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Abstract of Thesis 

 

Using High Spatial Resolution Imagery to Assess the Relationship between Spatial 

Features and Census Data: A Case Study of Accra, Ghana 

 

 

As developing countries experience substantial urban growth and expansion, 

remotely sensed based estimates of population and demographic characteristics can 

provide researchers and humanitarian aid workers timely and spatially explicit 

information for planning and development.  In this exploratory analysis, high spatial 

resolution satellite imagery, in combination with fine resolution census data, is used to 

determine the degree to which spatial features are able to identify spatial patterns of 

demographic variables in Accra, Ghana.  Traditionally when using satellite imagery, 

spectral characteristics are used on a per-pixel basis to produce land cover classifications; 

however, in this study, a new methodology is presented that quantifies spatial 

characteristics of built-up areas, and directly relates them to census-derived variables.  

Spatial features are image metrics that analyze groups of pixels in order to describe the 

geometry, orientation, and patterns of objects in an image.  By using spatial features, city 

infrastructure variations, such as roads and buildings, can be quantified and related to 

census-derived variables, such as living standards, housing conditions, employment and 

education.  To test the associations between spatial patterns and demographic variables, 

five spatial features (line support regions, PanTex, histograms of oriented gradients, local 

binary patterns, and Fourier transform) were quantified and extracted from the imagery, 

and then correlated to census-derived variables.  Findings demonstrate that, while 

spectral information (such as the normalized difference vegetation index) reveals many 
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strong correlations with population density, housing density, and living standards, spatial 

features provide comparable correlation coefficients with density and housing 

characteristics.  The results from this study suggest that there are relationships between 

spatial features derived from satellite imagery and socioeconomic characteristics of the 

people of Accra, Ghana.   
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Chapter 1: Introduction 

 

In an age of rapid urbanization and densification, the ability to identify 

demographic characteristics and vulnerable communities is an imperative part of 

addressing the population’s changing needs.  Census and household surveys are 

important tools for harnessing this information; however, the administration and analysis 

of this data is expensive and is often only completed every ten years.  These issues are 

further magnified in developing cities, as these areas often need demographic information 

in timely and spatially explicit manners in order to make informed planning and policy 

decisions.   

To solve this challenge, other techniques that can be used to complement and 

improve census surveys should be examined.  One solution to compensate for a lack of 

complete census data is estimating population parameters from remotely sensed imagery.  

This technique is highly desirable due to the consistency of satellites passing over an 

area, the quick turnaround time from collection to analysis, and the locational preciseness 

of the data derived from the image.  Being able to correlate population characteristics 

with remotely sensed features affords a prompt and efficient way to monitor 

communities’ characteristics and vulnerabilities.  Remotely sensed estimates allow 

population information to be examined in between census collections, and afford regions 

that are unable to implement census surveys with the ability to collect and analyze 

demographic data.   

Using remotely sensed products can help to identify, map, and monitor the 

drivers, impacts, and patterns of built-up surface change and urban morphology (Herold 
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et al. 2002).  A sensor’s ability to measure surface properties of tone, color, and texture 

may potentially enable greater standardization and efficiency of observing land cover and 

population on an intra-urban scale.  Commercial high spatial resolution satellite (CHSRS) 

imagery allows for the most complete depiction of these surface properties, as its spatial 

resolution typically measures less than four meters, compared to medium resolution 

imagery which ranges from four to thirty meters (Satellite Imaging Corporation 2013).  

Historically, however, high spatial resolution imagery was sparsely used for urban 

research due to its monetary restraints, as well as its limited availability, which started to 

be widely used only after 1999 (Herold et al. 2002, Gamba et al. 2007).  As higher 

resolution imagery becomes increasingly available and accessible, remotely sensed data 

allows for a very detailed analysis of the land cover and population, and can provide 

useful information for urban planners and developers (Sawaya et al. 2013), as well as 

humanitarian assistance organizations in times of disaster response (Cutter 2003).  

Many studies have employed the use of satellite imagery for land cover and land 

use change (LCLUC) classifications (Chen & Stow 2003, Lu & Weng 2006).  

Conventional LCLUC classification studies primarily aim to categorize land covers in 

discrete classes.  To achieve this, many studies utilize spectral information, which 

categorize land cover classes on a per-pixel basis by spectral signatures.  Spectral 

signatures represent the reflectance values in each wavelength of the electromagnetic 

spectrum (Xu 2007).  This common technique is suitable for classifying water and 

vegetation, as they have unique spectral signatures that are very distinctive.   

However, the use of spectral values often encounters difficulties in integrating 

varied spectral signatures of built-up materials into a single land cover type of urban 



3 

 

area.  The built-up class is composed of many different materials that make up buildings, 

roads, and open spaces, as well as many different land use categories, including formal 

and informal residential, commercial, and industrial zones.  In addition to the broad range 

of materials and land uses in built-up areas, soil and urban spectral signatures are very 

similar, and prove difficult for automated methods to differentiate between (Herold et al. 

2002, Lu & Weng 2006).  This problem is exaggerated in sub-Saharan countries for 

multiple reasons.  When rooftops rust or soils are blown onto roads, the spectral signature 

of the actual built-up feature can be obscured (Roth 2007).  Other times, building 

rooftops are made out of wood, bamboo, or other natural materials, just as many streets 

are dirt roads.  This can also cause confusion for the classification algorithm, resulting in 

a built-up feature being inaccurately classified as a natural land cover class (Stoler et al, 

2012).  

Spatial feature extraction offers a new and innovative approach to identifying 

built-up areas and, more specifically, correlations with population characteristic 

estimates.  Spatial features are image metrics that examine multiple groups of pixels at 

once to quantify the geometry, orientation, patterns, and spatial variability of objects 

within an image (Herold et al. 2003).  In an urban context, spatial features focus on 

extracting geometric, structural, and textural patterns of external building features, and 

can counteract the confusion observed between the broad variations in spectral signatures 

of built-up areas.  Since built-up areas share a unique set of spatial and textural 

characteristics, such as straight lines, rectangular features, and building layout and 

distribution, spatial feature extraction can help to supplement spectral identification 
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techniques, for instance by helping to differentiate between a built-up area and barren soil 

or clouds, which have similar spectral characteristics.  

In addition to studying LCLUC, applying these spectral and spatial extraction 

techniques directly to demographic characteristics can help to gain specific and quick 

information about the housing type and properties which may relate to population 

characteristics.  By moving away from the discrete land cover classes that generalize the 

population within them, spatial metrics can show within-city variations in living 

conditions and other socioeconomic characteristics.  Being able to quantify these spatial 

features at a local level can help to measure the variations of population characteristics 

within the built-up area.  In 2008, a group of twenty-one remote sensing and slum 

monitoring experts met with the aim of identifying contemporary techniques to map 

slums with high resolution imagery (Sliuzas et al. 2008).  One of the main outcomes from 

this meeting was a motivation for designing and implementing automated quantitative 

approaches to studying slum mapping.  These approaches included measures of land 

cover, textural contrast, building size, orientation, and location.  Quantifying spatial 

features may provide one such avenue of studying slums via remote sensing.   

While some studies have attempted to relate impervious land cover layers to 

population and housing density (Azar et al. 2010, Azar et al. 2013), none have fully 

explored or tested the possibility of directly relating remotely sensed image metrics to 

informal settlement mapping, or more broadly, demographic characteristics.  This 

undertaking has the potential to uncover relationships between the physical properties of 

building shape, size, and layout and the characteristics of the people who live within 

them.  These relationships between spatial features and population characteristics 
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undoubtedly has numerous applications to assist LCLUC identification methods, expand 

demographic profiling of cities, and guide city administrators, urban planners, and 

humanitarian aid workers in making more informed analyses and decisions regarding the 

population.    

It is important to note the wide variety of terminology used to describe built-up 

land cover in the literature.  Weeks (2010) describes “urban” as “a place-based 

characteristic that incorporates elements of population density, social and economic 

organization, and the transformation of the natural environment into a built 

environment.”  Additionally, there has been substantial confusion between the terms 

“impervious” and “built-up”.  Impervious surfaces refer to any area which is made out of 

materials in which water cannot infiltrate and materials that are primarily associated with 

human activities through transportation and buildings (Lu & Weng 2009).  Because 

impervious surfaces include naturally occurring materials, such as bare rock and packed 

soil, and the fact that not all rooftops in developing countries are impermeable to water, 

this surface type is not the best descriptor to measure urban areas.  Built-up areas indicate 

the presence of humans, and have long been recognized as important aspects in many 

urban-environmental studies (Li et al. 2011, Zhang et al. 2014).  While some literature 

may use the terms “urban” or “impervious” in their research, for the purposes of this 

study, the term “built-up” will be used to represent urban areas in which humans have 

altered the landscape for habitation.  

The remainder of this paper is organized as follows.  Chapter 2 is an extensive 

review of previous literature related to studying built-up areas with remotely sensed 

imagery, spatial feature extraction and interpretation, spectral and spatial feature 
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comparison, and relating remotely sensed features to census variables and socio-

economic indicators.  Chapter 3 describes the research question, hypothesis, and scope of 

work.  Chapter 4 is a detailed methodology, including study area, data requirements, and 

data processing.  Results, analysis, and discussion are presented in Chapter 5, while 

conclusions and future work are detailed in Chapter 6.     
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Chapter 2: Literature Review 

 

2.1 Studying Built-Up Areas via Remote Sensing 

Studying urban areas via remotely sensed technologies has become an important 

and widely used application of digital image processing.  At the conception of urban 

ecosystem modeling via remote sensing, was the V-I-S (vegetation-impervious surface-

soil) model (Ridd 1995), which remains a commonly applied method in contemporary 

works (Van de Voorde et al. 2011, Schneider 2012, Weng 2012).  Within the model, a 

combination of green vegetation, impervious surface material, and exposed soil land 

covers are considered the basis of any urban environment.  The V-I-S model uses 

proportions of these land cover classes to identify various urban land uses, such as grassy 

yards, central business districts, and bare soil, respectively.   

Since the V-I-S model was created, many researchers have agreed that urban 

areas are complex landscapes and have taken on the challenge of identifying and 

mapping urban area variation (Small 2004).  A common method to analyzing land cover 

is through using spectral reflectance values.  Simply using spectral signatures to identify 

land cover classes works well for discriminating between vegetation and water surfaces, 

however discrimination between impervious and soil classes is more difficult.  To 

overcome this challenge, many studies have tested the use of vegetation differencing 

techniques (Masek et al. 2000) and built-up, water, and soil-adjusted vegetation indices 

derived from multispectral bands (Zha et al. 2003, Xu 2007). 

 With increased availability of high spatial resolution imagery, a second approach 

to urban land cover analysis has emerged focusing on spatial features within landscapes.  
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While spectral signatures identify land cover classes on a per-pixel bases, spatial feature 

analysis examines multiple groups of pixels at once to determine if distinct shapes, 

orientations, patterns, and the spatial variability of objects can be extracted from the 

image and used to identify variations within the city.  Spatial features are identified by 

the occurrence and distribution of linear features and defined shapes with an image.  For 

example, measures of spatial features often pull out road networks and individual 

buildings within built-up areas (Huang et al. 2007). 

Spatial feature extraction from remotely sensed imagery is fairly new, stemming 

from various other disciplines and venues such as photograph enhancement (Burns et al. 

1986), facial detection (Ahonen et al. 2004), motion detection (Palaniappan et al. 2010), 

and radio wave noise removal (Benesty et al. 2009).  By applying these techniques to 

satellite imagery in built-up areas, spatial patterns of the built-up landscape can be 

detected and analyzed.  The specific spatial features used in this study are described 

thoroughly in section 2.3 and include the following: line support regions (LSR) which 

characterize line attributes (Yu et al. 1999), PanTex which is a rotation invariant grey-

level co-occurrence matrix (GLCM) texture measure (Pesaresi et al. 2008), histogram of 

oriented gradients (HoG) which captures structure orientations (Dalal & Triggs 2005), 

local binary patterns (LBP) which define contiguous regions (Wang & He 1990), and 

Fourier transform (FT) which examines pattern frequency (Smith 1997).      

2.2 Combining Spectral Information and Spatial Features 

Recent literature has used feature comparison as a vehicle for determining how 

effective specific features can classify or unveil spatial patterns of land cover.  Generally, 

GLCM, a simple matrix that determines how often adjacent pixels have the same gray-
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level value, has been a popular technique for spatial feature analysis (Pesaresi et al. 

2008).  However, many newer spatial features, including those presented in this research, 

have been increasingly examined.   

Examination of spatial feature classification performance was conducted by 

Bayram et al. (2011) on QuickBird-2 imagery of Fethiye, Turkey.  Their results showed 

that LBP and the Gabor spatial feature, a linear Gaussian filter used for edge detection, 

were the most effective in classifying traditional land cover (water, forest, urban, and 

crop), and HoG and GLCM did not perform as well as expected.  Overall, Bayram et al. 

(2011) concluded that edge orientation based features are not suitable for identifying 

water or forest classes and should be avoided in these areas.   

Within the built-up landscape, Ella et al. (2008) analyzed settlement classification 

in Soweto, South Africa using a variety of spatial features, including GLCM, LBP, and 

Lacunarity, a distribution measure of gaps.  Their research showed that LBP produced the 

most accurate classification results, followed closely by GLCM.  Lacunarity paled in 

comparison to LBP and GLCM, however, produced better results than other one-

dimensional feature vectors such as Moran’s I, Geary’s C index, and G index.   

Because built-up areas exhibit many textural and structural characteristics, it is 

also desirable to examine various combinations of these spatial features together as 

classification schemes.  By combining features together, improvements can be made to 

the identification process of built-up areas.  Additionally, spatial feature outputs can 

differ greatly based on the study area context and image resolution, making it imperative 

to understand the differences between feature performances.   
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Graesser et al. (2012) used various spatial features, including PanTex, HoG, and 

LSR, to map formal and informal neighborhoods in four semi-arid developing cities: 

Caracas, Venezuela, La Paz, Bolivia, Kabul Afghanistan, and Kandahar, Afghanistan.  

They found that combinations of spatial features were more powerful in accurately 

classifying neighborhoods than single features, indicating that multiple spatial features 

make up built-up areas.  Specifically, results found that PanTex, HoG, and LSR were 

consistent in predicting formal and informal neighborhoods, as well as indicated that 

vegetation indices consistently had low accuracies in differentiating between urban areas.  

Discussion also noted that LSR was less accurate in Kabul, where building size does not 

vary as much as the other three cities.  

Similar to Graesser et al. (2012), Zhang et al. (2003) found that single texture 

features performed poorly in classification algorithms, while accuracy increased with the 

addition of three or four texture measures.  In this study in Beijing, China, GLCM texture 

features were studied in combination with computationally simple texture measures that 

calculate the number of different grey levels occurring in a cell window and filter edges 

using high-pass kernels.  Results from the Zhang et al. (2003) study also showed that 

homogenous areas required less texture features to produce accurate classifications than 

did heterogeneous areas.   

 It is important that researchers also note the limitations of using only spatial 

features in their analyses, as similar geometric shapes can represent many different 

objects (Puissant et al. 2006).  Therefore, optimal analysis may consist of combining 

spatial features with spectral information.  This type of analysis improves land cover and 

use discrimination, and is shown to effectively characterize highly complex urban areas 
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(Plaza et al. 2007).  While spatial features are often indicative of urban areas, spectral 

reflectance is still an important influence in classification accuracy (Small 2005).  In one 

study in Sudan, researchers warn that presences of scattered vegetation in bright soil 

areas can overestimate built-up areas.  This is due to the fact that this landscape could 

produce the same spatial pattern as scattered buildings.  To compensate, they added a 

vegetation index to the PanTex operator, and found that accuracy moderately improved 

and reduced the commission error of PanTex classification (Pesaresi & Gerhardinger 

2011).   

While not associated with urban land cover, a separate study focuses on mixing 

textural features together with spectral information to differentiate nut orchards from 

woody vegetation (Reis & Taşdemir 2011).  Because the specific orchards had similar 

spectral signatures to woodlands, this research focused on extracting Gabor features from 

panchromatic QuickBird-2 imagery and merging spectral values with them.  The use of 

Gabor, which uses combinations of Gaussian filters with sinusoids to detect edges 

(Daugman 1985), resulted in overall producer accuracy increasing by ten percent from 

the accuracy of spatial features and spectral information used separately (Reis & 

Taşdemir 2011).   

2.3 Description of Spatial Features 

2.3.1 Line Support Regions (LSR) 

LSR represent lines and their attributes extracted from a set of pixels (Yu et al. 

1999).  LSR was first introduced as a low-level representation of straight lines in natural 

images and photographs (Burns et al. 1986), but has since been applied to studies aimed 
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at representing settlement structures from remotely sensed imagery (Kim & Muller 1999, 

Unsalan & Boyer 2004, Unsalan 2006, Graesser et al. 2012).   

The concept behind the LSR algorithm is relatively simple, and is clearly outlined 

in Wang et al. 2012 (Figure 1).  To compute, LSR, gradient orientations are first 

calculated by measuring gray-level change over a small area of pixels, and discerning the 

local direction of the steepest intensity change (Burns et al 1986).  Pixels are then 

grouped and binned into histograms based on their gradient orientations.  Pixels in the 

same histogram bins are taken as support regions.  Each support region represents a 

candidate area for a straight line since all local gradients share a common orientation.  It 

is important to note that while all grouped gradient orientations are extracted as weak line 

segments, low gradient orientation groups are filtered out, and only areas with high 

gradient direction variation are extracted as line segments.  Once the line segment is 

extracted, many attributes can be calculated, such as location, orientation, length, and 

width (Wang et al. 2012).   

 

Figure 1: Line Support Region (LSR) Calculation: The LSR algorithm involves A) calculating 

gradient orientation, B) determining the line support region, and C) extracting the line and its 

attributes. 
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Generally, built-up areas contain more frequent and longer line segments (due to 

the presence of buildings and roads), while rural areas contain shorter and more randomly 

distributed lines (Unsalan 2006).  More specifically, LSR may help to differentiate 

between formal and informal housing areas, as formal neighborhoods tend to have more 

uniform buildings and established roads, while informal neighborhoods tend to have 

more inconsistent and impromptu housing patterns and less distinct roadways (Graesser 

et al. 2012). 

2.3.2 PanTex 

PanTex is a texture measure which extracts built-up areas from panchromatic 

imagery.  The feature is derived from the GLCM, and was specifically designed for use 

in the urban context as a built-up index (Pesaresi et al. 2008).  PanTex is a new technique 

that has been used in only a few studies focused on urban land cover identification and 

classification (Pesaresi et al. 2011, Pesaresi & Gerhardinger 2011, Graesser et al. 2012). 

To calculate PanTex, GLCM contrast is computed in multiple directions around a 

block of pixels (Figure 2).  Once the contrast is calculated, the minimum of all directional 

contrast is taken as the value for PanTex.  Contrary to using the local average of spectral 

information, using the average operator of the directional contrast in the PanTex 

calculation produces an undesirable edge effect that captures elongated features in 

addition to objects.  Instead, by using the minimum operator, PanTex allows for a much 

more clear discrimination between edges of an elongated feature and the edges 

representing a rectangular object.  In summary, PanTex values are high when all 

surrounding pixels have high contrast compared to the center block of pixels, and PanTex 



14 

 

values are low when at least one surrounding pixel has low contrast compared to the 

center block of pixels.   

 
 

Figure 2: PanTex Calculation: A) PanTex calculation for an object the size and shape of the block 

of pixels (e.g. building), B) PanTex calculation for an elongated feature (e.g. road), and C) PanTex 

calculation for a surface (e.g. field). 

 

Although the elongated features that PanTex excludes are part of the built-up 

environment, eliminating them helps to narrow areas in the urban landscape in which 

people actually reside in (Pesaresi et al. 2008).  In the urban landscape, elongated features 

represent roads, sidewalks, or fences, while rectangular or square shape features represent 

buildings.  A low PanTex value indicates that the surface beneath the pixel block does not 

represent a single object the size and shape of the pixel block.  In this case, the surface 

beneath the pixel block could have an elongated feature (e.g. road) or could be somewhat 

homogenous and represent a surface (e.g. field).  High values of PanTex indicate that the 

underlying surface is heterogeneous and contains an object (e.g. building) that is the size 

and shape of the pixel block.  

2.3.3 Histogram of Oriented Gradients (HoG) 

HoG is an object and edge detection method derived from capturing the 

distribution of structure orientation and is relatively invariant to local geometric 
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transformations and image rotation (Dalal & Triggs 2005).  While widely used for human 

and pedestrian detection in photographs (Dalal & Triggs 2005, Suard et al. 2006, Zhu et 

al. 2006), HoG has been used in aerial photography for vehicle tracking (Palaniappan et 

al. 2010, Liang et al. 2013) and sparsely used in land cover classification (Graesser et al. 

2012). 

 Generally, the HoG methodology is based on evaluating local histograms of pixel 

gradient orientations throughout the imagery.  The first step toward calculating HoG is to 

compute gradient vectors for each set of pixels, shown in Equations 1 and 2: 

 Equation 1: GVM 𝐺𝑉𝑀 =  
∆𝑥

∆𝑦
 

 Equation 2: GVA  𝐺𝑉𝐴 =  𝑎𝑟𝑐𝑡𝑎𝑛 (𝐺𝑉𝑀) 

where GVM represents the gradient vector magnitude, x represents the change in the 

adjacent pixels in the x direction, y represents the change in the adjacent pixels in the y 

direction, and GVA represents the gradient vector angle (Dalal & Triggs 2005).  Once all 

gradient vectors are calculated, each pixel in the block contributes a weighted vote for 

one of eight orientation bins stored in a histogram.     

 Once the histogram is computed, the HoG output can be interpreted.  By 

calculating the variance, skew, and kurtosis of the eight-binned histogram, a HoG 

analysis may reveal information about residential land use classes.  If the histogram is 

skewed, the majority of orientations fell into one or two bins, and a less skewed 

histogram indicates that orientations were evenly spread throughout the bins.  For a 

negative kurtosis, low peakedness shows a flat and wide peak, indicating a similar 

number of edge orientations in all bins, and vice versa.  These HoG outputs can be 

applied to built-up landscape analysis, for example, as informal neighborhoods, due to 
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their irregular orientations, may show low peakedness because they have a similar 

amount of edges in each bin.   

2.3.4 Local Binary Patterns (LBP) 

LBP is a simple texture measure that that determines the relationships of a center 

pixel to its surrounding pixels.  The LBP operator was originally developed as a three-

level operator, in which each neighboring pixel could have one of three possible values: 0 

for a lower intensity, 1 for an equal intensity, and 2 for a higher intensity than the center 

pixel) (Wang & He 1990).  This operator was later transformed to a two-level operator (0 

for a lower intensity and 1 for an equal or higher intensity than the center pixel), which 

reduces the calculation time and eliminates variations in brightness (Ojala et al. 1996).  It 

has been widely used in studies that focus on detection facial and motion analysis 

(Ahonen et al. 2004, Hadid et al. 2004, Hablani et al. 2013). 

The general idea of computing LBP is simply to compare each center pixel to its 

neighbor pixels (Ella et al. 2008).  Each neighbor is given a binary value of 0 or 1, where 

0 represents a neighbor with a lesser value than the center pixel, and 1 represents a 

neighbor with a value higher than or equal to the center pixel (Figure 3).  In creating a 

binary representation of the block, the data can be interpreted spatially to determine what 

local texture pattern the LBP pixel set has detected (Hadid et al. 2004).  Uniform local 

patterns indicate regions with, at most, two contiguous regions, and include flat areas, 

edges, corners, and line ends, while non-uniform local patterns have more than two 

contiguous regions, and do not appear to represent a texture feature (Figure 4).  Finally, 

histograms can be built that show the frequency of each local pattern occurring.   
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Figure 3: Local Binary Pattern (LBP) Calculation: A) Sample values of pixels, B) differences 

from center pixel, and C) binary value assigned to surrounding pixels. 

   

 
 

Figure 4: Local Binary Pattern (LBP) Examples: A) flat surface, B) flat surface, C) edge, D) 

corner, E) line end, and F) non-uniform pattern. 
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Similar to HoG, the distribution variables of the resulting histogram reveal 

powerful information about patterns occurring in the image.  These variables, mean, 

variance, skew, and kurtosis, are known as the local binary pattern moments (LBPM).  In 

interpreting LBPM, a positive kurtosis, for example, exhibits high peakedness and 

indicates there are both elongated edges and smooth, flat objects, which are abundant in 

settlement classes and could represent building rooftops.   

2.3.5 Fourier Transform (FT) 

FT decomposes images into different spatial frequencies (Smith 1997).  Named 

after Joseph Fourier, Fourier Theory states that any signal can be expressed as a sum of a 

series of sinusoids (Bracewell 1978).  Although FT use was intended in the time domain 

as sinusoids, images have their information encoded in the spatial domain as edges 

(Smith 1997).  FT has most often been used in noise removal in both sound processing 

(Benesty et al. 2009) and image processing (Xie et al. 2012).   

The first step towards using FT as a spatial feature is to compute the power 

spectrum.  FT attempts to represent the input image a power spectrum, or a summation of 

sinusoidal variation.  The Cartesian plane shows how the frequencies are distributed 

throughout the image.  Higher frequencies are pixel values that change rapidly across the 

image and are located at the edges of the plane.  Lower frequencies correspond to larger 

scale features in the image, and are located at the center of the plane.   

Once the FT is computed at a given scale, a radial profile is extracted.  The radial 

profile is similar to a circle drawn around the Cartesian plane of the power spectrum.  By 

computing the variance of the radial profile, information about how the frequencies vary 

throughout the image can be examined.  A uniform neighborhood might give a very 
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smooth power spectrum in the radial profile, whereas a neighborhood with many land 

cover variations might give a noisier power spectrum within the radial profile, as the 

difference between low and high variances would be greater. 

Additionally, FT often employs the use of filters on images to highlight certain 

features of the image (Costen et al. 1996).  Applying a low-pass filter over the power 

spectrum, the image becomes blurred due to the loss of high frequencies.  Conversely, 

applying a high-pass filter will result in an image that consists of mostly sharper and 

crisper edges, and loses larger regions of dark and bright.  

2.3.6 Normalized Difference Vegetation Index (NDVI) 

Although classified as a spectral feature, the normalized difference vegetation 

index (NDVI) is used in this research as a comparative study to spatial features.  NDVI is 

one of the best known and most widely used vegetation indices (Jensen 2007).  It is a 

simple spectral indicator that assesses whether a pixel has green vegetation by using 

Equation 3: 

Equation 3: NDVI 𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 – 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

where NIR represents the spectral reflectance captured in the near-infrared region and 

Red represents the spectral reflectance captured in the visible (red) region (Rouse et al. 

1974).  High values of NDVI indicate the highest possible density of green vegetation 

and low values indicate less dense vegetation cover, and NDVI is considered to be 

negatively correlated with built-up land cover.  While the use of NDVI is extremely 

common in land cover classification (Lunetta et al. 2006), it has also been used in 

conjunction with other spatial features to see if a combination of spatial and spectral 
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information can improve classification methods in built-up areas (Pesaresi & 

Gerhardinger 2011, Graesser et al. 2012). 

2.4 Relating Remotely Sensed Features to Demographic Information 

Relating remotely sensed data to demographic information is an increasingly 

popular trend, as it proves to be a useful tool to estimate population and their 

characteristics (National Research Council 2007).  There are many examples in the 

literature of relating satellite imagery directly to population estimates.  A traditional 

global population estimation technique is nighttime light satellite imagery (Elvidge et al. 

2007a, Elvidge et al. 2007b), however is limited by coarse spatial resolution and lacks the 

ability to identify populated areas without electricity.   

More recent research focused on population estimation techniques have been 

conducted in developed regions, and with readily available census data.  An Australian 

study classified Landsat TM imagery as residential land cover, and then uniformly 

distributed population data of each zone.  This research, however, expressed the need for 

refinement in in areas of extreme over prediction and under prediction of population in 

less dense and denser areas respectively (Harvey 2002).  Lu et al. explored extraction of 

impervious surface in Indiana from Landsat ETM+ imagery and relating it to population 

density estimation models, achieving an overall high degree of accuracy (Lu et al. 2006).   

A few studies have explored the usage of classification and regression tree 

(CART) methodologies to distribute population at national levels.  A combination of 

remotely sensed percent-impervious layer and ancillary data was used to distribute 

population in Haiti (Azar et al. 2010), and a combination of remotely sensed per-pixel 
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built-up area layer and a population likelihood layer was used to create a gridded 

population dataset in Pakistan (Azar et al. 2013).   

Remotely sensed population estimates have become increasingly desired, 

especially in areas that are prone to natural disasters and regions that lack complete 

census data.  In times of emergency, remotely sensed data can produce timely and 

spatially explicit population estimates.  However, much of this research is limited to 

regions with readily available census data and very high resolution imagery.   

Beyond population estimates, socio-economic characteristics can also be 

estimated from remotely sensed data (Lo & Faber 1997), yet appear less frequently in the 

literature than pure population number and density estimates.  Jensen & Cowan (1999) 

suggest “quality-of-life” indicators can be estimated by extracting urban and suburban 

site and situation attributes.  Site attributes include information about buildings (size, 

height, etc.) and lots (size, density, vegetation health, paved roads, etc.).  Situation 

attributes include information about the adjacency to community amenities (schools, 

hospitals, open space, etc.) and adjacency to nuisances and hazards (traffic, floodplains, 

steep terrain, etc.).  By measuring the ease of access to these societal opportunities, 

“quality-of-life” indicators may be used to assess the human well-being for groups of 

people (Li & Weng 2007, Rahman et al. 2011).   

Of the studies that have integrated remotely sensed information and demographic 

data, many have been focused in developed areas, data-rich countries, and more localized 

areas (Patino & Duque 2013).  Lo & Faber (1997) assessed census data in Athens-Clarke 

County, Georgia using land cover classification, NDVI, and surface temperature data 

derived from Landsat imagery.  Their results found that NDVI showed strong positive 
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correlations with per capita income, population density, and median home value.  This 

research demonstrated that NDVI, along with other remotely sensed features can 

complement census data in socio-economic status assessment.  Additional research 

revealed positive correlations between impervious surface and minority and poverty 

populations in Massachusetts (Ogneva-Himmelberger et al. 2009).  Similar research in 

Indianapolis, Indiana showed positive correlations between vegetation and income, house 

value, and education levels (Li & Weng 2007).  Also in Indiana, Lu & Weng (2005) 

found that incorporating textural variances derived from higher resolution imagery 

significantly improved classification accuracy, while lower resolution texture features did 

not improve the accuracy.   

The strong correlations observed between land cover and socio-economic status 

have also been occasionally studied in the developing world to map poverty and housing 

quality.  In Accra, Ghana, previous literature employed Ridd’s V-I-S model for 

comparison with slums defined by the United Nations Habitat (Weeks et al. 2007) and 

examined the relationship with vegetation cover and housing quality (Stow et al. 2013).  

Results showed that the best predictor of slums was a lack of vegetation; however, having 

a high proportion of impervious surface did not necessarily define all slums (Weeks et al. 

2007).  Researchers also showed that low housing quality areas had less than five percent 

vegetation cover, and despite already having extremely low vegetation cover, slums 

experienced densification and decreased vegetation cover over the eight-year time range 

(Stow et al. 2013).   
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2.5 Summary 

The aforementioned literature illustrates the serious knowledge gaps pertaining to 

the following two themes: spatial feature extraction and the integration of remotely 

sensed features with census-derived demographic indicators.  Spatial features present 

additional geometric information that can be combined with spectral information to aid 

land cover classification schemes.  Remotely sensed data, and spatial features in 

particular, offers a timely and spatially explicit way of identifying vulnerable populations 

during emergencies and natural hazard events.  The integration of remotely sensed 

features and census data has mainly been limited to use with spectral information, low-

resolution imagery, and within developed areas.  With the advent of high resolution 

imagery and the introduction of spatial features, further research can reveal spatial 

patterns of population characteristics based on the features that make up the built-up 

landscape.  
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Chapter 3: Objectives and Hypothesis 

 

3.1 Research Question 

The main research questions that are addressed in this research are 1) can spatial 

features be quantified to show variations in built-up area within a city, and 2) once these 

spatial features are quantified, are they related to census-derived population 

characteristics within a city?   

3.2 Hypothesis 

 This research is guided by the following hypotheses.  Spatial features can be 

extracted from imagery due to geometric and contextual characteristics observed between 

pixels.  These spatial features can then be quantified and aggregated to show variations in 

built-up areas, as different parts of built-up areas exhibit distinct geometric features, 

orientations, and shapes that are indicative of building type, size, and land use.  However, 

spatial features singularly do not fully encompass all characteristics of the built-up area 

or population in question.  Therefore, the correlations between spatial features and 

census-derived variables will be explored to determine the strength and significance of 

relationships.    

3.3 Scope of Work 

 To address the research questions, the scope of work in this study is as follows.  

Five spatial features (LSR, PanTex, HoG, LBP, and FT) and spectral information (NDVI 

and the local means of the original multispectral bands and the composite image) were 

computed at multiple scales for the study site.  These features were then statistically 

aggregated to neighborhoods, the geospatial unit of analysis.  The aggregated spatial 
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features were then correlated with the census-derived population characteristics, also 

aggregated to the neighborhood level.  Significant correlations were analyzed to 

determine if certain areas of the city exhibit trends in spatial feature occurrence and 

distribution, and if demographic variables relate to spatial features.   
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Chapter 4: Methodology 

 

4.1 Study Area 

Accra, Ghana is a sub-Saharan city situated along the Gulf of Guinea in West 

Africa (Figure 5).  According to the 2000 Ghanaian census, approximately 1.65 million 

people were living in 365,550 households within the Accra Metropolitan Assembly 

(AMA) limits (Ghana Statistical Service 2000).  The AMA is the administrative entity 

responsible for the health, welfare, and governance of the urban population (Engstrom et 

al. 2013). 

The city was first settled by the Ga-Dangme ethnic group, who established Accra 

as a fishing village.  However, when the British moved their colonial headquarters from 

Cape Coast to Accra in 1877, the city saw substantial growth.  The central business 

district was developed in the urban core near the port, while the peripheral areas in the 

east were designated as upscale, formal neighborhoods with shady vegetation.  The 

western part of the city has developed more recently, as it served as areas of infill into 

open areas after Ghana gained its independence in 1957.  This area is generally less 

dense, and follows a more suburban sprawl type of land use, with occasional pockets of 

commercial land use (Engstrom et al. 2013).   

Generally, Accra is a sprawling urban city that is typical of many other coastal 

African cities.  The city has very poor urban planning, as many streets lack names and 

signs (Engstrom et al. 2013).  Neighborhoods within Accra are characterized by different 

by a diverse population.  For instance, many older villages have diverse ethnic groups, 
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some neighborhoods are predominantly receptive areas for in-migrants, and formal 

neighborhoods are situated in historic military cantonments (Weeks et al. 2007).   

In this research, Accra was chosen as the study area for several reasons.  The city 

is currently undergoing rapid urbanization and globalization, and the growth in economic 

opportunities has led to a huge potential for LCLUC (Lambin et al. 2001, Auch et al. 

2004).  Additionally, since Ghana is one of the few, if not only, West African countries 

with complete and available demographic census and health survey data, it is an 

important case study for testing the relationships between urban remote sensing 

calculations and demographic characteristic estimations.   
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Figure 5: Study Area Map: Study area map of Accra, Ghana, which shows the 2002 QuickBird-2 

multispectral imagery (2.44 meter resolution), overlaid with the neighborhood boundaries derived from the 

2000 census (full listing of neighborhood names is shown in Appendix A).   
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4.2 Data Acquisition 

This research used a QuickBird-2 multispectral image taken on April 12, 2002.  

The multispectral dataset includes four bands (blue, green, red, and NIR) has a resolution 

of 2.44 meters and is cloud free.  The image represents a 164 square kilometer portion of 

Accra, and covers approximately eighty percent of the AMA region.  This image was 

georeferenced using a second order polynomial transformation, 13 ground control points, 

and a digital elevation model (DEM) created from a merged dataset of Cartosat, ASTER, 

and splined terrain data. 

The 2000 Ghanaian census was obtained from the Ghana Statistical Service 

(GSS) and contains detailed information about population, housing, education, health, 

and wealth.  There were 31 census variables used in this study and their descriptions can 

be found in Table 1.  Housing quality and tenure measurements include information 

about structural quality, utility access, and tenancy types.  Education measurements 

include information regarding literacy and secondary education.  Health measurements 

include information related to fertility, mortality, and cooking fuel.  Social and economic 

characteristics were measured by examining migrant activities and employment status.   

Finally, the Slum Index is a continuous variable that is based on United Nations 

(UN) definition of a slum.  According to the UN, slums are defined as lacking one of the 

following five criteria: durable housing, sufficient living area, access to improved water, 

access to improved sanitation, and secure tenure (UN Habitat 2006/2007).  This variable 

was created by calculating the number of UN-defined slum criteria that each household 

met (using variables already estimated in the Ghanaian census), and then aggregating this 

data up to the spatial analysis unit.  This slum index variable accounted for the relativity 
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of vulnerability, as a neighborhood that meets just one criterion is considered to be 

significantly better off than a neighborhood that suffers from all five criteria (Weeks et al. 

2007).   

The records in the original census dataset were compiled at the enumeration area 

(EA) level.  These EAs are the equivalent spatial unit to a census tract in the United 

States and contain about one thousand people per EA.  These EA units were originally 

available only as hand drawn maps, but were digitized into a geographic information 

system (GIS) format and spatially georeferenced to the satellite imagery (Engstrom et al. 

2011).  Although the EA is the basic spatial analytical unit, the neighborhood plays a 

larger role in differentiating where populations live.  This is due to the fact that they are 

delineated according to socio-economic characteristics, rather than the arbitrary lines 

demarcated by the EA.  Therefore, the EA units were aggregated from 1724 EAs into 108 

neighborhoods for analysis (Engstrom et al. 2013).  For this study, only neighborhoods 

that were fully covered by the QuickBird-2 image were included in the analysis, reducing 

the number to 75 neighborhoods (shown in Appendix A).  
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Variable Name Description 

Population Total number of people 

Households Total number of households 

Population Density Population Density 

Housing Density Housing Density 

Dependents Number of dependents (under 5 years old or over 55 years old) 

Children Number of people under 15 years old 

Informal Sector Number of workers in the informal sector 

Do Not Work Percent of people who do not work 

Not Literate Number of people who are not literate (15 years old to 24 years old) 

Women Not Educated Percent of women who are not secondary educated 

Fertility Number of children born to women (z-score) 

Infant Mortality Number of infant mortalities 

Not Single Family Number of households that are not a single family domicile 

Renting Number of households where tenancy is renting 

Rent-free Number of households where tenancy is rent-free 

Perching Number of households where tenancy is perching 

Biofuel 
Number of households that use charcoal, wood, or palm leaves as primary 

source of cooking fuel 

Non-separate Cooking Space Number of households with non-separate cooking space 

No Electricity Number of households that do not use electricity as primary lighting source 

Unimproved Water Number of households that do not have piped water as main water source 

Unimproved Sanitation 
Number of households where main toilet is in a separate house, public center, 

or bucket pan 

No Liquid Waste Collection Number of households where liquid waste is not collected in sewer 

No Solid Waste Collection Number of households where solid waste is not collected in sewer 

Worst Floor Number of households where floor is constructed out of mud or Earth material 

Worst Wall 
Number of households where wall is constructed out of mud brick, packing 

cases, palm, or thatch 

Worst Roof 
Number of households where roof is constructed out of thatch, palm, bamboo, 

mud brick, or wood 

Born Outside EA Number of people born outside the current EA 

Not in Accra 5 Years Ago Percent of people who were not in Accra five years prior 

Immigrant Number of people who were not born in Ghana 

Ga-Dangme Number of people who identify with the Ga-Dangme ethnic group 

Slum Index Average number of UN-defined slum criteria met 

 

Table 1: Census Variables: 2000 Census-derived demographic indicators and their descriptions.  
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4.3 Data Processing 

4.3.1 Spatial Feature Extraction 

Each spatial feature was computed with each combination of block and scale size.  

Because spatial features are based on groups of pixels, block and scale size are important 

components for determining the most effective way to calculate the spatial features 

(Figure 6).  Block size represents the pixel size at which the output feature will be 

aggregated to.  In order to effectively measure a neighborhood’s spatial features, block 

sizes that were closest to 15m were used (Graesser et al. 2012).  In this case, block sizes 

of 4 and 8 allowed for 9.76 meter and 19.52 meter resolution outputs, respectively.  Scale 

size, also referred to as window size, represents the area from which the spatial feature 

extracts contextual information from, or how many pixels the spatial feature calculation 

will consult.  Scale sizes of regular octaves 8 (19.52 meter), 16 (39.04 meter), and 32 

(78.08 meter) were used to compute the spatial features.  Ultimately, the use of two block 

sizes and three scale sizes resulted in six calculations for each spatial feature (block 4 and 

scale 8, block 4 and scale 16, etc.).  This block/scale combination set-up then acted as a 

moving window that computed spatial feature output for every set of pixels in the entire 

raster dataset (Graesser & Long 2015).   
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Figure 6: Block and Scale Size: A) 

Pixel size of 2.44 meter, B) block size of 

4 (9.76 meter), and C) scale size of 8 

(19.52 meter).   

 

A python library for feature extraction called MapPy was used to calculate spatial 

feature outputs at each of the six block/scale combinations (Graesser & Long 2015).  

Each spatial feature (as described in section 1.2) returned between one and four output 

layers.  LSR returned three layers, which were 1) the sum of line lengths, 2) the mean of 

line lengths, and 3) the line variance.  PanTex and NDVI each returned only one layer, 

which represented the local mean of the specific index.  Both HoG and LBP returned four 

layers describing their respective histograms: 1) histogram mean, 2) histogram variance, 

3) histogram skew, and 4) histogram kurtosis.  FT returned two layers which were 1) the 

mean of the radial profile and 2) the variance of the radial profile.  Finally, the local 

means of each of the original multispectral bands and the original multispectral 

composite were also computed, and returned one layer each.   

4.3.2 Correlation Coefficients 

Once all spatial features were computed, the descriptive statistics were calculated 

for each of the spatial feature outputs by neighborhood.  Each pixel in the output spatial 

feature layer represented the value extracted by the spatial feature for that pixel block.  
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Specifically, zonal statistics (average, standard deviation, and sum) summarized the 

values of the spatial feature output pixel blocks within the neighborhood shapefile, and 

exported the data to a readable database table format.  The values in the zonal statistics 

table represented the aggregated neighborhood statistics for the 74 neighborhoods 

included in this study.   

A correlation coefficient matrix was created via an original python script to 

measure the strength and direction of the relationships that exist between the zonal 

statistics of the spatial features and the census data.  Due to a fairly large dataset of 75 

neighborhoods and an alpha significance level of 0.01, the critical value for correlation 

coefficients was found to be 0.30.  Correlation coefficients greater than +0.50 or less than 

-0.50 were considered to be strong correlations and correlation coefficients between 

+0.30 and +0.50 or between -0.30 and -0.50 were considered to be weak correlations.  
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Chapter 5: Results and Analysis 

 

For this section, each of the strongest output layers for each spatial feature is 

detailed in the following maps.  These maps help to demonstrate what the spatial feature 

output layers look like, and indicate the spatial trends of the feature output by 

neighborhood.  The spatial feature output returns the specific output layer described in 

section 4.3.1 at the specified block and scale combination.  In the following analysis, the 

terms “aggregated neighborhood average” and “aggregated neighborhood standard 

deviation” will be used to describe the summarized spatial feature zonal statistic 

descriptor for a neighborhood described in section 4.3.2.  Analysis entails examining the 

strongest correlations between the output spatial feature layers and the census-derived 

indicators (a full listing of strong correlation coefficients can be found in Appendix B).  

5.1 Line Support Region (LSR) Results 

The LSR output layer that produced the strongest correlation with census-derived 

population characteristics was line variance.  Figure 7 shows the aggregated 

neighborhood averages of LSR line variance, and shows neighborhoods with more 

heterogeneous lines (high line variance) tend to be clustered in the western region of the 

city.  These high line variance neighborhoods generally exhibit formal residential 

characteristics.  Neighborhoods with more homogenous lines (less line variance) hug the 

coastline, which tend to exhibit a single type of land cover (e.g. Chorkor, Jamestown, 

Sodom & Gomorah, South La Estate).  The Airport Residential Area neighborhood 

stands out among its counterparts as a neighborhood with low line variance in the 

northeast region of the city.   
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Figure 7: Line Support Region (LSR) Results: This map shows the spatial allocation of line variance (as 

derived by LSR) for block 8 and scale 16.  High values of line variance (shown in green) signify 

neighborhoods with a high degree of line heterogeneity, while low values of line variance (shown in red) 

signify neighborhoods with a low degree of line homogeneity.   
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The strongest demographic indicators that correlated with line variance include 

Not Literate (correlation coefficients ranging from -0.52 to -0.56) and No Electricity 

(correlation coefficients ranging from -0.52 to -0.54).  The negative correlations indicate 

that areas with heterogeneous lines correlate with people who are literate and households 

that use electricity as their lighting source.  LSR line length sum also reveals negative 

correlations with Not Literate and No Electricity.  Block size did not appear to be a factor 

in generating strong correlation coefficients; however, a scale size of 8 did not produce 

any strong correlations with the census data.   

 These findings suggest possible relationships between line attributes and 

population characteristics.  In general, the LSR results show that neighborhoods with 

more varied lines correlate with more developed populations.  The indicators of literacy 

and lighting source suggest that more educated and wealthier families live in the formal 

neighborhoods, while less educated and poorer families live in the coastal informal 

settlements. 

5.2 PanTex Results  

One set of PanTex results is shown in Figure 8.  These results show the 

aggregated neighborhood standard deviations of PanTex values within each 

neighborhood.  Taking the standard deviation of the PanTex values in each neighborhood 

shows how varied the built-up texture measure is within each neighborhood.  Higher 

standard deviations are seen in a few neighborhoods surrounding the perimeter of the 

AMA region (e.g. Airport Residential Area, East Dzorwulu Residential Area), as well as 

some neighborhoods in the urban core (e.g. Accra Central, South Industrial Area, Sodom 

& Gomorah).  Lower standard deviations are observed in residential neighborhoods along 
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the coastline (e.g. Chorkor, La, South La Estate), as well as radiating from the urban core 

(e.g. Nima, North Kaneshie).  

These results indicate that buildings sizes and shapes were highly variable in 

neighborhoods similar to the Airport Residential Area, which makes sense because that 

neighborhood contains residential houses as well as large commercial buildings on the 

airport property.  Many of the informal residential areas in the city have a small standard 

deviation in PanTex values, indicating that the buildings in those neighborhoods are all 

very similar in size and shape.   
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Figure 8: PanTex Results: The PanTex results at block 4 and scale 32 show the standard deviations for the 

built-up index by neighborhood.  High standard deviations (shown in green) indicate that PanTex values are 

more varied, while low standard deviations (shown in red) indicate that PanTex values are less varied. 
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Strong positive correlations were observed between PanTex standard deviation 

and No Electricity (correlation coefficients of +0.60), Born Outside EA (correlation 

coefficients ranging from +0.59 to +0.64), and Not in Accra 5 Years Ago (correlation 

coefficients of +0.62).  Strong negative correlations were observed between PanTex 

standard deviations and Ga-Dangme (correlation coefficients ranging from -0.52 to -

0.59), Dependents (correlation coefficients ranging from -0.54 to -0.56) and Do Not Work 

(correlation coefficients of -0.59).  Block size did not appear to be a factor in calculating 

correlation coefficients; however, a scale size of 32 was not as influential as scale sizes 8 

and 16.   

Together, the census variables of Born Outside EA, Not in Accra 5 Years Ago, and 

Ga-Dangme suggest a strong spatial trend among migrants and non-migrants.  The 

correlations detected show that immigrants tend to settle in the areas of high PanTex 

variability, which is spatially associated with the peripheral formal neighborhoods.  Non-

migrants are shown to reside in the coastline informal settlements, which correspond to 

the population who identify with the Ga-Dangme ethnic group.  This trend follows the 

traditional settlement patterns of Accra, in which many Ga-Dangme members were 

historically fishermen and have resided in their coastal villages for hundreds of years, as 

immigrants tend to settle in other areas of the city (Davies 1967).  

A second trend in PanTex standard deviation shows a tendency for non-working 

populations (Dependents and Do Not Work) to reside in areas of low building variance.  

Relating back to Figure 8, these non-working populations coincide with the coastal 

neighborhoods.  From this correlation, a possible relationship can be explored between 

the working population and the immigrant population.    
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5.3 Histogram of Oriented Gradients (HoG) Results 

Results for the aggregated neighborhood average of HoG histogram skew are 

displayed in Figure 9.  These results show that areas with very positive skew are located 

in commercial neighborhoods (e.g. Airport Residential Area, Korle Bu Hospital, North 

Industrial Area, South Industrial Area), while areas with less positive skew (closer to a 

normal histogram distribution) are located in more informal housing areas (e.g. Accra 

New Town, Mamobi, Nima).  These results also correlate with the aggregated 

neighborhood average of HoG histogram kurtosis.  Areas with high kurtosis are located 

in the commercial areas as well, whereas areas with low kurtosis are located in the 

informal housing areas.  These HoG results together indicate that areas with high 

peakedness and non-uniform distribution of orientations are correlated with areas of 

commercial and formal development, while areas with low peakedness and a more 

uniform distribution of orientations occur in areas of informal housing.   
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Figure 9: Histogram of Oriented Gradients (HoG) Results: This map shows the histogram skew values for 

HoG at block 4 and scale 8.  Extreme positive values of histogram skew (shown in green) indicate that the 

majority of orientations the HoG feature detected were binned in one or two bins.  Lower positive values of 

histogram skew (shown in red) indicate that there are a similar number of orientations in all bins, and the 

histogram represents a more normal distribution. 
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Strong negative correlations between HoG histogram skew and kurtosis were 

observed with Population Density (correlation coefficients ranging from -0.50 to -0.72), 

Housing Density (correlation coefficients ranging from -0.56 to -0.71), Children 

(correlation coefficients ranging from -0.52 to -0.61), and No Liquid Waste Collection 

(correlation coefficients ranging from -0.51 to -0.52).  Both sizes did not appear to be a 

contributing factor to the correlation coefficients, however, scale size 8 produced stronger 

correlation coefficients with the census data than scale sizes 16 and 32.   

Neighborhoods with positive skew and positive kurtosis exhibit a more uniform 

spatial layout.  For instance, the commercial areas mentioned above all have a very 

systematic layout, in that their buildings tend to be oriented homogeneously, represented 

in a histogram by a majority of orientations falling into a small number of bins.  

Conversely, an informal neighborhood lacks the urban planning aspect of its layout and 

exhibits a heterogeneous layout.  This neighborhood pattern is represented by a less 

skewed histogram, and a more even distribution of orientations in all bins.      

5.4 Local Binary Pattern (LBP) Results 

The results shown in Figure 10 represent the aggregated neighborhood average of 

LBP histogram variance.  Neighborhoods that have LBP histograms with more variance 

signify that there are a similar number of instances of each local pattern occurring in the 

neighborhood.  Neighborhoods with LBP histograms that have less variance signify that 

local patterns do not occur uniformly in all histogram bins.  From the map, commercial 

areas (e.g. Airport Residential Area, Korle Bu Hospital, Ministries, North Industrial 

Area) have low variance, indicating that local patterns are not evenly spread.  This makes 

sense, as commercial areas tend to have larger buildings (e.g. warehouses).  Informal 
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neighborhoods (e.g. Jamestown, Mamobi, Nima, Sodom & Gomorah) have higher 

variance.   

At the most basic level, a building has four corners and four edges.  In the case of 

a commercial building, the LBP histogram returns four instances in the corner pattern 

bin, and many instances in the line edge pattern bin, as the buildings are larger and have 

longer edges in these areas.  This leads to high variance in the LBP histogram.  Informal 

settlements reverse this logic, in that the LBP histogram returns four instances in the 

corner pattern bin, and a small number of instances in the line edge pattern bin, as the 

buildings are smaller and have shorter edges in these areas.  This in turn leads to lower 

variance in the LBP histogram.   
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Figure 10: Local Binary Patterns (LBP) Results: This map shows the variance of the histograms detected 

by LBP at block 4 and scale 32.  High LBP histogram variance (shown in green) signifies that there are a 

similar number of instances of each local pattern in the neighborhood, whereas low LBP histogram variance 

(shown in red) signifies that local occurrence is not similar in all bins. 
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LBP histogram variance is very strongly positively correlated with Population 

Density, Housing Density, Biofuel, Non Separate Cooking Space, No Liquid Waste 

Collection, and Slum Index (correlation coefficients ranging from +0.71 to +0.85), and 

strongly positively correlated with Informal Sector, Women Not Educated, Not Single 

Family, Unimproved Sanitation, No Solid Waste Collection, Total Households, Total 

Population, Worst Wall, and Children (+0.50 to +0.70).  These positive correlations show 

that LBP may be a strong indicator of population and housing density, informal 

settlements, and wealth.  All combinations of block and scale size generated strong 

correlation coefficients. 

The neighborhoods of low LBP histogram variance tend to be less densely 

populated areas, which could be due to multiple reasons.  One reason may be that many 

of these areas are commercially zoned, and hence why less people would be living in 

these land cover zones to begin with.  Secondly, other neighborhoods in this category are 

formal neighborhoods (e.g. Cantonments, Kanda Estate, North Labone Estate), and have 

access to sewerage services, and more space to live.  The neighborhoods that exhibit high 

LBP histogram variance tend to be densely populated, and lack essential utilities and 

public services.  These areas may tend to have a range of edges, corners, and line ends 

that make up their informal land cover zones.     

5.5 Fourier Transform (FT) Results 

The FT output that has the strongest correlations with the census-derived 

characteristics is the aggregated neighborhood average of the radial profile variance 

(Figure 11).  High values of variance for the radial profile correspond with formal 

residential neighborhoods in the periphery of the city (e.g. Cantonments, North Labone 
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Estate, Tesano).  Low values of variance for the radial profile correspond with the urban 

center where many different land uses are converging, and there is a mix of informal 

settlements and commercial areas (e.g. Accra Central, Jamestown, Sodom & Gomorah).   

Higher values of variance for the radial profile of each pixel block and scale 

correspond to formal neighborhoods.  At each specific pixel block and scale, the FT 

frequencies will be varied more in formal neighborhoods, for example, when the edge of 

a roof converges with an elongated edge of a road.  Contrary, FT frequencies will be less 

varied at the block and scale level in informal neighborhoods, due to the similar sizes and 

densely packed nature of informal houses.  The two exceptions to this logic are the 

neighborhoods of Airport Residential Area and Abofu.  Both of these neighborhoods 

have a majority of formal neighborhoods, however also encapsulate a drastically different 

land cover: the Kotoka International Airport (and surrounding grassy areas) in Airport 

Residential Area and Achimota Forest Reserve in Abofu.  These regions stand out among 

the other neighborhoods with low radial profile variance because their edges are on a 

much larger scale than the pixel block, and FT does not detect a noisy power spectrum 

over a large smooth surface, such as forest or grass.  
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Figure 11: Fourier Transform (FT) Results: FT radial profile variance at block 4 and scale 16 is shown in 

this map.  Higher values (shown in green) indicate a noisier power spectrum with many land cover variations, 

while lower values (shown in red) indicate a neighborhood with less land cover variations. 
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FT radial profile variance is negatively correlated with Not Literate (correlation 

coefficients ranging from -0.53 to -0.61), Slum Index (correlation coefficients ranging 

from -0.54 to -0.60), Unimproved Sanitation (correlation coefficients ranging from -0.52 

to -0.58), Biofuel (correlation coefficients ranging from -0.54), and Women Not Educated 

(correlation coefficients ranging from -0.53 to -0.54).  These correlations follow the logic 

above, in which neighborhoods with high radial profile variance (formal neighborhoods) 

correspond with higher levels of education and better living conditions.  Block 8 and 

scale 8 produced weaker results than block 4 and scales 16 and 32.   

5.6 Normalized Difference Vegetation Index (NDVI) Results 

The spatial layout of the aggregated neighborhood average of NDVI is very 

distinct and can be seen in Figure 12.  High values of NDVI indicate areas of dense 

vegetation, and are spatially clustered in the eastern portion of the city, which has not 

developed as fast or as dense as the western portion of the city.  Many commercial areas 

of the city, such as the Airport Residential Area and the Korle Bu Hospital 

neighborhoods are also areas of densest vegetation, along with the formal neighborhoods 

of Cantonments, Kanda Estate, and North Labone Estate.  Low values of NDVI indicate 

areas of less dense vegetation, and are heavily clustered in the urban core of Accra (Accra 

Central, Gbegbeyise, Sodom & Gomorah), as well the coastal neighborhoods.  These 

areas are closely correlated with the UN Habitat defined informal settlement 

neighborhoods (UN Habitat 2006/2007).  
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Figure 12: Normalized Difference Vegetation Index (NDVI) Results: NDVI results at block 4 and scale 8 

show major differences between neighborhoods with denser vegetation (shown in green) and neighborhoods 

with less dense vegetation (shown in red). 
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NDVI results produced many strong correlation coefficients ranging from -0.51 to 

-0.86 between eleven different census-derived variables.  These variables include Biofuel, 

Non-Separate Cooking Space, No Liquid Waste Collection, Not Single Family, Slum 

Index, Unimproved Sanitation, Population Density, Housing Density, Informal Sector, 

Women Not Educated, and No Solid Waste Collection.  For NDVI results, there was not a 

significant differentiation between certain block and scale sizes. 

These results imply that households with better building materials, utility 

infrastructure, and education are living in more vegetated neighborhoods.  This also 

allows for a more spread out lifestyle in which neighbors are not as close in proximity to 

one another, as portrayed through the population and housing density variables.  These 

results also provide a strong foundation for the case that much of the wealthier and 

healthier populations live in the periphery of the city, while the vulnerable populations 

live in the urban core (Engstrom et al. 2011, Stow et al. 2012).   

5.7 Mean Results 

The aggregated neighborhood average results for band 3 (red) are displayed in 

Figure 13 and the aggregated neighborhood average results for the local mean of the 

original QuickBird-2 multispectral image are displayed in Figure 14.  Vegetation tends to 

have a lower percentage of reflectance in the red wavelength, a slightly higher reflectance 

in the green wavelength, and extremely high reflectance in the NIR band (Ridd 1995).  

Neighborhoods with high red reflectance are shown to correlate with dense informal 

housing neighborhoods (e.g. Chorkor, Gbegbeyise), while areas with lower red 

reflectance are shown to correlate with formal housing neighborhoods (e.g. Abofu, 

Cantonments, Roman Ridge).  This trend is exaggerated in Abofu, since part of the 



52 

 

Achimota Forest Reserve is encompassed in the neighborhood.  The multispectral 

composite results follow a similar trend, in that neighborhoods with high local means are 

correlated with informal settlement areas.  
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Figure 13: Mean (Band 3) Results: This map shows the local mean of band 3 (red) of the original 

multispectral dataset at block 8 and scale 32.  High values of local mean (shown in green) indicate that band 3 

exhibits high reflectance, whereas band 3 exhibits low reflectance where the local mean value is low (shown 

in red). 
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Figure 14: Mean (BGR Composite) Results: This map shows the local mean of the original multispectral 

composite dataset at block 4 and scale 32.  High local mean (shown in green) corresponds with informal 

residential neighborhoods, and low local mean (shown in red) corresponds with formal residential 

neighborhoods. 
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Results indicate that the red band reflectance levels are strongly positively 

correlated (correlation coefficients ranging from +0.50 to +0.73) with many census-

derived indicators: Informal Sector, No Liquid Waste Collection, No Solid Waste 

Collection, Biofuel, Non-separate Cooking Space, Women Not Educated, Not Single 

Family, and Rent-free.  The multispectral composite results shared similar strong positive 

correlations (correlation coefficients ranging from +0.51 to +0.68) with the same census-

derived indicators, with the addition of No Electricity.  Block and scale size were not a 

contributing factor in calculating correlation coefficients.  Similar to NDVI results, Band 

3 mean results indicate that neighborhoods with less reflection in the red wavelength 

exhibit better health and wellness characteristics including better sanitation and 

education.   
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Chapter 6: Conclusions 

 

6.1 Summary of Research 

The goal of this research was to determine the extent to which spatial features 

correlate with census-derived demographic characteristics in Accra, Ghana.  To test these 

relationships, five spatial features (LSR, PanTex, HoG, LBP, and FT) and traditional 

spectral information (NDVI and Mean) were extracted from high spatial resolution 

imagery, and statistically aggregated to the neighborhood level.  These values were then 

correlated with 31 demographic and housing variables derived from the census.   

The strongest correlations observed were between NDVI mean values and 

building amenity indicators.  These results showed strong correlations between 

neighborhoods with less vegetation and neighborhoods with biofuel cooking fuel, non-

separate cooking spaces, and uncollected sewage.  Although NDVI revealed the strongest 

correlations between many census-derived variables, spatial features also displayed 

comparable correlation coefficients with the census-derived data.  Very high correlations, 

and the most correlations out of any feature, were observed between LBP and census-

derived variables.  The highest LBP correlations were between LBP histogram variance 

and population and housing density indicators, illustrating a spatial difference between 

commercial and residential land use zones.    

Some spatial features were also able to reveal additional strong correlations that 

were not depicted in the NDVI analysis.  HoG distribution variables exposed strong 

correlations between children under 15 years old and informal settlements, while PanTex 

standard deviation revealed immigrant and ethnic group settlement patterns throughout 
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the city.  These discoveries demonstrate the ability for spatial features to enhance 

traditional remote sensing studies that only utilize spectral information.  Block and scale 

size importance varied between each spatial feature, indicating that careful consideration 

should be taken to apply the best parameters to the spatial feature computations.   

  It is important to note, that while spatial features were found to be correlated 

with census data, this research is contextual and reflects historical and ethnic trends 

distinctive to Accra.  Ultimately, this innovative exploratory analysis suggests possible 

patterns and trends that can be extracted from built-up areas via satellite imagery, such as 

line attributes, line variances, and geometric object detection 

6.2 Future Work 

Although strong correlations were found in this study, this research can and 

should be applied to other cities to establish universal trends in spatial feature 

correlations.  This research would be particularly helpful in other developing cities where 

census data is not collected or readily available, and can benefit from remotely sensed 

population and housing characteristic estimates.  Additional analysis may be done in 

Accra, with more recent imagery, as the 2010 Ghanaian census becomes accessible to 

researchers.   

Dasymetric mapping may help to establish stronger correlations by excluding 

larger water bodies or heavily commercial areas.  In Accra, for instance, neighborhoods 

such as Gbegbeyise and Korle Lagoon Area have large water bodies, where if they are 

masked perhaps could increase the correlations between spatial features and population 

characteristics.  Additionally, large commercial infrastructure, such as the Kotoka 
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International Airport, may have outlier effects within the correlations due to the fact that 

it is located within the Airport Residential Area neighborhood boundary.   

To capture more spatial properties of built-up areas, additional spatial features can 

be extracted from the imagery.  These include Gabor filters that combine Gaussian filters 

with sinusoids to detect edges (Daugman 1985), Hough Probabilistic Transform which 

exploits point/line duality to estimate shape parameters (Ballard 1981), and Lacunarity 

which measures gap distribution (Dong 2000), among others. 

Due to the very high correlations demonstrated in the NDVI and LBP outputs, a 

bivariate regression analysis may be useful in creating a more comprehensive list of 

correlations between satellite imagery and population characteristics.  Additional 

multivariate regression analysis may show repetition between spatial feature outputs and 

spectral feature outputs as well.  Suggested further research also entails running a land 

cover classification algorithm on a virtual stack that includes spatial feature outputs, in an 

effort to aid traditional classification schemes.  Finally, this research should be tested in 

other built-up areas, in an effort to refine spatial feature results and interpretation.    



59 

 

References 

 

Ahonen, T., Pietikäinen, M., Hadid, A., & Maenpaa, T. (2004). Face recognition based 

on the appearance of local regions. Proceedings from International Conference on 

Pattern Recognition (ICPR), (153-156). Cambridge, United Kingdom: IEEE. 

Auch, R., Taylor, J., & Acevedo, W. (2004). Urban growth in American cities: Glimpses 

of U.S. urbanization. Washington, DC: USGS Circular #1252. 

Azar, D., Engstrom, R., Graesser, J., & Comenetz, J. (2013). Generation of fine-scale 

population layers using multi-resolution satellite imagery and geospatial data. Remote 

Sensing of Environment, 130, 219-232.  

Azar, D., Graesser, J., Engstrom, R., Comenetz, J., Leddy Jr., R., Schechtman, N., & 

Andrews, T. (2010). Spatial refinement of census population distribution using 

remotely sensed estimates of impervious surfaces in Haiti. International Journal of 

Remote Sensing, 31(21), 5635-5655. 

Ballard, D. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern 

Recognition, 13(2), 111-122. 

Bayram, U., Can, G., Duzgun, S., & Yalabik, N. (2011). Evaluation of textural features 

for multispectral images. Proceedings from SPIE 8180, Image and Signal Processing 

for Remote Sensing XVII, 81800. Prague, Czech Republic. 

Benesty, J., Chen, J., & Huang, Y. (2009). Noise reduction algorithms in a generalized 

transform domain. IEEE Transactions on Audio, Speech, and Language Processing, 

17(6), 1109-1123.   

Bracewell, R. (1978). The Fourier transform and its applications. New York, NY: 

McGraw-Hill.   

Burns, J., Hanson, A., & Riseman, E. (1986). Extracting lines. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, PAMI-8(4), 425-455. 

Chen, D. & Stow, D. (2003). Strategies for integrating information from multiple spatial 

resolutions into land-use/land-cover classification routines. Photogrammetric 

Engineering & Remote Sensing, 69(11): 1279-1287. 

Costen, N., Parker, D., & Craw, I. (1996). Effects of high-pass and low-pass spatial 

filtering on face identification. Perception & Psychophysics, 58(4), 602-612.   

Cutter, S. (2003). GI Science, Disasters, and Emergency Management. Transactions in 

GIS, 7(4), 439-445. 



60 

 

Dalal, N. & Triggs, B. (2005). Histograms of oriented gradients for human detection. 

Proceedings from Computer Vision and Pattern Recognition (CVPR), (886-893). San 

Diego, CA: IEEE. 

Daugman, J. (1985). Uncertainty relation for resolution in space, spatial frequency, and 

orientation optimized by two-dimensional visual cortical filters. Optical Society of 

America, 2(7), 1160-1169. 

Davies, O. (1967). West Africa before the Europeans: archaeology & prehistory. 

London, Methuen: Cambridge University Press. 

Dong, P. (2000). Test of a new Lacunarity estimation method for image texture analysis. 

International Journal of Remote Sensing, 21(17), 3369-3373.   

Ella, L., Van den Bergh, F., Van Wyk, B., & Van Wyk, M. (2008). A comparison of 

texture feature algorithms for urban settlement classification. Proceedings from 

International Geoscience and Remote Sensing Symposium (IGARSS), (III 1308-III 

1311). Boston, MA: IEEE. 

Elvidge, C., Safran, J., Tuttle, B., Sutton, P., Cinzano, P., Pettit, D., Arvesen, J., & Small, 

C. (2007). Potential for global mapping of development via a nightsat mission. 

GeoJournal, 69(1-2), 45-53. 

Elvidge, C., Tuttle, B., Sutton, P., Baugh, K., Howard, A., Milesi, C., Bhaduri, B., & 

Nemani, R. (2007). Global distribution and density of constructed impervious 

surfaces. Sensors, 7, 1962-1979.  

Engstrom, R., Ashcroft, E., Jewell, H., & Rain, D. (2011). Using remotely sensed data to 

map variability in health and wealth indicators in Accra, Ghana. Proceedings from 

Joint Urban Remote Sensing Event (JURSE), (145-148). Munich, Germany: IEEE. 

Engstrom, R., Ofiesh, C., Rain, D., Jewell, H., & Weeks, J. (2013). Defining 

neighborhood boundaries for urban health research in developing countries: A case 

study for Accra, Ghana. Journal of Maps, 9(1): 36-42.  

Gamba, P., Dell’Acqua, F., Lisini, G., & Trianni, G. (2007). Improved VHR urban area 

mapping exploiting object boundaries. IEEE Transactions on Geoscience and Remote 

Sensing, 45(8): 2676-2682. 

Ghana Statistical Service. (2000). Ghana – population and housing census 2000. 

Graesser, J. & Long, J. (2015). MapPy: A python library for remote sensing.  

Graesser, J., Cheriyadat, A., Vatsavai, R., Chandola, V., Long, J., & Bright, E. (2012). 

Image based characterization of formal and informal neighborhoods in an urban 

landscape. IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, 5(4), 1164-1176. 



61 

 

Hablani, R., Chaudhari, N., & Tanwani, S. (2013). Recognition of facial expressions 

using local binary patterns of important facial parts. International Journal of Image 

Processing, 7(2), 163-170. 

Hadid, A., Pietikäinen, M., & Ahonen, T. (2004). A discriminative feature space for 

detecting and recognizing faces. Proceedings from Computer Vision and Pattern 

Recognition (CVPR), (II 797-II 804). Washington, DC: IEEE. 

Harvey, J. (2002). Population estimation models based on individual TM pixels. 

Photogrammetric Engineering & Remote Sensing, 68(11), 1181-1192. 

Herold, M., Liu, X., & Clarke, K. (2003). Spatial metrics and image texture for mapping 

urban land use. Photogrammetric Engineering & Remote Sensing, 69(9), 991-1001. 

Herold, M., Scepan, J., & Clarke, K. (2002). The use of remote sensing and landscape 

metrics to describe strucures and changes in urban land uses. Environment and 

Planning A, 34(8), 1443-1458. 

Huang, X., Zhang, L., & Li, P. (2007). Classification and extraction of spatial features in 

urban areas using high-resolution multispectral imagery. IEEE Geoscience and 

Remote Sensing Letters, 4(2), 260-264. 

Jensen, J. & Cowan, D. (1999). Remote sensing of urban/suburban infrastructure and 

socio-economic attributes. Photogrammetric Engineering & Remote Sensing, 65(5), 

611-622.   

Jensen, J. (2007). Remote sensing of the environment: An Earth resource perspective. 

Upper Saddle River, NJ: Pearson Education, Inc. 

Kim, T. & Muller, J. (1999). Development of a graph-based approach for building 

detection. Image and Vision Computing, 17(1), 3-14. 

Lambin, E., Turner, B., Geist, H., Agbola, S., Angelsen, A., Bruce, J., … Xu, J. (2001). 

The causes of land-use and land-cover change: Moving beyond the myths. Global 

Environmental Change, 11(4), 261-269.   

Li, C., Yin, J., Zhao, J., & Liu, L. (2011). Extraction of urban built-up land in remote 

sensing images based on multi-sensor data fusion algorithms. Proceedings from 

International Conference on Intelligent Computing and Information Systems 

(ICICIS), (243-248).  

Li, G. & Weng, Q. (2007). Measuring the quality of life in city of Indianapolis by 

integration of remote sensing and census data. International Journal of Remote 

Sensing, 28(2), 249-267.   

Liang, P., Ling, H., Blasch, E., Seetharaman, G., Shen, D., & Chen, G. (2013). Vehicle 

detection in wide area aerial surveillance using temporal context. Proceedings from 



62 

 

International Conference on Information Fusion (FUSION), (9-12). Istanbul, Turkey: 

IEEE. 

Lo, C. & Faber, B. (1997). Integration of Landsat Thematic Mapper and census data for 

quality of life assessment. Remote Sensing of Environment, 62(2), 143-157.  

Lu, D. & Weng, Q. (2005). Urban classification using full spectral information of 

Landsat ETM+ imagery in Marion County, Indiana. Photogrammetric Engineering & 

Remote Sensing, 71(11), 1275-1284.   

Lu, D. & Weng, Q. (2006). Use of impervious surface in urban land-use classification. 

Remote Sensing of Environment, 102(1-2), 146-160. 

Lu, D. & Weng, Q. (2009). Extraction of urban impervious surfaces from an IKONOS 

image. International Journal of Remote Sensing, 30(5), 1297-1311. 

Lu, D., Weng, Q. & Li, G. (2006). Residential population estimation using a remote 

sensing derived impervious surface approach. International Journal of Remote 

Sensing, 27(16), 3553-3570. 

Lunetta, R., Knight, J., Ediriwickrema, J., Lyon, J., & Worthy, L. (2006). Land-cover 

change detection using multi-temporal MODIS NDVI data. Remote Sensing of 

Environment, 105(2), 142-154.   

Masek, J., Lindsay, F., & Goward, S. (2000). Dynamics of urban growth in the 

Washington DC metropolitan area, 1973-1996, from Landsat observations. 

International Journal of Remote Sensing, 21(18), 3473-3286.  

National Research Council. (2007). Tools and methods for estimating population at risk 

from natural disasters and complex humanitarian crises. Washington, DC: National 

Academy of Science. 

Ogneva-Himmelberger, Y., Pearsall, H., & Rakshit, R. (2009). Concrete evidence & 

geographically weighted regression: A regional analysis of wealth and the land cover 

in Massachusetts. Applied Geography, 29(4), 478-487.   

Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture 

measures with classification based on featured distributions. Pattern Recognition, 

29(1), 51-59.   

Palaniappan, K., Bunyak, F., Kumar, P., Ersoy, I., Jaeger, S., Ganguli, K., … 

Seetharaman, G. (2010). Efficient feature extraction and likelihood fusion for vehicle 

tracking in low frame rate airborne video. Proceedings from International Conference 

on Information Fusion (FUSION), (1-8). Edinburgh, United Kingdom: IEEE.   

Patino, J. & Duque, J. (2013). A review of regional science applications of satellite 

remote sensing in urban settings. Computers, Environment and Urban Systems 37, 1-

17. 



63 

 

Pesaresi, M. & Gerhardinger, A. (2011). Improved textural built-up presence index for 

automatic recognition of human settlements in arid regions with scattered vegetation. 

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 

4(1), 16-26.   

Pesaresi, M., Gerhardinger, A., & Kayitakire, F. (2008). A robust built-up area presence 

index by anisotropic rotation-invariant textural measure. IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing, 1(3), 180-192. 

Pesaresi, M., Halkia, M., & Ouzounis, G. (2011). Quantitative estimation of settlement 

density and limits based on textural measurements. Proceedings from Joint Urban 

Remote Sensing Event (JURSE), (89-92). Munich, Germany: IEEE.   

Plaza, J., Plaza A., Gamba, P., & Trianni, G. (2007). Efficient multi-band texture analysis 

for remotely sensed data interpretation in urban areas. Proceedings from Joint Urban 

Remote Sensing Event (JURSE),( 1-6). Paris, France: IEEE.   

Puissant, A., Hirsh J., & Weber, C. (2005). The utility of texture analysis to improve per-

pixel classification for high to very high spatial resolution imagery. International 

Journal of Remote Sensing, 26(4), 733-745.   

Rahman, A., Kumar, Y., Fazal, S., & Bhaskaran, S. (2011). Urbanization and quality of 

urban environment using remote sensing and GIS techniques in east Delhi-India. 

Journal of Geographic Information System, 3(1), 62-84. 

Reis, S. & Taşdemir, K. (2011). Identification of hazelnut fields using spectral and Gabor 

textural features. ISPRS Journal of Photogrammetry and Remote Sensing, 66(5), 652-

661.   

Ridd, M. (1995). Exploring a V-I-S (vegetation-impervious surface-soil) model for urban 

ecosystem analysis through remote sensing: Comparative anatomy for cities. 

International Journal of Remote Sensing, 16(12), 2165-2185.   

Roth, R. (2007). The use of remotely sensed imagery and GIS analysis for the automated 

detection of water infiltration in residential structures. Middle States Geographer, 40, 

123-132. 

Rouse, J., Haas, R., Schell, J., Deering, D. (1974). Monitoring vegetation systems in the 

Great Plains with ERTS. Proceedings from Third Earth resources Technology 

Satellite-1 Symposium, (3010-3017). Washington, DC. 

Satellite Imaging Corporation. (2013). Satellite imaging sensors. Retrieved from 

http://www.satimagingcorp.com/satellite-sensors.html. 

Sawaya, K., Olmanson, L., Heinert, N., Brezonik, P., & Bauer, M. (2003). Extending 

satellite remote sensing to local scales: Land and water resource monitoring using 

high-resolution imagery. Remote Sensing of Environment, 88(1), 144-156. 



64 

 

Schneider, A. (2012). Monitoring land cover change in urban and peri-urban areas using 

dense time stacks of Landsat satellite data and a data mining approach. Remote 

Sensing of Environment, 124, 689-704. 

Sliuzas, R., Mboup, G., & de Sherbinin, A. (2008). Report on the Expert Group Meeting 

on slum identification and mapping. Enschede, Netherlands: International Institute for 

Geo-information Science and Earth Observation (ITC), UN-HABITAT Global 

Observatory, & Center for International Earth Science Information Network 

(CIESIN).   

Small, C. (2004). The Landsat ETM+ spectral mixing space. Remote Sensing of 

Environment, 93(1-2), 170-186.  

Small, C. (2005). A global analysis of urban reflectance. International Journal of Remote 

Sensing, 26(4), 661-681. 

Smith, S. (1997). The scientist and engineer’s guide to digital signal processing. San 

Diego, CA: California Technical Publishing.   

Stoler, J., Daniels, D., Weeks, J., Stow, D., Coulter, L., & Finch, B. (2012). Assessing the 

utility of satellite imagery with differing spatial resolutions for deriving proxy 

measures of slum presence in Accra, Ghana. GIScience & Remote Sensing, 49(1), 31-

52. 

Stow, D., Weeks, J., Toure, S., Coulter, L., Lippitt, C., & Ashcroft, E. (2012). Urban 

vegetation cover and vegetation change in Accra, Ghana: Connection to housing 

quality. The Professional Geographer, 65(3), 451-465. 

Suard F., Rakotomamonjy, A., Bensrhair, A., & Broggi, A. (2006). Pedestrian detection 

using infrared images and histograms of oriented gradients. Proceedings from 

Intelligent Vehicles Symposium (IVS), (pp. 206-212). Tokyo, Japan: IEEE. 

UN Habitat. (2006/2007). State of the world’s cities 2006/2007- The Millennium 

Development Goals and urban sustainability: 30 years of shaping the habitat agenda. 

Nairobi, Kenya: United Nations Human Settlements Programme. 

Unsalan, C. & Boyer, K. (2004). Classifying land development in high-resolution 

panchromatic satellite images using straight-line statistics. IEEE Transactions on 

Geoscience and Remote Sensing, 42(4), 907-919. 

Unsalan, C. (2006). Gradient-magnitude-based support regions in structural land use 

classifications. IEEE Geoscience and Remote Sensing Letters, 3(4), 546-550.  

Van de Voorde, T., Jacquet, W., & Canters, F. (2011). Mapping form and function in 

urban areas: An approach based on urban metrics and continuous impervious surface 

data. Landscape and Urban Planning, 102(3), 143-155 



65 

 

Wang, H., Wang, C., Li, P., Chen, Z., Cheng, M., Luo, L., & Lin, Y. (2012). Optical-to-

SAR image registration based on Gaussian Mixture Model. Proceedings from 

International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences (ISPRS), (179-183). Melbourne, Australia. 

Wang, L. & He, D. (1990). Texture classification using texture spectrum. Pattern 

Recognition, 23(8), 905-910.  

Weeks, J. (2010). Defining urban areas. In Rashed, T., & Jurgens, C. (Eds.), Remote 

sensing of urban and suburban areas, (33-45). Dordrecht: Springer.   

Weeks, J., Hill, A., Stow, D., Getis, A., & Fugate, D. (2007). Can we spot a 

neighborhood from the air? Defining neighborhood structure in Accra, Ghana. 

GeoJournal, 69(1-2), 9-22.   

Weng, Q. (2012). Remote sensing of impervious surfaces in the urban areas: 

Requirements, methods, and trends. Remote Sensing of Environment, 117, 34-49.  

Xie, Y., Chen L., & Hofmann, U. (2012). Reduction of periodic noise in Fourier domain 

optical coherence tomography images by frequency domain filtering. Biomedical 

Engineering, 57(SI-1, Track-P), 830-832.   

Xu, H. (2007). Extraction of urban built-up land features from Landsat imagery using a 

thematic-oriented index combination technique. Photogrammetric Engineering & 

Remote Sensing, 73(12), 1381-1391.   

Yu, W., Chu, G., & Chung, M. (1999). A robust line extraction method by unsupervised 

line clustering. Pattern Recognition, 32(4), 529-546.   

Zha, Y., Gao, J., and Ni, S. (2003). Use of normalized difference built-up index in 

automatically mapping urban areas from TM imagery. International Journal of 

Remote Sensing, 24(3), 583-594. 

Zhang, J., Li, P., & Wang, J. (2014). Urban built-up area extraction from Landsat 

TM/ETM+ images using spectral information and multivariate texture. Remote 

Sensing, 6(8), 7339-7359. 

Zhang, Q., Wang, J., Gong, P., & Shi, P. (2003). Study of urban spatial patterns from 

SPOT panchromatic imagery using textural analysis. International Journal of Remote 

Sensing, 24(21), 4137-4160.   

Zhu, Q., Yeh, M., Kwang-Ting, C., & Avidan, S. (2006). Fast human detection using a 

cascade of histograms of oriented gradients. Proceedings from Computer Vision and 

Pattern Recognition (CVPR), (1491-1498). New York, NY: IEEE. 

 



66 

 

Appendices 

 

Appendix A: Index to Neighborhood Study Area Map. 
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Appendix B: Spatial Features with Strong Correlations to Census-Derived Data. 
 

Line Support Regions (LSR) 

Block Scale Output Zonal Statistic Census-Derived Indicator 
Correlation 

Coefficient 

8 32 Line Length Average Standard Deviation No Electricity 0.55 

8 16 Line Length Average Standard Deviation Not Literate 0.54 

4 32 Line Length Average Standard Deviation No Electricity 0.53 

4 16 Line Length Average Standard Deviation Not Literate 0.53 

8 16 Line Variance Standard Deviation Rent-free 0.53 

8 16 Line Length Average Standard Deviation No Electricity 0.51 

4 16 Line Length Average Standard Deviation No Electricity 0.51 

4 32 Line Length Average Mean Population Density 0.50 

4 16 Line Length Average Mean Rent-free -0.50 

8 32 Line Length Average Mean Rent-free -0.50 

8 32 Line Length Sum Mean Not Literate -0.50 

8 16 Line Length Average Mean Rent-free -0.51 

4 32 Line Length Sum Mean No Electricity -0.52 

8 32 Line Variance Mean Not Literate -0.52 

4 32 Line Variance Mean No Electricity -0.52 

8 32 Line Length Sum Mean No Electricity -0.53 

4 16 Line Length Sum Mean Not Literate -0.53 

8 32 Line Variance Mean No Electricity -0.53 

4 16 Line Length Sum Mean No Electricity -0.53 

4 16 Line Variance Mean Not Literate -0.53 

8 16 Line Length Sum Mean No Electricity -0.54 

4 16 Line Variance Mean No Electricity -0.54 

8 16 Line Variance Mean No Electricity -0.54 

8 16 Line Length Sum Mean Not Literate -0.54 

8 16 Line Variance Mean Not Literate -0.56 

 

PanTex 

Block Scale Zonal Statistic Census-Derived Indicator 
Correlation 

Coefficient 

4 32 Standard Deviation Born Outside EA 0.64 

8 32 Standard Deviation Born Outside EA 0.63 

4 32 Standard Deviation Not in Accra 5 Years Ago 0.62 

8 32 Standard Deviation Not in Accra 5 Years Ago 0.62 

4 16 Standard Deviation Born Outside EA 0.61 

8 32 Standard Deviation No Electricity 0.60 

4 32 Standard Deviation No Electricity 0.60 

8 16 Standard Deviation Born Outside EA 0.59 

4 8 Mean Informal Sector 0.51 

8 8 Mean Informal Sector 0.50 

8 16 Standard Deviation Ga-Dangme -0.52 

4 16 Mean Rent-free -0.52 

8 16 Mean Rent-free -0.52 

4 16 Standard Deviation Ga-Dangme -0.52 

8 16 Standard Deviation Dependents -0.54 

4 16 Standard Deviation Dependents -0.54 

8 8 Mean Rent-free -0.54 

4 8 Mean Rent-free -0.55 

8 32 Standard Deviation Dependents -0.56 

4 32 Standard Deviation Dependents -0.56 

8 8 Standard Deviation Ga-Dangme -0.59 

4 8 Standard Deviation Ga-Dangme -0.59 

4 32 Standard Deviation Do Not Work -0.59 

8 32 Standard Deviation Do Not Work -0.59 
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Histogram of Oriented Gradients (HoG) 

Block Scale Output Zonal Statistic Census-Derived Indicator 
Correlation 

Coefficient 

8 8 Histogram Skew Mean Rent-free 0.66 

8 8 Histogram Kurtosis Mean Rent-free 0.66 

4 16 Histogram Skew Mean Rent-free 0.65 

8 16 Histogram Skew Mean Rent-free 0.65 

4 32 Histogram Skew Mean Rent-free 0.65 

4 8 Histogram Skew Mean Rent-free 0.65 

4 32 Histogram Kurtosis Mean Rent-free 0.65 

8 32 Histogram Skew Mean Rent-free 0.65 

8 32 Histogram Kurtosis Mean Rent-free 0.65 

4 8 Histogram Kurtosis Mean Rent-free 0.65 

8 16 Histogram Kurtosis Mean Rent-free 0.64 

4 16 Histogram Kurtosis Mean Rent-free 0.63 

8 32 Histogram Variance Mean No Electricity 0.63 

4 32 Histogram Variance Mean No Electricity 0.62 

4 16 Histogram Mean Standard Deviation Not in Accra 5 Years Ago 0.61 

4 8 Histogram Kurtosis Mean Not in Accra 5 Years Ago 0.60 

8 8 Histogram Kurtosis Standard Deviation Rent-free 0.60 

8 16 Histogram Mean Standard Deviation Not in Accra 5 Years Ago 0.60 

4 8 Histogram Skew Mean Not in Accra 5 Years Ago 0.59 

4 8 Histogram Kurtosis Standard Deviation Not in Accra 5 Years Ago 0.59 

8 8 Histogram Kurtosis Mean Not in Accra 5 Years Ago 0.58 

8 32 Histogram Variance Standard Deviation Rent-free 0.58 

8 16 Histogram Mean Standard Deviation No Electricity 0.58 

4 32 Histogram Kurtosis Standard Deviation Rent-free 0.58 

4 16 Histogram Mean Standard Deviation No Electricity 0.58 

8 16 Histogram Skew Standard Deviation No Electricity 0.58 

4 32 Histogram Variance Standard Deviation Rent-free 0.58 

8 16 Histogram Variance Mean No Electricity 0.58 

8 8 Histogram Skew Mean Not in Accra 5 Years Ago 0.58 

4 8 Histogram Kurtosis Standard Deviation Rent-free 0.58 

8 16 Histogram Kurtosis Standard Deviation Not in Accra 5 Years Ago 0.58 

8 8 Histogram Skew Standard Deviation Rent-free 0.57 

8 8 Histogram Kurtosis Standard Deviation Not in Accra 5 Years Ago 0.57 

8 32 Histogram Mean Standard Deviation No Electricity 0.57 

8 16 Histogram Kurtosis Standard Deviation Rent-free 0.57 

4 32 Histogram Mean Standard Deviation No Electricity 0.57 

4 16 Histogram Kurtosis Mean Not in Accra 5 Years Ago 0.57 

4 16 Histogram Skew Standard Deviation No Electricity 0.57 

4 16 Histogram Variance Mean No Electricity 0.57 

4 16 Histogram Kurtosis Standard Deviation Not in Accra 5 Years Ago 0.57 

8 32 Histogram Kurtosis Standard Deviation Rent-free 0.57 

8 16 Histogram Kurtosis Mean Not in Accra 5 Years Ago 0.57 

4 8 Histogram Skew Standard Deviation No Electricity 0.56 

8 8 Histogram Skew Standard Deviation No Electricity 0.56 

4 32 Histogram Kurtosis Mean Not in Accra 5 Years Ago 0.56 

4 16 Histogram Kurtosis Standard Deviation Rent-free 0.56 

4 8 Histogram Skew Standard Deviation Not in Accra 5 Years Ago 0.56 

4 32 Histogram Mean Standard Deviation Not in Accra 5 Years Ago 0.55 

8 16 Histogram Kurtosis Standard Deviation No Electricity 0.55 

4 16 Histogram Skew Mean Not in Accra 5 Years Ago 0.55 

4 8 Histogram Skew Standard Deviation Rent-free 0.55 

8 32 Histogram Kurtosis Mean Not in Accra 5 Years Ago 0.55 

8 16 Histogram Skew Standard Deviation Rent-free 0.55 

8 32 Histogram Mean Standard Deviation Not in Accra 5 Years Ago 0.55 

4 32 Histogram Kurtosis Mean No Electricity 0.54 

8 32 Histogram Kurtosis Mean No Electricity 0.54 
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4 16 Histogram Kurtosis Standard Deviation No Electricity 0.54 

8 16 Histogram Skew Mean Not in Accra 5 Years Ago 0.54 

4 32 Histogram Skew Standard Deviation Rent-free 0.54 

8 16 Histogram Kurtosis Mean No Electricity 0.54 

8 8 Histogram Skew Standard Deviation Not in Accra 5 Years Ago 0.54 

4 16 Histogram Kurtosis Mean No Electricity 0.54 

8 32 Histogram Skew Standard Deviation Rent-free 0.53 

4 32 Histogram Kurtosis Standard Deviation Not in Accra 5 Years Ago 0.53 

4 8 Histogram Mean Standard Deviation Not in Accra 5 Years Ago 0.53 

4 16 Histogram Skew Standard Deviation Rent-free 0.53 

8 16 Histogram Variance Mean Immigrant 0.53 

8 32 Histogram Kurtosis Standard Deviation Not in Accra 5 Years Ago 0.53 

4 16 Histogram Variance Mean Immigrant 0.52 

4 8 Histogram Kurtosis Standard Deviation No Electricity 0.52 

8 32 Histogram Skew Mean No Electricity 0.52 

4 32 Histogram Skew Mean No Electricity 0.52 

8 8 Histogram Mean Standard Deviation Not in Accra 5 Years Ago 0.52 

8 8 Histogram Kurtosis Standard Deviation No Electricity 0.52 

8 16 Histogram Skew Standard Deviation Not in Accra 5 Years Ago 0.52 

4 16 Histogram Skew Standard Deviation Not in Accra 5 Years Ago 0.51 

4 8 Histogram Variance Standard Deviation Rent-free 0.51 

4 32 Histogram Skew Standard Deviation Not in Accra 5 Years Ago 0.51 

8 16 Histogram Variance Standard Deviation Rent-free 0.51 

4 16 Histogram Variance Standard Deviation Rent-free 0.51 

8 32 Histogram Skew Standard Deviation Not in Accra 5 Years Ago 0.50 

8 32 Histogram Skew Mean Population Density -0.50 

4 16 Histogram Mean Standard Deviation Dependents -0.50 

4 32 Histogram Skew Mean Population Density -0.50 

8 32 Histogram Kurtosis Mean Population Density -0.50 

4 32 Histogram Kurtosis Mean Population Density -0.51 

4 16 Histogram Skew Standard Deviation Children -0.51 

8 16 Histogram Mean Standard Deviation Population Density -0.51 

4 16 Histogram Mean Standard Deviation Population Density -0.51 

8 16 Histogram Skew Standard Deviation Children -0.51 

8 8 Histogram Skew Mean No Liquid Waste Collection -0.51 

4 32 Histogram Kurtosis Standard Deviation Population Density -0.51 

8 32 Histogram Kurtosis Standard Deviation Housing Density -0.51 

4 32 Histogram Kurtosis Standard Deviation Housing Density -0.51 

8 32 Histogram Kurtosis Standard Deviation Population Density -0.51 

8 32 Histogram Skew Standard Deviation Children -0.51 

8 16 Histogram Mean Standard Deviation Housing Density -0.51 

4 16 Histogram Mean Standard Deviation Housing Density -0.52 

4 32 Histogram Skew Standard Deviation Children -0.52 

4 8 Histogram Skew Mean No Liquid Waste Collection -0.52 

4 16 Histogram Kurtosis Standard Deviation Population Density -0.53 

8 8 Histogram Skew Standard Deviation Children -0.53 

8 16 Histogram Kurtosis Standard Deviation Housing Density -0.53 

4 16 Histogram Kurtosis Standard Deviation Housing Density -0.53 

8 32 Histogram Skew Mean Children -0.53 

8 16 Histogram Kurtosis Standard Deviation Population Density -0.53 

4 32 Histogram Skew Mean Children -0.53 

4 8 Histogram Skew Standard Deviation Children -0.54 

8 8 Histogram Mean Standard Deviation Dependents -0.54 

4 8 Histogram Skew Standard Deviation Population Density -0.54 

4 8 Histogram Skew Standard Deviation Housing Density -0.54 

8 8 Histogram Skew Standard Deviation Housing Density -0.54 

8 8 Histogram Skew Standard Deviation Population Density -0.55 

4 8 Histogram Mean Standard Deviation Dependents -0.55 

8 16 Histogram Kurtosis Mean Housing Density -0.56 
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4 16 Histogram Kurtosis Mean Housing Density -0.56 

8 32 Histogram Kurtosis Standard Deviation Children -0.57 

8 8 Histogram Kurtosis Standard Deviation Children -0.57 

4 32 Histogram Kurtosis Standard Deviation Children -0.57 

8 16 Histogram Skew Mean Children -0.57 

8 16 Histogram Kurtosis Mean Population Density -0.57 

4 16 Histogram Kurtosis Mean Population Density -0.57 

4 16 Histogram Kurtosis Standard Deviation Children -0.58 

4 16 Histogram Skew Mean Children -0.58 

4 8 Histogram Kurtosis Standard Deviation Children -0.58 

8 16 Histogram Kurtosis Standard Deviation Children -0.58 

8 8 Histogram Kurtosis Mean Children -0.58 

8 16 Histogram Kurtosis Mean Children -0.58 

8 8 Histogram Skew Mean Children -0.58 

4 16 Histogram Kurtosis Mean Children -0.59 

8 16 Histogram Skew Mean Housing Density -0.59 

8 32 Histogram Kurtosis Mean Children -0.59 

4 16 Histogram Skew Mean Housing Density -0.59 

4 32 Histogram Kurtosis Mean Children -0.60 

4 8 Histogram Kurtosis Standard Deviation Housing Density -0.60 

4 8 Histogram Kurtosis Standard Deviation Population Density -0.60 

8 8 Histogram Kurtosis Standard Deviation Housing Density -0.60 

4 8 Histogram Skew Mean Children -0.61 

4 8 Histogram Kurtosis Mean Children -0.61 

8 8 Histogram Kurtosis Standard Deviation Population Density -0.61 

8 16 Histogram Skew Mean Population Density -0.61 

4 16 Histogram Skew Mean Population Density -0.61 

8 8 Histogram Kurtosis Mean Housing Density -0.66 

8 8 Histogram Kurtosis Mean Population Density -0.68 

4 8 Histogram Kurtosis Mean Housing Density -0.68 

8 8 Histogram Skew Mean Housing Density -0.69 

4 8 Histogram Kurtosis Mean Population Density -0.69 

4 8 Histogram Skew Mean Housing Density -0.71 

8 8 Histogram Skew Mean Population Density -0.71 

4 8 Histogram Skew Mean Population Density -0.72 

 

Local Binary Patterns (LBP) 

Block Scale Output Zonal Statistic Census-Derived Indicator 
Correlation 

Coefficient 

4 32 Histogram Variance Mean Population Density 0.85 

8 32 Histogram Variance Mean Population Density 0.85 

4 32 Histogram Variance Mean Housing Density 0.84 

4 16 Histogram Variance Mean Population Density 0.84 

8 32 Histogram Variance Mean Housing Density 0.84 

8 16 Histogram Variance Mean Population Density 0.84 

4 16 Histogram Variance Mean Housing Density 0.83 

8 16 Histogram Variance Mean Housing Density 0.83 

8 8 Histogram Skew Mean Population Density 0.82 

4 8 Histogram Skew Mean Population Density 0.82 

8 8 Histogram Kurtosis Mean Population Density 0.82 

4 8 Histogram Kurtosis Mean Population Density 0.82 

4 8 Histogram Variance Mean Biofuel 0.82 

8 8 Histogram Variance Mean Biofuel 0.81 

4 8 Histogram Variance Mean Population Density 0.81 

8 8 Histogram Skew Mean Housing Density 0.81 

4 8 Histogram Skew Mean Housing Density 0.81 

8 8 Histogram Variance Mean Population Density 0.81 

4 8 Histogram Kurtosis Mean Housing Density 0.81 

8 8 Histogram Kurtosis Mean Housing Density 0.81 
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4 16 Histogram Variance Mean Biofuel 0.80 

4 8 Histogram Variance Mean Housing Density 0.80 

8 16 Histogram Variance Mean Biofuel 0.80 

8 8 Histogram Variance Mean Housing Density 0.80 

4 8 Histogram Variance Mean Non-separate Cooking Space 0.79 

8 8 Histogram Variance Mean Non-separate Cooking Space 0.79 

4 16 Histogram Variance Mean Non-separate Cooking Space 0.79 

4 16 Histogram Skew Mean Population Density 0.79 

8 16 Histogram Variance Mean Non-separate Cooking Space 0.79 

8 16 Histogram Skew Mean Population Density 0.79 

4 16 Histogram Kurtosis Mean Population Density 0.79 

8 16 Histogram Kurtosis Mean Population Density 0.78 

4 32 Histogram Variance Mean Biofuel 0.78 

8 32 Histogram Variance Mean Biofuel 0.78 

4 16 Histogram Skew Mean Housing Density 0.78 

8 16 Histogram Skew Mean Housing Density 0.78 

4 16 Histogram Kurtosis Mean Housing Density 0.77 

4 32 Histogram Variance Mean Non-separate Cooking Space 0.77 

8 16 Histogram Kurtosis Mean Housing Density 0.77 

8 32 Histogram Variance Mean Non-separate Cooking Space 0.77 

4 32 Histogram Skew Mean Population Density 0.77 

8 32 Histogram Skew Mean Population Density 0.77 

4 32 Histogram Kurtosis Mean Population Density 0.76 

8 32 Histogram Kurtosis Mean Population Density 0.76 

4 32 Histogram Skew Mean Housing Density 0.76 

8 32 Histogram Skew Mean Housing Density 0.76 

8 16 Histogram Variance Mean No Liquid Waste Collection 0.75 

4 16 Histogram Variance Mean No Liquid Waste Collection 0.75 

4 32 Histogram Kurtosis Mean Housing Density 0.75 

8 32 Histogram Kurtosis Mean Housing Density 0.75 

4 8 Histogram Variance Mean No Liquid Waste Collection 0.75 

8 8 Histogram Variance Mean No Liquid Waste Collection 0.75 

4 32 Histogram Variance Mean No Liquid Waste Collection 0.75 

8 32 Histogram Variance Mean No Liquid Waste Collection 0.74 

4 8 Histogram Skew Mean No Liquid Waste Collection 0.73 

4 8 Histogram Skew Mean Non-separate Cooking Space 0.73 

8 8 Histogram Skew Mean No Liquid Waste Collection 0.73 

8 8 Histogram Skew Mean Non-separate Cooking Space 0.73 

4 8 Histogram Skew Mean Biofuel 0.73 

8 8 Histogram Skew Mean Biofuel 0.72 

4 8 Histogram Variance Mean Slum Index 0.72 

4 8 Histogram Kurtosis Mean No Liquid Waste Collection 0.72 

4 8 Histogram Kurtosis Mean Non-separate Cooking Space 0.72 

8 8 Histogram Kurtosis Mean No Liquid Waste Collection 0.72 

8 8 Histogram Kurtosis Mean Non-separate Cooking Space 0.72 

8 8 Histogram Variance Mean Slum Index 0.71 

4 8 Histogram Kurtosis Mean Biofuel 0.71 

8 8 Histogram Kurtosis Mean Biofuel 0.71 

4 8 Histogram Variance Mean Women Not Educated 0.70 

4 8 Histogram Skew Mean Informal Sector 0.70 

8 8 Histogram Skew Mean Informal Sector 0.70 

8 16 Histogram Variance Mean Informal Sector 0.70 

4 16 Histogram Variance Mean Informal Sector 0.70 

4 32 Histogram Variance Mean Informal Sector 0.70 

8 32 Histogram Variance Mean Informal Sector 0.70 

4 16 Histogram Skew Mean No Liquid Waste Collection 0.70 

4 16 Histogram Variance Mean Slum Index 0.70 

8 8 Histogram Variance Mean Women Not Educated 0.69 

8 16 Histogram Variance Mean Slum Index 0.69 
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8 16 Histogram Skew Mean No Liquid Waste Collection 0.69 

4 8 Histogram Kurtosis Mean Informal Sector 0.69 

8 8 Histogram Kurtosis Mean Informal Sector 0.69 

4 8 Histogram Variance Mean Informal Sector 0.69 

8 8 Histogram Variance Mean Informal Sector 0.68 

4 16 Histogram Variance Mean Women Not Educated 0.68 

4 16 Histogram Kurtosis Mean No Liquid Waste Collection 0.68 

4 16 Histogram Skew Mean Non-separate Cooking Space 0.68 

8 16 Histogram Kurtosis Mean No Liquid Waste Collection 0.68 

8 16 Histogram Variance Mean Women Not Educated 0.68 

8 16 Histogram Skew Mean Non-separate Cooking Space 0.68 

4 16 Histogram Skew Mean Informal Sector 0.68 

4 32 Histogram Skew Mean No Liquid Waste Collection 0.68 

8 16 Histogram Variance Mean Not Single Family 0.68 

8 32 Histogram Skew Mean No Liquid Waste Collection 0.68 

4 16 Histogram Variance Mean Not Single Family 0.68 

8 16 Histogram Skew Mean Informal Sector 0.68 

8 8 Histogram Variance Mean Not Single Family 0.67 

4 8 Histogram Variance Mean Unimproved Sanitation 0.67 

4 8 Histogram Variance Mean Not Single Family 0.67 

4 16 Histogram Skew Mean Biofuel 0.67 

8 8 Histogram Variance Mean Unimproved Sanitation 0.67 

4 16 Histogram Kurtosis Mean Non-separate Cooking Space 0.67 

8 16 Histogram Skew Mean Biofuel 0.67 

8 16 Histogram Kurtosis Mean Non-separate Cooking Space 0.67 

4 32 Histogram Variance Mean Slum Index 0.67 

4 32 Histogram Skew Mean Informal Sector 0.67 

8 32 Histogram Variance Mean Slum Index 0.67 

4 32 Histogram Kurtosis Mean No Liquid Waste Collection 0.67 

8 32 Histogram Kurtosis Mean No Liquid Waste Collection 0.66 

8 32 Histogram Skew Mean Informal Sector 0.66 

4 32 Histogram Variance Mean Not Single Family 0.66 

8 32 Histogram Variance Mean Not Single Family 0.66 

4 16 Histogram Kurtosis Mean Informal Sector 0.66 

4 32 Histogram Variance Mean Women Not Educated 0.66 

4 8 Histogram Skew Mean Not Single Family 0.66 

8 16 Histogram Kurtosis Mean Informal Sector 0.66 

4 32 Histogram Skew Mean Non-separate Cooking Space 0.66 

8 32 Histogram Variance Mean Women Not Educated 0.66 

4 16 Histogram Kurtosis Mean Biofuel 0.66 

8 32 Histogram Skew Mean Non-separate Cooking Space 0.66 

8 8 Histogram Skew Mean Not Single Family 0.66 

8 16 Histogram Kurtosis Mean Biofuel 0.65 

4 32 Histogram Kurtosis Mean Informal Sector 0.65 

8 32 Histogram Kurtosis Mean Informal Sector 0.65 

4 8 Histogram Kurtosis Mean Not Single Family 0.65 

4 32 Histogram Kurtosis Mean Non-separate Cooking Space 0.65 

4 32 Histogram Skew Mean Biofuel 0.65 

8 8 Histogram Kurtosis Mean Not Single Family 0.65 

8 32 Histogram Kurtosis Mean Non-separate Cooking Space 0.65 

8 32 Histogram Skew Mean Biofuel 0.64 

4 16 Histogram Variance Mean Unimproved Sanitation 0.64 

8 16 Histogram Variance Mean Unimproved Sanitation 0.64 

4 32 Histogram Kurtosis Mean Biofuel 0.63 

4 16 Histogram Skew Mean Not Single Family 0.63 

8 32 Histogram Kurtosis Mean Biofuel 0.63 

8 16 Histogram Skew Mean Not Single Family 0.63 

4 16 Histogram Kurtosis Mean Not Single Family 0.62 

8 16 Histogram Kurtosis Mean Not Single Family 0.62 
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4 32 Histogram Skew Mean Not Single Family 0.62 

8 32 Histogram Skew Mean Not Single Family 0.61 

8 32 Histogram Variance Mean Unimproved Sanitation 0.61 

4 32 Histogram Kurtosis Mean Not Single Family 0.61 

8 8 Histogram Variance Mean No Solid Waste Collection 0.60 

4 32 Histogram Variance Mean Unimproved Sanitation 0.60 

8 32 Histogram Kurtosis Mean Not Single Family 0.60 

8 16 Histogram Variance Mean No Solid Waste Collection 0.60 

4 8 Histogram Variance Mean No Solid Waste Collection 0.60 

4 16 Histogram Variance Mean No Solid Waste Collection 0.60 

4 8 Histogram Skew Mean Women Not Educated 0.59 

8 8 Histogram Skew Mean Women Not Educated 0.59 

4 8 Histogram Skew Mean Slum Index 0.59 

8 32 Histogram Variance Mean No Solid Waste Collection 0.59 

4 32 Histogram Variance Mean No Solid Waste Collection 0.58 

8 8 Histogram Skew Mean Slum Index 0.58 

4 8 Histogram Kurtosis Mean Women Not Educated 0.58 

8 8 Histogram Kurtosis Mean Women Not Educated 0.58 

4 8 Histogram Kurtosis Mean Slum Index 0.57 

4 8 Histogram Skew Mean No Solid Waste Collection 0.57 

8 8 Histogram Kurtosis Mean Slum Index 0.57 

8 8 Histogram Skew Mean No Solid Waste Collection 0.57 

4 32 Histogram Variance Mean Households 0.56 

8 32 Histogram Variance Mean Households 0.56 

4 8 Histogram Kurtosis Mean No Solid Waste Collection 0.56 

4 32 Histogram Skew Standard Deviation Not Literate 0.56 

4 16 Histogram Variance Mean Households 0.55 

8 8 Histogram Kurtosis Mean No Solid Waste Collection 0.55 

8 16 Histogram Variance Mean Households 0.55 

8 32 Histogram Skew Standard Deviation Not Literate 0.55 

4 32 Histogram Variance Mean Population 0.55 

8 32 Histogram Variance Mean Population 0.55 

4 32 Histogram Kurtosis Standard Deviation Not Literate 0.55 

4 8 Histogram Skew Mean Households 0.54 

4 16 Histogram Variance Mean Population 0.54 

8 16 Histogram Variance Mean Population 0.54 

4 16 Histogram Skew Mean No Solid Waste Collection 0.54 

4 8 Histogram Kurtosis Mean Households 0.54 

8 32 Histogram Kurtosis Standard Deviation Not Literate 0.54 

8 16 Histogram Skew Mean No Solid Waste Collection 0.54 

8 8 Histogram Skew Mean Households 0.54 

8 8 Histogram Kurtosis Mean Households 0.54 

4 8 Histogram Skew Mean Population 0.54 

4 8 Histogram Kurtosis Mean Population 0.54 

4 16 Histogram Skew Mean Women Not Educated 0.53 

4 8 Histogram Variance Mean Households 0.53 

8 8 Histogram Skew Mean Population 0.53 

8 8 Histogram Kurtosis Mean Population 0.53 

8 16 Histogram Skew Mean Women Not Educated 0.53 

8 8 Histogram Variance Mean Households 0.53 

4 16 Histogram Skew Mean Households 0.53 

4 16 Histogram Skew Mean Slum Index 0.53 

4 16 Histogram Kurtosis Mean No Solid Waste Collection 0.53 

8 16 Histogram Skew Mean Slum Index 0.53 

4 16 Histogram Kurtosis Mean Households 0.53 

8 16 Histogram Kurtosis Mean No Solid Waste Collection 0.52 

4 8 Histogram Kurtosis Mean Children 0.52 

8 16 Histogram Skew Mean Households 0.52 

4 16 Histogram Kurtosis Mean Women Not Educated 0.52 
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4 32 Histogram Skew Mean No Solid Waste Collection 0.52 

8 8 Histogram Skew Mean Children 0.52 

4 16 Histogram Skew Mean Population 0.52 

4 8 Histogram Skew Mean Children 0.52 

8 32 Histogram Skew Mean No Solid Waste Collection 0.52 

8 8 Histogram Kurtosis Mean Children 0.52 

4 16 Histogram Kurtosis Mean Population 0.52 

8 16 Histogram Kurtosis Mean Households 0.52 

8 16 Histogram Kurtosis Mean Women Not Educated 0.52 

8 16 Histogram Skew Mean Population 0.52 

4 32 Histogram Skew Mean Households 0.52 

4 8 Histogram Variance Mean Population 0.52 

8 16 Histogram Kurtosis Mean Population 0.52 

4 16 Histogram Kurtosis Mean Children 0.52 

4 16 Histogram Skew Mean Children 0.52 

4 32 Histogram Kurtosis Mean Households 0.52 

8 32 Histogram Skew Mean Households 0.52 

8 16 Histogram Skew Mean Children 0.52 

8 16 Histogram Kurtosis Mean Children 0.52 

8 8 Histogram Variance Mean Population 0.52 

4 32 Histogram Skew Mean Population 0.52 

8 32 Histogram Kurtosis Mean Households 0.51 

4 16 Histogram Kurtosis Mean Slum Index 0.51 

4 32 Histogram Kurtosis Mean Population 0.51 

8 32 Histogram Skew Mean Population 0.51 

8 16 Histogram Kurtosis Mean Slum Index 0.51 

4 32 Histogram Kurtosis Mean No Solid Waste Collection 0.51 

4 32 Histogram Kurtosis Mean Children 0.51 

8 8 Histogram Skew Standard Deviation Not in Accra 5 Years Ago 0.51 

8 32 Histogram Kurtosis Mean Population 0.51 

8 32 Histogram Kurtosis Mean No Solid Waste Collection 0.51 

4 32 Histogram Skew Mean Children 0.51 

4 32 Histogram Skew Mean Women Not Educated 0.51 

8 16 Histogram Variance Mean Worst Wall 0.51 

8 32 Histogram Skew Mean Women Not Educated 0.51 

8 32 Histogram Kurtosis Mean Children 0.51 

4 16 Histogram Variance Mean Worst Wall 0.51 

4 8 Histogram Skew Mean Unimproved Sanitation 0.51 

4 32 Histogram Variance Mean Worst Wall 0.51 

8 32 Histogram Skew Mean Children 0.51 

8 32 Histogram Variance Mean Worst Wall 0.51 

4 32 Histogram Variance Mean Children 0.51 

8 32 Histogram Skew Mean Slum Index 0.51 

4 32 Histogram Skew Mean Slum Index 0.50 

4 32 Histogram Kurtosis Mean Women Not Educated 0.50 

8 8 Histogram Skew Mean Unimproved Sanitation 0.50 

8 32 Histogram Kurtosis Mean Women Not Educated 0.50 

8 32 Histogram Variance Mean Children 0.50 

4 8 Histogram Skew Mean Rent-free -0.50 

8 32 Histogram Variance Mean Not in Accra 5 Years Ago -0.51 

4 32 Histogram Variance Mean Not in Accra 5 Years Ago -0.51 

4 32 Histogram Skew Mean Rent-free -0.51 

8 32 Histogram Skew Mean Rent-free -0.51 

8 8 Histogram Skew Mean Rent-free -0.51 

4 16 Histogram Skew Mean Rent-free -0.52 

4 8 Histogram Kurtosis Mean Rent-free -0.52 

8 16 Histogram Skew Mean Rent-free -0.52 

8 8 Histogram Kurtosis Mean Rent-free -0.52 

8 32 Histogram Kurtosis Mean Not in Accra 5 Years Ago -0.52 
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8 32 Histogram Skew Mean Not in Accra 5 Years Ago -0.53 

8 16 Histogram Kurtosis Mean Not in Accra 5 Years Ago -0.53 

4 32 Histogram Kurtosis Mean Rent-free -0.53 

8 8 Histogram Kurtosis Mean Not in Accra 5 Years Ago -0.53 

8 32 Histogram Kurtosis Mean Rent-free -0.53 

4 8 Histogram Kurtosis Mean Not in Accra 5 Years Ago -0.53 

4 8 Histogram Skew Mean Not in Accra 5 Years Ago -0.53 

8 8 Histogram Skew Mean Not in Accra 5 Years Ago -0.53 

8 16 Histogram Skew Mean Not in Accra 5 Years Ago -0.53 

4 16 Histogram Kurtosis Mean Rent-free -0.53 

4 32 Histogram Kurtosis Mean Not in Accra 5 Years Ago -0.53 

4 16 Histogram Kurtosis Mean Not in Accra 5 Years Ago -0.53 

4 32 Histogram Skew Mean Not in Accra 5 Years Ago -0.53 

8 16 Histogram Kurtosis Mean Rent-free -0.53 

4 16 Histogram Skew Mean Not in Accra 5 Years Ago -0.54 

8 8 Histogram Kurtosis Standard Deviation Population Density -0.61 

8 8 Histogram Kurtosis Standard Deviation Housing Density -0.62 

4 8 Histogram Kurtosis Standard Deviation Population Density -0.62 

4 8 Histogram Kurtosis Standard Deviation Housing Density -0.63 

8 8 Histogram Skew Standard Deviation Population Density -0.69 

8 8 Histogram Skew Standard Deviation Housing Density -0.69 

4 8 Histogram Skew Standard Deviation Population Density -0.70 

4 8 Histogram Skew Standard Deviation Housing Density -0.71 

 

Fourier Transform (FT) 

Block Scale Output Zonal Statistic Census-Derived Indicator 
Correlation 

Coefficient 

4 32 Radial Profile Mean Mean Informal Sector 0.54 

8 32 Radial Profile Mean Mean Informal Sector 0.53 

4 16 Radial Profile Mean Mean Informal Sector 0.53 

8 16 Radial Profile Mean Mean Informal Sector 0.52 

8 16 Radial Profile Variance Mean Unimproved Sanitation -0.52 

8 8 Radial Profile Variance Mean Not Literate -0.53 

8 32 Radial Profile Variance Mean Women Not Educated -0.53 

8 32 Radial Profile Variance Mean Biofuel -0.54 

4 16 Radial Profile Variance Mean Slum Index -0.54 

4 32 Radial Profile Variance Mean Women Not Educated -0.54 

4 16 Radial Profile Variance Mean Unimproved Sanitation -0.55 

4 32 Radial Profile Variance Mean Biofuel -0.55 

4 8 Radial Profile Variance Mean Not Literate -0.55 

8 32 Radial Profile Variance Mean Unimproved Sanitation -0.56 

8 32 Radial Profile Variance Mean Not Literate -0.57 

4 32 Radial Profile Variance Mean Not Literate -0.57 

8 32 Radial Profile Variance Mean Slum Index -0.58 

8 16 Radial Profile Variance Mean Not Literate -0.58 

4 32 Radial Profile Variance Mean Unimproved Sanitation -0.58 

4 32 Radial Profile Variance Mean Slum Index -0.60 

4 16 Radial Profile Variance Mean Not Literate -0.61 

 

NDVI 

Block Scale Zonal Statistic Census-Derived Indicator 
Correlation 

Coefficient 

4 32 Sum Non-separate Cooking Space -0.52 

8 32 Sum Non-separate Cooking Space -0.52 

4 16 Sum Non-separate Cooking Space -0.52 

8 8 Standard Deviation Informal Sector -0.52 

8 16 Sum Non-separate Cooking Space -0.52 

4 8 Sum Non-separate Cooking Space -0.52 

8 8 Sum Non-separate Cooking Space -0.52 
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4 8 Standard Deviation Not Single Family -0.52 

4 8 Standard Deviation Informal Sector -0.53 

8 8 Standard Deviation Not Single Family -0.53 

4 32 Standard Deviation Housing Density -0.54 

8 32 Standard Deviation Housing Density -0.54 

8 8 Standard Deviation No Liquid Waste Collection -0.54 

4 8 Standard Deviation No Liquid Waste Collection -0.55 

4 32 Standard Deviation Population Density -0.56 

8 32 Standard Deviation Population Density -0.56 

8 8 Standard Deviation Biofuel -0.58 

4 8 Standard Deviation Biofuel -0.58 

8 8 Standard Deviation Non-separate Cooking Space -0.59 

4 8 Standard Deviation Non-separate Cooking Space -0.60 

4 16 Standard Deviation Housing Density -0.63 

8 16 Standard Deviation Housing Density -0.63 

4 32 Mean No Solid Waste Collection -0.65 

4 16 Mean No Solid Waste Collection -0.65 

4 8 Mean No Solid Waste Collection -0.65 

4 16 Standard Deviation Population Density -0.65 

8 16 Standard Deviation Population Density -0.65 

8 32 Mean No Solid Waste Collection -0.65 

8 16 Mean No Solid Waste Collection -0.65 

8 8 Mean No Solid Waste Collection -0.65 

4 8 Standard Deviation Housing Density -0.70 

8 8 Standard Deviation Housing Density -0.70 

8 16 Mean Women Not Educated -0.70 

8 8 Mean Women Not Educated -0.71 

4 16 Mean Women Not Educated -0.71 

4 8 Mean Women Not Educated -0.71 

8 32 Mean Women Not Educated -0.71 

4 8 Mean Informal Sector -0.71 

4 16 Mean Informal Sector -0.71 

4 32 Mean Women Not Educated -0.71 

8 8 Mean Informal Sector -0.71 

8 16 Mean Informal Sector -0.71 

4 32 Mean Informal Sector -0.71 

8 32 Mean Informal Sector -0.71 

4 8 Standard Deviation Population Density -0.72 

8 8 Standard Deviation Population Density -0.72 

8 16 Mean Housing Density -0.74 

8 32 Mean Housing Density -0.74 

8 8 Mean Housing Density -0.74 

4 16 Mean Housing Density -0.74 

4 8 Mean Housing Density -0.74 

4 32 Mean Housing Density -0.74 

8 16 Mean Population Density -0.75 

8 32 Mean Population Density -0.75 

8 8 Mean Population Density -0.75 

4 16 Mean Population Density -0.75 

4 32 Mean Population Density -0.75 

4 8 Mean Population Density -0.75 

4 32 Mean Unimproved Sanitation -0.75 

4 16 Mean Unimproved Sanitation -0.75 

4 8 Mean Unimproved Sanitation -0.75 

8 32 Mean Unimproved Sanitation -0.75 

8 32 Mean Slum Index -0.75 

4 32 Mean Slum Index -0.75 

8 16 Mean Unimproved Sanitation -0.75 

8 16 Mean Slum Index -0.75 
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8 8 Mean Unimproved Sanitation -0.75 

4 16 Mean Slum Index -0.75 

8 8 Mean Slum Index -0.75 

4 8 Mean Slum Index -0.75 

4 32 Mean Not Single Family -0.78 

8 32 Mean Not Single Family -0.78 

4 16 Mean Not Single Family -0.78 

4 8 Mean Not Single Family -0.78 

8 16 Mean Not Single Family -0.78 

8 8 Mean Not Single Family -0.78 

4 32 Mean No Liquid Waste Collection -0.81 

4 16 Mean No Liquid Waste Collection -0.81 

4 8 Mean No Liquid Waste Collection -0.81 

8 16 Mean No Liquid Waste Collection -0.81 

8 32 Mean No Liquid Waste Collection -0.81 

8 8 Mean No Liquid Waste Collection -0.81 

4 32 Mean Non-separate Cooking Space -0.85 

4 16 Mean Non-separate Cooking Space -0.85 

8 32 Mean Non-separate Cooking Space -0.85 

8 16 Mean Non-separate Cooking Space -0.85 

4 8 Mean Non-separate Cooking Space -0.85 

8 8 Mean Non-separate Cooking Space -0.85 

8 16 Mean Biofuel -0.86 

4 32 Mean Biofuel -0.86 

8 32 Mean Biofuel -0.86 

4 16 Mean Biofuel -0.86 

8 8 Mean Biofuel -0.86 

4 8 Mean Biofuel -0.86 

 

Mean (BGR) 

Block Scale Zonal Statistic Census-Derived Indicator 
Correlation 

Coefficient 

4 32 Mean Informal Sector 0.68 

4 8 Mean Informal Sector 0.68 

4 16 Mean Informal Sector 0.68 

8 32 Mean Informal Sector 0.68 

8 16 Mean Informal Sector 0.67 

8 8 Mean Informal Sector 0.67 

8 8 Mean No Solid Waste Collection 0.67 

4 8 Mean No Solid Waste Collection 0.67 

8 16 Mean No Solid Waste Collection 0.67 

4 16 Mean No Solid Waste Collection 0.67 

8 32 Mean No Solid Waste Collection 0.67 

4 32 Mean No Solid Waste Collection 0.66 

8 8 Mean No Liquid Waste Collection 0.66 

4 8 Mean No Liquid Waste Collection 0.66 

4 16 Mean No Liquid Waste Collection 0.66 

8 16 Mean No Liquid Waste Collection 0.66 

4 32 Mean No Liquid Waste Collection 0.66 

8 32 Mean No Liquid Waste Collection 0.66 

8 8 Mean Biofuel 0.62 

8 32 Mean Biofuel 0.62 

8 16 Mean Biofuel 0.62 

4 8 Mean Biofuel 0.61 

4 16 Mean Biofuel 0.61 

4 32 Mean Biofuel 0.61 

8 8 Mean Non-separate Cooking Space 0.61 

8 16 Mean Non-separate Cooking Space 0.61 

8 32 Mean Non-separate Cooking Space 0.61 
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4 8 Mean Non-separate Cooking Space 0.61 

4 16 Mean Non-separate Cooking Space 0.61 

4 32 Mean Non-separate Cooking Space 0.61 

4 16 Standard Deviation No Electricity 0.55 

8 16 Standard Deviation No Electricity 0.55 

8 8 Standard Deviation No Electricity 0.55 

4 8 Standard Deviation No Electricity 0.54 

8 16 Standard Deviation Rent-free 0.53 

4 16 Standard Deviation Rent-free 0.53 

4 32 Standard Deviation No Electricity 0.52 

8 32 Standard Deviation No Electricity 0.52 

8 8 Standard Deviation Rent-free 0.52 

4 8 Standard Deviation Rent-free 0.52 

8 32 Mean Women Not Educated 0.51 

8 8 Mean Women Not Educated 0.51 

4 32 Mean Women Not Educated 0.51 

8 16 Mean Women Not Educated 0.51 

4 8 Mean Women Not Educated 0.51 

4 16 Mean Women Not Educated 0.51 

 

Mean (Band 1) 

Block Scale Zonal Statistic Census-Derived Indicator 
Correlation 

Coefficient 

4 32 Mean Informal Sector 0.63 

4 8 Mean Informal Sector 0.62 

4 8 Mean No Liquid Waste Collection 0.62 

4 16 Mean Informal Sector 0.62 

4 16 Mean No Liquid Waste Collection 0.62 

8 8 Mean No Liquid Waste Collection 0.62 

4 32 Mean No Liquid Waste Collection 0.62 

4 8 Mean No Solid Waste Collection 0.62 

8 32 Mean Informal Sector 0.62 

8 16 Mean No Liquid Waste Collection 0.62 

4 16 Mean No Solid Waste Collection 0.62 

8 16 Mean Informal Sector 0.62 

8 8 Mean No Solid Waste Collection 0.62 

8 8 Mean Informal Sector 0.62 

8 32 Mean No Liquid Waste Collection 0.62 

8 16 Mean No Solid Waste Collection 0.62 

4 32 Mean No Solid Waste Collection 0.62 

8 32 Mean No Solid Waste Collection 0.62 

4 8 Mean Biofuel 0.60 

4 16 Mean Biofuel 0.60 

4 32 Mean Biofuel 0.60 

8 8 Mean Biofuel 0.60 

8 16 Mean Biofuel 0.60 

8 32 Mean Biofuel 0.60 

4 16 Standard Deviation No Electricity 0.60 

8 8 Standard Deviation No Electricity 0.60 

8 8 Mean Non-separate Cooking Space 0.59 

4 8 Mean Non-separate Cooking Space 0.59 

4 16 Mean Non-separate Cooking Space 0.59 

8 16 Mean Non-separate Cooking Space 0.59 

8 16 Standard Deviation No Electricity 0.59 

4 32 Mean Non-separate Cooking Space 0.59 

8 32 Mean Non-separate Cooking Space 0.59 

4 8 Standard Deviation No Electricity 0.59 

4 32 Standard Deviation No Electricity 0.56 

8 32 Standard Deviation No Electricity 0.56 
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Mean (Band 2) 

Block Scale Zonal Statistic Census-Derived Indicator 
Correlation 

Coefficient 

4 32 Mean Informal Sector 0.65 

4 8 Mean Informal Sector 0.65 

4 16 Mean Informal Sector 0.65 

8 32 Mean Informal Sector 0.65 

8 16 Mean Informal Sector 0.65 

8 8 Mean Informal Sector 0.65 

4 8 Mean No Solid Waste Collection 0.65 

8 8 Mean No Solid Waste Collection 0.65 

4 16 Mean No Solid Waste Collection 0.65 

8 16 Mean No Solid Waste Collection 0.64 

8 32 Mean No Solid Waste Collection 0.64 

4 32 Mean No Solid Waste Collection 0.64 

8 8 Mean No Liquid Waste Collection 0.64 

4 8 Mean No Liquid Waste Collection 0.63 

4 16 Mean No Liquid Waste Collection 0.63 

8 16 Mean No Liquid Waste Collection 0.63 

4 32 Mean No Liquid Waste Collection 0.63 

8 32 Mean No Liquid Waste Collection 0.63 

8 8 Mean Biofuel 0.59 

8 32 Mean Biofuel 0.59 

8 16 Mean Biofuel 0.59 

4 8 Mean Biofuel 0.59 

4 32 Mean Biofuel 0.58 

4 16 Mean Biofuel 0.58 

8 8 Mean Non-separate Cooking Space 0.58 

8 16 Mean Non-separate Cooking Space 0.58 

8 32 Mean Non-separate Cooking Space 0.58 

4 8 Mean Non-separate Cooking Space 0.58 

4 16 Mean Non-separate Cooking Space 0.58 

4 32 Mean Non-separate Cooking Space 0.58 

4 16 Standard Deviation No Electricity 0.57 

8 16 Standard Deviation No Electricity 0.57 

8 8 Standard Deviation No Electricity 0.56 

4 8 Standard Deviation No Electricity 0.56 

4 32 Standard Deviation No Electricity 0.54 

8 32 Standard Deviation No Electricity 0.54 

4 16 Standard Deviation Rent-free 0.52 

8 16 Standard Deviation Rent-free 0.52 

8 8 Standard Deviation Rent-free 0.51 

4 8 Standard Deviation Rent-free 0.51 

 

Mean (Band 3) 

Block Scale Zonal Statistic Census-Derived Indicator 
Correlation 

Coefficient 

8 32 Mean Informal Sector 0.73 

4 32 Mean Informal Sector 0.73 

8 8 Mean No Liquid Waste Collection 0.73 

4 8 Mean Informal Sector 0.73 

4 16 Mean Informal Sector 0.73 

8 16 Mean Informal Sector 0.73 

8 16 Mean No Liquid Waste Collection 0.73 

8 32 Mean No Liquid Waste Collection 0.73 

8 8 Mean Informal Sector 0.73 

4 16 Mean No Liquid Waste Collection 0.73 

4 8 Mean No Liquid Waste Collection 0.73 
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4 32 Mean No Liquid Waste Collection 0.72 

8 8 Mean No Solid Waste Collection 0.70 

8 16 Mean No Solid Waste Collection 0.70 

8 32 Mean No Solid Waste Collection 0.70 

4 8 Mean No Solid Waste Collection 0.70 

4 16 Mean No Solid Waste Collection 0.70 

4 32 Mean No Solid Waste Collection 0.70 

8 8 Mean Biofuel 0.68 

8 32 Mean Biofuel 0.68 

8 16 Mean Biofuel 0.68 

4 8 Mean Biofuel 0.68 

4 16 Mean Biofuel 0.68 

4 32 Mean Biofuel 0.67 

8 8 Mean Non-separate Cooking Space 0.67 

8 16 Mean Non-separate Cooking Space 0.67 

8 32 Mean Non-separate Cooking Space 0.67 

4 8 Mean Non-separate Cooking Space 0.67 

4 16 Mean Non-separate Cooking Space 0.67 

4 32 Mean Non-separate Cooking Space 0.67 

8 32 Mean Children 0.58 

4 32 Mean Children 0.58 

8 8 Mean Children 0.58 

8 16 Mean Children 0.58 

4 8 Mean Children 0.58 

4 16 Mean Children 0.58 

8 32 Mean Women Not Educated 0.56 

8 8 Mean Women Not Educated 0.56 

8 16 Mean Women Not Educated 0.55 

4 8 Mean Women Not Educated 0.55 

4 32 Mean Women Not Educated 0.55 

4 16 Mean Women Not Educated 0.55 

8 8 Mean Not Single Family 0.55 

8 16 Mean Not Single Family 0.55 

4 8 Mean Not Single Family 0.55 

4 16 Mean Not Single Family 0.55 

8 32 Mean Not Single Family 0.55 

4 32 Mean Not Single Family 0.55 

8 16 Standard Deviation Rent-free 0.51 

4 16 Standard Deviation Rent-free 0.50 

4 16 Standard Deviation Housing Density -0.50 

8 16 Standard Deviation Population Density -0.52 

4 16 Standard Deviation Population Density -0.53 

8 8 Standard Deviation Housing Density -0.55 

4 8 Standard Deviation Housing Density -0.57 

8 8 Standard Deviation Population Density -0.58 

4 8 Standard Deviation Population Density -0.60 

 

Mean (Band 4) 

Block Scale Zonal Statistic Census-Derived Indicator 
Correlation 

Coefficient 

4 32 Mean Not Single Family -0.52 

4 8 Mean Not Single Family -0.52 

4 16 Mean Not Single Family -0.52 

8 32 Mean Not Single Family -0.52 

8 16 Mean Not Single Family -0.52 

8 8 Mean Not Single Family -0.52 

8 16 Mean Not Literate -0.53 

8 8 Mean Not Literate -0.53 

8 32 Mean Not Literate -0.53 



81 

 

4 16 Mean Not Literate -0.54 

4 8 Mean Not Literate -0.54 

4 32 Mean Not Literate -0.54 

4 8 Mean Slum Index -0.54 

4 16 Mean Slum Index -0.54 

4 32 Mean Slum Index -0.54 

8 16 Mean Slum Index -0.54 

8 8 Mean Slum Index -0.54 

8 32 Mean Slum Index -0.54 

8 8 Mean Housing Density -0.60 

4 8 Mean Housing Density -0.61 

8 16 Mean Housing Density -0.61 

4 16 Mean Housing Density -0.61 

8 32 Mean Housing Density -0.61 

4 32 Mean Housing Density -0.61 

8 8 Mean Population Density -0.61 

4 8 Mean Population Density -0.61 

8 16 Mean Population Density -0.61 

4 16 Mean Population Density -0.61 

8 32 Mean Population Density -0.61 

4 32 Mean Population Density -0.61 

4 8 Mean Unimproved Sanitation -0.73 

8 32 Mean Unimproved Sanitation -0.73 

4 16 Mean Unimproved Sanitation -0.73 

4 32 Mean Unimproved Sanitation -0.73 

8 16 Mean Unimproved Sanitation -0.73 

8 8 Mean Unimproved Sanitation -0.73 

 

 


