rec.misclass, patient) 

    } else if(obs.survival[patient, 'given.class']=='NOTREC'){ 

      notrec.misclass <- c(notrec.misclass, patient) 

    } 

  } 

} 

 

 

rc <- length(rec.correct) 

nc <- length(notrec.correct) 

rm <- length(rec.misclass) 

nm <- length(notrec.misclass) 

ac <- length(act.correct) 

oc <- length(obs.correct) 

am <- length(act.misclass) 

om <- length(obs.misclass) 

 

 

#Accuracy 

acc <- (rc + nc)/(rc + nc + rm + nm) 

 

#Sensitivity/TPR 

tpr <- (rc)/(rc + rm) 

 

#Specificity/TNR 

tnr <- (nc)/(nc + nm) 

 

#Precision/PPV: positive predictive value 

ppv <- rc/(rc + nm) 

 

#NPV: negative predictive value 

npv <- nc/(nc + rm) 
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#FPR: False positive rate 

fpr <- nm/(nm + nc) 

 

#FNR: False negative rate 

fnr <- rm/(rc + rm) 

 

#FDR: False discovery rate 

fdr <- nm/(rc + nm) 

######################################### 

#                                       # 

#   Apply OBS.RF to test data           # 

#     Considering overall               # 

#     and 5 year survival               # 

#                                       # 

######################################### 

mtry=25 

ntree=500 

 

obs.survival.cutoff <- 3.815 

test.survival$given.class[test.survival$OS > obs.survival.cutoff] <- 'NOTREC' 

test.survival$given.class[test.survival$OS <= obs.survival.cutoff] <- 'REC' 

 

test.obs.rf.data <- data.frame(test.obs.scaled, given.class=test.survival$given.class,  

                               OS=test.survival$OS, stringsAsFactors=TRUE) 

test.act.rf.data <- data.frame(test.act.scaled, given.class=test.survival$given.class,  

                               OS=test.survival$OS, stringsAsFactors=TRUE) 

 

obs.rf <- randomForest(as.formula(paste('given.class ~', paste(colnames(obs),  

                                                               collapse='+'))), data=obs.rf.data,  

                       importance=TRUE, proximity=TRUE, ntree=ntree, mtry=mtry) 

act.rf <- randomForest(as.formula(paste('given.class ~', paste(colnames(act.scaled), 

collapse='+'))),  

                       data=act.rf.data, importance=TRUE, proximity=TRUE, ntree=ntree, 

mtry=mtry) 

 

test.obs.predicted <- predict(obs.rf, test.obs.scaled) 

 

test.5year <- test.survival 

test.5year[test.5year$OS > 5,]$OSCens <- 0 
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test.5year.fit <- survfit(Surv(test.5year$OS, test.5year$OSCens) ~ test.obs.predicted) 

plot(test.5year.fit, col=3:8, lt=1:2) 

title('OBS Random Forest Classifications: Test Data') 

legend(6, 0.3, lty=1:2, col=3:8, legend=c('OBS-good', 'OBS-poor')) 

survdiff(Surv(test.5year$OS, test.5year$OSCens) ~ test.obs.predicted, rho=0) 

 

test.act.predicted <- predict(act.rf, test.act.scaled) 

 

reclist <- rep('', 181) 

names(reclist) <- rownames(test.survival) 

for (patient in rownames(test.survival)){ 

  if (test.act.predicted[patient] == 'REC' & test.obs.predicted[patient] == 'NOTREC') { 

    reclist[patient] <- 'CHOICE' 

  } else if (test.act.predicted[patient] == 'NOTREC' & test.obs.predicted[patient] == 

'REC') { 

    reclist[patient] <- 'CHOICE' 

  } else if (test.act.predicted[patient] == 'REC' & test.obs.predicted[patient] == 'REC') { 

    reclist[patient] <- 'REC' 

  } else if (test.act.predicted[patient] == 'NOTREC' & test.obs.predicted[patient] == 

'NOTREC') { 

    reclist[patient] <- 'NOTREC' 

  } 

} 

test.survival$recommendation <- reclist 

 

test.5year <- test.survival 

test.5year[test.5year$OS > 5,]$OSCens <- 0 

test.5year.fit <- survfit(Surv(OS, OSCens) ~ recommendation, 

data=test.5year[!(test.survival$recommendation=='CHOICE'),]) 

plot(test.5year.fit, col=3:4, lt=1:2, conf.int=F, xlab="Time (years)", ylab="Survival") 

title('Random Forest Model Applied to Test Data, 5-year Survival') 

legend(9.5, 0.2, lty=1:2, col=3:8, legend=c('NOTREC', 'REC')) 

text(10.5, 0.26, "Log-rank:\n P=0.197, Chi-squared=1.7") 

survdiff(Surv(OS, OSCens) ~ recommendation, rho=0, 

data=test.5year[!(test.survival$recommendation=='CHOICE'),]) 

 

 

##################################################### 

title() 
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test.choice <- c() 

test.correct <- c() 

test.misclass <- c() 

rec.correct <- c() 

rec.misclass <- c() 

notrec.correct <- c() 

notrec.misclass <- c() 

for(patient in rownames(test.survival)){ 

  if(test.survival[patient, 'recommendation']=='CHOICE'){ 

    test.choice <- c(test.choice, patient) 

  } else if(test.survival[patient, 'recommendation'] == test.survival[patient, 'given.class']){ 

    test.correct <- c(test.correct, patient) 

    if(test.survival[patient, 'given.class']=='REC'){ 

      rec.correct <- c(rec.correct, patient) 

    } else if(test.survival[patient, 'given.class']=='NOTREC') { 

      notrec.correct <- c(notrec.correct, patient) 

    }  

  } else { 

    test.misclass <- c(test.misclass, patient) 

    if(test.survival[patient, 'given.class']=='REC'){ 

      rec.misclass <- c(rec.misclass, patient) 

    } else if(test.survival[patient, 'given.class']=='NOTREC'){ 

      notrec.misclass <- c(notrec.misclass, patient) 

    } 

  } 

} 

 

length(test.correct) 

length(test.misclass) 

length(test.choice) 

length(rec.correct) 

length(rec.misclass) 

length(notrec.correct) 

length(notrec.misclass) 

print(length(test.correct)/(181-length(test.choice))) 
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