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Abstract 

This thesis research is focused on advancing image processing techniques and 

algorithms used for detecting skin melanoma. We have modified previous image 

processing approaches and developed computational algorithms for quantifying 

morphological features of a mole image. Applying the algorithms to 20 mole images 

downloaded from educational websites, we have identified three cut-off ratios to 

distinguish melanoma images from benign mole images. More specifically, the higher the 

boundary irregularity ratio, and/or the asymmetry ratio, and/or the color variation ratio, 

the high chance the mole is melanoma leading.  The irregularity ratio cutoff is identified 

as 1.96, suggesting 96% more circumference length than that of a circle with the same 

area. One finds that the cut-off ratio for assessing asymmetry of the mole image is 0.109, 

representing the degree of asymmetry as approximately 11% to place a mole image into 

the melanoma group.  Evaluation of the color variation of the moles leads to a cut-off 

ratio of the color variation as 0.334. Statistical analyses have been performed to 

determine the confidence of cut-off ratios, varying from 63% to 81%, for placing a mole 

image into its correct groups. The algorithms have also been implemented to assess 

“changes” of mole images over time observed by a dermatologist. Using a ±14% as the 

definition of changes, the algorithm identifies 9 of the 10 mole images as changed over 

time. Among the irregularity, asymmetry, color variation, and size ratios, 5 out of the 9 

moles have shown changes in one ratio, 2 out the 9 moles have experience changes in 

two ratios, 1 mole has shown changes in three ratios, and only 1 mole shows changes in 

all four ratios. The computational results are consistent with the general observations that



human eyes are sensitive to size changes and color variation changes, and may not be 

very good to distinguish changes in border irregularity and asymmetry. The developed 

algorithms can be helpful to assist a physician in evaluating subtle changes of mole 

images that may not be very sensitive to the eyes.  
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1 Chapter 1 

Literature Review and Specific Aims 

 

Current melanoma researches have been focused on understanding skin 

structure, locations and pathology of cells prone to producing tumors, and 

developments of diagnosis tools and treatment methods.  In this chapter, background 

information and literatures relevant to melanoma diagnoses and treatments are reviewed 

and discussed. The chapter concludes with a summary of all the sections discussed to 

illustrate limitations and motivations of this thesis research. 

 

1.1 Melanoma Basics 

The terms “melanoma” and “skin cancer” are often erroneously used 

interchangeably. There are three common skin cancers: basal cell carcinoma, squamous 

cell carcinoma, and melanoma. Basal and squamous cell carcinomas account for the 

majority of skin cancers diagnosed in the United States. Both cancer types respond well 

to treatment [1, 2]. Unfortunately, the third one, melanoma, is often lethal, contributing to 

more than 79% of all skin cancer fatalities. It is the 5th leading cause of cancer-related 

death in the United States. Treatment outcomes of melanoma are very poor, with a post-

metastasis survival rate of 15%, according to data provided by the American Cancer 

Society [3].  
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1.1.1 Definition and Formation of Melanoma 

The most dangerous type of skin cancer is melanoma. It mostly occurs in the skin; 

and less frequently in the eye, nose, mouth or genitals. The word “melanoma” consists of 

two Greek words: melas (meaning black) and oma (meaning tumor). Even though 

melanoma is the least common skin cancer and only accounts for 4% of the cases, it is 

responsible for 79% of all skin cancer deaths [4]. 

At early stages of melanoma, the cancerous cells start to develop rapidly and form 

tumors due to damaged DNA, possibly by ultraviolet radiation from the sun and tanning 

beds. The skin tumors mainly develop in “pigment-producing” melanocytes, which are 

located in the basal layer of the epidermis, as shown in Figure 1.1 [5, 6]. 

 

Figure  1-1 Melanocytes (pigment producing cells) in an epidermis layer [7]. 

 

Melanoma starts in “melanocytes”, cells producing melanin. Melanin is a brown-

black pigment that determines the color of the skin, eyes and hair in the humans, but its 
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main purpose is to protect nuclei of the skin cells against the UV radiation, shown in 

Figure 1-2 [8]. Melanin produced in melanocytes is carried in small packets called 

“melanosome” to keratinocyte where they are placed on top of the nuclei to block the UV 

rays. When being exposed to high UV radiations, the double bonds in the DNA of 

melanocytes may be separated. The separation of the bonds allows the nearby molecules 

to react. If two UV-modified thymine-base molecules are adjacent to each other on a 

single strand of DNA, they form a “thymine dimer” as a result of covalent bonding. 

Usually this initial bond causes the two nearby bases to form a bond making a four-

membered ring. If damage caused by UV radiation is not corrected by molecular 

repairing mechanisms, DNA replication and transcription are blocked and genetic 

information will be permanently mutated. The outcome varies in a range from a normal 

melanocyte to invasive metastatic melanoma that is not easily treated. Generally, 

melanomas that are diagnosed during the radial growth phase have shown excellent 

prognosis, but after the deep growth phase starts, the chance of finding a cure is close to 

zero. Even though melanoma cells may have various colors and sizes, they appear mostly 

black or brown [9-11]. 
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Figure  1-2 The melanin contained in melanomes moves to keratinocyte [12]. 

 

1.1.2 Types 

In general, there are three types of melanoma. Cutaneous melanoma is the most 

common type of melanoma and occurs on the skin. Mucosal melanoma is a rare type and 

occurs in the mucous membranes, such as nose, throat, vagina, anus, and mouth. Ocular 

melanoma is another rare form that only occurs in the eye. [13] 

Cutaneous melanoma is the main focus of this research. Most cutaneous 

melanomas begin only in the outer layer of the skin. It can be invasive from its initial 

formation to the inner skin layers. The deeper the invasive cells penetrate, the more lethal 

the disease becomes, since the tumor becomes more prone to spreading to the other parts 

of the body [13, 14] 

Figure 1-3 shows four different types of cutaneous melanoma. Superficial 

spreading melanomas (Figure 1-3a), which are found in more than 70 percent of the 
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cases, located in the top layer of the skin for a long time before starting to penetrate into 

deep layers. It appears as a patch with irregular borders and with an asymmetrical shape. 

The color inside the lesion varies between brown, black, red and white. Superficial 

spreading melanomas are seen mostly in the trunk area (men), in the legs (women), and 

the upper chest area (men and women) [15]. 

Lentigo maligna melanomas (Figure 1-3b) are similar to superficial melanomas. It 

remains close to the surface and appears mostly in darker colors. Lentigo maligna 

melanomas are mostly diagnosed in elderly and in parts of the skin that are damaged by 

sun exposure through time, and they are seen on the face, ears, arms, and upper torso [14, 

16]. 

Acral lentiginous melanomas (Figure 1-3c) have different properties compared to 

the other two types. It mostly appears under the nails with dark colors. This type is most 

common in African-Americans and Asians [14]. 

Nodular melanomas (Figure 1-3d) are the most dangerous and aggressive type of 

melanoma and they have become invasive when they are diagnosed. The most common 

color for this type is black but it may appear in other colors like blue, gray, brown, white 

or skin tone as well. The most probable locations of this type are on legs, arms, torsos, 

and scalps [14, 16]. 
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(a) (b)

(c) (d)
 

Figure  1-3 Four types of cutaneous melanoma: (a) Superficial Spreading Melanoma [15], (b) 
Lentigo Maligna [17], (c) Acral Lentiginous [18] and (d) Nodular Melanoma [19]. 

 

1.2 Statistics and Facts 

Based on the statistics collected in 2014, skin melanoma contributes to the 5th 

most common cancer cases in the United States [20]. According to Table 1-1, more than 

57% of the estimated melanoma cases in 2014 will be in men. Approximated 13% of the 

diagnosed melanoma cases will lead to death of the patients [21]. 
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Table  1-1 The most Common Cancer Cases (2014 Estimates) [22]. 

Most Common Types of Cancer Cases Men Women Total 
1. Prostate 233,000  - 233,000 
2. Breast  - 232,670 232,670 
3. Lung and Bronchus 116,000 108,210 224,210 
4. Colon and Rectum 71,830 65,000 136,830 
5. Melanoma 43,890 32,210 76,100 
6. Bladder 56,390 18,300 74,690 
7. Non Hodgkin Lymphoma 38,270 32,530 70,800 
8. Kidney and Renal Pelvis 39,140 24,780 63,920 
9. Endometrial  - 52,630 52,630 
10. Thyroid  - 47,790 47,790 

 

The most newly diagnosed cases of melanoma in 2013 were among patients of 

age from 55 to 64 (Figure 1-4). The median age at diagnosis was 61. The total number of 

diagnosed cases was 21.1 per 100,000 men and women in 2013. The fatality rates from 

melanoma were high in the middle-aged and elderly populations. More than 65% of the 

fatality cases were between 55 and 84 years old, shown in Figure 1-5. Melanoma is more 

common among individuals of fair complexion. According to the Surveillance, 

Epidemiology and End Results (SEER) Program of the National Cancer Institute, the 

diagnosed cases of melanoma have continuously increased in the past decades. It is 

possible that this is the consequence of the popularity of recreational tanning in the 1970s 

- 1990s affecting a generation of youth to intensive ultraviolet radiation. This may also be 

due to the continuous efforts from medical professionals for recommending routine or 

early screening for populations with high risks. On the plus side, the fatality rates have 

remained constant, setting an increasing trend of the survival rate [20, 23]. 

7 
 



 

Figure  1-4 Percentages of new melanoma cases in 2013 by age groups [20]. 

 

 

Figure  1-5 Percentages of deaths by melanoma in 2013 by age groups [20]. 
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1.3 Medical Features 

There are various risk factors for developing melanoma. One fact is that even 

though the level of risks is different for individuals, nobody is immune to it. Skin type 

and color, magnitude and duration of sun exposure, numbers of moles, and family history 

are the main factors that determine the risk of the disease [24].  

 

1.3.1 Causes 

People with lighter skin colors are more prone to melanoma and skin cancer in 

general. The number of people with pale skin who are diagnosed with melanoma is at 

least ten times higher than dark skinned patients. Moles do not generally increase the risk 

of melanoma; as a matter of fact, regular moles that are brown blemishes are safe for 

most people. Only atypical moles called “dysplastic nevi” are prone to becoming 

melanoma. UV rays can lead to development of melanoma. Blistering sunburns during 

childhood increase the risk. Cumulative exposure to low or moderate intensity of sunlight 

and UV rays is also a well-known cause of skin cancer. The popularity of recreational 

tanning in the 1970s-1990s exposed a generation of youth to intensive ultraviolet 

radiation, but sun exposure secondary to outdoor occupations has also contributed 

significantly to the development of skin cancer. In addition, a melanoma patient who is in 

remission is at a greatly increased risk of recurrence. Patients with a family history of 

melanoma are in great risks of invasive melanoma and need to see dermatologists more 

frequently than the general populations [25, 26]. 
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1.3.2 Prevention Methods 

The UV ray emitted from the sun is the main cause of skin cancer. It is possible to 

lower the absorbed UV by staying indoors on sunny days. Wearing sunglasses is effective 

too since they cover and protect eyes and the sensitive facial skin. Another simple yet 

effective means of protecting the skin is covering the body with clothing and a hat. 

Although it feels uncomfortable, it is crucial to wear long sleeve clothes on sunny days to 

cover as much skin as possible. There are different manufacturers that make UV 

protective clothes, which are stated effective in lowering the absorbed UV by the skin 

[27, 28]. 

The tanning beds are falsely advertised as UV free products to increase their sales. 

The truth is that the devices produce both UVA and UVB rays, which are extremely 

harmful for the skin and can lead to skin cancer in the long term. Researches show a 

direct link between tanning beds and risks of melanoma, especially if they are used 

before age of 30. Certain types of moles cause increased risks leading to melanoma. The 

first sign of melanoma is a change in size, shape or color of an existing mole. It is 

recommended to have those moles examined by a dermatologist, especially the ones that 

are “changing” and look unusual. Removing all moles on the skin is usually not a viable 

option. 

There are tests available to detect the mutating genes that cause melanoma, 

although they are not perfectly accurate, and they are also costly. Sometimes these tests 

produce false positive diagnosis, and may complicate the process of diagnoses and 

treatments, as well as cause unnecessary panic. It is recommended to consult a genetic 
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counselor as well as having the moles checked by a dermatologist frequently, if the 

patients have a family history of melanoma [29]. 

 

1.3.3 Diagnosis 

The routine annual office visits to a physician or dermatologist is a cost-effective 

step to diagnose skin melanoma. During a physical exam, the shape, color, size, and 

texture of moles on the skin are analyzed. Lymph nodes that are small collections of 

immune cells under the skin are targeted locations for melanoma. Enlarged lymph nodes 

may suggest presence of melanoma [30]. 

If a part of the skin is suspicious for melanoma, a tissue sample is resected from 

the location and analyzed under the microscope. Depending on the size of the infected 

area, different methods of biopsy are used. If the risk of melanoma is very low, “shave 

(tangential) biopsy” is used, and the top layers of the skin containing the epidermis are 

shaved with a surgical blade and then tested for melanoma. In “punch biopsy”, a deeper 

sample of the skin is removed using a device that looks like a round cookie cutter. The 

device is rotated to cut a sample containing dermis, epidermis and upper parts of subcutis. 

This method is often used when the risk of melanoma is high. To examine a tumor that 

has grown into deeper layers of skin, incisional or excisional biopsy is used. After 

numbing the area, the full thickness of the skin is cut using a surgical knife and a wedge 

of the skin is removed. Incisional biopsy removes only a part of the tumor whereas 

excisional biopsy removes the entire tumor. Biopsy may leave a scar on the surgical site. 
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Various imaging techniques can be used to diagnose spreading malignant cells. 

While this approach is not used on patients with an early-stage melanoma, it is 

significantly less invasive than biopsies. Chest x-ray is used to determine whether a 

melanoma has spread to lungs. In order to produce detailed images, Computer 

Tomography (CT) scan is used to detect enlarged lymph nodes. A CT scanner takes many 

pictures as it rotates around a body and the results are combined to produce a detailed 

three-dimensional image. Like CT scan, Magnetic Resonance Imaging (MRI) may 

distinguish tumors from its surrounding healthy organs or structures using strong 

magnetic fields. For melanomas in later stages, Positron Emission Tomography (PET) 

scan is used via injecting a radioactive substance to the body. Since the cancer cells are 

growing faster, they absorb most of the radioactive substance. The PET scanner produces 

images based on the radioactive emissions from the targeted tumors [31]. None of the 

above imaging techniques are suitable for melanoma diagnosis when the cancer has not 

spread to other parts of the body [32-34]. 

 

1.4 Previous Studies in Imaging Processing 

An early and accurate diagnosis of melanoma has a great chance of successful 

treatment. Several studies have worked on developing an easy and widely accessible 

diagnosis method that can be used by non-professional individuals. Visual analysis of 

skin lesions has proven to be a promising initial step. 

In order to conduct a detailed visual analysis, five distinctive features are 

investigated in the past, i.e., the ABCDE (Asymmetry, Boundary, Color, Diameter, and 
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Evolving) system. Typically, detecting the boundary of a mole is the first step to extract 

the lesion from the background. Then, how asymmetric and irregular the lesion is can be 

evaluated. In some studies, the color variation in a mole can be assessed. The size of a 

mole can be measured with a reference ruler and evaluation of mole evolutions over time 

is possible if the mole is photographed repeatedly over time. 

For detecting of the border of a mole image, conventional edge detection methods 

like Sobel and Marr-Hildreth have been used. Sobel operator uses two 3x3 kernels to 

calculate the first and second derivatives along the horizontal and vertical directions of 

the mole (Figure 1-6). In the Marr-Hildreth approach, the image is convolved with the 

Laplacian operator of the Gaussian function to produce a fast approximation of the 

differentials. In principle, one way to find boundaries of objects is to detect 

discontinuities in pixel tonal values (f) at the edge of a region. The discontinuities can be 

mathematically quantified by the pixel tonal gradient: 
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where the partial derivatives in the expression represent the rates of the total value 

changes in the horizontal and vertical directions of the image. A threshold operation is 

then applied to the image to segment the boundary pixels. In addition, the approach also 

leads to the identification of the patched regions with multi-colors. However, this 

approach strongly relies on how sharp the mole changes its color from its background 

[35]. 
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Figure  1-6 A color image and the result of Sobel operator [36]. 

   

An alternative of this approach is illustrated in Figure 1-7. In order to enhance the 

edge detection results, Zhang et al. [37] used a radial search algorithm to extract the 

lesion from the background. In this method, several radial lines are drawn on the lesion 

and a radial search for boundary point using the Sobel operator is performed on each line. 

The points found on individual radial lines are connected using curve fitting algorithms. 

However, it is found that changing the number of specified lines may alter the final 

results drastically, adding uncertainty of the accuracy of this approach [38]. 

 

Figure  1-7 A radial search algorithm used for boundary detection [37]. 
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The selected threshold is another subjective factor introduced in those studies, and 

it may result in wrong border points or the border points cannot be connected to form a 

closed region [38, 39]. Some other studies also suggest smoothing the border of a mole. 

Again it is not clear whether those subjective manipulations in defining a mole boundary 

contribute to any misrepresentation of the actual shape and size of the mole. 

Once the border of a mole is determined, the border irregularity can be evaluated 

based on comparing the mole boundary to that of a regular circular shape. Earlier studies 

[38, 40] suggest the following expression for evaluating the irregularity index of a 2-D 

shape: 

    
A

PI
π4

2

=      (1.2) 

where P is the perimeter of the shape calculated as the number of pixels along the border 

of the shape, and A represents the area of the shape and can be calculated by the number 

of pixels within the shape and on the border of the shape. A simple mathematical 

calculation can found that the irregularity index is unity for a perfect circle. However, the 

accuracy of this expression depends on the resolution of the pixel size in the image. It is 

still needed to develop a method that may be independent of the grid resolutions. 

Asymmetry of a shape is typically assessed via comparing pixels on both sides of 

one of the two principal axes. The two principal axes are determined based on having a 

product of inertia being zero, and they are passing through the centroid of the shape. It is 

assumed that the axes are close approximations to the axis of symmetry of the shape. 

Asymmetry is evaluated via calculating the percentage of the number of pixels that 
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cannot find their symmetric counterpart pixels to the total number of pixels of that side of 

the shape. Color variations in a mole have been evaluated via automatic color 

segmentation based on color information. Other techniques have also been developed to 

quantify radiance, luminance, and brightness of a mole image. However, those quantities 

may vary significantly depending on the person who takes the image, and lighting and 

other adjustments in the environment when the photo is taken [35]. 

 

1.5 Other Non-Imaging Processing Products 

In November 2011, FDA approved a melanoma detection device developed by a 

company called MELA Science. The device, MelaFind, is a non-invasive tool that 

provides additional information for dermatologists during the examinations (Figure 1-8). 

It uses light from visible to near-infrared wavelengths to evaluate skin lesions [41]. It is 

stated that lights at various wavelengths may penetrate into different tissue depths; 

therefore, it allows dermatologists to view detailed 3D morphological features of the 

mole up to 2.5 mm in depth. Hidden cellular patterns in a melanoma leading lesion 

beneath the skin surface can be viewed and a 3D view is constructed to help 

dermatologists detect melanomas. 
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Figure  1-8 The MelaFind detector by MELA science [42]. 

 

Another device called Aura is marketed by Verisante Technology to allow rapid 

scanning of multiple skin lesions on high risk patients. As shown in Figure 1-9, Aura 

consists of two connecting parts: a handheld probe and a main receiver. The probe is 

pressed on the skin for a few seconds and the result is shown on the screen of the main 

unit. Aura utilizes principles of Raman spectroscopy, in which near-infrared laser light 

changes the vibrational state of the bonds within molecules. The change in vibrational 

state causes a shift in the light when it is scattered back to the sensor. The magnitude of 

the shift determines the type and concentration of the molecules in the sample [43]. 
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Figure  1-9 The Verisante Aura, co-invented by Dr. Harvey Lui [43]. 

 

The main disadvantages of MelaFind and Aura are their high costs and limited 

availability. Only professional dermatologists and clinics are able to afford these devices 

and they cannot be used by the general publics at home; therefore, the patients would still 

have to go to the doctor’s office. It is critical to note that these devices are only meant to 

help dermatologists analyze lesion structures and/or chemical components and the final 

diagnoses of melanoma would still need additional medical procedures in a clinical or 

hospital setting. 

 

1.6 Summary 

There are a few smartphone apps available that process images captured by 

smartphone camera and estimate the risk of melanoma. One app simply uploads images 
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taken and emails it to a dermatologist nearby for evaluation. Some other apps provide 

evaluations of the ABCDE system, however, its morphological assessment are labeled as 

patented technology that cannot be disclosed. Inputs from dermatologists on those 

software packages suggest low confidence on the accuracy of algorithms assessments. 

Although image processing is nothing new, based on the review, there is a need to further 

evaluate different approaches, and develop simple and fast processed algorithms. Since 

the smartphones are widely available in the market, it is important to develop image 

processing parameters that are independent of image resolution, lighting, and skills of the 

photographer. 

This thesis research is focused on advancing the image processing techniques and 

algorithms used for detecting skin melanoma based on photos taken from regular cameras 

and cellphones. The current methods are limited to basic functions and algorithms that 

may not provide an accurate assessment, and they are prone to produce false results in 

many cases. The final product of this research can be used as initial screening method for 

melanoma, if it is easily accessible to the public. Early stage melanomas are easily 

curable and they become more fatal as they advance.  There is a critical need for a simple 

and widely available method that prompts visiting dermatologists’ office, leading to a 

reliable diagnosis of melanoma during the early stages. 

The long term goal of this study is to develop a smartphone app, which would 

analyze a photo taken by a phone camera and estimate the probability of melanoma risks 

based on its morphological features. Since one of the key factors of diagnosing melanoma 

is tracking how the mole changes during a period of time, the app would compare the 

image of a particular mole with an older photo of the same mole, stored either on the 
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device or in the “cloud”. After the app produces initial reports, the images can be sent to 

several dermatologists nearby to get their feedbacks on the results as well. 

To achieve these goals, this thesis is mainly focused on two specific aims: 

Aim 1:  To develop computational image analyses algorithms to examine skin lesions in 

the following aspects: asymmetry of the lesion (A), border irregularity (B), color 

variation (C), diameter (D), and evolving (E), i.e., the ABCDE system. It is expected to 

extract ratios associated with the severity of the above morphological features of a skin 

lesion. 

Aim 2: To implement the developed MATLAB algorithms to images of benign moles 

and melanoma leading lesions downloaded from educational and medical websites, as 

well as provided by dermatologists. It is expected to identify initial cutoff measures 

associated with the mole asymmetry, border irregularity, and color variation in those 

images. Quantitative analyses of those images will be performed to evaluate the capacity 

of the ABCDE to identify ranges of imaging analysis parameters associated with benign 

moles and melanoma leading lesions, respectively. 

The thesis has four chapters. Chapter 1 provides a literature review, limitations of 

previous research, motivations of the study, and specific aims of the research. Chapter 2 

describes the development of the computation algorithms for detecting the mole 

boundaries, as well as introducing definitions of three ratios (boundary irregularity, 

asymmetry, and color variation). Implementing the algorithms to mole images 

downloaded from websites is reported in Chapter 3. We also test whether the algorithm is 

suitable for providing quantitative assessments to dermatologists on mole images that 
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have already been identified by dermatologists with visual morphological changes. The 

last chapter provides the summary of the research and its significance. That chapter 

concludes with future research directions that can be implemented to improve our 

understanding of designing better treatment protocols for early detection of melanoma-

leading skin lesions. 
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2 Chapter 2 

Methods and Model Development 

 

 This chapter describes the processes of developing normalized (dimensionless) 

ratios that can be used to assess the ABCDE system of a mole image. It emphasizes the 

differences between the current and previous approaches. The approaches are illustrated 

via examples of simplified mole images. It starts with segmentation of a mole image to 

separate it from its background. Based on the defined mole region with its boundary 

pixels, the boundary irregularity ratio is defined, followed by step by step derivations of 

the asymmetry ratio of the mole image, and the color variation ratio. 

 

2.1 Image Segmentation 

 Currently, cell phones can be easily used to take a picture and to save it as a file 

readable by the MATLAB® software. A digital photo processes color or grayscale 

information at all the pixels of the image. In principle, the color or grayscale intensity can 

be converted into gray scale numbers. In an 8-bit black and white image, 256 (28) 

different tones can be assigned to each pixel location. A color image is represented by 24 

bits, divided into three groups: 8 for red, 8 for green, and 8 for blue. Therefore, a color 

image may offer 16.7 million (224) pixel values. The MATLAB® software should be 

capable of converting a wide variety of imaging file formats (tiff, gif, jpeg, jif, jpx, fpx, 
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pcd, png, pdf, to name a few) into a matrix containing the pixel locations (coordinates) 

and tonal values. For example, an image of a chest x-ray may contain 494x600 pixel 

locations, uniformly distributed on the image, and the resulted matrix may have a 

function form as, I(m,n), where I is the tonal value, and m and n represent the pixel 

locations [44]. 

The first step for analyzing a mole image is separating the lesion from the 

background. There are various algorithms to detect the edge of the lesion in previous 

studies. The edge, which typically has the largest change in the intensity and color on the 

boundary the pixels, can be detected using the first derivative operator as discussed in 

section 1.4. The change in the tonal value can be assessed by comparing the difference in 

the successive tonal values along pixels in different directions. Mathematically they are 

expressed as: 

x
y)I(x,'
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Equation (2.1) and Equation (2.2) give the partial differentiations along the x and y 

directions, respectively. The calculated partial derivatives will be compared to a 

prescribed value to determine whether it belongs to the definition of a mole region. This 

method can detect sharp changes in the tonal values, however, may not be suitable for 

detecting continual or slow variations in the image [45]. 
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To address the limitation of the first derivative approach, previous studies have 

proposed to use the second derivative to detect slow changes in intensity, via a Laplace 

operator, 
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Its finite difference form applied to discrete pixels is given as, 
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when yx ∆=∆ , it can be further simplified as: 
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Therefore, the above equation will result in a new matrix representing the Laplace 

operator of the original tonal values. 

Figure 2-1 shows the field images of the Laplacian operation of an original tonal 

file of a mole image. As discussed before, the pixel locations on the boundary of the mole 

are supposed to have the largest jumps in the Laplacian operation of the tonal field, as 

they represent the edge of the “light” skin adjacent to the “dark” lesion. In order to pin 

point the boundary of the lesion, a “threshold” must be defined for the cut off. The pixel 

locations with a Laplacian operation value larger than the threshold will be counted as the 

“boundary pixels”. The field is then converted into a binary setting with the boundary 

pixel locations assigned as a value of 1 while the rest have a value of 0.  
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(a) (b) (c)

(d) (e) (f)  

Figure  2-1 Results of boundary detection using derivative method: (a) Original image of the 
lesion; (b) threshold = 5, (c) threshold =10, (d) threshold = 15, (e) threshold = 20 and (f) 
threshold = 25. 

 

We have selected a mole image with a very sharp contrast from its background, as 

shown in Figure 2-1a, Figures 2-1b-f give the generated binary image of the Laplacian 

field of the tonal values using different values for the threshold. It is disappointing to see 

that none of the selected thresholds produce a clear delineation of the original mole 

border. 

We have tested the third approach, via delineating the mole border through 

selection of a cutoff gray scale number of the original tonal field I(m,n). The original 

color image is converted to a gray scale image with pixel values ranging between 0 and 

255. Then a threshold gray scale value is selected to divide the image into two regions: 

the mole region and the outside background. In Figure 2-2, different gray value cutoff 
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criteria are applied to the same mole image and the resulting mole edge is illustrated. 

Figure 2-2c represents the shape of the original mole image very well. Figures 2-2b, 2-2d, 

2-2e, and 2-2f exaggerate the irregularities on the top border of the mole, as shown by 

black circles on individual images. The original mole is erroneously represented in 

Figures 2-2g and 2-2h. Therefore, by selecting different cutoff criteria, one can identify 

several processed images with the original mole boundary well represented with high 

precision. This approach seems better than the tonal derivative methods, in terms of 

identifying a delineated mole boundary [44]. 

 

(a)

(e)

(d)(c)(b)

(h)(g)(f)  

Figure  2-2 Results of boundary detection using binary threshold: (a) the original image, (b) 
threshold=150, (c) threshold=130, (d) threshold= 110, (e) threshold=100, (f) threshold= 90, (g) 
threshold= 70, (h) threshold=50. 
 

Figure 2-2 clearly illustrates how subjective the definition of the boundary of an 

image is when a threshold is chosen. It is important to have an objective method to 

determine the threshold of the gray scale value to distinguish the mole region from its 
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background. The method used previously by researchers is based on the Otsu algorithm 

[46, 47]. This approach is an optimization method to identify a border separating two 

distinguishingly different clusters of pixels. The optimal threshold gray scale value leads 

to minimization of an objective function called “the within cluster variance”, σω
2, defined 

by the following equation,  

222
backgroundbackgroundmolemole WW σσσ ω

+=   (2.6) 

where σ 2

background and σ 2

mole  represent the background (skin) and the mole variances, 

respectively. W represents the percentage of the pixels occupied within each cluster to the 

entire image. Therefore, Equation (2.6) can be considered as a weighted average of the 

variances within an image containing a mole. The Otsu algorithm is demonstrated here 

using a simple 6x6 image shown in Figure 2-3, the same procedure can be applied to 

images of any size. 

 

Figure  2-3 A sample 6x6 image. 
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To simplify the calculations, the gray scale intensity range is downscaled from 0-

255 to 0-5; 0 being the darkest black and 5 being the white. Figure 2-4 shows the 

histogram of the sample image based on the assumption made for the gray scale range. 

 

Figure  2-4 Histogram for the sample image. 

 

Figure 2-4 shows that there are 8 pixels having a gray scale value of 0, 7 pixels 

having a gray scale value of 1, and 4 pixels having a gray scale value of 5 in the image. 

The following shows how the cluster variance σω
2 is determined if the threshold gray 

scale value is selected as 3. Any pixels with grayscale values equal to or larger than 3 are 

considered as in the mole region, while the rest are considered as the background region. 

The percentages of the two clusters can be calculated using the following equations: 
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The mean value of the gray scale number of each cluster is determined by 
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The variances in individual clusters are calculated similar to calculating a standard 

deviation and found to be 0.4637 and 0.5152 for the background and the mole, 

respectively. Therefore, the within cluster variance for a threshold equal to 3 is 

determined as:  

4677.05152.0%78.524637.0%22.422 =+= xxwσ    (2.9) 

After selecting any other gray scale value as the threshold, one can determine the within 

cluster variances, and results are shown in Figure 2-5. It is clearly shown that when the 

threshold is selected as 3, σw
2 is minimized. 

 

Figure  2-5 Within cluster variance value for different thresholds. 

 

We will apply the Otsu’s algorithm to any mole image. A mole image is again 

converted into a gray scale image with a gray scale value varying from 0 to 255. The 

threshold gray scale value is selected first as 0 to calculate σw
2. The procedures are 
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repeated 255 times for all the other thresholds. A MATLAB code is written to identify a 

threshold of the gray scale value leading to minimization of σw
2. Figure 2-6 gives the 

finalized boundary of the mole, when the threshold is determined as 96. It is shown that 

the identified border of the mole represent very well the shape of the original mole.  

(a) (b)  

Figure  2-6 Boundary detection results using the Otsu method: (a) the original image and (b) the 
detected boundary after minimization of the objective function. 

 

2.2 Boundary Irregularity Ratio 

After the boundary is identified and the lesion is extracted from the image, we 

develop an approach similar to that in Equation (1.1); however, we believe that our 

approach is less affected by the pixel resolution of the image.  Figure 2-7 illustrates how 

the approach works. Figures 2-7a and 2-7d give the original mole images, while Figures 

2-7b and 2-7e show the binary moles with their borders identified. The total number of 

the pixels within and on the border of the binary mole can be calculated as Nmole. Then a 

perfectly circular shape can be generated with exactly the same total number of pixels, as 
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shown in Figures 2-7c and 2-7e. In this study, we would compare the border of the mole 

to that of the circular shape having the same area. The following equation is used to 

calculate the boundary irregularity ratio, Rirregularity 

areasamethehavingcircleaofpixelsboundarytheofnumbertotalthe
moletheofpixelsboundarytheofnumbertotalthe

tyirregulari =R  (2.10) 

A ratio of unity suggests that the shape is perfectly round; however, a ratio larger than 

one implies that the mole is irregular. Since the calculations of the total number of the 

boundary pixels are from two images with the same pixel resolution, it is unlikely that the 

pixel resolution will have a significant effect on the calculation of the boundary 

irregularity ratio. 

(d)

(a) (b)

(e)

(c)

(f)  

Figure  2-7 The original photos of a regular mole and a melanoma leading lesion (a and d), the 
detected boundary and extracted lesion from the background (b and e), and the circles with the 
same area as the mole (c and f). 
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2.3 Asymmetry Ratio 

The general principle of determining the asymmetry of a mole is based on 

calculating the number of pixels on both sides of the mole not having their mirrored 

pixels on that other side. Again we would like to develop an objective approach to 

determine the asymmetry ratio without inducing any subjective interpretation on where 

the symmetric axis should be. A MATLAB code is written to automatically determine the 

best symmetric axis, to identify whether the mole image has more than one symmetric 

axis, and to calculate the asymmetry ratio of the image.  

 

Figure  2-8 A simplified mole image for illustrating the asymmetry ratio calculation. 

 

Figure 2-8 shows a simplified mole identified by the yellow color. The total 

number of the pixels inside the mole is 77. Assume that the initial orientation of the mole 

shown in Figure 2-8 as 0°. The symmetric axis (red line in Figure 2-8) is placed at the left 

edge of the mole region. Therefore, the total number of the pixels that do not have their 
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mirrored pixels on the other side is also 77. The asymmetry ratio Rasymmetry is defined as 

the ratio of the number of pixels that do not have their mirrored pixels to the total number 

of pixels inside the mole, 

mole  theinside pixels ofnumber  total
tscounterpar mirrored no having pixels ofnumber  total

asymmetry =R   (2.11) 

Therefore, Rasymmetry in Figure 2-8 is determined as 1 (=77/77). 

One can then move the axis line one pixel further to the right side and recalculate 

Rasymmetry. Figure 2-9 shows how the symmetric axis affects Rasymmetry, which decreases to 

75/77 or 67/77, when the symmetric axis is located one or two pixels from the left edge 

of the mole, respectively. When the symmetric axis is located six pixels from the left 

edge, Rasymmetry reaches its lowest value of 15/77. It then increases when the symmetric 

axis continues to move to the right. Therefore, for the orientation of 0°, Rasymmetry is 

determined as 0.195 (15/77). 
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75/77 67/77 51/77

31/77 19/77 15/77

27/77 45/77 59/77

69/77 75/77 77/77  

Figure  2-9 Demonstration of the basis of symmetry analysis algorithm 

  

The mole image is then rotated by 10°, and the MATLAB codes are re-run to 

determine the lowest Rasymmetry for the 10° orientation. The above procedures are repeated 

18 times to cover the rotation of the image from 0° to 170°. Figure 2-10 illustrates how 

the asymmetry ratio is calculated when the orientation is at 90° for the same mole shown 

in Figure 2-8 
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77/77 63/77

27/77 15/77

47/77 77/77  

Figure  2-10 Symmetry analysis algorithm on the 90° rotated image. 

 

The approaches are implemented to a mole image shown in Figure 2-11. Rasymmetry 

is calculated for all 18 orientations (0° to 170°, at an increment of 10°). The results are 

plotted in Figure 2-12. The maximal value of the Rasymmetry (0.47) is identified when the 

orientation is at 160°, followed closely by 0.46 at 70°. The lowest Rasymmetry occurs at 30° 

as 0.12, although Rasymmetry at 120° (0.14) is slightly large than that. 
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Figure  2-11 A sample lesion for symmetry analysis. 

 

 

Figure  2-12 Symmetry ratios for 10 degree interval rotations. 

 

Two axes are placed on the original mole image in Figure 2-13 to illustrate the 

symmetrical feature of the mole image when the axes are placed at 30° or 120°. For this 

image, Rasymmetry is determined as 0.12 or 12%, identified by the MATLAB code at the 

orientation of 30°. In another word, once the symmetric axis is selected at the 30° 

orientation, 12% of the pixels do not have their symmetric counter pixels. 
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Figure  2-13 Symmetry axes determined for the sample image. 

 

2.4 Color Variation Ratio 

After a mole region is identified, one can assess the color variation inside the 

mole. We have tested whether using a color histogram is appropriate for the assessment. 

If the mole has a uniform color or gray scale value, the histogram should give one peak, 

while if the mole is patched with two or three distinguished colors, two or three peaks 

occur in the histogram. However, our preliminary analyses have demonstrated that the 

histogram could not produce narrow peaks as expected. In this study we develop a simple 

method to quantify color variation within a mole [48, 49]. 
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(b)(a)  

Figure  2-14 (a) The original image and (b) the image converted to grayscale. 

 

The first step is to identify the boundary of the mole as described previously. 

Rather than changing the mole image to its binary form, the original gray scale values of 

individual pixels insides the mole are retained. Figure 2-14 shows the original color 

image of the mole and the gray scale image of the mole. The next step is to calculate the 

average gray scale number of all the pixels inside the mole. Then, the standard deviation 

of the gray scale numbers of all the pixels can be determined. The color variation ratio is 

defined as: 

valuesscalegraypixeltheofvaluemean
 valuesscalegray  pixel  theofdeviationstandard

variationcolor =R   (2.12) 

Again, since the ratio is calculated based on the same image, the image pixel resolution 

and lighting of the background will unlikely affect the color variation ratio. 
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2.5 Mole Diameter and Evolution with Time 

 The size of a mole can be assessed using the diameter of an equivalent circular 

shape having the same area. Once a ruler is placed with the mole when the image is 

taken, the pixel size can be determined to then identify the size of the mole. The mole 

size is an important morphological feature of the mole since it can be used to evaluate 

how the mole evolved with time. It is much easier to evaluate mole evolution if the image 

is taken over time, preferably under the same photographic conditions. 
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3 Chapter 3 

Results 

 

This chapter includes the results of implementing the developed MATLAB codes 

to various lesion images to assess their morphological features. The images used can be 

categorized into two groups: 

1. Benign mole and melanoma leading lesion images downloaded from several websites. 

2. Lesion images provided by a dermatologist. 

In this chapter, we first display all the lesion images from both groups. The result 

of segmentations using the MATLAB codes is provided. To verify the Otsu method of 

segmentation, all the “within cluster variance” values for a random image are calculated 

and the boundary produced by the minimum variance value is shown. Using the boundary 

obtained from the segmentation, the pixels inside and on the boundary are counted and 

the boundary irregularity ratio (Rirregularity) is calculated. Finally, the asymmetry and color 

variation ratios are calculated using the method demonstrated in sections 2.3 and 2.4. 

Since the mole images downloaded from websites have been labeled either “benign” or 

“melanoma leading”, a cutoff ratio is identified with a percentage of statistical 

confidence. For the mole images provided by the dermatologist, we only illustrate 

whether the calculated changes of the ratios over time are consistent with the impressions 

of the changes by the dermatologist. Information on whether those moles are melanoma 
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leading is unavailable at this time. The experimental procedures involving human 

subjects have been reviewed by the IRB at UMBC and were approved. 

 

3.1 Lesion Images 

 Several medical websites were searched to obtain two groups of benign and 

melanoma leading lesion images. Ten images in each group that had a high image 

resolution and acceptable quality were chosen for further analyses. Figure 3-1 shows the 

benign mole images. The melanoma leading lesions that were selected are shown in 

Figure 3-2. The first visual impression of the benign mole images is their roundness, 

uniform color, regular borders, while the melanoma leading lesions are rugged, patched, 

and asymmetric in shape. 
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Figure  3-1 Ten benign lesion images downloaded from various websites. 
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Figure  3-2 Ten melanoma leading lesion images downloaded from various websites. 
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The second group of mole images from real patients is provided by a 

dermatologist. As one may see, all images look like having irregular shapes. For each 

mole, two images are obtained, one is the initial photo of the image, and the other is the 

photo of the same image taken 6 or 12 months later. Figures 3-3 and 3-4 show the initial 

set and the final set of the images, respectively. According to the dermatologist’s 

professional observation, the mole lesions in this group have changed after the period of 

time.  
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Figure  3-3 The initial set of the mole lesions provided by the dermatologist. 
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Figure  3-4 The final set of the mole lesions provided by the dermatologist. 
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3.2 Segmentation 

Firstly, the segmentation algorithm is run on the input image to separate the lesion 

from the background skin. As discussed in section 2.1, various threshold values are 

selected and the “within cluster variance” is calculated for each selection. The number 

that produces the minimum variance is chosen as the segmentation threshold value. 

Figure 3-5 demonstrates the boundary line produced by different threshold values ranging 

from 58 to 182. The minimal variance is then calculated for each selected threshold value 

of the grayscale number. As shown in Figure 3-6, the minimum variance occurs when 

one chooses the grayscale number of 132 as the threshold. 

7358 11598

132 160

173 182

151144

 

Figure  3-5 Various boundary detection results of a single lesion image when one selects different 
pixel values as the threshold. The red line delineates the boundary of the mole. 
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Figure  3-6 The within cluster variances (𝜎𝜎𝑤𝑤2 ) as a function of the threshold value of the grayscale 
number. 

 

 Using this algorithm, all the sample images are segmented and the lesion 

boundaries are detected. Figure 3-7 shows the boundary detection results on a random 

melanoma leading lesion and a benign mole. Note that the delineated mole border agrees 

well with that in the original mole image. 
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Normal Mole
 

Figure  3-7 The boundary segmentation results for a melanoma leading and a benign mole. 

 

3.3 Irregularity Ratio 

The detected boundary in the previous section is used to calculate the irregularity 

ratio. In order to calculate this ratio, the code runs the following steps: 

1. The pixels on the boundary (the black pixels in Figure 3-7) and the area pixels 

representing the perimeter and the pixels inside the boundary, respectively, are 

counted. 

2. A circle with the same area is drawn and the number of pixels on its boundary 

is determined. 

3. The irregularity ratio is calculated using Equation (2.10). 
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Shown in Figure 3-8a, a mole lesion is extracted from its background. In Figure 3-

8b, a circle with the same area as that in Figure 3-8a is illustrated using the MATLAB 

codes. Since our drawing platform is the computer screen and pixels which are used to 

draw images and shapes are “discrete” units, it is not always possible to draw a circle that 

has the exact area obtained from the original image. When that happens, interpolation is 

used based on results of two circles with a radius difference by one pixel size.  

(a) (b)  

Figure  3-8 (a) A melanoma leading lesion with its detected boundary, and its calculated area and 
perimeter calculated, and (b) a circle drawn with the same area as the lesion. 

 

The original lesion in Figure 3-8a has 25,835 area pixels and 1385 boundary 

pixels. Then the calculated boundary pixels of a circle with the same area pixels as the 

original lesion are found to be 570. The boundary irregularity ratio is then calculated as 

4314.2
570

1385
Perimeter Circle Equivalent

PerimeterLesion R tyIrregulari ===   (3.1) 
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Using the same algorithm, one calculates the normalized irregularity ratios for all 

the 20 melanoma leading and benign mole samples and they are listed in Table 3-1. Note 

that the sample number is random. The average irregularity ratio in the benign mole 

group is 1.63, while it increases to 2.38 in the melanoma group. The variations of the 

irregularity ratios in each group are represented by the standard deviation (SD in Table 3-

1). The results are plotted in Figure 3-9. This figure also illustrates the mean value of 

each group. As shown in Figure 3-9, the cutoff irregularity ratio is 1.96 when the Mean ± 

0.89SD ranges of both groups do not overlap each other. When the irregularity ratio is 

bigger than 1.96, one can state that it is a melanoma leading, while it is a benign mole 

when the ratio is smaller than 1.96. If one assumes that the distribution in each group is 

Gaussian, one may calculate the confidence of classifying a mole into its distinguished 

group as 63.19%, due to the ±0.89SD shown in Figure 3-9. In another word, when the 

cutoff is selected as 1.96, 63.19% of time the mole will be grouped correctly. 

Table  3-1 Normalized irregularity ratio results for melanoma leading and benign mole images 
downloaded from various websites. 

Sample No. Melanoma Benign Mole 
1 2.8647 1.9523 
2 1.7716 1.6699 
3 2.4314 1.8645 
4 2.4782 1.1863 
5 2.0325 1.5505 
6 2.6201 1.1834 
7 3.1621 1.0856 
8 1.8275 2.075 
9 1.8052 1.6306 
10 2.8001 2.1482 

Mean 2.38 1.63 
STD 0.47 0.36 

 

51 
 



 

Figure  3-9 Comparison of the melanoma leading and bengin mole irregularity ratios of the 20  
mole images downloaded from various websites. The identified cutoff ratio to classify one mole 
images to its group is represented by the solid line. 

 

3.4 Asymmetry Ratio 

Following the algorithm discussed in section 2.3, one can see a 20° rotation of the 

original sample (Figure 3-10a) in Figure 3-10b, and the identification of the best 

symmetric line drawn in Figure 3-10c. The total pixel number of the entire mole is 5940. 

About the symmetric line in Figure 3-10c, the number of the pixels that do not have their 

symmetric counter pixels is 699. The asymmetric ratio is then calculated as 

%76.111176.0
5940
699

arealesion   theof pixels ofnumber  Total
pixelscounter  its  w/opixels ofNumber R Asymmetry ====  (3.2) 
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(b)(a)

20°CCW 
Rotation

(c)  

Figure  3-10 (a) A melanoma leading sample, (b) the sample rotating 20° counter-clockwise from 
the original orientation (c) the rotated sample with tis symmetry line. 

 

Using the same algorithm, the normalized asymmetry ratios of all 20 melanoma 

leading and benign mole samples are calculated and listed in Table 3-2. The mean value 

of the asymmetric ratios in the benign mole group is 0.083, implying 8.3% of the pixels 

having no symmetric counter pixels. The mean value of the asymmetric ratios in the 

melanoma group increases by 98% to 0.164, or a degree of 16.4% asymmetry. Figure 3-

11 shows the results obtained from the two groups, with their non-overlapping statistical 

ranges. Following the same statistical analyses, one can identify a cutoff asymmetric ratio 

as 0.109 to distinguish a benign mole from a melanoma leading. If one assumes a 

Gaussian distribution in the samples, the confidence for grouping a mole image correctly 

to its group is 81%. 
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Table  3-2 Asymmetry ratios of the melanoma leading and benign mole samples. 

Sample No. Melanoma Benign Mole 
1 0.20623 0.089887 
2 0.13627 0.092048 
3 0.12185 0.10647 
4 0.23587 0.080286 
5 0.16345 0.12081 
6 0.22135 0.072323 
7 0.12867 0.063524 
8 0.12065 0.086338 
9 0.11768 0.072839 
10 0.19174 0.044808 

Mean 0.164 0.083 
STD 0.043 0.020 

 

 

Figure  3-11 Comparison of the asymmetric ratios for the melanoma leading and benign moles. 
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3.5 Color Variation Ratio 

The lesion color variation ratio is obtained via first converting the image into its 

grayscale image, showing in Figure 3-12. The benign mole appears more uniform in 

grayscale variations, while the melanoma image consists of pixels with a wider range of 

grayscale values. The calculated color variation ratio of the benign mole in Figure 3-12a 

is 0.09, implying a relatively uniform grayscale values within the mole. On the other 

hand, the mean±SD for the melanoma leading is 78.87±58.87, and the color variation 

ratio in the melanoma leading in Figure 3-12c is then calculated as 0.68.  

(b)(a)

(c) (d)  

Figure  3-12 (a) A benign mole sample, (b) the grayscale image of benign mole, (c) a melanoma 
leading sample and (d) the grayscale image of melanoma leading lesion. 
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Using the same algorithm, the color variation ratios of all the 20 melanoma 

leading and benign mole samples are calculated and shown in Table 3-3. Table 3-3 also 

gives the mean and SD values in each group. As expected, the mean value of the color 

variation ratio in the melanoma leading is 120% larger than that in the benign group 

(0.494 vs. 0.224). Figure 3-13 plots the results and shows overlapping between the two 

groups. One can again identify the cutoff color variation ratio as 0.334, indicated by the 

non-overlapping ranges shown in the figure. The confidence of distinguishing a mole 

from a melanoma leading lesion using this cutoff ratio is 72.87%. 

Table  3-3 Normalized color variation ratio for melanoma leading and benign mole samples. 

Sample No. Melanoma Benign Mole 
1 0.55967 0.37719 
2 0.67301 0.18095 
3 0.34337 0.15467 
4 0.56314 0.33119 
5 0.6181 0.165865 
6 0.31906 0.30519 
7 0.38434 0.095643 
8 0.68308 0.35046 
9 0.27413 0.15024 
10 0.51834 0.12836 

Mean 0.494 0.224 
STD 0.144 0.099 
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Figure  3-13 Comparison of melanoma leading and benign mole color variation ratios. 

 

3.6 Mole Samples Provided by the Dermatologist  

In this section, mole images taken by a dermatologist are analyzed using the same 

algorithms. Note that those images do not reflect mole images in general populations, and 

they represent images selected by the dermatologist, who visually identifies these moles 

as “irregular” in some aspects. Therefore, it will not be surprised to us if the calculated 

ratios already imply “leaning to” melanoma. At the time of this study, biopsies have not 

been performed to diagnose whether these moles are melanoma or not.  

These images provided represent their initial images and the images of the same 

mole 6 or 12 months later. The main reason to include those images in our analyses is to 

provide quantitative measures to dermatologists to assess changes of those ratios over 
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time. It can also be used to validate the perspectives of dermatologists’ presumed changes 

of a mole image over a period of time. Note that all the images are taken following the 

same photographic procedures and the light intensity, pixel size, and the image size are 

kept the same for all the images. 

We first calculate the irregularity ratios of the images of those two groups. The 

results are listed in Table 3-4, and plotted in Figure 3-14. One notices that all the images 

have their irregularity ratio (3.23 or 3.25) much larger than the cutoff irregularity ratio 

identified in the previous section (cutoff ratio = 1.96). This is not a surprise since that 

may be the reason the dermatologist selected them for further analyses or tests. Among 

the ten moles, 4 moles’ boundaries becomes more irregular over time, indicated by the 

positive values of the variation percentage in Table 3-4, while the other six moles appear 

less irregular on their borders over time than that of the initial images. The mean change 

of the irregularity ratio is 0.20%, however, if one calculates the absolute percentage 

change of the irregularity ratio, it is 8.79%±6.27% (mean±SD).  

Table  3-4 Comparison of the irregularity ratios of the ten moles from their initial images to their 
images six or twelve months later. 

Sample No. Initial Final Variation Percentage Absolute Change 
1 3.7811 3.3927 -10.27% 10.27% 
2 3.8468 3.9669 3.12% 3.12% 
3 4.1696 4.6966 12.64% 12.64% 
4 2.5545 2.762 8.12% 8.12% 
5 3.2645 3.0784 -5.70% 5.70% 
6 2.3871 2.3026 -3.54% 3.54% 
7 2.4975 2.0513 -17.87% 17.87% 
8 2.5644 2.5065 -2.26% 2.26% 
9 2.9344 3.5533 21.09% 21.09% 
10 4.3025 4.1596 -3.32% 3.32% 

Mean 3.23 3.25 0.20% 8.79% 
SD 0.70 0.82 10.80% 6.27% 
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Figure  3-14 Irregularity ratios for the ten moles of their initial images and images six or 12 
months later. Note that the cutoff irregularity ratio is 1.96, indicated by the bold red line. 

 

 Similar trends can be observed when one assesses the changes of the asymmetry 

ratios over time. The results are listed in Table 3-5 and illustrated in Figure 3-15. Almost 

all the asymmetry ratios are higher than the cutoff asymmetry ratio identified in the 

previous section. Again, the absolute percentage change over time is calculated as 

9.13%±6.54%, with the largest change over 18%. 
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Table  3-5 Variation percentages in normalized asymmetry ratios for the initial and final sets of 
the mole images. 

Sample No. Initial Final Variation Percentage Absolute Change 
1 0.2225 0.2234 0.40% 0.40% 
2 0.16482 0.15694 -4.78% 4.78% 
3 0.26474 0.24512 -7.41% 7.41% 
4 0.13947 0.16228 16.35% 16.35% 
5 0.14579 0.14993 2.84% 2.84% 
6 0.13648 0.11945 -12.48% 12.48% 
7 0.10748 0.12107 12.64% 12.64% 
8 0.190786 0.19058 -0.11% 0.11% 
9 0.19132 0.22088 15.45% 15.45% 

10 0.22857 0.18563 -18.79% 18.79% 
Mean 0.179 0.178 0.41% 9.13% 

SD 0.047 0.041 11.22% 6.54% 
 

 

 

Figure  3-15 Comparison of the initial values and the final values of the asymmetry ratios of the 
ten mole samples. The cutoff asymmetry ratio identified in the previous section is represented by 
the bold red line. 
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 It is a surprise to see that almost all the color variation ratios are below our cutoff 

color variation ratio of 0.334. The average values of the color variation ratio in both 

groups are 0.141 and 0.162, respectively. One possible reason is that our algorithm filters 

the color components.  Nevertheless, our computational results indicate large changes in 

the color variation ratios over time. As shown in Table 3-6, 8 of the 10 moles appear 

having more grayscale variations over time, i.e., up to 81%. For the only two moles 

having a “negative” variation percentage, the percentage changes are less than 14%. The 

calculated absolute variation percentage and its standard deviation are 23.58%±21.45%.  

Table  3-6 Variation percentages in normalized color variation ratios for the initial and final sets 
of the mole images. 

Sample No. Initial Final Variation Percentage Absolute Change 
1 0.10169 0.11655 14.61% 14.61% 
2 0.097548 0.11447 17.35% 17.35% 
3 0.067674 0.12267 81.27% 81.27% 
4 0.21834 0.24898 14.03% 14.03% 
5 0.14085 0.16289 15.65% 15.65% 
6 0.24385 0.27736 13.74% 13.74% 
7 0.25589 0.28914 12.99% 12.99% 
8 0.13947 0.12871 -7.71% 7.71% 
9 0.071374 0.10323 44.63% 44.63% 
10 0.069093 0.059543 -13.82% 13.82% 

Mean 0.141 0.162 19.27% 23.58% 
SD 0.070 0.076 25.39% 21.45% 
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Figure  3-16 Comparison of the initial and final values of the color variation ratio over time. The 
cutoff color variation ratio is indicated by the bold red line. 

 

Since the dermatologist can take the mole image over time under the same 

photographic conditions, one can track the size change of the mole, shown in Table 3-7 

and Figure 3-17. Eight out of the ten moles have shown substantial increase in size. One 

mole (#9) has almost quadrupled its size. For the two moles which size is smaller after 

six months, the size decrease is very small, less than 6%.    
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Table  3-7 Variation percentages of the mole area (size) for the initial and final sets of the mole 
images. The size is represented by the total number of the pixels inside the mole. 

Sample No. Initial Final Variation Percentage Absolute Change 
1 53716 55600 3.51% 3.51% 
2 88519 85674 -3.21% 3.21% 
3 41144 45026 9.44% 9.44% 
4 45258 55690 23.05% 23.05% 
5 44760 57780 29.09% 29.09% 
6 27645 35680 29.06% 29.06% 
7 20046 28075 40.05% 40.05% 
8 39081 41809 6.98% 6.98% 
9 11694 43100 268.57% 268.57% 
10 50802 48230 -5.06% 5.06% 

Mean 42266 49666 40.15% 41.80% 
SD 20030 14913 77.47% 76.59% 

 

 For some moles, not every ratio shows substantial changes over the period of six 

or twelve months. All the ten samples in this group were selected based on the 

dermatologist’s subjective opinion that they have changed over time. We speculate that at 

least one of the ratios is substantial for him to assume that the mole is changing. Table 3-

7 identifies the substantial changes of each mole among the four ratios. Here, we define 

“substantial changes” as ±14%. In doing so, it is clear that our eyes are most sensitive to 

the change in the color variation, followed by the size change. It is relatively difficult to 

assess changes over time in the border irregularity and/or the asymmetry of a mole.  
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Table  3-8 Substantial changes in the morphological ratios of all the 10 samples over time. 

Sample Irregularity Ratio Asymmetry Ratio Color Variation Ratio Size Ratio 
1 - - 14.61% - 
2 - - 17.35% - 
3 - - 81.27% - 
4 - 16.35% 14.03% 23.05% 
5 - - 15.65% 29.09% 
6 - - - 29.06% 
7 -17.87% - - 40.05% 
8 - - - - 
9 21.09% 15.45% 44.63% 268.57% 
10 - -18.79% - - 

 

Sample 8 is an odd ball in the group since none of the ratios is higher than 8%. 

This is the only sample that our algorithm cannot validate the dermatologist’s perception 

of change in the mole image. As shown in Figures 3-17a and 3-17b, it is indeed very 

difficult to make a decision whether the before and after images of mole #8 are different, 

except that the image is more blurred by observation. In the other nine moles, there is at 

least one ratio with a percentage variation change larger than 14%. For example, mole #9 

has all four ratios larger than 14%. As shown in Figures 3-17c and 3-17d, there is a very 

large increase in size of this mole over time. When the size changes, on can see that mole 

#9 also shows substantial changes in its shape, leading to observed variations in its 

boundary irregularity and asymmetry. It becomes more patched over time, ending with an 

increase in the color variation ratio over time. 
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(c) (d)

(a) (b)

 

Figure  3-17 (a) The initial image of mole #8, (b) the image of mole #8 six months later, (c) the 
initial image of mole #9, and (d) the image of mole #9 six months later. 

 

One thing we need to point out is that the definition of “substantial changes” as 

±14% is arbitrary. If we select 7% as the definition of a substantial change, then all ten 

moles will have at least one ratio labeled as “being changed”. Again, the sample size of 

the study is not very big to draw concrete conclusions. We just want to show that the 

developed algorithms have the potential to provide quantitative assessment of changes. 

When dermatologists screen a large number of moles in a patient, the algorithms can be 

used to assist the dermatologists to make decisions based on quantitative data rather than 

pure observation. This may be a very helpful tool for dermatologists with limited 

experience, as well as for primary physicians to decide whether to refer the patient to a 

specialist. 
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4 Chapter 4 

Summary and Future Work 

 

4.1 Summary 

This thesis research is focused on advancing the image processing techniques and 

algorithms used for detecting skin melanoma based on photos taken from regular cameras 

and cellphones. We have modified previous image processing approaches and developed 

computational algorithms for quantifying morphological features of a mole image. 

Applying the algorithms to 20 mole images downloaded from educational websites, we 

have identified three cut-off ratios to distinguish melanoma images from benign mole 

images. The irregularity ratio cutoff is 1.96, suggesting 96% more circumference length 

than that of a circle with the same area. One finds that the cut-off ratio for assessing 

asymmetry of the mole image is 0.109, representing the degree of asymmetry as 

approximately 11%. Evaluation of the color variation of the moles leads to a cut-off ratio 

of the color variation as 0.334. Statistical analyses have been performed to determine the 

confidence of cut-off ratios, varying from 63% to 81%, for placing a mole image into its 

correct group. The algorithms have also been implemented to assess “changes” of mole 

images over time observed by a dermatologist. Using a ±14% as the definition of 

“substantial changes”, the algorithm identifies 9 of the 10 mole images as changed over 

time. Among the irregularity, asymmetry, color variation, and size ratios, 5 out of the 9 
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moles have shown changes in one ratio, 2 out the 9 moles have experience changes in 

two ratios, 1 mole has shown changes in three ratios, and only 1 mole shows changes in 

all four ratios. The computational results are consistent with the general observations that 

human eyes are sensitive to size changes and color variation changes, and may not be 

very good to distinguish changes in border irregularity and asymmetry.  

 

4.2 Contributions 

 Human eyes are very good at forming an impression on the size, color variation, 

asymmetry, and border irregularity. When it comes to quantified features such as “how 

irregular is the boundary of an image?” or “how symmetrical an image is?” human 

impression is not sufficient to determine the magnitude of these measures. It is why 

training is needed to distinguish subtle changes of those morphological features of an 

image. Typically, a dermatologist is better than a primary physician to make a quick 

decision whether a mole has an irregular shape, and whether the same mole changes over 

time based on looking at two images. The evaluation process may become tedious and 

subjective, leading to unnecessary biopsies or missing early Signs of a melanoma leading 

lesion is changes in size, shape or color of an existing mole. 

A digital image has several properties that can be easily measured and quantified 

without any human input, therefore, minimizing inaccuracy due to subjective impression 

of the observer. Those properties include image sizes, number of pixels, the average color 

value of the image, histogram, etc. The computational algorithms developed in this study 

make it possible to produce an objective measurement of specific morphological 
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properties of an image that have been considered having connections with melanoma 

developments. Based on previous approaches of image processing procedures, we have 

developed in-house MATLAB codes that will automatically process the images, and 

calculate the three ratios associated with morphological features of mole images. Using 

the developed MATLAB codes, one can measure the extents of the boundary irregularity, 

asymmetry, color structure, and size of a mole image with no subjective input from the 

user. This can also pave a way to future development of a smartphone “app” based on 

automatic image processing calculations. 

The developed computational algorithms have been used to assess human 

observation of “substantial changes” in mole images. Most dermatologists and primary 

physicians usually follow up certain moles over time. The current technology also allows 

them to photograph a mole with the same setting for easy comparison. The results from 

the computational algorithms have been shown to be consistent with human perception of 

obvious changes such as color variation and size. It also can be helpful to assist a 

physician in evaluating subtle changes that may not be very sensitive to the eyes. For 

example, boundary irregularity and asymmetry of a mole image may not be very evident 

to an observer. In fact all the moles selected by the dermatologist have their boundary 

irregularity and asymmetry ratios way above the cut-off ratios of those two groups. In 

other words, the boundary irregularity and asymmetry have to be very severe for a human 

observer to detect them. Therefore, the developed computational algorithms are useful in 

detecting those moles with boundary irregularity and asymmetry ratios above the cutoff 

ratios, however, below the thresholds of human eye detection. 
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As discussed in the introduction section, melanoma can be treated easily in its 

early stages. However, a professional diagnosis of melanoma involves multiple steps, 

including making an appointment with the dermatologist, taking a day off to see the 

doctor, biopsy, etc. This process is time consuming. If asking around, one may find that 

most of us have not seen a dermatologist for more than 10 years. We believe that the 

developed computational algorithm would prompt the general population to at least make 

an appointment with their dermatologist based on the calculated ratios. Nowadays, 

smartphones are incredibly popular and widely used by the public. The general 

population can use their smartphone to take a picture of a mole, and then submit it to our 

website via an app. The three ratios can be calculated right way and sent back to the user. 

All of those can be done in a private and quiet setting. If the ratios are way above the 

cutoff thresholds, the user can be prompted to a list of local dermatologists to make an 

appointment. Even though the ratios calculated by the smartphone app may not be 

regarded as a professional diagnosis, it can urge the general population to see their 

dermatologist for further screening. The algorithms and its future smartphone app can 

also be used as effective tools for melanoma educations and awareness. 

 

4.3  Limitations and Future Work  

This study is limited by a very small sample size included in the study. The cutoff 

ratios identified are all based on the small sample size of 10 moles in each group. In 

addition, the ten moles in each group may not well represent the actual mole images one 

may observe on his/her skin, since they have been screened and selected by the 
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physicians to illustrate the difference between benign moles and melanomas. In reality, 

the difference between them may be more blurred than what our results indicate. 

Consequently, the confidence from statistical analyses may also require modification if 

the sample size is bigger. Future collaboration with dermatologists who have access to 

mole image samples will be helpful. In addition, positive or negative diagnoses of 

melanomas via biopsy or other approaches can be used to confirm how good the 

computational tools in predicting the outcomes.  

We have found out that another limitation of the study is on the uncertainty of the 

boundary irregularity ratio calculations. Currently, a smartphone image can have a very 

high resolution, leading to a very small pixel size on a digital image. Since the boundary 

of a mole image is represented by discrete vertical and horizontal pixel segments, it is 

possible that the small segments actually overestimate the irregularity of the boundary. In 

another word, the original smooth boundary line is represented by connecting many small 

vertical and horizontal pixel segments. Note that we only generate a circular shape with 

the same area under the same pixel resolution. In theory, the same thing also occurs on 

boundary of the circular shape. It is expected that the irregularity ratio defined as the ratio 

of the total boundary pixels of a mole to that of a circular shape with the same area, 

would have eliminate the uncertainty. Future research can be performed to test the 

sensitivity of our calculated irregularity ratio to the image resolution, especially the 

resolution is very high.   

In this study, the mole images are converted to grayscale for calculating the ratios. 

This conversion should not affect the calculations of the boundary irregularity and 

asymmetry ratios; however, it may affect the color variation ratio. A color pixel is 
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associated with a combination of three distinct numbers, each representing the magnitude 

of color “red”, “green”, and “blue”. By converting a color pixel to grayscale, we will end 

up with only one grayscale value with a 0-255 range, hence eliminating a huge amount of 

data associated with color. Further studies on development of computational algorithms 

based on color pixel are warranted. 
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