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Recently the theoretical discovery of single channel quantum dragons has been re-

ported. Quantum dragons are a class of nanodevices that may have strong disorder but

still permit energy-independent total quantum transmission of electrons. This thesis illus-

trates that multi-channel quantum dragons also exit in rectangular nanotubes and provide

an approach to construct multi-channel quantum dragons in rectangular nanotubes. Rect-

angular nanotube multi-channel quantum dragons have been validated by matrix method

based quantum transmission calculation. This work could pave the way for constructing

multi-channel quantum dragons from more complex nanostructures such as single-walled

zigzag carbon nanotubes and single-walled armchair carbon nanotubes.
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CHAPTER 1

INTRODUCTION

1.1 Conductance from transmission

Electrical conductance G of an electrical conductor is defined as

G =
I

V
(1.1)

where I is the current through the conductor and V is the voltage across the conductor.

This proportionality is call Ohm’s law.

When the dimensions of conductors become small enough, the classical ohmic behav-

ior of the conductor breaks down. In such cases, quantum mechanics should be applied

to study the properties such as conductance of the conductors. Landauer showed that the

conductance G can be related to transmission probability as a function of energy, T (E), in

the Landauer formula [14]

G =
2e2

h
(I1 + I2 + · · · ) . (1.2)

where each integral Ik contains the Fermi function and the transmission probability

Tk of the kth channel for an impinging electron of energy E. Here e is the charge of an

electron and h is Planck’s constant. G0 is the quantum of conductance G0 = 2e2/h =

7.748−5mhos.
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In a nanostructure with no disorder, electrons undergo ballistic propagation and hence

have T = 1[14]. Hence, for a ballistic conductor with M open channels at low tempera-

tures

G =
2e2

h
M . (1.3)

Nanostructures with negligible scattering are ballistic. The effect of Anderson localiza-

tion [2][9] showed that random disorder in 1D will localize the wave function and therefore

make the transmission very small. This effect suggests that the transmission of any nanos-

tructure with disorder will be non-ballistic and hence the conductance will be very small

providing certain channels are opened. However in next section it will be shown that,

presentation of correlated disorder will not localize the wavefunction and nanostructures

with these kinds of disorder can also have electrons propagating with total transmission

probability.

1.2 Definitions of quantum dragons

Recently, a class of nanostructures called quantum dragons have been reported[16].

Quantum dragons are nanodevices that may have disorder but the electron transmission

probability in such structures is still unity for all propagating energies when connected to

idealized leads. Therefore quantum dragons have zero electrical resistance in a four-probe

measurement, and for a single open channel have G−1
0 electrical resistance in a two-probe
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measurement. This can be seen from the Landauer formula for a two-probe measurement

and a four-probe measurement case [10], for a single channel at low temperatures,

G =


G0T (EF ) two− probe

G0
T (EF )

1−T (EF )
four− probe

. (1.4)

These expressions at low temperature come from Eq. (1.2), and for one open channel,

the integral is

I =

∫
T (E)( ∂f

∂E
)dE ≈ T (EF ) . (1.5)

because the partial derivative of the Fermi function is approximately a delta function at the

Fermi energy EF .

The problem of how to find quantum dragons in nanodevices connected to 1D idealized

leads has been studied in the original paper[16] in detail. To set the notation for the readers,

the relavant equations are given in the Appendix.

1.3 Multi-channel quantum dragons

When a nanodevice is connected to idealized 1D leads, only one travelling wave mode

can propagate through the structure, therefore only one energy channel is opened. In such

cases, there will only be single channel quantum dragons. Single channel quantum dragons

have conductance G = G0. It is possible for non-1D idealized leads that permit more

than one travelling wave mode, thus it is possible to have multi-channel quantum dragons

in nanodevices that are connected to more complex idealized leads. For multi-channel

quantum dragons, the conductance will be G = G0M , where M is the number of open

channels.
3



This thesis studies multi-channel quantum dragons from rectangular nanotubes, trying

to answer the key question what kind of rectangular nanostructures can be multi-channel

quantum dragons. The general solution of the transmission is given first in Chapter 1, and

two example multi-channel quantum dragons structures are shown in Chapter 2.

1.4 Methods to calculate the transmission

Quantum dragons are nanodevices when connected to idealized leads have full trans-

mission of electrons for all energies. One needs to calculate the transmission of a nanode-

vice not only to find quantum dragons, but also to prove a nanodevice is indeed a quantum

dragon.

Within the tight-binding approximation, three different methods are applied in the liter-

ature. There are the scattering theory technique[8], the Green’s function method[8] and the

matrix method[12][7][6]. Because of the ability of reducing the complexity of the problem

in a large device, the matrix method was used to find quantum dragons in the original paper.

The Appendix of this thesis shows how the reduction is done within the matrix method.

In the rest of this thesis, the matrix method framework is also used to study multi-

channel quantum dragons. In Chapter 1 the matrix equation used to calculate the electron

transmission of nanodevices is introduced. Examples of rectangular multi-channel dragons

found within the matrix method framework are given in Chapter 2.
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CHAPTER 2

MULTI-CHANNEL QUANTUM DRAGONS

2.1 Matrix equation for transmission calculation of nanodevice connected to non-1D
leads

The question about how to find quantum dragon segments for blobs connected to single

chain leads has been studied in [16]. An incoming lead and an outgoing lead are connected

to a nanodevice when measuring the conductance G. The nanodevices that are connected

to two leads are called the “blob”. This chapter will focus on how to find quantum dragons

segments for blobs connected to more complicated leads than a 1D chain. Also, the blob

and lead throughout this thesis have linear forms, namely they are consisting of different

slices and each slice only has interactions with its neighbor slices.

Consider the following diagram for a lead and blob configuration.

· · · BL → (0) ← W → (a) ← Bab → (b) ← U → (1) ← BL · · ·

· · · AL Aa Ab AL . . .

· · · Ψ⃗0 Ψ⃗a Ψ⃗b Ψ⃗1 · · ·

.

(2.1)

where both blob slices a and b have been put between the x = 0 and x = 1 lead slices.

A and B are intra and inter slice matrix connections, respectively. The subscript indicates
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which parts it describes. Ψ⃗ are block wavefunctions in different slices from the lead and

the blob.

The semi-infinite incoming lead and its connection to the blob is shown in the following

diagram

· · · (−3) ← BL → (−2) ← BL → (−1) ← BL → (0) ← W → (a) · · ·

· · · AL AL AL AL Aa · · ·

· · · Ψ⃗−3 Ψ⃗−2 Ψ⃗−1 Ψ⃗0 Ψ⃗a · · ·

.

(2.2)
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From this diagram, one has the infinite matrix equation HΨ = EΨ

. . . ...
...

...
...

...
...

...
...

· · · AL −BL 0 0 0 0 0 0 · · ·

· · · −BT
L AL −BL 0 0 0 0 0 · · ·

· · · 0 −BT
L AL −W 0 0 0 0 · · ·

· · · 0 0 −WT Aa −Bab 0 0 0 · · ·

· · · 0 0 0 −BT
ab Ab −U 0 0 · · ·

· · · 0 0 0 0 −UT AL −BL 0 · · ·

· · · 0 0 0 0 0 −BT
L AL −BL · · ·

· · · 0 0 0 0 0 0 −BT
L AL · · ·

...
...

...
...

...
...

...
... . . .





...

Ψ⃗−2

Ψ⃗−1

Ψ⃗0

Ψ⃗a

Ψ⃗b

Ψ⃗1

Ψ⃗2

Ψ⃗3

...



= E



...

Ψ⃗−2

Ψ⃗−1

Ψ⃗0

Ψ⃗a

Ψ⃗b

Ψ⃗1

Ψ⃗2

Ψ⃗3

...



.

(2.3)
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Without loss of generality, the leads consists of identical slices. If there are some slices

in leads which are not the same with others, these parts can be included in the blob, leaving

the remaining leads consisting of identical slices. The number of blob slices can be any

integer number. In this diagram the blob consists of only two slices, for brevity of the

equation.

From Eq. (2.3), the block wavefunctions from slices −∞, · · · ,−3,−2,−1

and 2, 3, 4, · · · ,+∞ will be solved from

−BT
LΨ⃗n−1 + (AL − EI)Ψ⃗n −BLΨ⃗n+1 = 0⃗ . (2.4)

The slice wavefunctions from slices 0, a, b, 1 will be solved from the remaining part of

the matrix equation



−BT
L AL − EI −W 0 0 0

0 −WT Aa − EI −Bab 0 0

0 0 −BT
ab Ab − EI −U 0

0 0 0 −UT AL − EI −BL





Ψ⃗−1

Ψ⃗0

Ψ⃗a

Ψ⃗b

Ψ⃗1

Ψ⃗2



=



0⃗

0⃗

0⃗

0⃗


(2.5)

which is now a finite matrix equation.

Use Bloch’s theorem to write the slice wavefunction for the leads as a travelling wave

with wavevector q times the intra-slice wave function ϕ for both the incoming and outgoing

leads.
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In particular, the ansatz for lead slice wavefunctions are

Ψ⃗n = eiqnϕ⃗+ re−iqnϕ⃗∗ n = −∞, · · · ,−2,−1, 0

Ψ⃗n = tT e
iq(n−1)ϕ⃗ n = 1, 2, 3, · · · ,+∞

. (2.6)

The unit of length has been set to be the the distance between adjacent lead slices, and

this length has been set to 1.

The ansatz corresponds to a wave of unit intensity impinging on the blob from the left-

hand (incoming) lead and being partially reflected back to−∞ and partially transmitted to

+∞.

2.1.1 General solution of leads part of the matrix equation

In this subsection, the ansatz is used to solve the block wavefunction for the leads. Let

every slice of the leads have mL atoms.

For n = −∞, · · · ,−2,−1, 0 slices, substitute the first equation in Eq. (2.6) back into

Eq. (2.5)

eiqn[−BT
Le

−iqϕ⃗+(AL−EI)ϕ⃗−BLe
iqϕ⃗]+re−iqn[−BT

Lϕ⃗
∗+(AL−EI)ϕ⃗∗−BLe

−iqϕ⃗∗] = 0⃗.

(2.7)

For n = 1, 2, 3, · · · ,+∞ slices, substitute the second equation in Eq. (2.6) back into Eq.

(2.5)

eiq(n−1)tT [−BT
Le

−iqϕ⃗+ (AL − EI)ϕ⃗−BLe
iqϕ⃗] = 0⃗ . (2.8)

Eq. (2.8) is satisfied provided

[−BT
Le

−iq + (AL − EI)−BLe
iq]ϕ⃗ = 0⃗ . (2.9)

9



Introduce the mL eigenvectors ϕj and associated eigenvalues λj(E, q) of the matrix

[−BT
Le

−iq + (AL − EI)−BLe
iq]. The eigen equation is

[−BT
Le

−iq + (AL − EI)−BLe
iq]ϕ⃗j = λj(E, q)ϕ⃗j . (2.10)

To find the wavevectors q in Eq. (2.10) , set

λj(E, q) = 0 . (2.11)

Every eigenvalue will have its own wavevectors q = qj .

Therefore, Eq. (2.9) is satisfied. Hence the ansatz of Eq. (2.6) satisfies the Schrödinger

equation for the outgoing lead of Eq.(2.8).

Provided equation Eq. (2.10) is satisfied, the first part of Eq. (2.7), which is the first

square bracket, is 0⃗. Therefore, the only equation to satisfy is the reflected part of Eq.(2.7).

Taking the complex conjugate of Eq.(2.10) gives

[−BT∗
L eiq + (A∗

L − EI)−B∗
Le

−iq]ϕ⃗∗
l = λ∗j(E, q)ϕ⃗

∗
j . (2.12)

We have assumed that AL and BL in all cases have only real components. Thus we

have

[−BT
Le

iq + (AL − EI)−BLe
−iq]ϕ⃗∗

j = λj(E, q)ϕ⃗
∗
j . (2.13)

[−BT
Le

−iq+(AL−EI)−BLe
iq] is Hermitian, so its eigenvalues are real, hence λ∗j(E, q) =

λj(E, q). The left hand side of Eq. (2.13) is exactly the matrix component of the reflected

part of Eq. (2.7). So q from Eq. (2.9) also satisfies Eq. (2.7). Thus the time-independent

Schrödinger equation is satisfied for all lead slices except for slice 0 and slice 1 in the lead.

10



When sloving for wavevectors of the travelling waves, one can have mL different q =

qj(E), assuming that the lead matrix AL and BL are of dimensionsmL×mL. Wavevectors

q should be real for travelling waves. So for each solution q = qj(E), namely different

channels of propagating waves, each channel will have its own permitted energy range

satisfying q being real.

2.1.2 Gernaral Solution of blob part of matrix equation

We have found the mL wavevectors qmL
that satisfied the lead part of the matrix

Eq.(2.3). In this subsection, we use the ansatz to simplify the blob part of the matrix

equation.

Using the ansatz for n = −1, 0, 1, 2 block wavefunctions, the Eq. (2.5) becomes



−BL
T AL − EI −W 0 0 0

0 −WT Aa − EI −Bab 0 0

0 0 −BT
ab Ab − EI −U 0

0 0 0 −UT AL − EI −BL





e−iqj ϕ⃗j + rje
iqj ϕ⃗∗

j

ϕ⃗j + rjϕ⃗j

∗

ψ⃗a

ψ⃗b

tTjϕ⃗j

tTje
iqj ϕ⃗j



=



0⃗

0⃗

0⃗

0⃗


.

(2.14)
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Here ϕ⃗j is one of the eigenvectors from the eigen equation (3.36), and the qj is solved

from setting the corresponding eigenvalue to 0: λj(E, qj) = 0. The above equation is

just a matrix equation for the channel j. Each channel will have different solutions for rj

and tTj . The transmission probability of channel j will be Tj(E) = |tTj(E)|2, and the

reflection probability isRj(E) = |rj(E)|2. There are mL such matrix equations in total.

Multiply through in Eq. (2.14)

(AL − EI− e−iqjBL
T )ϕ⃗j + (AL − EI− eiqjBL

T )rjϕ⃗j

∗
−Wψ⃗a

−WT (ϕ⃗j + rjψ⃗
∗
j ) + (Aa − EI)ψ⃗a −Babψ⃗b

−BT
abψ⃗a + (Ab − EI)ψ⃗b −UtTjϕ⃗j

−UT ψ⃗b + tTj(AL − EI− eiqjBL)ϕ⃗j


=



0⃗

0⃗

0⃗

0⃗


. (2.15)

The equation above can be written as a new matrix equation

ξL,j −W 0 0

−WT Aa − EI −Bab 0

0 −BT
ab Ab − EI −U

0 0 −UT ξR,j





ϕ⃗j + rjϕ⃗
∗
j

ψ⃗a

ψ⃗b

tTjϕ⃗j


=



−2i sin(qj)BT
Lϕ⃗j

0⃗

0⃗

0⃗


(2.16)

with the definitions

ξL.j = AL − EI− eiqjBT
L (2.17)

and

ξR,j = AL − EI− eiqjBL . (2.18)

Eq. (2.16) can be generalized to more than two blob slices. If there were l blob slices

each with mblob atoms, the size of the generalized matrix of Eq. (2.16) is (lmblob+2mL)×

(lmblob + 2mL).
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Similar to the single channel quantum dragon cases, calculating the transmission in-

volves taking the inverse of a matrix that is usually very large. Taking the same strategy

as in [16], we will map the large matrix to a smaller one. Physically, this can be seen

as a transformation of the old blob to a new one, but keeping the same solution of the

transmission tTj .

2.1.3 Mapping

As in [16], a mapping is searched for in order to reduce the size of the matrix in 2.16.

For l blob slices, let the matrix in Eq. (2.16) be NL, so Eq. (2.16) is

NL



ϕ⃗j + rjϕ⃗
∗
j

ψ⃗1

ψ⃗2

...

ψ⃗l−1

ψ⃗l

tTjϕ⃗j



=



−2i sin(qj)BT
Lϕ⃗j

0⃗

0⃗

...

0⃗

0⃗

0⃗



. (2.19)

Write the mapping for l = 2 for brevity, then

N2 =



ξL,j −W 0 0

−WT Aa − EI −Bab 0

0 −BT
ab Ab − EI −U

0 0 −UT ξR,j


. (2.20)
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Introducing transformation matrices for this two-slice nanodevice

X̂2 =



I

Xa

Xb

I


(2.21)

and

Ŷ2 =



I

Y†
a

Y†
b

I


. (2.22)

In Eq. (2.21) and (2.22), I is the mL × mL identity matrix, the matrices Xa and Ya

are of the size ma ×ma , while Xb and Yb are of the size mb ×mb. Blob slice a has ma

atoms, and blob slice b has mb atoms. We have the freedom to choose the transformation

matrices, as long as the Xj and Yj are non-singular.

From Eq. (2.16)

X̂2N2Ŷ2

†
(Ŷ2

†
)−1



ϕ⃗j + rjϕ⃗
∗
j

ψ⃗a

ψ⃗b

tTjϕ⃗j


= X̂2



−2i sin(qj)BT
Lϕ⃗j

0⃗

0⃗

0⃗


. (2.23)
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X̂2N2Ŷ2

†



ϕ⃗j + rjϕ⃗
∗
j

(Y†
a)

−1ψ⃗a

(Y†
b)

−1ψ⃗b

tTjϕ⃗j


=



−2i sin(qj)BT
Lϕ⃗j

0⃗

0⃗

0⃗


. (2.24)

Eq. (2.16) and Eq. (2.23) have the same solution for tTj .

Define Ml = X̂lNlŶl

†
, which for l = 2 is

M2 =



I

Xa

Xb

I





ξL,j −W 0 0

−WT Aa − EI −Bab 0

0 −BT
ab Ab − EI −U

0 0 −UT ξR,j





I

Y†
a

Y†
b

I


.

(2.25)

M2 =



ξL,j −WY†
a 0 0

−XaW
T Xa(Aa − EI)Y†

a −XaBabY
†
b 0

0 −XbB
T
abY

†
a Xb(Ab − EI)Y†

b −XbU

0 0 −UTY†
b ξR,j


. (2.26)

The Ml can be seen as a new matrix equation for a new nanodevice. In the previous

paper [16], this transformation is called a mapping from one matrix equation to another.

The new matrix equation has the same solution for the transmission tTj of channel j, as

can be seen from comparison between Eq. (2.16) and Eq. (2.23). The freedom in choosing

the X̂l and Ŷl will be used to try to simplify the matrix equation.

Define a successful mapping as one that satisfies the following mapping equations

X1W
T =

(
W̃T 0

)
and WY†

1 =

W̃†

0

 (2.27)
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UTY†
l =

(
ŨT 0

)
and XlU =

Ũ

0

 (2.28)

XjAjY
†
j =

Ãj 0

0 Âj

 (2.29)

EXjIY
†
j =

EI 0

0 Ê

 (2.30)

XjBj,j+1Y
†
j+1 =

B̃j,j+1 0

0 B̂j,j+1

 (2.31)

Xj+1B
T
j,j+1Y

†
j =

B̃T
j,j+1 0

0 B̂T
j,j+1

 (2.32)

j in the Eq. (2.29) through Eq. (2.32) is the slice index of blob. For the l = 2 case, we

have also written j = a for the slice 1 and j = b for the slice 2.

2.1.4 Multi-channel quantum dragons

Under the condition that a channel has a propagating wavevector qj , the leads and blob

together will be a quantum dragon if

Ãi = AL ∀i (2.33)

W̃ = Ũ = B̃j,j+1 = BL (2.34)

2.2 Rectangular Nanotubes

The nanodevices connected to leads can have any structure mathematically. But physi-

cally, only some structures can be experimentally realized for now. Carbon nanotubes[11]
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in the armchair and zigzag configurations are examples of these structures and how to find

quantum dragons in these structures when connected to single chain leads are shown in

[16]. In the rest of the thesis, we will focus on the nanodevices that are from rectangular

lattices. Though no experimental realization of such rectangular nanotubes exist yet, these

nanodevices are easier to analyze in terms of finding multi-channel quantum dragons com-

pared to other nanotubes. Some of the ideas from analysis of rectangular nanotubes can

also be used for other nanotubes.

2.2.1 Nanotubes formed from rectangular lattice

A two dimensional rectangular lattice is one of the five two dimensional Bravais lat-

tices. The position vector R can be presented as

R = n1a1 + n2a2 (2.35)

where ni are any integers and ai are the primitive vectors that span the lattice.

Rectangular nanotubes are rectangular lattices which are wrapped to tubes with zero

helicity. The ease in analysis of rectangular nanotubes for multi-channel quantum dragons

comes from the structure. In the slices of rectangular nanotubes, all the atom sites have the

same hopping relation with the others. In other words, there is no disorder in the slices.

For these rectangular nanotubes, the matrices Ai are circulant matrices [15][5].
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A circulant matrix is an N ×N matrix of a cyclic form

A =



aN a1 a2 · · · aN−1

aN−1 aN a1 · · · aN−2

aN−2 aN−1 aN · · · aN−3

...
...

... . . . ...

a1 a2 a3 · · · aN


(2.36)

where the ak’s are complex or real numbers. All the matrix elements in a given principal

or secondary diagonal are the same. Circulant matrix can be symmetric or non-symmetric.

The following matrices A’s and B’s are two examples of circulant matrices.

A1 =



ϵ −t1 −t2 −t3 −t4 −t3 −t2 −t1

−t1 ϵ −t1 −t2 −t3 −t4 −t3 −t2

−t2 −t1 ϵ −t1 −t2 −t3 −t4 −t3

−t3 −t2 −t1 ϵ −t1 −t2 −t3 −t4

−t4 −t3 −t2 −t1 ϵ −t1 −t2 −t3

−t3 −t4 −t3 −t2 −t1 ϵ −t1 −t2

−t2 −t3 −t4 −t3 −t2 −t1 ϵ −t1

−t1 −t2 −t3 −t4 −t3 −t2 −t1 ϵ



(2.37)

where ti are non-negative real numbers and ϵ is a positive number.

18



Elements of the matrix can also be zero

A2 =



ϵ −t1 0 −t3 0 −t3 −t2 −t1

−t1 ϵ −t1 0 −t3 0 −t3 −t2

−t2 −t1 ϵ −t1 0 −t3 0 −t3

−t3 −t2 −t1 ϵ −t1 0 −t3 0

0 −t3 −t2 −t1 ϵ −t1 0 −t3

−t3 0 −t3 −t2 −t1 ϵ −t1 0

0 −t3 0 −t3 −t2 −t1 ϵ −t1

−t1 0 −t3 0 −t3 −t2 −t1 ϵ



. (2.38)

A1 and A2 can be associated with the matrices that represent the intra-slice hopping in

each slice of the nanotubes.

B1 =



−s0 −s1 −s2 −s3 −s4

−s4 −s0 −s1 −s2 −s3

−s3 −s4 −s0 −s1 −s2

−s2 −s3 −s4 −s0 −s1

−s1 −s2 −s3 −s4 −s0


. (2.39)

B2 =



−s0 0 0 0 0

0 −s0 0 0 0

0 0 −s0 0 0

0 0 0 −s0 0

0 0 0 0 −s0


. (2.40)
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B1 and B2 can be the associated matrices that represent the inter-slice hopping between

each slice of a rectangular nanotube.

Introduce a single permutation matrix P

P =



0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0

...
...

...
... . . . ...

1 0 0 0 · · · 0


. (2.41)

which comes from a permutation π of m elements

π : {1, 2, . . . , N − 1, N} → {2, 3, . . . , N, 1} . (2.42)

The general form of circulant matrices can be written as a polynomial in P

A = a1P+ a2P
2 + a3P

3 + · · ·+ aNP
N . (2.43)

All the integer powers of P have the same eigenvector with P but with a different

eigenvalues. Consider a single permutation matrix Pn

Pn =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

... . . . ...

1 0 0 · · · 0


(2.44)

The n’s eigenvalues of matrix Pn are

ej2πi/n (2.45)
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where j = 0, 1, · · · , n− 1.

The associated eigenvectors with eigenvalues ej2πi/n are

1√
n



e
j0 2πi

n

e
j1 2πi

n

...

e
j(n−1) 2πi

n


. (2.46)

Therefore a circulant matrix can be diagonalized by a finite Fourier transform since the

eigenvalues of the permutation matrix P are the Ni roots of unity and the eigenvectors of

P also have its elements as a normalization times a root of unity. This property will be

used in the analysis of finding multi-channel quantum dragons in later chapter.
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CHAPTER 3

EXAMPLE MULTI-CHANNEL QUANTUM DRAGONS IN RECTANGULAR

NANOTUBES

3.1 Example solution for 2 channels lead connected to 4 channels blob: 2:4:2 Struc-
ture

It is shown in this section how to find multi-channel quantum dragons from rectan-

gular nanotubes. Specifically, the blob and leads are rectangular nanotubes consisting of

identical slices.

Assume the rectangular nanotube blob has four atoms in each slice with the intra-slice

matrix of the form.

Al =



ϵ −t1 −t2 −t1

−t1 ϵ −t1 −t2

−t2 −t1 ϵ −t1

−t1 −t2 −t1 ϵ


(3.1)

where ϵ is the on-site energy for the atoms and the t’s are the hopping parameters

between atoms. These symbols are also used to present the same physical quantities in the

rest of the thesis.
1Blue points represent atoms in a rectangular nanotube slice. Yellow lines represent the nearest neighbor

hopping −t1. Green lines represent the next-to-nearest neighbor hopping −t2. All atoms are located in the
xy plane.

2All the intra-slice hopping terms have been shown as yellow and green lines.
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Figure 3.1: The diagram for the matrix in Eq. (3.1).1

Figure 3.2: The diagram for a blob consisting of 30 identical slices from Eq. (3.1).2
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Assume that the rectangular nanotube lead intra-slice matrix is of the form

AL =

 σ −t11

−t11 σ

 . (3.2)

Figure 3.3: The diagram for a lead consisting of 19 identical slices from Eq. (3.2).3

Assume that the blob inter-slice matrix and lead inter-slice are both identity matrices

of different dimensions

Bl =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (3.3)

BL =

1 0

0 1

 . (3.4)

3Since there are only 2 atoms in each slice, only nearest neighbor hopping terms exists and are shown as
green lines.

4Red lines indicate the only inter-slice hopping between nearest neighbor atom sites from two successive
slices.

5Yellow lines indicate the only inter-slice hopping between nearest neighbor atom sites from two succes-
sive slices.

24



Figure 3.4: The diagram for inter-slice hopping shown in Eq. (3.3).4

Figure 3.5: The diagram for inter-slice hopping shown in Eq. (3.4).5
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In this example, all the slices in the leads and the blob are the same. This means that

the same transformation matrices X and Y can be used for the mapping of all slices in

blob. To find multi-channel quantum dragons, the transformation matrix for a successful

mapping should be found first.

Figure 3.6: The diagram shows both intra-slice and inter-slice hopping bonds in the blob.6

Since in this example, a 4 atom per slice rectangular nanotube blob is connected to 2

atom per slice rectangular leads. The connection matrix W is 2× 4 in size.

W =

w11 w12 w13 w14

w21 w22 w23 w24

 (3.5)

where the wij are hopping terms between lead a slice and a blob slice. The i index is

for the atoms in lead. Since there are 2 atoms in each lead slice , i can be 1 or 2.The j index

is for the atoms in the blob, j can be 1,2,3 or 4 since there are 4 atoms in each blob slice.
6This diagram consists of 30 blob slices. Blue points indicate atoms and different color lines indicate

different hopping terms.
7Leads are semi-infinite but only finite slices are shown in the diagram. All the hopping terms are not

shown. In the following section, the hopping parameters in each matrix are tuned to turn the blob into a
multi-channel quantum dragon.
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Figure 3.7: A 19 slices rectangular nanotube blob and the incoming and outgoing leads.7

Figure 3.8: Connection between blob slice and lead slice.8
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Assume that the transformation matrices X and Y are the same. Furthermore, assume

that W is equal to UT , this means that the connection between the last slice in the incoming

lead to the first slice of the blob and the connection between the last slice in the blob to

the first slice in the outgoing lead are the same. After making these assumptions, the set of

successful mapping equations in Eq. (2.27) to Eq. (2.32) become

WX†
1 =

(
W̃ 0

)
. (3.6)

XjAjX
†
j =

Ãj 0

0 Âj

 . (3.7)

XjBj,j+1X
†
j+1 =

B̃j,j+1 0

0 B̂j,j+1

 . (3.8)

where j is the blob slice index.

Circulant matrices can be diagonalized by the eigenvectors of the matrix

P1 +P−1 =



0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


. (3.9)

8Connection between the first slice of the blob and the last slice of the incoming lead. All the hopping
terms between atoms in the lead and atoms in the blob are shown as different color lines.
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The transpose conjugate eigenvectors are

V4†
1 =

(
−1

2
1
2
−1

2
1
2

)
V4†

2 =

(
1
2

1
2

1
2

1
2

)
V4†

3 =

(
0 − 1√

2
0 1√

2

)
V4†

4 =

(
− 1√

2
0 1√

2
0

)
. (3.10)

where the superscript is the index of the dimension of the vectors and the subscript index

is the number of the vectors.

Let Xmap to be set to

Xmap =



V4†
1

V4†
2

V4†
3

V4†
4


. (3.11)

Since Xmap is a unitary matrix, we can diagonalize Al

XmapAlX
†
map = Adiagonal . (3.12)

Adiagonal =



2t1 − t2 + ϵ 0 0 0

0 −2t1 − t2 + ϵ 0 0

0 0 t2 + ϵ 0

0 0 0 t2 + ϵ


. (3.13)

Let X = XnewXmap

XAlX
† =

Ã 0

0 Â

 . (3.14)
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XnewXmapAlX
†
mapX

†
new =

Ã 0

0 Â

 . (3.15)

Assume

Xnew =

Xblock 0

0 I

 (3.16)

where Xblock is a 2× 2 unitary matrix.

Then

Xblock 0

0 I





2t1 − t2 + ϵ 0 0 0

0 −2t1 − t2 + ϵ 0 0

0 0 t2 + ϵ 0

0 0 0 t2 + ϵ



X†
block 0

0 I



=

Ã 0

0 Â



. (3.17)

To have multi-channel dragons,

Ã = AL =

 σ −t11

−t11 σ

 . (3.18)
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From Eq. (3.17)

2t1 − t2 + ϵ 0 0 0

0 −2t1 − t2 + ϵ 0 0

0 0 t2 + ϵ 0

0 0 0 t2 + ϵ



=

X†
block 0

0 I


Ã 0

0 Â


Xblock 0

0 I



. (3.19)

X†
block 0

0 I


Ã 0

0 Â


Xblock 0

0 I

 =

X†
blockÃXblock 0

0 Â

 . (3.20)

Since AL and Ã are circulant matrices, they can be diagonalized by the eigenvectors

of the matrix

P1 =

0 1

1 0

 . (3.21)

The transpose of the eigenvectors are

V2†
1 =

(
− 1√

2
1√
2

)
V2†

2 =

(
1√
2

1√
2

) . (3.22)

Let

X†
block =

V2†
1

V2†
2

 . (3.23)

Then

X†
blockÃXblock =

σ + t11 0

0 σ − t11

 . (3.24)
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From Eq. (3.19)

2t1 − t2 + ϵ = σ + t11

−2t1 − t2 + ϵ = σ − t11

. (3.25)

So one has

σ = ϵ− t2

t11 = 2t1

. (3.26)

That is, if the parameters in the lead matrix are chosen as Eq. (3.26), the mapping

equation Eq. (3.7) is satisfied. Now move to the next mapping equation Eq.(3.6).

The transformation matrix X is

X = XnewXmap . (3.27)

Substitute X back into Eq. (3.6)

WX† =

(
W̃ 0

)
. (3.28)

Hence

WX†
mapX

†
new =

(
W̃ 0

)
. (3.29)

To have multi-channel dragons, set W̃ = BL.

Assume

W =

b11V4†
1 + b12V

4†
2

b21V
4†
1 + b22V

4†
2

 . (3.30)
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Substitute W back into the mapping equation.

WX†

=WX†
mapX

†
new

=

b11V4†
1 + b12V

4†
2

b21V
4†
1 + b22V

4†
2

(
V4

1 V4
2 V4

3 V4
4

)


V2†
1

V2†
2

 0

0 I



=

b11 b12 0 0

b21 b22 0 0




V2†
1

V2†
2

 0

0 I



=


b11 b12

b21 b22


V2†

1

V2†
2

 0

 .

(3.31)

Set b11 b12

b21 b22


V2†

1

V2†
2

 = BL = I . (3.32)

The b’s can be solved asb11 b12

b21 b22

 =

(
V2

1 V2
2

)
=

− 1√
2

1√
2

1√
2

1√
2

 . (3.33)

Combine Eq. (3.33) and Eq. (3.30) to give

W =

 1√
2

0 1√
2

0

0 1√
2

0 1√
2

 . (3.34)

9To better show the connection, the atoms in the first slice of the blob are shown in yellow.
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Figure 3.9: The diagram shows the lead-slice connection W from Eq.(3.34).9

The last mapping equation to be satisfied is Eq. (3.8)

XjBj,j+1X
†
j+1 =

B̃j,j+1 0

0 B̂j,j+1

 . (3.35)

Use X in Eq. (3.27), Bl in Eq. (3.3) and BL in Eq. (3.4), a successful mapping

is automatically satisfied. The condition to have multi-channel dragons is B̃j,j+1 = BL,

which is also automatically satisfied.

So all the mapping equations in Eq. (3.6) to Eq. (3.8) are satisfied with the AL , Al ,

BL , Bl , and W in Eq. (3.34), and results in Eq. (3.44). If a rectangular blob is connected

to rectangular leads, where both the blob and lead come from AL in Eq. (3.2) , Al in

Eq. (3.2) , BL in Eq. (3.4) , Bl in Eq. (3.3) , and W in Eq. (3.30) , this blob will be a

multi-channel quantum dragon.

After a multi-channel quantum dragon is found, it can have multiple open channels

with total transmission. But depending on the actual values that the parameters in these

10The diagram shows a multi-channel quantum dragon with a 4 atoms per slice rectangular nanotube blob
connected to 2 atoms per slice rectangular nanotube leads.There are 19 identical slices in the blob.
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Figure 3.10: A 2:4:2 multi-channel quantum dragon.10

matrices are chosen to be, the energy ranges for open transmission in each channel are

different.

The eigen equation to solve for the energy ranges for each mode is

[−BT
Le

−iq + (AL − EI)−BLe
iq]ϕ⃗j = λj(E, q)ϕ⃗j (3.36)

with

λj(E, q) = 0 . (3.37)

Substitute the AL in Eq. (3.2) and BL in Eq. (3.4) back into Eq. (3.36) to give

[σI− t11P1 − EI− 2 cos qI]ϕ⃗j = λj(E, q)ϕ⃗j (3.38)

where P1 is the single permutation matrix of dimension 2× 2.

Since the eigenvalues and eigenvectors of permutation matrices are known from the

discussion of circulant matrices , the eigenvalues of Eq.(3.38) can be easily found

λ1 = σ − 2 cos q1 − t11 − E

λ2 = σ − 2 cos q2 + t11 − E
. (3.39)
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Set the eigenvalues to be zero , which gives

cos q1 =
1

2
(σ − t11 − E)

cos q2 =
1

2
(σ + t11 − E)

. (3.40)

Since −1 ≤ cos q ≤ 1

σ − t11 − 2 ≤E ≤ σ − t11 + 2

σ + t11 − 2 ≤E ≤ σ + t11 + 2

. (3.41)

Provided that t11 is non-negative, to have 2 channels open simultaneously, the following

condition should be satisfied

σ + t11 − 2 < σ − t11 + 2

t11 < 2

. (3.42)

After multi-channel quantum dragons are found in this 2 atoms slice lead and 4 atoms

slice blob setting, a matrix method for transmission calculation is used to validate the

results. In this validation calculation, the blob consists of 4 slices. For each mode q, the

transmission is solved. All the transmissions are 1 in uints of G0 using the result in this

section. Also if Eq. (3.42) is satisfied, two channels can be opened simultaneously.

11The diagram shows a multi-channel quantum dragon from a 4 atoms per slice rectangular nanotube blob
connected to a 2 atoms per slice rectangular nanotube lead. The conductance is calculated from the matrix
method. There are 4 slices in the blob put into the matrix. It can be seen that the two channels have different
energy ranges. The matrix parameters have been set as follows: ϵ = 3, t1 = 3, and t2 = 2 , which gives
σ = 1 and t11 = 6.

12The diagram shows a multi-channel quantum dragon from 4 atoms per slice rectangular nanotube blob
connected to a 2 atoms per slice rectangular nanotube lead. The conductance is calculated from the matrix
method. There are 4 slices in the blob put into the the matrix. The matrix parameters have been set as
follows: ϵ = 3, t1 = 0.5, and t2 = 0.3, which gives σ = 2.7 and t11 = 1. Since the parameters are tuned to
satisfy Eq.(3.42), the two energy ranges have some overlap, which means that in this overlap energy, these
two channels can have total transmission open simultaneously.
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Figure 3.11: Conductance from 2:4:2 quantum dragons: 1 open channels case11

Figure 3.12: Conductance from 2:4:2 quantum dragons: 2 open channels case12
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3.2 Example solution for a 4 atoms per slice lead connected to an 8 atoms per slice
blob: 4:8:4 Structure

In this subsection, an example of multi-channel quantum dragons from a 8 atoms per

slice rectangular blob connected to 4 atoms per slice rectangular leads is shown. The

general method applied here is the same as in last subsection. Assume the rectangular blob

intra-slice matrix is

Al =



ϵ −t1 −t2 −t3 −t4 −t3 −t2 −t1

−t1 ϵ −t1 −t2 −t3 −t4 −t3 −t2

−t2 −t1 ϵ −t1 −t2 −t3 −t4 −t3

−t3 −t2 −t1 ϵ −t1 −t2 −t3 −t4

−t4 −t3 −t2 −t1 ϵ −t1 −t2 −t3

−t3 −t4 −t3 −t2 −t1 ϵ −t1 −t2

−t2 −t3 −t4 −t3 −t2 −t1 ϵ −t1

−t1 −t2 −t3 −t4 −t3 −t2 −t1 ϵ



. (3.43)

The rectangular lead intra-slice matrix is

AL =



σ −t11 −t22 −t11

−t11 σ −t11 −t22

−t22 −t11 σ −t11

−t11 −t22 −t11 σ


. (3.44)
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Let the blob inter-slice matrix and the lead inter-slice matrix be identity matrices of

appropriate dimensions.

Bl =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



. (3.45)

BL =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (3.46)

To have a multi channel quantum dragon, the Eq. (3.6), Eq. (3.7) and Eq. (3.8) should

be satisfied.
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The eigenvectors used to diagonalize this matrix are the eigenvectors of matrix

P1 +P−1 =



0 1 0 0 0 0 0 1

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

1 0 0 0 0 0 1 0



. (3.47)

The transpose conjugate of the 8 eigenvectors are

V8†
1 =

(
− 1

2
√
2

1
2
√
2
− 1

2
√
2

1
2
√
2
− 1

2
√
2

1
2
√
2
− 1

2
√
2

1
2
√
2

)
V8†

2 =

(
1

2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

)
V8†

3 =

(
0 −1

2
0 1

2
0 −1

2
0 1

2

)
V8†

4 =

(
−1

2
0 1

2
0 −1

2
0 1

2
0

)
V8†

5 =

(
1
2

1
2
√
2

0 − 1
2
√
2
−1

2
− 1

2
√
2

0 1
2
√
2

)
V8†

6 =

(
0 − 1

2
√
2
−1

2
− 1

2
√
2

0 1
2
√
2

1
2

1
2
√
2

)
V8†

7 =

(
−1

2
1

2
√
2

0 − 1
2
√
2

1
2
− 1

2
√
2

0 1
2
√
2

)
V8†

8 =

(
0 1

2
√
2
−1

2
1

2
√
2

0 − 1
2
√
2

1
2
− 1

2
√
2

)

. (3.48)
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Put each eigenvector as rows in the Xmap, so the blob matrix can be diagonalized.

Xmap =



V8†
1

V8†
2

V8†
3

V8†
4

V8†
5

V8†
6

V8†
7

V8†
8



. (3.49)

XmapAblob(Xmap)
† = Adiagonal . (3.50)

The diagonalized matrix Adiagonal is

Adiagonal =



α 0 0 0 0 0 0 0

0 β 0 0 0 0 0 0

0 0 γ 0 0 0 0 0

0 0 0 γ 0 0 0 0

0 0 0 0 η 0 0 0

0 0 0 0 0 η 0 0

0 0 0 0 0 0 µ 0

0 0 0 0 0 0 0 µ



. (3.51)
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Here

α = 2t1 − 2t2 + 2t3 − t4 + ϵ

β = −2t1 − 2t2 − 2t3 − t4 + ϵ

γ = 2t2 − t4 + ϵ

η = −
√
2t1 +

√
2t3 + t4 + ϵ

µ =
√
2t1 −

√
2t3 + t4 + ϵ

. (3.52)

Let X = XnewXmap

XnewXmapAX†
mapX

†
new =

Ã 0

0 Â

 . (3.53)

XnewAdiagonalX
†
new =

Ã 0

0 Â

 . (3.54)

Assume that Xnew is unitary. From the above equation we can have the following

equation

Adiagonal = X†
new

Ã 0

0 Â

Xnew . (3.55)

Ã should be the same as AL

Ã = AL =



σ −t11 −t22 −t11

−t11 σ −t11 −t22

−t22 −t11 σ −t11

−t11 −t22 −t11 σ


. (3.56)

42



Assume Xnew has the block matrix form

Xnew =

Xblock 0

0 I

 . (3.57)

This gives

Adiagonal =

Xblock
† 0

0 I


Ã 0

0 Â


Xblock 0

0 I

 . (3.58)

Adiagonal =

Xblock
†ÃXblock 0

0 Â

 . (3.59)

So the Xblock matrix maps the lead matrix Ã to the eigenvalues of the blob matrix.

Using this equation, the hopping parameters and on-site energy of the lead matrix can be

solved in terms of hopping parameters and on-site energy from the blob matrix. Since Ã

is a rectangular matrix, it can also be diagonalized by the eigenvectors of the matrix

P1 +P−1 =



0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


. (3.60)

So one has

Xblock
† =



−1
2

1
2
−1

2
1
2

1
2

1
2

1
2

1
2

0 − 1√
2

0 1√
2

− 1√
2

0 1√
2

0


. (3.61)
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By choosing this Xblock
†, Xblock

†ÃXblock becomes

2t11 − t22 + σ 0 0 0

0 −2t11 − t22 + σ 0 0

0 0 t22 + σ 0

0 0 0 t22 + σ


. (3.62)

To have multi channel dragons, namely to satisfy the equation Eq. (3.6), set

2t1 − 2t2 + 2t3 − t4 + ϵ 0 0 0

0 −2t1 − 2t2 − 2t3 − t4 + ϵ 0 0

0 0 2t2 − t4 + ϵ 0

0 0 0 2t2 − t4 + ϵ



=



2t11 − t22 + σ 0 0 0

0 −2t11 − t22 + σ 0 0

0 0 t22 + σ 0

0 0 0 t22 + σ



.

(3.63)

This gives

2t1 − 2t2 + 2t3 − t4 + ϵ = 2t11 − t22 + σ

−2t1 − 2t2 − 2t3 − t4 + ϵ = −2t11 − t22 + σ

2t2 − t4 + ϵ = t22 + σ

2t2 − t4 + ϵ = t22 + σ

. (3.64)
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Solve these equations

t11 = t1 + t3

t22 = 2t2

σ = −t4 + ϵ

. (3.65)

Therefore, if we choose the lead matrix elements as the solutions in Eq. (3.65), and

choose the mapping matrix to be X, the mapping equation Eq. (3.7) is satisfied. The map-

ping matrix X and its transpose can be written in terms of eigenvectors of the permutation

matrix

X = XnewXmap . (3.66)

Xnew =

Xblock 0

0 I

 . (3.67)

Xblock =

(
V4

1 V4
2 V4

3 V4
4

)
=



−1
2

1
2

0 − 1√
2

1
2

1
2
− 1√

2
0

−1
2

1
2

0 1√
2

1
2

1
2

1√
2

0


. (3.68)
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X =


(
V4

1 V4
2 V4

3 V4
4

)
0

0 I4×4





V8†
1

V8†
2

V8†
3

V8†
4

V8†
5

V8†
6

V8†
7

V8†
8



. (3.69)

X† =

(
V8

1 V8
2 V8

3 V8
4 V8

5 V8
6 V8

7 V8
8

)





V4†
1

V4†
2

V4†
3

V4†
4


0

0 I4×4


. (3.70)

Assuming that W has the following form

W =



b11V
8†
1 + b12V

8†
2 + b13V

8†
3 + b14V

8†
4

b21V
8†
1 + b22V

8†
2 + b23V

8†
3 + b24V

8†
4

b31V
8†
1 + b32V

8†
2 + b33V

8†
3 + b34V

8†
4

b41V
8†
1 + b42V

8†
2 + b43V

8†
3 + b44V

8†
4


. (3.71)
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For mapping equation Eq. (3.6)

WX† =



b11 b12 b13 b14 0 0 0 0

b21 b22 b23 b24 0 0 0 0

b31 b32 b33 b34 0 0 0 0

b41 b42 b43 b44 0 0 0 0







V4†
1

V4†
2

V4†
3

V4†
4


0

0 I4×4


. (3.72)

Rewrite

WX† =

(
Bparameter 0

)





V4†
1

V4†
2

V4†
3

V4†
4


0

0 I4×4


. (3.73)

Here

Bparameter =



b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44


. (3.74)

So Eq. (3.72) becomes

WX† =

(
BparameterX

†
block 0

)
. (3.75)

To satisfy the mapping equation Eq. (3.6),

BparameterX
†
block = I . (3.76)
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Since Xblockis a unitary matrix

Bparameter = Xblock . (3.77)

So W can be written as

W = Xblock



V8†
1

V8†
2

V8†
3

V8†
4


. (3.78)

W should be a non-negative matrix, therefore the orders of the eigenvectors in the

Xblock and the 4 eigenvectors in Xmap should be chosen carefully. The order of the eigen-

vectors as rows in Xmap also determine the relationships between lead matrix elements

and blob matrix elements in Eq. (3.65).

Using Eq. (3.78)

W =



1√
2

0 0 0 1√
2

0 0 0

0 1√
2

0 0 0 1√
2

0 0

0 0 1√
2

0 0 0 1√
2

0

0 0 0 1√
2

0 0 0 1√
2


. (3.79)

As in the last section, the mapping equation Eq. (3.8) is automatically satisfied.

Thus multi-channel quantum dragons have been found in a 8 atoms per slice rectan-

gular blob connected to 4 atoms per slice rectangular leads. As in the last subsection, the

parameters still need to be tuned so that more than one channel can be opened simultane-

ously. The eigen equation to solve for the energy ranges for each mode is

[−BT
Le

−iq + (AL − EI)−BLe
iq]ϕ⃗j = λj(E, q)ϕ⃗j (3.80)
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with

λj(E, q) = 0 . (3.81)

Substitute the AL and BL into Eq. (3.36) to give

[ϵI− t11P1 − t11P−1 − t22P2 − EI− 2 cos qI]ϕ⃗j = λj(E, q)ϕ⃗j . (3.82)

The eigenvalues of a mL ×mL permutation matrix P1 are

e2πi(j−1)/mL (3.83)

where j = 1, 2, · · · ,mL.

Therefore the 4 eigenvalues of Eq. (3.82) are

λj = σ − E − 2 cos qj − 2t11 cos
π(j − 1)

2
− t22e(j−1)πi (3.84)

where j = 1, 2, 3, 4.

Set these eigenvalues to zero, solve for cos qj , to give

cos q1 =
1

2
(σ − E − 2t11 − t22)

cos q2 =
1

2
(σ − E + t22)

cos q3 =
1

2
(σ − E + 2t11 − t22)

cos q4 =
1

2
(σ − E + t22)

. (3.85)

Since −1 ≤ cos q ≤ 1 , the energy ranges for each channel are

σ − 2− 2t11 − t22 ≤E ≤ σ + 2− 2t11 − t22

σ − 2 + t22 ≤E ≤ σ + 2 + t22

σ − 2 + 2t11 − 2t22 ≤E ≤ σ + 2 + 2t11

σ − 2 + t22 ≤E ≤ σ + 2 + t22

. (3.86)
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To open more than 4 channels simultaneously, set

σ − 2 + t22 < σ + 2− 2t11 − t22

σ − 2 + 2t11 − t22 < σ + 2− 2t11 − t22

(3.87)

to give

t11 + t22 < 2

t11 < 1

. (3.88)

To validate the result obtained in this subsection, the matrix method is used to calculate

the transmission of a structure. The structure consists of a rectangular blob connected to

rectangular leads. There are 4 slices in the blob and in each slice there are 8 atoms. There

are 4 atoms in each lead slice. The Al , AL, Bl , BL and W in this structure are chosen to

be the same as stated in Eq. (3.43) -Eq. (3.46) and Eq. (3.79). Also Eq. (3.65) is satisfied.

Furthermore, parameters are tuned to satisfy Eq. (3.88) to show 4 open channels.

Figure 3.13: Conductance from 4:8:4 quantum dragons: 2 open channels case13

13The diagram shows a multi-channel quantum dragon from a 8 atoms per slice rectangular nanotube blob
connected to 4 atoms per slice rectangular nanotube leads. The transmission for each channel is calculated
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Figure 3.14: Conductance from 4:8:4 quantum dragons: 4 open channels case14

3.2.1 General method to find multi-channel quantum dragons in rectangular nan-
otubes

In this subsection, the method for finding multi-channel quantum dragons in generic

rectangular nanotubes is shown.

Assume there are ml atoms in a slice of the blob, the intra-slice matrix associated with

the blob is

Al =


ϵI−

∑ml−1

2
k=1 tk(P

k +P−k), for ml odd

ϵI−
∑ml

2
−1

k=1 tk(P
k +P−k)− tml

2
P

ml
2 , for ml even

. (3.89)

from the matrix method. There are 4 slices in the blob. It can be seen that two channels have same energy
ranges. The matrix parameters have been set as follows: ϵ = 3, t1 = 3, t2 = 2 , t3 = 5 and t4 = 1, which
gives σ = 2 , t11 = 8 and t22 = 4.

14The diagram shows a multi-channel quantum dragon from a 8 atoms per slice rectangular nanotube blob
connected to 4 atoms per slice rectangular nanotube leads. The transmission for each channel is calculated
from the matrix method. There are 4 slices in the blob when set into the matrix. It can be seen that the
4 channels share some energy ranges. The matrix parameters have been set as follows: ϵ = 3, t1 = 0.5,
t2 = 0.3 ,t3 = 0.3 and t4 = 0.2, which gives σ = 2.8 , t11 = 0.8 and t22 = 0.8.
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The eigenvalues of the matrix Al are

λj =


ϵ−

∑ml−1

2
k=1 2tk cos (

2π(j−1)
ml

)k, for ml odd

ϵ−
∑ml

2
−1

k=1 2tk cos (
2π(j−1)

ml
)k − tml

2
e(j−1)π, for ml even

. (3.90)

Here j = 1, 2, 3 · · · ,ml .

The eigenvectors of the matrix Al are

vj =
1
√
ml

(
e

2(j−1)π∗0
ml e

2(j−1)π∗1
ml · · · e

2(j−1)π∗(ml−1)

ml

)T

, (3.91)

where j = 1, 2, 3 · · · ,ml .

Since the eigenvalues are real, vj + v∗j are also eigenvectors of Al. Introduce real

eigenvectors

Vml
j =

vj + v∗j√
2

=

√
2

ml

(
cos 2(j−1)π∗0

ml
cos 2(j−1)π∗1

ml
· · · cos 2(j−1)π∗(ml−1)

ml

)T

.

(3.92)

Here j indicates the j’s eigenvectors and ml in the superscript indicates the dimension

of the eigenvectors.

Introduce Xmap

Xmap =



Vml†
1

Vml†
2

...

Vml†
ml


. (3.93)

Since Xmap is unitary, Al can be diagonalized as

XmapAlX
†
map = Adiagonal . (3.94)
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here Adiagonal is

Adiagonal =



λ1 0 · · · 0 0

0 λ2 · · · 0 0

...
... . . . ...

...

0 0 · · · λml−1 0

0 0 · · · 0 λml


. (3.95)

Introduce the transformation matrix X

X = XnewXmap , (3.96)

where Xnew is a block matrix

Xnew =

Xblock 0

0 I

 . (3.97)

A successful mapping is defined as

XAX† =

Ã 0

0 Â

 . (3.98)

To have multi-channel quantum dragons, the first equation to be satisfied is

Ã = AL . (3.99)

Then the equation becomes

XnewXmapAlX
†
mapX

†
new =

AL 0

0 Â

 . (3.100)

XnewAdiagonalX
†
new =

AL 0

0 Â

 . (3.101)
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Adiagonal = X†
new

AL 0

0 Â

Xnew . (3.102)

Adiagonal =

X†
block 0

0 I


AL 0

0 Â


Xblock 0

0 I

 . (3.103)

Adiagonal =

X†
blockALXblock 0

0 Â

 . (3.104)

Since the leads are also rectangular nanotubes, the intra-slice matrix of leads can also

be written as Eq.(3.89)

AL =


ϵLeadI−

∑mL−1

2
k=1 tkLead(P

k +P−k), for mL odd

ϵLeadI−
∑mL

2
−1

k=1 tkLead(P
k +P−k)− tmL

2
LeadP

mL
2 , for mL even

. (3.105)

here mL is the number of atoms in a slice of the lead. It can be seen from Eq.(3.104) that

ml > mL.

AL can also be diagonalized by the eigenvectors similar to that in Eq.(3.92) but with

different dimension mL

VmL
j =

vj + v∗j√
2

=

√
2

mL

(
cos 2(j−1)π∗0

mL
cos 2(j−1)π∗1

mL
· · · cos 2(j−1)π∗(mL−1)

mL

)T

.

(3.106)

X†
blockALXblock = ALdiagonal . (3.107)
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where X†
block is

X†
block =



VmL†
1

VmL†
2

...

VmL†
mL


(3.108)

and ALdiagonal is

ALdiagonal =



λLead1 0 · · · 0 0

0 λLead2 · · · 0 0

...
... . . . ...

...

0 0 · · · λLeadmL−1 0

0 0 · · · 0 λLeadmL


(3.109)

with

λLeadj =


ϵLead −

∑mL−1

2
k=1 2tkLead cos (

2π(j−1)
mL

)k, for mL odd

ϵLead −
∑mL

2
−1

k=1 2tkLead cos (
2π(j−1)

mL
)k − tmL

2
Leade

(j−1)π, for mL even

.

(3.110)

here j = 1, 2, 3 · · · ,mL .

To satisfy Eq.(3.104)

λj = λLeadj . (3.111)

Where j = 1, 2, 3 · · · ,mL .

Therefore provided one uses the X in Eq. (3.96) and Eq. (3.111), the first mapping

equation from equation set Eq. (3.6) to Eq. (3.8)is satisfied. Now move to the second

mapping equation.
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A successful mapping of the lead-blob connection is defined as

WX† =

(
W̃ 0

)
. (3.112)

From Eq. (3.96), X† is

X† =

(
Vml†

1 Vml†
2 · · · Vml†

ml

)





VmL†
1

VmL†
2

...

VmL†
mL


0

0 I


. (3.113)

Assume that W has the following form

W =



b11V
ml†
1 + b12V

ml†
2 + · · ·+ b1mL

Vml†
mL

b21V
ml†
1 + b22V

ml†
2 + · · ·+ b2mL

Vml†
mL

...

bmL1V
ml†
1 + bml2V

ml†
2 + · · ·+ bmLmL

Vml†
mL


. (3.114)

Then WX† is

WX† =



b11 b12 · · · b1mL
0 0 · · · 0 0

b11 b12 · · · b1mL
0 0 · · · 0 0

...
... . . . ...

...
... . . . ...

...

bmL1 bmL2 · · · bmLmL
0 0 · · · 0 0







VmL†
1

VmL†
2

...

VmL†
mL


0

0 I


. (3.115)
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Let

Bparameter =



b11 b12 · · · b1mL

b11 b12 · · · b1mL

...
... . . . ...

bmL1 bmL2 · · · bmLmL


. (3.116)

And recall that

X†
block =



VmL†
1

VmL†
2

...

VmL†
mL


. (3.117)

Then

WX† =

(
BparameterX

†
block 0

)
. (3.118)

where W̃ = BparameterX
†
block.

The blob will become a multi-channel quantum dragon when W̃ = BL. For the rectangu-

lar leads that have only nearest-neighbor inter-slice interaction, namely BL = I, Bparameter

can be solved as

Bparameter = Xblock . (3.119)

Therefore W is

W = Xblock



Vml†
1

Vml†
2

...

Vml†
mL


. (3.120)
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Since the hopping parameters in W come from the kinetic energy term of the time-

independent Schrödinger equation, W must be a non-negative matrix

W ≥ 0 . (3.121)

The last mapping equation to be solved is the mapping of the blob inter-slice hopping

terms. For the rectangular leads and blob that have only nearest-neighbor inter-slice inter-

action, the mapping equation is automatically satisfied providing that X in Eq. (3.96).

XBlX
† = I =

BL 0

0 I

 . (3.122)

Where Bl and BL are identity matrices.

To have multi-channel quantum dragons, not only the mapping equations need to be

satisfied, but also the propagating mode needs to exist in the lead. In the following sub-

section, how to find the lead for rectangular nanotube multi-channel quantum dragons is

shown.

Assume a lead intra-slice AL and inter-slice BL interaction are of the following form

AL =


ϵLeadI−

∑mL−1

2
k=1 tkLead(P

k +P−k), for mL odd

ϵLeadI−
∑mL

2
−1

k=1 tkLead(P
k +P−k)− tmL

2
LeadP

mL
2 , for mL even

(3.123)

BL = t0I . (3.124)

The eigen equation to solve for the lead slice wavefunction is

[−BT
Le

−iq + (AL − EI)−BLe
iq]ϕ⃗j = λj(E, q)ϕ⃗j . (3.125)
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Since BL = t0I , the eigen equation can be written as

[AL − EI− 2t0 cos qjI]ϕ⃗j = λj(E, q)ϕ⃗j . (3.126)

From Eq. (3.110) , the eigenvalues λj(E, q) in Eq. (3.126) are

For mL odd

ϵLead − E − 2t0 cos qj −

mL−1

2∑
k=1

2tkLead cos (
2π(j − 1)

mL

)k

For mL even

ϵLead − E − 2t0 cos qj −

mL
2

−1∑
k=1

2tkLead cos (
2π(j − 1)

mL

)k − tmL
2

Leade
(j−1)π

(3.127)

Set λj(E, q) = 0

For mL odd

cos qj =
1

2t0
[ϵLead − E −

mL−1

2∑
k=1

2tkLead cos (
2π(j − 1)

mL

)k]

For mL even

cos qj =
1

2t0
[ϵLead − E −

mL
2

−1∑
k=1

2tkLead cos (
2π(j − 1)

mL

)k − tmL
2

Leade
(j−1)π]

(3.128)

The energy range of each mode can be solved by setting−1 ≤ cos q ≤ 1 in Eq. (3.128).

For mL odd

E ≥ ϵLead − 2t0 −

mL−1

2∑
k=1

2tkLead cos (
2π(j − 1)

mL

)k

E ≤ ϵLead + 2t0 −

mL−1

2∑
k=1

2tkLead cos (
2π(j − 1)

mL

)k

(3.129)
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For mL even

E ≥ ϵLead − 2t0 −

mL
2

−1∑
k=1

2tkLead cos (
2π(j − 1)

mL

)k − tmL
2

Leade
(j−1)π

E ≤ ϵLead + 2t0 −

mL
2

−1∑
k=1

2tkLead cos (
2π(j − 1)

mL

)k − tmL
2

Leade
(j−1)π

(3.130)

To open more than one channel simultaneously, parameters need to be tuned from Eq.

(3.129) and Eq. (3.130) so that energy ranges from different modes can have a common

part.
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CHAPTER 4

CONCLUSIONS

The procedure to use the matrix method to find multi-channel quantum dragons in

rectangular nanotubes has been shown. A multi-channel quantum dragon is a nanodevice

that may have disorder, but when connected to input and output leads , electrons impinging

into it can propagate through with probability 1 in more than one channel. In a two-terminal

measurement, the electrical conductance of a multi-channel quantum dragon is the product

of number of open channels mand the conductance quantum G0, namely mG0.This is also

the first time the matrix method has been modified to take into account more than one

channel in the lead slices. The modification may allow for more realistic nanostructure

calculation since practical nanodevices are not idea 1D atom chain.

Multi-channel quantum dragons have been shown in rectangular nanotubes in this the-

sis. The conductance of a rectangular nanotube multi-channel quantum dragon nanodevice

can be as high as MG0, where M is the number of atoms in each slice of the lead and

G0 is the conductance quantum. The highest conductance happens as all the channels are

open at the same time.

No experimental realization of rectangular nanotubes has been reported yet. Neverthe-

less, single-atom-thick Fe layer with a square lattice structure has been report recently[18].
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It is expected that in the future, rectangular nanotubes can be made from this kind of

single-atom-thick square lattices, which may make application of rectangular nanotube

multi-channel quantum dragons possible.

Beside rectangular nanotubes, there are other types of nanostructures such as zigzag

single-walled carbon nanotubes (SWCNTS), armchair SWCNTS and Bethe lattices can

form single-channel quantum dragons[16]. Carnon nanotubes are strong candidates for

possible novel nanoelectrinic applications[4][3][17][1]. Since electrons can propagate

multi-channel quantum dragons with total transmission, multi-channel quantum dragons

have potential for some of the same applications as do ballistic electron propagation de-

vices [13][11]. Therefore, finding multi-channel quantum dragons from these structures

will be the next stage of this multi-channel quantum dragon study.

Rectangular nanotube multi-channel quantum dragons are examples of linear form

quantum dragons in which the nanodevice consists of slices and interactions only between

nearest neighbor slices. The future directions of the work therefore also may include re-

search about more complex nanostructures, which include next-nearest neighbor slice hop-

ping terms.
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APPENDIX A

MATRIX METHOD FOR ELECTRON TRANSMISSION CALCULATION AND

SINGLE-CHANNEL QUANTUM DRAGONS
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A.1 Matrix method for solving quantum transmission problem

In this appendix, matrix method and its application in calculation of transmission from

single channel quantum dragons have been reviewed briefly.

A.1.1 Method of finite differences

In lots of practical problems, the Schrödinger equation can not been solved analyti-

cally. Therefore these problems require a numerical solution. The most widely used way

to obtain a numerical solution for the Schrödinger equation is converting the differential

equation to a matrix equation. Using the 1D case as an example, the following part shows

how this is done.

Firstly, we represent the wavefucntion Ψ(x, t) by a column vector {ψ1(t) ψ2(t) · · · }T

containing its values around each of the lattice points at time t. The spatial lattice is regular,

with lattice spacing a.

Next, we obtain the matrix representation of the Hamiltonian operator

Hop = −
h̄2

2m

∂2

∂x2
+ U(x) (A.1)

recall the approximation

(
∂2Ψ

∂x2
)x=xn ≈

1

a2
(Ψ(xn + 1)− 2Ψ(xn) + Ψ(xn − 1)) (A.2)

and

U(x)Ψ(x) = U(xn)Ψ(xn) . (A.3)

The above procedure is called the finite difference method.
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Then the Schrödinger equation becomes

ih̄
dψn

dt
= [Hop]x=xn = (Un + 2t0)ψn − t0ψn−1 − t0ψn+1

=
∑
m

[(Un + 2t0)δn,m − t0δn,m+1 − t0δn,m−1]ψm

(A.4)

where δn,m is Kronecker delta.

Then the Schrödinger equation can be written as a matrix equation

ih̄
d

dt
ψ⃗(t) = [H]ψ⃗(t) (A.5)

Where ψ(t) is a column vector

ψ⃗(t) = (ψ1(t) ψ2(t) · · · )T (A.6)

and [H] is a matrix with matrix elements

Hn,m = (Un + 2t0)δn,m − t0δn,m+ 1− t0δn,m− 1 (A.7)

with

t0 = h̄2/2ma2 (A.8)

and

Un = U(xn) . (A.9)

Now assume that the Hamiltonian is time independent. To solve the matrix equation,

the eigenvectors α and associated eigenvalues Eα of H must be found first

[H]α⃗ = Eαα⃗ . (A.10)

It can been shown that the complete form of the solution to the Eq. (5) is

ψ⃗(t) =
∑
α

Cαe
−iEαt/h̄α⃗ . (A.11)
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The coefficients Cα are time independent and found from the initial condition ψ⃗(0) =∑
αCαα⃗.

A.1.2 Matrix method for quantum transmission

Rewrite Eq. (A.10), drop the α for conciseness, to give

(H− E)ψ⃗ = 0 . (A.12)

The explicit matrix form of H depends on details of the structure of the leads and of

the device. Consider the following 1D discretization diagram

· · · −t0 → (0) ← −w → (a) ← −t12 → (b) ← −u → (1) ← −t0 · · ·

· · · ϵ0 ϵa ϵb ϵ0 . . .

· · · ψ0 ψa ψb ψ1 · · ·

.

(A.13)

where ψi is the wavefunction at each atom site, ϵ’s are the onsite energies for different

atoms, t’s , w and u are hopping terms between nearest atoms.
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The infinite matrix Eq. (A.12) then is

. . . ...
...

...
...

...
...

...
...

· · · K0 −t0 0 0 0 0 0 0 · · ·

· · · −t0 K0 −t0 0 0 0 0 · · ·

· · · 0 −t0 K0 −w 0 0 0 0 · · ·

· · · 0 0 −w ϵa − E −t12 0 0 0 · · ·

· · · 0 0 0 −t12 ϵb − E −u 0 0 · · ·

· · · 0 0 0 0 −u K0 −t0 0 · · ·

· · · 0 0 0 0 0 −t0 K0 −t0 · · ·

· · · 0 0 0 0 0 0 −t0 K0 · · ·

...
...

...
...

...
...

...
...

... . . .




...

ψ−2

ψ−1

ψ0

ψa

ψb

ψ+1

ψ+2

ψ+3

...



=



...

0

0

0

0

0

0

0

0

...



.

(A.14)

where K0 = ϵ0 − E.
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Using the ansatz from [16], the slice wave function of the blob and leads can be written

as

ψn =


eiqna + re−iqna n ≤ 0

tT e
iq(n−1)a n ≥ 1

. (A.15)

Substitute the ansatz in the tight-banding equation Eq. (A.14) for the outgoing lead

(n ≥ 1)

−t0tT ei(n−2)qa + (ϵ0 − E)tT ei(n−1)qa − t0tT einqa = 0

−t0e−iqa + (ϵ0 − E)− t0eiqa = 0

ϵ0 − E = 2t0 cos qa .

(A.16)

Substitute the ansatz in the tight-banding equation Eq. (A.14) for the incoming lead

(n ≤ 0)

−t0(eiq(n−1)a + re−iq(n−1)a) + (ϵ0 − E)(eiqna + reiqna)− t0(eiq(n+1)a + reiq(n+1)a) = 0

−t0e−iqa − t0eiqa + (ϵ0 − E)− t0re−iq(2n−1)a + (ϵ0 − E)re−2iqna − t0re−iq(2n+1)a = 0

(−t0e−iqa + ϵ0 − E − t0eiqa)(1 + re−2iqna) = 0

(ϵ0 − E − 2t0cos(qa))(1 + re−2iqna) = 0 .

(A.17)

this equation can also be satisfied by the last equation in Eq. (A.16).
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The four rows of matrix equation that have yet to be satisfied in Eq. (A.14) are



−t0 ϵ0 − E −w 0 0 0

0 −w ϵa − E −t12 0 0

0 0 −t12 ϵb − E −u 0

0 0 0 −u ϵ0 − E −t0





ψ−1

ψ0

ψa

ψb

ψ1

ψ2



=



0

0

0

0


. (A.18)

Using the ansatz again



−t0 ϵ0 − E −w 0 0 0

0 −w ϵa − E −t12 0 0

0 0 −t12 ϵb − E −u 0

0 0 0 −u ϵ0 − E −t0





e−iqa + reiqa

1 + r

ψa

ψb

tT

tT e
iqa



=



0

0

0

0


. (A.19)

Multiplying through gives

−t0e−iqa − t0reiqa + ϵ0 + ϵ0r − E − Er − wψa

−w − wr + (ϵa − E)ψa − t12ψb

−t12ψa + (ϵb − E)ψb − utT

−uψb + ϵ0tT − EtT − t0tT eiqa


=



0

0

0

0


. (A.20)
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Using −E = t0e
iqa + t0e

−iqa − ϵ0 in Eq. (15) , the bottom equation of equation (19)

can be written as

−uψb + ϵ0tT − EtT − t0tT eiqa = −uψb + t0(e
iqa + e−iqa)tT − t0tT eiqa

= −uψb + t0tT e
iqa + t0tT e

−iqa − t0tT eiqa

= −uψb + t0tT e
−iqa .

(A.21)

Using −E = t0e
iqa + t0e

−iqa − ϵ0 , the top equation of equation (19) can be written as

−t0e−iqa − t0reiqa + ϵ0 + ϵ0r − E − Er − wψa = −t0e−iqa − t0reiqa + t0e
iqa+

t0e
−iqa + rt0e

iqa + rt0e
−iqa − wψa

= t0e
iqa + rt0e

−iqa − wψa .

(A.22)

Eq. (A.19) thus becomes

t0e
iqa + rt0e

−iqa − wψa + (t0e
−iqa − t0e−iqa)

−w − wr + (ϵa − E)ψa − t12ψb

−t12ψa + (ϵb − E)ψb − utT

−uψb + t0tT e
−iqa


=



0

0

0

0


. (A.23)

which can be written into a matrix equation form

t0e
−iqa −w 0 0

−w ϵa − E −t12 0

0 −t12 ϵb − E −u

0 0 −u t0e
−iqa





1 + r

ψa

ψb

tT


=



−2it0 sin qa

0

0

0


. (A.24)

Solving this matrix equation, the transmission T (E) can be obtained as T (E) =

|tT |2 = tT t
∗
T .
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The matrix equation used to calculate the transmission can be generalized to non-1D

cases. Generally there are three types of sites in the blob: sites directly connected to the

input lead, in; sites directly connected to the output lead, ut; sites not directly connected to

either the input or output lead, not. Similar to the 1D case, the blob now is arranged into

three parts with the different types of sites.

In these general cases, T (E) is given by the solution of matrix equation

ξ(E) −→w † −→
0 † −→

0 † 0

−→w Ain − EI Bin,not Bin,ut
−→
0

−→
0 B†

in,not Anot − EI Bnot,ut
−→
0

−→
0 B†

in,ut B†
not,ut Aut − EI −→u

0
−→
0

−→
0 −→u † ξ(E)





1 + r

−→
ψ in

−→
ψ not

−→
ψ ut

tT


=



2iIm(ξ)

−→
0

−→
0

−→
0

0


(A.25)

where ξ(E) is defined as

ξ(E) = t0e
−iqa (A.26)

and Im(ξ) is the imaginary part of ξ(E).

A.1.3 Linear form blobs and mapping onto a one dimension chain

In principle transmission of any blob can be obtain from the solution of a matrix equa-

tion as in Eq. (A.25). Usually this involves taking the inverse of an extremely large matrix,

which makes exact solution of the matrix equation in general not possible. Using the tech-

nique introduced in [16], a mapping from the original large matrix to a much smaller matrix

can make the search for quantum dragons easier.
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A linear blob is a blob that is composed of l different slices, and the slice i interacts

only with slices i − 1 and i + 1 ( with 1 ≤ i ≤ l). In a linear blob, each slice only has

interactions with nearest slices. So the matrix in matrix equation Eq. (A.25) becomes

Nl =



ξ(E) w⃗† 0⃗† 0⃗† · · · 0⃗† 0⃗† 0

w⃗ A1 − EI B12 0 · · · 0 0 0⃗

0⃗ B21 A2 − EI B23 · · · 0 0 0⃗

0⃗ 0 B32 A3 − EI 0 0 0⃗

...
...

...
... . . . ...

...
...

0⃗ 0 0 0 · · · Al−1 − EI Bl−1,l 0⃗

0⃗ 0 0 0 · · · Bl,l−1 Al − EI u⃗

0 0⃗†
−→
0 † 0⃗† · · · 0⃗† u⃗† ξ(E)



.

(A.27)

Here Ai is a mi ×mi matrix containing all the intra-slice couplings and on-site energies.

Bi,i+1 is a mi ×mi+1 matrix containing inter-slice couplings.

Then the matrix equation becomes

Nl ×



1 + r

ψ⃗1

ψ⃗2

...

ψ⃗l−1

ψ⃗l

tT



=



2iIm(ξ)

0⃗

0⃗

...

0⃗

0⃗

0



. (A.28)
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Introduce the l × l block-diagonal transformation matrices

X̂ =



1

X1

X2

X3

. . .

Xl−1

Xl

1



. (A.29)

and

Ŷ† =



1

Y†
1

Y†
2

Y†
3

. . .

Y†
l−1

Y†
l

1



. (A.30)
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In Eq. (A.28), inserting the identity matrix I = Ŷ †(Ŷ †)−1 between the matrix Nl and

the vector gives

X̂NlŶ
†



1 + r

(Y†
1)

−1ψ⃗1

(Y†
2)

−1ψ⃗2

...

(Y†
l )

−1ψ⃗l

tT



=



−2i sin q

0⃗

0⃗

...

0⃗

0



. (A.31)

Define Ml = X̂NlŶ
†=

ξ w⃗†Y†
1 0⃗† 0⃗† · · · 0⃗† 0⃗† 0

X1w⃗ X1F1Y
†
1 X1B12Y

†
2 0 · · · 0 0 0⃗

0⃗ X2B21Y
†
1 X2F2Y

†
2 X2B23Y

†
3 · · · 0 0 0⃗

0⃗ 0 X3B32Y
†
2 X3F3Y

†
3 · · · 0 0 0⃗

...
...

...
... . . . ...

...
...

0⃗ 0 0 0 · · · Xl−1Fl−1Y
†
l−1 Xl−1Bl−1,lY

†
l 0⃗

0⃗ 0 0 0 · · · XlBl,l−1Yl−1 XlFlY
†
l Xlu⃗

0 0⃗† 0⃗† 0⃗† · · · 0⃗† u⃗†Y†
l ξ



.

(A.32)

where Fl = Al − EI.

A successful mapping onto the 1D chain was defined by a set of equations

XiAiY
†
i =

ϵ̃i 0⃗†

0⃗ Ãi

 . (A.33)
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XiBijY
†
j =

−t̃ij 0⃗†

0⃗ B̃ij

 . (A.34)

EXiIY
†
i =

E 0⃗†

0⃗ C̃i(E)

 . (A.35)

X1w⃗ =

−w̃
0⃗

 and Y1w⃗ =

−w⃗
0⃗

 . (A.36)

Xlu⃗ =

−ũ
0⃗

 and Ylu⃗ =

−ũ
0⃗

 . (A.37)

After the mapping, some hopping terms in the Ml become zero, which means that in

the mapped structure, some atoms are disconnected from the blob and leads. Define the

M̃l as the matrix that includes all the connected atoms in the mapped structure.

M̃l =



ξ −w̃ 0 0 · · · 0 0 0

−w̃ k̃1 −t̃12 0 · · · 0 0 0

0 −t̃21 k̃2 −t̃23 · · · 0 0 0

0 0 −t̃32 k̃3 · · · 0 0 0

...
...

...
... . . . ...

...
...

0 0 0 0 · · · t̃l,l−1 −k̃l −ũ

0 0 0 0 · · · 0 −ũ ξ



. (A.38)

where k̃i = ϵ̃i − E.

To have quantum dragons in this nanodevice, one needs to set that

w̃ = ũ = t̃i,i+1 = t0 (A.39)
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and

ϵ̃i = ϵ0 (A.40)

where t0 is the hopping term between two lead atoms and ϵ0 is the onsite energy of the lead

atoms.

The idea underneath Eq. (38) and Eq. (39) is to set the mapped structure to be the same

as lead so that the mapped structure can be seen as a continuous part of the lead. In this way

the whole nanostructure will have total transmission. Since the mapped structure has the

same solution about transmission as the original structure, therefore one can conclude that

the original structure permits total electron transmission, namely a single-channel quantum

dragon.
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