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ABSTRACT 

 
Rock scour downstream of dam foundations and spillways has become a significant dam safety 

concern in recent years. As design flood estimates increase and older infrastructure is expected to pass 

larger amounts of water, downstream river beds and plunge pools are subjected to progressively greater 

stream power from rapidly flowing water. A need exists to quantify the erosive capacity of the flowing 

water and the erodibility of earth materials to evaluate potential scour in these susceptible areas. 

Annandale’s Erodibility Index Method, widely considered a state of the art scour prediction method, 

offers an approach to quantify scour depth by comparing the erosive capacity of flowing water and the 

ability of rock to resist it.  

This study assesses the accuracy of Annandale’s Erodibility Index Method for estimating rock 

scour depth in plunge pools. The success by which the method may be implemented is dependent on the 

accuracy of methods to quantify the rate of energy dissipation of plunging jets (applied stream power) and 

the ability to estimate the capacity of rock to resist the power of the flowing water. The stream power of 

plunging jets is quantified by making use of published research, while the ability of rock to resist scour is 

computed using a geo-mechanical index, known as the Erodibility Index. 

The Erodibility Index that was used to estimate the scour resistance of the various stratigraphic 

layers downstream of four BC Hydro dam spillways located in British Columbia, Canada relies on in-situ 

rock parameters consisting of UCS strength values, RQD values, joint spacing, aperture, alteration, 

roughness, and orientation. The jet stream power was calculated using continuous daily discharge records 

and spillway geometries at each of the dams, and published research on stream power quantification.  The 

spillway types included one long spillway chute with a free overfall and a number of flip bucket-type 

energy dissipaters.  

Comparison between the numerically generated scour profiles and a series of plunge pool surveys 

at each of the dams provided a means of determining accuracy.  Scour depths and the distances between 

the end of the spillways and the points of maximum scour were matched. The study revealed that 

correlations between calculated and observed scour profiles improved with the quality of geologic 

information and with the certainty by which the stream power of jets and their decay could be quantified.  

The geologic information at two of the dams, Revelstoke and Seven Mile Dams, was incomplete 

and resulted in a generalized characterization of the scour resistance of the plunge pool rock. At these 

dams it was not possible to spatially characterize changes in scour resistance of the rock in the plunge 
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pool. The geologic information at Peace Canyon and W.A.C. Bennett Dams was more informative and 

allowed quantification of the spatial distribution of plunge pool scour resistance in each case.  

The research further identified that jet theory associated with flip buckets provides good estimates 

of stream power and its decay, but that hydraulic theory used to quantify the energy dissipation in long 

spillway chutes may be incomplete at this point in time.  The combined inadequacy of geologic data and 

the insufficiency of hydraulic theory related to long spillway chutes resulted in the comparison between 

surveyed and calculated scour depths at Revelstoke Dam being particularly poor. Contrasting this result, it 

was found that better understanding of flip bucket hydraulics and more informative geologic information 

resulted in very good correlations between calculated and surveyed scour profiles at Peace Canyon and 

W.A.C. Bennett Dams. The comparison provided more pleasing results at Seven Mile Dam than at 

Revelstoke Dam, in spite of the relatively poor geologic information in the plunge pool area of Seven 

Mile Dam.  The improved correlation at Seven Mile Dam may be attributed to the fact that it has a flip 

bucket spillway, which resulted in better quantification of jet stream power and its decay.  

In summary the analysis results indicate a strong correlation between surveyed and modeled 

plunge pool depth and invert location at dam sites where both the hydraulics and geology are well 

understood. It is concluded from this research that Annandale’s Erodibility Index Method is an accurate 

method for estimating plunge pool depth when geologic information is available and spillway and plunge 

pool hydraulics are well-understood. A lack of information or understanding of the spatial distribution of 

materials generally results in less accurate predictions.  

Although this research project was not directed towards determining the rate of scour of rock, a 

good correlation was found between cumulative energy (the product of stream power and duration) and 

scour depth.  This preliminary result provides encouragement for future research into using the Erodibility 

Index Method to quantify the rate of scour in rock.  

The analysis would benefit from more robust rock parameter datasets that would allow for the 

inclusion of a Monte Carlo simulation within the model. Additionally, a larger dataset of dams including 

those with various spillway structure types and geologic environments would be valuable moving 

forward.  
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CHAPTER 1  

INTRODUCTION 

Rock scour downstream of dam foundations and spillways is a significant dam safety concern. As 

design floods increase and older infrastructure is modified to pass larger amounts of water, downstream 

river beds and plunge pools are subjected to progressively larger shear stresses from rapidly flowing 

water. Excessive scour due to plunging jets or high velocity flow in plunge pools, specifically, can 

undermine foundations, compromise the stability of riverbanks, and lead to eventual catastrophic dam 

failure. 

Traditionally most of the geological investigation of dam sites is focused on the dam foundation, 

abutments, and the upstream reservoir area. Experience has shown that the investigation of scour potential 

downstream of dam spillways is very important; rock quality in this area can have a significant impact on 

long term dam stability. For example, in the case of Kariba Dam along the border of Zambia and 

Zimbabwe, scour proceeded to excavate a plunge pool more than 90 meters deep, nearly as tall as the dam 

itself (Bollaert et al., 2012).  

Recent publications show a shift in hydraulic research toward quantifying and predicting scour 

potential, especially in plunge pools (Annandale, 1995, 2006; Bollaert, 2002, 2004; Bollaert & Schleiss, 

2005).  Scour potential, however, is of interest anywhere man-made structures interfere with nature, such 

as at bridge piers and abutments and along embankments (Richardson, 1996; Keaton, 2013). Advances in 

the understanding of jet hydraulics and plunge pool energy dissipation since the 1970s have also 

contributed to more accurate scour predictions. Many scour assessments currently rely heavily on model 

scale studies, which can be costly to construct and do not necessarily accurately replicate the scour 

processes occurring at the prototype scale (Schleiss, 2002). Understanding the science of energy 

dissipation in both the atmosphere and the plunge pool can help more accurately predict scour and aid in 

the selection of the most effective energy dissipaters and rock reinforcement during spillway design. 
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CHAPTER 2  

THESIS STATEMENT 

This thesis evaluates Annandale’s Erodibility Index Method (EIM) (1995, 2006) for estimating 

rock scour depth in plunge pools by applying the methodology to four BC Hydro dams located in British 

Columbia, Canada. The four dams include Peace Canyon Dam, Seven Mile Dam, W.A.C. Bennett Dam, 

and Revelstoke Dam and represent different plunge pool geologic environments; relatively flat lying 

sedimentary units with minor structural alteration at Peace Canyon and W.A.C. Bennett Dams and 

intruded granitic dykes and contact and regionally metamorphosed sediments at Seven Mile and 

Revelstoke Dams.  

Results from analyses based on spillway discharge data, plunge pool geology and rock strength, 

and density of geologic data are compared to existing plunge pool surveys to evaluate the methodology. 

This analysis differs from Monfette’s (2004) previous research on the same BC Hydro dam sites in five 

ways:  

 by accounting for geologic variability within a plunge pool, 

 by applying scour along a two-dimensional profile, 

 by applying Ervine & Falvey’s (1987), Bollaert’s (2002), and Castillo’s (2006) research 

on fluctuating and mean dynamic pressure coefficients to calculate energy decay within a 

plunge pool, 

 by accounting for progressive plunge pool scour from a series of discharge events, and 

 by assessing the importance of the density of the available geologic data. 

This approach allowed for spatial variability of geologic parameters and cumulative scour 

development from a series of spillway discharge events. Different discharges over the spillway result in 

different jet trajectories, trajectory lengths, breakup lengths, impingement angles, and degree of jet 

spread. As a result, the higher stream power values are applied to different parts of the plunge pool 

depending on discharge and the exposure of different erodible materials over time. Weak underlying shale 

layers, for example, may be protected from erosion by a stronger overlying sandstone unit. Once the 

stronger unit has been removed, erosion of the shale becomes possible at lower stream power values.  

In engineering practice, detailed geologic data are not always available. The dam sites assessed in 

this study represent areas with both reasonable geologic data, collected from drilling programs within the 

plunge pool or adjacent areas and surficial mapping, as well as sites with limited geologic data that 

require some interpretation to conduct the analysis. The variety in data density at the dam sites within this 
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study will provide some insight into the influence of the amount of available information on the accuracy 

of the results.  
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CHAPTER 3  

PREVIOUS RESEARCH 

This research represents the second application of Annandale’s Erodibility Index Method to the 

four BC Hydro dams in question. In 2004, Monfette completed a Master’s of Science thesis at the 

University of British Columbia in Vancouver, BC on the same four BC Hydro dams assessed in this 

analysis. The focus of her work was on the comparison of traditional empirical methods for predicting 

scour with the EIM, and assessing the accuracy of the EIM by comparing calculated scour depths with 

existing plunge pool surveys. 

Monfette calculated the average erodibility index for the materials in the plunge pool at each dam 

site and used discharge data to calculate the stream power of the plunging jets. The plunge pool at each 

location was characterized in terms of ’Low’, ‘Mean’, and ‘High’ erodibility index values to provide the 

likely range of material erodibility. In her analysis, ‘Mean’ erodibility index values are considered 

representative of the bulk of the plunge pool bedrock (Monfette, 2004).  

The erosive capacity of water along the jet centerline trajectory was calculated using 

computational methods developed by Ervine et al. (1997), Ervine and Falvey (1987), Lewis (1996) and 

Bohrer (1998) as shown in Figure 3.1. Ervine and Falvey’s (1987) research focused on turbulent circular 

jets issuing horizontally, plunging through the atmosphere, and diffusing into a pool. The 1987 research 

led to plunging jet velocity calculations based on an estimated 8
o
 inner core decay and the assumption of 

linear velocity decay with depth (Monfette, 2004). The influence of jet development on the velocity 

profile was accounted for by using the Bohrer et al. (1998) empirical dimensional analysis approach. 

Lewis’s (1996) dimensional equation technique (DET) was then applied to factor air drag into the 

developed jet velocity profile equation. 

For each discharge event Monfette calculated the stream power distribution in the plunge pool. 

The stream power profile and the erodibility index value of the plunge pool material were then plotted 

together. The point of intersection represented the maximum scour depth associated with the spillway 

discharge (Figure 3.2). Calculated maximum scour depths were then compared to existing plunge pool 

surveys of the four dams to assess the accuracy of the methodology. 

The results of Monfette’s analysis are shown in Figure 3.3. According to the analysis, 

Annandale’s Erodibility Index Method consistently underestimated the eroded plunge pool elevation, with 

a standard error value of 53 ft, or +/- 26.5 ft. Monfette concluded that the inability to account for geologic 
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Figure 3.1 Computational methods for calculating the linear velocity profile along the jet centerline 

(from Monfette, 2004). See Monfette (2004) for an explanation of variables. 
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heterogeneity throughout the plunge pool area and the application of spillway discharges as discreet, 

independent events contributed to the lack of agreement between observed rock scour and modeled scour 

maximum rock depths (Monfette, 2004). In addition, Monfette’s research indicated that an improved 

method of calculating stream power decay with depth was necessary to improve the analysis results 

(Monfette, 2004).  

 
Figure 3.2 Conceptual approach of the Erodibility Index Method in the assessment of plunge pool 

scour (modified from Monfette, 2004). 

 
Figure 3.3 The Erodibility Index Method versus predicted plunge pool floor elevation results 

(Monfette, 2004). 
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CHAPTER 4  

BACKGROUND 

Assessing scour in rock and other earth materials, especially in the context of the complex plunge 

pool environment, is an emerging science in the hydraulic and hydrology fields. Even most research into 

scour depths at bridge piers and abutments only dates back to the latter half of the 20
th

 century 

(Richardson, 1996). Most of the scour methodologies developed prior to the mid 1990’s dealt with only 

specific hydrologic cases and were not applicable to a wide range of material characteristics (Annandale, 

2006). Equations traditionally used to estimate scour in plunge pools include Veronese’s 1937 equation, 

Yildiz and Uzucek’s 1994 modification of Veronese’s equation, and Mason and Arumugam’s 1985 

equation (USBR, 2012). These relationships are all empirically developed to estimate scour depth based 

almost entirely on the characteristics of the plunging jet. Only Mason and Arumugam’s 1985 equation 

attempts to account for the characteristics of the rock material by including the median grain size of the 

foundation material in the calculation (USBR, 2012). In reality, multiple material characteristics play a 

role in the erosive resistance of earth materials to water.  

More recently, research by Annandale (1995, 2006) led to the development of a semi-empirical 

method for assessing scour in a wide variety of earth materials, ranging from cohesive sediment and 

clastic materials to rock. Bollaert (2004), and Bollaert & Schleiss (2005) have also developed the 

Comprehensive Scour Model (CSM) for scour assessment in plunge pools. This methodology focuses on 

the mechanics of failure, including crack propagation due to pressure fluctuations within rock joints and 

block uplift (Bollaert 2002, 2004; Bollaert & Schleiss, 2005). Bollaert’s approach addresses plunge pool 

erosion of rock only, whereas Annandale’s methodology can be applied to a wider range of material types 

in a variety of flow scenarios. 

To assess plunge pool scour, both the erosive capacity of the water and the erosive resistance of 

the rock material must be quantified. The erosive capacity of the water can be represented by the rate of 

energy dissipation of the plunging jet over the jet impact area, or the stream power of the jet. Similarly, 

the resistance to erosion of the rock material can be represented by the amount of stream power that the 

material is capable of resisting over the applied area. 
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4.1 The Erosive Power of Plunging Jets 

The erosive capacity of water due to plunging jets depends on both the characteristics of the free 

falling jet and energy dissipation within the plunge pool, as shown in Figure 4.1. Quantifying the erosive 

capacity of water must therefore be broken down into two parts: 

1. The Falling Jet 

2. The Plunge Pool 

 
Figure 4.1 Sketch of main parameters of free overfall jet plunging into pool and breaking up rock 

mass (Bollaert & Schleiss, 2005). 

4.1.1 The Falling Jet 

During discharge events water flowing over the spillway becomes airborne before impinging onto 

the surface of the plunge pool. For all intents and purposes the initial jet at the top of the spillway is 

considered a solid mass of water with minimal air entrainment. As the jet follows its trajectory, both 

along the spillway face in the case of ski-jump spillways and through the air, two important processes 

happen, as shown in Figure 4.2: 1) the jet is subjected to gravity and the solid water core of the jet 

contracts and 2) the jet begins to entrain air at its outer boundary, which leads to internal turbulence and 

jet breakup (Bollaert, 2002; Ervine & Falvey, 1987).  

Characterizing the airborne portion of the jet requires knowledge of the initial flow over the 

spillway and the amount of dispersion that occurs during the fall. The issuance velocity can be deduced 
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from spillway discharge measurements and specific energy concepts (Henderson, 1966). The turbulence 

of the free falling jet entrains air. 

 
Figure 4.2 Schematic diagram of turbulent breakup of a free falling jet (Ervine et al., 1997). 

 The degree of internal turbulence experienced by the plunging jet is a function of the jet issuance 

conditions and is represented by the initial turbulence intensity, Tu (Ervine & Falvey, 1987; Ervine et al., 

1997). This variable is defined as the ratio of the root-mean-square of the axial velocity fluctuations , v’,  

to the mean velocity of the jet ,V, as shown in Equation 4.1 (Bollaert, 2002). The initial turbulence 

intensity reflects the amount of air entrainment experienced by the jet. Free overfall jets only experience 

mixing during free fall, minimizing the degree of turbulence intensity. Ski jump outlet jets experience 

mixing during both flow down the spillway face and while airborne, which results in higher turbulence 

intensities. Jets emerging from valve outlets are already turbulent in nature, thus increasing the value of Tu 

in this case. The value of this parameter can also be calculated based on the friction factor, f, at the base of 

the spillway. 

 𝑇𝑢 =
√(𝑣′)2

𝑉
=

𝑣′

𝑉
= 0.25√𝑓  (4.1) 
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Table 4.1 Typical Values of Issuance Turbulence Intensity, Tu, at Various Outlet Structure Types. 

Type of Outlet Structure Turbulence Intensity Tu 
Free overfall 0.00 – 0.03 

Ski jump outlet 0.03 – 0.05 
Valve 0.03 – 0.08 

(Bollaert, 2002)  

 

The plunging jet geometry is also dependent on the issuance velocity, Vi, the issuance jet 

thickness, Di, and the average issuance angle, αj, Froude Number and discharge depth from the terminal 

structure angle, θ, shown in Figure 4.1 (Pfister, 2014). These values can be used with physics-based 

equations to calculate the horizontal and vertical distances to impingement, x and z respectively, and the 

jet trajectory length, Lj, using Equations 4.2 and 4.3 (Wahl, 2008, Pfister, 2014): 

 𝑧 =  𝑥𝑡𝑎𝑛𝜃 −
𝑥2

4ℎ𝑣(𝑐𝑜𝑠𝜃)2
 (4.2) 

 𝐿𝑗 = ∫ √1 + [tan 𝜃 −
2𝑥

4ℎ𝑣(𝑐𝑜𝑠𝜃)2
]

2

∙ 𝑑𝑥
𝑥

0  (4.3) 

Here, the x and z values are based on a coordinate system where the jet outlet represents the 

origin, x  increases in the direction of the plunge pool, and z decreases as the jet loses elevation. The 

variable hv is the kinetic energy of the jet, equal to Vi
2
/2g. The value of x when z equals the difference in 

elevation between the flip bucket lip and the tailwater level indicates the horizontal distance from the base 

of the spillway to the center of the jet at impact with the plunge pool. 

The jet character changes as the inner core of the jet contracts with distance. As long as the core 

exists, the jet is considered undeveloped and is composed of both an intact core and discrete water 

droplets in the outer fringe. A jet becomes fully developed when the solid core has completely contracted. 

Fully developed jets are composed almost entirely of discrete clumps of water. If the fall distance is large 

enough, the erosive capacity of the jet is limited because air drag causes the drops to slow to terminal 

velocity (Annandale, 2006). Various jet breakup length equations exist for different jet types and issuance 

conditions. Falvey (1990) developed equations for circular jets issuing from free over falls, Castillo 

(2006, 2007) developed an equation for rectangular jets issuing from free over falls, and most recently 

Pfister et al.(2014) has developed an equation for rectangular ski-jump generated jets, which his research 

indicated have much shorter breakup lengths than other types of energy dissipaters. Any one of these 

equations may be more or less appropriate for a given scenario and care should be taken when selecting 

the breakup length equation, as this parameter can have a significant impact on energy dissipation within 

the plunge pool. Pfister et al.’s rectangular ski-jump generated jet breakup length equation and Castillo’s 
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(2006, 2007) equations were selected for this analysis based on the jet type and issuance conditions of the 

four dams assessed here. Peace Canyon Dam, Seven Mile Dam, and W.A.C. Bennett Dam spillway 

structures terminate at flip bucket type energy dissipaters, which are best represented by Pfister’s (2014) 

jet breakup length equation, and Revelstoke Dam spillway terminates at a horizontal free overfall at the 

end of a long chute, which is best represented by Castillo’s (2006, 2007) jet breakup length equation.  

The breakup length, Lb, is calculated using Equation 4.4 (Pfister, 2014) for Peace Canyon, Seven 

Mile, and W.A.C. Bennett Dams. Fri is the Froude Number at jet issuance and equal to V / √(g·Di). The 

variables φ and δ represent the angle of the spillway or chute face and the equivalent deflector angle, 

respectively, as defined by Pfister (2014). 

 𝐿𝑏 =
76∙𝐷𝑖∙(1+sin (𝜑))

𝐹𝑟𝑖∙(1+tan (𝛿))4
 (4.4) 

The breakup length, Lb, is calculated using Equation 4.5 (Castillo, 2006, 2007) for Revelstoke 

Dam.  

 𝐿𝑏 = 0.85
𝐷𝑖 ∙𝐹𝑟𝑖

2

(1.07𝑇𝑢𝐹𝑟𝑖
2)0.82

 (4.5)  

When the breakup length is less than the trajectory length (from 4.3) the jet is fully developed 

upon impingement with the plunge pool. When the breakup length is greater than the trajectory length the 

jet is undeveloped and a portion of the jet core still exists upon impingement. Many spillways are 

designed to maximize the jet trajectory length through the air by modifying the issuance angle to allow as 

much jet breakup as possible. The reduced erosive capacity of fully developed jets can improve plunge 

pool performance and limit erosion. 

The footprint over which the plunging jet is applied is defined by the maximum outer diameter of 

the jet at impact (Ervine et al., 1997). The decay of the inner core of the jet occurs at an angle 15-20% of 

the angle of outer jet spread for circular jets, which is function of the jet turbulence intensity. 

 𝐷𝑜𝑢𝑡 = 𝐷𝑖 + 2 ∙ 0.38(𝑇𝑢𝐿𝑗) (4.6) 

The diameter of the solid core of an undeveloped round jet at impact is described by Equation 4.7 

(Ervine et al., 1997): 

 𝐷𝑗 = 𝐷𝑖√
𝑉𝑖

𝑉𝑗
 (4.7) 
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Where Vj is the impact velocity, defined by √(Vi
2
+2gH), where H is the difference between the 

Energy Grade Line (EGL) at the base of the spillway and the elevation of the tailwater level.  

And the angle of impingement of the jet with the plunge pool, ξ, from horizontal, is a function of 

the kinetic energy of the jet, hv, issuance thickness, Di, issuance angle, ϴ, and horizontal jet length, x, as 

outlined in Equation 4.8. The angle of impingement affects energy dissipation within the plunge pool. A 

low impingement angle results in greater energy dissipation at shallower depths. 

 𝜉 = 𝑎𝑟𝑐𝑡𝑎𝑛 [𝑡𝑎𝑛𝜃 −
𝑥

2(ℎ𝑣)(𝑐𝑜𝑠𝜃)2
] (−1) (4.8) 

The stream power of plunging jets, Pjet, is calculated based on the total jet discharge, Q, the 

difference between the Energy Grade Line at the base of the spillway and the tailwater level, H, and unit 

weight of water, γ. 

 𝑃𝑗𝑒𝑡 = 𝛾𝑄𝐻 (4.9) 

The stream power per unit area can then be calculated by dividing the total stream power of the 

jet by the jet’s footprint, area A, where it impacts at the surface of the tailwater (Equation 4.10): 

 𝑝𝑗𝑒𝑡 =
𝛾𝑄𝐻

𝐴
 (4.10) 

The area, A, over which the jet impacts is based from the outer jet diameter, dout, from Equation 

4.6, and the distance along the jet trajectory, Lj (4.3). In the event that the jet becomes fully developed 

before impinging on the water surface, the use of the jet core diameter would be zero and the calculations 

would indicate that no energy is imparted to the plunge pool.  Impact of the jet with the plunge pool does 

impart some energy regardless of the development of the jet, so the use of the jet core diameter is not 

logical for this analysis. 

4.1.2 The Plunge Pool 

Further energy dissipation occurs when the falling jet impacts the relatively stationary plunge 

pool.  As it progresses downward it experiences energy dissipation in both the vertical direction and the 

horizontal direction. As outlined in Section 4.1.2.1 below, research by Ervine & Falvey (1987), Ervine et 

al. (1997), Bollaert (2002), and Castillo (2006) address the vertical dissipation of energy with depth. The 

horizontal dissipation of energy with depth, while not as thoroughly researched, has been addressed by 

Bollaert (2002) and is presented in Section 4.1.2.2 
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4.1.2.1 Vertical Energy Dissipation 

The energy dissipation with depth is more complicated than a simple linear decay. Ervine & 

Falvey (1987) and Ervine et al. (1997) found that the outer turbulent zone of the jet expands at a different 

angle than that at which the inner core contracts. Figure 4.3 shows how the expansion and contraction 

angles change depending on the condition of the jet (ie. almost laminar, smooth turbulent, or rough 

turbulent).  

 
Figure 4.3 Diffusion of round jets in a plunge pool. (a) submerged jet, (b) almost laminar plunging 

jet, (c) smooth turbulent plunging jet, and(d) highly turbulent plunging jet. (Ervine & 
Falvey, 1987). 

 
Once submerged, the jet expands with depth until it reaches the rock-water interface. At this point 

the water can no longer progress forward and instead spreads out along the interface, forming wall jets, 

pictured in Figure 4.4. These hydraulic features carry some of the energy away from the impingement 

zone. The amount of energy, however, is greatly reduced, with the impingement zone experiencing the 

most severe hydrodynamic action (Beltaos & Rajaratnam, 1973; 1974). 

 
Figure 4.4 Two-dimensional jet diffusion and impingement on a flat surface, showing regions of 

different flow regimes (Beltaos & Rajaratnam, 1973). 
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Energy dissipation within the plunge pool is accounted for by incorporating both the mean 

pressure at depth as well as the amplitude of the pressure fluctuations about the mean. Ervine & Falvey’s 

(1987), Bollaert’s (2002), and Castillo’s (2006) research into pressure fluctuations show that in an open, 

flat bottomed plunge pool the vertical pressure component can be broken down into the mean pressure 

and the dynamic pressure. As illustrated in Figure 4.5, the dynamic pressure represents the relatively 

constant average pressure experienced in the plunge pool and the fluctuating pressure represents the 

amplitude of the pressure changes about the mean over time. 

 
Figure 4.5 Mean and dynamic pressures at the bottom of an open, flat bottomed plunge pool 

(modified from Bollaert, 2002). 

 

The researchers have developed coefficients to account for the magnitude of the dynamic and 

fluctuating pressures and their decay with dimensionless plunge pool depth, represented by the ratio Y/Dj 

(plunge pool depth, Y, to the jet diameter at plunge pool impingement Dj) (Bollaert, 2002). The 

coefficients represent the portion of the total pressure that exists at a given depth and range from zero to 

roughly 1.0 for the mean dynamic pressure component and from zero to approximately 0.3 for the 

fluctuating component. The two components include the average dynamic pressure coefficient, Cp, and 

the fluctuating dynamic pressure coefficient, C’p. 

 Figure 4.6  shows the summary of the research on the mean dynamic pressure coefficient, 

separating out rectangular and circular jets by the degree of jet aeration.  As shown in the plot, for 

dimensionless depths of less than 4, Cp remains constant. This region is referred to as the zone of flow 

establishment and indicates the depth at which the jet core begins to disintegrate (Castillo, 2006). At this 

point the mean dynamic pressure begins to decay and energy loss begins within the plunge pool. Note that 

Castillo’s plot shows the line of best fit for data based on the ratio of fall height H to jet breakup length, 

Lb. For ski jump spillways the fall height is replaced with the head difference between the EGL and the 

tailwater level to account for head loss due to friction along the spillway face. 
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Figure 4.6 Summary of studies on the non-dimensional mean dynamic pressure coefficient Cp as a 

function of Y/D. Distinction is made between circular and rectangular jets, and between 
impinging and submerged jets (Castillo, 2006; 2007). 

 

Castillo’s research indicates that the average dynamic pressure coefficient, Cp, can be defined in 

terms of dimensionless plunge pool depth and jet breakup length (Castillo, 2006; 2007): 

 𝐶𝑝 = 𝛼1 𝑒−𝑏1(
𝑌

𝐷
)
 (4.12) 

Where α1 and b1 are parameters defined by Castillo for various jet breakup length ratios. Table 

4.2 shows these parameters, their associated jet breakup length ratios, and values of Cp in the zone of flow 

establishment (Y/D<4), where Cp remains constant. Equation 4.12 can be used to calculate Cp for 

dimensionless depths greater than 4. 

 
Figure 4.7 shows the fluctuating dynamic pressure coefficient with dimensionless plunge pool 

depth based on Castillo’s (2006) research. As shown, the fluctuating dynamic pressure coefficient is 

higher for jets with higher turbulence intensities. For all turbulence intensities, C’p starts low, increases, 

reaches its peak value at a dimensionless depth of approximately 6, and then begins to decay with depth. 
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The magnitude of the fluctuating dynamic pressure is much lower than that of the mean dynamic 

pressure, reaching a maximum at approximately C’p = 0.32 for high turbulence intensities. 

Table 4.2 Parameters of the exponential law of the mean dynamic pressure coefficients in function 
of the different jet break-up length. 

H/Lb α1 b1 Cp (Y/D) < 4 

< 0.5 0.98 0.070 0.78 

0.5-0.6 0.92 0.079 0.69 
0.6-0.8 0.65 0.067 0.50 

1.0-1.3 0.65 0.174 0.32 
1.5-1.9 0.55 0.225 0.22 

2.0-2.3 0.50 0.250 0.18 
>2.3 0.50 0.400 0.10 

 (Castillo, 2006; 2007) 

The fluctuating dynamic pressure coefficient, C’p, is defined for rectangular jets by Castillo 

(2006) in Equations 4.13 and 4.14, depending on the dimensionless plunge pool depth. Castillo’s data for 

rectangular jets corresponds well with Bollaert’s (2002) similar work with round jets, although Bollaert’s 

research does not distinguish between different breakup lengths. 

 𝐶′𝑝 = 𝑎2 (
𝑌

𝐷𝑗
)

3

+ 𝑎3 (
𝑌

𝐷𝑗
)

2

+ 𝑎4 (
𝑌

𝐷𝑗
) + 𝑎5  if Y/D<14 (4.13) 

 𝐶′𝑝 = 𝑏2 (
𝑌

𝐷𝑗
)

𝑏3

 if Y/D ≥ 14 (4.14) 

Where  a2, a3, a4, a5, and b2 and b3 are coefficient values for calculating the fluctuating dynamic 

pressure and are dependent on the degree of jet development, H/Lb, as shown in Table 4.3. 

 
Table 4.3 Coefficient values for calculating the fluctuating dynamic pressure coefficient of 

rectangular jets for different breakup lengths. 
Polynomial Fit For Y/D < 14 

H/Lb a2 a3 a4 a5 Type of Jet 

≤1.4 0.0003 -0.0104 0.0900 0.083 Compact – Developed-Disintegrated 
1.5-2 0.0003 -0.0094 0.0745 0.050 Developed-Disintegrated 

>2 0.0002 -0.0061 0.0475 0.010 Developed-Disintegrated 

      
Potential Fit For Y/D ≥ 14 

H/Lb b2 b3 Type of Jet 

≤1.4 5.30 -1.405 Compact – Developed-Disintegrated 
1.5-2 3.14 -1.422 Developed-Disintegrated 

>2 1.50 -1.500 Developed-Disintegrated 

(Castillo, 2006) 
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Figure 4.7 Non dimensional fluctuating mean dynamic pressure with plunge pool depth for 

rectangular jets (Castillo, 2006), showing distinction between different breakup lengths. 

 

4.1.2.2 Horizontal Energy Dissipation 

Horizontal energy dissipation occurs as the frayed fringes of the jet mix with the stationary water 

at the jet-plunge pool boundary. Additionally, the wall jets (discussed briefly in Section 4.1.2.1) transfer 

energy laterally outward at the contact with the plunge pool bottom. 

Bollaert (2002) addressed the issue of horizontal energy dissipation away from the jet centerline 

by applying sensors radially outward from the jet’s point of impingement on the plunge pool bottom 

during his experimentation. The sensor readings during jet impingement allowed him to determine the 

radial distribution of the surface pressures for a 72 mm diameter jet. Bollaert’s research showed that 

pressure sensors located further away from the jet center experienced reduced pressure signals, as 

expected. Figure 4.8 shows the reduction between pressures recorded at 75 mm from the jet centerline 

(sensor a
ii
) and 150 mm from the jet centerline (sensor a

iv
). The first plot in the figures shows a significant 

decrease in pressure with distance from the center due to the influence of jet core impact. When present, 

the core produces higher pressures than the frayed outer zone of the jet. The second plot shows higher 

variability closer to the jet centerline, but only a slightly larger mean pressure than the sensor located 

further away. 
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The radial distribution of the mean dynamic pressure and the fluctuating dynamic pressure are 

important quantities to approximate the lateral extent of erosion within the plunge pool. In a similar 

manner to the way vertical energy dissipation is represented by the dimensionless plunge pool depth, the 

horizontal energy dissipation due to the radial distribution of the jet is represented by dimensionless radial 

distance. This parameter is defined as the ratio of the radial distance from the jet centerline, r, to the 

maximum radial extension of the zone influenced by the turbulent shear layer of the impacting jet, rmax, 

defined as shown in Equation 4.15: 

 𝑟𝑚𝑎𝑥 = 0.5𝐷𝑗 + 0.25𝑌 (4.15) 

 
Figure 4.8 Pressure signal measured at sensor (a

ii
), located at 75 mm of radial distance from the rock 

joint, and at sensor (a
iv

), located at 150 mm radial distance from the rock joint; a) core jet 
impact; b) developed jet impact (Bollaert, 2002). 

As defined previously, Dj represents the jet diameter at impact with the plunge pool and Y 

represents the depth below the surface of the plunge pool. The addition of the product 0.25Y to the radius 

at impingement accounts for the jet spread with depth, generally 13-14
o
 or a ratio of 1:4 (0.25) (Bollaert, 

2002).  

As illustrated in Figure 4.8, the change in pressure with distance from the centerline varies 

depending on the development of the jet. Figure 4.9 shows the distribution of mean and fluctuating 

dynamic pressure coefficients with dimensionless distance away from the jet centerline. 
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Figure 4.9 Radial distribution of the non-dimensional dynamic pressure coefficients at the plunge 

pool bottom: a) mean dynamic pressure coefficients Cp; b) root-mean square pressure 
coefficient C'p. The reference distance rmax is defined as the maximum radial extension of 
the zone that is subjected to the turbulent shear layer of the impacting jet rmax = 0.5Dj + 
0.25Y (Bollaert, 2002). 

The ratios, shown along the y-axis represent the proportion of the average and fluctuating 

dynamic pressure coefficients that can be applied with distance, where Cpr and C’pr are the mean and 

fluctuating dynamic pressure coefficients, respectively. Cpa here is the equivalent of Cp. The ratios for the 

mean portion of the pressure distribution are expressed in Equations 4.16 for developed jets and Equation 

4.17 for undeveloped depths (Bollaert, 2002): 

 
𝐶𝑝𝑟

𝐶𝑝
= 𝑒

−3(
𝑟

𝑟𝑚𝑎𝑥  
)

2

  for developed jets and all r values (4.16) 

 
𝐶𝑝𝑟

𝐶𝑝
= 𝑒

−6(
𝑟

𝑟𝑚𝑎𝑥  
)

2

 for undeveloped jets and all r values (4.17) 

The ratios for the fluctuating portion of the pressure distribution are expressed in Equations 4.18 

for developed jets and Equations 4.19 and 4.20 for undeveloped depths, depending on the value of r 

(Bollaert, 2002): 

 
𝐶′𝑝𝑟

𝐶′𝑝
= 𝑒

−3(
𝑟

𝑟𝑚𝑎𝑥  
)

2

  for developed jets and all r values (4.18) 

 
𝐶′𝑝𝑟

𝐶′𝑝
= 𝑒

−3(
𝑟

𝑟𝑚𝑎𝑥  
−0.5)

2

 for undeveloped jets and r > 0.5rmax (4.19) 

 
𝐶′𝑝𝑟

𝐶′𝑝
= 1 for undeveloped jets and r ≤ 0.5rmax (4.20) 
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4.1.2.3 Total Energy Dissipation 

The combination of the mean and fluctuating dynamic pressure coefficients results in a non-linear 

energy decay with depth, dependent on the jet turbulence intensity, impact velocity, break up length, and 

trajectory length. The mean and fluctuating dynamic pressure coefficients can be combined with the 

radial mean and fluctuating dynamic pressure coefficient ratios to calculate the total dynamic pressure at a 

dimensionless depth within the plunge pool. In a similar manner, the coefficients can also be combined to 

calculate the total stream power, Ptotal, at a dimensionless depth (Y/Dj), as shown in Equation 4.21, 

modified from Annandale (2006) to account for the lateral dissipation of energy with distance from the jet 

centerline:  

 𝑃𝑡𝑜𝑡𝑎𝑙 (
𝑌

𝐷𝑜𝑢𝑡
,

𝑟

𝑟𝑚𝑎𝑥
) =  𝑝𝑗𝑒𝑡 [(𝐶𝑝 (

𝑌

𝐷𝑜𝑢𝑡
)

𝐶𝑝𝑟

𝐶𝑝
(

𝑟

𝑟𝑚𝑎𝑥
)) + (𝐶′𝑝 (

𝑌

𝐷𝑜𝑢𝑡
)

𝐶′𝑝𝑟

𝐶′𝑝
(

𝑟

𝑟𝑚𝑎𝑥
))] (4.21) 

Where pjet is the calculated stream power at impingement, defined by the discharge, drop height, 

and cross sectional area from Equation 4.10. Equation 4.21 can be used to calculate the total stream power 

as a function of depth within the plunge pool and lateral distance from the jet centerline by recalculating 

the mean and fluctuating dynamic pressure coefficients and radial mean and fluctuating dynamic pressure 

coefficient ratios for the appropriate dimensionless plunge pool depth.  

4.2 The Rock Mass 

In the early 1990’s Annandale, among other researchers, began assessing the erodibility of earth 

materials in the context of Kirsten’s (1982) geomechanical index on excavatability. The goal of all of the 

researchers was to develop a relationship between key rock parameters and the ease of their removal by 

hydraulic forces. Annandale’s methodology, in particular, focused on finding a balance between the 

geologic engineering properties of the earth material and the hydraulic flow conditions such that one was 

not weighted higher in importance than the other (Annandale, 1995). The methodology is based on over 

150 field observations, including 137 spillway observations from dams in Kansas and Arkansas, as well 

as scour data from four dams in South Africa and Bartlett Dam in Arizona. The methodology addresses 

scour of essentially all rock and soil types, ranging from loose sands, clays and silts to strong granite and 

gneiss rock formations. Figure 4.10 shows the relative magnitude of stream power in rivers, around bridge 

piers, and downstream of overtopping dams as well as the resistance of the various earth materials.  
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Figure 4.10 Schematic illustration of the relative magnitude of stream power and the resistance to 

scour offered by earth materials. This figure is qualitative and should not be used for 
analysis and design (Annandale, 2006). 

Annandale’s Erodibility Index Method, originally published in 1995, determined that the 

erodibility of earth materials was dependent on the material strength, block or particle size, discontinuity 

conditions and orientations, as outlined in Equation 4.22, below: 

 𝐾 = 𝑀𝑠 ∙ 𝐾𝑏 ∙ 𝐾𝑑 ∙ 𝐽𝑠 (4.22) 

Where: 

K = Erodibility index value 

Ms = Mass strength number 

Kb = block size number 

Kd = discontinuity/bond shear strength number 

Js = relative ground structure number 

This relationship is applicable to both soil and rock materials. For rock materials the resistance to 

erosion increases in materials with strong chemical bonds within the rock’s crystal structure. The 

presence of fractures and/or imperfections in the rock mass, however, reduce the overall ability to resist 

erosion, which results in a lower K value than rock with no fractures or imperfections (Annandale, 2006). 
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As a result, for rock, both intact and rock mass parameters are used to quantify the erosive resistance of 

the material. For soil materials the resistance to erosion increases in materials with larger grain sizes or 

cohesion. 

Figure 4.11 shows the distribution of the data from Annandale’s (1995) analysis and the derived 

scour threshold for various stream powers. Threshold stream power necessary to initiate erosion is related 

to the erodibility index (K) value from Equation 4.26 and Figure 4.11, with K along the x-axis and the 

associated stream power along the y-axis, in kW/m
2
. The dashed line represents the threshold value, with 

the square points (pink) representing tested samples that did not experience scour and the diamonds (blue) 

representing tested samples that did experience scour. 

The threshold stream power necessary to initiate erosion (Pc) can then be calculated from the 

erodibility index K value as follows in Equations 4.23 and 4.24 (Annandale, 1995, 2006): 

 𝑃𝑐 = 0.48(𝐾)0.44       for 𝐾 ≤ 0.1 (4.23) 

  𝑃𝑐 = 𝐾0.75                   for 𝐾 > 0.1 (4.24) 

 

Figure 4.11 Erosion threshold relating stream power and erodibility index (Annandale 1995, 2006). 
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The threshold identified in Figure 4.11 represents a solid boundary at which erosion initiates. In 

reality, however, the threshold is better represented by a region. When a data point falls within the 

threshold region there is uncertainty as to whether or not the material will erode (Wibowo et al., 2005). 

Wibowo et al.’s(2005) research developed a logistic regression to assess the probability of scour based on 

the stream power experienced by the bed and the erosive resistance of the bed material, from Annandale’s 

erodibility index. Based on Annandale’s original dataset and binary logistic regression, Wibowo produced 

a series of threshold lines, each associated with a different probability of failure. The 50% probability line 

corresponded well with Annandale’s original erosion threshold. Wibowo et al.’s (2005) logistic regression 

is expressed as: 

 𝑃(𝐸) =  
1

1+𝑒−(−1.859−7.029ln 𝐾+9.798ln 𝑃𝑡𝑜𝑡)
 (4.25) 

Where P(E) is the probability of failure, K is the erodibility index, and Ptot is the stream power 

experienced by the rock. The rock erodibility parameters used in Equation 4.22 to quantify the erodibility 

index K value can be calculated using the relationships developed in the following sections. 

Mass Strength Number (Ms) 

For rock, the mass strength number is based on Unconfined Compressive Strength (UCS) values 

from intact rock samples (MPa) (Annandale, 2006). Higher rock strengths indicate higher resistance to 

rock scour, per Equations 4.26 and 4.27: 

𝑀𝑠 = 𝐶𝑟 ∙ 0.78 ∙  𝑈𝐶𝑆1.05 When 𝑈𝐶𝑆 ≤ 10 MPa (4.26) 

𝑀𝑠 = 𝐶𝑟 ∙ 𝑈𝐶𝑆 When 𝑈𝐶𝑆 > 10 MPa (4.27) 

Cr is a coefficient of relative density (Equation 4.27), defined in terms of acceleration due to 

gravity (g in m/s
2
) and the mass density of the rock (ρ in kg/m

3
). The numeric term in the denominator 

normalizes Cr to a reference unit weight of rock (in N/m
3
). 

 𝐶𝑟 =
𝑔∗𝜌𝑟

27 × 103
 (4.28) 

Ms can also be estimated from field observations, as shown in Appendix A, Table A.1. For soils, 

the Ms value is a function of a cohesive material’s stiffness and a non-cohesive material’s density. Values 

range from 0.02 to 0.41 and can be estimated from vane shear strength for cohesive soils and from SPT 

blow count for non-cohesive soils. 
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Block Size Number (Kb) 

Kb is a function of joint spacing and the number of joint sets in a rock mass, as shown in Equation 

4.29. Joint spacing is estimated based on Rock Quality Designation
1
 (RQD) values and joint sets are 

established from Kirsten’s (1982) joint set number (Jn), shown in Appendix A, Table A.2. More intact 

rock, with fewer joint sets, results in larger rock blocks, which are more difficult to remove. 

 𝐾𝑏 =
𝑅𝑄𝐷

𝐽𝑛
 (4.29)

 
 

Block size number for cohesive soils is assumed equal to unity. For non-cohesive soils, Kb is 

calculated from the characteristic particle diameter, D50, (in m), as shown in Equation 4.30: 

 𝐾𝑏 = 1000𝐷50
3  (4.30) 

Discontinuity/Bond Shear Strength Number (Kd) 

Kd represents the relative resistance offered by discontinuities in rock. It is calculated from the 

joint wall roughness (Jr) and joint wall alteration number (Ja) (Kirsten, 1982), as shown in Equation 4.31. 

 𝐾𝑑 =
𝐽𝑟

𝐽𝑎
 (4.31) 

Joint roughness contributes to rock stability due to the higher frictional resistance experienced 

along discontinuities. Joint infill or alteration detracts from the stability, as these features reduce the 

frictional resistance. Tables for estimating joint wall roughness and joint wall alteration number are 

shown in Appendix A, Table A.3 and Table A.4. 

For granular soils Kd is estimated based on the residual friction angle via Equation 4.32: 

 𝐾𝑑 = tan (𝜑) (4.32) 

Relative Ground Structure Number (Js)  

Js is a function of 1) the orientation of least favorable discontinuities within the rock, that is, 

discontinuities that are most easily eroded due to their orientation relative to flow direction and 2) the 

shape of the material units. Values for this parameter are shown in Appendix A, Table A.5. Adverse joint 

                                                 
 
1
 RQD can also be estimated based on the equation  𝑅𝑄𝐷 = 105 − (10 𝐷⁄ ) where D is the mean block diameter in 

meters (Annandale, 2006). 
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orientations result in higher pressures within the joints themselves, which increase the likelihood of rock 

removal. Favorable joint orientations prevent pressure buildup within joints. Figure 4.12 shows favorable 

and unfavorable joint discontinuity orientations, based on flow direction. For soils, this parameter is set 

equal to unity. 

 
Figure 4.12  Favorability of discontinuity orientation, based on flow direction (USBR, 2012). 
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CHAPTER 5  

DAM SITE DESCRIPTIONS 

Four dam sites were selected for this analysis, based on the availability of data to both a) 

characterize plunge pool materials and spillway discharge and b) validate modeling based on existing 

plunge pool surveys. The four dams include Peace Canyon Dam, Seven Mile Dam, Revelstoke Dam, and 

W.A.C. Bennett Dam and are located across British Columbia as shown in Figure 5.1. All dams are 

owned and operated by BC Hydro, public energy utility. 

 
Figure 5.1 Dam site locations in British Columbia, Canada. 

The following sections provide general dam and spillway characteristics as well as the geologic 

environment in which the facilities are located. 

5.1 Peace Canyon Dam 

Peace Canyon Dam is located in north central British Columbia on the Peace River about 92 

miles upstream from where the Peace River crosses the British Columbia-Alberta border, as shown in 

Figure 5.1. The dam is one of the two dams constructed on the Peace River near Hudson’s Hope, B.C. 

The W.A.C. Bennett Dam, discussed further in Section 5.4, is the second dam in the area and is located 
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upstream of Peace Canyon Dam. Outflow from Williston Lake, retained by W.A.C. Bennett Dam, is the 

inflow to Peace Canyon Dam. Completed in 1980, the dam is a concrete gravity structure and retains 

Dinosaur Reservoir, which extends 14 miles upstream of the structure. The dam itself, pictured in Figure 

5.2, is 1,130 ft long and 200 ft tall. 

 
Figure 5.2 Peace Canyon Dam, showing the six-gated overflow spillway on the left (river right) and 

the powerhouse on the right (river left). 

Peace Canyon Dam is a run-of-the-river dam. Dinosaur Reservoir has a surface area of 2,200 

acres and a storage volume of 175,000 acre-feet when the pool is at Maximum Normal Reservoir Level 

(El. 1,650 ft). Maximum Flood Reservoir Level is at elevation 1,655 ft.  The spillway is located on the 

river-right side of the dam the power intake section is located on the left, as depicted in Figure 5.2. The 

power intake portion of the dam consists of four units and has a maximum sustainable generating capacity 

of 700 MW (BCH Report No. H1742).  

Site Geology 

The Peace River Valley is located in the foothills of the northern Rocky Mountains, a 35 mile 

wide transitional zone where the high altitude Rocky Mountains to the west meet the low-lying, interior 

plains to the east. The Peace River itself flows generally east through a glacial trough, at right angles to 

the regional structural trend of the bedrock geology. Glacial infill of the Peace River valley upstream of 

the present day Peace Canyon Dam resulted in the river’s diversion and subsequent down-cutting through 

sedimentary bedrock along the new path, forming the 14-mile long, 700-foot deep canyon. Peace Canyon 

Dam is located at the downstream end of the river-cut canyon (BCH Report No. H1742). 

Surficial deposits in the area are largely glacial till deposited in the late Pleistocene. The region 

has undergone three periods of glaciation, including regional glaciation and more localized alpine 
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glaciation. Deposits in the area tend to be discontinuous periglacial or interglacial basal river sands and 

gravels, glacial till, and lake deposits. Post glaciation debris flow and alluvial fan deposits are also present 

in the area (BCH Report No. H1742).  

Spillway Characteristics 

The Peace Canyon spillway is located on the river-right side of the dam and is a gated six-bay 

ogee-shaped overflow spillway with flip buckets at the toe. Spillway bays are equipped with radial 50 feet 

wide by 41.5 feet high gates. Bays are numbered one through six, beginning at the powerhouse and 

proceeding in the river-right direction. The spillway is split into two chutes to provide lateral flow control, 

one consisting of spillway bays one and two and the other consisting of spillway bays three through six. 

Typical sections of the spillway are provided in Figure 5.3 and Figure 5.4. The spillway crest level is at 

elevation 1,612 ft and the top of the radial gates is elevation 1,652 ft, when completely closed. The 

spillway profile consists of an ogee-shaped crest, followed by a long convex circular section that merges 

with the dam back slope, at 0.7647 H: 1.0 V, which then merges into a 55 ft flip bucket radius. Spillway 

bays one and two have a flip bucket lip angle of 30 degrees from horizontal and bays three through six 

have an angle of 20 degrees (BCH Report No. H1742). 

The design spillway capacity, based on the probable maximum flood (PMF) release from the 

upstream W.A.C. Bennett Dam, is 363,000 cfs (BCH Report No. H1742). Spillway gates can be operated 

independently and at variable gate heights to safely pass the discharge based on the spillway gate rating 

curves. Spillway bays three and four are the primary gates used for water discharge because they are 

centered on the plunge pool area, minimizing the risk to the stability of the powerhouse and river bank 

(BCH Report No. H1742). Spillway operating procedure dictates the gate opening and closing order to 

minimize damage to the plunge pool, downstream river bank, and powerhouse. Gate opening and closing 

orders are as follows: 

 Opening: 3, 4, 6, 5, 1, 2 

 Closing: 2, 1, 6, 5, 4, 3 

The order is largely based the proximity of the various bays to the powerhouse. To reduce 

damage, bays five and six are preferred to bays one and two. Additionally, bays one and two require 

greater flow to initiate flip action and propel water away from the structures due to the higher flip bucket 

release angle (BCH Report No. H1742). A summary of spillway characteristics is provided in Table 5.1.  



29 

 

 
Figure 5.3 Cross Section of Spillway Bays 1 & 2. 

 

 
Figure 5.4 Cross Section of Spillway Bays 3 through 6.  
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Table 5.1 Peace Canyon Dam Key Spillway Characteristics 

General 

Type of Spillway Gated Overflow Spillway 

Total Spillway Width 440 ft across spillway blocks  
S1 – S7 

Overall Spillway Length 240 ft (Bays 1-2) 

220 ft (Bays 3-6) 

Headworks 

  Number of Overflow Bays 6 

  Pier Width 10 ft 

  Ogee Crest Elevation El. 1,612 ft 

  Gates 6 Radial Gates 

  Gates Dimension 50 ft wide x 41.5 ft high 

Terminal Structure 

Energy Dissipation Flip Buckets 

Bucket Radius 55 ft 

Bucket Invert Elevation El. 1,495 ft (Bays 1-2) 

El. 1,510 ft (Bays 3-6) 

Bucket Lip Angle 30
o
 (Bays 1-2) 

20
o
 (Bays 3-6) 

Bucket Lip Elevation El. 1,512.37 ft (Bays 1-2) 

El. 1,522.77 ft (Bays 3-6) 

Bucket Width 116 ft (Bays 1-2 combined) 

234 ft (Bays 3-6 combined) 

Hydraulics 

Normal Conditions 

  Maximum Normal Reservoir Level El. 1,650 ft 

  Tailwater level with Three Units Rated Discharge El. 1,518 ft 

Flood Conditions 

  Inflow Design Flood
1 

330,200 cfs 

  Maximum Flood Level
1 

El. 1,652.4 ft 

  Maximum Tailwater Level
2 

El. 1,532 ft 

Notes: (Monfette, 2004); 
1
(BCH Report No. OMSPCN, 2003); 

2 
Monfette’s estimate from current 

tailwater rating curve (BCH Drawing No. 1007-C14-D4954) 

5.2 Seven Mile Dam 

Seven Mile Dam is a concrete gravity structure in the Kootenay region of southwestern British 

Columbia on the Pend d’Oreille River, 6 miles upstream from its confluence with the Columbia River 

near the Canada-U.S. border, as shown in Figure 5.1. When filled to the maximum normal reservoir level, 

the dam retains 85,000 acre-ft of water, which covers a ten square mile area. The dam has been designed 

as a run-of-the-river dam, with outflows equaling inflows and relatively little change in reservoir head. 

The dam is a 1,138 ft long structure with a straight axis and a maximum height from the bottom of the 
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drainage sump to the deck of 262.5 ft. The axis consists of a 350 ft long north gravity section on the right, 

a 336 ft long power intake section, a 322 ft long spillway section, and a 130 ft long south gravity section 

on the left  (BCH Report No.1743; BCH Report No. PSE-362). Figure 5.5 shows the dam configuration 

looking upstream. Reservoir filling was completed in November 1979 and power generation began in 

1980. 

 
Figure 5.5 Seven Mile Dam – photograph of upstream view of the concrete gravity structure. 

Site Geology 

Bedrock in the area consists of meta-sedimentary, volcanic, and intrusive rocks ranging from 

Tertiary to Lower Cambrian age. This sequence is in contact with the Waneta Fault to the north and with 

volcanic rocks to the south. The non-calcareous meta-sedimentary rocks in the area exhibit strong 

foliations that generally dip to the south. On site and extending to the west, Tertiary aged leucocratic 

granites have been intruded into the Pend d’Oreille Sequence consisting of argillite, silty argillite, 

siltstone and minor limestone (BCH Report No. PSE-362). Rocks of the Pend d’Oreille Sequence can be 

found along the valley walls, extending approximately 5 miles upstream of the dam to well downstream. 

The dam site itself is underlain by the Pend d’Oreille Sequence and the Tertiary leucocratic granite 

intrusions. Tertiary granites on site consist of sills of various size, dykes, or irregular masses and are 

pictured just downstream of the right abutment in Figure 5.5 (BCH Report No. 1743). The region has a 

complex history of structural deformation, with evidence for low grade metamorphism, contact 

metamorphism, folding, shearing, and faulting. Tight fold axes are generally oriented roughly east-west 

across the region. Thrust faulting and faulting along bedding associated with folding are common. 

Structural features are cross-cut by the younger Tertiary granites.  
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The glacially modified Pend d’Oreille River valley is a glacial trough with moderately steep 

slopes at elevations above 4,000 ft (BCH Report No. 1743). Shallower slopes in the river valley are 

covered with glacial till and outwash deposits in areas. Two prominent glacial till and outwash terraces 

are present within the valley at approximately 1,700 ft and 1,900 ft elevation (BCH Report No. 1743). 

Local buried channels have been identified, resulting in sometimes deep alluvial deposits within the 

valley. The reservoir shoreline has experienced some sliding and sloughing, primarily in terrace deposits. 

No deep-seated movements have been observed (BCH Report No. 1743). 

Spillway Characteristics 

The ogee-shaped spillway is controlled by five 50-ft wide vertical lift gates with flip buckets at 

the toe. The spillway crest level is at 1,679 ft elevation. The top of the gates, when closed, are at elevation 

1,733 ft. The spillway geometry is split into two sections separated by a training wall. Section one 

consists of spillway bays one and two. This section is comprised of an ogee-shaped crest that merges with 

the dam back slope of 0.8H:1V, which in turn merges into a 60 ft radius and a 75-ft long downward 

sloping section which terminates in a 60 ft radius flip bucket with an exit angle of 30
o
. Section two 

consists of bays three, four, and five. The geometry of section two is similar to section one, but excludes 

the 75 ft long downward sloping section. Spillway cross sections are shown in Figure 5.6. The split chute 

design was adopted to address concerns about jet impingement on the powerhouse structure and to 

minimize construction costs.  

 
Figure 5.6  Seven Mile Dam spillway cross sections (BCH Report No. H1743). 

The bucket lip elevations for sections one and two are 1,555.54 ft and 1,565.54 ft respectively 

(BCH Report No. H1743). The spillway facilities were built to safely pass the inflow design flood of 
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370,000 cubic feet per second (cfs) with no damage to the dam, spillway, or intake structure.  Table 5.2 

gives values for key spillway characteristics (Monfette, 2004). 

Spillway gate operation varies based on the flow the structure must pass. Gates one and two are 

used exclusively for flows up to 17,400 cfs. Spillway gates one through four are used under normal 

conditions. Efforts to minimize the impact of discharge on the left bank downstream of the dam preclude 

the use of gate 5 unless there is danger to the dam or other spillway gates (BCH S.O.O 4P-36, 1997). 

Table 5.2 Seven Mile Dam Key Spillway Characteristics 

General 

Type of Spillway Gated Overflow Spillway 

Total Spillway Width 322 ft 

Overall Spillway Length 330 ft (Bays 1-2) 

250 ft (Bays 3-5) 

Headworks 

  Number of Overflow Bays 5 

  Pier Width 12 ft 

  Ogee Crest Elevation El. 1,679 ft 

  Gates 5 Vertical Lift Gates 

  Gates Dimension 50 ft wide x 54.42 ft high 

Terminal Structure 

Energy Dissipation Flip Buckets 

Bucket Radius 60 ft 

Bucket Invert Elevation El. 1,545 ft (Bays 1-2) 

El. 1,555 ft (Bays 3-5) 

Bucket Lip Angle 30
o
 (Bays 1-5) 

Bucket Lip Elevation El. 1,555.54 ft (Bays 1-2) 

El. 1,565.54 ft (Bays 3-5) 

Bucket Width 115.5 ft (Bays 1-2 combined) 

177.5 ft (Bays 3-5 combined) 

Hydraulics 

Normal Conditions 

  Maximum Normal Reservoir Level El. 1,730 ft 

  Tailwater level with Three Units Rated Discharge El. 1,523 ft 

Flood Conditions 

  Inflow Design Flood 376,900 cfs 

  Maximum Flood Level El. 1,732 ft 

  Maximum Tailwater Level
1 

El. 1,556 ft 

Notes: (Monfette, 2004); 
1 
Monfette’s estimate from current tailwater rating curve (BCH Drawing No. 

224-C14-B1740) 
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5.3 Revelstoke Dam 

Revelstoke Dam is located along the Columbia River in southeastern British Columbia three 

miles north of the city of Revelstoke. The general location is shown in Figure 5.1. The Revelstoke 

Hydropower Project is located between the upstream Mica Hydropower Project and the downstream 

Keenleyside Project. The project’s concrete gravity dam is placed in the steep-sided, north-south oriented 

portion of the Columbia River valley between the Selkirk and Monashee Mountain Ranges (BCH Report 

No. H1864). The structure, shown in Figure 5.7, retains Lake Revelstoke, which consists of 4.3 million 

acre-ft at Maximum Normal Reservoir Level (Elev. 1,880 ft). The primary dam consists of a 1,550 ft long 

concrete gravity dam that is 575 ft tall at its highest point. An earthfill embankment is also present along 

the river-right bank, as shown on the left side of Figure 5.7. This portion of the dam is 3,800 ft long and 

extends 260 ft above the ground surface. The spillway is visible on the river-right side of the concrete 

gravity structure. The spillway consists of two gated overflow bays and two intermediate gated outlets, 

which are rarely operated. All gates empty to a long chute, which transports water well downstream of the 

dam. The powerhouse associated with the project consists of five hydropower units with a generating 

capacity of 2,480 MW of power, with provisions to install one additional unit (BCH L.O.O. No. 3PO3-47, 

2000). 

 
Figure 5.7 Revelstoke Project– upstream view of concrete gravity dam structure, earthfill 

embankment structure (river right, photo left) and spillway chute (river right, photo left). 
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Site Geology 

Regionally, the Revelstoke Project is located within the Columbia River Fault Zone. To the west 

of the zone lies the Monashee Complex and to the east likes the Selkirk Allochthon. Both complexes 

consist of metamorphic rocks primarily of sedimentary origin (BCH Report No. H1864). The Monashee 

Complex to the west represents a Precambrian succession of mixed gneisses and meta-sediments, which 

have undergone multiple deformation events. Rocks within the Complex range from 2.7 billion year old 

to 700 million year old gneiss (BCH Report No. H1864). The Clachnacudainn Slice of the Selkirk 

Allachthon borders the Columbia River Fault Zone on the east and consists of granodioritic plutonic rocks 

and metasediments.  Movement along the Columbia River Fault Zone from 160 to 45 million year ago 

resulted in the formation of a 0.6 mile thick mylonite zone and intense brittle fracturing and gouging 

within the dam site. 

The project itself sits within the glacially eroded Columbia River Valley. Surficial deposits in the 

valley consist of remnants of early valley fill, glacial till and outwash, and postglacial deposits (BCH 

Report No. H1864). The most extensive deposits within the Revelstoke Project area include late glacial 

and post-glacial outwash and lacustrine deposits, dominantly silt, sand, and gravel (BCH Report No. 

H1864). The reservoir banks are lined with active landslides, historic landslide deposits, and generally 

landslide-susceptible materials. 

Spillway Characteristics 

The headworks of the spillway are located at the transition between the concrete to the earthfill 

dams. The headworks consist of two radial gate overflow bays and two low level outlets. The radial 

overflow bays are gated by 45 ft wide by 59 ft tall radial gates located at the ogee-shaped spillway crest at 

elevation 1,825ft. The low level outlets are gated by 17.5 ft wide by 25 ft high radial release gates located 

at elevation 1,700ft.Water discharges into a 975 ft long chute, where it is transported to the terminal 

horizontal free overfall structure and pre-excavated plunge pool at the river-right bank downstream of the 

dam (BCH Report No. H1864). As shown in Figure 5.8, the chute is initially steep, following the face of 

the dam at a slope of 1.0 V:0.76 H from the spillway crest, then grading to a gentler slope of 1.0 V:0.1715 

H at the beginning of the chute at elevation 1,690ft, where the low level outlets discharge down the center 

of the spillway, for 300 ft. The chute then shallows to a slope of 0.002 and continues for another 472 ft, 

expanding from 120 ft wide where the 0.002 slope begins to 150 ft wide at the horizontal free overfall 

terminal structure located at elevation 1,620 ft that projects water into the pre-excavated plunge pool of 

elevation 1,425 ft (BCH Report No. H1864). Table 5.3 shows pertinent spillway characteristics. 
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When in operation, spillway gates are opened and closed at the same time and maintained at the 

same level to promote stable hydraulic conditions within the spillway chute (BCH L.O.O. 3PO3-47, 

2000). Discharge records also indicate the exclusive use of either overflow bays or the low level outlet 

works; the two are not used simultaneously. 

 
Figure 5.8 Revelstoke Dam spillway structure plan and profile, showing crest, outlet, and pre-

excavated plunge pool elevations (Monfette, 2004); low level outlet gates shown in lower 
left of figure 

5.4 W.A.C. Bennett Dam 

W.A.C. Bennett Dam is located 14 miles upstream of Peace Canyon Dam on the Peace River. 

This facility is located at the head of Peace River Canyon. The dam is one of the largest earth 

embankment dams in the world, extending 6,700 ft across Peace River Canyon and rising 600 ft from the 

foundation. Water is released either to the G.M. Shrum Generating Station or through the long chute 

spillway, pictured along the river-right of the dam in Figure 5.9. The dam retains Williston Lake, a 684 

square mile reservoir when at Maximum Normal Reservoir Level (El. 2,205 ft), containing 60.2 million 

acre-ft of water. 
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The G.M. Shrum Generating Station consists of 10 hydropower units that are capable of 

producing 2,730 MW of power. The generating station came online in September of 1968 and was 

generating at full capacity by February 1980. 

Table 5.3 Revelstoke Dam Key Spillway Characteristics 

General 

Type of Spillway Long Chute Spillway 

Total Spillway Width 224 ft across spillway blocks  
S1 – S3 

Overall Spillway Length 1,300 ft 

Headworks 

Radial Overflow Bays   

  Number of Bays 2 

  Pier Width N/A 

  Ogee Crest Elevation El. 1,825 ft 

  Gates 2 Radial Gates 

  Gates Dimension 45 ft wide x 59 ft high 

Low Level Outlets  

 Number of Outlets 2 

 Pier Width 10 ft 

 Sill Elevation El. 1,700 ft 

 Gates 2 Outlet Sector Gates 

 Gate Dimensions 17.5 ft wide x 25 ft. high 

Terminal Structure 

Energy Dissipation Horizontal Free Overfall 

Bucket Radius 0
o
 

Bucket Invert Elevation El. 1,620 ft 

Bucket Lip Angle 0
o
  

Bucket Lip Elevation El. 1,620 ft 

Bucket Width 150 ft 

Hydraulics 

Normal Conditions 

  Maximum Normal Reservoir Level El. 1,880 ft 

  Tailwater level with Four Units Rated Discharge El. 1,459 ft 

Flood Conditions 

  Inflow Design Flood 251,000 cfs 

  Maximum Flood Level El. 1,884 ft 

  Maximum Tailwater Level
1 

El. 1,481 ft 

Notes: (Monfette, 2004); 
1 
Monfette’s estimate from BCH Drawing of spillway profile (BCH Drawing 

No. 212-C21-U11/U47/U48). 
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Figure 5.9 W.A.C. Bennett Embankment Dam, showing orientation of dam, spillway, and G.M. 

Shrum Generating Station (energeticcity.ca). 

 
Site Geology 

The W.A.C. Bennett Dam and surrounding facilities have been constructed in a glacial trough 

carved through Meso- and Cenozoic sedimentary sandstones, siltstone, and shale. Peace Canyon, and now 

Williston Lake, extends easterly roughly perpendicular to the regional structural trend of the bedrock. 

Rocks on site are of the Cadomin/Dunlevy and Gething Formations. The lower Cadomin/Dunlevy 

Formation makes up the majority of the foundation rock and consists dominantly of strong quartz 

sandstones, with some softer shale layers subject to slaking, and sporadic coal seams ranging from less 

than an inch to several feet in thickness. Sedimentary rocks in this region have been subjected to folding 

and faulting, however no large scale structural features are located in the immediate vicinity of the 

damsite. The overlying Gething Formation consists of massive and interbedded shale with thin sandstone 

beds, but is located higher on the Peace River Canyon walls and not beneath the dam foundation or 

plunge pool (Domage & Campbell, 1963). 

Surficial deposits on site are primarily glacial deposits, sourced from the three identified 

glaciations to which the area was subjected. Included among these are periglacial and interglacial river 

sand and gravel deposits, glacial tills, and glacio-lacustrine and fluvial units deposited during glacier 

retreat (BCH Report No. H1756, 1988).  Glacial kame deposits and kettles have also been noted on 

terraces around the reservoir area. Post-glacial river deposits, alluvial fans, and landslide deposits are the 

youngest noted surficial materials on site. 
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Spillway Characteristics 

The W.A.C. Bennett spillway headworks consists of three radial discharge bays at the ogee crest 

(El. 2,145), each 50 ft wide and 61 ft tall, and nine gated sluices. Sluices are also incorporated into the 

headworks at elevation 2,105 ft in groups of three below each overflow bay, but are considered out of 

service. The primary purpose of the sluices was to provide additional discharge in the event that the 

power plant is un-operational. Radial gates and sluice gates discharge to a 2,240 ft long trapezoidal 

channel with a typical width of 100 ft. Chute walls are 57 ft high. The spillway ends at a spoon shaped 

concrete flip bucket that sits approximately 300 ft below reservoir level. The terminal structure has a flip 

bucket angled at 30 degrees. A summary of key spillway characteristics is provided in Table 5.4. The 

combined discharge is 325,000 cfs for the radial gates, when the reservoir is at elevation 2,215 ft (BCH 

Report No. H1756, 1988). A plan and profile of the spillway is provided in Figure 5.10. 

 

 
Figure 5.10 W.A.C. Bennett Spillway generalized plan and profile (BCH Report No. H2224, 1967) 
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Table 5.4 W.A.C. Bennett Dam Key Spillway Characteristics 

General 

Type of Spillway Long Chute Spillway 

Total Spillway Width 205 ft across headworks  

Overall Spillway Length
1 

2,400 ft 

Headworks 

Radial Gates   

  Number of Bays 3 

  Pier Width 15 ft 

  Ogee Crest Elevation El. 2,145 ft 

  Gates 3 Radial Gates 

  Gates Dimension 50 ft wide x 61 ft high 

Sluices  

 Number of Sluices 9 

 Pier Width 8 ft 

 Sill Elevation El. 2,105 ft 

 Gates 9 Vertical Lift Gates 

 Gate Dimensions 6 ft wide x 8 ft. high 

Terminal Structure 

Energy Dissipation Asymmetrical Flip Bucket 

Bucket Radius Variable 

Bucket Invert Elevation El. 1,876 ft 

Bucket Lip Angle 30
o
  

Bucket Lip Elevation El. 1,890 ft 

Bucket Width 135 ft (lip length) 

Hydraulics 

Normal Conditions 

  Maximum Normal Reservoir Level El. 2,205 ft 

  Tailwater level with Ten Units Rated Discharge
1 

El. 1,655 ft 

Flood Conditions 

  Inflow Design Flood
2 

273,053 cfs 

  Maximum Flood Level
2 

El. 2,208.8ft 

  Maximum Tailwater Level
3 

El. 1,664 ft 

Notes: (Monfette, 2004); 
1 
Estimate from Monfette, 2004; 

2
from BCH Report No. E835, 2012; 

3 
estimate from BCH Drawing of spillway profile (BCH Drawing No. 1006-C14-U812, 1006-

C21-U16/U32); 
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CHAPTER 6  

METHODOLOGY 

The methodology employed here is focused on calculating the deepest extent and location of 

plunge pool scour from spillway geometry and flow data, with an emphasis on accounting for changes in 

the erosive resistance of the rock material within the plunge pool.  To achieve this, the data outlined in 

Table 6.1 were required for each of the four dams investigated. 

Table 6.1 Required data for plunge pool scour analysis. 

Hydrology 

Parameters 

Geology  

Parameters 

Spillway Geometry 

Parameters 

Plunge Pool  

Geometry 

 Spillway discharge 
hydrograph 

 Reservoir elevation 

 Tailwater elevation 

 Spillway gate rating 
curves 

 Plunge pool geologic 
maps 

 UCS strength values 

 RQD values 

 No. of joint sets 
 Joint properties; wall 

roughness, separation 

 Joint set orientations 

 Spillway crest 
height 

 Spillway profile 

 Spillway width 

 Gate height 

 Initial river bed 
geometry 

 Plunge pool 
surveys over 
time 

 

A numerical model was developed to approximate the location of jet impact with the plunge pool 

and the energy dissipation that occurs with depth as the jet moves through the water. The general 

methodology for this analysis consisted of six parts: 

 Numerical model creation, 

 Generation of hydraulic model inputs, 

 Plunge pool cross section selection, 

 Creation of the cross section geomechanical models, 

 Numerical modeling of the plunge pool, 

 Conduction of sensitivity analyses, and 

 Comparison of modeled and existing cross sections 

6.1 Numerical Modeling Approach and Model Creation 

The numerical model developed for this analysis, named EIM_ProfileCalc, is based on the jet 

hydraulic theory and Erodibility Index Method outlined in Section 4. Input parameters into the model 

include general spillway characteristics: 

 Full dam name and abbreviation 
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 Spillway terminal structure type, 

 Elevation of flip bucket lip, 

 Angle of flip bucket lip, 

 Radius of flip bucket lip, 

 Spillway face slope angle, 

 Length of modeled spillway 

Rock erodibility information: 

 Length of modeled plunge pool profile, 

 Minimum elevation of modeled plunge pool profile, and 

 1 ft x 1 ft array of erodibility index K values for modeled plunge pool profile 

And hydraulic information for each day of record: 

 Date of record 

 Jet velocity at issuance, 

 Jet diameter at issuance, 

 Froude number at issuance, 

 EGL elevation at issuance, 

 Manning’s roughness at issuance, and 

 Tailwater elevation. 

EIM_ProfileCalc reads in the spillway and rock erodibility information for the dam site and the 

daily hydraulic information and immediately generates an output file that records important jet hydraulic 

parameters for each day of record.   

Spillway information is entered directly into the program and does not change over the course of 

model operation. The extent and minimum elevation of the modeled profile, however, must be larger than 

the anticipated location of the plunge pool invert. If scour exceeds the lateral or vertical extent of the 

modeled profile, the profile dimensions must be modified in the program for successful operation.  

Erodibility index information is entered as a comma delimited ‘.csv’ grid. Row one of the table 

contains the distance downstream from the flip bucket lip or terminal structure. Column one contains the 

range of elevation from the flip bucket to the minimum modeled elevation. All other cells contain the 
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erodibility index K values representative of the rock material at that location. Figure 6.1 shows an 

example of an abbreviated input erodibility index Array. 

 
Figure 6.1 Input erodibility index array example format 

Daily hydraulic information may consist of a continuous series or discrete points; the model does 

not require a continuous data series. Points must, however, be in chronological order if a series of points 

is used. The input daily hydraulic information file, also in ‘.csv’ format, consists of six columns. Row one 

of the file contains the data type. Each subsequent row contains the values for each recorded data point, as 

shown in Figure 6.2. The ‘Date’ value must be formatted with dashes only and flow depth, velocity, EGL, 

and tailwater elevation must be in English units. 

The model uses the velocity and flow depth at jet issuance, taken at the flip bucket or ski-jump 

lip, and calculates the jet trajectory, point of impingement with the tailwater, turbulence intensity and 

break up length and diameter of the jet at impingement, as outlined in the equations in Section 4.1.1. The 

stream power of the jet at plunge pool impingement is calculated based on the total discharge from the 

spillway gates upstream of the profile, the jet footprint, and the elevation difference between the EGL and 

tailwater elevations. 
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Figure 6.2 Input hydraulic information table example format 

Once the jet becomes submerged in the plunge pool the energy dissipation with depth and 

distance from the jet centerline is calculated based on the hydraulic formulae outlined in Section 4.1.2. 

The average and fluctuating dynamic pressure coefficients are calculated at one foot intervals, measured 

vertically downward from the tailwater surface and populate a one-dimensional array with the same 

number of elements as the height of the plunge pool profile. The average and fluctuating radial dynamic 

pressure coefficients are also calculated at one foot intervals and populate a two-dimensional array with 

the same dimensions as the input erodibility index array. The four coefficient values and the jet stream 

power at impingement are then combined using Equation 4.21 to calculate the stream power for each one 

foot by one foot cell to develop a stream power array for the profile area.  

The stream power and erodibility index values for each square foot are then combined using 

Wibowo et al.’s (2005) regression analysis, Equation 4.25, to assess the probability of material removal at 

each array cell. Probability values range from 0.0 to 1.0, with 0.0 representing a 0% likelihood of rock 

removal and 1.0 represented a 100% likelihood of rock removal. Array cells with values greater than or 

equal to 0.50 are assumed to be removed by the power of the jet. 
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The original erodibility index input profile, which contains the erodibility index value for each 

cell is then modified such that cells with a probability of removal greater than 50% are ‘removed’. These 

EI values are replaced with a value of 0.0 to signify their removal.  

This process was repeated for each date of discharge over the spillway. The modified input EI 

profile that reflects areas where rock material has been removed becomes the EI array for the next daily 

discharge, resulting in cumulative plunge pool scour over time.  

The procedure can be repeated for any desired time frame and produces output profile matrices 

and figures for all modeled dates. The comparison between the calculated profile and existing profiles can 

then be conducted to assess accuracy of the calculated scour depth. The program code itself, with 

annotations, is attached in Appendix B. 

6.2 Hydraulic Model Input 

The hydraulic input for the model were derived from gate discharge and height opening values at 

each spillway crest using the US Bureau of Reclamation’s PROFILE Water Surface Profile Program for 

Prismatic Channels Version 1.10 (not dated). PROFILE is based on calculations and programming from 

the Bureau of Reclamation’s Engineering Monograph No. 42 (Falvey, 1990). The software uses the 

Standard Step Method to compute the subcritical or supercritical water surface profile for a user-defined 

channel shape and slope. The program is capable of accounting for air entrainment, which produces more 

realistic velocity and flow depth values at the downstream end of the spillway, and provides Manning’s 

Roughness values at the spillway flip bucket lip that can be used to calculate the flow turbulence 

intensity. Input discharge values for PROILE and reservoir and tailwater levels were generally determined 

using different methods based on data availability for the various dam sites due to changes in data 

collection, record keeping methods, and spillway geometry. An initial Manning’s roughness of 0.012, 

representative of finished concrete, was applied to all four sites. 

Flow characteristics calculated by PROFILE are based on simplified spillway profiles for each 

dam site and are described in more detail below. 

Peace Canyon Dam 

Individual spillway bay discharge data were available for major discharge events from April 1980 

through the present. Statistics on the pre-April 1980 spills were also available from Monfette (2004) 

including the number of days of operation for each spillway bay, maximum daily average values for each 

bay, and the maximum sustained discharge for each bay for one week and one month time periods. 
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To simplify the analysis, the PROFILE models developed for the two Peace Canyon cross 

sections were based on the spillway section half-width; flow was modeled through one spillway bay, 

assuming no lateral flow expansion downstream of the spillway piers when training walls are not present 

at the spillway section boundaries. Input discharge values are the average discharge through Bays 3 and 4 

and through Bays 5 and 6 for each day of record and the associated gate height for that discharge value 

based on the Peace Canyon Dam spillway discharge rating curve. 

Seven Mile Dam 

Individual spillway bay discharge data were available for major discharge events through 2002. 

From 2003 to present, spillway bay discharge data was back calculated using reservoir elevation, recorded 

gate height opening, and the Seven Mile Dam spillway rating curves. 

The PROFILE model for Seven Mile spillway was based on the spillway half-width of the section 

housing Bays 1 and 2. Input discharge values are the average discharge through gates one and two for 

each day of record. The input gate height is that associated with the average flow and the daily average 

reservoir level, based on the Seven Mile spillway rating curve. 

Revelstoke Project 

Spillway discharge data, differentiated between the upper radial gates and the low level outlet 

gates was available from 1984 through 2013. No data was available for 1983, when the spillway became 

operational and began passing flows. Discharge through the two outlet types was assumed to be evenly 

distributed between both radial gates or through both low level outlets, depending on the outlet type used. 

Flow was not observed to occur simultaneously through upper and lower outlet types. The gate or outlet 

heights were those associated with the average discharge and reservoir level. 

Two PROFILE models were developed for Revelstoke spillway due to the complex spillway 

geometry and the presence of the low level outlet gates along the center of the spillway. The models are 

based on the spillway half-width and exhibit lateral flow expansion downstream of the radial gate training 

walls, as shown in Figure 6.3.  

For the case of discharge through the low level outlets (Figure 6.3, Top), flow proceeds 

downstream to the end of the training walls that separate the overflow and low level outlets. Flow is then 

assumed to expand outward from the edge of the training wall until it reaches the outer walls of the 

spillway chute. The expansion angle has been calculated based on relationships between the upstream 

channel width, flow depth, and Froude Number for abrupt flow expansion (Rouse, 1950). Rouse (1950) 
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presents surface contours of flow downstream of a sudden expansion for Froude Numbers 1, 2, 4, and 8. 

Because flow through either type of spillway outlet is anticipated to be highly supercritical, the contours 

associated with the highest Froude Number (Fr=8) were used to estimate the expansion angle. For the 

case of discharge through the radial overflow bays expansion occurs from the training wall to the spillway 

centerline, where it continues downstream to the spillway terminal structure. The expansion angle is 

calculated in the same manner, where the upstream width used in the calculation is twice the distance 

between the spillway wall and the training wall. Output velocity and flow depth values are then applied to 

the entire spillway width. 

 
Figure 6.3 Revelstoke spillway half-width diagram 

  
W.A.C. Bennett Dam 

Daily discharge data through the W.A.C. Bennett spillway was provided by BC Hydro for the 

entire period of spillway operation. To simplify the calculations, the total discharge was assumed to be 

equally distributed between the three spillway bays to estimate gate height thickness during each spill 

event on record, even though spillway operational procedure require a center gate to outer gate opening 

ratio of 0.7:1.0. 

The PROFILE model for W.A.C. Bennett spillway models the total spillway width and length. 

The input discharge for this model is the total discharge through the spillway. The input gate height is that 

for one gate passing one third of the total spillway discharge. The discharge is assumed to pass through 
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one 150 ft wide ‘gate’ that is the total width of all three spillway gates. The width of the profile 

downstream of the spillway piers will equal the entire spillway width. 

6.3 Cross Section Selection 

The locations of the cross sections were selected based on the hydraulic conditions at each 

spillway and the availability of geologic data to adequately characterize the plunge pool area. Cross 

sections were selected at the locations shown in Table 6.2 for each dam site. Section locations are also 

pictured in Figure 6.4. 

Table 6.2 Dam cross section numbers and locations. 

Dam Site 
No. of Cross 

Sections 
Location of Sections 

Section 
Name 

Seven Mile Dam 1 Along the centerline of Spillway Bays (SB) 1 & 2 SEV-12 

Peace Canyon Dam 2 
Along centerline of SB 3 & 4 
Along centerline of SB 5 & 6 

PCN-34 
PCN-56 

Revelstoke Dam 1 Aligned with plunge pool invert REV-1 
W.A.C. Bennett Dam 1 Aligned with plunge pool invert WAC-C 

 

Peace Canyon Dam was selected to host multiple cross sections. The two spillway sections 

downstream of Peace Canyon Dam experience different hydraulic flows, with Bays 3 and 4 generally 

passing larger amounts of each discharge event. In addition, the plunge pool downstream of spillway 

gates three and four is likely defined by the ‘hinge zone’ described in detail in Section 7.1.3. This 

important geologic feature is also located downstream of spillway gates five and six, but downstream of 

the primary area of jet impact. This second section downstream of Bay 5 and 6 served as an additional 

reference point for this investigation. 

Each existing plunge pool survey was digitized using ArGIS Version 10.2 software and the 

topography along the profiles was plotted. Figures showing the topography and tables summarizing the 

location and elevation of the plunge pool inverts along the modeled profile lines for each of the four dam 

sites are provided in Section 7. Digitized surveys themselves are shown in Appendix C. 

6.4 Geomechanical Model 

Geomechanical models for each plunge pool cross section were created based on borehole and 

calyx hole data, foundation investigation and design reports, surficial mapping of the plunge pool and/or 

nearby foundation material, and regional geologic information. 
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Figure 6.4 Modeled cross section locations. Note: REV-1-1986 shows the section through the plunge pool invert at that date. 
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Engineering geologic (EG) zones were developed for rock with similar engineering 

characteristics. Higher density geologic data naturally led to greater subdivision of materials into EG 

zones. The Seven Mile and Revelstoke plunge pools had limited information on the distribution of 

geologic materials, resulting in limited zonation of each plunge pool. Peace Canyon and W.A.C. Bennett 

plunge pools exhibited higher density of information on the spatial distribution of materials, thus more 

EG zones were used to describe the plunge pool along each cross section. 

Once zones were identified, Annandale’s Erodibility Index Method was used to assess the critical 

stream power threshold for each zone, based on Equation 4.21, for each model. Erodibility index values 

were assessed based on average rock parameters across an EG zone as well as the best and worst expected 

parameters for use in the sensitivity analysis. ‘High’ and ‘Low’ erodibility indices were based on 

parameter values one standard deviation away from the mean, when enough data was available to 

generate a distribution. For cases where limited data were available, the maximum and minimum data 

values were used to represent the ‘High’ and ‘Low’ EI values, respectively. To account for radial flow 

away from the jet at the rock-water interface, the Relative Ground Structure Number, Js, was modified 

slightly. Js values were calculated considering flow in the upstream as well as downstream direction and 

the minimum value was selected for use in the model. 

The critical stream power values and initial plunge pool bathymetry were then used to create a 

one foot by one foot array along each plunge pool profile. The highest elevation of each array was defined 

as the location of the flip bucket lip. The lowest elevation extended below the deepest extent of surveyed 

scour. Profile length was dependent on the lateral extent of existing scour along each profile. A summary 

of the profile extents is provided in Table 6.3. Each array cell was then assigned an appropriate erodibility 

index value, based on the EG zone in which the cell was located. Areas within the profile above the 

existing bathymetry were assigned an erodibility index value of zero. 

Table 6.3 Modeled Profile Extents 

Dam Site Profile  
Minimum 

Elevation (ft) 

Maximum 

Elevation (ft) 

Length 

(ft) 

Model EI 

Array 

Dimensions 

Peace Canyon Dam 
PCN-34 
PCN-56 

1400 
1400 

1523 
1523 

450 
550 

125 x 451 
125 x 551 

Seven Mile Dam SEV-12 1200 1555 575 357 x 576 

Revelstoke Dam REV-1 1150 1621 615 473 x 616 

W.A.C. Bennett Dam WAC-C 1350 1889 1,125 541 x 1126 
Note: Model input array dimensions include the number of feet between the maximum and minimum 
elevations, the length, plus an additional reference row denoting feet downstream and an additional 
reference column denoting elevation. 
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6.5 Sensitivity Analysis 

A sensitivity analysis to determine the range of scour hole depths that can be expected based on 

minimum and maximum erodibility index values has also been included in this assessment. ‘Low’ 

erodibility index values represent the worst case scenario, when the lowest of each EIM input parameter 

are combined to provide the highest estimate of scour and the greatest expected plunge pool depth. ‘High’ 

erodibility index values represent the best possible scenario, when the best of each EIM input parameter 

are combined to provide lowest estimate of scour and the least expected plunge pool depth.  

6.6 Comparison of Numerically Generated Profile and Existing Profile  

Once numerical modeling was completed, the modeled maximum plunge pool depths and 

locations were quantitatively and qualitatively compared with the values from existing plunge pool 

surveys.  In some cases, the invert elevation has been shown to remain the same or increase over time, 

rather than decrease. This is likely due to infilling of the plunge pool with sediment and eroded material, 

which can migrate throughout the plunge pool and tailrace area. To account for this, surveyed invert 

elevations that reflected infilling were adjusted such that the deeper of the current survey or previous 

survey depth was used.  

Differences between the profiles were assessed by calculating the coefficient of determination, or 

the R
2
 value, for the maximum scour depth and location along the profile, using Equation 6.1. An R

2
 

value closer to 1.0 indicates a strong linear relationship between the two data sets. As the value decreases 

the relationship is considered less statistically significant. An R
2
 line with a slope near one-to-one and a y-

intercept near zero indicates that modeled erosion is not only proportional, but also to scale. The threshold 

R
2
 value will be determined based on the number of modeled data points, using Equation 6.1, where sx

2
 is 

the variance of the surveyed plunge pool depths and sy
2
 is the variance of the modeled plunge pool depths.  

 𝑅2 =
𝑠𝑦𝑥

2

𝑠𝑦
2  (6.1) 

It is important to consider the natural variation common in geologic environments, which results 

in overall lower R
2
 values than other more uniform data sets.  

An analysis of the residuals was also conducted to assess the distribution and location of areas of 

higher error. The standard error of estimate, syx, was calculated for each type of dam site as well as for the 

overall dataset using a modified form of the equation, based on the assumption that the ‘predicted values’, 

usually the result of calculating a line of best fit, are equal to the surveyed plunge pool depths using 

Equation 6.2 (Kachigan, 1991): 



52 

 

 𝑠𝑦𝑥 = √
∑(𝑦𝑖−𝑥𝑖)2

𝑛−2
 (6.2) 

Where yi is the modeled plunge pool depth, xi is the target, surveyed plunge pool depth, and n is 

the total number of data points. This variation of the standard error of estimate equation is based on the 

assumption that the modeled and surveyed plunge pool depth should be related in a one-to-one 

relationship; That is, y = x, rather than the conventional y = mx + b linear relationship identified for 

general linear regression lines. 
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CHAPTER 7  

 ANALYSIS 

Outlined in the subsequent sections is the data analysis for each of the four dams assessed in this 

study. The analysis includes the compilation of existing plunge pool surveys, plunge pool invert data, 

discharge, reservoir, and tailwater data, geomechanical model creation, and the generation of sensitivity 

analysis values. Output from the model is shown and explained in Sections 8 and 9 of this paper. 

7.1 Peace Canyon Dam 

Rock scour at Peace Canyon Dam was assessed from October 1979 through June 2007, the date 

of the most recent plunge pool survey.  

7.1.1 Plunge Pool Topography 

Existing plunge pool surveys were used to assess the development of scour over time for each 

facility. The number of surveys and density of survey points varied between dam sites and over time for 

the same dam site. Nine plunge pool surveys were available for Peace Canyon Dam, from October 1979 

through June 2007. In two cases for PCN-34 and three cases for PCN-56, no discharge occurred between 

plunge pool surveys. When multiple surveys occur between discharge events, the more recent survey was 

used. As a result, the surveys from April 1983 and July 1987 were not used for PCN-34 and the surveys 

from April 1983, October 1985, and July 1987 were not used for PCN-56. Profiles of each survey used in 

the analysis for both PCN-34 and PCN-56 were constructed to assess the location and elevation of the 

plunge pool invert. Each survey was plotted with the initial 1979 survey and the Normal Tailwater Level 

(El. 1,518 ft) to provide a frame of reference and to show the degree of plunge pool development over 

time. Profiles for PCN-34 are provided in Figure 7.1 and Figure 7.2. Dashed lines along the profiles 

indicate areas of less certainty where interpretation was required to complete the profiles.  

Profiles for PCN-56 are provided in Figure 7.3 (page 56) and Figure 7.4 (page 57). As shown, for 

both sections the majority of scour occurred during the initial spill events in late 1979 and early 1980. 

Scour along profile PCN56 proceeds much further downstream than expected for a plunge pool that 

develops solely from an impinging jet. Based on the plunge pool topography from Appendix C, it is likely 

that the majority of downstream erosion has occurred as a result of both scour along planes of weakness 

as well as from the erosion of the hinge zone (Section 7.1.3) by jet action from spillway bays three and 

four. As a result, plunge pool invert depths and locations used for PCN-56 in this analysis have been 

taken from the upstream portion of the plunge pool that is the result of scour from the impinging jets  
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Figure 7.1 PCN-34 plunge pool survey profiles, 1979 through 1983 



55 

 

 
Figure 7.2 PCN-34 plunge pool profiles, 1985 through 2007 

originating from Bays 5 and 6. Erosion more than 300 ft downstream of the spillway is assumed not to be 

the result of these impinging jets alone, but has been created by flow emanating from PCN-34.  Table 7.1 

(page 57) shows the date of each survey, the elevation of the plunge pool invert along section, the location 

of the invert, and the length of the invert for PCN-34 and PCN-56. The values reported in Table 7.1 serve 

as the basis of comparison for the model. Full surveys of the Peace Canyon plunge pool can be found in 

Appendix C. 
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Figure 7.3 PCN-56 plunge pool survey profiles, 1979 through 1983 
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Figure 7.4 PCN-56 plunge pool survey profiles, 1996 through 2007 

 

Profiles for both PCN-34 and PCN-56 show the development of broad, flat bottomed plunge 

pools over time. The plunge pool is noticeably deeper downstream of spillway bays three and four, 

although both exhibit the same characteristic shape.  

Table 7.1 Peace Canyon Dam summary of plunge pool survey invert location and elevation for 
profile PCN-34 and PCN-56 

Survey Date 

PCN-34 PCN-56
5 

Invert 

Center
1
 

(ft) 

Invert 

Length
2
 

(ft) 

Elevation 

(ft) 

Invert 

Center
1
 

(ft) 

Invert 

Length 

(ft) 

Elevation 

(ft) 

October 30, 1979
3 

- - 1500 - - 1505 

April 15, 1980 273 6 1460 229 145 1483 

September 5, 1981 218 14 1460 180 38 1480 
October 1, 1983 353 37 1465 229 47 1485 

October 8, 1985
4 

263 74 1465 - - - 

August 4, 1996 220 93 1463 233 148 1486 
June 12, 2007 196 49 1457 260 80 1480 

Note:
 1

Invert center location is the distance downstream of the spillway flip bucket lip; 
2
Invert length is 

the distance from the upstream end to downstream end of the deepest portion of the plunge pool; 
3
Topography of Oct. 30, 1979 survey did not display an invert; 

4
No discharge was reported through 

spillway bays 5 and 6 for the period between the Oct. 1, 1983 and Oct. 8, 1985 surveys; 
5
 PCN-56 

invert center, length, and elevation values taken from the upstream (<300 ft) portion of the plunge pool. 
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7.1.2 Hydraulic Model Input 

The Peace Canyon Dam Spillway has been in operation since October 28
th

, 1979, but has only 

passed discharge on eight occasions, as shown in Figure 7.5 (page 60). Prior to commissioning of the 

powerhouse and generating units in April 1980, 100% of discharge from Dinosaur Reservoir was passed 

through the spillway gates. Limited records of this event exist in the form of the total spillway discharge 

hydrograph (Monfette, 2004), but no individual spillway gate opening or discharge records were 

available. After commissioning of the hydropower unit, spills occurred in 1980, 1981, 1983, 1996, 2002, 

and 2012. Statistical information on the duration and magnitude of flows is provided in Table 7.2. The 

Peace Canyon Dam spillway rating curves were used to calculate the gate height opening for each day of 

recorded discharge, based on the mean reservoir level. 

As outlined in Section 6, daily discharge and gate height data were used with the USBR’s 

PROFILE to generate jet issuance conditions at the spillway base. Table 7.3 provides summary statistics 

of the issuance velocity (Vi), flow depth (Di), and turbulence intensity (Tu) for spillway bays three and 

four and spillway bays five and six of Peace Canyon Dam.  

Table 7.2 Peace Canyon Dam major spill event statistics 

Year 1979
1 1980-

Pre
1 

1980-

Post 
1981 1983 1984 1996 2002 2012 

Period of 

Spill 

10/28-
12/31 

1/1- 
4/1 

4/11-
5/1 

7/23- 
8/6 

7/1-
7/20 

10/9-
10/16 

6/23-
8/18 

7/7- 
7/30 

5/8-
7/28 

Days of Discharge 

Spillway 65 90 10 12 15 6 55 22 25 

Bay 3 62 76 2 12 15 6 55 22 25 

Bay 4 64 78 5 7 15 6 54 22 20 

Bay 5 52 48 7 0 12 0 40 3 1 

Bay 6 54 51 3 2 12 0 41 3 1 

Maximum Average Daily Discharge (cfs) 

Spillway 56,000 60,000 37,000 48,000 45,000 14,000 115,000 63,000 64,000 

Bay 3 15,500 27,500 12,000 21,000 15,000 7,000 47,000 26,000 25,000 

Bay 4 15,500 27,500 17,000 21,000 15,000 7,000 31,000 25,000 25,000 

Bay 5 14,000 18,000 17,000 - 12,000 - 23,000 13,000 11,000 

Bay 6 6,000 18,000 14,000 16,000 12,000 - 23,000 13,000 11,000 

Note: 
1
1979 and Jan-Apr 1980 spillway discharge events inferred from digitized total spillway 

discharge hydrograph (Monfette, 2004); No individual bay information available apart from provided 
statistics; From BCH Flocal database, 2014. 
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Table 7.3 Peace Canyon Dam Jet Issuance Summary Statistics 

 

Bays 3 & 4 (PCN-34) Bays 5 & 6 (PCN-56) 

Vi (ft/s) Di (ft) Tu (%) Vi (ft/s) Di (ft) Tu (%) 

Count 142 142 142 169 169 169 

Minimum 47.91 1.32 3.2 36.38 1.10 3.4 

Average 68.94 4.14 3.6 66.18 2.93 3.7 

Maximum 79.01 8.08 4.0 74.88 5.14 4.1 

St. Deviation 8.40 2.28 0.25 7.75 0.93 0.17 

 

7.1.3 Geomechanical Models 

The geomechanical characterization of the Peace Canyon Dam plunge pool area was based on 

data from 2,869 feet of logged core, foundation excavation mapping, strength testing programs, and 

design reports on Peace Canyon Dam. This facility had the highest density of geologic information of any 

of the dam sites assessed in this investigation. 

Geology 

The plunge pool geology at Peace Canyon Dam is largely dominated by the interbedded silty 

shale and shaley siltstone units of the Cretaceous Gates Formation. These units are mostly massive and 

exhibit little or no lamination, except in localized areas.  Contacts between interbeds within the 

foundation shale member are gradational in nature. The bottom three to four feet of the foundation shale 

grades to siltstone, then becomes the resistant 30-foot thick sandstone layer at an elevation of 

approximately 1,415 to 1,420 ft. In general, the bedding of all layers strikes 60 to 80 degrees east of north 

and dips 2 degrees to the northwest, in the upstream direction (BCH Report No. 966). Stratigraphic 

columns of the units within the upper hundred feet of the plunge pool area are provided for PCN-34 and 

PCN-56 in Figure 7.6. Elevation values are taken at the downstream toe of the spillway along the 

respective profiles.  

The shale and silty shale units of the Gates Formation have relatively low clay content in this area 

and are dominantly composed of rock flour cemented with silica and calcite. They are generally hard to 

medium hard and tend to ravel at the surface. The basal sandstone unit is characterized as competent, 

hard, and is composed of medium to coarse sand. This unit is sparsely fractured and massive in nature 

(BCH Report No. H1742). Limited drilling has been conducted into the basal sandstone. 
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Figure 7.5 Peace Canyon Dam Spillway Hydrograph through 2013; points indicate daily average discharge values.
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Unconfined Compressive Strength testing was conducted on multiple samples at Peace Canyon 

Dam based on testing programs by Ripley and Associates in 1961, Ripley, Klohn & Leonoff Ltd. in 1967, 

and International Power and Engineering Consultants Ltd. in 1970. Values from these programs, as well 

as design summaries of other investigations (BCH Report No. H1742), were used to calculate the typical, 

high and low expected UCS strength values for the various rock types present within the plunge pool. 

UCS strength values for each lithology were applied to all instances of that lithology within the 

stratigraphic column. UCS values from samples soaked for seven days were used when available, as these 

values were considered more representative of field conditions; where unavailable, UCS values from air 

dried samples were used.  

Table 7.4 summarizes the UCS strength values for the various rock types in the stratigraphic 

column. The rock’s hardness is not reduced by the more highly fractured nature of the rock within the 

hinge zone (BCH Report 822), therefore the UCS values in Table 7.4 are applied to both General and 

hinge zone areas within the plunge pool. 

 
Figure 7.6 Peace Canyon Dam stratigraphic columns, showing approximate locations of notable 

bedding planes (elev. taken at spillway downstream toe along respective profiles) 
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Table 7.4 Peace Canyon Dam UCS rock strength (MPa) for lithologic units 

Lithology 
UCS Strength (MPa) 

Low Mean High 

Silty Shale/Shaley Silt 60 120 184 

Shale 17 103 185 
Siltstone 69 104 139 

Sandstone 76 133 221 

Note: Siltstone and sandstone strength values based on dry UCS tests; Silty Shale/Shaley Silt 
and Shale strength values based on soaked UCS tests. 

 

Table 7.5 shows the RQD values for the various units, both within and outside of the hinge zone. 

The presence of the hinge zone does not cause a notable decrease in RQD, with the exception of the upper 

shale unit, which is nearer the surface and more prone to stress release fractures. Upper and lower RQD 

values represent the RQD values a distance of one standard deviation away from the mean RQD value. 

RQD values are also provided for BP-4. 

Table 7.5 Peace Canyon Dam RQD values for stratigraphic units 

Unit 

RQD Value (%) 

General Hinge Zone 

Lower Mean Upper Lower Mean Upper 

Upper Shale 56 80 100 50 76 100 
Upper Silty Shale

1 
56 80 100 50 76 100 

Middle Shale 56 80 100 50 76 100 
BP-4 44 73 100 58 72 86 

Lower Silty Shale 72 90 100 78 91 100 

Lower Shale 73 90 100 73 89 100 
Siltstone 65 87 100 65 85 100 

Basal Sandstone 71 88 100 75 90 100 
Note: Values from BCH Hydro Doc. No. 15472-03 & No. 15472-09; 1977/1978 borehole series CH, 
CHQ, STH, TS, & PS; 

1
Upper Silty Shale RQD values assumed equal to Upper Shale RQD values. 

 

Relaxation joints coincident with bedding planes are present in the upper 30 to 50 feet of the 

Upper Shale and Silty Shale units below the river bed. These joints are more prominent in the center of 

the river bed and tend to become less noticeable near the abutments (BCH Report No. 822). Five major 

relaxation joints along bedding planes were noted during exploration. These planes tended to show 

noticeable separation, with silt or sand infilling up to two inches. The approximate elevations and 

descriptions of these major planes are provided in Bedding planes BP3 and BP4 were noted in the 

majority of logs from the CH, CHQ, STH, PS, and TS borehole series from 1977 and 1978 spillway 

grouting exploration programs (BCH Doc. No. 15472-03 & No. 15472-09). Only bedding plane BP4 was 

large enough to be considered in this model. Other bedding planes consisted of distinct planes, rather than 

a zone of weaker, more fractured material. The joint spacing for bedding planes and relaxation joints open 
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sub-parallel to bedding planes was determined from the borehole logs for materials both within and 

outside of the more highly fractured hinge zone (discussed further in this section) and are provided in 

Table 7.7 (page 64). ‘Low’ values represent lower quality areas with higher fracture density and ‘High’ 

values represent the higher quality areas, with lower fracture density. 

 

Bedding planes BP 3 and BP 4 were noted in the majority of the logs from the CH, CHQ, STH, 

PS and TS borehole series from 1977 and 1978 spillway grouting exploration programs (BCH Doc. No. 

15472-03 & No. 15472-09). Only bedding plane BP 4 was large enough to be considered in this model. 

Other bedding planes consisted of distinct planes, rather than a zone of weaker, more fractured material. 

The joint spacing for bedding planes and relaxation joints open sub-parallel to bedding planes was 

determined from the borehole logs for materials both within and outside of the more highly fractured 

hinge zone (discussed further in this section) and are provided in Table 7.7. ‘Low’ values represent lower 

quality areas with higher fracture density and ‘High’ values represent the higher quality areas, with lower 

fracture density.  

Table 7.6 Prominent bedding planes within the Peace Canyon plunge pool area and associated 
depths. 

Plane 
Approx. 

Elevation (ft) 
Description 

BP 2 1,476 Most prominent bedding plane; up to two inches of soft, decomposed shale 
infilling 

BP 3 1,465 Occurs immediately above a 2- to 3-inch thick ripple-marked sandstone bed 
which is continuous throughout the intake and spillway areas; varies from a 
tight contact to a half-inch infilled or fractured separation; dominantly 
planar, with ripple-marks adding secondary roughness 

BP 4 1,453 Zone of discontinuous bedding separations occurring about 11.5 feet below 
BP 3. The zone averages about 3 feet in thickness in the spillway area, with 
up to four distinct bedding planes present within the zone. Individual cracks 
commonly terminate abruptly, split or curve upward and end in overlying 
shale. Bedding separations are not continuous and frequently step vertically 
from one level to another within the zone 

BP X 1,425 Hairline fracture located about 5 feet above the contact with the basal 
sandstone 

Modified from BCH Report No. 966 

Prominent subvertical jointing also occurs throughout the upper shale and silty shale units. The 

primary set, J1, strikes 30 to 40 degrees north of east and has a spacing of roughly 10 ft to 30 ft down to 

the elevation of the BP-2 plane, based on mapped portions of the spillway foundation (BCH Report No. 

966 Appendix A). Joints are usually tight and not persistent, terminating into bedding plane fractures 

(BCH Report No. 9/85).  This joint set is present and more closely spaced around BP 3 and in roughly the 

upper half of the Middle Shale between BP 3 and BP 4, with a spacing of 5 ft to 15 ft. Very few joints are 
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found below this level, as reflected in the borehole logs as well as RQD values. This set occurs 

sporadically within the basal sandstone unit, with larger variations in orientation. All joints found in this 

unit are tight and few extend for significant lengths (BCH Report No. 822). Most high angle joints logged 

are planar and slightly rough in nature (BCH Doc. No. 15472-09). 

A secondary subvertical joint set, J2, is also present in the area, striking 60 to 70 degrees west of 

north. Few fractures of this set were mapped within the spillway foundation. They appear to occur 

sporadically in individual shale beds and at depth within the basal sandstone. J2 joints terminate very near 

where they initiate, either into other fractures or into bedding planes with depth (BCH Report No. 966). 

Table 7.7 Peace Canyon Dam bedding/relaxation joint spacing by stratigraphic unit 

Unit 

Bedding/Relaxation Joint Spacing (ft) 

General Hinge Zone 

Low Mean High Low Mean High 

Upper Shale
1 

1.0 5.8 14.8 1.2 3.0 6.9 
Upper Silty Shale

1 
1.0 5.8 14.8 1.2 3.0 6.9 

Middle Shale 1.0 5.8 14.8 1.2 3.0 6.9 

Lower Silty Shale 3.1 7.9 11.3 2.6 6.0 11.9 
Lower Shale 1.7 7.0 11.5 1.1 7.9 12.6 

Siltstone 2.2 7.0 15.7 1.2 4.9 10.8 

Basal Sandstone - - - - - - 

Note: 
1
Upper Shale and Silty Shale values are assumed equal to Middle Shale values, as these units were 

not logged within the boreholes; 
2
Few or no bedding/relaxation joints were logged within the basal 

sandstone unit, therefore no spacing is provided here. 

A more highly fractured zone is present immediately downstream of spillway bays two, three and 

four, trending along the strike of J1 in the downstream direction. This “hinge zone” is composed of the 

same N30E to N40E trending subvertical joint set present throughout the plunge pool, but with much 

closer fracture spacing; tight, closed joints spaced from one to three feet and open joints – up to four 

inches – of the same orientation spaced five to 15 ft apart. Many individual fractures are traceable for 100 

ft or more along strike (BCH Report No. 9/85). No shearing or offset of bedding has been observed in this 

area and the high fracture density is likely due to more regional rock flexure. The swarm of fractures is 

approximately 100 ft wide beneath the spillway foundation and likely extends downstream through the 

plunge pool. An eroded channel was also identified in this area beneath spillway bay one prior to dam 

construction. Both features trend downstream toward the plunge pool area, however there is no subsurface 

information to confirm their extent beyond the spillway foundation footprint. Figure 7.7 on page 66 

shows the location of the hinge zone beneath the spillway foundation and select cross sections. The figure 

illustrates the relatively flat, laterally continuous nature of the bedrock and the approximate depths of the 

prominent bedding planes described in Table 7.6. 
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The mean Joint Roughness Value, Jr, was determined based on the most often occurring shape 

and roughness of all discontinuities logged for each unit. The ‘High’ and ‘Low’ values here represent the 

upper and lower bounds of shape and roughness, excluding outliers. These values are provided in Table 

7.8. 

 
Table 7.8 Peace Canyon Dam Joint Roughness Number for stratigraphic units 

Unit 

Joint Character and Roughness Number 

General Hinge Zone 

Low Mean High Low Mean High 
Upper Shale C/SM PL/SR IR/R PL/SM PL/SR IR/R 

1.5 1.5 3.0 1.0 1.25 3.0 

Upper Silty Shale C/SM PL/SR IR/R PL/SM PL/SR IR/R 
1.5 1.5 3.0 1.0 1.25 3.0 

Middle Shale C/SM PL/SR IR/R PL/SM PL/SR IR/R 
1.5 1.5 3.0 1.0 1.25 3.0 

Lower Siltstone PL/SR PL/R IR/R PL/SR PL/R IR/R 
1.25 1.5 3.0 1.25 1.5 3.0 

Lower Shale PL/SM PL/R PL/R C/SR PL/SR PL/R 
1.0 1.5 1.5 1.25 1.25 1.5 

Siltstone PL/SR PL/R IR/R C/SR PL/R IR/VR 
1.25 1.5 3.0 1.25 1.5 4.0 

Basal Sandstone PL/SM PL/R PL/VR PL/SM PL/SR PL/R 
1.0 1.5 1.75 1.0 1.25 1.5 

Note: C-curved, PL-planar, IR-irregular, SM-smooth, SR-slightly rough, R-rough, VR-very rough 

 

Erodibility Index and Critical Stream Power Values 

Seven geomechanical zones were identified based on the similarity of material properties from 

Tables 7.6 through 7.8. The EI and critical stream power values are provided in Table 7.9 (page 67). The 

distribution of the geomechanical zones is shown in Figure 7.8 (page 69) and Figure 7.9 (page 69). ‘Low’ 

values for each zone represent the minimum ‘Low’ value expected, ‘High’ values represent the maximum 

‘High’ value expected, and ‘Mean’ values represent the average value expected for the contributing 

stratigraphic units. 

7.2 Seven Mile Dam 

Plunge pool scour for Seven Mile Dam was assessed from October 1979 through December 2011, 

the date of the most recent available plunge pool survey. 
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Figure 7.7 Peace Canyon Dam spillway foundation geology (BCH Drawing No. 1007-C14-D4245 (Plan), 1007-C14-D4243 (Sections A&B), 

1007-C14-U4321 (Section C))
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Table 7.9a Peace Canyon Dam erodibility index tables for geomechanical zones 

Zone Zone A Zone B Zone C Zone D 

Contributing 
Stratigraphic 

Units 

General Upper Shale 
General Upper Silty Shale 
General Middle Shale 

General BP 4 General Lower Silty Shale 
General Lower Shale 
General Siltstone 
Hinge Zone Siltstone 

General Basal Sandstone 
Hinge Zone Basal Sandstone 

Parameters Low Mean High Low Mean High Low Mean High Low Mean High 

UCS (MPa) 17 109 186 17 103 186 17 108 186 76 133 221 

RQD (%) 56 80 100 44 73 100 65 88 100 71 89 100 

ρ  (kg/m
3
) 2579 2592 2619 2579 2579 2579 2579 2645 2691 2611 2611 2611 

Cr 0.94 0.94 0.95 0.94 0.94 0.94 0.94 0.96 0.98 0.95 0.95 0.95 

Jr 1.5 1.5 3.0 1.5 1.5 3.0 1.0 1.5 4.0 1.00 1.5 1.8 

Jn 3.34 2.73 2.73 3.34 2.73 2.73 2.73 2.73 2.73 2.73 2.24 1.83 

Ja 3.00 1.00 1.00 4.00 2.00 1.00 2.00 1.00 0.75 1.00 0.75 0.75 

Ms 16.3 102.5 176.5 16.3 96.7 173.8 16.3 103.7 181.4 71.9 126.3 209.3 

Kb 16.8 29.3 36.6 13.2 26.7 36.6 23.8 32.2 36.6 26.0 39.7 54.6 

Kd 0.5 1.5 3.0 0.4 0.8 3.0 0.5 1.5 5.3 1.0 2.0 2.3 

Js 0.61 0.76 0.78 0.61 0.68 0.71 0.62 0.71 0.78 0.78 0.78 0.78 

EI (K) 83.4 3409 15130 49.1 1319 13562 120 3571 27637 1459 7826 20813 

Pc  (kW/m
2
) 27.6 446 1364 18.6 219 1257 36.3 462 2143 236.0 832 1733 
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Table 7.9b (continued) Peace Canyon Dam erodibility index tables for geomechanical zones 

Zone Zone E Zone F Zone G 

Contributing 

Stratigraphic 

Units 

Hinge Zone Upper Shale 
Hinge Zone Upper Silty 

Shale 
Hinge Zone Middle Shale 
Hinge Zone BP 4 

Hinge Zone Lower Silty 
Shale 

Hinge Zone Lower Shale 

Parameters Low Mean High Low Mean High Low Mean High 

UCS (MPa) 17 107 186 60 120 184 17 103 186 

RQD (%) 50 75 100 78 91 100 73 89 100 

ρ  (kg/m
3
) 2579 2589 2619 2619 2619 2619 2579 2579 2579 

Cr 0.94 0.94 0.95 0.95 0.95 0.95 0.94 0.94 0.94 

Jr 1.0 1.3 3.0 1.3 1.5 3.0 1.3 1.3 1.5 

Jn 3.34 2.73 2.73 3.34 2.73 2.73 3.34 2.73 2.73 

Ja 8.00 4.00 2.00 3.00 2.00 0.75 3.00 2.00 0.75 

Ms 16.3 101.1 176.5 57.1 114.3 175.2 16.3 96.7 173.8 

Kb 15.0 27.5 36.6 23.4 33.3 36.6 21.9 32.6 36.6 

Kd 0.1 0.3 1.5 0.4 0.8 4.0 0.4 0.6 2.0 

Js 0.78 0.78 0.78 0.78 0.78 0.78 0.68 0.78 0.78 

EI (K) 23.8 677 7565 433 2229 20021 101 1537 9933 

Pc  (kW/m
2
) 10.8 133 811 95.0 324 1683 31.9 245 995 
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Figure 7.8 Peace Canyon Dam Profile PCN-34 geomechanical model 

 
 

 
Figure 7.9 Peace Canyon Dam Profile PCN-56 geomechanical model (see Figure 7.8 for key) 
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7.2.1 Plunge Pool Topography 

Eight surveys of the Seven Mile Dam plunge pool and tailrace area were conducted between 

October 1979 and December 2011. An additional survey conducted over the summer of 2014 was not 

available for this analysis. Surveys were generally taken following large discharge events, although the 

Seven Mile Dam spillway operates on an annual basis. Topographic profiles along SEV-12 are provided 

in Figure 7.10 (page 72) and Figure 7.11 (page 73). Dashed lines along the profiles indicate areas of less 

certainty where interpretation was required to complete the profiles. Table 7.10  also shows the invert 

location, length, and elevation for each survey, which are used as the basis for model comparison. Full 

plunge pool and tailrace surveys can be found in Appendix C. 

Surveys indicate that significant scour occurred between the December 1979 and August 1982 

surveys, during large discharges associated with spillway use prior to the commissioning of the 

generators. Plunge pool development at this location has proceeded more vertically downward than 

laterally downstream, likely due to geologic environment in which the plunge pool is located. 

Table 7.10 Seven Mile Dam summary of plunge pool survey invert location and elevation for 
profile SEV-12 

Survey Date Invert Center
1
 (ft) 

Invert  

Length
2
 (ft) 

Elevation (ft) 

October 30, 1979 250 1 1498 

December 14, 1979 318 22 1475 
August, 1982 389 1 1450 

September 20, 1984 381 72 1460 

October 15, 1986 398.5 29 1450 
October 1, 1988 370 1 1447 

November 18, 1997 391.5 57 1457 

December 9, 2011 356 1 1449 
Note: 

1
Invert center location is the distance downstream of the spillway flip bucket lip; 

2
Invert length 

is the distance from the upstream end to downstream end of the deepest portion of the plunge pool.  
 

7.2.2 Hydraulic Model Input 

The Seven Mile Dam Spillway has been in operation since November 1979 and operates on an 

annual basis, as shown in the historic spillway hydrograph in Figure 7.12 (page 74). Prior to 1984 records 

for spillway bays one and two were summed and spillway bays three and four were reported individually. 

For this reason, the individual bay discharge values for bays one and two for this time period are assumed 

to be equally divided between the two bays. Although daily gate height information was available for 

Seven Mile Dam spillway between 1984 and 2014, some gate height data was altered such that the 

individual spillway bay discharges deduced from these values summed to +/- 10% of the total discharge 
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reported passing through all bays on the day of record. Statistical data for the eight largest discharge 

events are provided in Table 7.11.  

As outlined in Section 6, daily discharge and gate height data were used with the USBR’s 

PROFILE to generate jet issuance conditions at the spillway base. Table 7.12 provides summary statistics 

of the velocity (Vi), flow depth (Di), and turbulence intensity (Tu) for spillway bays one and two at Seven 

Mile Dam.  

Table 7.11 Seven Mile Dam major spill event statistics 

Year 1981 1982 1983 1986 1996 1997 2011 2012 

Period of 
Spill 

1/28-
10/22 

3/11-
11/20 

3/11-
11/4 

2/27-
11/28 

1/12- 
8/18 

2/1- 
7/18 

4/4- 
7/22 

3/31- 
8/1 

Days of Discharge 

Spillway 114 135 146 105 174 116 93 113 

Bays 1&2 114 135 146 94/28 174/151 116/87 93/74 112/99 

Bay 3 39 40 20 23 120 80 70 81 

Bay 4 39 40 20 0 87 73 57 72 

Maximum Average Daily Discharge (cfs) 

Spillway 76,000 100,000 82,000 77,000 97,000 112,000 91,000 95,000 

Bays 1&2 49,000 69,000 49,000 60,000 
33,000/ 
31,000 

36,000/ 
37,500 

37,000/ 
30,000 

31,500/ 
28,000 

Bay 3 18,000 16,500 16,500 18,000 30,500 31,000 28,000 31,500 

Bay 4 18,000 16,500 16,500 0 17,000 11,000 11,500 31,500 

Note: Values separated by a slash indicate the value for bay 1 followed by the value for bay 2, where 
data was available; From BCH Flocal database. 

 
 
Table 7.12 Seven Mile Dam Jet Issuance Summary Statistics 

 

Bays 1 & 2 (SEV-12) 

Vi (ft/s) Di (ft) Tu (%) 

Count 2,068 2,068 2,068 

Minimum 4.37 1.20 3.2 

Average 55.90 2.61 3.7 

Maximum 82.80 7.57 4.1 

St. Deviation 18.83 1.42 0.23 
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Figure 7.10 SEV-12 plunge pool survey profiles, 1979 through 1984 
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Figure 7.11 SEV-12 plunge pool survey profiles, 1986 through 2011 
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Figure 7.12 Seven Mile Dam Spillway Hydrograph through 2013; points indicate daily average discharge values.
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7.2.3 Geomechanical Model 

The geomechanical characterization of the Seven Mile Dam plunge pool area was largely based 

on data from the Seven Mile Project Design Report (BCH Report No. H1743, 1989) and the Dam Safety 

Improvements Working Dam Foundation Summary (BCH Report No. PSE401, 2002). A complete list of 

resources can be found in the References section of this report. This facility had very good rock quality 

information in the area beneath the spillway foundation and along the river-left bank near the plunge pool 

area. No mapping of the area immediately downstream of the spillway blocks was conducted, however, 

and the distribution of rock materials within the plunge pool is currently unknown. 

Geology 

Three rock types were identified in the plunge pool area for Seven Mile Dam: granite, massive 

argillite, and rehealed argillite. A fourth type, phyllitic argillite, is present on site but is located at higher 

elevations above the other units and not within the plunge pool area. Material properties for the three 

plunge pool rock types – including UCS strength, RQD, joint orientation, aperture, roughness, and 

infilling – were compiled in the Dam Safety Improvements Working Dam Foundation Summary (BCH 

Report No. PSE401, 2002), which serves as the basis for the analysis of profile SEV-12. 

Geologic mapping of the spillway and plunge pool was only completed for portions above the normal 

tailwater level. Due to variability in topography and the location of the footprint of the dam foundation, 

the 1989 geologic map could not be reliably georeferenced with regard to the 1999-2000 geologic map. 

Figure 7.13 (page 78) and Figure 7.14 (page 79) show the plunge pool and adjacent portions of the 1989 

and 1999-2000 geologic maps. 

The dam and spillway are founded on a large southeasterly dipping sill of granite that has 

intruded into the older argillite of the area. This sill is approximately 500 ft thick and extends 50 ft to 100 

ft downstream of the spillway flip buckets. The large sill is accompanied by smaller granitic intrusions 

that are present downstream of the dam within the existing stream bed, along the left abutment, and 

downstream of the existing plunge pool focus hole (BCH Report No. PSE362). The granite on site is 

composed of euhedral grains of orthoclase and plagioclase in a very fine grained quartz-feldspar matrix. 

Joints within this unit are generally randomly oriented. Some fractures have been healed with calcite and 

quartz infilling (BCH Report No. PSE362). Fracture spacing ranges from several inches near the granite-

argillite contact to tens of feet within the massive granite (BCH Report No. PSE401). 
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The argillite within the plunge pool area is fine grained and grey-black to black in color. 

Hardness varies, depending on whether the unit is present in its rehealed, phyllitic, or massive form. 

Mapping and core logging conducted during the 1999-2000 Auxiliary Spillway Investigation indicate the 

spatial distribution of the different argillite forms is complex and variable (BCH Report No. PSE401). 

Rehealed argillite (rA) is moderately hard, graphitic, and has a chaotic fabric. This unit is slightly 

foliated in zones and contains multiple shear zones healed with calcite and/or quartz infilling of one to 

two millimeters. Jointing is primarily along the foliation but random joints are also present (BCH Report 

No. PSE362). 

Massive argillite (A) is present to a limited extent on the left abutment, within and downstream of 

the plunge pool focusing hole. This unit is composed of rehealed argillite fragments that range in size 

from a few millimeters to a few centimeters. Massive argillite is very hard and lacks foliation. This unit 

also includes healed shear features and calcite/quartz healed fractures that are one to two millimeters 

wide. Random joints are present throughout this unit (BCH Report No. PSE362). 

Due to the complex spatial variability and lack of plunge pool mapping, profile SEV-12 is 

assumed to consist of massive argillite and granite (BCH Report No. PSE362). While it is likely that other 

rock types are present within the plunge pool, the orientation of plunge pool development – which is 

roughly along strike of the foliation and granite-argillite contact – supports the hypothesis that these units 

make up a large portion of the plunge pool profile. The range of UCS strength values for the plunge pool 

materials are provided in Table 7.13. 

Table 7.13 Seven Mile Dam UCS rock strength (MPa) for rock type 

Rock Type 
UCS Strength (Mpa) 

Low Mean High 

Left Bank/Spillway Granite
1 

100 163 252 
Phyllitic Argillite 90 135 175 

Rehealed Argillite 40 40 50 

Massive Argillite
1 

60 122 252 
Note: 

1
Granite and massive argillite values calculated from the river-left bank and spillway 

portion of the dam foundation, based on ; From Thurber and AMEC testing programs 
(BCH Report No. PSE401, 2002) 

Left bank/spillway granite and massive argillite RQD values were calculated from nine borehole 

logs from 1973-2000 located within the spillway foundation footprint and the left bank. ‘High’ and ‘Low’ 

values are represented by the mean plus or minus the standard deviation for each unit.  Phyllitic and 

rehealed argillite RQD values are representative values, as determined by BCH Report No. PSE401. RQD 

values are notable larger for the left bank/spillway granite, and fairly uniform between the phyllitic and 
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massive argillite, as shown in Table 7.14. Rehealed argillite represents a much more highly fractured and 

less competent material. 

Table 7.14 Seven Mile Dam RQD values for rock types 

Unit 
RQD (%) 

Low Mean High 

Left Bank/Spillway Granite 64 87 100 
Phyllitic Argillite 25 57 80 

Rehealed Argillite 10 30 60 

Massive Argillite 25 60 75 
Note: Granite and Massive Argillite RQD values calculated from 9 boreholes logs in the spillway and 
left bank area (all logged argillite assumed massive argillite) (BCH Report No. PSE401, 2002) 

All rock types were subject to at least three ‘joint sets’ or preferentially oriented random joints: 

exfoliation joints, foliation joints, and random joints.  General joint spacing by rock type is provided in 

Table 7.15. Exfoliation joints are the most predominant joint, striking roughly parallel to the river channel 

and dipping moderate to steeply towards the northwest and southeast. These joints are continuous across 

the dam width, with weathering penetrating to depths of up to 25 ft (BCH Report No. PSE401).  

Table 7.15 Seven Mile Dam joint spacing by rock type 

Unit 
Joint Spacing (in) 

Low Mean High 

Left Bank/Spillway Granite 3 8 30 

Phyllitic Argillite 3 10 12 

Rehealed Argillite 1 3 8 

Massive Argillite 1 4 12 

 

The argillite unit found on the river-left bank exhibits foliation joints spaced between 0.8 and 8 

inches. Foliation joints are fresh to slightly weathered and are generally smooth and planar. The majority 

of the foliation joints dip into the south bank at approximately 30 degrees. Others, found within the 

rehealed argillite, are randomly oriented (BCH Report No. PSE401). The rehealed argillite experienced a 

much higher degree of jointing than other units, described by site geologists as ‘sugar cubing.’ 

Two to three weak joint sets were observed in the massive granite, although joints here are 

generally randomly oriented (BCH Report No. PSE401). The random joints are generally spaced from 4 

to 12 inches near the surface to 12 to 40 inches at depth. Some moderate to highly weathered zones 

exhibit much smaller joint spacing – between 0.8 and 4 inches (BCH Report No. PSE401).  
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Figure 7.13 Seven Mile Dam plunge pool and adjacent area geology from BCH Report No. H1743, 1989
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Figure 7.14 Seven Mile Dam plunge pool and adjacent area geology from BCH Report No. PSE401, 

2002
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Joints are generally planar and smooth for most materials on sight. Very little variability is 

present within or between materials, as shown in Table 7.16. Some slickensides were noted along shear 

zones within the granite and argillite, however slickensides are not characteristic of the majority of joints. 

Joints were generally subjected to limited alteration. In some cases graphitic or chloritic coating was 

present along joint planes in the massive and rehealed argillite units. 

Erodibility Index and Critical Stream Power Values 

Due to the complex spatial variability and lack of plunge pool mapping, profile SEV-12 is 

assumed to consist entirely of a mix of granite and massive argillite, the intermediate argillite form that 

has been noted within close proximity to the plunge pool invert (BCH Report No. PSE362). While it is 

likely that other rock types are present within the plunge pool, the orientation of plunge pool development 

– which is roughly along strike of the foliation and granite-argillite contact – supports the hypothesis that 

these units make up a large portion of the plunge pool profile, potentially along a weaker argillite-granite 

contact. The ‘Low,’ ‘Mean,’ and ‘High’ input EI values for the model were calculated as the average of 

the ‘Low’ granite and massive argillite parameters, the average of the ‘Mean’ granite and massive argillite 

input parameters, and the average of the ‘High’ granite and massive argillite input parameters, 

respectively.  

Table 7.16 Seven Mile Dam Joint Roughness Number for rock types 

Unit 
Joint Roughness 

Low Mean High 

Left Bank/Spillway Granite 
SM/PL SM/PL-W SM/W 

1 1.5 2 

Phyllitic Argillite 
SM/PL SR/PL R/PL 

1 1.25 1.5 

Rehealed Argillite 
SM/PL IR/PL SM/W 

1 1.5 2 

Massive Argillite 
SM/PL SM/PL-R PL/SM/DISC 

1 1.5 1.5 
Note: W-wavy, PL-planar, IR-irregular, SM-smooth, SR-slightly rough, R-rough, DISC-
discontinuous (BCH Report No. PSE401, 2002). 

 

Although massive argillite and granite were presumed to be the dominant materials within the 

plunge pool, erodibility index values were generated for the other materials on site to assess the 

variability that may be expected between geologic materials. The plunge pool profile SEV-12 is shown in 

Figure 7.15, with the October 1979 pre-spill topography. Erodibility index values and critical stream 

power values are reported for the Seven Mile plunge pool in Table 7.17 (page 82). 
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Figure 7.15 Seven Mile Dam Profile SEV-12 geomechanical model 
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Table 7.17 Seven Mile Dam Erodibility Index and critical stream power values by rock type 

Para-

meters 

Granite Rehealed Argillite Massive Argillite Phyllitic Argillite 
Massive Arg. / 

Granite
1 

Low Mean High Low Mean High Low Mean High Low Mean High Low Mean High 

UCS 

(Mpa) 
100 163 252 40 40 50 60 122 252 90 135 175 68 142.5 252 

RQD (%) 65 87 100 10 30 60 25 56 86 25 70 80 45 72 93 

ρ (kg/m
3
) 2146 2595 2675 2707 2747 2803 2707 2747 2803 2707 2747 2803 2427 2671 2739 

Cr 0.78 0.94 0.97 0.98 1.00 1.02 0.98 1.00 1.02 0.98 1.00 1.02 0.88 0.97 1.00 

Jr 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.50 2.0 1.0 1.25 1.5 1.0 1.50 2.0 

Jn 3.34 2.73 2.73 5.00 3.34 3.34 2.73 2.73 2.73 2.73 2.73 2.73 3.04 2.73 2.73 

Ja 2.0 2.0 1.0 4.0 2.5 0.75 4.0 1.75 1.25 4.0 2.0 1.0 3.0 1.9 1.1 

Ms 78.0 153.7 244.9 39.3 39.9 50.9 59.0 99.8 203.7 88.5 134.7 178.2 59.5 138.3 
250.

8 

Kb 14.7 31.9 26.9 2.0 9.0 18.0 9.2 20.9 27.5 9.2 25.6 29.3 14.7 26.4 34.1 

Kd 0.5 0.8 2.0 0.3 0.6 2.7 0.3 0.9 1.6 0.3 0.6 1.5 0.3 0.8 1.8 

Js 0.49 0.54 0.57 0.46 0.49 0.53 0.46 0.53 0.53 0.46 0.49 0.53 0.48 0.54 0.55 

EI (K) 326 1984 10228 9.1 105 1293 62.2 1155 5979 93.2 1058 4152 138 1561 8353 

Pc  

(kW/m
2
) 

76.7 297 839 5.2 32.9 216 22.1 198 680 30.0 186 517 40.30 248 874 

Note: 
1
Massive Arg. / Granite Low, Mean and High values calculated as the average of granite and massive argillite ‘Low’ values, average of 

granite and massive argillite ‘Mean’ values, and average of granite and massive argillite ‘High’ values, respectively. 
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7.3 Revelstoke Dam 

Plunge pool scour for Revelstoke Dam was assessed from January 1984 through July 2002, the 

date of the most recent plunge pool survey. 

7.3.1 Plunge Pool Topography 

Five surveys of the Revelstoke Dam plunge pool and tailrace area were conducted between May 

1984 and July 2002. Topographic profiles along REV-1 are provided in Figure 7.16 (page 84), including 

the as-excavated plunge pool in 1979. Dashed lines along the profiles indicate areas of less certainty 

where interpretation was required to complete the profiles. Figure 7.16 also shows the invert location, 

length, and elevation for each survey, which were used as the basis for model comparison. Full plunge 

pool and tailrace surveys can be found in Appendix C. In addition to the surveys located along REV-1, an 

additional profile through the deepest point of the plunge pool invert from the August 1986 survey is also 

provided to show the lowest elevation of plunge pool scour. This survey is also found in Table 7.18, as 

the August 11, 1986 (Invert) and in Figure 7.16 as the dashed profile line along with the solid REV-1 

1986 profile line. 

Surveys indicate that significant scour occurred prior to the May 1984 and August 1986 surveys. 

Plunge pool development at this location has proceeded both vertically downward and laterally 

downstream. The focus hole has changed location within the plunge pool over time, likely due to geologic 

variability. 

 
Table 7.18 Revelstoke Dam summary of plunge pool survey invert location and elevation 
for profile REV-1 

Survey Date Invert Center
1
 (ft) 

Invert  

Length
2
 (ft) 

Elevation (ft) 

1979 –As Excavated 232 103 1425 

May 15, 1984 330 88 1395 

August 11, 1986 413 10 1405 
August 11, 1986 (Invert) 378 48 1385 

September 22, 1991 237 23 1410 

July 24, 2002 308 1 1408 
Note: 

1
Invert center location is the distance downstream of the spillway flip bucket lip; 

2
Invert length 

is the distance from the upstream end to downstream end of the deepest portion of the plunge pool. 
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Figure 7.16 REV-1 plunge pool survey profiles, 1979 through 2002 
 

7.3.2 Hydraulic Model Input 

The Revelstoke Spillway has been in operation since October 1983. The initial discharge event, 

which began October 1, 1983 and continued through September 14, 1984, was passed exclusively through 
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the low level outlets. After 1984 these outlets were used on only one other occasion for spillway testing 

over a four day period in 1986. During the five other periods of spillway operation – in 1985, 1990, 1991, 

1997, and 2012 – discharge was passed through the radial bays. The largest discharge event experienced 

by Revelstoke occurred in 1991, reached 35,500 cfs through the two radial bays, and cause partial slope 

failure within the plunge pool. Figure 7.17 (page 86) shows the spillway hydrograph for the life of the 

facility and statistical data on each of the major events is provided in Table 7.19. No data was available 

for 1983. 

As outlined in Section 6, daily discharge and gate height data were used with the USBR’s 

PROFILE to generate jet issuance conditions at the spillway base. Table 7.20 (page 85) provides 

summary statistics of the velocity (Vi), flow depth (Di), and turbulence intensity (Tu) for the entire 

spillway at Revelstoke Dam.  

Table 7.19 Revelstoke Project major spill event statistics 

Year 1983
1 

1984 1985 1986 1990 1991 1997 2012 

Period of Spill 
10/1-
12/31 

1/1-
9/14 

2/14-
6/13 

7/25-
7/28 

6/14-
6/18 

8/9-
8/25 

10/2-
10/5 

5/17-
7/30 

Total Days of Discharge   

Spillway ~90 125 8 4 5 12 4 30 

Outlets 1 & 2 ~90 125 0 4 0 0 0 0 

Surface Bays 1 & 2 0 0 8 0 5 12 4 30 

                  

Maximum Average Daily Discharge (cfs)   

Spillway NA 30,500 31,000 11,000 17,000 35,500 18,000 30,000 

Outlets 1 & 2 NA 15,250 15,500 5,500 - - - - 

Surface Bays 1 & 2 - - - - 8,500 17,750 9,000 15,000 

Note: 
1
1983 discharge data unavailable; From BCH Flocal database. 

Table 7.20 Revelstoke Dam Jet Issuance Summary Statistics 

 

Total Spillway 

Vi (ft/s) Di (ft) Tu (%) 

Count 170 170 170 

Minimum 17.21 0.83 3.5 

Average 40.50 2.68 3.7 

Maximum 60.62 3.90 4.3 

St. Deviation 9.80 0.71 0.16 
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Figure 7.17 Revelstoke Project Spillway hydrograph through 2013; points indicate daily average discharge values.
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7.3.3 Geomechanical Models 

The geomechanical characterization of the Revelstoke Project plunge pool is largely based on 

borehole data from 1973-1976 exploratory programs and mapping of the excavated plunge pool invert in 

1982 as well as the 1991 post-plunge pool failure drilling program. Exploration programs from the 1970’s 

provide information on both rock and overburden within the plunge pool. The 1991 boreholes extended 

only to bedrock, providing information on overburden alone. Plunge pool invert mapping outlined the 

spatial distribution of the various rock units along the invert boundaries. Geologic mapping of the plunge 

pool invert was also used to characterize fracture orientation and spacing, which were not elaborated on 

the visual borehole logs used for this analysis. Although some information used is not in the immediate 

vicinity of the plunge pool invert, the proximity is considered near enough and conditions similar enough 

for use in this analysis. 

Geology 

The Revelstoke plunge pool is located in the metamorphic Monashee Complex rock that has been 

extensively affected by historic activity along the Columbia River Fault (BCH Report No. H1864). 

Bedrock is located at elevation 1,530ft, approximately, and is covered by glacial till and outwash deposits 

from as many as three glaciations. Overburden material is composed of sand to gravel sized sediment 

with boulders and cobbles. Depth to bedrock is variable within the plunge pool; the thickness of 

overburden material varies over small distances and ranges from approximately 10ft to 116ft, based on 

boreholes from 1973-1976 exploration programs: 73-8, 73-9, 74-2, 75-18, 75-20, 75-21, and 76-32 (BCH 

Doc. No. RW-9304-08, 1992). During initial excavation of the plunge pool overburden material was 

removed from the invert area down to elevation 1,425ft. Mapping of the excavation sidewalls showed 

complex distribution of the geologic units, with numerous fractures and shears causing offsetting. The 

most widespread geologic units are the quartzite gneiss and mica/biotite gneiss. Pure and impure 

quartzite, schist, and limited pegmatite and marble were also identified. Geologic maps of the east and 

west invert walls are shown in Figure 7.18 (page 91). The various types of discontinuities on site are 

identified in the figure by color. These features will be discussed further later on in this section. Geologic 

units are noted with abbreviations. 

Rock strength varies between the materials and a sampling of the laboratory UCS tests conducted 

on site was used to assess their strength. Table 7.21 provides a summary of the rock strength values by 

rock type. 
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Table 7.21 Revelstoke Dam UCS rock strength (MPa) for lithologic units 

Lithology 
UCS Strength (MPa) 

Low Mean High 

Quartzite 27 46 66 

Impure Quartzite/Quartzite Gneiss 43 69 101 
Biotite/Mica Gneiss

1 
28 47 71 

Schist 43 49 58 

Note: 
1
Biotite/Mica Gneiss values from biotite gneiss and basic gneiss tests (5 tests); (BCH 

Report No. Z0671, 1972). 

Plunge pool materials are extensively fractured due to activity along the Columbia River Fault. 

The degree of faulting and alteration of the metamorphic materials is evident in the rock RQD values 

from the 1970’s exploratory boreholes. Table 7.22 provides a summary of RQD values from boreholes 

75-18, 75-20, 75-21, and 76-32 located in the plunge pool. RQD values were grouped based on lithology 

across all four boreholes. The ‘Mean’ value represents the average value, the ‘High’ value represents the 

RQD one standard deviation above the mean, and the ‘Low’ value represents the RQD one standard 

deviation below the mean. 82% of RQD data available was collected on the quartzite gneiss; 96 of the 

117 recorded RQD values. 12% of the RQD data was for quartzite (14 values). The last 6% of data was 

split between the biotite/mica gneiss, schist, and marble. As a result, the RQD values used for the schist 

was approximated as ranging from a ‘Low’ RQD value of 5% (the minimum value allowable for the Rock 

Mass Rating (RMR) system) to a ‘High’ RQD value of 19%, a value the same distance from the mean 

value of 12% as the ‘Low’ value for schist.  There was generally no increase in RQD values with depth, 

indicating that the high degree of fracturing is not the product of surface weathering processes and 

relaxation alone. 

Table 7.22 Revelstoke Dam RQD values for lithologic units 

Lithology 
RQD (%) 

Low Mean High 
Quartzite 11 40 69 

Impure Quartzite/Quartzite Gneiss 8 30 52 

Biotite/Mica Gneiss
1 

40 51 62 
Schist 5 12 15 

Note: Based on logged boreholes (BCH Doc. No. RW-9304-08, 1992) 

During geologic mapping of the plunge pool inverts five different discontinuity sets were 

identified from 177 mapped discontinuities. Mapping did not differentiate between fractures, shears, and 

faults, however field notes and geologic investigation reports indicate that a large number of the 

discontinuities display offset, slickensides, or are gouge-filled. The five discontinuity sets were 

differentiated based both on their relationship to local foliation direction and degree of dip. The joint set 

orientations and the numbers of mapped discontinuities are provided in Table 7.23. Orientations are based 
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on strike and dip measurements taken along the excavated invert walls. Measurements were input into 

RocScience Dips Software v6.006 (2012), where the mean orientation was calculated for each 

discontinuity type. Two steeply dipping sets were identified from the data, with Steep-1 occurring more 

frequently than Steep-2. 

Table 7.23 Revelstoke Dam plunge pool discontinuity sets 

Discontinuities 
Orientation 

Number 
Strike

1 
Dip 

Foliation 061 22 58 

Foliation-Parallel 047 41 54 

Foliation-Normal
 

174 42 34 
Steep-1 066 85 23 

Steep-2 162 81 7 

Note: 
1
Strike based on right-hand rule. (BCH Doc. No. RW-9304-08, 1992) 
 

Apparent joint spacing was also estimated from plunge pool invert mapping. One horizontal 

transect was taken across each mapped wall and two additional vertical transects were taken – one along 

the west wall and one along the north wall – for six total transects that represent all three dimensions. 

Apparent spacing values for the five discontinuity sets and for all discontinuities combined are provided 

in Table 7.24. The degree of fracturing described in the text and the orientation of the foliation/foliation- 

parallel, foliation-normal, and steep-1 joint sets suggest that rock blocks formed by the discontinuities 

have equal length-to-width-to-height ratios. 

Table 7.24 Revelstoke Dam discontinuity apparent spacing 

Lithology 
Spacing (ft) 

Low Mean High 

Foliation 4.5 47.4 86.4 
Foliation-Parallel 0.5 19.7 48.8 

Foliation-Normal
 

1.0 20.6 42.7 
Steep-1 2.9 28.1 53.2 
Steep-2

1 
- 39.9 - 

Total 0.5 10.5 21.0 
Note: based on plunge pool invert mapping; one horizontal transect running along each wall 
and two transects vertically downward along north and west walls; 

1
Only one space value 

available for Step-2 joint set (BCH Doc. No. RW-9304-08, 1992) 

 

Joint condition and roughness values were unavailable in the graphic borehole logs used for this 

analysis. As a result, joint condition and roughness values were inferred from plunge pool invert mapping 

and descriptions of the rockmass in geologic and design reports. Numerous mapped discontinuities from 

1982 invert mapping exhibit 1/8in to 4in separation and are gouge-filled fractures and shears. This degree 

of infilling occurs in all discontinuity types but is most common in the foliation-parallel and foliation-
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normal joint sets.  Offset, accompanied by slickensides on fracture surfaces, is apparent on many of the 

foliation-parallel joint and shears, likely due not only to intense fracturing but also to weakness along 

foliation planes (BCH Doc. No. RW-9304-08, 1992). Foliation-parallel discontinuities are also commonly 

coated in graphite or subject to chloratization. Due to the presence of slickensides, gouge, and the degree 

of fracturing, joint shapes across all discontinuity sets and assumed to be planar to wavy. Shearing with 

visible offset is more common in the biotite/mica gneiss portion of the mapped invert walls, likely due to 

strong mica and biotite cleavage along foliation. As a result biotite/mica gneiss joint character and 

roughness values are inferred to be lower than those for quartzite and quartzite gneiss. Schist values are 

anticipated to be even lower due to low core recovery in this unit and its soft, fissile nature (BCH Report 

No. RO-0958-12, 1957). Joint roughness and alteration values are provided in Table 7.25 and Table 7.26. 

 
Table 7.25 Revelstoke Dam Joint Roughness Number for rock types 

Unit 
Joint Roughness 

Low Mean High 

Quartzite 
SM/PL SM/PL-W SM/W 

1 1.5 2 

Impure Quartzite/Quartzite Gneiss
 SM/PL SM/PL-W SM/W 

1 1.25 2 

Biotite/Mica Gneiss
1
 

SL/PL SL/PL SM/PL 
0.75 1 1.5 

Schist 
SL/PL SL/PL SM/PL 
0.75 1 1.5 

Note: W-wavy, PL-planar, IR-irregular, SL-slickensided, SM-smooth, SR-slightly rough, R-rough; 
(BCH Doc. No. RW-9304-08, 1992; BCH Report No. RO-0958-12, 1957) 

Table 7.26 Revelstoke Dam Joint Alteration Number for rock types 

Unit 
Joint Separation/Alteration 

Low Mean High 

Quartzite 13 8 3 

Impure Quartzite/Quartzite Gneiss
 

13 8 3 

Biotite/Mica Gneiss
1
 18 8 3 

Schist 18 10 6 

Note: (BCH Doc. No. RW-9304-08, 1992; BCH Report No. RO-0958-12, 1957) 

 

Erodibility Index and Critical Stream Power Values 

Although the quartzite, quartzite gneiss, and biotite/mica gneiss displayed some variability in 

rock strength and RQD values, the erodibility index values for the three units were very similar. For this 

reason, as well as complex spatial distribution of materials, the three units have been combined into one 

gneiss/quartzite unit for this analysis, as shown in Figure 7.19 (page 92). The schist unit has significantly 

lower erodibility index values.  
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Figure 7.18 Revelstoke plunge pool invert mapping - east and west walls (modified from BCH Doc. No. RW-9304-08, 1992) 
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Table 7.27 Revelstoke Dam erodibility index and critical stream power values by rock type 

Parameters 
Gneiss/Quartzite  Schist 

Low Mean High Low Mean High 

UCS (MPa) 35 57 80 43 49 58 

RQD (%) 20 40 69 5 12 15 

ρ  (kg/m
3
) 2750 2750 2750 2750 2750 2750 

Cr 1.00 1.00 1.00 1.00 1.00 1.00 

Jr 0.9 1.33 2.0 0.75 1.0 1.5 

Jn 5.00 3.34 2.24 5.00 3.34 2.24 

Ja 14.67 6.00 3.00 18.00 10.00 6.00 

Ms 35.0 57.0 79.9 43.0 49.0 58.0 

Kb 3.9 12.1 30.8 1.0 3.6 6.7 

Kd 0.1 0.2 0.7 0.0 0.1 0.3 

Js 0.49 1.14 1.5 0.49 1.14 1.50 

EI (K) 4.2 174 2462 0.9 20 146 

Pc  (kW/m
2
) 2.9 48 350 0.9 9 42 

 

The Revelstoke plunge pool was modeled as gneiss/quartzite-only due to the volume of quartzite, 

quartzite gneiss, and biotite/mica gneiss present in the plunge pool borings and from invert mapping 

compared to the schist. In addition, a lack of detailed information on the spatial distribution of the units 

with depth limited the complexity of the model. Cross section REV-1 is shown in Figure 7.19 (page 93). 

The upstream portion of the cross section identified as ‘Concrete’ represents the portion of the cross 

section under the concrete apron below the spillway terminal structure. This portion of the model has 

been assigned an EI value of 100,000 kW/m2 to indicate that erosion of this material does not occur. 

7.4 W.A.C. Bennett Dam 

Plunge pool scour for W.A.C. Bennett Dam was assessed from June 1968 through October 2002, 

the date of the most recent plunge pool survey. 

7.4.1 Plunge Pool Topography 

Although this facility has been in operation the longest, there were only three plunge pool surveys 

available for the tailrace and plunge pool area for W.A.C. Bennett Dam. Surveys are conducted in 1973, 

1996, and 2002. Portions of the 1973 survey and riverbank topography were used to estimate the initial 

riverbed level in June 1972, prior to significant spills. Plunge pool topographic profiles along WAC-C are 

provided in Figure 7.16 (page 84). Dashed lines along the profiles indicate areas of less certainty where 

interpretation was required to complete the profiles.  A summary of the location, length, and elevation of  
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Figure 7.19 Revelstoke Dam Profile REV-1 geomechanical model 
 

 
the plunge pool from each survey is provided in Table 7.28. Information from Table 7.28 serves as the 

basis for model comparison. Complete plunge pool surveys can be found in Appendix C. 

The majority of scour in the W.A.C. Bennett Plunge pool occurred as a result of the 1972 spill 

event, when 90 ft of rock was removed from the plunge pool invert. An additional 14 ft of scour also 

occurred between 1973 and 1996. Some plunge pool infilling is evident after this period, when the invert 

rose 15 ft and returned to its 1973 level.  

Table 7.28 W.A.C. Bennett Dam summary of plunge pool survey invert location and elevation for 
profile WAC-C 

Survey Date Invert Center
1
 (ft) 

Invert  

Length
2
 (ft) 

Elevation (ft) 

June 13, 1972
3 

- - 1621 

May 19, 1973 713 17 1530 
August 4, 1996 761 1 1516 

October 1, 2002 640 1 1531 

Note: 
1
Invert center location is the distance downstream of the spillway flip bucket lip; 

2
Invert length 

is the distance from the upstream end to downstream end of the deepest portion of the plunge pool;  
3
June 1972 values inferred from denoted contours on May 1973 survey. 
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Figure 7.20 WAC-C plunge pool survey profiles, 1972 through 2011 



95 

 

7.4.2 Hydraulic Model Input 

The W.A.C. Bennett spillway has been in operation since August 1968, but has only passed flows 

on nine occasions between 1968 and 2013: during 1972, 1974, 1976, 1981, 1983, 1984, 1996, 2002, and 

2012. The longest duration of spill and highest daily average discharge occurred during the initial spill 

event in 1972. No spill event has achieved the duration or discharge since that time. The spillway 

hydrograph for 1968 through 2013 is provided in Figure 7.21 and a summary of discharge event statistics 

is provided in Table 7.29. 

Table 7.29 W.A.C. Bennett Dam major spill event statistics 

Year 1972 1974 1976 1981 1983 1984 1996 2002 2012 

Period of 
Spill 

6/13-
9/14 

7/23-
8/29 

7/7-
8/27 

7/24-
8/5 

5/10-
8/23 

3/1-
10/15 

6/24-
8/17 

7/8-
7/29 

6/26-
8/2 

Total Days of Discharge 

Spillway 85 36 36 13 68 25 55 22 26 

Bay 1 - 3 85 36 36 13 68 25 55 22 26 

Maximum Average Daily Discharge (cfs) 

Spillway 167,250 25,000 36,000 45,000 79,500 23,000 122,000 54,500 56,500 

Bay 1 - 3 55,750 8,250 12,000 15,000 26,500 8,000 41,000 18,000 19,000 

 

As outlined in Section 6, daily discharge and gate height data were used with the USBR’s 

PROFILE to generate jet issuance conditions at the spillway base. Table 7.30 provides summary statistics 

of the velocity (Vi), flow depth (Di), and turbulence intensity (Tu) for the entire spillway at W.A.C. 

Bennett Dam. 

Table 7.30 W.A.C. Bennett Dam Jet Issuance Summary Statistics 

 

Total Spillway 

Vi (ft/s) Di (ft) Tu (%) 

Count 344 344 344 

Minimum 51.64 0.97 3.2 

Average 90.32 2.73 3.7 

Maximum 129.87 7.75 4.2 

St. Deviation 17.77 1.51 0.24 

 

 

7.4.3 Geomechanical Model 

The geomechanical model developed for the W.A.C. Bennett plunge pool is based primarily off 

of geological and design reports on the general site area. No borehole information was available for the
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Figure 7.21 W.A.C. Bennett Spillway hydrograph through 2013; points indicate daily average discharge values 
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plunge pool or the immediate vicinity and stratigraphy for this area was extrapolated from an upstream 

borehole, based on site-wide dip and dip direction of the sedimentary units. UCS strength testing from 

samples near the dam foundation and abutments were considered representative of the plunge pool as 

well. This dam site has the least amount of geologic information available of any of the sites assessed in 

this study. 

Geology 

The W.A.C. Bennett plunge pool is located within the Peace River channel near the top of the 

Cadomin/Dunlevy Formation, at the base of the transition from this formation upward into the more 

shale-rich Gething Formation. Rock of the Cadomin/Dunlevy Formation is primarily massive sandstone 

with some interbedded shale layers and sporadic coal seams. In the upper 200 ft of the formation, where 

the plunge pool is located in the stratigraphic column, coal seams up to one foot in thickness are common. 

Figure 7.22 shows a section through the same portion of the stratigraphic column in which the plunge 

pool is located, although taken approximately 2,000 ft away. The column is representative of the type of 

stratigraphy expected at the top of the Cadomin/Dunlevy Formation where it transitions to Gething 

Formation; individual beds noted may or may not be present within the plunge pool itself. As shown in 

the figure, the rock grades from overburden and river gravel down to more competent shaley sandstone 

and massive sandstone with depth.  

Rock strength for sandstone and shale materials were developed from testing of materials near the 

dam axis (Site 3A) as well as the nearby Sites 2 and 3, located upstream of the current dam axis, that were 

investigated prior to selection of what is now the W.A.C. Bennett Dam location. Rock strengths are 

similar across all three sites and the rock material properties of the Cadomin/Dunlevy Formation are 

continuous regionally. UCS strength values for sandstone and shale cores tested in the lab are provided in  

Table 7.31. Shale units on site are susceptible to slaking and weathering once exposed to water. 

Shale UCS strength values were therefore based on tests on saturated core samples due to the location of 

the rock beneath the water table. Sandstone saturated and dry tests resulted in very similar values and 

were not differentiated for this analysis. 

 
Table 7.31 W.A.C. Bennett Dam UCS rock strength (MPa) for lithologic units 

Lithology 
UCS Strength (MPa) 

Low Mean High 
Sandstone 97 122 163 

Shale 19 69 148 

Note: Sandstone values from 7 tests, dry & saturated; shale values from 2 tests, dry & 
saturated, and shale UCS range provided in BCH Report 1765 (BCH Report No. 1756, 1988; 
BCH Report No. 31, 1959; BCH Report No. 105, 1959). 
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Figure 7.22 Stratigraphic column of the upper Cadomin/Dunlevy Formation from DH-8, depths 

adjusted to plunge pool level based on distance from pool and regional strike and dip 
(BCH Report No. N300 Vol. 3, 1959) 

The W.A.C. Bennett dam site lacks any complex structural elements. The sedimentary rocks on 

site dip 5
o
 to 15

o 
toward the southwest, downstream of and roughly perpendicular to the dam axis. 

Jointing within both units is limited to subvertical relaxation joints in the canyon walls and bedding-

parallel relaxation joints the valley to depths of approximately 100 ft below ground level. Joints along 

bedding planes do occur occasionally in the sandstone but are more common in the shale units, especially 

near coal seams, which may be highly fractured locally. Both units are generally described as very 

competent (BCH Report No. N300 Vol. 2, 1959). RQD values for the sandstone and shale units were 

inferred from descriptions of the rock and the reinforcement (or lack thereof) required in nearby water 

diversion tunnels and are provided in Table 7.32. 

 

Table 7.32 W.A.C. Bennett Dam inferred RQD values for lithologic units 

Lithology 
RQD (%) 

Low Mean High 

Sandstone 90 95 100 

Shale 70 85 90 
Note: Values inferred from rock descriptions and not taken from borehole logs (BCH Report 
No. 1756, 1988; BCH Report No. N300 Vol.2, 1959; Dolmage & Campbell, 1963). 
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Fracture shape and roughness was also inferred from the text, although the topic was not 

discussed at length. The lack of faulting in the area and widely spaced fractures were interpreted to result 

in planar to undulating fractures, likely slightly rough to rough in the sandstone and smooth to slightly 

rough in the shale, since these features generally occur along bedding planes. Some sandstone fractures 

are likely irregular and very rough, as geologists noted conchoidal fracture of the sandstone occurred as 

well as breaks along existing bedding. Some slickensided surfaces were noted within coal seams and 

along shale contacts with coal seams. While isolated coal beds do exist in the Cadomin/Dunlevy 

Formation, they are much less common than in the overlying shaley Gething Formation. Joint roughness 

values are provided in Table 7.33 

 

Table 7.33 W.A.C. Bennett Dam inferred joint roughness for lithologic units 

Lithology 
Joint Character and Roughness  

Low Mean High 

Sandstone 
C/SR 
2.5 

IR/ R 
3.5 

IR/VR 
4.0 

Shale 
PL/SM 

1.0 
PL-IR/SR 

2.0 
IR/R 
3.0 

Note: C-curved, PL-planar, IR-irregular, SL-slickensided, SM-smooth, SR-slightly rough, R-
rough, VR-very rough ; Values inferred from rock descriptions and not taken from borehole 
logs (BCH Report No. 1756, 1988;  BCH Report No. N300 Vol.2, 1959; Dolmage & 
Campbell, 1963). 

Where fractures do exist, the rock mass is expected to break into elongated slabs due to the 

propensity of the material to fracture along low angle bedding planes, with few vertical fractures. Joint 

structure numbers for both units are anticipated to be in the range of 0.79 to 1.09, representative of 

elongated rock blocks inclined at a low angle.  

In addition to bedrock, River gravels are also present near the surface in the river channel. Gravel, 

cobble, and boulder deposits are estimated to be approximately 30ft thick in the bedrock-cut channel 

based on borehole logs taken at the upstream, more shallow gradient Sites 2 and 3 (BCH Report No. 

N330, Vol. 2, 1959).The friction of angle of the gravel, cobbles, and boulders is approximated as 45
o
, an 

appropriate value for poorly graded gravel with few fines (Meyerhoff, 1956). Median (D50) grain sizes of 

the riverbed material were estimated as six inches, 12 inches, and 24 inches for the low, mean, and high 

cases based on the relatively high energy fluvial environment. Photographs of the river during low flow 

suggest a fairly uniform bed height across the channel without deep pools (BCH Report No. N330, Vol. 2, 

1959).  
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Erodibility Index and Critical Stream Power Values 

The W.A.C. Bennett plunge pool geomechanical model was broken into three zones based 

primarily on lithology. The top layer of the plunge pool model consists of river gravels, to depths of 30 ft 

below ground surface. Below the river gravels and down to elevation 1,522 ft (approximate) material is 

expected to consist of massive and banded shale with some weathered and more highly fractured shaley 

sandstone. These shallow materials are expected to have a lower erodibility index both because of the 

weaker nature of the shale as well as the more fractured nature of the sandstones that may be present. 

Beyond this depth the plunge pool is modeled as competent Cadomin/Dunlevy Formation sandstone. 

Input parameters, calculated erodibility index values, and associated critical stream power values are 

provided in Table 7.34. The geomechanical model of section WAC-C is also provided in Figure 7.23 

(page 102). 
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Table 7.34 W.A.C. Bennett Dam erodibility index tables for geomechanical zones 

Rock 
Parameters 

Sandstone Shale/ Fractured Sandstone Soil 
Parameters 

Overburden - River Gravel 

Low Mean High Low Mean High Low Mean High 

UCS (MPa) 97 122 163 19 69 148 D50 (in) 6 12 24 

RQD (%) 90 95 100 70 85 95 φ (o) 45 45 45 

ρ  (kg/m
3
) 2750 2750 2750 2750 2750 2750         

Cr 1.0 1.0 1.0 1.0 1.0 1.0         

Jr 2.5 3.5 4.0 1.0 2.0 3.0         

Jn 2.24 1.83 1.50 2.73 1.83 1.83         

Ja 1.0 0.75 0.75 2.5 1.75 1.0         

Ms 96.9 121.9 162.9 19.0 68.9 147.9 Ms 0.41 0.41 0.41 

Kb 40.2 51.9 66.7 25.6 46.4 51.9 Kb 3.5 28.3 226.5 

Kd 2.5 4.7 5.3 0.4 1.1 3.0 Kd 1.00 1.00 1.00 

Js 1.00 1.15 1.25 1.00 1.15 1.25 Js 1.00 1.00 1.00 

EI (K) 9735 33961 72384 194.7 4209 28787 EI (K) 1.5 11.6 92.9 

Pc (kW/m
2
) 980.1 2502 4413 52.1 523 2210 Pc (kW/m

2
) 1.3 6.3 29.9 
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Figure 7.23 W.A.C. Bennett Dam Profile WAC-C geomechanical model
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CHAPTER 8  

RESULTS 

Results for depth and downstream invert distance for the four dam sites assessed are presented 

below, produced from the EIM_ProfileCalc program developed for this analysis. Tabulated data for each 

day of record assessed, modeled depths and invert locations for the ‘Low’, ‘Mean’, and ‘High’ erodibility 

cases for each dam site are provided in Appendix D. Profiles developed by the program for each survey 

date are provided in Appendix E. Profiles show only material removed due to direct impact from the jet 

and do not account for rock removal from separation cells, undercutting and collapse of overhanging 

materials, or other methods of rock removal. 

8.1 Plunge Pool Depth 

Modeled results of plunge pool depth and the corresponding surveyed depths for each dam site 

are presented in Table 8.1. Surveyed plunge pool depths used for comparison were adjusted for infilling 

with sediment by assuming that only plunge pool deepening occurred over time. As a result, the deeper of 

the current and previous surveyed plunge pool depths over the series of survey data for each dam was 

used for comparison. In the table both surveyed and modeled depth were calculated by subtracting the 

deepest point of scour from a base elevation representing pre-spillway operation plunge pool conditions. 

Differences were calculated such that negative values indicate shallower modeled plunge pool depth than 

surveyed depth. Positive difference values indicate deeper modeled plunge pool depth than surveyed 

depth. In some cases characterized by ‘Low’ erodibility index profiles scour progressed past the lowest 

modeled elevation of the plunge pool. The scour depth for these cases is recorded as the maximum depth 

of the profile and a “+” symbol to indicate scour progression below this depth. Values including the “+” 

symbol represent a minimum depth or difference value and may be greater.  

‘Mean’ and ‘High’ modeled and surveyed depths were fit to a one-to-one linear regression line. 

Goodness of fit of the line was assessed based on both the coefficient of determination (R
2
 value) and the 

standard error of the estimate. ‘Low’ modeled depth values were not fit to linear regressions due to the 

number of uncertain values that exceeded the limits of the modeled profiles in the cases of the Seven Mile 

and Revelstoke Dams. 

Table 8.2 provides a summary of the results of the plunge pool depth statistics for all combined 

dam sites, only dam sites with flip bucket type energy dissipaters, dam sites with sedimentary plunge 

pools (PCN and WAC), and dam sites with metamorphic plunge pools (SEV and REV).   
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Table 8.1 Model plunge pool depth results and comparison with surveyed depths 

  
  

Survey 

Date
 

Adjusted 

Survey 

Depth
2
 

(ft) 

Modeled Depth
3
 (ft) 

Difference  

Survey vs. Modeled
4
 (ft) 

Low Mean High Low Mean High 

P
C

N
-3

4
 

10/30/1979         
  

  
4/15/1980 40 49 37 4 9 -3 -36 

9/5/1981 40 49 37 4 9 -3 -36 

10/1/1983 40 49 37 4 9 -3 -36 

10/8/1985 40 49 37 4 9 -3 -36 

8/4/1996 40 74 46 19 34 6 -21 

6/12/2007 43 74 46 19 31 3 -24 

P
C

N
-5

6
 

10/30/1979 
  

  

4/15/1980 22 67 11 0 45 -11 -22 

9/5/1981 27 67 11 0 40 -16 -27 

10/1/1983 27 67 11 0 40 -16 -27 

8/4/1996 27 83 17 0 56 -10 -27 

6/12/2007 27 84 20 0 57 -7 -27 

S
E

V
-1

2
 

10/30/1979 
  

  

12/14/1979 24 125 38 0 101 14 -24 

8/1982 49 200+ 89 45 151+ 40 -4 

9/20/1984 49 200+ 89 45 151+ 40 -4 

10/15/1986 49 200+ 89 45 151+ 40 -4 

10/1/1988 52 200+ 89 45 148+ 37 -7 

11/18/1997 52 200+ 89 45 148+ 37 -7 

12/9/2011 52 200+ 89 45 148+ 37 -7 

R
E

V
-1

 

1979 
  

  

5/15/1984 30 400+ 200 69 370+ 170 39 

8/11/1986
1 40 400+ 200 69 360+ 160 29 

9/22/1991 40 400+ 200 69 360+ 160 29 

7/24/2002 40 400+ 200 69 360+ 160 29 

W
A

C
-C

 6/13/1972 
   

5/19/1973 91 228 126 94 137 35 3 

8/4/1996 105 228 126 94 123 21 -11 

10/1/2002 105 228 126 94 123 21 -11 

Note: 
1
Deepest surveyed point of the 1986 Revelstoke plunge pool survey, not along profile line; 

2
Adjusts for plunge pool sediment infilling by assuming the deeper of the current and previous plunge 

pool depths over the series of survey dates for each dam; 
3
Numbers followed by a “+” indicate scour 

progression below the modeled profile level and the value represents the lowest modeled profile level; 
4
Positive values indicate deeper modeled than surveyed scour and negative values indicate shallower 

modeled than surveyed scour.  
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Table 8.2 Modeled depth vs. surveyed depth goodness of fit statistics 

Dam Sites 
R

2 
* Standard Error (ft) 

Mean High  Mean  High 

All Dam Sites n/a 0.47 71.6 24.8 
Flip Bucket 0.62 0.53 25.2 23.0 

Sedimentary Dam Sites (PCN & WAC) 0.88 0.51 15.7 27.8 
Metamorphic Dam Sites (SEV & REV) n/a n/a 112.9 23.1 

Note: * R
2
 value representative of one-to-one relationship between modeled and surveyed values, not 

necessarily the statistical line of best fit; “n/a” values for R
2
 indicate no degree of one-to-one 

relationship was attainable. 

Plots of the modeled versus surveyed depth values were generated for ‘Mean’ modeled depths, 

‘High’ modeled depths, and valid ‘Low’ modeled depths for each dam site. These plots are shown in 

Figure 8.1, A through D. For reference the one-to-one ideal relationship between the two values is also 

shown in these figures. Results are plotted with the surveyed values on the x-axis and the modeled values 

on the y-axis. The combined results for all dam sites are shown in Figure 8.2, and results for only dam 

sites with flip bucket type energy dissipaters – i.e. Peace Canyon, Seven Mile, and W.A.C. Bennett Dams 

– are shown in Figure 8.3. 

 
Figure 8.1 Modeled depth vs. surveyed depth results for all dam sites (individual) 
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Figure 8.2 Modeled depth vs. surveyed depth results for all dam sites (combined) 
 

 

Figure 8.3 Modeled depth vs. surveyed depth results for dam sites with flip bucket energy 
dissipaters (combined) 
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8.2 Plunge Pool Invert Distance Downstream of Spillway 

Modeled results of plunge pool invert distance downstream of the spillway and the corresponding 

surveyed distances for each dam site are presented in Table 8.3 (page 108). In the table both surveyed and 

modeled distances were measured downstream of the flip bucket or free overfall lip for each dam site. 

Differences between modeled and surveyed values were calculated such that negative values indicate that 

the modeled plunge pool invert is nearer to the spillway than the surveyed invert. Positive difference 

values indicate that modeled plunge pool invert is farther from the spillway than the surveyed invert. In 

some cases, characterized by ‘Low’ erodibility index profiles, scour progressed past the lowest modeled 

elevation of the plunge pool. The scour distance for these cases is not recorded in the table, as an accurate 

representation was not achievable. 

‘Mean’ and ‘High’ modeled and surveyed distance values were fit to a one-to-one linear 

regression line. Goodness of fit of the line was assessed based on both the coefficient of determination (R
2
 

value) and the standard error of the estimate. ‘Low’ modeled distance values were not fit to linear 

regressions due to the number of uncertain values where scour exceeded the limits of the modeled profiles 

in the cases of the Seven Mile and Revelstoke Dams. 

Table 8.4 (page 109) provides a summary of result statistics for all dam sites, dam sites with flip 

bucket type energy dissipaters, dam sites with sedimentary plunge pools (PCN and WAC), and dam sites 

with metamorphic plunge pools (SEV and REV) for ‘Mean’ and ‘High’ erodibility index values. 

Plots of the modeled versus surveyed invert distance downstream of the spillway were generated 

for ‘Mean’ modeled distances, ‘High’ modeled distances, and valid ‘Low’ modeled distances for each 

dam site. These plots are shown in Figure 8.4, A through D (page 109). For reference the one-to-one ideal 

relationship between the two values is also shown in the figures. 

The combined results for all dam sites are shown in Figure 8.5 (page 110), and combined results 

for dam sites with flip bucket type energy dissipaters – ie. Peace Canyon, Seven Mile, and W.A.C. 

Bennett Dams – are shown in Figure 8.6 (page 110).  
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Table 8.3 Model plunge pool invert distance downstream of spillway results and comparison with 
surveyed distances 

  
  

Survey 

Date
 

Survey 

Distance 

(ft) 

Modeled Distance
2
 (ft) 

Difference  

Survey vs. Modeled
3
 (ft) 

Low Mean High Low Mean High 

P
C

N
-3

4
 

10/30/1979         
  

  
4/15/1980 273 283 256 183 10 -18 -90 

9/5/1981 218 283 256 183 65 38 -35 

10/1/1983 353 283 256 183 -70 -97 -170 

10/8/1985 263 283 256 183 20 -8 -80 

8/4/1996 220 309 269 223 90 50 3 

6/12/2007 196 308 269 223 113 74 27 

P
C

N
-5

6
 

10/30/1979    

4/15/1980 229 296 171 n/a
4 

67 -58 n/a
4 

9/5/1981 180 296 171 n/a
4 

116 -10 n/a
4 

10/1/1983 229 296 171 n/a
4 

67 -58 n/a
4 

8/4/1996 233 330 187 n/a
4 

97 -47 n/a
4 

6/12/2007 260 319 196 n/a
4 

59 -65 n/a
4 

S
E

V
-1

2
 

10/30/1979    

12/14/1979 318 339 245 249 21 -74 -69 

8/1982 389 n/a 356 305 n/a -34 -85 

9/20/1984 381 n/a 356 305 n/a -26 -77 

10/15/1986 399 n/a 356 305 n/a -43 -94 

10/1/1988 370 n/a 356 305 n/a -15 -66 

11/18/1997 392 n/a 356 305 n/a -36 -87 

12/9/2011 356 n/a 356 305 n/a -1 -52 

R
E

V
-1

 

1979 
  

  

5/15/1984 330 
 

n/a 292 225 n/a -39 -106 

8/11/1986
1 378 n/a 292 225 n/a -87 -154 

9/22/1991 237 n/a 292 225 n/a 55 -12 

7/24/2002 308 n/a 292 225  n/a -17 -84 

W
A

C
-C

 6/13/1972 
 

  

5/19/1973 713 924 843 835 211 130 122 

8/4/1996 761 924 843 835 163 82 74 

10/1/2002 640 924 843 835 284 203 195 

Note: 
1
Deepest surveyed point of the 1986 Revelstoke plunge pool survey, not along profile line; 

2
Cases where scour proceeded beyond the extent of the profile are represented by “n/a”; 

3
Positive 

values indicate deeper modeled than surveyed scour and negative values indicate shallower modeled 
than surveyed scour; 

4
no scour occurred. 
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Table 8.4 Modeled distance downstream of invert vs. surveyed distance downstream of invert 

statistical relationships 

Dam Sites 
R

2* 
Standard Error (ft) 

Mean High Mean High 
All Dam Sites 0.87 0.79 72.0 100.2 

Flip-Bucket 0.89 0.82 75.1 99.8 
Sedimentary Dam Sites (PCN & WAC) 0.89 0.86 89.7 111.0 

Metamorphic Dam Sites (SEV & REV) n/a n/a 50.3 96.0 
Note: * R

2
 value representative of one-to-one relationship between modeled and surveyed values, not 

necessarily the statistical line of best fit; “n/a” values for R
2
 indicate no degree of one-to-one 

relationship was attainable. 

 

 

Figure 8.4 Modeled distance downstream of invert vs. surveyed distance downstream of invert 
results for all dam sites (individual) 
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Figure 8.5 Modeled distance downstream of invert vs. surveyed distance downstream of invert 
results for all dam sites (combined) 

 

 

Figure 8.6 Modeled distance downstream of invert vs. surveyed distance downstream of invert 
results for dam sites with flip bucket energy dissipaters (combined) 
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8.3 Cumulative Energy vs. Depth 

In addition to comparisons of surveyed versus modeled depth, relationships between the 

cumulative energy imparted to the plunge pool and the surveyed depth, modeled depth, and difference in 

depth were also assessed. Table 8.5 shows the cumulative energy (in mega joules) imparted to the plunge 

pool by the jets for each survey date. Cumulative energy is calculated as the integral, over time, of the 

product of stream power and duration.  

Table 8.5 Cumulative energy imparted to plunge pool by survey date 

  
  

Survey Date 
Cumulative Energy 

(MJ) 

PCN-34 

10/30/1979 - 

4/15/1980 9.27 x 10
7
 

9/5/1981 2.80 x 10
8
 

10/1/1983 4.48 x 10
8
 

10/8/1985 4.86 x 10
8
 

8/4/1996 2.72 x 10
9
 

6/12/2007 3.38 x 10
9
 

PCN-56 

10/30/1979 - 

4/15/1980 5.55 x 10
7
 

9/5/1981 1.20 x 10
8
 

10/1/1983 2.13 x 10
8
 

8/4/1996 9.04 x 10
8
 

6/12/2007 1.06 x 10
9
 

SEV-12 

10/30/1979 - 

12/14/1979 7.33 x 10
8
 

8/1982 8.11 x 10
9
 

9/20/1984 1.09 x 10
10

 

10/15/1986 1.27 x 10
10

 

10/1/1988 1.28 x 10
10

 

11/18/1997 2.68 x 10
10

 

12/9/2011 3.76 x 10
10

 

REV-1 

1979 - 

5/15/1984 3.19 x 10
9
 

8/11/1986
1 3.75 x 10

9
 

9/22/1991 3.75 x 10
9
 

7/24/2002 4.08 x 10
9
 

WAC-C 

6/13/1972 - 

5/19/1973 1.06 x 10
10

 

8/4/1996 3.37 x 10
10

 

10/1/2002 3.69 x 10
10

 



112 

 

Plots of the surveyed depth, modeled depth, and difference between surveyed and modeled depth 

versus cumulative energy for the ‘Mean’ and ‘High’ cases and the associated best fit lines are provided in 

Figure 8.7, Figure 8.8, and Figure 8.9  for all dam sites. Tabulated data for the goodness of fit of the 

trendlines, including standard error and R
2
 values, are provided in Table 8.6. Note that plotted distances 

have been converted to meters to correspond with the units of cumulative energy; distances in Table 8.6 

are provided in both feet and meters. 

Similar plots for dam sites with flip bucket energy dissipaters are provided in Figure 8.10, Figure 

8.11, and Figure 8.12 (pages 113-114). Tabulated data for the goodness of fit of the trend lines is provided 

in Table 8.7 (page 114). 

 

 
Figure 8.7 Cumulative energy vs. differences between surveyed and modeled depth (in meters) for 

all dam sites. 

 

  
Figure 8.8 Cumulative energy vs. surveyed plunge pool depth (in meters) for all dam sites. 
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Figure 8.9 Cumulative energy vs. modeled plunge pool depth (in meters) for all dam sites. 

 
Table 8.6 Cumulative Energy goodness of fit statistics for all dam sites. 

Cumulative Energy vs. 
R

2 Standard Error 
ft (m) 

Mean High Mean High 

Depth Difference 0.14 0.26 56.2 (17.1) 19.4 (5.9) 

Surveyed Depth
 0.47 n/a 16.8 (5.1) n/a 

Modeled Depth 0.35 0.63 52.5 (16.0) 21.0 (6.4) 
Note: R

2
 and standard error values correspond to equations provided in Figure 8.7, Figure 8.8, and 

Figure 8.9; 
1
Surveyed depth is the same between ‘Mean’ and ‘High’ cases and is therefore only 

provided once. 
 

 

 
Figure 8.10 Cumulative energy vs. differences between surveyed and modeled depth (in meters) for 

dam sites with flip bucket type energy dissipaters. 
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Figure 8.11 Cumulative energy vs. surveyed plunge pool depth (in meters) for dam sites with flip 

bucket type energy dissipaters. 

 
 

 
Figure 8.12 Cumulative energy vs. modeled plunge pool depth (in meters) for dam sites with flip 

bucket type energy dissipaters. 

Table 8.7 Cumulative Energy goodness of fit statistics for dam sites with flip bucket type energy 
dissipaters. 

Cumulative Energy vs. 
R

2 Standard Error 

ft (m) 

Mean High Mean High 

Depth Difference  0.74 0.67 11.0 (3.4) 7.4 (2.3) 

Surveyed Depth
1 0.52 n/a 17.3 (5.3) n/a 

Modeled Depth 0.79 0.70 18.5 (5.7) 18.6 (5.7) 
Note: R

2
 and standard error values correspond to equations provided in  

Figure 8.10, Figure 8.11 and Figure 8.12; 
1
Surveyed depth is the same between ‘Mean’ and ‘High’ 

cases and is therefore only provided once. 
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CHAPTER 9  

  DISCUSSION 

In what follows, the results outlined in Chapter 8 and limitations and potential sources of error 

within the analysis are discussed to assess the significance of the results.  

9.1 Plunge Pool Depth and Downstream Distance of Invert 

Satisfactory comparison between modeled and surveyed scour profiles depends on the availability 

and quality of geologic information and the ability to representatively quantify the temporal and spatial 

distribution of the stream power of plunging jets.  Scour occurs when the stream power of a jet is greater 

than the ability of rock to resist it, as determined from the Erodibility Index scour threshold developed by 

Annandale (1995). Superior knowledge of the spatial distribution of the ability of earth material to resist 

scour combined with superior knowledge of the spatial and temporal distribution of jet stream power 

provides greater ability to accurately predict scour of rock. This research contributed to this understanding 

by not only mapping scour resistance of rock in two dimensions, but by also quantifying the stream power 

of jets and its decay in two dimensions. This allowed modeling scour profiles in two dimensions by 

comparing the scour resistance of rock to the stream power of the jet in spatial context.  

The data that was available for the four case studies included regular plunge pool surveys, 

geologic information in the vicinity of the plunge pools (rarely within the plunge pools themselves), plans 

of the spillways and records of flow releases through the spillways. Satisfactory implementation of the 

Erodibility Index Method (Annandale, 1995; 2006) to quantify the scour resistance of rock requires 

representative records of rock mass strength (UCS); RQD and the number of joint sets (persistence); joint 

aperture, roughness and gouge; and the joint orientation and shape of rock blocks (Annandale 1995, 

2006).  Although geologic records exist for the case studies, they are fairly old and incomplete; not 

containing the most critical information. Significant amounts of judgment were required to map and 

extrapolate the geologic profiles representing scour resistance; more judgment was required in some cases 

than in others. In the cases of Peace Canyon and W.A.C. Bennett Dams the available geologic 

information could be used to develop two-dimensional maps of scour resistance in the vertical dimension. 

This was not possible in the cases of Seven Mile and Revelstoke Dams due to the lack of adequate 

geologic data.  

The second set of information required to estimate scour relates to jet stream power and its decay, 

which was quantified by making use of hydraulic theory. The research project analyzed two types of 

spillways, viz. three flip buckets and one channel spillway with a free overfall at its end. Recent published 
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research about energy dissipation of flip buckets (Pfister, 2014) proved very useful to quantify jet stream 

power and its decay at Peace Canyon, W.A.C. Bennett and Seven Mile Dams. By contrast, this research 

revealed that the ability to quantify the energy dissipation of flowing water in long channel spillways and 

the ability to quantify the dissipation of jet energy emanating from such spillways and falling over long 

distances may be lacking.  

Figure 9.1 and Figure 9.2 compares simulated and actual scour at Peace Canyon Dam Bays 3 and 

4, and Bays 5 and 6 respectively. It is noted that the maximum scour depth is correctly modeled in the 

case of Bays 3 and 4, but that the lateral extent of the scour is not. The reason for this is that the model 

developed during this research project does not allow for slope failure, neither does it simulate the effect 

of flows escaping from the plunge pool nor for deposition and abrasion by rock previously scoured.  

 

Figure 9.1 PCN-34 final modeled and surveyed plunge pool configuration, based on Peace Canyon 
Dam June 12, 2007 survey (Hatch Eng. Report No. H326590, 2007). 

 

Figure 9.2 PCN-56 final modeled and surveyed plunge pool configuration, based on Peace Canyon 
Dam June 12, 2007 survey. 
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In the case of Bays 5 and 6 at Peace Canyon Dam (Figure 9.2) the maximum lateral extent of the 

simulated scour reaches about 200 ft downstream and closely resembles the surveyed scour depth at that 

location.  When studying the survey plans of the scour hole at Peace Canyon Dam it is concluded that the 

deeper portion of the plunge pool, at about 400 ft downstream, most likely formed as the result of water 

flowing from Bays 3 and 4 along the more highly eroded hinge zone. It is unlikely that it resulted from 

the impinging jets from Bays 5 and 6. As outlined previously, the model developed during this research 

does not simulate the scour observed more than 200 ft to 300 ft downstream of the spillway flip. 

The profile modeled along the W.A.C. Bennett plunge pool, shown in Figure 9.3, also displays 

good agreement between modeled and surveyed depths from October 2002, as well as overall location of 

plunge pool scour. Scour at this site is dependent on the location of the more resistant sandstone layer at 

depth. 

 
Figure 9.3 WAC-C final modeled and surveyed plunge pool configuration, based on the October 

2002 W.A.C. Bennett tailrace survey. 

Based on the comparisons in Figure 9.1, Figure 9.2 and Figure 9.3 it is reasonable to conclude 

that the availability of geologic information, which allowed for more accurate estimates of the spatial 

distribution of the scour resistance of the rock, coupled with the reliable quantification of the stream 

power of jets emanating from the flip buckets make it possible to reliably estimate maximum scour depth 

and the location of the point of maximum scour depth.  
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In the case of Seven Mile Dam a lesser amount of geologic information was available, and it was 

not possible to distinguish the variation in scour resistance of the rock in the plunge pool as a function of 

location within the plunge pool. However, the stream power of the jet projecting from the flip bucket at 

Seven Mile Dam could be determined using the same theory applied at Peace Canyon and W.A.C. 

Bennett Dams. Figure 9.4 shows that the maximum scour depth modeled at Seven Mile Dam is deeper 

than observed, which may be due to underestimating the scour resistance of the rock as a function of 

location within the plunge pool. It is also noted that the location of the calculated point of maximum scour 

is closer to the dam than the surveyed location. This is attributed to the fact that the hydraulics within the 

plunge pool are not dynamically simulated, thereby not accounting for the scour that may occur 

downstream of the theoretical impingement point of the jet. Although this result is not completely 

satisfactory, it is noted that the general tendency of the scour hole geometry is similar between what was 

modeled and observed. Overestimating the scour may, from a practical point of view, be acceptable as it 

is conservative. 

 
Figure 9.4 SEV-12 final modeled and surveyed plunge pool configuration, based on 

the December 9, 2011 Seven Mile Dam tailrace survey. 

Figure 9.5 illustrates how poor characterization of the geology and inadequate quantification of 

jet stream power can lead to unsatisfactory results. The big difference between modeled and surveyed 

scour is likely due to poor geologic characterization, poor quantification of the stream power of the jet, 

poor quantification of the decay of stream power and an inability to correctly calculate the jet trajectory.  

. 
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Figure 9.5 REV final modeled and surveyed plunge pool configuration, based on the 

July 24, 2002 Revelstoke tailrace survey. 

In summary, Figure 9.1 to Figure 9.4 illustrate the importance of detailed geologic 

characterization and correct understanding of how the stream power of flowing water changes as a 

function of space. Rock core logs taken from plunge pools (or their predicted location) showing strength 

(UCS), RQD, joint aperture, roughness and alteration are required. Additionally, mapping of joint sets to 

establish joint persistence, dip angle, and dip direction of discontinuities form part of the information 

required to quantify the scour resistance of rock. This data is used in Annandale’s Erodibility Index 

Method (Annandale 1995; 2006) to quantify the ability of rock to resist stream power.  

The research also emphasizes the importance of quantifying the stream power of flowing water. 

This may be accomplished by making use of proven hydraulic theory (such as the theory of jets projected 

from flip buckets (Pfister, 2014). The simplified approach to hydraulic flow prediction used in the model 

developed during this assessment may be enhance by making use of Three-Dimensional Computational 

Fluid Dynamics (CFD) software. Such information may help to more accurately predict the shape and 

lateral extent of scour holes. Executing such hydraulic modeling was beyond the scope of this assessment 

and may form the basis of future research by others 
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9.2 Cumulative Energy vs. Depth 

The logarithmic nature of the cumulative energy versus the modeled depth, surveyed depth, and 

difference in depth indicates that the rate of scour decreases over time as each plunge pool develops. Due 

to this decrease higher magnitude discharge events are required to enact change within the plunge pool, 

based on data for the dam sites with flip bucket type energy dissipaters. This result is not unexpected and 

is observed not only in the modeled depths versus cumulative energy, but in the surveyed depths versus 

cumulative energy as well. In addition, the plot between depth difference and cumulative energy indicates 

greater variance between modeled and surveyed plunge pool depths with larger cumulative energy inputs; 

as more energy is absorbed within the plunge pool and underlying rock material, more uncertainty exists 

within the model. 

The comparison between the various depth parameters and cumulative energy introduces a 

temporal aspect to the analysis. The temporal distribution of the discharge events plays an important role 

in plunge pool development and merits further study. Scour rate and cumulative energy merit further 

research to assess the strength, significance, and implications of the relationship between the two. 

9.3 Limitations and Sources of Error 

This analysis is a two-dimensional simplification of a complex three-dimensional geologic and 

hydraulic environment. The simplification of such an environment is invariably subject to limitation and 

error. Three primary types of error were identified over the course of this analysis, including statistical 

error, sampling error, and methodological error. The full impact of each type of error is not quantifiable 

within the context of this analysis.  

Statistical Error 

Statistical error is introduced due to limited sample datasets for EIM input parameters including 

UCS, RQD, joint roughness, and joint alteration, among others. Limited sample datasets do not 

necessarily adequately represent the population from which they were taken and larger datasets lead to 

better overall estimates of rock characteristics. Larger datasets and the subsequently more representative 

mean and standard deviation values would improve this analysis. Limited datasets also do not reflect 

changes that occur in characteristic parameters with depth or distance away from structural features, 

which impacts the spatial distribution of the geomechanical zones used for analysis. 
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Sampling Error 

Sampling error and bias influence results as well. The use of UCS strength laboratory testing, for 

example, may result in larger model input strength values due to preferential selection of the stronger, 

more intact pieces of rock core for testing. This leads to overestimates of overall rock mass strength. The 

combination of UCS strength test results with point load testing and field strength characterization will 

generate more realistic estimates. Unfortunately point load data and detailed geomechanical rock 

characterization information is not always available.  

Poor drilling or sampling methods may cause core breakage, and subsequent underestimates of 

RQD values, which will reduce the overall erosive characterization of the rock materials.  

Poor logging techniques or the use of different logging methods, standards, and interpretations 

between loggers and/or drill holes can also complicate the rock mass characterization. 

Methodological Error 

Methodological error is also introduced during modeling. The model developed for this analysis 

does not account for variations in discharge over the spillway during 24-hour periods, rather relying on 

the mean daily discharge values. Pressure fluctuations in the near-bed region due to variability in spillway 

discharge are likely, but not addressed here.  

The model applies stream power in the vertical direction only within the plunge pool and does not 

account for horizontal loading on plunge pool sidewalls due to acting wall jets. This simplification is 

anticipated to result in a narrower expression of the scour hole at the rock-water interface than actually 

experienced. This limitation is considered reasonable due to the limited information on wall jets as well as 

observations that the most severe hydrodynamic action occurs in the impingement region (Beltaos & 

Rajartnam, 1973, 1974), which is addressed in this analysis. In nature, steep plunge pool sidewalls may 

not be expected, depending on the rock mass strength and joint orientation. Natural failures of plunge 

pool sidewalls and/or overhangs due to slope instability are also not accounted for in this analysis.  The 

invert depth and location, rather, are estimated solely from the characteristics of the impacting jet. Overall 

plunge pool development, in terms of lateral expansion, is not addressed here. 

The equations used here represent a submerged jet plunging through an open, flat bottomed 

plunge pool. While good as a basis for theory, submerged jets in plunge pools are often influenced by the 

surrounding topography. This effect can impact the mean and fluctuating pressures, as indicated by 

Manso’s (2006) research on the influence of plunge pool geometry on energy dissipation.  
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Rectangular jet geometry and energy decay relationships were used for this analysis where 

possible. More information is available for round jets than rectangular jets, however, and some round jet 

relationships are used where relationships for rectangular jets have not yet been developed. In addition, 

most relationships have been developed for the nappe flow case, whereas jets assessed in this analysis are 

typically generated from flip buckets and exhibit greater jet breakup during free-fall than the nappe flow 

case. Overall, the understanding of jet hydraulics is still incomplete.  
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CHAPTER 10  

CONCLUSIONS 

In conclusion, this analysis indicates that Annandale’s Erodibility Index Method provides an 

accurate assessment of potential plunge pool depth and invert location for spillways with flip bucket type 

energy dissipaters and relatively dense geologic data. 

The best results were obtained from dam sites with a good understanding of the spatial 

distribution of rock materials, making this information key for good depth and distance predictions. 

Where geology is complex or poorly understood, every effort should be made to identify trends in EIM 

input parameters, including increases in rock strength or reductions in fracture aperture or density with 

depth. 

Geologic data density is important and larger datasets tended to produce better statistical 

relationships in this analysis. UCS strength and RQD, especially, play key roles in this analysis. Joint 

aperture, roughness, and infilling are also very important, but can be approximated from field 

observations if required. Joint orientation, in the context of the EIM, is less straightforward and must be 

assessed on a site by site basis, taking into account which joint sets may be the most detrimental to 

stability depending on the location within the plunge pool relative to the location of the impinging jet.  

Accurate calculation of hydraulic parameters is an integral step in computing realistic scour 

depths and invert locations. Complex spillway geometries add an additional level of difficulty here. Care 

should be taken to accurately evaluate these parameters using data from empirical relationships, physical 

models, and other sources, as available. 

Complex plunge pool topography likely plays a role in the amount of energy dissipation that 

occurs in the plunge pool. Current relationships are based on open, flat bottomed plunge pools when in 

reality, plunge pool topography can be complex and contribute to energy dissipation. The influence of 

plunge pool topography requires further assessment for potential inclusion in future versions of this 

model. 
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CHAPTER 11  

RECOMMENDATIONS 

For Practical Application 

 Collecting geologic information within the plunge pool should be part of the geologic 

investigations for future dam sites. Effort should be made to identify the spatial distribution of 

units within the plunge pool using boreholes, surface mapping, geophysics, and other methods as 

applicable. Interpolation of existing geologic maps may be appropriate if units are laterally 

continuous. 

 Care should be taken in the calculation of input hydraulic parameters including flow velocity, 

depth, and issuance angle. Detailed hydraulic numerical models or the use of physical models to 

accurately assess these parameters is essential. 

 This research could be improved by incorporating a Monte Carlo simulation into the program to 

assess the most probable conditions based on the ranges of the different parameters. Monte Carlo 

simulations are more applicable for robust datasets in which the sample is more representative of 

the population. This method is likely to provide a more narrow range of likely scour depths and 

locations based on the probability of the existence of certain conditions. 

 This research should be used in conjunction with other scour-prediction tools, including physical 

models, and should not be used as the only means of assessing potential scour depth. 

For Future Research 

 This research would benefit from the inclusion of a larger dataset of dam sites with existing 

plunge pool surveys, including dam sites with: 

o variable geologic environments, 

o variable spillway structures, and 

o dense available geologic data. 

 The research could be improved by incorporating: 

o the influence of plunge pool drawdown, 

o the influence of plunge pool topography, and 

o the influence of spillway terminal structure type on plunge pool scour. 

 Energy dissipation calculations within the plunge pool and the radial energy decay that may occur 

could be adjusted to focus on rectangular jets, which are very common for many dam sites. More 

recent research by Castillo et al. (2014) on the energy dissipation of rectangular jets in plunge 

pools that emerged at the conclusion of this analysis should be incorporated in future work. 
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 The relationship between the temporal distribution of discharge events and plunge pool scour 

warrants further assessment to relate the cumulative energy absorbed by the plunge pool to 

plunge pool development. 
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APPENDIX A 

EIM ROCK PARAMETER TABLES 

Table A.1 Mass Strength Number for Rock (Ms) 

Hardness Identification in Profile  

Unconfined 

Compressive 

Strength (MPa) 

Mass 

Strength 

Number (Ms) 
Very soft 
rock 

Material crumbles under firm (moderate) blows 
with sharp end of geological pick and can be 
peeled off with a knife; is too hard to cut tri-axial 
sample by hand. 

Less than 1.7 0.87 

1.7 - 3.3 1.86 

Soft rock Can just be scraped and peeled with a knife; 
indentations 1mm to 3mm show in the specimen 
with firm (moderate) blows of the pick point. 

3.3 - 6.6 3.95 

6.6 - 13.2 8.39 

Hard rock Cannot be scraped or peeled with a knife; hand-
held specimen can be broken with hammer end of 
geological pick with a single firm (moderate) 
blow. 

13.2 - 26.4 17.7 

Very hard 
rock 

Hand-held specimen breaks with hammer end of 
pick under more than one blow. 

26.4 - 53.0 35.0 

  
53.0 - 106.0 70.0 

Extremely 
hard rock 

Specimen requires many blows with geological 
pick to break through intact material. Larger than 212.0 280.0 

Note: From Kirsten, 1982 

Table A.2 Joint Set Number (Jn) 

Number of Joint Sets  
Joint Set Number 

(Jn) 

Intact, no or few joints/fissures 1.00 

One joint/fissure set 1.22 
One joint/fissure set plus random 1.50 

Two joint/fissure sets 1.83 

Two joint/fissure sets plus random 2.24 
Three joint/fissure sets 2.73 

Three joint/fissure sets plus random 3.34 

Four joint/fissure sets 4.09 
Multiple joint/fissure sets 5.00 

Note: From Kirsten, 1982 
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Table A.3 Joint Roughness Number (Jr) 

Joint Separation Condition of Joint 
Joint 

Roughness 

Number (Jr) 

Joints/fissures tight or closing 
during excavation 

Stepped joints/fissures 4.0 
Rough or irregular, undulating 3.0 
Smooth undulating 2.0 
Slickensided undulating 1.5 
Rough or irregular, planar 1.5 
Smooth planar 1.0 
Slickensided planar 0.5 

Joints/fissures open and 
remain open during 
excavation 

Joints/fissures either open or containing 
relatively soft gouge of sufficient thickness to 
prevent joint/fissure wall contact upon 
excavation. 

1.0 

Shattered or micro-shattered clays 1.0 
Note: From Kirsten, 1982 

 

Table A.4 Joint Alteration Number (Ja)  

Description of Gouge  

Joint Alteration Number (Ja) for 

Joint Separation (mm) 

1.0
1
 1.0-5.0

2
 5.0

3
 

Tightly healed, hard, non-softening impermeable filling 0.75 - - 

Unaltered joint walls, surface staining only 1.0 - - 

Slightly altered, non-softening, non-cohesive rock mineral 
or crushed rock filling 

2.0 2.0 4.0 

Non-softening, slightly clayey non-cohesive rock mineral 
or crushed rock filling 

3.0 6.0 10.0 

Non-softening, strongly over-consolidated clay mineral 
filling, with or without crushed rock 

3.0 6.0** 13.0 

Softening or low friction clay mineral coatings and small 
quantities of swelling clays 

4.0 8.0 13.0 

Softening moderately over-consolidated clay mineral 
filling, with or without crushed rock 

4.0 8.0** 13.0 

Shattered or micro-shattered (swelling) clay gouge, with 
or without crushed rock 

5.0 10.0** 18.0 

Note: 
1
Joint walls effectively in contact; 

2
Joint walls come into contact after approximately 100 mm 

shear; 
3
Joint walls do not come into contact at all upon shear; **Also applies when crushed rock 

occurs in clay gouge without rock wall contact; From Kirsten, 1982. 
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Table A.5 Relative Ground Structure Number (Js) 

Dip Direction of 

Closer Spaced Joint 
Set (degrees) 

Dip Angle of Closer 

Spaced Joint Set 
(degrees) 

Ratio of Joint Spacing
1
, r 

1:1 1:2 1:4 1:8
2 

180/0 90 1.14 1.20 1.24 1.26 

In direction of stream 
flow 

89 0.78 0.71 0.65 0.61 
85 0.73 0.66 0.61 0.57 
80 0.67 0.60 0.55 0.52 
70 0.56 0.50 0.46 0.43 
60 0.50 0.46 0.42 0.40 
50 0.49 0.46 0.43 0.41 
40 0.53 0.49 0.46 0.45 
30 0.63 0.59 0.55 0.53 
20 0.84 0.77 0.71 0.67 
10 1.25 1.10 0.98 0.90 
5 1.39 1.23 1.09 1.01 
1 1.50 1.33 1.19 1.10 

0/180 0 1.14 1.09 1.05 1.02 
Against direction of 
stream flow 

-1 0.78 0.85 0.90 0.94 
-5 0.73 0.79 0.84 0.88 
-10 0.67 0.72 0.78 0.81 
-20 0.56 0.62 0.66 0.69 
-30 0.50 0.55 0.58 0.60 
-40 0.49 0.52 0.55 0.57 
-50 0.53 0.56 0.59 0.61 
-60 0.63 0.68 0.71 0.73 
-70 0.84 0.91 0.97 1.01 
-80 1.25 1.41 1.53 1.61 
-85 1.39 1.55 1.69 1.77 
-89 1.50 1.68 1.82 1.91 

180/0 -90 1.14 1.20 1.24 1.26 

Notes: 
1
For intact material take Js = 1.0; 

2
For values of r greater than 8 take Js as for r=8; 

From Kirsten, 1982. 
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APPENDIX B 

EIM PROFILE CALCULATION PROGRAM CODE 
 

% EIM_ProfileCalc 
% 
% Program for calculating erosion along a plunge pool profile for spillways 
% with rectangular jets 
%  
% Created by A. Rock, 2014 
% 
% 
% ----------------------------- CONSTANTS --------------------------------- 

  
pi = 3.14159265;  
g = 32.174; %gravity (ft/s^2) 
UW_Wat =  62.30; % unit weight of water @ 70oF (lb/ft^3) 

  
% ------------------------------------------------------------------------- 
% ----------------------------- USER INPUTS ------------------------------- 
% ------------------------------------------------------------------------- 

  
% -------------------------- Hydraulic Inputs ----------------------------- 
uiimport('SEV_ProfileCalc_Input.csv'); 
pause 

  
DamName = ' Seven Mile Dam Spillway Bays 1&2 - High'; 
DamAbbrev = 'SEV12 - High'; 

  
IN_DATE; 
IN_TW; % tailwater elevation (ft) 
IN_DI; % jet issuance diameter (ft), at flip bucket 
IN_VI; % jet issuance vel. at flip bucket (ft/s) 
IN_EGL; % jet issuance EGL (ft. elev), at flip bucket lip 
IN_N; % Manning's roughness at flip bucket lip 

IN_FR; % corrected Froude Number at issuance 

  
% ------------------------- Spillway Parameters --------------------------- 
theta = 30; % average issuance angle (equal to flip bucket angle) (degrees) 
z_bucket = 1554.54; % exact flip bucket elevation (ft) 
z_bucket_round = round(z_bucket); 
L_bucket = 116; % length of spillway at flip bucket location (ft); 
%w_tailrace = 490; % width of tailrace (ft) 
R = 60; % flip bucket radius (ft) 

phi = atand(0.96513); % spillway face angle (deg) 
beta = theta + phi; 
lambda = (1 - cosd(beta)) / sind(beta) * (180 / pi); 

  
% Spillway Terminal Structure Type  
Type = 'B';  
%A = free-falling rectangular jet,  
%B = flip-bucket 

  

% ------------------------- Profile Parameters ---------------------------- 
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z_maxhole = 1200; % bottom elevation of imported Karray (ft) 
x_max = 575; % maximum horizontal length of profile (ft), measured out from  
    % the edge of the flip bucket 
x_size = x_max+1; 
z_size = z_bucket_round - z_maxhole + 2; % between the tailwater elevation  
    % and the the maximum scour hole depth 

  
Karray = csvread('SEV_Karrayin_GMA_High.csv'); % Rock erodibility  matrix 
Kdyn = Karray; % dynamic array originally equal to initial conditions prior  
% to spillway usage, but is altered with each iteration to used to show  
% reduction in elevation due to multiple records of discharge events. 

  
%v = 1000; % plotting contour values 
Maxval = 8500; % Maximum EI value, for plotting purposes 

  
% SECTION: Generate Output File ------------------------------------------- 

  
CCC = {'Date',  'Di (ft)','Vi (ft/s)','EGL (ft)','Fr', 'TW (ft)', 'Tu',... 
    'x_imp (ft)', 'Lj (ft)', 'Lb (ft)', 'H (ft)', 'D_out (ft)',... 
    'ai (deg)', 'Qi (cfs)','Pjet (kW)', 'pjet (kW/m^2)',... 
    'x_locale_us (ft)', 'x_locale_ds (ft)', 'z_locale (ft)'}; 

  
fid1 = fopen(strcat('1_',char(DamAbbrev),'_Results.csv'), 'a'); 
fprintf(fid1,'%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s \r\n', 

CCC{:} ); 
fclose(fid1); 

  
% ------------------------------------------------------------------------- 
% ------------------------------------------------------------------------- 
% ------------------------------------------------------------------------- 

  

  

% -------------------------Enter Program Loop ----------------------------- 

  
% ENTIRE TIME SERIES LOOP 
for kk = 1:length(IN_DATE)  

  
%Provides percent completion, as the model runs 
PercentComplete = (kk-1) * 100 / length(IN_DATE)  

     
% sets input variables to specific events 

Date = IN_DATE(kk); 
Vi = IN_VI(kk);  
Di = IN_DI(kk); 
z_tw = IN_TW(kk); 
Manning = IN_N(kk); 
Fri = IN_FR(kk); 
EGL = IN_EGL(kk); 

  
% ISSUANCE CONDITIONS ----------------------------------------------------- 
% TO BE IMPORTED FROM BoR WATER SURFACE PROFILE PROGRAM (V1.10) 
Rh = (L_bucket * Di) / (L_bucket + Di + Di); % Hydraulic radius (ft) 
Fric = 1.49 * Rh^(1/6) / (Manning * sqrt(8*g)); % Fric = 1/sqrt(f); 
Tu = 0.25 / Fric; % turbulence intensity 
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hv = Vi * Vi / (2 * g); % jet issuance kinetic energy (ft) 
Qi = Vi * Di * L_bucket; %total issuance discharge for spillway(ft3/s) 
qi = Vi * Di; % issuance unit discharge (ft^3/s/ft) 
Fri_un = Vi / sqrt(Di * g); % uncorrected Froude Number 

  
% FALLING JET ENERGY DISSIPATION 
% ------------------------------------------ 

  
delz = -(z_bucket - z_tw + (0.5*Di)); %  
z = z_bucket; % initialization of vertical distance from flip bucket loc. 
x_imp = 0; % initialization of horizontal distance from flip bucket loc. 
zm = z_bucket; % initialization of maximum height 

  
% calculate horizontal distance to impact 
while z > delz 
    x_imp = x_imp + 0.5; % increase horizontal step by 1/2 ft) 

     
    %calculate maximum drop height (ft) 
    z = ((x_imp * tand(theta)) - (x_imp * x_imp /(4 * (hv) * ... 
        cosd(theta) * cosd(theta)))); 
end 

  
% Headloss from reservoir to spillway tailwater, assuming constant Vi 
% velocity 
H = (EGL - z_tw); 

  
% jet trajectory length (ft) 
Trajectory = @(x,theta,hv) sqrt(1 + (tand(theta) - ((2*x)/(4* hv * ... 
        cosd(theta)*cosd(theta)))).^2); 
Lj = integral(@(x)Trajectory(x,theta, hv),0, x_imp); 

  
% plunge pool impingement angle (deg) 
ai = atand(tand(theta)-(x_imp / (2 * hv * cosd(theta) * ... 

    cosd(theta))))*(-1); 

  
% impact velocity (ft/s) 
Vj = sqrt((Vi * Vi) + (2 * g * H)); 
Vx = Vj * cosd(ai); % x-comp of velocity @ plunge pool impingement(ft/s) 

  
if Type == 'A' 
    % jet breakup length (ft) for rectangular jets (Castillo, 2007) 
    Lb = 0.85 * Di * Fri_un * Fri_un / (1.07 * Tu * Fri_un * Fri_un)^0.82;     

elseif Type =='B' 
    %horizontal distance to jet breakup (ft) (Pfister, 2014) 
    x_Lb = (76 * Di * (1 + sind(phi)) / (Fri_un * (1 + tand(lambda))^4)) / 

... 
        cosd(phi);     
    Lb = integral(@(x)Trajectory(x,theta, hv),0, x_Lb); 
end 

  
% outer jet spread diameter (ft) 

D_out = Di + (2 * 0.38 * Tu * Lj);  

  
% diameter of solid core of round jet (Ervine, 1997) 
Dj = Di * sqrt(Vi / Vj);  
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%Area of jet at impact with plunge pool (ft^2) for rectangular jet 
    D_Spread = D_out - Di;% change in jet dia. from issuance to impingement 
    L_out = L_bucket + D_Spread; % length of spillway at flip 
    % bucket downstream of the two (assumed) identical spillway jets +  
    % diameter of jet spread. 

  
    Ajet = L_out * D_out; 

  
% Total Stream Power of plunging jet -------------------------------------- 
% must be reported in kW & kW/m^2 for comparison with Karray 

  
UW_Wat_m = 9.789; % unit weight of water to kN/m3 
Qi_m = Qi * 0.02831685; % convert cfs to cms 
H_m = H * 0.3048; % convert ft to m 
Ajet_m = Ajet * 0.09290304; % convert ft^2 to m^2 

  
Pjet =UW_Wat_m * Qi_m * H_m; %kW 

  
% Stream Power per unit area 
pjet = Pjet / Ajet_m; % kW/m^2 

  
% PLUNGE POOL ENERGY DISSIPATION ------------------------------------------ 

  
% Degree of jet development upon plunge pool impingement 
% If H < Lb (Lratio < 1), then jet core exists and jet is undeveloped 
% If H < Lb (Lratio > 1), then jet is fully developed  

  
Lratio = H / Lb;  

  
% Determine correct Cp calculation input parameters (Castillo, 2006; 2007) 
if Lratio <= 0.5 

    a1 = 0.98; 
    b1 = 0.070; 
    Cpless4 = 0.78; 
elseif Lratio > 0.5 && Lratio <= 0.6 
    a1 = 0.92; 
    b1 = 0.079; 
    Cpless4 = 0.69; 
elseif Lratio > 0.6 && Lratio <= 0.9 
    a1 = 0.65; 
    b1 = 0.067; 
    Cpless4 = 0.50; 
elseif Lratio > 0.9 && Lratio <= 1.4 
    a1 = 0.65; 
    b1 = 0.174; 
    Cpless4 = 0.32; 
elseif Lratio > 1.4 && Lratio <= 1.95 
    a1 = 0.55; 
    b1 = 0.225; 
    Cpless4 = 0.22; 

elseif Lratio > 1.95 && Lratio <=2.3 
    a1 = 0.50; 
    b1 = 0.250; 
    Cpless4 = 0.18; 
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else 
    a1 = 0.50; 
    b1 = 0.40; 
    Cpless4 = 0.1; 
end 

  
% Determine correct C'pa calculation input parameters (Castillo, 2006;2007) 

  
if Lratio <= 1.4 
    a2 = 0.0003; 
    a3 = -0.0104; 
    a4 = 0.0900; 
    a5 = 0.0830; 
elseif Lratio > 1.4 && Lratio <= 2.0 
    a2 = 0.0003; 
    a3 = -0.0094; 
    a4 = 0.0745; 
    a5 = 0.0500; 
elseif Lratio > 2.0 
    a2 = 0.0002; 
    a3 = -0.0061; 
    a4 = 0.0475; 
    a5 = 0.010; 
end 

  
if Lratio <= 1.4 
    b2 = 5.30; 
    b3 = -1.405; 
elseif Lratio > 1.4 && Lratio <= 2.0 
    b2 = 3.14; 
    b3 = -1.422; 
elseif Lratio > 2.0 
    b2 = 1.50; 

    b3 = -1.500; 
end 

  
% Preallocate arrays 
Cparray = zeros(z_size,2); 
Cpparray = zeros(z_size,2); 
Yarray = zeros(z_size-1,1); 
Xarray = zeros(z_size-1,1); 

  
Cparray(:,1) = Karray(:,1); % set first column of each array = elev value 
Cpparray(:,1) = Karray(:,1); % set first column of each array = elev value 

  
z_air = z_bucket_round - z_tw; % portion of matrix above water level 

  
for k = 2:z_size % loop increasing vertical depth in plunge pool 
    z = k-2; 
     if z < z_air 
         Cparray(k,2) = 0; 
         Cpparray(k,2) = 0; 
     else 
         j = z-z_air; 
         x = j / tand(ai); % calculate horz distance from pt of impingement 
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        Lpp = j / sind(ai); % calculate flow depth (at an angle) (ft) 

     
        z_pp = z_tw - z; % calculate elevation within plunge pool (ft) 
        x_pp = x_imp + x; % calculate horizontal distance from flip  
            % bucket (ft) 
        Xarray(k-1) = round(x_pp); % round horz distance for array indexing  
        % (columns) 
        Y = Lpp; % Plunge pool depth (ft) 

     
        % Calculate mean dynamic pressure coefficient along jet trajectory 
        if Y/D_out <= 4 
            Cp = Cpless4; % When dimensionless plunge pool depth <= 4 
        else 
            Cp = a1 * exp(-b1*(Y/D_out)); % When dpp depth is > 4 
        end 

     
        % Calculate fluctuating dynamic pressure coefficient along jet 
        % trajectory 
        if Y/D_out < 14 
            Cpp = (a2*(Y/D_out)^3)+(a3*(Y/D_out)^2)+(a4*(Y/D_out))+ a5; 
        else 
            Cpp = b2 * (Y/D_out)^b3; 
        end 

     

        % Store Cp and Cpp values in arrays, by elevation 
        Cparray(k,2) = Cp; 
        Cpparray(k,2) = Cpp; 
        Yarray(k-1) = Y; 
     end 
end 

  
% Preallocate Cp radial decay matrix 
    cpr = zeros(z_size,x_size); 

    cpr(:,1) = Karray(:,1); 
    cpr(1,:) = Karray(1,:); 

         
% Preallocate Cp_prime radial decay matrix 
    cppr = zeros(z_size,x_size); 
    cppr(:,1) = Karray(:,1); 
    cppr(1,:) = Karray(1,:); 

     
% Calculate radial decay of pressure coefficients --------------------- 

    for j = 2:z_size 
        if j-2 <= z_air 
            cppr(j,2:end) = 0; 
            cppr(j,2:end) = 0; 
        else 
            %Calculate maximum submerged jet radius 
            rmax = (0.5 * D_out) + (0.25 * Yarray(j-1));  
            %area of influence is 1.6rmax (Bollaert, 2002) 
            rmaxmax = round(1.6*rmax);  

         
        % If undeveloped upon entry, the length of the jet within the 
        % plunge pool: 
        Ljet = Dj / (2 * tand(8)); 
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        for r = 0:rmaxmax 
            % For Undeveloped Jets: 
            if Lratio < 1 && Lpp < Ljet && r<= (0.5 * rmax) 
                Cpprr = 1; 
                Cprr = exp((-6)*(r/rmax)^2); 

             
            elseif Lratio < 1 && Lpp < Ljet && r > (0.5 * rmax) 
                Cpprr = exp((-3)*((r / rmax) - 0.5)^2); 
                Cprr = exp((-6)*(r/rmax)^2); 

             
            elseif Lratio < 1 && Lpp >= Ljet 
                Cpprr = exp((-3)*(r/rmax)^2); 
                Cprr = exp((-3)*(r/rmax)^2); 

         
                % For Developed Jets: 
            elseif Lratio >= 1 
                Cpprr = exp((-3)*(r/rmax)^2); 
                Cprr = exp((-3)*(r/rmax)^2); 
            end 

         
            x_rmin = Xarray(j-1) - r; % min horizontal distance, r (ft) 
            x_rmax = Xarray(j-1) + r; % max horizontal distance, r (ft) 

         
            cpr(j,x_rmax+1) = Cprr; 
            cppr(j,x_rmax+1) = Cpprr; 

             
            if x_rmin >=0 %prevents issues with negative indices due when  
                    % jet is within close proximity to flip buckets 
            cpr(j,x_rmin+1) = Cprr; 
            cppr(j,x_rmin+1) = Cpprr; 
            end 
        end 

        end 
    end 

     
%---- TOTAL STREAM POWER CALCULATION -------------------------------------- 
    % Calculate stream power at each node when jet is airborne(kW/m^2); 

  
    SParray = zeros(z_size,x_size);  
    SParray(:,1) = Karray(:,1); 
    SParray(1,:) = Karray(1,:); 

  
% For plunging jet: 
    for x_plunge = 1:0.25:x_imp 
        z_plunge = ((x_plunge * tand(theta_j)) - (x_plunge * x_plunge /... 
            (4*hv * cosd(theta_j) * cosd(theta_j)))); 
        z_plunge = round(z_bucket + z_plunge + (0.5 * Di)); 

             
         for iii = 2:z_size 
             if z_tw == SParray(iii,1) % match elevation of plunging jet  

                     % to SParray elevation 
                 hug = iii + 1; 
             end 
         end 
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         for kkkk = 2: hug 
            if z_plunge == SParray(kkkk,1) % match elevation of  
                        % plunging jet to SParray elevation 

                 
            % Calculate trajectory length for plunging jet at x_plunge, 
            % z_plunge 
             Lj_plunge = integral(@(x)Trajectory(x,theta_j, hv),0, x_plunge); 

                 
             % Calculate radius of spread at x_plunge, z_plunge 
             R_plunge = Di + (2 * 0.38 * Tu * Lj_plunge); 

                 
             % Calculate area of  plunging jet at x_plunge, z_plunge(m^2) 
             A_plunge = (2 * R_plunge)*(L_bucket +(2 * R_plunge))* 

0.09290304; 

                 
             % Calculate stream power of plunging jet ( in metric units) 
             H_plunge = (EGL - z_plunge) * 0.3048; 
             p_plunge =  UW_Wat_m * Qi_m * H_plunge / A_plunge; %kW/m^2 

  
             % Set outer bounds of jet as centerline of trajectory +/- 
             % radius of jet spread 
             x_p_min = round(x_plunge - R_plunge); % min horz. distance(ft) 
             x_p_max = round(x_plunge + R_plunge); % max horz. distance(ft) 

                 
             % prevents issues with negative indices when jet is within  
             % close proximity to flip buckets 
                 if x_p_min > 0   
                     for jjj = x_p_min:x_p_max 
                         SParray(kkkk,jjj) = p_plunge; 
                     end 
                 end 
             end 

         end 
    end 

     
% For submerged jet: 
    for ii = hug:z_size 
        for jj = 2:x_size 
          SParray(ii,jj) = pjet * ((Cparray(ii,2)*cpr(ii,jj)) + ... 
              (Cpparray(ii,2)* cppr(ii,jj))); 
        end 

    end 

     
%---- PROBABILITY OF FAILURE CALCULATION ---------------------------------- 
    % Calculate probability of failure at each node based on Wibowo (2005); 
    % column 1 of matrix is reserved for elevation reference (ft); row 1 of 
    % matrix is reserved for horizontal distance (ft) from flip bucket. 

     
    PEarray = zeros(z_size,x_size); 
    PEarray(:,1) = Karray(:,1); 

    PEarray(1,:) = Karray(1,:); 

     
    for ii = 2:z_size 
        for jj = 2:x_size 
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            PEarray(ii,jj) = 1 / (1 + exp(-(-1.859-(7.029 * ... 
                log(Kdyn(ii,jj)))+(9.798 * log(SParray(ii,jj)))))); 
            if isnan(PEarray(ii,jj)) 
                PEarray(ii,jj) = 1; % prevents NAN values from appearing  
                    % below water level, but above rock surface. 
            end 
        end 
    end 

     
% Check for erosion barriers (ie. lower SP near surface prevent propogation 
% of erosion downward, where SP values may be higher or erosive capacity  
% may be lower) 

  
PErows = ones(z_size,1); 
    for ii = 2:z_size 
            SP_max = SParray(ii,2); % set initial 'max' value to the first  
                % element in row 
            SPmax_i = ii;  
            SPmax_j = 2; 

             
            for jj = 2:x_size 
                if SParray(ii,jj) > SP_max 
                    SP_max = SParray(ii,jj); 
                    SPmax_i = ii;  

                    SPmax_j = jj; 
                end 
                K_bound = Kdyn(SPmax_i,SPmax_j); 
            end 

    
        % Calculate greatest probability of removal of material in each row 
        PErows(ii) = 1 / (1 + exp(-(-1.859-(7.029 * log(K_bound))+... 
            (9.798 * log(SP_max))))); 

         

        if isnan(PErows(ii)) 
           PErows(ii) = 1; 
        end 
    end   

     
    PE = PErows(2); 
    PE_bound = 1; 

     
    while PE > 0.5 

        PE = PErows(PE_bound); 
        PE_bound = PE_bound + 1; % Probability of removal of material  
            % below this point is zero 
    end 

     

    
% --- ROCK REMOVAL -------------------------------------------------------- 

     
    for ii = 2:z_size 

        for jj = 2:x_max 
            % if probability of removal is >= 50% 
            if ii < PE_bound && PEarray(ii,jj) >= 0.50  
                % then "remove" rock and set K value = 0 kW/m^2 



143 

 

                Kdyn(ii,jj) = 0;  
            % Otherwise,leave existing value 
            else Kdyn(ii,jj) = Kdyn(ii,jj);  
            end 
        end 
    end 

     
    csvwrite(strcat(DamAbbrev,'_',char(Date),'_Kdyn.csv'),Kdyn); 

  
 % Identify elevation of plunge pool invert (ft) 
 z_locale=Kdyn(2,1); 
    for ii = 1:z_size-1 
        C = min(Kdyn(ii,:)); 
        D = min(Kdyn(ii+1,:)); 
        if C == 0 && D > 0 
           z_locale = Kdyn(ii,1); 
           z_ind = ii; 
        end    
    end 

     
 % Identify upstream and downstream extent of invert (ft)    
    x_locale_us = Kdyn(1,2); 
    x_locale_ds = Kdyn(1,2); 
    for jj = 1:x_size-1 

        if Kdyn(z_ind,jj+1) == 0 && Kdyn(z_ind,jj) > 0 
            x_locale_us = Kdyn(1,jj); 
            x_ind_us = jj; 
        end 

         
        if Kdyn(z_ind,jj) == 0 && Kdyn(z_ind, jj+1) > 0 
            x_locale_ds = Kdyn(1,jj); 
            x_ind_ds = jj; 
        end 

    end 

         
% SECTION: Generate Output File ------------------------------------------- 

  
SD = [Di ,Vi, EGL, Fri, z_tw, Tu, x_imp, Lj, Lb, H,... 
    D_out, ai, Qi,Pjet, pjet, x_locale_us, x_locale_ds,z_locale]; 

  
SDd = num2cell(SD); 
CCC = [Date,SDd]; 

  
fid1 = fopen(strcat('1_',char(DamAbbrev),'_Results.csv'), 'a'); 
    fprintf(fid1, '%s,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d, 

\r\n', CCC{:}); 
fclose(fid1); 

  
% --------------------------- PLOTTING ------------------------------------     

  
        contourf(Kdyn(1,2:end),Kdyn(2:end,1),Kdyn(2:end,2:end)) 

        hold on; 
        xlabel('Distance Downstream (ft)') 
        ylabel('Elevation (ft)') 
        caxis([0,Maxval]) 
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        colormap([1 1 1; 0.5 0.5 0.5])     
        %contourf(SParray(1,2:end),SParray(2:end,1),SParray(2:end,2:end)) 
        %colormap(gcf, [1 1 1; 1 0.25 0.25]) 
        %alpha(0.5) 
        axis([0 x_max z_maxhole z_bucket_round]) 
        axis equal 
        axis tight 
        title(strcat(char(Date),char(DamName),' Dam Cumulative Scour')); 
        

saveas(gcf,strcat(char(Date),'_',char(DamAbbrev),'_CumulativeScour','.tif')); 
        hold off; 
end 
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APPENDIX C 

BC HYDRO EXISTING PLUNGE POOL SURVEYS 
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APPENDIX D 

NUMERICAL MODEL RESULTS – ELECTRONIC FILES 

 
Included in this appendix are EIM_ProfileCalc program output files for each modeled cross-

section. Each file included here contains four sheets: 1) Explanation of variables, 2) model results for 

‘Low’ EIM values, 3) model results for ‘Mean’ EIM values, and 4) model results for ‘High’ EIM values. 

Each row is associated with a date of discharge represents the input values for, and the output values 

from, the program.   

Model Output Files Files containing tabular data for each modeled 
cross section, with model input and output values. 

PCN34-ModelOutput.xlsx Contains tabulated data of modeled results for cross 
section PCN-34 from Peace Canyon Dam 

PCN56-ModelOutput.xlsx Contains tabulated data of modeled results for cross 
section PCN-56 from Peace Canyon Dam 

SEV12-ModelOutput.xlsx Contains tabulated data of modeled results for cross 
section SEV-12 from Seven Mile Dam 

REV-ModelOutput.xlsx Contains tabulated data of modeled results for cross 
section REV-1 from Revelstoke Dam 

WAC-ModelOutput.xlsx Contains tabulated data of modeled results for cross 
section WAC-C from W.A.C. Bennett Dam 
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APPENDIX E 

MODELED PROFILES 
 

Appendix E.1 Peace Canyon Dam Profile PCN-34 – Low Erodibility Index 

See Section 7.1.3 for explanation of geomechanical zones 
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Appendix E.1 Peace Canyon Dam Profile PCN-34 – Mean Erodibility Index 

See Section 7.1.3 for explanation of geomechanical zones 
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Appendix E.1 Peace Canyon Dam Profile PCN-34 – High Erodibility Index 

See Section 7.1.3 for explanation of geomechanical zones 
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Appendix E.2 Peace Canyon Dam Profile PCN-56 – Low Erodibility Index 

See Section 7.1.3 for explanation of geomechanical zones 
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Appendix E.2 Peace Canyon Dam Profile PCN-56 – Mean Erodibility Index 

See Section 7.1.3 for explanation of geomechanical zones 
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Appendix E.2 Peace Canyon Dam Profile PCN-56 – High Erodibility Index 

See Section 7.1.3 for explanation of geomechanical zones 
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Appendix E.3 Seven Mile Dam Profile SEV-12 – Low Erodibility Index 
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Appendix E.3 Seven Mile Dam Profile SEV-12 – Mean Erodibility Index 
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Appendix E.3 Seven Mile Dam Profile SEV-12 – High Erodibility Index 
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Appendix E.4 Revelstoke Dam Profile REV-1 – Low Erodibility Index 

Scour immediately exceeded lower bound of modeled profile; no profiles available. 

 

Appendix E.4 Revelstoke Dam Profile REV-1 – Mean Erodibility Index 
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Appendix E.4 Revelstoke Dam Profile REV-1 – High Erodibility Index 
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Appendix E.5 W.A.C. Bennett Dam Profile WAC-C – Low Erodibility Index 

See Section 0 for explanation of geomechanical zones 
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Appendix E.5 W.A.C. Bennett Dam Profile WAC-C – Mean Erodibility Index 

See Section 0 for explanation of geomechanical zones 
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Appendix E.5 W.A.C. Bennett Dam Profile WAC-C – High Erodibility Index 

See Section 0 for explanation of geomechanical zones 
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