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DROSOPHILA WING IMAGE SET

By
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May 2015

The current process to identify wing pair shape asymmetry in Drosophila wing

images contains multiple layers of potential measurement error. The image

segmentation routine is a low-level method performed on a low resolution image

set, and is prone to inaccurate edge detection in finding the wing’s interior

vascular structure and the exterior wing edge. An automated splining procedure

on the segmentation result which yields the locations of several landmark points

on the wing itself has several erroneous spline control points. The process to

correct errors in the data requires both parameter tuning in the algorithm as well

as manual correction of the segmentation and splining results. The in-production

measures of asymmetry between Drosophila wing pairs are shown to be sensitive

to these measurement errors. To reduce error in the segmentation step, several

image segmentation methods are analyzed for use in developing a robust, efficient

and automated segmentation algorithm for Drosophila wing image sets.

Evaluation of the accuracy and efficiency of the methods is discussed, with a focus

on the performance of multi-scale methods. A Frangi multi-scale segmentation is

shown to more accurately locate the wing’s interior vascular network.

Additionally, an alternative principal components analysis of the variance

structure in the image set is developed to isolate and quantify wing pair shape

variation across the data set. This analysis replaces the splining process to identify
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locations of landmark points. Alternative measures of wing pair shape asymmetry

are created from this analysis and an alternative measure of Directional

Asymmetry (DA) is shown to reproduce existing benchmark measures of DA.
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CHAPTER 1

INTRODUCTION

Fruit flies (Drosophila Melanogaster) have been used as a primary object in

the study of genetics and disease for over 100 years. The fruit fly has maintained

its status as a primary object of study for many reasons. Multiple generations can

be studied in a relatively short amount of time, since a fruit fly lives only ten to

eighteen days and a female lays up to 400 eggs in her lifetime [1]. Its genome is

well known – in the year 2000 the fruit fly was the first multicellular organism to

have its genome fully sequenced. Random genetic mutations in the fruit fly are

induced almost at will via radiation exposure. Manipulation of gene expression is

relatively straightforward given simpler gene interactions and advanced knowledge

of the genome. Finally, understanding fruit fly genetics is believed to lead to

better understanding of human disease, since approximately 70% of fruit fly genes

have analogues in humans.

Evolutionary geneticists study the heritability of asymmetry in paired

biological features. Directional Asymmetry (DA) is a measure of mean difference

in a population between left and right in a feature pair. DA is of particular

interest, since it is the only known trait to exist in nature which cannot be selected

for in artificial selection experiments. Generations of photographs of fruit fly wing

pairs are the object basis of many of the scientific analyses of asymmetry, since the

genome is well known, the wings play an important role in several important

behaviors of the fly beyond flight, including courtship and sensing, and images of

the wings are easily acquired [2], [3].

The image analysis process begins with an intensity value

thresholding-based acquisition of wing data from a low resolution photograph of

the fly wing using WINGMACHINE. WINGMACHINE then fits nine cubic
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B-splines to the veins and edges of the Drosophila wing given the location points

of the humeral break and alula notch and an a priori model of general wing shape:

see Figure 2 for a wing image annotated with key features, and Houle et al. for a

more detailed discussion of the splining procedure [4]. However, due in part to the

coarseness of the thresholding-based segmentation, the splining procedure

frequently cannot accurately identify the locations of the wing’s vascular structure.

Repeating the procedure often produces varying locations of key wing features.

Manual adjustment is often required to correct errors. Additionally,

WINGMACHINE accepts only lower resolution 480× 640 pixel or 240× 320 pixel

images, while the original images are 1200× 1600 pixels, losing a significant level

of detail in the image resizing. Because of the measurement error and image

resizing, much image data is discarded in order to calculate low measurement error

shape and shape asymmetry measures of the wings [4].

A large number of shape measures to identify shape asymmetry have been

reported in the literature, all based on the simple difference between paired wings

of sums of distances between landmark points. For instance, the Unscaled

Directional Asymmetry (cent) metric is the difference in Centroid Size between left

and right wings, where Centroid Size is the square root of the sum of squared

distances from the measured centroid to the set of low measurement area

landmark points in the wing. Intuitively, the difference quantity can be a small

number in magnitude and is thus potentially highly sensitive to measurement error

in the creation of the shape measure for each wing. Errors in splining and image

segmentation pose a potentially serious impediment to the scientific analyses.

This thesis discusses key features of the image data set and necessary

background of image processing in Chapter 2. A range of segmentation methods

are examined in Chapters 3 through 5, in order to find a more robust segmentation

routine with which to calculate the current shape measures with lower

measurement error and using a larger portion of the wing data. A summary

comparison of the segmentation routines is made in Chapter 6, highlighting the

2



improved accuracy of the Frangi multi-scale method. Finally, in Chapter 7 the

dimensionality of wing shape is explored through a principal components analysis

of the wing image set, and alternate wing pair shape asymmetry measures

developed from the covariance structure of the image set are proposed and

compared to the existing asymmetry measures.
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CHAPTER 2

IMAGE PROCESSING AND DATA SET DETAILS

Image Processing Basics

Figure 1 shows two equivalent computer representations of an image. The

right representation is more immediately recognizable to the human eye as an

image comprised of a foreground object and background. A more formal

representation of a greyscale photograph as the image of a function over a 2d

spatial domain is better represented visually by the left representation. In both

visual representations, the m× n image I is defined as:

I : [1, 2, ...,m]× [1, 2, ..., n] → R

Theoretical continuity problems arise due to the discrete nature of the

spatial domains. However, it is common (and necessary) to view the spatial

domains as sampled points of R2 in order to apply concepts and theory from

disciplines such as vector calculus, differential geometry, and the like.

A common image preprocessing step is a blurring or a sharpening operation

[5]. Blurring is typically accomplished via the convolution of the input image with

some type of averaging filter, in effect smearing out overly fine detail and leaving

larger image structures intact. In general, the larger the filter, the more blurring.

In reality, the choice of filter type and size as well as filter parameters are tuned to

the data sets at hand and thus is as much art as science. Blurring convolutions are

employed throughout the methods as stipulated. A sharpening preprocessing step

is also explored in the Maximal Gradient and Frangi methods of Chapters 4 and 5.
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FIGURE 1: Computer image equivalents. (left) An image as the graph of a 2d
function, and (right) an image as a 2d heat map of pixel intensity values.

Image Data Set

Description

The image set analyzed herein is comprised of 48 1200× 1600 resolution

greyscale images each containing a single Drosophila wing foreground and

off-white background. The images were created and provided by the Carter Lab in

the Biological Sciences Department of California State University, Long Beach.

The benchmark asymmetry measures presented in this thesis were also provided

by the Carter Lab, to serve as a representative sample of a class of asymmetry

measures based on the measured distance between a set of landmark points on the

fly wings. The image set and asymmetry calculations are available from the author

or the Carter Lab upon request.

There are some variations between images in background intensity, and

average pixel intensity, perhaps due to potential confounding factors such as

ambient light differentials, power oscillations to the camera, position of

photographer over the image object, grime in the fly wing capture device, or other

confounding factors. In general, illumination variation in an image set is its own

field of study though not pursued at length here, although a method to correct for

it is implemented in the methods of Chapters 4 and 5.
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FIGURE 2: A representative wing image annotated with key features.

The wing images are characterized by left and right wings, determined by

position of the fly body in the upper right or lower right corner of the image,

respectively. Additional image objects include fly bodies and opposite wings.

Extraneous image objects, including opposite wings on wing6BIG and wing26BIG

and a partial occlusion of wing44BIG by its opposite wing, present a heterogeneity

in the image set and a potential limiting factor in desired image segmentation

outcomes.

Flywing anatomy nomenclature employed herein includes: (a) The thicker

top horizontal external boundary, known as the leading edge, (b) the thinner

bottom horizontal boundary known as the trailing edge, (c) the wing regions

separated by horizontal (longitudinal) veins and the leading and trailing edges as

posterior, marginal and submarginal cells, (d) the vertical veins separating the cells

are the posterior, anterior and anal crossveins. An annotated representative wing

image (wing45BIG) is provided in Figure 2, referencing all relevant wing features

[6].
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FIGURE 3: An image’s smoothed pixel intensity value probability distribution.
Three separate modes are evident, each representing an image segmentation category
and noise.

Segmentation Potential

The raw unprocessed wing image is roughly divided into three modes of

pixel intensity: (i) image background (higher intensity values), (ii) wing cell

material and trailing edge (mid to high intensity values), and (iii) wing vascular

structure, leading edge and fly body (lower intensity values). Figure 3 shows a

representative smoothed probability distribution for wing45BIG. Overlap between

the three modes of pixel distribution limit the potential of a purely thresholding

based segmentation. For example, either lighter colored wing boundary will be

included in the wing cell segmentation or darker colored wing cell will be included

in the wing boundary segmentation. Inclusion of some wing cell material in the

wing boundary segmentation is preferable, given the ability of further refinement

of the segmentation via morphological operations to eliminate extraneous

information.

The thinness and relative lightness of the trailing edge is problematic for

any segmentation procedure, and suggests any blurring preprocessing will only
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FIGURE 4: Issues in segmentation: close-up of wing45BIG trailing edge. A close-up
zoom of a portion of the wing45BIG’s trailing edge reveals it is not a continuous
boundary separating the wing from the image background, posing an impediment
to identification of the wing’s exterior boundary as a closed curve.

exacerbate the difficulty in finding that portion of the wing boundary. Figure 4

shows a labeled zoom of a section of the trailing edge, where the discontinuity of

the wing edge can be plainly seen.

A sharpening procedure is of merit and permits better segmentation results

for the Maximal Gradient and Frangi methods. Sharpening procedures are

unavailable for the adaptive histogram approach underlying the simple

thresholding segmentation method, since the sharpening procedure eliminates the

distinct mode of the image pixel distribution which represents the pixels interior to

the wing cells. Applying a histogram based method on a sharpened image set

would unavoidably produce massive oversegmentation of the veins, including large

swathes of the wing cell pixels in the vein and boundary segmentation.

Partial differential equations-based variational methods must grapple with

large image sizes. The Level Set method was implemented and its results are

included in the segmentation summary, but the theory and implementation details

are not discussed at length.
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CHAPTER 3

ADAPTIVE THRESHOLDING METHOD

Overview

WINGMACHINE is a simple thresholding and morphological operations

algorithm [7]. We create an intensity value thresholding algorithm as a suitable

proxy baseline for WINGMACHINE to compare to the other segmentation

methods developed herein. A thresholding-based segmentation method groups

pixels based solely on their intensity value. For this data set, the distribution of

image intensity values is trimodal. Each mode roughly corresponds to a

segmentation region, though the distributions of pixel subpopulations –

background, dark veins and fly body, and diaphanous wing cell pixels – overlap.

As such, a simple thresholding method should not be expected to be the most

accurate, since the natural consequence of the overlap of pixel subpopulations is

necessary oversegmentation in the vein segmentation. Non-vein and boundary

pixels need to be included in order to maximize the likelihood of inclusion of

actual vein pixels in the vein segmentation. In this case, some wing cell pixels are

unavoidably classified as vein pixels due to the overlap in intensity values. The

core thresholding segmentation methodology is powerless to remedy this

oversegmentation by its very nature.

Morphological operations therefore become necessary in order to

(a) preserve and enhance the connectivity of the actual wing vein and boundary

pixels and (b) eliminate the wing cell pixels in the vein segment which reduce the

accuracy of the simple thresholding method. These goals are in conflict – in a

simple discrete method like intensity value thresholding, there is no connectivity

requirement of the vein pixels, nor is there a presumed closed boundary as in a

variational segmentation method. In order to achieve the best possible
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segmentation, wing cell pixels must be included in the vein segmentation, followed

by postprocessing in order to redistribute misallocated wing cell pixels both

physically close and intensity space close to vein pixels. This is achieved best

through operations which do not connect previously unconnected image objects,

preserving the integrity of the individual cells of the wing. Operations which also

expand or shrink objects without regard to connectivity are also utilized as

sparingly as possible, to, e.g., shrink away the cilia identified as wing boundary.

Because of the difficulty in locating portions of the interior vascular network,

distinct wing cells can be identified as a single connected component. These are a

natural product of the segmentation method on this data set, and artificial

creation of additional hybrid connected components from postprocessing is highly

undesirable given their inherent mis-segmentation. Finally, applications of an area

threshold are required to isolate the vein and wing boundary segmentation.

Adaptive Histogram Feature Analysis

Because of the variation between images in background lighting, differences

in the intensity values across wings themselves, and other factors, we cannot use

fixed intensity values to segment the images over the entire image data set.

Therefore, we create an adaptive histogram approach, in which a smoothed

probability distribution is fit to the frequencies of pixel intensity values using a

non-parametric estimator of the distribution kernel (e.g., as opposed to stipulating

a single-peaked normal distribution for each image). A smoothed distribution must

be created because each individual sub-distribution corresponding to the image

background, wing cell material or veins can itself be multi-peaked. The smoothest

possible distribution is desired in order to find single modes which approximate a

corresponding image segment that are a priori known to exist. An indexed array

of probability densities at the 256 intensity values (since all raw images are class

uint8, in which pixel intensity values may range across integers zero to 255) is then

created. An approximation of the derivative of the probability density function is

formed from simple differencing. The locations at which the derivative
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approximation switches from positive to negative yield the local maxima image

intensity locations of the probability density function. The two highest peaks

correspond to the modes of image background pixels and wing cell pixels, as can be

seen in Figure 3. Between these two peaks, the local minimum is also determined.

It is postulated this local minimum is the best choice for the bifurcation point

between the background pixel distribution and the wing cell pixel distribution.

Algorithm Methodology

The trailing edge of the wing is of higher intensity values than a substantial

number of pixels in the interior of the wing cells. Therefore, no segmentation

method based solely on intensity values could possibly determine pixels in the

wing’s trailing edge to be members of the vein segmentation without inclusion of a

substantial number of wing cell pixels in the segment. In order to minimize this

potential oversegmentation, the task of determining the boundary of the wing with

the image background is addressed separately from determining the wing’s internal

vein segmentation (as will be necessary in virtually all segmentation methods

utilized).

Finding the Leading and Trailing Edges

The background pixels to set to white by mapping image intensity values

greater than the local minimum between the two peaks determined in the

Adaptive Histogram algorithm to white. The image complement of the result

yields the entire wing body plus cilia with some isolated blobs elsewhere. The

largest image object is the isolated wing. The cilia is removed via a morphological

erosion. Erosion is a technique to shrink image objects, which leaves only the set

of foreground points in the image for which a structuring element centered at that

point is itself entirely contained as a subset of the image foreground points. This

operation leaves the leading and trailing edges of the wing with some error due to

the asymmetry in cilia length both within a single wing image as well as across the

data set. The erosion structuring element is manually determined through

calibration to a sample image (wing30BIG). Because longitudinal vein V thins and
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lightens considerably as it approaches the trailing edge (see Figure 2), the tail

portion of it often fails to be included in the vein segmentation. In order to

accomplish a segmentation which identifies the second and third posterior cells as

distinct regions, the erosion structuring element size is set to shrink the wing

perimeter in order to ensure intersection of the trailing edge with a segmentable

region of vein V. This procedure enhances the connectivity of the vein

segmentation (found immediately following in Subsection Finding the Interior

Veins) with the exterior boundary segmentation, while introducing a repairable

error in vein thickness (or, equivalently, an underestimate in the calculation of

posterior and marginal cell areas is introduced in order to accurately identify the

posterior and marginal cells as unique distinct areas).

Finding the Interior Veins

A conservative estimate of the boundaries of the vein segmentation in terms

of pixel intensity values is required, so that maximal vein area is captured in the

vein segmentation and not misidentified as wing cell. Masks from the image set’s

cut point data are created and applied to the output from the exterior boundary

finder. Application of the mask can generate extraneous image objects from

variations in fly placement, which are removed to yield the isolated wing. The

isolated wing is then in turn itself used as a mask on the original image.

Pixels with intensities less than (the wing cell mode minus threshold

parameter) are set to black. A parameter value of twelve was determined to be

optimal, in a test range of ten to fifteen. This could also be further parametrised

based on a value of the derivative of the probability density function, though given

the low level of sophistication of the underlying segmentation method, better

segmentation results are more likely the result of more sophisticated segmentation

methodologies than the fine-tuning of parameters in the simple thresholding

method. The vein segmentation is the resulting group of pixels with intensity

values of zero.

The output is converted to a binary image with .01 threshold, and an area

12



imbinary masked image

contrast stretch output

FIGURE 5: Adaptive Thresholding segmentation essential steps. (upper left) Lo-
cate the wing perimeter and area via a contrast stretch, (upper right) Isolate the
wing interior with a wing area mask, (lower left) Locate interior vasculature, and
(lower right) Repair wing cells from vein oversegmentation.

threshold of 500 pixels is applied. The image complement of the combination of

the interior vein segmentation and the exterior boundary segmentation yields a

complete segmentation of the wing. Figure 5 shows a subplot of the essential steps

of the method.
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Results

Thick Veins

Missing 
LV VI

Loss of Cell
Area

FIGURE 6: Example Adaptive Thresholding segmentation result (wing1BIG). In
order to identify LV V through its intersection with the trailing edge, the vein
segmentation needs to be oversegmented due to the lack of contrast with surrounding
regions. The oversegmentation leads to thicker identified veins elsewhere, notable
LV II and III. Darker pixel wing cell areas as well as small lighter pixel wing cell
areas fail to be identified. LV VI fails to be identified as a result.

The necessary inclusion of darker wing cell material in the vein

segmentation results in area loss in identified wing cells. Since this

oversegmentation is not uniformly distributed, some unrepairable distortion of area

calculation and boundary location persists beyond the ability of morphological

operations to redress. Less smooth cell boundaries result, as can be seen by the

comparison between the raw wing image and the segmentation result in Figure 6.

Distinct colors represent isolated wing cells, which in turn indicates

segmentation of that cell’s boundary veins. As the longitudinal veins converge

close to the wing’s attachment to the fly body, wing cell pixel intensity values tend

to be lower and are also included in the vein segmentation. The affected smaller

wing cells then frequently fail any baseline area thresholding inclusion test. Thus

the final wing segmentation fails to include these smaller cells. This area damage

in the cells increases closer to the cut-line. The region of the third posterior cell to

the right of the anal crossvein and longitudinal vein VI also fails to be identified.

14



CHAPTER 4

MAXIMAL GRADIENT SEGMENTATION

Gradient Segmentation Overview

Location of edges and boundaries between objects in images often

corresponds strongly to the presence of a steep gradient in the image’s intensity

values, particularly where homogenous intensity value regions border other

homogenous regions with different intensity values. Evaluation of the image

gradient is a step in the direction of greater sophistication in image segmentation,

through the calculation of an intermediate quantity with which to evaluate the

image. Gradient-based methods have been shown to produce smoother and more

accurate edge maps than thresholding methods [8].

Mathematics

In order to promote local or regional intensity value homogenization, an

image is convolved with a Gaussian filter to smear out overly fine detail before

other operations. A two-dimensional Gaussian kernel G(x, σ) is given by:

G(x, σ) =
1

2πσ2
e

−∥x∥2

2σ2 , where x ∈ R2, σ ∈ R (4.1)

and where ∥·∥ denotes the standard ℓ2 norm. The smoothing effect of the kernel

on a wing boundary region is shown in Figure 7.

Although the true domain of an image I is a finite subset of N2, in order to

draw on necessary notions like continuity, the image domain is implicitly thought

of as R2 when invoking theory and abstract concepts, and N2 is explicitly invoked

when presenting actual calculations on the discrete pixel grid. Considering image

I’s spatial domain as R2, I(x) = I(x, y), spatial differentiation of I after
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FIGURE 7: Wing boundary region before and after smoothing.

convolution with G exhibits the particularly useful property:

∂

∂x
[G(x, σ) ∗ I] =

[
∂G(x, σ)

∂x

]
∗ I (4.2)

Also, since

1
√
2πσ2

2 e
−(x2+y2)

2σ2 =
1√
2πσ2

e
−x2

2σ2 × 1√
2πσ2

e
−y2

2σ2

it follows directly that convolution with a 2d Gaussian kernel is equivalent to

iterated convolutions with 1d kernels.

Therefore, each gradient component is calculated as the 1d convolution of

the image with the derivative of the Gaussian kernel. In the horizontal dimension,

this means passing the 1d Gaussian derivative kernel over each row of the image,

padding each side of the image with ghost cells to accommodate the length of the

kernel at the boundary of the image. Since the length of the 1d kernel for standard

choices of σ is significantly smaller than either the length or width of the image,

fewer computations are necessary to calculate a gradient field.

The derivative approximation in each spatial dimension is performed as a

centered differences calculation except at the boundary points of the kernel, where

forward differences are utilized. Invoking the finite subset of N2 domain, the actual

centered difference partial derivative of image I with respect to the horizontal
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dimension (‘x’) at point (i, j), where i is the row index and j is the column index,

is given by:

Ix(i, j) =
I(i, j + l)− I(i, j − 1)

2
(4.3)

Strong and Weak Edges

Even smoothed images still exhibit some noise, for a standard range of σ. It

is more likely than not in most data sets that no σ exists for which the convolution

with the kernel will retain all relevant image structure and remove all extraneous

detail. Since the gradient is a vector field defined on the entire image domain, an

evaluation of the relative magnitude of a pixel’s gradient value is necessary in

order to classify the pixel as a member of an object boundary. Not all pixels with

non-zero gradient magnitudes are boundary locations, as can be seen in the

gradient quiver plot over a vessel boundary in Figure 8. In order to better classify

pixels, a threshold level of gradient magnitude for boundary pixels must be

determined. This can be accomplished through either (a) an a priori assumption

of the number of pixels in the image which are boundary pixels and finding the

corresponding gradient magnitude from the gradient magnitude’s cumulative

frequency histogram, or (b) specification of a threshold level of gradient magnitude

for boundary classification. The pixels which possess a larger magnitude gradient

than the threshold are then classified as boundary pixels.

FIGURE 8: Gradient quiver plot of a vein region. (left) Gradient quiver plot of a
vein region and (right) under a vein region graph.
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In order to better retain image structure and remove spurious noise, the

gradient magnitude schematic is further refined by defining threshold values for

both strong and weak edges, where a weak edge pixel is a pixel for whom (a) the

gradient magnitude is above some lower-than-strong threshold level and (b) the

pixel is bordering a pixel classified as a strong edge. The strong edge classification

can then be set at a larger gradient magnitude level, eliminating much image

noise, while the retention of the second-tier weak edge captures boundary pixels

with lower gradient magnitudes. This dynamic can be seen in longitudinal vein V

as it thins and lightens as it approaches the trailing edge. Because the gradient

magnitudes at the vein boundary are relatively low, setting the strong edge

threshold low enough to include these pixels in the strong edge segmentation will

necessarily retain much spurious segmentation, while the two-tiered approach

circumvents this problem.

In order to determine the presence of weak and strong edges, the gradient

components are calculated via convolutions of the image with 1d Gaussian

derivative kernels. The approximate angle the gradient vector forms to the vector

(1, 0) is determined by evaluation of sign of each of the spatial partial derivatives

and a comparison of the magnitude of both gradient components, Iy and Ix. The

angle is assigned to a direction as determined by 45◦ increments. For instance,

where both spatial partial derivatives of the image are positive, and Iy > Ix, the

gradient vector forms an angle of between 45◦ and 90◦ with the vector (1, 0). More

exact calculation of the gradient angle is not productive, due to the discrete nature

of the domain.

For each 45◦ direction, arrays the same size as the underlying image are

formed in which the only non-zero values are the gradient magnitudes of pixels

with gradients pointing in that direction. In this array, the gradient magnitude of

each pixel is then compared with the gradient magnitudes of the pixels

neighboring it in the direction given by the gradient (both forwards and backwards

neighbors, allowing only four directions to be evaluated). Pixels which have a local
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maximum in gradient magnitude are classified as Local Max pixels. Iterated over

each direction, a total Local Max pixel map covering the entire image domain is

formed. Application of the strong edge threshold isolates pixels to be classified as

strong edges, and application of the weak edge threshold and strong edge

connectivity test yield the weak edge. The combination of strong edge pixels and

weak edge pixels form the identified object boundary. Since image gradient fields

exhibit spatial coherency, the Local Max approach is effective at identifying image

boundary locations.

To demonstrate the sensitivity of the method to the parametrisation of

weak and strong edges, as well as the scale to the Gaussian filter, a default

implementation (σ =
√
2 and unspecified weak and strong edge threshold values) is

run on both raw and sharpened wing3BIG images. As seen in Figure 9, the routine

returns a drastic oversegmentation. A default implementation is unsuccessful at

identifying image structure of interest, because of the assumption that must be

made about what magnitude of gradient constitutes a strong edge in the input

image. The default assumption is that 70 percent of pixels in the image are not

edges, and thus sets the strong edge threshold at the 70th percentile of pixel

gradient magnitudes. Because of the abundant striations in the wing, the strong

edge threshold is set too low and the algorithm is unable to isolate boundaries of

interest from what the human eye perceives to be relatively homogenous regions.

Algorithm

Sharpened images (see section Sharpening Preprocessing for details of the

sharpening procedure) are segmented immediately. Parameter calibration yields

maximally useful ranges of values for the data set of 0.0001− 0.03 for the low

threshold and 0.25− 0.30 for the high threshold, with σ of three and four,

respectively. As the left image in Figure 10 shows, the strong gradient

segmentation engine yields delicate single pixel thick boundaries. A zoom of this

image on the right reveals some of the impediments to accurate segmentation of

desired features only. Some cilia are included in the segmentation, and some
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FIGURE 9: Abundance of image gradient in wing images. The image gradient
retention threshold in a default implementation of the Maximal Gradient segmenta-
tion algorithm drastically oversegments the image. Striations in interior wing cells
are identified as boundary pixels, preventing isolation of the true wing boundaries.
Because of the abundance of image gradient in the image, the method is sensitive
to the parametrisation of gradient magnitude level for edge classification.

portions of the interior wall of the veins and wing boundary are only partially

identified. These lines often abruptly end, forming open regions which leave the

routine prone to connecting interior cells as single regions as well as identifying

portions of the vascular structure as wing cells. In order to counter this tendency,

the raw segmentation is thickened and dilated to enhance connectivity. After

application of the cutpoint mask, an attempt to separate lightly connected

components is made through erosion of segmentation objects. Area loss from the

erosion is corrected through a thickening of the resulting segmentation objects,

which does not enhance connectivity. A ‘poor-man’s inpainting’ method was

explored, which sought to connect the skeleton endpoints (a segmentation line that

ends in a point and does not form a closed region) to the closest point on the

remaining segmentation by evaluating lengths of lines from the point to

intersection at 45 degree intervals. The routine slowed the segmentation
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FIGURE 10: Raw Maximal Gradient output on wing3BIG. (left) The calibrated
segmentation routine isolates the wing vasculature and exterior boundary as edges.
(right) A zoom of the second posterior cell near the wing tip shows that some of
the identified boundaries are discontinuous, requiring postprocessing to identify the
wing cells as distinct areas. Also evident is separate identification of both the interior
and exterior boundary of each vein.

considerably while not materially improving the result over the cycle of enhancing

and destroying connectivity in the core method.

Result

Since the leading edge is thick and long, the algorithm is prone to identify

portions of it as distinct regions of interest, instead of as a boundary separating

the image background from the marginal and submarginal cells. The erroneous

regions can survive area thresholding of connected components to remove

extraneous data due to its size. In order to correct for this, morphological

operations which enhance connectivity of unconnected components are applied and

force absorption of the leading edge regions into the marginal and submarginal

cells. Asymmetric area error is then introduced due to the inherently universal

application of the morphological operation with only a need where the erroneous

areas exist. An alternative would be to allow the erroneous regions to survive and

exist as part of the final segmentation, which itself then would preserve error. In

Figure 10 both results can be seen – the orange segment near the humeral break is

a surviving region of the leading edge, while the exterior boundary of the second

and third posterior cells exhibit absorption of portions of the trailing edge.
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FIGURE 11: Example Maximal Gradient segmentation result (wing3BIG). (left)
Wing3BIG image, and (right) the segmentation result. The vascular network is
well identified, although the light orange segment is an erroneous identification of a
portion of the leading edge as a wing cell area. The second and third posterior cells
exhibit erroneous absorption of portions of the trailing edge.

Although not as problematic as in the Adaptive Thresholding segmentation, small

regions near the cut line are prone to be unsegmented, because of a lack of strong

edges (non-maximal gradients due to greater intensity homogeneity) as well as

non-closed boundary edge detection.
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CHAPTER 5

FRANGI MULTI-SCALE SEGMENTATION

Scale Space

An image is a “physical observable with an inner and outer scale bound”

[9]. The inner scale bound of an image is a single pixel, in that any additional

information available in the photographed scene at sub-pixel size is lost upon the

acquisition of the image. The outer scale bound is the image frame – obviously an

object larger than the image frame is not able to be completely captured in the

image. However, in between these inner and outer scale bounds necessarily will be

image objects of potentially varying scales. For instance, a photograph of a tree

will include the tree itself as a single large object, although at smaller scales may

also be the shapes and locations of individual leaves as objects (or patterns in

bark, or a butterfly flying near the tree, etc.). The image itself can then be viewed

as a union of these varyingly scaled objects. A key insight in multi-scale

segmentation is that objects in these individual scale spaces are separable.

In fact, the very nature of the image acquisition makes a scale-space

representation intrinsic and unavoidable. Because information is lost by the lower

bound of image resolution, any given image must be viewed as a convolution of the

true physical observable I0 with a filter of unknown size σ̂. σ̂ must be unknown,

since the amount of detail lost in the imaging is unknown. Necessary scale-space

constraints like symmetry, linearity and avoidance of creation of spurious detail

dictate the filter must be in the family of Gaussian kernels [9]. Therefore, any 2d

image I(x) = I(x, y) can be represented as:

I(x) = I(x, σ̂) = G(x, σ̂) ∗ I0

where G(x, σ) is the Gaussian filter introduced in Chapter 4.
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Multi-Scale Segmentation

Multi-scale segmentation is a natural evolution from lower-level

gradient-based edge detector segmentations such as the Maximal Gradient method

of Chapter 4. The image gradient is still recognized as the most relevant

information to find boundaries and segment images. However, lower-level gradient

based methods often fail because they implicitly assume only one spatial scale of

interest exists. Often times, the spatial scale of interest is the pixel scale by

default, and the user must apply any other scale as a preprocessing step. In the

pixel scale case, only very local changes in image intensity can possibly be

registered using any standard gradient stencil. The lowest-level gradient methods

then pick up sharp edges, but fail at edges of larger scale and softer edges like

shadows. The Maximal Gradient method does implicitly recognize that the scale

of image objects may not be at the local pixel level by embedding a single

convolution with a Gaussian kernel of parametrised width σ. Still, though, the

scale space is essentially fixed by the parametrised kernel width. Because images

may have structures at multiple scales, the Frangi method and the entire family of

multi-scale methods establish a more robust method for boundary detection by

iteratively evaluating the image gradient at multiple scales. The Frangi method has

been shown to segment vessels in noisy medical image sets with high accuracy [10].

Interestingly, the foundational underpinnings of the multi-scale approach

are found in biological vision systems. The study of Receptive Field profiles such

as vision suggests they are best modeled by Gaussian filters and their partial

derivatives [9]. In practice, multi-scale methods iteratively evaluate the image

gradient by convolving the image with the partial derivatives of a Gaussian filter of

multiple widths (i.e., for a range of σ values). The method establishes a likeliness

measure a pixel is an edge from the set of the pixel’s gradient values at each scale.

The likeliness measure at each scale is formed via an analysis of the curvature of

the image surface evaluated at each pixel.
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Mathematics

Curvature: One Spatial Dimension

Recall that the approximation of a function of a single variable at a point

x0 +∆x is given by:

f(x0 +∆x) ≈ f(x0) + ∆xf ′(x0) +
1

2
∆x2f ′′(x0)

Consider the example f(x) = x2. Given the value of f at x = 1, the first

degree approximation for f at x = 2 is f(1) + f ′(1) = 3. Employing only the linear

correction term of f ′(1) yields an error of one. The first degree approximation

neglects the curvature of the estimated function. The second-order term of the

Taylor expansion recovers (much of) the curvature in the estimation by providing

the approximation a quadratic term.

Curvature: Two Spatial Dimensions

Exactly analogous to the 1d case, the second-order Taylor expansion

approximation of a function of two variables f at point (x0 +∆x, y0 +∆y) yields

the local properties of the surface near the point:

f(x0 +∆x, y0 +∆y) ≈f(x0, y0) + ∆x · ∂f
∂x

(x0, y0) + ∆y · ∂f
∂y

(x0, y0)

+
1

2

[
∆x2∂

2f

∂x2
(x0, y0) + 2∆x∆y

∂2f

∂xy
(x0, y0) + ∆y2

∂2f

∂y2
(x0, y0)

]

Since an image domain is 2d, this Taylor expansion can be applied directly

to an image domain. An image I is thus locally approximated near point

x0 = (x0, y0) by:

I(x0 +∆x) ≈ I(x0) + ∆x∇I(x0) + ∆xTH∆x (5.1)
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where H is the Hessian matrix of I:

H =

Ixx Ixy

Ixy Iyy


As in the 1d case, the curvature of the surface at a given point is measured by how

far the surface deviates from its tangent plane. However, curvature of a surface

over two spatial dimensions is a more complicated mathematical quantity, because

there are infinite directions in which to evaluate the quantity. Analogous to the 1d

case, the curvature of the surface can be approximated by the second-order term of

the Taylor approximation.

Ordering the 1d Curvatures Embedded in a 2d Surface: The Principal Curvatures

By definition, the principal curvatures at a point on a surface are the

maximum and minimum values of the normal curvature of all curves on the

surface that pass through the point. As shown visually in Figure 12, for a curve

γ(s) on a surface Φ, where s is the arc length parameter, the normal curvature kn

of the curve at the point is the magnitude of the projection of γ̈, the second

derivative of the curve with respect to the arc-length parameter, onto the principal

unit normal vector N of the surface [11].

The principal vectors are tangent to the curves of maximum and minimum

normal curvature. Therefore, the principal curvatures of a surface yield the

directions of most and least change of the surface from its tangent plane. Since

edges and boundaries in images are associated with large curvature in the surface

formed by the graph of the image function, the principal curvatures yield the most

likely direction of an edge and most likely direction of image object continuity,

from the maximum and minimum principal curvature values, respectively.

The principal curvatures are the roots of det(FII − kFI) = 0, where FII is

the second fundamental form of the surface, which for surfaces that are graphs of

functions of two variables (like the image function) is equivalent to the Hessian
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FIGURE 12: Normal curvature of a space curve. At any point, the normal curvature
kn of a curve γ, parametrised by arc length, is the magnitude of the projection of γ̈
onto the principal normal vector to the surface.

matrix, k are the principal curvatures and FI is given by the first fundamental

form for the surface, which is a measure of the length of curves on the surface [11].

For a curve γ parametrised by time t, its arc length s is

s =

t∫
t0

∥γ̇(z)∥ dz

where γ̇ is the first derivative of the curve with respect to time. For a curve on the

surface, γ(t) =Φ(x(t), y(t)), and then ∥γ̇(t)∥2 dt gives the first fundamental form

FI :

Edx2 + 2Fdxdy +Gdy2 = dxTFIdx

FI =

E F

F G

 =

 Φ2
x Φx · Φy

Φx · Φy Φ2
y


For the image surface, FI is given by

FI =

1 + I2x Ix · Iy

Ix · Iy 1 + I2y

 (5.2)
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However, Frangi approximates the principal curvatures of the surface by

implicitly assuming the image surface is locally isomorphic to a plane at a given

point. This reduces FI to the identity matrix. In the Frangi approximation, the

principal curvatures of the surface are the eigenvalues of the Hessian matrix H

evaluated at the point:

det

Ixx − k Ixy

Ixy Iyy − k

 = 0 (5.3)

Since H is real and symmetric, the eigenvalues are known to be real. Also,

eigenvectors of distinct eigenvalues are orthogonal, therefore the principal

curvatures and their associated principal vectors extract two orthonormal

directions of most and least curvature and the amount of curvature in each

direction is the magnitude of the eigenvalue.

Sharpening Preprocessing

Due to the low contrast between striations in the wing cells near the

vascular structure and some portions of the vascular structure, a sharpening

preprocessing step is of merit. This tophat procedure subtracts an estimate of the

image background from the image and is known to enhance contrast and can

correct for any non-uniform illumination, in which like objects have different pixel

intensity values due to physical location in the image frame [5]. A related

bottomhat procedure further enhances contrast in the image [5]. Figure 13 shows

wing15BIG after sharpening. The sharpening creates more pronounced striation in

the wing cells, which has the desired effect of slightly shifting darker pixels in the

cells away from the vascular network and exterior edges. This allows for higher

accuracy in locating the actual vein edges, as seen in a side by side comparison of

the raw output of the Frangi edge detector with and without sharpening in

Figure 14.
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FIGURE 13: A comparison of the original and sharpened image. (a) Original
wing45BIG (b) Sharpened image

FIGURE 14: Raw output of the Frangi edge detector. (left) With a sharpening pre-
processing step and (right) without sharpening. The sharpening procedure creates
greater pixel-scale gradient, which the Frangi detector is able to detect, as evidenced
by the better identification of the entire vein segmentation.

Frangi Segmentation

In a multi-scale method, the scale space is parametrised with scale

parameter s, where s is the width of the Gaussian filter:

I(x0 +∆x, s) ≈ I(x0, s) + ∆x∇I(x0, s) + ∆xTH(x0, s)∆x (5.4)

At each scale, the directions of most and least change in curvature of the

convolved image surface are computed. Frangi et al. [12] postulates that if the

principal curvatures are roughly equal in magnitude, |k1| ≈ |k2| where k1 and k2

have been ordered such that |k1| ≤ |k2|, then the pixel is more likely a member of a
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‘blob-like’ structure, since there is no preferred direction for change in image

surface level. However, when |k1| ≪ |k2|, and |k1| ≈ 0, the pixel is more likely to

be a vein pixel, since veins and external boundaries are characterized by long

length and thin width (‘tubular’). Thus, the eigenvalue decomposition provides an

elegant metric for evaluation of ‘vesselness’ at any given scale.

At each scale, as represented in Table 1, a pixel is more likely to be a vein

according to the following heuristic principles (where L is low magnitude, H is high

magnitude and ± is sign of the eigenvalue): (a) Where k1 and k2 have been

ordered such that |k1| ≤ |k2|, one eigenvalue must be much larger than the other in

magnitude in order to select for tubular structures. (b) Only one of the eigenvalues

should be close to or identically zero. If both eigenvalues are near zero but still

form a large ratio (e.g. k1 = .001, k2 = .01) then the pixel is most likely to be a

background pixel.

TABLE 1: Frangi 2d Pixel Classification Heuristic

Frangi Vesselness Heuristic

k1 k2 Structure Pattern

L L no direction
L H- bright tubular
L H+ dark tubular
H- H- bright blob
H+ H+ dark blob

Note: The magnitude and sign of the Hessian matrix’s eigenvalues determine the
local geometry of the image surface and the consequent classification of the pixel as
a vein pixel, blob pixel, or other.

For dark vasculature as in the image set, Frangi captures the heuristic

principles for vesselness at each scale in the metric V0(s):

V0(s) =

 0 if k2 < 0

e−
RB

2

2B2 (1− e−
S2

2c2 ) if k2 ≥ 0
(5.5)

where RB = k1/k2 is the eigenvalue proportionality measure reflecting principle (a)
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above, and

S = ∥H∥F =
√
k2
1 + k2

2

is the Frobenius matrix norm used to select for presence of structure representing

principle (b) above. B and c are parameters to control the sensitivity of the

method to RB and S, respectively. Because the principal curvatures have been

labeled such that |k1| ≤ |k2|, |RB| ≤ 1. When |RB| is near 1, the principle

curvatures are close in magnitude, making the pixel likely to be a blob, and thus

the vesselness measure is made smaller. The final vesselness measure VF for each

pixel is simply the largest vesselness measure over the range of scales at which the

method is evaluated:

VF = max
smin≤s≤smax

V0(s) (5.6)

The vesselness measure of the sharpened wing images is determined over

scales one, three, five, seven and nine with optimal parameter values c = 800 and

B = 0.845 in the core Frangi engine. Although Frangi et al. suggest the Frangi

method returns an intermediate result to be fed into another edge detector, better

results here are achieved by working directly with the Frangi output. The Frangi

vesselness measure is converted to a binary image with a binary threshold of 0.01

(on a scale of zero to one) – in effect all structure identified as possibly a vessel is

retained. After application of an area thresholding of 500 pixels to isolate

connected objects of interest, light connectivity enhancements are applied to repair

undersegmentation from missing vein segment patches. Still the trailing edge and

the thin end of longitudinal vein V are not continuously selected as edges. As

such, the segmentation of the wing’s exterior boundary must again proceed

separately from the interior vascular network. The exterior boundary is found as

described in Section Finding the Leading and Trailing Edges.

Separation of the wing from the fly body is again performed as in Section

Adaptive Thresholding Results. Although less wing cell area is erroneously

identified in the vein and boundary segmentation in the Frangi segmentation
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FIGURE 15: Frangi segmentation essential steps. (upper left) Frangi edge detector
output, (upper right) Convert raw output to a binary image with .01 threshold,
(lower left) Area thresholding to remove extraneous data and make light connectivity
enhancements to bridge small pixel gaps in vascular network, and (lower right)
Addition of the exterior boundary found in Chapter 3.

method than in previous methods, the close physical proximity of wing cell

striations to the vasculature network does lead to inclusion of striation filaments in

the vein segmentation. As such, morphological operations to repair the area loss of

segmented cells due to the unavoidable inclusion of darker wing cell pixels in the

vein segmentation is done, as described previously in Sections Overview, Finding

the Leading and Trailing Edges, and Adaptive Thresholding Results, respectively.

Results

The Frangi method achieves a higher degree of segmentation accuracy, as

shown in Table 2 in Chapter 6. Most of the internal wing vasculature is identified

with a minimum of erroneous inclusion of darker cell pixels, due to the
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FIGURE 16: Example Frangi segmentation result (wing45BIG). (left) Original im-
age, and (right) The segmentation result. The vascular network is well identified,
including longitudinal vein VI. Small wing cell areas near the cut line are preserved.
The third posterior cell boundary is rough, due to the inclusion of striation filaments
in the trailing edge segmentation.

combination of the Frangi method itself with the particular sharpening

preprocessing step. The core Frangi filter frequently fails at finding longitudinal

vein V where it thins as it approaches the trailing edge as well as the previously

discussed failure to find the trailing edge, necessitating a) a separate treatment of

the trailing edge segmentation as discussed in Section Finding the Leading and

Trailing Edges, and b) postprocessing morphological operations to enhance the

connectivity of the interior vascular network previously discussed. In an

improvement over the Maximal Gradient method, Frangi does not identify

separate boundaries for the interior and exterior edges of the leading edge. Smaller

areas near and beyond the cut-line are also correctly identified as wing cells. The

full segmentation is shown in Figure 16. In a significant improvement over

previous methods, longitudinal vein VI is accurately segmented and the third

posterior cell area to the right of the vein is included in the segmentation. The

location of the leading edge is identified with high accuracy, as can be seen in a

side by side zoom of the segmentation result and the original image in Figure 17.

The difficult longitudinal vein V is also accurately identified, as shown in a side by

side zoom of the segmentation result and the original image in Figure 18. Local

error in placement of the trailing edge along the bottom of the third posterior cell
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FIGURE 17: Frangi Segmentation leading edge placement. (left) Original image,
and (right) Frangi segmentation. The segmentation locates the leading edge with
high precision.
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FIGURE 18: Frangi segmentation LV V placement. (left) Original image zoomed
(right) Frangi segmentation zoomed. Longitudinal vein V near its intersection with
the trailing edge is located with high accuracy.

is evident, due to the presence of dark striation filaments in the wing cell

neighboring the trailing edge, as well as the method correcting for the underlying

lack of contrast between the edge and its surroundings.
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CHAPTER 6

IMAGE SEGMENTATION SUMMARY

The performance of the segmentation routines is measured by their ability

to identify the wing boundaries and interior veins individually. For instance, if

longitudinal vein V is not identified all the way until its intersection with the

trailing edge, then it is considered to be not segmented. The anal crossvein and

longitudinal vein VI are considered to be a single feature.

In addition to the three methods presented in this thesis (Adaptive

Thresholding, Maximal Gradient, and Frangi Multi-Scale methods), the

performance of a Level Set method (LSM) routine that was developed but not

presented is also included. Level Set methods are a computationally intensive

approach to dynamically evolving and tracking boundaries. Osher and Sethian

introduced the Level Set method to propagate and track the movement of

boundary curves, using canonical examples in flame propagation and crystal

growth [13]. Fedkiw and Osher [14], Sethian [15], and Shu and Osher [16] provide

ample background and theory for reference.

Table 2 reports the performance of each segmentation routine over the

entire 48 wing image set. The routines were all run on a 2.1GHz Pentium

processor with 4GB of RAM. Segmentation of several features is seen to be trivial,

in that all methods identify the features. The leading edge, trailing edge,

longitudinal veins III and IV, and posterior and anterior crossveins are always

identified. Longitudinal vein II is always identified in every image for every

segmentation routine, except for the Frangi method for a single image. The

methods are distinguished by their ability to fully identify longitudinal vein V and

identify longitudinal vein VI.

The Adaptive Thresholding method, the simplest method from a
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mathematical perspective, finds longitudinal vein V in 42 of the 48 images.

However, the method is only able to recover longitudinal vein VI in ten of the

images. The Maximum Gradient method best identifies longitudinal vein V, fully

finding it in 47 of the 48 images. The method also shows strong improvement from

the Adaptive Thresholding routine in identification of longitudinal vein VI,

although still fails to identify it in twelve images. The Frangi Multi-Scale method

identifies longitudinal vein V almost as well as the Adaptive Thresholding method

while achieving the best performance in identifying longitudinal vein VI. Despite

its mathematical sophistication, the Level Set method was unable to materially

improve on the performance of the Adaptive Thresholding method. Figure 19

shows a side by side comparison of the four segmentation routines performed on

Wing30BIG. Longitudinal vein V is identified in all four routines. The Adaptive

Thresholding routine fails to find longitudinal vein VI and as a result, the wing cell

to the right of the vein is not included in the resulting segmentation of the third

posterior cell. Longitudinal vein VI is identified in each of the other methods.

TABLE 2: Segmentation Methods Performance Comparison

Number of Each Feature Identified in the Image Set per Method

Thresholding Max Grad Frangi LSM

Time per Image 6 10 19 1613

K
e
y
W

in
g
F
e
a
tu

re
s Leading Edge 48 48 48 48

LV II 48 48 47 48
LV III 48 48 48 48
LV IV 48 48 48 48
LV V 42 47 41 43
LV VI 10 36 44 15

Trailing Edge 48 48 48 48
Posterior CV 48 48 48 48
Anterior CV 48 48 48 48

Note: For each segmentation routine, the number of times in the 48 wing image
set that a given wing feature was identified. Identification of many of the wing
features is seen to be a trivial task, in that all methods identify the features across
the entire image set. Full segmentation of longitudinal vein V and identification
of longitudinal vein VI distinguish the performances of the segmentation routines.
The times to segment are measured in seconds on a 2.1GHz Pentium processor with
4GB of RAM.
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FIGURE 19: Annotated segmentation results comparison for wing30BIG. (upper
left) Adaptive Thresholding, (upper right) Maximal Gradient, (lower left) Frangi,
and (lower right) Level Set Methods.

However, variations in performance not captured by the performance measure, as

elaborated for each method in their respective Chapters, are also evident in the

side by side comparison in Figure 19. For reference, the original image raw and

sharpened are shown in Figure 20. In the Adaptive Thresholding routine, smaller

wing cell areas near where the veins converge fail to be identified. Excessive

thickness of longitudinal vein II and III is evident, due to the distortion from

inclusion of darker wing cell pixels in the vein segmentation necessary to identify

longitudinal vein V along its entire length. This tradeoff also causes the loss of

third posterior cell area and lack of identification of longitudinal vein VI. In the

Maximal Gradient routine, a portion of the leading edge is identified as a distinct

wing cell area. Portions of the leading and trailing edges are also absorbed in their

neighboring wing cells, as evidenced by the kink in the boundary of the third

posterior cell, creating error in placement of the exterior boundary. These errors
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FIGURE 20: Original (left) and sharpened (right) wing30BIG image.

are caused by the method’s inability to identify thick veins as single boundaries

between cells. In the Frangi method, filaments of wing cell material which border

the vascular network are included in the vein segmentation, which creates a

roughness in cell boundaries. The Level Set result suffers from the same

limitations as the Adaptive Thresholding result. The Frangi method segments 420

of the image set’s total 432 key wing features, narrowly edging the Maximal

Gradient method’s 418 cumulative score. Additionally, the Frangi method has the

fewest categories of segmentation error not represented in the wing feature score.

Namely, a loss of smoothness along portions of cell boundaries. This effect would

be alleviated if the Frangi segmentation results were to be incorporated in the

existing asymmetry calculation process, since an intermediate step between

segmentation and splining thins the vasculature to a single pixel thickness. The

method also demonstrates the most ability to identify and retain small cell areas

where the vasculature converges near the cut line. The Maximal Gradient method

suffers, due to its retention of portions of the leading and trailing edges as either

distinct cells or as area and boundary location distortions. As such, the Frangi

method is the best of the surveyed methods for segmentation of the wing images,

and an improvement upon current practices, for which the Adaptive Thresholding

method is a proxy.

It should be noted that each of the routines is run with fixed parameters on
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the entire image set, and not run individually on separate images with parameters

tuned to each image. The goal is to automate the segmentation process, and

manual tuning of parameters for each image is inconsistent with that goal. Since no

routine was able to perfectly segment the entire image set, some parameter tuning

could be endeavoured as a form of error handling after evaluation of the selected

segmentation routine’s results. The quality of the Frangi result would permit the

least amount of parameter tuning, which should be avoided due to its potential to

introduce variation across the image set in location of landmark points.
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CHAPTER 7

PROPOSED MEASURE OF WING PAIR SHAPE ASYMMETRY

Introduction

The image segmentation is an intermediate step towards the ultimate goal

of the analysis of the shape variation in fly wing pairs across the 48 wing image

data set. The current shape measures for the wings are based on the distance

between N landmark points of the wing, for some N . The landmark points

generally correspond to locations of intersection of the longitudinal veins with the

leading and trailing edges and the three crossveins. Subsets of all vein intersection

points often form the set of landmark points, due to identifiable measurement

error in location of a landmark point as well as the choice of asymmetry measure

itself. For instance, in [2], the average distance of the two ends of the posterior

crossvein to the intersection of longitudinal vein IV and the trailing edge is

calculated for each wing. The simple difference of this calculation between the left

wing and right wing forms a measure of Directional Asymmetry (DA) of the fly.

More complicated measures utilizing a larger set of landmark points are

also calculated. For instance, where d(1, 2) is the distance between landmark

points one and two, left and right refer to the left and right wings of a fly wing

pair, and avg(d(1, 2)left,right) is the average of the distance between points one and

two over the left and right wings of the wing pair, the measure Scaled Mean

Directional Asymmetry (SMDA) for a given fly is:

SMDA =
N !

2((N − 1)!)

[
N−1∑
i=1

N∑
j=i+1

d(i, j)left − d(i, j)right
avg(d(i, j)left,right)

]

Several other wing pair asymmetry measures are also calculated from the

distance between landmark points. Unscaled DA(cent) is the simple difference
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between left and right wings of the square root of the sum of squared distances

from each wing’s centroid to the wing’s set of landmark points. Rankings of the 24

flies in the data set on the basis of this measure are shown in column one of Table

3.

Table 3 also shows the fly wing pair asymmetry rankings for several other

asymmetry measures. Fortunately, the ranking of a fly wing pair’s asymmetry is

consistent across the various measures. Flies 9, 23, 19, 7 and 2 have the greatest

DA (left-right), as seen in the first four columns of the Table. Note that the

Fluctuating Asymmetry metrics (FA) Unscaled FA in column five and Scaled FA in

column seven reflect the magnitude of their corresponding DA metrics Unscaled

DA in column one and Scaled DA in column three, respectively. As such, the FA

measures lose the left-right directional information contained in the associated DA

measures. Flies 22 and 14 also exhibit relatively large mean FA measures, as seen

in columns six and eight, in addition to the above mentioned wings.

TABLE 3: The Benchmark Wingpair Asymmetry Measures Rankings

Low Measurement Error Area Euclidean Distance Asymmetry Rankings

Unscaled Unscaled Scaled Scaled Unscaled Unscaled Scaled Scaled
DA(cent) Mean DA DA(cent) Mean DA FA(cent) Mean FA FA(cent) Mean FA

F
ly

N
u
m
b
e
r

9 9 9 7 9 7 9 7
23 19 23 9 23 22 23 22
19 7 19 19 19 9 19 14
2 23 2 2 2 19 2 9
7 2 7 16 7 14 7 13
12 16 12 15 13 23 13 19
16 15 16 23 12 12 12 12
15 1 15 1 16 13 16 10
8 8 8 3 15 20 15 24
24 4 24 13 11 10 11 23
1 12 1 21 8 24 8 5
18 6 18 6 20 21 20 18
6 24 6 4 17 2 17 20
4 3 4 8 21 5 21 3
22 18 22 10 24 18 24 21
10 13 10 12 3 16 5 16
14 21 14 24 5 1 3 2
5 10 3 18 1 3 1 1
3 17 5 17 14 11 14 11
21 14 21 20 10 6 10 17
17 22 17 14 22 8 22 8
20 20 20 11 18 17 18 6
11 11 11 22 6 15 6 15
13 5 13 5 4 4 4 4
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The wing pair shape asymmetry analysis explored herein seeks to study the

variation in wing shapes through an analysis of the variance structure of the image

data set. Wing shape variation is necessarily one of the sources of variation in the

wing image data set. Qualitatively, several other sources of variance in the wing

image data set can also be posited: (a) Left vs. right images, (b) pose variation –

angle of placement of wing in image frame, (c) illumination variation and other

potential variations in photo capture, (d) wing cell striation variation,

(e) occlusions and presence of unintended image inhomogeneities, and (f) detailed

shape variation – size and shape of entire wing, size of each wing cell, and

thickness of veins.

There may well exist other unidentified sources of variation as well. Since

all possible sources of variation in the wing image data set must necessarily be

expressed as variation in the spatial distribution of pixel intensity values, the

fundamental requirement underlying the variance decomposition techniques

developed in this paper is the effective separability of subsets of pixel intensity

value variation as represented by the identified qualitative factors. To formulate a

usable shape asymmetry measure from an image data set variance model, wing

shape variance must necessarily be a separable form of variance in the data set.

It is well known that substantial pose variation alone strongly degrades the

ability of the technique implemented herein to capture other dimensions of image

set variation [17]. In order to isolate the shape variation between wing images,

elements of pose variance are reduced where possible. The left vs. right variance is

partially reduced by flipping the vertical dimension of the right image, and then

both left vs. right variance and pose angle variance are significantly reduced via an

intensity-based image registration, which aligns the images based on similar

intensity value matching [18]. Wing5 is the reference wing image for alignment,

due to its center position in the image frame and absence of occlusions or other

extraneous data. Figure 21 shows Wing1 on the right before and after alignment

to Wing5.
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FIGURE 21: Reduction of pose variance through alignment. Alignment of Wing1
to Wing5: (upper left) Wing5, (upper right), Wing1 before alignment, (lower left)
Wing5, and (lower right) Wing1 after alignment.

Background Math: Singular Value Decomposition

Often in large data sets, there exists a lower dimensional basis which closely

approximates the input data set. Dimension reduction of this nature enables

accurate and efficient algorithms for identification, classification and prediction.

The canonical tool of this form of data analysis is the singular value decomposition

(SVD).

For any matrix A ∈ Rm×n, the SVD is a factorization that exists in the

form of:

A = UΣV T (7.1)

where U ∈ Rm×m and V ∈ Rn×n are both orthogonal matrices, Σ ∈ Rm×n is a

diagonal matrix and the T symbol denotes the transpose. By definition, a square
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matrix U is orthogonal if

UUT = I

where I is the identity matrix of same size as U . An orthogonal matrix is always

invertible and has the property of

U−1 = UT

where U−1 denotes the matrix inverse.

The columns of an orthogonal m×m matrix form an orthonormal basis for

Rm. Necessarily, then, for any two columns i and j of an orthogonal matrix U,

⟨ui, uj⟩ = 0, where ⟨, ⟩ denotes the dot product. In other words, the covariance of

any two columns of an orthogonal matrix is zero. The columns of U, known as the

left singular vectors of matrix A, represent the independent sources of variation

contained in the entries of A. For a de-meaned matrix A, the scaled left singular

vectors are also referred to as the principal components of A. The singular value

decomposition can then be seen as a change of coordinates of matrix A into the

dimensions of its independent sources of variation. A can then be rewritten as a

linear combination of these independent sources of variation

A =
r∑

i=1

σiuiv
T

i (7.2)

where r is the rank of A, vi is the ith column of V , and the weightings σi are the

non-zero diagonal entries of the matrix Σ. σi are known as the singular values of

A, and its value represents the amount of variance explained by its associated left

singular vector.

Each principal component can be evaluated for a physical interpretation of

the variance of A that it contains. A physical interpretation of the principal

component may not be apparent, or even exist at all. However, if a principal

component represents a desired source of variance in the original data matrix, it
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may be evaluated in isolation or in conjunction with other (and not necessarily

sequential) principal components. The weightings on two principal components

identified as meaningful are often shown as a scatter plot for a given set of input

vectors (the columns of the original matrix A here), allowing for cluster analyses.

The other main utilization of the singular value decomposition is to form a

low-rank approximation of the original higher dimension data. Low-rank

approximations are useful to isolate and combine only the dominant sources of

variance. By the Eckart-Young theorem [19], for a given z, with z < rank(A), the

best rank z approximation of A is the rank z linear combination of left singular

vectors of A given in Equation (7.2) with r replaced by z, denoted Az. Formally

stated:

Az = argmin ∥A−B∥F subject to rank(B) = z (7.3)

Isolation of Wing Shape Variation

In order to investigate variations in the overall shape of the wings, as

opposed to the shape of each wing cell area as determined by both wing perimeter

and the interior vascular network, a segmentation of the aligned wings as

individual blobs was created in the Wing As Blob data set. In this data set, there

is no variance for placement of the internal vasculature, nor illumination variation,

wing cell striation variation across the data set, or pose variation, save for the

possibility the segmentation result is contaminated by these factors. Since inability

to perfectly align wings is itself a function of shape difference between wings, shape

variation should be the dominant if not exclusive form of variance in the data set,

since location of the perimeter of the wing blob exclusively determines shape.

A singular value decomposition of the data set yields the dimensionality of

its variance structure. The relative magnitudes of the singular values of the 48

images in the Wing As Blob data set necessary to retain 95 percent of the set’s

variance are shown in Figure 22. The first PC contains 42% of the energy in the

data. The first three PCs combined contain 58% of the energy, and the first five
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FIGURE 22: Wing As Blob data set singular values plot. A plot of the singular
values obtained via an SVD on the centered Wing As Blob data set necessary to
retain 95% of the set’s energy. The first PC contains 42% of the energy in the data.
The first three PCs combined contain 58% of the energy, and the first five contain
65%.

contain 65%. Almost two-thirds of the variance in the data set is contained in the

first five PCs. Since the data set was created to isolate shape variation from other

sources of variation in the original image set, evaluation of the difference in

contribution of the first several PCs between each wing in a wing pair should yield

an asymmetry measure for the wing pair.

Two heuristics for investigation of wing shape variance are utilized:

(a) evaluation of the dominant principal components obtained via the SVD for

shape features and comparison of the factor weightings (i.e., PC coefficients) in

each wing pair for these PCs and (b) construction of low rank wing approximations

of various ranks for stochastic shape analysis. For instance, if the shape of a given

wing does not change between rank 10 and rank 15 approximations, then it can be

deduced that the principal components 11-15 do not contain discriminatory shape

information. While much of the set variance is contained in the first five PCs, 95%

of the set variance is not retained until the 35th PC, suggesting small changes in
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FIGURE 23: Aligned Wing As Blob wings 1− 9

shape of the wing blobs are still being selected throughout the PC set, or the

segmentation introduces spurious variance in wing shape, or both.

For reference, the first nine wings of the data set are displayed in Figure 23.

The first nine principal components are displayed concatenated as a single plot in

Figure 24. Each principal component itself visually appears as the boundary of a

wing. Since the data was centered prior to performing the SVD, wing area

common to all wings was in effect deleted from the set, leaving only variations in

the boundary placement from wing shape asymmetries. Each PC evidently

contains shape information, although each PC includes information on the

placement of the boundary of the entire wing, precluding any feature by feature

extraction. As such, a meaningful physical interpretation of the dimension of

variance represented by each PC appears to be impossible.

While a meaningful physical interpretation of the PCs is unavailable, we do
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FIGURE 24: The nine PCs of largest explained variance. Each PC contains in-
formation on location of the wing boundary, and each visually appears to be the
boundary of a wing, although a direct feature extraction appears impossible.

know that the relative contribution of each PC will be skewed towards the PCs of

highest singular value magnitudes. This can be seen in Figures 25 and 26, which

show most of the energy in approximations of Wing As Blob Wing5 and Wing6

images is contributed by the first three PCs, as expected by the magnitudes of the

associated singular values. Still, other PCs contribute. Interestingly, Wing5 has

greater contributions from PCs 5 and 6, while Wing6 has a greater contribution

from PC4, while the contributions from the other PCs are not noticeably different.

Low-Rank Approximations

In order to allow for shape expressions to manifest at varying rank

approximations across the wing image set, as well as to acknowledge the

uncertainty in assigning a particular shape meaning to any of the PCs, a shape

asymmetry measure is calculated on the assumption that the shape variance must
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FIGURE 25: Contributions of PCs 1-9 to a low-rank approximation of wing5. Sim-
ple addition of each image yields a rank 9 approximation of wing5. The contributions
of the first three PCs dominate, although shape effects are evident in the other PC
contributions.

in fact be contained in the set of PCs, and thus for some N , shape variance for the

entire image set will be captured in the rank N approximation. If shape

asymmetry dominates other sources of variation in the set, then for some rank the

asymmetry measure should reflect shape asymmetry. This measure is:

Wingpair Shape Asymmetry Index =
N∑
i=1

σi×[V T (i,Left Wing)− V T (i,Right Wing)]

(7.4)

Calculation of the wing pair asymmetry metric (WSAI) given by Equation (7.4)

for the given N ranks is shown in Table 4. Flies 9, 7 and 2 maintain a ranking in

the top four in left-right shape asymmetry for ranks 1− 20, while fly 19 ranks

sixth for ranks one and three, suggesting consistency with the benchmark
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FIGURE 26: Contributions of PCs 1-9 to a low-rank approximation of wing6. Sim-
ple addition of each image yields a rank 9 approximation of wing6. The contributions
of the first three PCs dominate, although shape effects are evident in the other PC
contributions. The contribution of PCs 5 and 6 to wing6 are larger than their
contribution to wing5, suggesting wing pair asymmetry is present in these PCs.

asymmetry rankings in Table 3. Further confirming the measure, WSAI identifies

fly 11 as possessing the least left-right DA, in agreement with the benchmark

measures, which place fly 11 next-to-last in Unscaled DA(cent), Unscaled Mean

DA and Scaled DA(cent) in columns one through three. While the WSAI rankings

are largely stable across lower rank approximations, using all 35 PCs necessary to

retain 95% variance drops fly 7 down to sixth and fly 19 all the way to 22nd in

asymmetry ranking, suggesting contamination from other sources of variance.
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TABLE 4: Rankings of a New Measure of Wingpair Directional Asymmetry

WSAI DA Measure Rankings

Fly Asymmetry Rankings at Rank N

1 2 3 4 5 6 7 8 9 10 20 35

F
ly

N
u
m
b
e
r

9 9 9 9 9 9 9 9 9 9 9 9
6 7 6 6 6 6 6 6 6 6 6 6
2 6 2 7 2 2 2 2 2 2 2 15
7 2 7 2 7 7 7 7 7 7 7 2
21 21 21 15 15 15 15 15 15 15 15 16
19 20 19 21 21 21 21 21 21 17 16 7
20 19 20 19 20 20 20 20 16 21 21 14
24 24 24 20 16 24 19 16 20 16 17 17
23 23 16 16 23 16 24 24 17 14 14 21
16 16 3 24 3 23 16 23 24 24 23 23
15 3 15 3 24 3 23 19 14 20 20 12
3 17 23 23 19 19 3 3 23 23 24 20
8 18 17 18 17 18 14 17 3 3 3 24
13 15 18 8 18 17 17 14 5 18 12 4
17 8 8 14 14 14 18 18 19 5 1 3
5 5 5 1 5 8 8 1 18 4 18 1
18 1 13 4 8 1 1 5 4 12 5 18
4 4 4 17 4 4 12 8 12 1 4 13
14 14 1 13 1 12 4 4 8 8 10 5
12 12 14 12 12 5 5 13 1 19 13 10
10 13 12 5 13 13 13 12 13 10 8 8
1 10 10 10 10 10 10 10 10 13 19 19
22 22 22 22 22 22 22 22 22 22 22 22
11 11 11 11 11 11 11 11 11 11 11 11

Note: In the Wing As Blob data set, flies 9, 6, 2 and 7 maintain the greatest asym-
metry in the lower rank approximations as determined from the measure Wingpair
Shape Asymmetry Index (WSAI). The stability of the ranking over rank approxima-
tions, and agreement with the benchmark rankings, suggests wing shape variation
is largely contained in a low dimensional subspace of the image set.
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For comparison to the FA measures of Table 3, a measure of distance in PC

coefficient space (i.e., indifferent between left-right and right-left asymmetry)

between the wing pair is explored. This is formulated as:

Wing Shape Asymmetry Index II =(
N∑
i=1

σi × [V T (i,Left Wing)− V T (i,Right Wing)]2
)1/2

(7.5)

TABLE 5: Rankings of a New Measure of Wingpair Fluctuating Asymmetry

WSAI II FA Measure Rankings

Fly Asymmetry Rankings at Rank N

1 2 3 4 5 6 7 8 9 10 20 35

F
ly

N
u
m
b
e
r

11 11 11 11 11 11 11 11 11 11 11 11
9 9 9 22 22 22 22 22 22 22 9 22
22 22 22 9 9 9 9 9 9 9 22 9
1 10 13 15 15 15 15 15 15 15 19 19
6 13 10 6 6 6 6 6 6 19 6 15
10 6 6 13 13 13 13 13 14 6 15 6
2 12 2 14 14 14 14 14 13 13 1 1
12 2 12 10 10 10 10 10 1 14 14 14
7 1 1 1 1 1 1 2 2 1 13 13
14 14 14 12 12 12 12 12 10 17 7 17
4 7 7 2 2 2 19 1 12 2 12 12
18 4 4 7 17 17 2 19 19 10 17 10
5 18 18 4 7 7 17 17 5 12 10 5
17 17 17 17 4 4 7 5 17 5 5 7
21 5 5 18 19 19 4 7 4 4 2 2
13 15 15 5 5 5 5 4 7 7 8 24
19 19 19 19 18 18 18 8 8 8 21 8
20 20 21 8 21 21 8 18 18 20 4 21
8 21 8 23 8 8 21 21 21 18 23 4
3 23 23 16 20 20 20 20 20 21 24 23
24 24 20 21 23 24 23 24 23 3 16 16
23 8 24 3 16 23 24 23 24 23 20 20
16 3 16 20 3 16 3 3 3 24 18 18
15 16 3 24 24 3 16 16 16 16 3 3

Note: Instability in the rankings over increasing rank approximations, and failure
to agree with the benchmark FA rankings at any rank, indicate FA is not captured
by Wingpair Shape Asymmetry Index II (WSAI II).
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The asymmetry rankings produced by the measure are shown in Table 5.

Flies 11, 9 and 22 have the greatest FA as measured this measure (WSAI II). Fly 9

has the most Unscaled FA(cent) and Scaled FA(cent) in the benchmark rankings,

though flies 11 and 22 do not rank highly in either measure. As such, there is only

very weak validation for WSAI II as an alternate FA measure.

Comparison of the Directional Asymmetry Measures

Moving beyond a comparison of the ranking of the flies in the WSAI

measure and the benchmark DA asymmetry measures, we examine the actual

quantities of the measures of each fly. We select Unscaled DA(cent) as the

benchmark measure and rank five of the WSAI measure for the comparative

analysis. Each measure is normally distributed around a mean very near zero,

enabling us to translate each measure into a z-score expressing each fly’s

asymmetry in standard deviation units for both measures. Given the near zero

means, positive z-scores indicate positive asymmetry as determined by the given

measure, and larger z-scores reflect larger calculated asymmetry. Figure 27 (left)

shows a scatter plot of the z-scores of each fly for the two asymmetry measures.

Correlation between the two measures is good, with r = .5078. However, there are

outliers which reduce the goodness of fit. In order to understand the discrepancy

in identified asymmetry between the two measures, sensitivity analyses of each

measure are endeavored.

Unscaled DA Sensitivity Analysis

A sensitivity analysis of the Unscaled DA measure demonstrates a high

sensitivity to exact placement of the landmark points from the thresholding

segmentation and splining procedure in WINGMACHINE. The existence and

interaction of several factors can create variable boundary and vein location either

outright (in relation to true location), in relation to other boundaries in the same

image, or in relation to location of the same boundary in other images. The images

on which the benchmark rankings are based are downsampled by a factor of five in

each dimension. As such, one pixel of the lower resolution data equals an area of
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FIGURE 27: Scatterplots of WSAI and Unscaled DA z-scores for the 24 flies. (left)
There is a 0.5078 correlation between the two measures of asymmetry. (right) After
correcting fly 6’s landmark points 1-4, the correlation between the two measures has
risen to 0.6156.

25 pixels in the original data. Although any downsampling will produce artifacts,

the mosaic patchiness of the lower resolution images indicates use of a nearest

neighbor downsampling, which is well known to introduce the most artifacts of all

interpolation routines [20]. For instance, the location of thin veins (portions of the

trailing edge and longitudinal vein V are only five pixels thick or less in the high

resolution images) can easily be placed plus or minus one pixel in resizing,

depending on the intensity values of neighboring regions. Neighboring regions in

the image may be close in intensity values (cell striations) or even darker (cilia).

This effect is not uniform because of variable proximity of features to these

confounding elements. The replacement of a darker vein pixel with a lighter

neighboring pixel in the downsampling has a knock-on effect in the segmentation

procedure, because of the interaction with the thresholding parameter needed to

identify veins fully. When portions of thinner veins disappear in the downsampling

and are replaced with a higher intensity value from a neighboring region, in order

to recover the vein a more relaxed intensity value thresholding level must be used,

which in turn exaggerates thickness of other veins. Then the skeletonizing

procedure will produce an error in location of the thicker vein.

The segmentation procedure which identifies the veins on which to apply

splines to produce the locations of landmark points has several error potentials.
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There is a smoothing filter in a preprocessing step which can itself move the

boundary. Thinning the veins to produce single pixel thick veins on which to

spline can also move the location plus or minus a pixel. Additionally, when

splining results are determined to be strongly erroneous, the thresholding

segmentation is repeated with individual parameter tunings for those wings - the

size of smoothing filter to reduce image variability, the threshold intensity value to

classify vasculature, and the size of structuring element in morphological

operations to reduce extraneous image objects and smooth the vasculature chiefly

among them. Each of these in isolation and in conjunction can easily move a

boundary location in a wing image either absolutely or relative to another wing

with a different set of parameters.

Fitting the identified veins with cubic b-splines also produces error.

WINGMACHINE uses an a priori model of wing shape to place spline control

points on and around the vein segmentation. The splining procedure optimizes the

brightness of the pixels under the splines, in order to attract the splines to the vein

segmentation. The splines are evolved by a gradient ascent routine over an energy

field derived from smoothed pixel intensity values of the image segmentation. The

routine often converges to an erroneous solution and mis-identifies the landmark

point locations on which the asymmetry measure is calculated [21]. The spline

errors are evaluated via visual inspection, and error correction is performed

manually, although there is discretion in error tolerance. Errors in location of

landmark points may survive the correction process, due to error tolerance or error

in manual adjustment. In the data set studied here, the calculated locations of

landmark points can vary from their true location. Figure 28 shows the location

error of a sample point. The location of this point in the splining procedure is 2.83

pixels away from its true location in the lower resolution image.

Finally, the scale of the calculation is small relative to the measurement

increments. Distances and asymmetries are being calculated in the fractions of a

pixel, often with asymmetry between two wings less than a single pixel in distance.
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Trailing Edge

True Intersection:
(X,Y)=(112,80)

Calculated Intersection:
(X,Y)=(110.16,77.86)

FIGURE 28: Landmark point location error. The thresholding segmentation and
splining procedure to determine landmark point locations produces errors. Wing6
landmark point one is shown. The location is 2.83 pixels away from the landmark
point location in the low resolution image.

Landmark points are located with sub-grid specificity in the splining procedure,

which is false precision. The range of Unscaled DA(cent) in the data set is from

2.6 to −1.35 pixels. The average Unscaled DA is only 0.34 pixels. 16 of the 24 flies

have Unscaled DA magnitudes of less than one pixel. Intuitively, total

measurement error appears to be of potentially larger magnitude than the quantity

the calculation is measuring.

Since fly 6 has the greatest difference in z-score between the two

calculations, we select it for further analysis. It has the second most DA in the

WSAI calculation, and a corresponding z-score of 1.966. Additionally, it maintains

a high WSAI across all rank approximations. Fly 6 ranks only thirteenth in

Unscaled DA(cent), however, below the median, with a z-score of −0.188.

The locations of the wing pair’s landmark points one through four, which

correspond to the intersections of longitudinal veins V, IV, III and II with the

trailing and leading edge, respectively, are manually evaluated and relocated by

zero to two pixels each. As a result, the fly’s Unscaled DA measure increases from
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0.15 pixels to 1.84 pixels, which gives it the third highest Unscaled DA in the data

set. A scatter plot of the updated Unscaled DA measure against WSAI is shown in

Figure 27 on the right. Changing just four landmark points for a single fly

increases the correlation between the two asymmetry measures to r = .6156.

WSAI Sensitivity Analysis

Using a rank five approximation for evaluation of asymmetry in WSAI

ignores any shape effects of PCs of lower explained variance. And these PCs do

contain shape information. This can be seen by tracking the location of a

boundary point of a wing at a fixed horizontal coordinate over increasing rank

approximations of the wing. We select a perimeter point of Wing9 for evaluation

of the trailing edge location over the sequence of ranks 1, 5, 15, 25, 35, and 45.

Table 6 shows the intensity value for the given row (Y) coordinate at column (X)

coordinate 828, which, for orientation, is located just east of the intersection of

longitudinal vein V along the trailing edge. The data in column one is presented

visually in Figure 31. Utilizing the original image intensity value which signifies a

wing blob pixel, 255, the boundary of the wing occurs at Y coordinate 912 in its

rank 1 approximation. The wing is surrounded by (at least) five progressively

darker halo rings which extend to Y coordinate 965. In a rank 5 approximation of

the wing, the boundary remains at Y coordinate 912. In a rank 15 approximation,

the boundary location has moved south of Y coordinate 916. From rank 25 through

rank 45, Y coordinate 923’s intensity value rises to 251, approaching eventual

inclusion in the wing blob. The wing border ultimately extends to Y coordinate

926. In total, the wing boundary moved fourteen pixels over the sequence of

increasing rank approximations, and all of that movement was caused by the

inclusion of the lower explained variance PCs 6-48. The boundary movement is

shown visually in Figure 29 against a zoom of the original wing blob region. This

suggests there is a limit to the accuracy of low-rank measures of wing asymmetry.

The boundary location necessarily moves by adding the contributions of

additional PCs, since each PC contains information about the placement of the
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entire boundary, as seen in the plot of the first nine PCs in Figure 24. This

remains true throughout the PC set. The contribution of any one PC to the wings

is not of equal magnitude, as can be seen in Figure 30, which shows the

contributions of the first three PCs for each of the 48 wings. Low rank measures of

wing pair asymmetry can be contaminated by the consequent variable rates of

convergence of the wing boundaries across the wing pair to the full rank (original)

wing image boundary location. However, the variable rate of convergence between

wings in a wing pair does manifest in the proposed shape asymmetry measures,

since the only distinction between the wings at any rank approximation are the

varying contributions of each PC to the rank approximations of the wing pair.

This is exactly what the WSAI measure is calculating. The stability of the

determination of the most and least DA flies in the set over ranks 1 through 20

suggests the measure is robust to inclusion of a vast majority of the image set

variance. The general coherence of the WSAI rankings to the benchmark rankings

for low rank approximations through rank 20 suggests shape asymmetry is largely

contained in the PCs of highest explained variance and noise is contained in the

PCs of lowest explained variance.
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TABLE 6: Evolution of Wing As Blob Wing9 Trailing Edge Location

Vertical Intensity Value Profiles at Rank N

1 5 15 25 35 45

Y
C
o
o
rd

in
a
te 912 255.0 255.0 255.0 255.0 255.0 255.0

916 223.7 198.5 273.5 275.1 261.2 256.8
925 122.3 54.5 127.9 192.4 258.2 255.5
935 34.5 (63.5) 16.5 (8.9) (28.5) (10.8)
945 (43.7) 18.8 14.5 17.8 (6.7) (1.1)
965 (7.6) 2.1 (1.3) (2.8) 0.2 (0.1)

Note: Application of a 255 Intensity Value Inclusion Test for Determination of the
Wing Boundary at Pixel X Coordinate 828. The intensity values of six Y coordinates
for the given X coordinate are tracked over increasing rank approximations of the
wing. An intensity value of 255 or greater indicates the pixel is interior to the
wing boundary. The location of the boundary evolves as the rank of the wing blob
approximation is increased, demonstrating that PCs of lower order contain shape
information. The italicized font indicates the wing boundary location in the given
rank approximation. The data in column one is expressed visually in Figure 31.
The placement of the boundary location at each rank approximation, as denoted by
the red font in each column, is shown visually in Figure 29.

X: 828
Y: 925

X: 828
Y: 916

X: 828
Y: 912

Boundary Location 
in Ranks 15 and 25

Boundary Location 
in Ranks 1 and 5

Boundary Location 
in Ranks 35 and 45

Exterior

Interior

FIGURE 29: An illustration of the shape effects of PCs of lower explained variance.
A pixel intensity value threshold test is applied to determine vertical location of the
wing boundary at a fixed horizontal coordinate along the trailing edge. Application
of this test over increasing rank approximations of the wing image demonstrate that
the locations of boundary points evolve over increasing rank approximations. Since
the placement of all boundary points determines wing shape, the shape of the wing
is evolving over increasing rank approximations.
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PC2 PC3
PC1

Wings 47, 48
Wings 37, 38

Wings 17, 18

FIGURE 30: Contributions of the first three PCs to the Wing As Blob wing set.
The coefficients show wing pair coherence in contributions of the PCs.

Further Work

Several versions of the image data set were created to investigate the effects

of image variance reduction concepts on the separability of wing shape variance.

These techniques included: (a) image background standardization, (b) batch

alignment to Wing5, (c) batch alignment to Wing5 followed by wing pair-wise

alignment, (d) application of an averaging filter to reduce striation variation,

(e) isolation of the low measurement error area portion of the wings, (f) reductions

in image size, (g) Frangi segmentations of the wings, and (h) isolation of the sparse

error in each wing image via robust PCA.

Applying the same shape asymmetry analysis heuristics to these data sets

do not produce more favorable results. The greater amount of shape information,

including shape of individual wing cells, as well as the more pronounced presence

of the other sources of variation as detailed in Chapter 7 frustrate the attempt to

isolate shape variation in the wing image sets. Interestingly, Birdsall et al. report

the shape of each wing cell region is independently controlled at the genetic level

[6]. For our purposes, none of the data sets contain low dimensional variance

structures. Fly 19 is still identified as possessing the most DA, and fly 11 possesses

the least DA, as measured by WSAI in other data sets, in conformance with the
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benchmark rankings. However, the coherence of WSAI rankings to the benchmark

is otherwise low.

Summary

The new WSAI measure has been shown to correlate positively with the

benchmark Unscaled DA(cent) measure, confirming the measure as containing

shape asymmetry information. Both measures agree on the asymmetry of the most

DA asymmetric wings, both of highest and lowest left-right asymmetry. Both

measures identify the population of 24 flies as possessing mean DA of very close to

zero. Both measures are normally distributed about their means. The measures

differ mainly on the exact magnitude and ranking of DA in flies with measured DA

within one standard deviation of the mean. However, the error magnitude in the

benchmark measure has been shown to be of larger magnitude than the identified

difference in DA between the two measures.

In any event, the two measures should not be expected to perfectly

correspond. The benchmark asymmetry measures essentially measure the variation

in the shape of the n-gon with vertices at the low measurement error landmark

points, while WSAI measures variation in placement of the entire wing boundary.

Variations in the wing boundary away from the landmark points are not captured

by the benchmark asymmetry measures, for instance the amount of and

distribution of curvature of the trailing edge between landmark points one and two.

Both measures have been shown to have measurement errors of similar

magnitude. The difference in approaches suggests the error-generating processes

are independent. DA measures assume that the n-gon variation reflects wing shape

variation, and that the true asymmetry outweighs the errors in the measurement

procedure. WSAI assumes that the majority of each wing’s shape information is

contained in a low dimensional subspace of the wing image set and can be

recovered from low-rank approximations using the dominant sources of variance in

a blob segmentation of the wing, disregarding the shape information contained in

PCs of lower explained variance. Further study is required to determine if these
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errors are correlated, or if the measures can serve as complements with

independent errors. From this perspective, the positive but not perfect correlation

suggests the errors are not materially related.

There is an impediment to this error analysis, however. Even if the

locations of the entire vasculature network including the exterior boundary were

known with absolute certainty from expert identification, the question becomes

what to do with that location data. In order to do an error analysis of the distance

based asymmetry measures or the WSAI measure, there must exist some objective

‘true’ scalar measure of shape with which to compare. This does not yet, nor may

ever, exist. Small-scale shape variations in objects of similar overall shape may

prove to be irreducibly high-dimensional. In the interim, WSAI can be

implemented as a complementary asymmetry measure, to confirm the relative

magnitudes and rankings of asymmetry based on the Euclidean-distance between

landmark points. Perhaps with pseudo-data of known properties the various

measures of shape asymmetry can be better assayed.
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Y: 912

Y: 916

Y: 925

Y: 945

Y: 935

Y: 965

Wing 
Boundary

Y=912

FIGURE 31: Wing As Blob wing9 rank 1 approximation southern edge zoom. Ap-
plication of an intensity level threshold test yields vertical (Y) coordinate location of
the wing boundary at horizontal (X) coordinate 828. The Figure is a visualization
of column one of Table 6. The halo shadowing around the boundary is a feature of
the first PC.
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1 function [imgout1, imgout2]=FrangiCallSharpImg(img,binarythresh,areathresh)
2 %takes input image IMG and sharpens it with a TOPHAT BOTHAT procedure
3 %before passing it to FRANGI.
4 %converts the Frangi output image to binary with input BINARYTHRESH
5 % labels connected componenents and eliminates small objects with area
6 % beneath input AREATHRESH
7 % recommended values: BINARYTHRESH: .01, AREATHRESH 500
8 % outputs are labeled images IMGOUT1 and IMGOUT2, which differ in only that
9 % IMGOUT2 has had a combination of morphological operations to

10 % reconstitute area lost to the FrangiCallSharpImg preprocessing steps
11

12 % sharpen input image and convert to double format for frangi filter
13 se=strel('disk',5);
14 g=img+imtophat(img,se)-imbothat(img,se);
15 g=double(g);
16

17 % Frangi set with paramters: sigma range 1:10, 'FrangiScaleRatio', 2,
18 % 'FrangiBetaOne', 0.65, 'FrangiBetaTwo', 20
19 [outIm,whatScale,Direction] = FrangiFilter2D(g);
20

21 %convert output to binary image
22 outImBinary=im2bw(outIm,binarythresh);
23

24 %label the remaining wing subregions
25 [L]=bwlabel(outImBinary);
26 %apply an area thresholding to eliminate extraneous data
27 s = regionprops(L, 'Area');
28 area values = [s.Area];
29 idx = find((area values>=areathresh));
30 bw2=ismember(L,idx);
31 % label and compute stats of the remaining subregions of interest
32 [LL]=bwlabel(bw2);
33

34 % light connectivity enhamncements
35 % connect vein segments 1 pixel apart
36 LLbridged=bwmorph(LL,'bridge');
37 [LLB]=bwlabel(LLbridged);
38 LLBcomp=imcomplement(LLB);
39 % small opening
40 se=strel('disk',1);
41 L1pre=imopen(LLBcomp,se);
42 L1=imcomplement(L1pre);
43

44 %still need to help the frangi filter find the exterior boundary
45 image=double(img);
46 image1=image;
47 [minlocation,peaks] = multipeaks(image);
48

49 %find exterior boundary
50 image1(image1>minlocation)=255;
51 image1(image1<=minlocation)=0;
52 image1compa=imcomplement(image1);
53 image1comp1=im2bw(image1compa);
54 %erode cilia
55 image1comp=imerode(image1comp1,strel('disk',2));
56 % find wing blob
57 L = bwlabel(image1comp);
58 s = regionprops(L, 'Area');
59 area values=[s.Area];
60 maxarea=max(area values);
61 idx=find(area values==maxarea);
62 image1bdy = ismember(L, idx);
63

64 % find wing perimeter
65 imageperim=bwperim(image1bdy);
66 imageperim=bwmorph(imageperim,'thicken',5);
67 imageperim=imdilate(imageperim,strel('line',3,0));
68 imageperim=bwmorph(imageperim,'bridge');
69 imageperim=bwmorph(imageperim,'fill');
70 L = bwlabel(imageperim);
71 s = regionprops(L, 'Area');
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72 area values=[s.Area];
73 maxarea=max(area values);
74 idx=find(area values==maxarea);
75 finalbdy = ismember(L, idx);
76 %frangi segmentation of veins and exterior boundary
77 frangiOut=L1+finalbdy;
78 frangiOut=im2bw(frangiOut);
79 % imgout1 is labeled image, ss are stats of the labeled objects
80 % imgout2 is labeled image after area repair, sss its stats
81 [imgout1, imgout2] = processbinaryedgeseg(frangiOut, 500,1);
82 [cutimage1] = cutpointmask(imgout2,k); %k is img #
83 % cell smoothing
84 [LL NN]=bwlabel(cutimage1);
85 idxcell=cell(NN,1);
86 se1=strel('disk',3);
87 se2=strel('disk',3);
88 LSMout=logical(zeros(size(LL)));
89 for i=1:NN
90 temp=logical(zeros(size(LL)));
91 temp(LL==i)=1;
92 temp=imdilate(temp,se1);
93 temp=imerode(temp,se2);
94 temp=imfill(temp,'holes');
95 idxcell{i}=temp;
96 LSMout=LSMout+temp;
97 end
98 tm=LSMout;
99 tm1=bwmorph(tm,'thicken',2);

100 se=strel('disk',5);
101 tm2=imdilate(tm1,se);
102 tm3=imfill(tm2,'holes');
103 L = bwlabel(tm3);
104 s = regionprops(L, 'Area');
105 area values=[s.Area];
106 maxarea=max(area values);
107 idx=find(area values==maxarea);
108 wingiso = ismember(L, idx);
109 figure, imshow(wingiso), title('wingiso')
110 tm=reshape(tm, size(tm,1)*size(tm,2),1);
111 modetm=mode(tm);
112 LSMout(~wingiso)=modetm;
113 [LLL]=bwlabel(LSMout);
114 t1=imfill(LLL,'holes');
115 [LLLL]=bwlabel(t1);
116 %set background color
117 Ll=double(LLLL);
118 tm=reshape(Ll, size(Ll,1)*size(Ll,2),1);
119 modetm=mode(tm);
120 L2=Ll;
121 L2(Ll==modetm)=max(max(Ll))+1;
122 end

1 function [minlocation,peaks] = multipeaks(Z)
2 % Takes input wing image Z, creates a smoothed PDF and finds locations of
3 % the modes of subdistributions which are known to exist in the wing
4 % image
5 % Inputs: wing image Z
6 % Output: MINLOCATION: pixel intensity value with a the local minimum
7 % of frequency of occurence between the 2 highest located local PEAKS
8 % PEAKS: the pixel intensity values which are the modes of the image
9 % background subdistribution (highest peak) and the wing cell

10 % subdistribution
11

12 % set desired number of peaks. 2 for wing images
13 numberofpeaks=2;
14 % initiate the locator
15 peaksthresh=70;
16 Z=double(Z);
17 A=reshape(Z,(size(Z,1)*size(Z,2)),1);
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18 %% Fit a distribution using a kernel smoother
19 myFit = fitdist(A, 'kernel');
20 %class(myFit)
21 %% Visualize the resulting fit
22 index = 0:255;
23 % figure, plot(index, pdf(myFit, index)),...
24 % title(sprintf('smoothed probability distribution wing%dBIG',j))
25

26 %% Form an array of probability density at 256 nodes 0:255
27 mydist=pdf(myFit,index)*1000;
28 diffmydist=diff(mydist);
29 peaksArray=[mydist;[0 diffmydist]];
30

31 %% find the input number of peaks
32 threshold=peaksthresh;
33 k=0;
34 peaks=zeros(1,numberofpeaks);
35 while k<numberofpeaks && threshold>2
36 for i=2:255
37 if peaksArray(1,i)> threshold
38 if peaksArray(2,i)>0
39 if peaksArray(2,i+1)<0
40 peaks(k+1)=i;
41 k=k+1;
42 else
43 end
44 else
45 end
46 else
47 end
48 end
49 threshold=threshold-1;
50 if k>=numberofpeaks
51 break
52 else
53 k=0;
54 end
55 end
56

57 % find the mininim between the peaks
58 [Y I]=min(peaksArray(1,peaks(end-1):peaks(end)));
59 minlocation=I+peaks(end-1)-1;
60 end

1 function [LL, bwth] = processbinaryedgeseg( bw, areathresh,t)
2 %Input is a binary image BW of the vein segmentation
3 imgcomp=imcomplement(bw);
4 %remove the exterior of the wing image from the segmentation result
5 bw1=imclearborder(imgcomp);
6 %label the remaining wing subregions
7 [L]=bwlabel(bw1);
8 %apply an area thresholding to eliminate extraneous data
9 s = regionprops(L, 'Area');

10 area values = [s.Area];
11 idx = find((area values>=areathresh));
12 bw2=ismember(L,idx);
13 % label and compute stats of the remaining subregions of interest
14 [LL NN]=bwlabel(bw2);
15 ss=regionprops(LL, 'Area','Centroid','Perimeter');
16 bwthick=bwmorph(LL,'thicken',t);
17 bwth=bwlabel(bwthick);
18 end

1 function [cutimage, binaryImage2] = cutpointmasksingleimage(img,k)
2 %CUTPOINTMASK2 returns an output image after a masking procedure by
3 %creating a segmentation boundary line from input cutpoints
4 % INPUT:
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5 % INPUT: k, the image number (eg, k=45, this function reads in
6 % wing45BIG.tif from the \Wings directory).
7 % OUTPUT: the original images after the masking procedure
8

9 % reshape input cutpoints to a 2X2 array [x1 y1; x2 y2]
10 cutpointlist=xlsread('Thesis\cutpoints.xlsx');
11 cutpoints=reshape(cutpointlist(k,:),2,2)';
12 [x1]=cutpoints(1);
13 [y1raw]=cutpoints(3);
14 [x2]=cutpoints(2);
15 [y2raw]=cutpoints(4);
16 %change from pixel coordinates to cartesian coordinates
17 y1=abs(y1raw-1199);
18 y2=abs(y2raw-1199);
19

20 % calculate slope and y-intercept of the line formed from the 2 cutpoints
21 m=(y2-y1)/(x2-x1);
22 b=y2-m*x2;
23 % therefore, y=mx+b (we are in cartesian coordinates)
24 x=0:1600;
25 y=m*x+b;
26 % figure
27 % plot(x,y), axis ([0 1600 0 1200])
28 % these bounds assume starting point in coordinate system is (0,0), not
29 % (1,1)
30 xbound1=(-b/m);
31 xbound2=(1200-b)/m;
32 ybound1=b;
33 ybound2=m*1600+b;
34

35 %determine the intersection of the cutpoint line with the image perimeter
36 if xbound1 <=1600
37 if xbound1>0
38 keeper1=[xbound1 1];
39 else
40 keeper1=[1 ybound1];
41 end
42 else
43 keeper1=[1600 ybound2];
44 end
45

46 if xbound2<=1600
47 if xbound2>0
48 keeper2=[xbound2 1200];
49 else
50 keeper2=[1 ybound1];
51 end
52 else
53 keeper2=[1600 ybound2];
54 end
55 keeper1=uint16(keeper1);
56 keeper2=uint16(keeper2);
57 y1pixel=double(keeper1(2));
58 y2pixel=double(keeper2(2));
59 keeper1(2)=uint16(abs(y1pixel-1199));
60 keeper2(2)=uint16(abs(y2pixel-1199));
61 if keeper1(2)>1190
62 keeper1(2)=1200;
63 else
64 end
65 if keeper2(2)>1190
66 keeper2(2)=1200;
67 else
68 end
69 keeper1=double(keeper1);
70 keeper2=double(keeper2);
71

72 % create a mask from the line
73 kk=num2str(k);
74 underImage=img;
75 burnedImage=zeros(size(underImage));
76 figure
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77 subplot(2, 2, 1);
78 axis ([0 1600 0 1200])
79 imshow(underImage)
80 % Create line mask, h, as an ROI object over the second image in the
81 % bottom row.
82 subplot(2,2,2)
83 axis ([0 1600 0 1200])
84 imshow(underImage)
85 % Second argument defines line endpoints in form [x1 x2] [y1 y2].
86 hLine = imline(gca,[keeper1(1) keeper2(1)],[keeper1(2) keeper2(2)] );
87 axis ([0 1600 0 1200])
88 % Create a mask from the ROI object.
89 binaryImage2 = hLine.createMask();
90 burnedImage(binaryImage2) = 255;
91 bwthick=im2bw(imdilate(burnedImage,strel('line',2,0)));
92 bwthick1=imcomplement(bwthick);
93 bwth=bwlabel(bwthick1);
94 s=regionprops(bwthick1,'Area');
95 area values=[s.Area];
96 maxarea=max(area values);
97 idx=find(area values==maxarea);
98 cutpointmask = ismember(bwth, idx);
99 cutimage=underImage;

100 cutimage(imcomplement(cutpointmask))=0;
101 end

1 function [U,S,V, E95, E99, imgmatrix, AvgWing] = MakeSVD(imagematrix )
2 %INPUT: A matrix in which each column is a wing image reshaped as a vector
3 % OUTPUTS: U: left singular vectors of (after mean-centering) IMAGEMATRIX
4 % S: singular values of IMAGEMATRIX
5 % V: right singular vectors..
6 % ENERGY95: number of PCs to retain 95% variance
7 % ENERGY99: ... to retain 99% variance
8 % IMGMATRIX: mean centered IMAGEMATRIX
9 % AvgWing: the average wing image over the set

10

11 %compute the mean face by averaging over each row
12 AverageWing=mean(imagematrix ,2);
13 [r, c]=size(imagematrix);
14 % subtract the mean face from each image to create zero mean rows
15 imgmatrix=imagematrix-repmat(AverageWing,[1,c]);
16 % produces the economy size svd
17 [U,S,V] = svd(imgmatrix ,0);
18 %determine the number the eigenvectors to keep to contain
19 %the threshold amount of energy
20 Threshold1=.95;
21 Threshold2=.99;
22 SingularValueEnergy=diag(S).ˆ2;
23 KeepEnergy = cumsum( SingularValueEnergy )/sum( SingularValueEnergy ) ;
24 E95 = find( KeepEnergy > Threshold1,1 );
25 E99 = find( KeepEnergy > Threshold2,1 );
26 end
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