

FORENSIC RECOVERY OF EVIDENCE FROM DELETED VMWARE VSPHERE

HYPERVISOR VIRTUAL MACHINES

by

Brendan Kinchla

A Capstone Project Submitted to the Faculty of

Utica College

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1587159
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

UMI Number: 1587159

ii

May 2015

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Cybersecurity

iii

© Copyright 2015 by Brendan Kinchla

All Rights Reserved

iii

Abstract

 The purpose of this research was to analyze the potential for recovering evidence from

deleted VMware vSphere Hypervisor (ESXi) virtual machines (VMs). There exists an absence of

scholarly research on the topic of deleted VM forensic recovery. Research dedicated to forensic

recovery of ESXi VMs and VMware’s VM file system (VMFS) is nearly non-existent. This

paper examined techniques to recover deleted ESXi VMs to a state where examination for

forensic artifacts of user activity can occur. The paper examined the disk-provisioning methods

for allocation of virtual disk files and the challenges for forensic recovery associated with each

disk-provisioning type. The research determined that the two thick-provisioned virtual disk types

provided the best opportunity for complete recovery, while certain characteristics of thin-

provisioned virtual disk files made them less likely to recover in their entirety. Fragmentation of

virtual disk files presented the greatest challenge for recovery of deleted VMs. Testing of

alternate hypotheses attempting to reduce the likelihood of fragmentation within the virtual disk

file met with mixed results, leaving fragmentation of virtual disk files as a significant challenge

to successful VM recovery. The paper examined the techniques for recovering deleted files from

VMFS volumes. Due to a lack of forensic tools with the ability to interpret the VMFS filesystem,

forensic recovery focused on data stream searching through the VMFS volume image and file

carving from consecutive disk sectors. This method proved to be inefficient, but ultimately

successful in most of the test cases. Keywords: Cybersecurity, Professor Cynthia Gonnella,

virtualization, VMDK.

iv

Acknowledgements

 I wish to express my deepest gratitude to my wife, Olga for her unending patience

throughout this process. I could have never completed this without you and I’m humbled by the

amount of support you provided me during my classwork and through the capstone process. I’d

also like to thank Professor Cynthia Gonnella for her guidance through the capstone and her

encouragement and positive feedback when I felt the paper was going nowhere. To my second

reader, Cherilyn Neal, your capstone paper provided the spark for me to head down this road of

virtualization forensics. I hope my paper has added something to the body of work you started. I

greatly appreciate your willingness to perform second reader duties even through all of the

changes I threw at you. I’d like to send an additional thank you to Professors Tony DeSarro and

Vernon McCandlish for their genuine interest and effort in giving their students the tools and

direction necessary to be successful.

v

Table of Contents

List of Illustrative Materials...vii

Recovering Evidence from Deleted VMware vSphere Hypervisor Virtual Machines 1

Virtualization Terminology ... 2

VMware vSphere Hypervisor (ESXi) ... 3

Virtualization Flexibility.. 4

Forensic Challenges of ESXi ... 4

Literature Review ... 6

Forensic Analysis of ESXi Technology .. 6

Forensic Analysis of Other VMware Hypervisor Technologies ... 7

File System Forensic Analysis... 9

VMFS Forensic Analysis ... 10

Methodology ... 13

Process Model... 13

Collection phase. .. 13

Examination Phase. .. 13

Analysis phase. ... 14

Reporting phase. ... 14

Data Collection and Analysis Tools .. 14

dcfldd v1.3.4-1.. 14

Fluid Ops VMFS driver. .. 15

foremost v1.5.7. .. 15

GNU dd v8.21... 15

GPT fdisk (gdisk) v0.8.1.. 15

GNU md5sum v8.21. ... 15

hexedit v1.2.12.. 16

Okular v0.14.3. ... 16

Regripper v2.5. ... 16

Ssdeep v2.7. .. 16

The Sleuth Kit v4.1.3. .. 16

mmls.. 17

vmfs-tools. .. 17

VMware ESXi (vSphere Hypervisor) v5.5 update 2.. 17

xxd V1.10.. 17

Testing Environment .. 17

ESXi host system.. 18

Test VMs... 18

Forensic analysis systems. ... 19

Additional hardware. .. 20

Test Scenarios ... 20

Test #1: Thick-provisioned, eager zeroed virtual disk. .. 21

Test #2: Thick-provisioned, lazy zeroed virtual disk. .. 21

Test #3: Thin-provisioned virtual disk. ... 21

Scenario preparation... 21

Analysis ... 24

vi

Collection Phase ... 24

Examination Phase ... 25

Analysis Phase .. 35

Test #1: Thick-provisioned, eager zeroed virtual disk. .. 35

Virtual disk identification. ... 35

Control file recovery. ... 36

VM reconstruction. .. 38

Test #2: Thick-provisioned, lazy zeroed virtual disk. .. 42

Virtual disk identification. ... 42

Control file recovery. ... 42

VM reconstruction. .. 44

Test #3: Thin-provisioned virtual disk. ... 46

Virtual disk identification. ... 46

Control file recovery. ... 47

VM Reconstruction. ... 48

Hypotheses. ... 48

Non-consecutive writes hypothesis... 49

Unallocated percentage hypothesis. .. 54

Control file hypothesis... 59

Discussion of Findings ... 61

Major Findings.. 61

Theme 1: The VMFS file system. ... 62

Theme 2: Forensic recoverability of disk-provisioning modes. .. 63

Thick-provisioned eager zeroed virtual disks. ... 64

Thick-provisioned lazy zeroed virtual disks... 65

Thin-provisioned virtual disks... 65

Theme 3: Recovering deleted VM files from a VMFS volume. ... 68

Theme 4: Deleted VM reconstruction. .. 69

Comparison of the Findings... 71

Limitations of the Study... 72

Future Research Recommendations .. 74

Conclusions ... 76

References ... 80

Appendices .. 84

Appendix A – Physical Datastore.. 84

Appendix B – VMFS Volume ... 86

Appendix C – Alpha VM ... 92

Appendix D – Bravo VM... 94

Appendix E – Charlie VM ... 95

Appendix F – Non-consecutive Writes Hypothesis ... 96

Appendix G – Unallocated Percentage Hypothesis ... 98

vii

List of Illustrative Materials

Table 1 - VMFS and ESXi Version Comparison.. 10

Table 2 - Test VM Configurations... 19

Table 3 - Forensic Analysis VMs Configuration .. 20

Table 4 - Control File Names and MD5 Hash Values.. 22

Figure 1 - VMFS volume geometry... 25

Figure 2 - MBR sector identification... 30

Figure 3 - Partition table entries... 31

Table 5 - Virtual disk file extents, carved file names ... 31

Figure 4 - Disk view of “Boston” volume... 33

Figure 5 - Metadata of active file... 34

Figure 6 - Metadata of deleted file... 35

Figure 7 - Regripper identified “Alpha” VM. ... 36

Figure 8 - Determining fragmentation offset with dcfldd and md5sum.. 38

Figure 9 - ESXi error - .vmdk is not a virtual disk. .. 40

Figure 10 - Successful reconstruction of “Alpha” VM. ... 41

Figure 11 - Regripper identified “Bravo” virtual disk.. 42

Figure 12 - Successful reconstruction of “Bravo” VM. ... 46

Table 6 - Non-Consecutive Writes Test VM Configurations .. 49

Figure 13 - Disk view of “Dallas” volume.. 52

Figure 14 - Successful reconstruction of “Charlie2” VM. ... 54

Table 7 - Control File Hypothesis Test VM Configurations.. 55

Figure 15 - Disk view of “Edmonton” volume. .. 58

Table 8 - Control file fragments identified within virtual disk files.. 60

Figure 16 - Contents of VMD_physical_20150305.log. .. 84

Figure 17 - Carving the VMFS volume with dcfldd... 85

Table 9 - Known VMFS Volume Info Header Fields .. 86

Table 10 - VM File Types .. 87

Table 11 - VMFS File System Metadata Files.. 88

Table 13 - Revised virtual disk file extents... 90

Figure 18 - Contents of foremost_vmware.conf. .. 91

Table 14 - Carved files from the “Alpha” VM ... 92

Table 15 - Carved files used to reconstruct the “Alpha” VM .. 93

Table 16 - Carved files from the “Bravo” VM ... 94

Table 17 - “Charlie-flat.vmdk” file descriptor metadata from volume restoration image: 95

Table 18 - Carved files from “Dallas” volume ... 96

Table 19 - “Dallas” carved virtual disk files ... 97

Table 20 - Carved files from “Edmonton” volume... 98

Table 21 - “Edmonton” carved virtual disk files .. 99

1

Recovering Evidence from Deleted VMware vSphere Hypervisor Virtual Machines

Forensic examinations in virtualized environments pose challenges to examiners beyond

those encountered in physical computer examinations. This fact stands in contrast to the

perceived ease of use and rapid deployment capabilities associated with many of today’s

virtualization technology products. Much of the literature on virtualization technology focuses on

disaster recovery, performance optimizations, and security considerations. There exists a small

subset of research into virtualization forensics. The purpose of this research was to analyze the

potential for recovering evidence from deleted VMware vSphere Hypervisor (ESXi) virtual

machines (VMs).

According to a January 2012 Forrester Research Custom Technology Adoption Profile

commissioned by Cisco Systems, 48% of servers in data centers were virtualized and, “85% of

North American enterprises have already adopted x86 server virtualization or [were] planning to

expand their implementation in the next 12 months” (pp.1-2). With 85% of North American

enterprises using virtualization in the data center, virtualization is clearly mainstream technology

in the Information Technology (IT) realm. Keith Ward, the Editor in Chief of Virtualization

Review, quoted Andi Mann, Vice President of CA Technologies, as saying, “in 2015 I predict

virtualization moves into broad mainstream business and consumer use cases, not just IT

mainstream use cases” (Ward, 2015, p. 1, para. 12). With virtualization becoming omnipresent in

the data center and moving into the consumer market, forensic capabilities in this space are

lagging behind the momentum of virtualization technology. Cyber security expert and SANS

Institute Instructor, Dr. Eric Cole (2010), explained the immature state of forensics within

virtualized environments:

2

If you ask a forensic expert to perform analysis on a compromised system, this is a

straightforward task, and you will notice the confidence in which he or she can

implement the task. However, if you mention it is a completely virtualized environment,

the confidence changes to fear very quickly [….] Our ability to analyze these systems is

still in its infancy even though the technology is quickly maturing. (p. xv, para. 2)

This research specifically probed the likelihood of recovering deleted VMs for forensic

analysis. Through the exploration of these features within ESXi, the research sought to answer

the following questions: What tools and methods can examiners employ to attempt recovery of

entirely deleted VMs from a VMFS volume? Which disk-provisioning configuration poses the

greatest opportunity for forensic recovery and which disk-provisioning method poses the greatest

challenge for forensic recovery from a VMFS volume? What is the greatest challenge to forensic

recovery of deleted ESXi VM files and what can increase the likelihood of successful forensic

recovery? What tools and methods can examiners employ to attempt complete reconstruction of

deleted ESXi VMs?

Virtualization Terminology

Virtualization, as IBM Global Education (2007) explained, is, “a technique for hiding the

physical characteristics of computing resources from the way in which other systems,

applications or end users interact with those resources” (p. 2, para. 3). Virtualized operating

systems installed on complete virtual computers called VMs is the basis of x86 virtualization. As

Diane Barrett and Gregory Kipper (2010) defined it, a VM is, “a software version of a physical

computer that operates and executes like a physical machine” (p. 249, para. 5). The host system

is the physical machine that the hypervisor runs on, as it hosts the VMs.

3

The component of virtualization technology responsible for running multiple VMs on a

single host system, termed the hypervisor. As Diane Barrett (n.d.) from the University of

Advancing Technology explained, “a hypervisor or VM monitor (VMM) is a virtualization

platform that provides more than one operating systems to run on a host computer at the same

time” (How Virtualization Works, para. 2). Bare-metal hypervisors, also known as Type 1

hypervisors, install directly onto the system hardware as opposed to type 2 hypervisors, which

install on top of a host operating system (Lowe, Marshall, Atwell, Guthrie, & Liebowitz, 2014, p.

4, para. 2).

VMware vSphere Hypervisor (ESXi)

There are numerous implementations of virtualization technology available as either

commercial or free products. The virtualization technology that this research focused on was

VMware vSphere Hypervisor, also referred to as ESXi. VMware Inc. is a commercial entity,

which developed vSphere, VMware’s enterprise-grade virtualization product suite (Lowe et al.,

2014, p.1 para. 1). VMware offers a limited functionality free license for the ESXi bare-metal

hypervisor, which is the core of the vSphere product line. This research used the most current

version of ESXi at the time, version 5.5 update 2, with an evaluation license, which enabled all

features of ESXi.

Within VMware’s vSphere product suite, ESXi provides the foundation of virtualization

by way of the VMkernel. The VMkernel manages the VMs’ access to the underlying physical

hardware through CPU scheduling, memory management, and virtual switch data processing

(Lowe et al., 2014, pp. 4-5). Due to the lack of a service console within ESXi, remote

management utilities, of which VMware offers several options, perform the bulk of ESXi

4

configuration. The VMware vSphere Client, a free client application for ESXi host configuration

and VM management, created and made changes to the VMs used in the research.

Virtualization Flexibility

The flexibility of VMs allows for dynamic reallocation of hardware, a major benefit over

physical machines (Weadock, 2008, para. 2). This dynamic reallocation of hardware makes it

quick and easy to shift hardware resources from one VM to another and to quickly create or

delete VMs. The virtual isolation of VMs from one another allows each VM to contain its own

operating system, applications, and networking configuration (Barrett & Kipper, 2010, p. 7, para.

3). This isolation is similar to physical machines, except that with virtualization, it can be

accomplished using shared hardware resources, reducing the duration and cost of operations.

This flexibility inherent to virtualization makes deleting VMs, which may contain

forensic artifacts of significance, trivial for a user to perform. ESXi is not different, providing

administrators the ability to delete a VM from disk with a single mouse click. Performing a

forensic analysis of the deleted VM files requires file recovery from the host disk.

Forensic Challenges of ESXi

ESXi is a proprietary system developed by VMware that has experienced widespread

adoption in the virtualization community. Several of the features of ESXi and the proprietary

nature of VMware’s technology create challenges for forensic examiners. As Brett Shavers,

digital forensics consultant and former adjunct instructor at the University of Washington’s

Digital Forensics program, explained (2008), “virtual machines can be a valuable tool in forensic

investigations and can also be used to thwart forensics investigations just as easily” (p. 16, para.

1). Deleting VMs, snapshot rollbacks, and non-persistent changes to disk are examples of

techniques used to thwart forensic investigations.

5

ESXi uses a proprietary file system, called Virtual Machine File System (VMFS), for all

storage on the host system. There are several advantages to VMFS which enable the seamless

operation of VMs in a distributed vSphere environment, such as allowing multiple VMs to read

and write to shared volumes concurrently and direct-to-disk input/output operations, achieving

high performance with low CPU overhead (Lowe et al., 2014, p. 310, para. 4). Despite the

advantages to VMFS, since it is a proprietary file system, the vast majority of regularly accepted

forensic tools are currently not able to interpret the VMFS file system.

At the time of this research, there were two versions of VMFS in regular use, VMFS3

and VMFS5. The most notable difference between VMFS3 and VMFS5 is VMFS5’s support for

disks greater than 2TB in size (VMware Inc., 2014a, p. 134). Similarly, the files that ESXi

creates for suspended state and snapshot operations are VMware proprietary file formats. These

proprietary file formats and the proprietary file system present multiple challenges for the

forensic examiner seeking to carve deleted files from the file system and interpret recovered

files’ contents. While the methodology and techniques discussed in this research are specific to

ESXi, the concepts are adaptable to other type-1 hypervisors and potentially type-2 hypervisor

technologies as well.

6

Literature Review

 Research of forensic analysis on VMs is limited when compared to the volume of

research of forensic analysis on physical machines. The vast majority of research on forensic

analysis of VMs is from the perspective of analyzing the VM itself. Very limited research exists

which focuses on VM analysis from the hypervisor host system. Research into forensic analysis

of ESXi as a host system is sparse, while research into the forensic analysis of the VMFS file

system is nearly non-existent. This literature review presents data in four sections, forensic

analysis of ESXi technology, forensic analysis of other VMware hypervisor technologies, file

system forensic analysis, and VMFS forensic analysis.

Forensic Analysis of ESXi Technology

 Lowe et al. (2014) state that a VM is comprised of several files on a storage device, with

the two most common files being the virtual hard disk file and the configuration file. In the case

of ESXi, the configuration file is a plain-text file referred to as the “VMX” file, and is identified

by its extension, “.vmx.” The type of information available within the VMX file includes, among

many other parameters, the number of processors, the amount of RAM, network adapter

configurations, and virtual hard disk configurations (p. 484, para. 2). Lowe et al. further describe

virtual disk files, or “VMDK” files, which have the extension .vmdk. Each hard drive within a

VM has an associated VMDK file, which holds the VM’s stored data. The VMDK file is

comprised of two files with the .vmdk extension. The VMDK header file contains a plain-text

configuration and pointers to the VMDK flat file. The VMDK flat file is identified by the suffix

“-flat.vmdk” and contains the actual virtual hard disk data (p. 487).

 VMware, Inc. (2014) documented the complete set of files that comprise ESXi VMs

within the “Introduction to vSphere Virtual Machines” section of the vSphere 5.5 Documentation

7

Center. (See Table 10 in Appendix B for a list of files that make up an ESXi VM). Not all of the

files are present for every VM.

 ESXi supports several provisioning modes for virtual disks. The provisioning mode of

the virtual disk is significant to the chances of forensic recovery. The three provisioning modes

are thin-provisioned disks, thick-provisioned lazy zeroed, and thick-provisioned eager zeroed.

Lowe et al. (2014) described a thin-provisioned disk as using only as much space on the

datastore as the VM itself used. A thick-provisioned lazy zeroed disk uses as much space on the

datastore as the configured size of the virtual disk. Unallocated space on the virtual disk remains

untouched on the datastore file system until I/O occurs on the VM, at which time the VMkernel

zeroes out the space needed for the I/O operation. A thick-provisioned eager zeroed disk uses as

much space on the datastore as the configured size of the virtual disk. The VMkernel pre-zeroes

unallocated space from the guest VM on the datastore file system (pp. 360-361).

Forensic Analysis of Other VMware Hypervisor Technologies

Brett Shavers’ (2008) paper, “Virtual Forensics: A Discussion of Virtual Machines

Related to Forensic Analysis,” provides some detailed information on forensic analysis of

VMware’s type-2 hypervisor products, “in the context of VMware, unless otherwise noted, it is

intended that VMware refers to the applications related to this paper to include VMware

Workstation, VMware Player, and VMware Server” (pp. 9, para. 4). While Shavers’ paper did

not focus on ESXi, it did provide some insight into performing forensic analysis in virtualized

systems. Shavers (2008) described the challenges of recovering a VM in full due to

fragmentation of the files . Shavers stated that because of the large size of virtual disk files and a

certain amount of fragmentation, fully recovering the contents of a deleted VM may not be

possible (p. 8, para. 2).

8

Shavers’ example assumed the use of Microsoft Windows as the host’s operating system,

which is not applicable to this research, but the potential for file fragmentation is a consideration

for attempting to recover large deleted files. Brian Carrier is the author of some of the most

widely used forensic tools, including The Sleuth Kit and the Autopsy Forensic Browser and

holds a Ph.D. in Computer Science from Purdue University. Carrier has taught at SANS, FIRST,

the @stake Academy, and SEARCH in the areas of computer forensics, file systems, and

incident response. Carrier (2005) explained that an OS typically allocates consecutive data units,

but when that is not possible, fragmentation, a condition when the data units that make up a file

are not consecutive, can occur (p. 179, para. 4).

 Scott Lowe is a technical architect with VMware’s virtual networking business unit and

author of six books on VMware vSphere technology. Lowe (2009) recognized the potential for

fragmentation within the VMFS3 file system, but addressed the issue through the need for

defragmentation, stating that VMFS generally does not need defragmentation to the degree that

most other file systems do. Lowe attributed this to the type of files VMFS datastores typically

store: typically a low number of very large files (p. 255, para. 2). While Lowe’s explanation

regarded the performance impact of fragmentation, from a forensic standpoint, the 1MB block

size of VMFS5 volumes is significant because it reduces the number of blocks, or clusters, that a

disk can contain when compared with other common file systems. Shavers’ warning about the

likelihood of fragmentation pertained to VMware’s Windows based hypervisor products. As

Microsoft (2002) documented, the default cluster size on the NTFS file system for disks over

2049MB in size is 4,096 bytes (More Information, para. 4).

 The other concept referred to in VMware, Inc.’s performance study was that of thick-

provisioned and thin-provisioned disks. VMware, Inc. (2009) explained the difference in disk

9

provisioning methods as a thick-provisioned disk has its entire capacity pre-allocated on the

datastore. Meanwhile, a thin-provisioned disk only uses the amount of disk on the datastore

equal to the amount of data allocated within the virtual disk (p.1, para. 5). Given this

information, the research analyzed the likelihood of recovery of thick-provisioned disks against

that of thin-provisioned disks.

File System Forensic Analysis

In his book File System Forensics, Carrier (2005) explained the challenges of performing

file system analysis without documentation or source code:

One of the biggest challenges that I have faced over the years while developing The

Sleuth Kit (TSK) has been finding good file and volume system documentation [….] It is

easy to find resources that describe file systems at a high level, but source code is

typically needed to learn the details. (Preface, p. xv, para. 1)

Carrier (2005) explained the data necessary for a file system to function and referred to it

as “essential file system data.” In his text, File System Forensic Analysis, Carrier further

described the essential file system data necessary to save and retrieve files. Data must be

available to identify the name of a file, where that file’s content is stored, and a pointer from the

file’s name to the metadata structure (p. 176, para. 1).

 Cory Altheide has performed forensics and incident response work for numerous public

and private sector agencies, including Google, Mandiant, and the National Nuclear Security

Administration’s Information Assurance Response Center. Altheide is also a contributing author

of several books on the topic of digital forensics. Harlan Carvey is an InfoSec Research Senior

Consultant at Dell SecureWorks and formerly Chief Forensics Scientist at Applied Security, Inc.

10

and Vice President of Advanced Security Projects with Terremark Worldwide, Inc. Carvey has

developed several forensics tools, including the widely used RegRipper.

 File carving, or carving, is a means of recovering deleted files that remain within

unallocated space on a file system. Altheide and Carvey describe the practice of carving as

searching through an unstructured stream of data for file headers or file signatures, determining

the file end point, and saving the extracted data to a carved file (2011, p. 58, Carving, para. 1).

Numerous programs exist to help automate the process of carving.

 Scott Mueller is the president of Mueller Technical Research corporate training firm,

teacher of seminars on PC repair, and author of the longest running PC repair book in the world,

Upgrading and Repairing PCs, as well as numerous articles for various computer publications

and newsletters. Mueller (2013), while describing the method of partition alignment on Windows

Vista and later Microsoft operating systems, explained that because of the multiple types of

storage devices with potentially variable block sizes, Windows Vista and later aligns partitions

along 2,048-sector boundaries (p. 475 para. 6).

VMFS Forensic Analysis

The current version of VMFS, version 5, allows for read/write access from ESXi version

5.0 and above, but is not backward compatible with previous versions of ESXi. Table 1 shows

the relationship between VMFS version and ESXi version.

Table 1

VMFS and ESXi Version Comparison

VMFS ESX/ESXi 3.x host ESX/ESXi 4.x host ESXi 5.x host

VMFS2 Read-Only Read-Only Not Supported

VMFS3 Read-Write Read-Write Read-Write

11

VMFS5 Not Supported Not Supported Read-Write

Note. Adapted from “ vSphere Storage,” p. 134, Understanding VMFS datastores, table 16-1, by VMWare Inc., 2014a.

This research used VMFS5 for all scenarios, as ESXi v5.5 update 2 was the host operating

system version used for testing, and VMFS5 was the most current version of VMFS at the time

of the analysis.

Jason Perlow is a Senior Technology Editor at ZDnet, a technology news website, and a

Partner Technology Strategist with Microsoft Corp. In March 2009, Perlow wrote a column

named, “VMware’s filesystem clustering cracked open.” Within this article, Perlow alluded to

the secrecy that VMware maintains with regard to the inner workings of VMFS, announcing that

a company named Fluid Operations published an open-source implementation of VMFS on the

Google Code website (Perlow, 2009, para. 1).

Perlow (2009) questioned whether VMware should open the VMFS specification as it

had previously done with VMDK (para. 6). At the time of this research, VMFS was still a closed

source file system. Fluid Operations’ open source implementation of VMFS which Perlow wrote

about was last updated over five years ago and only supported up to VMFS3 (Fluid Operations,

2010, para. 2). The Fluid Operations’ VMFS driver was not able to read the VMFS5 volumes

used for this research.

Christophe Fillot and Mike Hommey developed another open source VMFS

implementation, based on the VMFS code from Fluid Operations, named vmfs -tools (Fillot &

Hommey, 2012, Introduction, para. 1). Unlike the Fluid Operations VMFS implementation,

vmfs-tools did have limited support for VMFS5 (Hommey, 2011, para. 1). The vmfs-tools source

code showed the file system signature for VMFS volumes appears at offset 0x0100000 and has a

value of, “0xc001d00d.” The volume information structure immediately follows the VMFS

signature and includes metadata about the volume such as the VMFS version number, label, size,

12

universally unique identifier (UUID), creation time, and modification time (Fillot & Hommey,

2012, vmfs_volume.h, lines 24-41).

Diane Barrett holds a Master of Science in IT with an information security specialization.

Barrett has worked in the information technology industry for over 20 years and has been a

primary or coauthor on several works on computer forensics. Gregory Kipper has over ten years

of experience working in the field of digital forensics and has published numerous papers and

spoken at industry events on the topic of digital forensics. In Barrett and Kipper’s book,

Virtualization and Forensics (2010), they provided a high-level overview of how essential file

system data is stored in VMFS through the metadata files. (See Table 11 in Appendix B for the

VMFS metadata files and their purpose). Barrett and Kipper provided useful information for

identifying the role of the metadata files of VMFS but provided no information about

interpreting the metadata file contents.

13

Methodology

 The methodology for the research analysis followed the process model described in the

next section. Drawing information from the literature available on forensic analysis of ESXi,

VMFS, and other VMware hypervisor technologies, the methodology sought to perform three

tasks; recover deleted VM files from a VMFS volume, recover forensic artifacts of user activity

from within those VMs, and reconstruct the deleted VMs within ESXi. The deleted VMs tested

with this methodology differed only in their ESXi virtual disk-provisioning mode, with the same

three recovery goals applied to each VM.

Process Model

This research followed the forensic process model outlined by the U.S. Department of

Commerce, National Institute for Standards in Technology’s (NIST) (2006) special publication

800-86, “Guide to Integrating Forensic Techniques into Incident Response.” NIST (2006)

detailed four phases of their process model: Collection, Examination, Analysis, and Reporting.

This research process implemented all phases of the NIST process model.

Collection phase. Identification of potential data sources and acquisition of data from

those sources occurs during the collection phase. The collection phase follows a plan that takes

into account the likely value of each potential data source, the volatility of each data source, the

amount of effort required to acquire each data source, a process to acquire the data, and

verification of the acquired data’s integrity (NIST, 2006, p. 3-3, Acquiring the Data, para. 1-5).

Examination Phase. Assessing and extracting relevant pieces of data from the collection

phase occur during the examination phase. The examination phase includes steps taken reduce

the amount of data to be analyzed and to mitigate features that obscure data, such as

14

compression, encryption, and access control mechanisms (NIST, 2006, p. 3-6, Examination,

para. 1-2).

 Analysis phase. Analysts study and draw conclusions from the extracted data during the

analysis phase. The analysis phase uses a methodical approach to analyze the data to reach a

conclusion or determine that no conclusion exists with the evidence available (NIST, 2006, p. 3-

6, Analysis, para. 1).

Reporting phase. Preparing and presenting the information resulting from the analysis

phase occurs during the reporting phase. The reporting phase identifies problems and addresses

shortcomings or errors. Careful documentation of the findings and all steps taken is an essential

part of the reporting phase (NIST, 2006, p. 3-6 – 3-7, Reporting, para. 1-5). The “Discussion of

Findings” section represents the reporting phase of this research.

Data Collection and Analysis Tools

 This section describes the tools used to carry out each phase of the NIST Process model.

All tools used to perform the collection, examination, and analysis were freely available open

source tools. “Ubuntu 14 Forensics VM” was the examination system on which each of these

tools ran. The VMware vSphere client ran on the “Windows 8 x64” VM because the vSphere

client software only runs on Microsoft Windows.

dc3dd v7.1.614. Dc3dd is an open source tool used during the analysis for forensic

imaging with on-the-fly hashing and forensic disk wiping. The tool’s authors describe dc3dd as a

patch to the GNU dd program with several additional features, such as on-the-fly hashing

(Medico, Cordovano, Kornblum, Lowe, & Levendoski, 2014, Description, para. 1).

 dcfldd v1.3.4-1. Nicholas Harbour at the Department of Defense Computer Forensics

Lab (DCFL) developed the open source tool dcfldd. Harbour described dcfldd as an

15

enhancement to GNU dd that includes security and forensics features (2006, Introduction, para.

1). The examination phase made use of dcfldd for extracting specific disk sectors from disk

image files.

 Fluid Ops VMFS driver. The open source VMFS driver from Fluid Ops provided a way

to mount a VMFS volume as a read-only file system. The Fluid Ops VMFS driver provided

support for only VMFS version 3 (Fluid Operations, 2010, para. 1-2). The examination phase

made use of the Fluid Ops VMFS driver code to interpret the VMFS file system metadata files.

 foremost v1.5.7. Foremost, as Altheide and Carvey (2011) described it is an open source

file carving tool which uses configurable file headers and footers (p. 59, Foremost, para. 1). The

examination and analysis phases made use of foremost to carve specific file types from the

volume image and virtual disk images.

 GNU dd v8.21. GNU dd is an open source tool present in most Linux distributions as

part of the GNU core utilities. Brian Carrier (2005) described dd as a tool that copies data

regardless of the data type. Dd reads data in chunks from its input source and copies to its output

(p. 60, “A Case Study Using,” para 3-4). During the analysis, dd carved the VMFS file system

image from the physical disk image.

 GPT fdisk (gdisk) v0.8.1. GPT fdisk, or gdisk, is an open source tool used to create,

modify, or list information about GUID Partition Table (GPT) disks (Smith, 2014, Description,

para. 1). During the analysis, gdisk gathered information about the partitions on the GPT (VM

datastore) disk.

 GNU md5sum v8.21. Md5sum is an open source tool, bundled as part of the GNU core

utilities in most Linux distributions. The Free Software Foundation is the main sponsor of the

GNU operating system project and describes the function of md5sum as computing an MD5

16

checksum for each specified file (Free Software Foundation, 2014, “6.4 md5sum: Print or,” para.

1). During the collection, extraction, and analysis phase of each test, md5sum verified file

integrity.

 hexedit v1.2.12. Hexedit is an open source hex editing tool developed by Pascal Rigaux

that displays files in both hexadecimal and ASCII output formats. Hexedit permits file viewing,

editing, and searching within a text user interface (Rigaux, n.d. COMMANDS(full and

detailed)).

 Okular v0.14.3. The open source document viewer application, okular, is part of the

KDE (“Kool Desktop Environment”) project and can present “.pdf,” postscript, “.doc,” and other

file formats (Free Software Foundation Europe, 2015, Okular, para. 1). During the analysis phase

of each test, okular was the “.pdf” viewer used to open the control documents.

 Regripper v2.5. Regripper is an open source tool developed by Harlan Carvey that

extracts keys, values, and data from the Windows registry (Carvey, 2012, Regripper, para. 1).

Regripper extracted the computer name from the system hive on each of the recovered virtual

disks.

 Ssdeep v2.7. Jesse Kornblum developed the open source tool ssdeep to provide Context

Triggered Piecewise Hashing, or “fuzzy hashing”. Fuzzy hashing, as Kornblum (2006)

explained, is a technique for identifying sequences of identical bytes in the same order for the

purpose of finding almost identical files (p. 92, para. 5). In this research, fuzzy hashing with

ssdeep helped to show that all the “.nvram” files carved from the VMFS volume were nearly

identical.

 The Sleuth Kit v4.1.3. The Sleuth Kit is an open source set of command line tools

developed by Brian Carrier that is used for analyzing disk images (Carrier, 2015, The Sleuth Kit,

17

para. 1). The Sleuth Kit tools analyzed the carved virtual disk images to identify partition extents

within the virtual disks.

 mmls. The tool mmls is one of The Sleuth Kit tools, commonly used to list the contents

of the partition table (Carrier, 2010, para. 1). The use of mmls during this research was to

identify partition extents to use with dcfldd for volume carving.

 vmfs-tools. VMFS-tools is an open-source project, based on the Fluid Operations’ VMFS

code, and allows for access to VMFS with Linux virtual file systems through the FUSE (file

system in userspace) framework (Fillot & Hommey, 2012, Introduction, para. 1). Use of the

vmfs-tools suite allowed for mounting of the VMFS volume image and accessing active files on

the VMFS file system for analysis.

 VMware ESXi (vSphere Hypervisor) v5.5 update 2. ESXi is the common name for the

VMware’s vSphere Hypervisor. Mike DiPetrillo, Global Cloud Services Architect & Principal

Software Engineer for VMware explained that the acronym ESX stood for, “Elastic Sky ,” and

the X was added to, “make it sound more technical” (DiPetrillo, 2010). The “i” was added,

according to Mohammed Raffic Kajamoideen, author of VMware ESXi 5.1 Cookbook, to

signify, “integrated” (Kajamoideen, 2013, What is VMware ESXi?, para. 1).

 xxd V1.10. Written by Juergen Weigert, xxd is an open source tool which outputs a hex

dump for a given file or input stream (Moolenaar & Nugent, 1996, Description, para. 1). During

the analysis, xxd provided a means of outputting variable length ASCII text representations of

hexadecimal data streams to standard output or to a plain text files.

Testing Environment

 The testing environment was comprised of two physical machines and six VMs. An ESXi

host system hosted four of the VMs used as test systems for the forensic analysis. The other

18

physical machine was an Apple MacBook Pro, which hosted two VMware Fusion VMs that

performed the forensic analysis of the test VMs and the ESXi host system’s datastore. The

details of each of those systems follow.

ESXi host system. An ESXi host system, named “vmhost21” was the physical machine

that hosted four VMs and was the target of the forensic analysis tests in this research. The ESXi

host system had the following software and main hardware components:

 Operating system: VMware vSphere Hypervisor (ESXi) 5.5 update 2

 CPU: Intel Core i5-3550, BX806237i53550, quad-core, 6MB L3 cache, 3.30GHz

 RAM: Kingston HyperX Blu, 16GB DDR3, 1600MHz

 Motherboard: Gigabyte GA-Z77X-UD3H, ATX

 System hard drive: OCZ Technology Vertex Plus R2 MLC SATA II 2.5” 120GB SSD

 VM datastore drive: Western Digital Caviar WD2000JD-00HBB0 SATA 3.5” 200GB

The VM datastore drive, forensically wiped with zeroes using dc3dd prior to configuring the

datastore, held a single 80GB VMFS5 volume labeled “Boston.” The “Boston” volume had a

formatted capacity of 79.75GB.

Test VMs. Four VMs had their files stored on the “Boston” volume. Three of the VMs

existed for specific tests focusing on recovery of artifacts after deleting the VMs from disk, while

one VM existed to generate disk activity to observe the effects on the three deleted VMs’ files .

Each of the VMs had the same software and virtual hardware configuration with the exception of

the virtual disk allocation method. The “Alpha” VM, used for test #1, had a thick-provisioned,

eager zeroed virtual disk. The “Bravo” VM, used for test #2, had the ESXi default method of

thick-provisioned, lazy zeroed virtual disk. The “Charlie” VM, used for test #3, had a thin-

19

provisioned virtual disk. The “Delta” VM had a thick-provisioned, lazy zeroed virtual disk.

Table 2 lists the configuration of the four test VMs.

Table 2

Test VM Configurations

 VM 1 VM 2 VM 3 VM 4

VM Name Alpha Bravo Charlie Delta

VM working

location

[Boston]/Alpha [Boston]/Bravo [Boston]/Charlie [Boston]/Delta

CPUs 1 1 1 1

RAM 1GB 1GB 1GB 1GB

HDD size 12GB 12GB 12GB 12GB

Virtual disk-

provisioning

method

Thick-provisioned,

eager zeroed

Thick-provisioned,

lazy zeroed

Thin-provisioned Thick-provisioned,

lazy zeroed

Virtual disk f ile [Boston]/Alpha/Alp

ha-flat.vmdk

[Boston]/Bravo/Bra

vo-flat.vmdk

[Boston]/Charlie/C

harlie-flat.vmdk

[Boston]/Delta/Delt

a-flat.vmdk

VM conf iguration

f ile

[Boston]/Alpha/Alp

ha.vmx

[Boston]/Bravo/Bra

vo.vmx

[Boston]/Charlie/C

harlie.vmx

[Boston]/Delta/Delt

a.vmx

Operating system Windows 7

Professional x64

Windows 7

Professional x64

Windows 7

Professional x64

Windows 7

Professional x64

Note. This table lists the virtual hardware, configuration files and operating system of each of the VMs on the “ Boston”
volume of, “ vmhost21.”

Forensic analysis systems. The forensic analysis used two VMware Fusion VMs hosted

on a single physical machine. The physical machine host system had the following

characteristics:

 Manufacturer and Model: Apple MacBook Pro 15-inch, mid-2012 edition

 RAM: 16GB 1333MHz DDR3

 Graphics: NVIDIA GeForce GT 650M 512 MB

20

 Operating system: OS X 10.9.5 (13F34)

 Software: VMware Fusion Professional version 7.1.1 (2498930)

The two analysis systems were VMs in VMware Fusion on the MacBook Pro physical machine.

Table 3 lists the configuration of the two forensic analysis VMs.

Table 3

Forensic Analysis VMs Configuration

 Analysis VM 1 Analysis VM 2

VM Name Ubuntu 14 Forensics VM Windows 8 x64

Operating system Ubuntu 14.04 LTS 64-bit Microsoft Windows 8.1 Pro

CPU cores 4 4

RAM 4 GB 4GB

System hard disk capacity 60GB 60GB

Additional hard disk capacity 60GB 60GB

USB Compatibility 2.0 3.0

Note. This table lists the virtual hardware and operating system for each of the forensic analysis VMs.

Additional hardware. An Etekcity USB2.0/eSata Dual HDD docking station, model

number 08-WS-ST320A-ETEK, served as the means by which the VM datastore hard drive

connected to the forensic workstations and created image backups. Two Western Digital Green

3.0TB 3.5” SATA hard drives, model number WD30EZRX, served as the working-copy image

media and preservation-copy image media.

Test Scenarios

 Three test scenarios sought to identify the feasibility of VM recovery from a VMFS

volume under different configurations. Each of the test scenarios contained identical VMs, with

the exception of the virtual disk-provisioning mode, installed on the same VMFS datastore of the

same ESXi host. The order of VM creation and virtual disk file provisioning was “Alpha,”

21

“Bravo,” “Delta,” “Charlie.” All four VMs completed configuration according to the scenario

preparation section.

Test #1: Thick-provisioned, eager zeroed virtual disk. The goal of test #1 was to

recover the deleted VM, “Alpha,” from the VMFS file system, and analyze to identify forensic

artifacts of user activity. Four “.pdf” control files, part of the scenario preparation, served as the

artifacts of user activity. “Alpha” had a single virtual disk configured in thick-provisioned, eager

zeroed mode. As explained in the “Forensic Analysis of ESXi Technology” section, a thick-

provisioned eager zeroed disk uses as much space on the datastore as the configured size of the

virtual disk. The VMkernel pre-zeroes unallocated space from the guest VM on the datastore file

system (Lowe et al., 2014, pp. 360-361).

Test #2: Thick-provisioned, lazy zeroed virtual disk. The goal of test #2 was to

recover the VM, “Bravo,” from the VMFS file system and analyze it to identify forensic artifacts

of user activity. Four “.pdf” control files, part of the scenario preparation, served as the artifacts

of user activity. “Bravo” had a single virtual disk configured in thick-provisioned, lazy zeroed

mode, which is the default mode for ESXi.

Test #3: Thin-provisioned virtual disk. The goal of test #3 was to recover the VM,

“Charlie,” from the VMFS file system and analyze it to identify forensic artifacts of user activity.

Four “.pdf” control files, part of the scenario preparation, served as the artifacts of user activity.

“Charlie” had a single virtual disk configured in thin-provisioned mode.

Scenario preparation. The testing scenario consisted of the same series of actions for

each VM. Table 4 lists the four “.pdf” control files used in the tests and the MD5 hash value of

each file.

22

Table 4

Control File Names and MD5 Hash Values

File Name MD5 Hash Value

ControlDoc1.pdf 809176d892d68b147bdeb8ad3aba80bd

ControlDoc2.pdf 41e40c445740b974ff428cfc772cea4b

ControlDoc3.pdf cf6121ff90ad66330dc346e2d7455a63

ControlDoc4.pdf 40885cd433950c38ce4af661d1810c33

Note. This table lists the filename and MD5 hash value of each control file used in the testing .

 The MD5 hash value in Table 4 refers to the output of the MD5 one-way cryptographic

hash function. One-way hash functions, which Pfleeger and Pfleeger explain in the fourth edition

of Security in Computing (2007), are functions that are easy to compute, but whose inverse is

more difficult or impossible to compute (p. 79, Cryptographic Hash Functions, para. 4). Hashing,

or applying a one-way hash routing to a data stream, always produces the same result as long as

the data stream and the hash algorithm remain unchanged. During the testing, hashing the image

files before and after analysis ensured that, if the hash values matched, then no changes occurred

to the image files.

 The following sequence of events prepared the test VMs:

1. Executed Internet Explorer from the Windows desktop;

2. Microsoft Bing search for, “Google Chrome”;

3. Downloaded and installed Google Chrome;

4. Google search for, “PDF reader,” using Google Chrome;

5. Downloaded and installed Foxit Reader 7.0.6.2216.

6. Using Google Chrome, saved “ControlDoc1.pdf” from http://10.32.128.142/control to

C:\Users\User\Desktop;

23

7. Using Google Chrome, saved “ControlDoc3.pdf” and “ControlDoc4.pdf” from

http://10.32.128.142/control to C:\Users\User\Downloads;

8. Using Google Chrome, accessed “ControlDoc2.pdf” from http://10.32.128.142/control

and opened with the Foxit Reader extension for Google Chrome;

9. “ControlDoc1.pdf” sent to the Recycle Bin;

10. Deleted “ControlDoc3.pdf” and “ControlDoc4.pdf.”

 Following the completion of the VM configuration, the VMware vSphere Client

gracefully shutdown the ESXi host. Dc3dd created working-copy and preservation-copy raw

images, calculated the MD5 hash value of the original source media, and both images, verified

the MD5 hash values after image creation, and saved the log output to the file,

“/media/hdd/capstone/preserve/VMD_physical_20150305_restore.log. The restoration images,

named “VMD_physical_20150305_restore.raw” for the working-copy and

“VMD_physical_restore.preserve” for the preservation-copy, served as a comparison and restore

point in the event further testing needed to occur which compared the disk image prior to the

VMs’ deletion to data recovered after the VMs’ deletion. The ESXi host booted up following the

restore image creation and the VMware vSphere Client deleted the VMs, “Alpha,” “Bravo,” and

“Charlie,” from the VM datastore.

24

Analysis

 Three phases comprised the research analysis: the collection phase, examination phase,

and analysis phase. This section presents the execution of the methodology throughout these

three phases and the findings observed. Based on the findings, testing of additional hypotheses

offered an opportunity to identify alternate methods of accomplishing the goals of the analysis

where shortcomings were noted.

Collection Phase

The steps to collect the disk image of the VM datastore physical disk included: shutting

down “vmhost21,” removing the VM datastore physical disk and connecting the disk to the

Etekcity USB2.0/eSata Dual HDD docking station. The Etekcity docking station connected to

the forensic workstation VM, “Ubuntu 14 Forensics VM,” via USB2.0. The mount point

/media/hdd on the “Ubuntu 14 Forensics VM” mounted the target disk, WD Green, 3.0TB.

Under the “/media/hdd/capstone” parent directory, the “preserve” path stored all preservation -

copies of evidence, while the “working” path stored all the working-copies of evidence.

The collection phase for the three tests included the collection of a single data source, a

bit-level image of the VM datastore physical disk from, “vmhost21.” Dc3dd created working-

copy and preservation-copy raw images, calculated the MD5 hash value of the original source

media, and both images, verified the MD5 hash values after image creation, and saved the log

output to the file, “/media/hdd/capstone/preserve/VMD_physical_20150305.log”. (See Figure 16

in Appendix A for the contents of “VMD_physical_20150305.log”).

25

Examination Phase

 Reducing the amount of data for analysis is one of the main purposes of the examination

phase. Extracting a VMFS volume image from the physical image,

“VMD_physical_20150305.raw,” reduced the amount of data needed to examine for file carving.

 Gdisk identified the partition boundaries of the partitions within the VMFS datastore

physical disk image. Gdisk identified the sector size as 512 bytes and the only partition on the

disk with a starting sector of 2,048 and ending sector of 167,774,207 as shown in Figure 1.

Figure 1. VMFS volume geometry. This figure shows the output of the command, “ gdisk –l

/media/hdd/capstone/working/VMD_physical_20150305.raw”, with 512 -byte logical sectors, a volume start sector of 2048 and

volume end sector of 167774207.

 A review of the contents of sector 2,048 in the “VMD_physical_20150305.raw” disk

image with xxd showed that it was blank, as was every sector from 2048 until 4096. Next, xxd

allowed for a manual review of the VMFS starting sector. As discussed in the literature review

section, “Forensic Analysis of VMFS,” the signature, “0xc001d00d,” for the VMFS volume

appeared at sector 2048 of the volume. Using a system with little-endian architecture, such as the

test ESXi host, “vmhost21,” the signature used the little-endian convention, meaning that the

least significant byte was in the left-most, or largest, address location. The little-endian

representation of 0xc001d00d was, “0d d0 01 c0,” so the signature value to identify the VMFS

volume within the “VMD_physical_20150305.raw” image was, “0x0dd001c0.” Note that the

26

hexadecimal characters used to create the signature in big-endian notation resemble the phrase,

“cool dood,” which can make it easier for examiners to remember the signature value of a VMFS

volume.

 According to the gdisk output from the “VMD_physical_20150305.raw” image, the

VMFS volume started at sector 2048, or offset 0x100000. Offset 0x200000 of the

“VMD_physical_20150305.raw” physical disk image represented offset 0x100000 of the VMFS

volume. The VMFS signature appeared at offset 0x100000 of the volume image, or 0x200000 of

the physical image. The remainder of the VMFS volume info header followed the signature

string immediately. Xxd retrieved volume information from “VMD_physical_20150305.raw” by

referencing the VMFS volume info structure from the vmfs-tools source code, as explained in

the Methodology section under Data Collection and Analysis Tools, vmfs -tools. (See Table 9 in

Appendix B for the volume info retrieved from “VMD_physical_20150305.raw”).

 The partition’s starting sector of 2048 was the starting point for the volume image

extract. To determine the partition length in sectors, the calculation of subtracting the starting -

sector value from the ending sector value, resulted in a partition length of 167,772,159 sectors.

The tool dcfldd carved the VMFS volume from “VMD_physical_20150305.raw” and saved

preservation-copy image, “Boston_volume_20150305.raw.preserve,” and working-copy volume

image files, “Boston_volume_20150305.raw.” Dcfldd calculated the MD5 hash value of the bit

stream synchronously with the image file creation (See Figure 17 in Appendix A for the dcfldd

command syntax and output). MD5sum calculated the md5 hash values of the working-copy and

preservation-copy volume images and confirmed to match the dcfldd output MD5 hash value.

The output of the md5sum calculations confirmed the volume image’s MD5 hash value matched

the original source MD5 hash value, as calculated by dcfldd, confirming that the image files

27

matched the bit stream of 167,772,159 sectors starting at sector 2,048 within the physical disk

image, “VMD_physical_20150305.raw.”

Several files of importance were necessary to extract from the volume image in order to

recreate or analyze a VM. The files, listed by order of importance, with number one being most

important, were:

1. “-flat.vmdk” virtual disk file;

2. “.vmdk” virtual disk configuration file;

3. “.vmx” configuration file;

4. VM supporting files (if present): “.vmsd,” “.vmsn,” “.vswp,” “.vmss,” “.nvram,”

and “.log;”

 An analysis of the remaining active VM files gave clues to help extract the deleted VM

files. The volume image file was mounted on “Ubuntu 14 Forensics VM” using a tool from the

vmfs-tools suite, vmfs-fuse. The command, “vmfs-fuse

/media/hdd/capstone/working/Boston_volume_20150305.raw /media/vmfs ,” mounted the

“Boston_volume_20150305.raw” image as a read-only volume to /media/vmfs.

 Each VM file type contained specific characteristics that helped identify the deleted files

from the deleted VMs. The “.log,” “.vmx,” “.vmxf,” “.vmdk,” and “.vmsd” files were text based

and did not contain any file type signature. Log files usually hold the most information about the

VM, so the “.log” format was the first file type analyzed.

 When reviewing the log files from the Delta VM, the first line of each log file contained

similar text, not repeated anywhere else in the file. The first line of each log file contained the

phrase, “: Log for VMware ESX pid=”, which was sufficiently unique to use as a log file

signature. Similarly, each log file ended with a string believed to be unique enough to use as an

28

end-of-file identifier. Each log file ended with the text “VMX has left the building: 0”. Assuming

the zero at the end of the phrase was an error code that could contain values other than zero, the

end-of-file phrase used for carving allowed for other values as the last digit by specifying a

wildcard, “?” in place of the last digit in the foremost configuration.

Using a similar method to define the start and end of each log file, and a custom foremost

configuration file that contained configurations for VMware “.log,” “.vmx,” “.vmxf,” “.nvram,”

and “.vmdk” files. Some trial-and-error carving led to the foremost configuration used to run

foremost. (See Figure 18 in Appendix B for a screenshot of the foremost_vmware.conf

configuration). Using foremost and the custom configuration file, the command “foremost –c

foremost_vmware.conf Boston_volume_20150305.raw” carved VMware “.log,” “.vmx,”

“.vmxf,” “.nvram,” and “.vmdk” files, from the “Boston_volume_20150305.raw” image.

Foremost carved 104 files from the “Boston_volume_20150305.raw” image. MD5sum

calculated the MD5 hash value of each carved file. Files with matching MD5 hash values had all

extra copies moved to a “duplicates” folder so only one version of each file remained in the

working directory. Each of the carved files contained, somewhere in the text, the name of the

VM that the file belonged to with the exception of some “.nvram” files. A search for each VM’s

name in each of the carved files enabled quick sorting of the files by VM. During the analysis

phase for each VM, these files helped to reconstruct the VM within ESXi.

 In each “.vmdk” file was a section named, “Extent description,” which showed the size,

in sectors, and file name, of each virtual disk file associated with the VM. Knowing the size of

the virtual disk is useful when carving “-flat.vmdk” from the VMFS volume. In the “Extent

description” section of “00490890.vmdk” the size of “Alpha-flat.vmdk” was shown as

25,165,824 logical sectors, which equaled exactly 12GB with 512-byte sectors.

29

 Analyzing the “Delta-flat.vmdk” file showed that the “-flat.vmdk” file was a complete

virtual hard drive image, starting with the master boot record and containing the partition table

and all partitions within the virtual disk. Indications of master boot record (MBR) sectors helped

to identify the beginning sector of “–flat.vmdk” files. Carrier (2005) detailed the data structure of

the MBR as a 512-byte structure with the first 446 bytes reserved for the boot code and the final

66 bytes containing the partition table entries and the MBR signature value “0x55AA” (p. 88,

para. 3). The MBR signature value identified sectors on the “Boston” volume that contained

MBRs, as indicators of the presence of a virtual disk.

 In order to eliminate as many matches to the “55AA” pattern as possible that were not

associated with the MBR, the signature search only examined bytes 256 and 512 in each sector.

The tool xxd produces an ASCII representation of a hex dump output for a data stream. The xxd

output is configurable in the number of bytes to display in the hex dump. The last byte in the xxd

output, followed by two spaces, is the only column in the xxd output with two spaces following

it. This unique characteristic of the last byte in the xxd output allowed for easy identification of

the last byte by searching for the trailing double-space.

 Setting the number of displayed bytes to 256 and filtering the results through a grep basic

expression searching for “\s55aa\s\s” ensured that only matches in bytes 255-256 and 511-512 in

each sector could match the search criteria. The 256-byte search boundary aligned with the 512-

byte sector boundary at every second occurrence, which greatly minimized the number of false

matches, but still produced many false matches to the MBR signature. Filtering for likely

matches within the partition table, the results narrowed to four MBR signatures on the “Boston”

volume.

30

Focusing on expected values within the partition table prior to the MBR footer, the LBA

start sector of the first partition provided an opportunity to filter, given the limited possibilities of

values within that LBS start sector field. As Mueller (2013) explained, Windows Vista and later

aligns partitions along 2,048-sector boundaries (p. 475, para. 6). An additional Perl-compatible

regular expression pattern match “00(([0-9A-F]8)|([1-9A-F]0))\s0000\s([0-9A-

F]{4}\s){26}55aa\s\s” applied to the previous command’s output. The added regular expression

searched for matching word values between “0x0008” and “0x00F0” in multiples of 2048,

beginning 56 bytes prior to the “55aa” MBR signature, which aligned with the LBA start sector

of the first partition within the partition table. Figure 2 shows the command used to identify the

byte locations of the MBR signatures within the “Boston” volume and the first result, matching a

partition table entry and MBR footer.

Figure 2. MBR sector identification. This figure shows the xxd command filtered through grep to produce output showing the
last 256 bytes of an MBR sector. The red characters show the portion of the output that matched the last grep expression. The

formatting of the xxd output made it appear that the starting byte (in the green box) was, “ 0x4982001000066,” but the starting

byte was actually “ 0x498200100” and the last four digits, “0066,” were the displayed contents of bytes 0x498200100-

0x498200101.

 Analyzing the partition table within each MBR enabled the determination of disk extents

within the VMFS volume. Each MBR match within the xxd output started at 256-bytes past the

31

sector start. Subtracting 256 bytes, or 0x100, from the starting position of the xxd output resulted

in the MBR’s starting byte. With 512-byte sectors on the “Boston” volume, dividing the starting

byte by 512 produced the starting sector for the virtual disk. Figure 3 shows the locations of the

partition-starting sector and partition length for the second partition within the partition table.

Figure 3. Partition table entries. This figure shows the partition-starting sector and partition length values for the second partition

in the partition table, which identified the ending sector of the virtual disk file.

 Adding the partition-starting sector to the partition length, then adding the MBR sector on

the “Boston” volume produced the virtual disk-ending sector on the “Boston” volume.

Subtracting the MBR sector from the virtual disk-ending sector produced the virtual disk length

in sectors. The sector values displayed in each virtual disk file’s partition table are relative to the

virtual disk file, not the volume on which they reside. Dcfldd carved each of the four virtual disk

files using the calculations described above and synchronously calculated the MD5 hash value of

each virtual disk file with the carving process. Table 5 shows the extents of each virtual disk file

within the “Boston” volume.

Table 5

Virtual disk file extents, carved file names

Volume starting

sector

Volume ending

sector

Number of

sectors

File carved as Md5 Hash value

38,539,264 63,703,040 25,163,776 38539264-flat.vmdk 9f37811117150dab01c178d0b5829894

32

63,705,088 88,868,864 25,163,776 63705088-flat.vmdk f505f1086280e6cfbd293502e8ef024f

97,521,664 122,685,440 25,163,776 97521664-flat.vmdk 70f3b4801e19123c4e525e6dfccaf5de

131,338,240 156,502,016 25,163,776 131338240-flat.vmdk 651b2f876ae3e3782642cec8bf72ffb4

Note. This table shows the extents of each “ –flat.vmdk” file on the “ Boston” volume, the MD5 hash value of each vi rtual disk

file, and the carved virtual disk file name.

 Comparing the sector length of the virtual disks derived from the partition tables to the

sector length shown in each “.vmdk” file showed that each “.vmdk” file was one VMFS5 block

longer than the end of the last partition. Analyzing the active virtual disk file, “Delta-flat.vmdk,”

confirmed that there was an additional 2048 sectors, or one VMFS5 block, between the end of

the last partition within the virtual disk file and the end of the virtual disk file.

 At this point in the examination, it was unknown which virtual disk file belonged to

which VM. It would have been possible to compare the number of sectors of the carved files

from Table 5 to the values in the extent description section of the “.vmdk” files, but in the test

scenarios, each VM had the same size virtual disk so the number of sectors could not distinguish

the virtual disks used in this research.

 Many of the files that foremost carved from disk overlapped disk locations where the

VMFS metadata files “.fdc.sf” and “.sbc.sf” resided. Each of the carved “.vmdk” files resided

within the metadata file “.fdc.sf,” and each of the carved “.vmx” files resided within the “.sbc.sf”

metadata file. With the “Boston_volume_20150305.raw” image mounted to “/media/vmfs/”

using vmfs-fuse on “Ubuntu 14 Forensics VM,” “.fdc.sf” and “.sbc.sf” files, xxd reviewed the

contents of each system, or metadata, file and confirmed the presence of each carved “.vmdk”

and “.vmx” resident within the metadata files . After deleting the VMs, the “.vmdk” and “.vmx”

files remained resident within the “.fdc.sf” and “.sdc.sf” on the VMFS file system.

33

 Figure 4 shows a disk view chart with the locations of the carved files on the “Boston”

volume. The figure shows that the virtual disk files “Alpha-flat.vmdk,” “Bravo-flat.vmdk,” and

“Delta-flat.vmdk” had uninterrupted contiguous blocks allocated to the files, which enabled

successful recovery of the files. Using dcfldd to carve consecutive sectors from each file’s

starting point resulted in complete recovery of the virtual disk files. “Charlie-flat.vmdk,” on the

other hand, had fragmentation throughout the virtual disk file. As a result, the “Charlie-

flat.vmdk” file failed to recover successfully when carving consecutive sectors from the

“Boston” volume.

Figure 4. Disk view of “ Boston” volume. This figure shows a visual representation of the file allocation across the “Boston”

VMFS volume. The figure shows the contiguous sectors that comprised the “Alpha-flat.vmdk,” “ Bravo-flat.vmdk,” and “ Delta-
flat.vmdk” virtual disk files and the fragmentation of “ Charlie-flat.vmdk.” Each cell within the figure represents 10 VMFS

blocks.

34

 Xxd retrieved the file descriptor details and sub-block metadata for “Charlie-flat.vmdk.”

The metadata files contained block usage information about the blocks used by each file within

the volume. The vmfs-tools source code, provided the information necessary to identify the

blocks used by the “Charlie-flat.vmdk” file from within the restoration image, prior to deleting

the “Charlie” VM from the VMFS volume. (See Table 12 in Appendix E for the file descriptor

and sub-block metadata associated with “Charlie-flat.vmdk”).

 Figure 5 shows the values within the file descriptor, “.fdc.sf,” system file and sub-block

system file, “.sbc.sf,” from the restoration image of the “Boston” volume. The values represent

the file descriptor and sub-block system entries for “Charlie-flat.vmfs” before deletion of the

“Charlie” VM. The file named “Charlie-flat.vmdk within “.sbc.sf,” had an inode ID of “44 8A 80

04.” The inode ID “44 8A 80 04” within “.fdc.sf” provided the file size and number of VMFS

blocks allocated to “Charlie-flat.vmdk.”

Figure 5. Metadata of active file. This figure shows the metadata retrieved for “ Charlie-flat.vmdk” from the “ .fdc.sf” and “ sbc.sf”

system files. This data showed the values prior to deleting the “Charlie” VM from the VMFS volume.

 The “.fdc.sf” and “.sbc.sf” system files from the restoration image compared to the

“.fdc.sf” and “sbc.sf” system files from the “Boston_volume_20150305.raw” image showed that

deleting a file purges the entry for the file within “.sbc.sf.” Further, deleting the “Charlie -

flat.vmdk,” file kept the inode ID entry in the “fdc.sf” file, but zeroed out the values for the file

size and number of blocks allocated to the file, among other fields. Figure 6 shows the “.fdc.sf”

contents for inode ID “44 8A 80 04” following the deletion of “Charlie-flat.vmdk.”

35

Figure 6. Metadata of deleted file. This figure shows that the file size and number of VMFS blocks fields, among other fields,

zeroed out following the deletion of “ Charlie-flat.vmdk.”

 The changes made to the VMFS system files following a file’s deletion from the file

system make it highly unlikely to recover a file comprised on a non-contiguous data stream.

Once the file system deletes the file and updates the supporting system files, VMFS clears many

of the fields necessary to recover non-contiguous files. During the examination phase, the

“Charlie-flat.vmdk” file was unrecoverable using consecutive sector file carving techniques and

could not be recovered based on information obtained through the VMFS system files. For this

research, the “Charlie-flat.vmdk” file was unrecoverable.

Analysis Phase

 Test #1: Thick-provisioned, eager zeroed virtual disk. The goal of test #1 was to

recover the VM, “Alpha,” from the VMFS file system and analyze it to recover the four control

files from the test scenario. “Alpha” had a single virtual disk configured in thick-provisioned,

eager zeroed mode, which is the default mode for ESXi.

 Virtual disk identification. A tool from The Sleuth Kit, mmls, inspected each “–

flat.vmdk” carved file and determined that each had the same partition layout, with a 24,956,928-

sector, or 11.9 GB NTFS volume starting at sector 206,848. Each “-flat.vmdk” file, mounted one

36

at a time to “/media/test” as a read-only volume at offset 105,906,176, provided file system

browsing of the active files in the 11.9 GB NTFS volume in each virtual disk file. Regripper

analyzed the system registry hive contained within the NTFS volume of each “–flat.vmdk” file to

determine the computer name associated with each file. Each “-flat.vmdk” file was unmounted

from “/media/test” following the identification of the computer name from the system registry

hive. The computer name found in the “Windows\System32\config\SYSTEM” registry hive of

“38539264-flat.vmdk” was, “Alpha,” as shown in Figure 7. The “Alpha” VM was the subject of

test #1.

Figure 7. Regripper identified “Alpha” VM. This figure shows the Regripper output of the compname plugin run on the

“ Windows\System32\config\SYSTEM” file in the “ 38539264-flat.vmdk” virtual disk. The computer name configured

within the registry was, “ALPHA.”

 Control file recovery. The second partition from the “38539264-flat.vmdk” virtual disk

file, mounted as a read-only volume at “/media/alpha” on “Ubuntu 14 Forensics VM,” enabled

file system browsing of the “Alpha” VMs’ system drive. The command “mount –o

ro,offset=$((206848*512)) /media/hdd/capstone/working/38539264-flat.vmdk /media/alpha”

mounted the volume to “/media/alpha”. The partition start sector returned by mmls, multiplied

by the sector size in bytes, produced the offset value.

 Browsing to the relative path of “/$Recycle.Bin/ S-1-5-21-1394914191-3772142883-

1012848598-1000/” showed a “.pdf” file, “$RMWUZ26.pdf.” MD5sum calculated the MD5

hash value of “$RMWUZ26.pdf” as “809176d892d68b147bdeb8ad3aba80bd,” the same hash

value as ControlDoc1.pdf. The file, opened in okular using the command “okular

37

$RMWUZ26.pdf” displayed the contents of “ControlDoc1.pdf.” The contents simply read,

“Control Document #1”.

 Having the known MD5 hash value for “ControlDoc2.pdf” allowed for the use of

MD5sum to search for a matching MD5 hash value within Alpha’s Google Chrome cache

directory. From within the “/media/alpha/Users/User/AppData/Local/Google/Chrome/User

Data/Default/Cache” folder, the command “md5sum * | grep –i

“41e40c445740b974ff428cfc772cea4b” returned a single file name, “f_00004a”. The file,

opened in okular using the command “okular f_00004a” displayed the contents of

“ControlDoc2.pdf.” The contents simply read, “Control Document #2”.

 With a single file definition, for “pdf” files, enabled in the foremost configuration,

foremost attempted to recover the deleted files, “ControlDoc3.pdf,” and “ControlDoc4.pdf,”

from unallocated space on the Alpha virtual disk. Foremost completed with 94 “.pdf” files

recovered, but none of the recovered “.pdf” files matched the MD5 hash values of

“ControlDoc3.pdf” or “ControlDoc4.pdf.”

 Using hexedit to search for the control file’s identifiable hexadecimal string,

“2F417574686F7228422E204B696E63686C6129”, which is the hexadecimal representation of

the ASCII string, “/Author(B. Kinchla)”, a fragment of “ControlFile3.pdf” was located at sector

offset 24,346,352 within the “Alpha-flat.vmdk” virtual disk file. Using dcfldd to extract each

sector and hash the results with md5sum determined that “ControlFile3.pdf” contained 8,192

bytes, or two contiguous sectors, before the file fragmented to other blocks within the virtual file

system. Figure 8 shows the commands used to determine the offset where fragmentation

occurred.

38

Figure 8. Determining fragmentation offset with dcfldd and md5sum. This figure shows md5sum calculating the MD5

hash value of dcfldd output. The commands on the left calculated the MD5 hash value of “ ControlDoc3.pdf” for sectors

0-8191 and 0-8192. The commands on the left calculated the MD5 hash value of 8192 bytes beginning at byte offset
12,465,332,224 and of 8193 bytes beginning at byte offset 12,465,332,224. The results show matching MD5 hash

values at 8192 bytes, but differing MD5 hash values at 8193 bytes.

 Continuing to search with hexedit for the string

“2F417574686F7228422E204B696E63686C6129” returned only three results for

“ControlDoc1.pdf,” “ControlDoc2.pdf,” and the first fragment of “ControlDoc3.pdf.” Manually

searching within hexedit returned no matches for “ControlDoc4.pdf.” The research did not

continue further searching for fragments of “ControlDoc4.pdf.”

 VM reconstruction. Identification of the most current copies of each “.vmx,” “.vmxf,”

“.vmdk,” and “-flat.vmdk,” was the next challenge to reconstructing the VM in its most recent

state (See Table 14 in Appendix C for an inventory of recovered files belonging to the Alpha

VM). Because the “.log” files contained timestamps, they provided the best clue to finding the

latest configuration of the VM prior to deletion. Using the command, “head –n 1 *.log”, the

output was the first line of each “.log” file. The log file 156733440.log had the latest timestamp,

at “2015-03-05T09:44:16.321Z.”

 Of the files that foremost carved during the examination phase, there were nine “.vmx”

files belonging to the “Alpha” VM. The contents of “15633440.log” identified the “.vmx” file

that associated with the “15633440.log” file. Using a series of “diff -a” commands to find

differences between the various “.vmx” files and comparing those differences to the contents of

“156733440.log,” identified the “.vmx” file that matched the log file. “01559408.vmx” matched

39

the contents of “156733440.log” and, therefore was the “.vmx” file last in use by the “Alpha”

VM.

 With the recovery of the latest “.vmx” file from the “Alpha” VM, combined with the

“.vmxf,” “.vmdk,” and “-flat.vmdk” files, there existed the necessary files to reconstruct the VM

on an ESXi system. To find the original filenames of the Alpha VM files, the “.log” file, “.vmx”

file, and “.vmdk” file contained the names and file system paths for each of the deleted files.

“156733440.log” provided the name of the VM directory and the “.vmx” file as

“Alpha\Alpha.vmx.” The “.vmx” file, “01559408.vmx” renamed to “Alpha.vmx,” had its

contents displayed in its entirety, within “156733440.log”. “Alpha.vmx” provided filenames for

the “.vmxf,” file within the “extendedConfigFile” configuration parameter and “.vmdk,” files,

“Alpha.vmdk” and “Alpha.vmxf”. “Alpha.vmdk” provided the filename for the “-flat.vmdk” file,

“Alpha-flat.vmdk,” within the “Extent description” section. The files “01559088.vmxf” and

“38539264-flat.vmdk,” renamed to “Alpha.vmxf” and “Alpha-flat.vmdk,” were copied along

with “Alpha.vmdk” and “Alpha.vmx” to a new folder named “Alpha” on the datastore volume,

“Chicago,” on the ESXi host, “vmhost21.” After using scp to copy the VM files to “vmhost21,”

md5sum calculated the MD5 hash values for the copied files on “vmhost21.” (See Table 14 in

Appendix C to reference the MD5 hash values of the Alpha VM recovered files).

 Within the vSphere Client, using the Datastore Browser, right-clicking on the

“Alpha.vmx” file name and selecting “Add to Inventory,” invoked the “Add to Inventory”

wizard. The Alpha VM was added to the ESXi server’s inventory as an available VM after

completing the “Add to Inventory” wizard. The “Alpha” VM failed to start, returning the error

shown in Figure 9, indicating a problem with “Alpha.vmdk.”

40

Figure 9. ESXi error - .vmdk is not a virtual disk. This figure shows the error encountered when first attempting to boot
the “ Alpha” VM from the reconstructed files.

 Seeing no obvious problem with “Alpha.vmdk,” an analysis of “Alpha-flat.vmdk,”

comparing “Alpha-flat.vmdk” to the active file, “Delta-flat.vmdk,” from the

“Boston_volume_20150305.raw” image ensued. The comparison revealed that “Delta-

flat.vmdk” contained one VMFS5 block, or 2048 sectors, beyond the end of the last partition in

the virtual disk image. The “Alpha-flat.vmdk” virtual disk file ended immediately following the

last partition in the virtual disk and did not contain the extra block.

 Comparing the sector length of the virtual disks derived from the partition tables to the

sector length shown in the “extent description” section of each “.vmdk” file showed that each “-

flat.vmdk” file was one VMFS5 block longer than the end of the last partition. Using dcfldd to

re-carve the virtual disk file “Alpha-flat.vmdk” from “Boston_volume_20150305.raw,” the

command, “dcfldd bs=512 skip=38539264 count=$((25163776+2048)) hash=md5

if=Boston_volume_20150305.raw of=38539264+2048-flat.vmdk,” produced a virtual disk with

an additional 2048 sectors at the end of the file named, “38539264+2048-flat.vmdk.” Dcfldd

calculated the MD5 hash value of the extracted bit stream simultaneously with the image

creation process.

41

 The new “-flat.vmdk” file for the “Alpha” VM, “38539264+2048-flat.vmdk,” was copied

to the Alpha directory on the datastore volume, “Chicago,” on the ESXi host, “vmhost21.”

Renaming the existing “Alpha-flat.vmdk” to “Alpha-flat.vmdk.old” and renaming

“38539264+2048-flat.vmdk” to “Alpha-flat.vmdk,” allowed the VM to boot up properly. Figure

10 shows the fully booted VM within the vSphere Client console.

Figure 10. Successful reconstruction of “ Alpha” VM. This figure shows the fully booted “Alpha” VM to illustrate the
successful recovery of the VM from the VMFS volume.

 Following the same process used to carve “38539264+2048-flat.vmdk,” the “-flat.vmdk”

files from sectors 63705088, 97521664, and 131338240, on the

“Boston_volume_20150305.raw” image were re-carved with the additional 2048 sectors

appended to the end of each virtual disk file. Dcfldd calculated the MD5 hash value of each

42

carved file simultaneously with the image file creation (See Table 13 in Appendix B for a revised

table of the MD5 hash values for the “-flat.vmdk” files with the appended 2048 sectors).

 Test #2: Thick-provisioned, lazy zeroed virtual disk. The goal of test #2 was to

recover the VM, “Bravo,” from the VMFS file system and analyze to recover the four control

files from the test scenario. “Bravo” had a single virtual disk configured in thick-provisioned,

lazy zeroed mode, which is the default mode for ESXi.

 Virtual disk identification. During the analysis phase of test #1, Regripper analyzed the

system registry hive contained within each NTFS volume from the carved virtual disk images to

determine the computer name associated with each file “-flat.vmdk” file. The computer name

found in the “Windows\System32\config\SYSTEM” registry hive of “63705088+2048-

flat.vmdk” was, “Bravo,” as shown in Figure 11. The “Bravo” VM was the subject of test #2.

Figure 11. Regripper identified “Bravo” virtual disk. This figure shows the Regripper output of the compname plugin

run on the “ Windows\System32\config\SYSTEM” file in the “ 63705088+2048-flat.vmdk” virtual disk. The computer
name configured within the registry was, “BRAVO.”

Control file recovery. The second partition from the “63705088+2048-flat.vmdk” virtual

disk file, mounted as a read-only volume at “/media/brav/” on “Ubuntu 14 Forensics VM,”

enabled file system browsing of the “Bravo” VMs’ system drive. The command “mount –o

ro,offset=$((206848*512)) /media/hdd/capstone/working/63705088+2048-flat.vmdk

/media/bravo/” mounted the volume to “/media/bravo”. The partition start sector returned by

mmls, multiplied by the sector size in bytes, produced the offset value.

 Browsing to the relative path of, “/$Recycle.Bin/ S-1-5-21-2592085848-1128064398-

1000/”, showed a “.pdf” file, “$RDMRHC9.pdf.” MD5sum calculated the MD5 hash value of

43

“$RDMRHC9.pdf” as “809176d892d68b147bdeb8ad3aba80bd,” the same hash value as

ControlDoc1.pdf. The file, opened in okular using the command, “okular $ RDMRHC9.pdf”,

displayed the contents of “ControlDoc1.pdf.” The contents simply read, “Control Document #1.”

 Having the known MD5 hash value for “ControlDoc2.pdf” allowed for the use of

MD5sum to search for a matching MD5 hash value within Beta’s Google Chrome cache

directory. From within the “/media/bravo/Users/User/AppData/Local/Google/Chrome/User

Data/Default/Cache” folder, the command “md5sum * | grep –i

“41e40c445740b974ff428cfc772cea4b” returned a single file name, “f_00004b”. The file,

opened in okular using the command “okular f_00004b” displayed the contents of

“ControlDoc2.pdf.” The contents simply read, “Control Document #2”.

 With a single file definition, for “pdf” files, enabled in the foremost configuration,

foremost attempted to recover the deleted files, “ControlDoc3.pdf,” and “ControlDoc4.pdf,”

from unallocated space on the Alpha virtual disk. Foremost completed with 102 “.pdf” files

recovered, but none of the recovered “.pdf” files matched the MD5 hash values of

“ControlDoc3.pdf” or “ControlDoc4.pdf.”

 Using hexedit to search for the control file’s identifiable hexadecimal string,

“2F417574686F7228422E204B696E63686C6129”, returned only three results for

“ControlDoc1.pdf,” “ControlDoc2.pdf,” and the first fragment of “ControlDoc3.pdf.” Using the

same technique described in Analysis, Analysis Phase, Test #1: Thick-provisioned, eager zeroed

virtual disk, Control file recovery, determined that the search string identified only the first

NTFS block of “ControlDoc3.pdf”. The fragment of “ControlDoc3.pdf” differed from the

original control file at byte 4097. Manually searching within hexedit returned no matches for

44

“ControlDoc4.pdf.” The research did not continue further searching for fragments of

“ControlDoc4.pdf.”

 VM reconstruction. Identification of the most current copies of each “.vmx,” “.vmxf,”

“.vmdk,” and “-flat.vmdk,” was the next challenge to reconstructing the VM in its most recent

state. (See Table 16 in Appendix D for an inventory of recovered files belonging to the Bravo

VM). Using the command, “head –n 1 *.log”, the output was the first line of each “.log” file. The

log file “159092736.log” had the latest timestamp at “2015-03-05T09:44:33.798Z.”

 Of the files that foremost carved during the examination phase, there were n ine “.vmx”

files belonging to the “Bravo” VM. The contents of “159092736.log” identified the “.vmx” file

that associated with the “159092736.log” file. Using a series of “diff -a” commands to find

differences between the various “.vmx” files and comparing those differences to the contents of

“159092736.log,” identified the “.vmx” file that matched the log file. “01559424.vmx” matched

the contents of “159092736.log” and, therefore was the “.vmx” file last in use by the “Bravo”

VM.

 With the recovery of the latest “.vmx” file from the “Bravo” VM, combined with the

“.vmxf,” “.vmdk,” and “-flat.vmdk” files, there existed the necessary files to reconstruct the VM

on an ESXi system. To find the original filenames of the Bravo VM files, the “.log” file, “.vmx”

file, and “.vmdk” file contained the names and file system paths for each of the deleted files.

“159092736.log” provided the name of the VM directory and the “.vmx” file as

“Bravo\Bravo.vmx.” The “.vmx” file, “01559424.vmx” renamed to “Bravo.vmx,” had its

contents displayed in its entirety, within “159092736.log”. “Bravo.vmx” provided filenames for

the “.vmxf,” file within the “extendedConfigFile” configuration parameter and “.vmdk,” file

within the “scsi0:0.fileName” configuration parameter, “Bravo.vmdk” and “Bravo.vmxf”.

45

“Bravo.vmdk” provided the filename for the “-flat.vmdk” file, “Bravo-flat.vmdk” within the

“Extent description” section. The files “01559264.vmxf” and “63705088+2048-flat.vmdk,”

renamed to “Bravo.vmxf” and “Bravo-flat.vmdk,” were copied along with “Bravo.vmdk” and

“Bravo.vmx” to a new folder named “Bravo” on the datastore volume, “Chicago,” on the ESXi

host, “vmhost21.” After using scp to copy the VM files to “vmhost21,” md5sum calculated the

MD5 hash values for the copied files on “vmhost21.” (See Table 16 in Appendix D to reference

the MD5 hash values of the Bravo VM recovered files).

 Within the vSphere Client, using the Datastore Browser, right-clicking on the

“Bravo.vmx” file name and selecting “Add to Inventory” invoked the “Add to Inventory”

wizard. The “Bravo” VM was added to the ESXi server’s inventory as an available VM after

completing the “Add to Inventory” wizard. The “Bravo” VM started without error. Figure 12

shows the fully booted VM within the vSphere Client console

46

Figure 12. Successful reconstruction of “ Bravo” VM. This figure shows the fully booted “Bravo” VM to illustrate the

successful recovery of the VM from the VMFS volume.

 Test #3: Thin-provisioned virtual disk. The goal of test #3 was to recover the VM,

“Charlie,” from the VMFS file system and analyze to recover the four control files from the test

scenario. “Charlie” had a single virtual disk configured in thin-provisioned mode, which is the

default mode for ESXi.

 Virtual disk identification. During the analysis phase of test #1, the researcher mounted

each of the carved “-flat.vmdk” files at sector 206848 as an NTFS volume to /media/test on

“Ubuntu 14 Forensics VM.” Three of the four virtual disk files mounted successfully as an NTFS

volume at a sector 206848 of the virtual disk. The fourth disk file contained no data at sector

206848 and therefore was unable to be analyzed as a virtual disk file. Regripper analyzed the

system registry hive contained within each NTFS volume to determine the computer name

47

associated with each file “-flat.vmdk” file. The registry hives for “Alpha,” “Bravo,” and “Delta”

were found, but the virtual disk file belonging to the “Charlie” VM was the disk file that was

missing the Windows system partition.

 Using xxd to open “VMD_physical_20150305_restore.raw” to offset 67,246,227,456, the

first byte of the “Charlie” virtual disk file from the physical volume, showed an MBR sector with

a complete partition table. The partition table contained two partitions; the first partition started

at sector 2,048 (relative to byte 67,246,227,456 as the start of sector 0) and had a length of

204,800 sectors. The second partition started at sector 206,848 and had a length of 24,956,928

sectors, or 11.9 GB.

 Using xxd to review relative sector 206,848, offset 67,352,133,632 within the restoration

image, showed that no partition existed at that location. Because no partition start sector existed

at relative offset 206,848 within the restoration image, non-contiguous sectors on the VMFS

volume comprised the “Charlie” VM’s virtual disk prior to deleting the virtual disk file.

Therefore, file-carving techniques that rely on contiguous allocation of data would not be able to

recover the “Charlie” virtual disk file after deletion.

 As discussed in the analysis, examination phase, deleting the “Charlie-flat.vmdk” file

caused the clearing of metadata from the system files for the “Charlie-flat.vmdk” file. The blocks

allocated to the “Charlie-flat.vmdk” file were unknown with the metadata cleared. Therefore, file

carving from the individual blocks was not reasonably possible to recover the complete virtual

disk file for the “Charlie” VM from the “Boston” volume.

 Control file recovery. Each of the control files resided within the “Charlie-flat.vmdk”

virtual disk file prior to deleting the “Charlie” VM. Without successful recovery of the “Charlie-

flat.vmdk,” virtual disk file, there was no attempt to recover the control files. Unknown file

48

extents for “Charlie-flat.vmdk” made it impossible to know if a file carved directly from the

VMFS volume had previously been contained within the extents of “Charlie-flat.vmdk.

 VM Reconstruction. To reconstruct each VM, the virtual disk file was necessary. The

“Charlie-flat.vmdk” was unrecoverable using the techniques in this research. Therefore, the

“Charlie” VM was not reconstructed.

 Hypotheses. Testing of three hypotheses occurred to explain some of the results

observed. The cause of fragmentation of “Charlie-flat.vmdk” prompted the testing of two

hypotheses. The first hypothesis, referred to as the “non-consecutive writes” hypothesis offered

that thin-provisioned virtual disk files have a higher likelihood of fragmentation due to non-

consecutive writes to disk during virtual disk file expansion. For thin-provisioned virtual disks

which have not been fully allocated within the VMFS volume, unallocated blocks contiguous to,

or addressed closely to the last allocated block of the virtual disk file are candidates for any ESXi

process to write to. Doing so would cause fragmentation of the thin-provisioned virtual disk

when it requires allocation of more blocks. The second hypothesis, referred to as the “allocation

percentage” hypothesis offered that any virtual disk file stands a higher chance of encountering

fragmentation as less allocated blocks remain within the volume. The inability to recover the

deleted control files from any of the deleted VMs prompted the testing of a third hypothesis,

referred to as the “control file” hypothesis. The “control file” hypothesis offered that chances for

recovery of deleted files within the VM decreased as unallocated space within the virtual disk

file decreased.

 The testing of the “allocation percentage” hypothesis required an additional

testing environment be created using the same scenario as the analysis testing scenario, except

with the VMs provisioned in a different order. The testing of the “control file” hypothesis

49

required an additional testing environment be created using the same scenario as the original

testing scenario, except the VMFS volume was doubled in capacity and each VM’s virtual disk

file was configured with 50% more capacity. The testing of the “non-consecutive writes”

hypothesis used data from each of the three testing environments to draw conclusions.

 Non-consecutive writes hypothesis. The non-consecutive writes hypothesis stated that

thin-provisioned virtual disk files have a higher likelihood of fragmentation due to non-

consecutive writes to disk during virtual disk file expansion. Testing of this scenario required an

additional testing environment, which was identical to the analysis -testing environment except

the provisioning of VMs, occurred in a different order to change the physical location of the

virtual disk files within the VMFS volume.

 The VM datastore drive, forensically wiped with zeroes using dc3dd prior to configuring

the datastore, held a single 80GB VMFS5 volume labeled “Dallas.” The “Dallas” volume had a

formatted capacity of 79.75GB. Four VMs had their files stored on the “Dallas” volume. Each of

the VMs had the same software and virtual hardware configuration with the exception of the

virtual disk allocation method. The “Charlie2” VM had a thin-provisioned virtual disk. The

“Bravo2” VM had the ESXi default method of thick-provisioned, lazy zeroed virtual disk. The

“Alpha2” VM had a thick-provisioned, eager zeroed virtual disk. The “Delta2” VM had a thick-

provisioned, lazy zeroed virtual disk. Table 6 lists the configuration of the four test VMs.

Table 6

Non-Consecutive Writes Test VM Configurations

 VM 1 VM 2 VM 3 VM 4

VM Name Charlie2 Bravo2 Alpha2 Delta2

VM working

location

[Dallas]/Charlie2 [Dallas]/Bravo2 [Dallas]/Alpha2 [Dallas]/Delta2

50

CPUs 1 1 1 1

RAM 1GB 1GB 1GB 1GB

HDD size 12GB 12GB 12GB 12GB

Virtual disk-

provisioning

method

Thin-provisioned Thick-provisioned,

lazy zeroed

Thick-provisioned,

eager zeroed

Thick-provisioned,

lazy zeroed

Virtual disk f ile [Dallas]/Charlie2/C

harlie2-flat.vmdk

[Dallas]/Bravo2/Br

avo2-flat.vmdk

[Dallas]/Alpha2/Al

pha2-flat.vmdk

[Dallas]/Delta2/Del

ta2-flat.vmdk

VM conf iguration

f ile

[Dallas]/Charlie2/C

harlie2.vmx

[Dallas]/Bravo2/Br

avo2.vmx

[Dallas]/Alpha2/Al

pha2.vmx

[Dallas]/Delta2/Del

ta2.vmx

Operating system Windows 7

Professional x64

Windows 7

Professional x64

Windows 7

Professional x64

Windows 7

Professional x64

Note. This table lists the virtual hardware, configuration files and operating system of each of the VMs on the “ Dallas”

volume of “ vmhost21.”

 The expected results of the testing if the hypothesis held true were twofold. Swapping the

provisioning order of the “Alpha” and “Charlie” VMs, named “Alpha2” and “Charlie2” in this

scenario, positioned “Charlie2-flat.vmdk” in a similar physical location to “Alpha-flat.vmdk’s”

position within the original testing scenario. Given that “Alpha-flat.vmdk” had no fragmentation

within the “Boston” volume, the expectation was that “Charlie-flat2.vmdk” would similarly have

no fragmentation within the “Dallas” volume. With further provisioning of VMs to the “Dallas”

volume, the expectation was that ESXi would allocate blocks contiguous to, or within the

maximum consecutive length on disk of the “Charlie2-flat.vmdk” virtual disk, to other VM files.

That scenario, if shown to be true, would be highly likely to cause fragmentation of the

“Charlie2-flat.vmdk” virtual disk as it expands in size over time.

 After completing the scenario setup and deleting the “Alpha2,” “Bravo2,” and “Charlie2”

VMs, dcfldd captured a working-copy and preservation-copy image of the “Dallas” VMFS

volume. Using the command, “dcfldd bs=512 skip=2048 count=167772159 if=/dev/sdc

51

of=/media/hdd/capstone/hypo1/working/Dallas_volume_20150411.raw of=

of=/media/hdd/capstone/hypo1/preserve/Dallas_volume_20150411.raw.preserve”, dcfldd created

the working-copy and preservation-copy images of the “Dallas” VMFS volume. Following the

image creation, the foremost configuration file from the original scenario carved the VMware

“.log,” “.vmx,” “.vmxf,” “.nvram,” and “.vmdk” files from the “Dallas” volume. Using xxd in

the same manner as the original testing scenario, xxd identified the MBR sectors for the four

virtual disk files. Using the same technique detailed in the original testing scenario, Dcfldd

carved each of the “-flat.vmdk” files from the “Dallas” volume according to the starting position

and length of each virtual disk’s partitions within the partition table. Each “-flat.vmdk”, mounted

to /media/temp on “Ubuntu 14 Forensic VM”, produced the name of the VM to which it

belonged using regripper’s compname plugin to parse the “SYSTEM” registry hive at

“/media/temp/Windows/System32/config/SYSTEM”. The identified locations and length of each

VMware “.log,” “.vmx,” “.vmxf,” “.nvram,” and “.vmdk” file as well as the location and length

of each “-flat.vmdk” file, revealed the disk layout of the “Dallas” volume shown in Figure 13.

52

Figure 13. Disk view of “ Dallas” volume. This figure shows a visual representation of the file allocation across the

“ Dallas” VMFS volume. The figure shows the contiguous sectors that comprised the “Charlie2 -flat.vmdk,” “ Bravo2-

flat.vmdk,” and “ Delta-flat.vmdk” virtual disk files and the fragmentation of “ Alpha2 -flat.vmdk.” Each cell within the

figure represents 10 VMFS blocks.

 The first finding of the scenario confirmed the expectation of the “non-consecutive

writes” hypothesis that further provisioning of VMs to the “Dallas” volume after the allocation

of the “Charlie2-flat.vmdk” file, ESXi would allocate blocks contiguous to, or within the

maximum consecutive length on disk of the “Charlie2-flat.vmdk” virtual disk, to other VM files.

As can be seen in Figure 13, marked by dark purple cells, due to “Charlie2-flat.vmdk” being a

thin-provisioned virtual disk file, ESXi did not allocate the full-configured length of 25,165,824

sectors to “Charlie2-flat.vmdk.” Sector 0 of “Bravo2-flat.vmdk” occurred on disk at 20,971,520

sectors after sector 0 of “Charlie2-flat.vmdk.” Therefore, 4,194,304 sectors, or 2GB, of

“Charlie2-flat.vmdk” were unallocated and could not be allocated as contiguous blocks to the

53

existing “Charlie2-flat.vmdk because ESXi had already allocated those blocks to “Bravo2-

flat.vmdk.”

 The second finding of the scenario confirmed the expectation of the “non-consecutive

writes” hypothesis that no fragmentation occurred within the “Charlie2-flat.vmdk” file. Within

the “Dallas” volume’s disk layout was the absence of fragmentation within the “Charlie2-

flat.vmdk” virtual disk file and the introduction of fragmentation within the virtual disk files that

were located at higher addresses on the “Dallas” volume. This finding met the expectation of the

“non-consecutive writes” hypothesis that no fragmentation occurred within the “Charlie2-

flat.vmdk” file.

 The most recent “.vmx,” “.vmxf,” and “.vmdk” files from the Charlie2 VM, identified

using the same technique described in the Analysis, Analysis Phase, Test #1: Thick-provisioned,

eager zeroed virtual disk, VM reconstruction section, were copied along with “Charlie2-

flat.vmdk” using scp to the “Charlie2” folder on the “Chicago” VMFS volume on “vmhost21.”

Within the vSphere Client, using the Datastore Browser, right-clicking on the “Charlie2.vmx”

file name and selecting “Add to Inventory,” invoked the “Add to Inventory” wizard. After

adding the “Charlie2” VM to the VM inventory on “vmhost21,” it was powered on and

successfully booted the “Charlie2” VM as shown in Figure 14 In the original test scenario, each

of the thick-provisioned virtual disk files needed an additional 1MB block added to the end of

each virtual disk file for ESXi to accept it as a valid virtual disk. For the thin-provisioned virtual

disk file, no additional blocks were needed.

54

Figure 14. Successful reconstruction of “ Charlie2” VM. This figure shows the fully booted “Charlie2” VM to illustrate
the successful recovery of the VM from the VMFS volume “ Dallas” as part of the “ non -consecutive writes” hypothesis

testing.

 Unallocated percentage hypothesis. The “unallocated percentage” hypothesis offered

that the likelihood of fragmentation within the VM virtual disk files decreased as the percentage

of unallocated space on the VMFS volume increased. The testing of the “unallocated percentage”

hypothesis required an additional testing environment, created using the same scenario as the

original testing scenario, except the VMFS volume had twice as much capacity and each VM’s

virtual disk file was configured with 50% more capacity.

 The VM datastore drive, forensically wiped with zeroes using dc3dd prior to configuring

the datastore, held a single 160GB VMFS5 volume labeled “Edmonton.” Four VMs had their

55

files stored on the “Edmonton” volume. Each of the VMs had the same software and virtual

hardware configuration with the exception of the virtual disk allocation method. The “Charlie3”

VM had a thin-provisioned virtual disk. The “Bravo3” VM had the ESXi default method of

thick-provisioned, lazy zeroed virtual disk. The “Alpha3” VM had a thick-provisioned, eager

zeroed virtual disk. The “Delta3” VM had a thick-provisioned, lazy zeroed virtual disk. Table 7

lists the configuration of the four test VMs.

Table 7

Control File Hypothesis Test VM Configurations

 VM 1 VM 2 VM 3 VM 4

VM Name Alpha3 Bravo3 Charlie3 Delta3

VM working

location

[Edmonton]/Alpha

3

[Edmonton]/Bravo

3

[Edmonton]/Charli

e3

[Edmonton]/Delta3

CPUs 1 1 1 1

RAM 1GB 1GB 1GB 1GB

HDD size 18GB 18GB 18GB 18GB

Virtual disk

allocation method

Thick-provisioned,

eager zeroed

Thick-provisioned,

lazy zeroed

Thin-provisioned Thick-provisioned,

lazy zeroed

Virtual disk f ile [Edmonton]/Alpha

3/Alpha3-flat.vmdk

[Edmonton]/Bravo

3/Bravo3-flat.vmdk

[Edmonton]/Charli

e3/Charlie3-

flat.vmdk

[Edmonton]/Delta3

/Delta3-flat.vmdk

VM conf iguration

f ile

[Edmonton]/Alpha

3/Alpha3.vmx

[Edmonton]/Bravo

3/Bravo3.vmx

[Edmonton]/Charli

e3/Charlie3.vmx

[Edmonton]/Delta3

/Delta3.vmx

Operating system Windows 7

Professional x64

Windows 7

Professional x64

Windows 7

Professional x64

Windows 7

Professional x64

Note. This table lists the virtual hardware, configuration files and operating system of each of the VMs on the
“ Edmonton” volume of “ vmhost21.”

 Increasing the amount of unallocated space on the VMFS volume in this scenario allowed

for provisioning of the same number of VMs as the original test scenario, but with unallocated

56

streams of greater length available to avoid fragmentation of the virtual disk files. This test

environment also increased the disk capacity of each VM’s virtual disk file by 50% in order to

test the “control file” hypothesis with the same testing environment. The net increase in disk

capacity was an additional 24GB of configured virtual disk space for VMs cumulatively and an

additional 80GB of disk space available on the VMFS volume. In the original testing scenario,

fragmentation of the “Charlie-flat.vmdk” virtual disk file was significant, rendering the file

unrecoverable using consecutive sector carving techniques. The expectation for the “allocation

percentage” hypothesis scenario is less, or no fragmentation of the virtual disk files due to the

higher percentage of unallocated space on the VMFS volume.

 After completing the scenario setup and deleting the “Alpha3,” “Bravo3,” and “Charlie3”

VMs, dcfldd captured a working-copy and preservation-copy image of the “Edmonton” VMFS

volume. Using the command, “dcfldd bs=512 skip=2048 count=335544320 if=/dev/sdc

of=/media/hdd/capstone/hypo2/working/Edmonton_volume_20150412.raw of=

of=/media/hdd/capstone/hypo2/preserve/Edmonton_volume_20150412.raw.preserve”, dcfldd

created the working-copy and preservation-copy images of the “Edmonton” VMFS volume.

Following the image creation, the foremost configuration file from the original scenario carved

the VMware “.log,” “.vmx,” “.vmxf,” “.nvram,” and “.vmdk” files from the “Edmonton”

volume. Using xxd in the same manner as the original testing scenario, xxd identified the MBR

sectors for the four virtual disk files. Using the same technique detailed in the original testing

scenario, Dcfldd carved each of the “-flat.vmdk” files from the “Edmonton” volume according to

the starting position and length of each virtual disk’s partitions within the partition table. The

 While each VM had a configured virtual disk file of 37539840 sectors, there only existed

24090624 sectors between sector 0 of “286019584-flat.vmdk” and sector 0 of “310110208-

57

flat.vmdk.” This indicated that 286019584-flat.vmdk was thin-provisioned and, as the only thin-

provisioned disk in the test, belonged to the “Charlie3” VM. The virtual disk file “310110208-

flat.vmdk” extended beyond the bounds of the “Edmonton” volume. Xxd located the NTFS

trailer for the truncated partition within “310110208-flat.vmdk” at sector offset 14,827,519.

Because the truncation of “310110208-flat.vmdk” left 12,312,576 sectors unaccounted for,

dcfldd merged the 12,312,576 sectors prior to sector 14,827,519 with “310110208-flat.vmdk” to

form a complete “-flat.vmdk” file using the command, “dcfldd bs=512 skip=2514944

count=12312576 seek=25434112 if=Edmonton_20150412.raw of=310110208-flat.vmdk”.

Each “-flat.vmdk”, mounted to /media/temp on “Ubuntu 14 Forensic VM”, produced the name of

the VM to which it belonged using regripper’s compname plugin to parse the “SYSTEM”

registry hive at “/media/temp/Windows/System32/config/SYSTEM”. The identified locations

and length of each VMware “.log,” “.vmx,” “.vmxf,” “.nvram,” and “.vmdk” file as well as the

location and length of each “-flat.vmdk” file, revealed the disk layout of the “Edmonton” volume

shown in Figure 15.

58

Figure 15. Disk view of “ Edmonton” volume. This figure shows a visual representation of the file allocation across the

“ Edmonton” VMFS volume. The figure shows the contiguous sectors that comprised the “Alpha3 -flat.vmdk” and

“ Bravo3-flat.vmdk,” the fragmentation of “ Charlie3 -flat.vmdk,” and “ Delta3-flat.vmdk” with a truncated data stream at

the end of the “ Edmonton” volume, which resumed at lower addresses within the “Edmonton” volume. Each cell
within the figure represents 20 VMFS blocks.

 The expectation that less, or no, fragmentation of the virtual disk files would occur as

part of the “unallocated percentage” hypothesis testing was unsupported. “Charlie3-flat.vmdk”

experienced a similar amount of fragmentation during the test as in the original scenario testing.

Further, the provisioning of “Delta3-flat.vmdk” occurred in such a way that the contiguous data

stream of the virtual disk file reached the end of the “Edmonton” volume and resumed at lower

addressed blocks. Although significant streams of contiguous unallocated blocks existed on the

“Edmonton” volume, ESXi’s method of provisioning the virtual disk files did not seek to avoid

fragmentation by using available unallocated data streams. The disk allocation method in use by

ESXi did not appear to place priority on avoiding fragmentation of the “-flat.vmdk” virtual disk

files.

59

 Control file hypothesis. The “control file” hypothesis offered that chances for recovery

of deleted files within the VM decreased as unallocated space within the virtual disk file

decreased. The testing of the “control file” hypothesis reviewed results of the original testing

scenario against results of the “unallocated percentage” testing scenario to determine if an

increase in unallocated space within the VM virtual disk file increased the chances for recovery

of the deleted control files. The difference between the two scenarios for this testing was the

configured size of the VM virtual disk files. Within the “unallocated percentage” hypothesis

testing, each VM’s virtual disk capacity increased by 50% over the original testing scenario

VMs.

 Using the same foremost-pdf control file used in the Analysis, Analysis Phase, Test #1:

Thick-provisioned, eager zeroed virtual disk, Control file recovery section, named “foremost -

pdf.conf,” foremost carved 104 “.pdf” files from “Alpha3-flat.vmdk,” 103 “.pdf” files from

“Bravo3-flat.vmdk,” and 29 “.pdf” files from “Charlie3-flat.vmdk.” Foremost carved a file

matching the MD5 hash value of “ControlDoc3.pdf” from “Alpha3-flat.vmdk” at sector

05938584. None of the files carved from “Bravo3-flat.vmdk” or “Charlie3-flat.vmdk” matched

the MD5 hash value of “ControlDoc3.pdf” or “ControlDoc4.pdf”.

 Hexedit searched for the control file’s identifiable hexadecimal string,

“2F417574686F7228422E204B696E63686C6129”, in each of the “Alpha3-flat.vmdk,” “Bravo3-

flat.vmdk,” and “Charlie3-flat.vmdk” virtual disk files. Each of the virtual disk files contained

fragments of “ControlFile3.pdf” and “ControlDoc4.pdf”, but only “ControlDoc3.pdf” from

“Alpha3-flat.vmdk”, which foremost successfully recovered, remained intact with no

fragmentation. The remaining fragmented control files, listed in Table 8, fragmented following

60

either the first or second NTFS block, leaving the majority of each file overwritten or located

elsewhere within each virtual disk file.

Table 8

Control file fragments identified within virtual disk files

Virtual disk f ile Control f ile name Starting byte of fset Length

Alpha3-flat.vmdk ControlDoc4.pdf 3,058,921,472 4096 Bytes

Bravo3-flat.vmdk ControlDoc3.pdf 6,201,188,352 4096 Bytes

Bravo3-flat.vmdk ControlDoc4.pdf 3,030,011,904 8192 Bytes

Charlie3-flat.vmdk ControlDoc3.pdf 7,172,034,560 4096 Bytes

Charlie3-flat.vmdk ControlDoc4.pdf 6,989,713,408 8192 Bytes

Note. This table lists the fragments of each control file and size of the fragments identified. Each of the control files

fragmented following either the first of second NTFS block.

 The result of the test that increasing the amount of unallocated space within the virtual

disk file increases the likelihood of recovery of deleted artifacts of user activity was

inconclusive. Among the three VMs each with two deleted control files, only one deleted control

file recovered fully and the remaining control files experienced fragmentation at an early point

within the file, either after one or two NTFS blocks. The test produced one complete control file

and fragments of all other control files sought. This result met the expectation that the likelihood

of user artifact recovery increased as the amount of unallocated space on the virtual disk file

increased. The result did not provide a significant increase in the chance of recovery, however.

Given that the recoverability of the deleted control files as part of the “control file” hypothesis

testing was not significantly greater than the recovery experienced in the original testing

scenario, the hypothesis requires further testing to determine if it holds true.

61

Discussion of Findings

Major Findings

 The purpose of this research was to analyze the potential for recovering evidence from

deleted VMware vSphere Hypervisor (ESXi) VMs under a variety of conditions. Specifically,

the conditions tested were the three different virtual disk-provisioning methods available within

ESXi: thick-provisioned, lazy zeroed virtual disk; thick-provisioned eager zeroed virtual disk;

and thin-provisioned virtual disk. Using three VMs, each with a virtual disk configured in one of

the three disk-provisioning modes, an identical scenario applied to each VM with the results

recorded for comparison.

 The sources selected for the literature review dealt primarily with one or more of the

main themes of the research or provided background information necessary to understand the

themes. The first theme of the research, understanding the VMFS file system to the point where a

complete file system could be extracted from a physical disk image, built on information

obtained from sources that documented features of VMFS5, differences between VMFS5 and

VMFS3, and source code from the open source VMFS driver, vmfs -tools. Additionally,

information from sources that discussed general file system forensics lent to the background

information necessary to perform the collection and extraction phases of the analysis.

 The second theme of the research, comparing the forensic recoverability of virtual disk

files using the three disk provisioning modes in ESXi, built on information obtained from

sources that specifically discussed the disk provisioning modes of ESXi. Additionally, this theme

relied on information from sources that documented file fragmentation within VMFS and other

VMware hypervisor products. This theme relied on and further built on the research performed

during the first theme, understanding the VMFS file system.

62

 The third theme of the research, recovering deleted VMware VM files from a VMFS

volume by carving from contiguous disk sectors, built on information obtained from sources that

discussed data carving and the various files that make up VMs on ESXi. The research focused on

the VMware “.log,” “.vmx,” “.vmxf,” “.nvram,” “.vmdk,” and “-flat.vmdk” file types, as those

were the file types associated with the basic VMs built for the three tests. This theme relied on

research performed for the first two themes and built on existing file carving research to define

techniques for carving each of the VMware ESXi file types used in this research.

 The fourth, and final, theme of the research, reconstructing deleted VMs, relied on the

research performed for all three other themes. The research for the fourth theme additionally

relied on analysis of the open source VMFS driver, vmfs -tools, in order to correct and verify

some assumptions made during the analysis. Referencing sources on disk partitioning and

interpreting partition tables assisted with explaining and correcting problems encountered while

reconstructing deleted VMs.

 Theme 1: The VMFS file system. The research performed on the VMFS file system

revealed several critical pieces of information of use by anyone attempting to perform VMFS

analysis. There are several characteristics of VMFS and of the VMFS system files encountered

during this research that were unexpected. Those characteristics are the use of file headers offset

from the beginning of system files and the file system itself, the static block size within VMFS,

and resident VM files within VMFS system files.

 The VMFS file system and the “.vh.sf” system file both have a single VMFS block offset

between the beginning of the volume or file and the volume or file signature. This initially

caused confusion during the analysis because the VMFS volume header was not located at the

physical disk offset where the partition started according to the disk’s partition table. A review of

63

the source code for vmfs-tools revealed the added block at the start of the VMFS volume prior to

the volume signature. The “.vh.sf” volume header system file contained a two -block offset

between the start of the file and the file header. The purpose of these offset headers was

unknown and not explored further during the research.

 VMFS5 has a static block size of 1MB. This is not a configurable setting in VMFS5 as it

was in VMFS3 and previous versions. For comparison, the default block size of an NTFS

volume is 4KB, so a VMFS block is 256 times the size of an NTFS block. The effect of the

larger block size on forensic recovery is that fragmentation cannot occur on a VMFS volume for

files smaller than 1MB. There are, however, only a few file types belonging to VMs that are

typically smaller than 1MB in size. Those smaller files are the “.log,” “.vmx,” “.vmxf,”

“.nvram,” and “.vmdk” files, although “.log” files have the potential to grow larger than 1MB.

 The third unexpected characteristic of VMFS was the presence of “.vmx” and “.vmdk”

files resident within the “.fdc.sf” system file. The “.vmx” and “.vmdk” files are both essential

files for reconstructing deleted VMs. The files remained in the “.fdc.sf” file even after deleting

the parent VM, which is helpful to examiners seeking to recover deleted VMs or even to catalog

the VMs present and deleted on the VMFS volume.

 Theme 2: Forensic recoverability of disk-provisioning modes. The research performed

an analysis of the likelihood for recoverability of each of the three virtual disk-provisioning

modes available for ESXi VMs. The three virtual disk-provisioning modes are thin-provisioned

disks, thick-provisioned lazy zeroed, and thick-provisioned eager zeroed. The three modes differ

in the manner that allocation of blocks occurs within the VMFS volume and the method used to

zero space needed for I/O operations.

64

 The largest hurdle to carving virtual disk files from the VMFS volume was identification

of the MBR and each partition of the virtual disk. Using xxd to pass 256 bytes at a time of the

VMFS volume’s data stream through grep, searching for the master boot record (MBR) trailer

value of “0x55AA” in the position of bytes 255 and 256, immediately preceded by values likely

to occur in a partition table, produced the rough location of each virtual disk file’s MBR. The

start of each virtual disk file occurred 256 bytes prior to each search result. Analyzing each

virtual disk file’s partition table produced the extents of the virtual disk file.

 This technique led to the discovery of a caveat with carving virtual disk files in this

manner. The thick-provisioned disks required an additional VMFS block appended to the virtual

disk file following the end of the last partition in the virtual disk file. Without the additional

block appended to the end of the virtual disk file, ESXi failed to recognize the file for VM

reconstruction. This is not the case for thin-provisioned virtual disks. With thin-provisioned

virtual disks, no additional data needs appending to the end of the virtual disk file for ESXi to

recognize the virtual disk.

 Thick-provisioned eager zeroed virtual disks. When a VM has a disk configured in

thick-provisioned eager zeroed mode, the full capacity of the virtual disk is allocateed within the

datastore and ESXi zeroes all allocated blocks for the virtual disk at the time of virtual disk file

creation. Immediately following the virtual disk creation, ESXi writes the full capacity of the

virtual disk file to the datastore with zeroes. The “Alpha” VM, used in test #1, made use of a

thick-provisioned eager zeroed virtual disk file, named “Alpha-flat.vmdk”.

 As Carrier (2005) explained, an OS typically allocates consecutive data units, but when

that is not possible, fragmentation, a condition when the data units that make up a file are not

consecutive, can occur (p. 179, para. 4). “Alpha-flat.vmdk” was a 12GB virtual disk file assigned

65

to the “Alpha” VM. The way ESXi provisioned “Alpha-flat.vmdk” to the VMFS volume,

allocation of 12GB of contiguous zeroed VMFS blocks occurred in a single operation. After

deleting the “Alpha” VM, including the “Alpha-flat.vmdk” virtual disk file, dd carved the

deleted “Alpha-flat.vmdk” file from the VMFS volume. Carving 25,165,824 consecutive sectors

from sector 38,539,264 to sector 63,705,088 on the VMFS volume produced a complete “Alpha-

flat.vmdk” virtual disk file.

 Thick-provisioned lazy zeroed virtual disks. When a VM has a disk configured in thick-

provisioned lazy zeroed mode, the full capacity of the virtual disk is allocated within the

datastore, but ESXi does not zero allocated sectors for the virtual disk at the time of virtual disk

file creation. Zeroing of allocated sectors instead occurs when file I/O operations occur.

Immediately following the virtual disk creation, ESXi allocates the full capacity of the virtual

disk file to the datastore and leaves any existing data within the allocated sectors intact . The

“Bravo” VM, used in test #2, made use of a thick-provisioned lazy zeroed virtual disk file,

named “Bravo-flat.vmdk”.

 “Bravo-flat.vmdk” was a 12GB virtual disk file assigned to the “Bravo” VM. The way

ESXi provisioned “Bravo-flat.vmdk” to the VMFS volume, allocation of 12GB of contiguous

VMFS blocks occurred in a single operation. After deleting the “Bravo” VM, including the

“Bravo-flat.vmdk” virtual disk file, dd carved the deleted “Bravo-flat.vmdk” file from the VMFS

volume. Carving 25,165,824 consecutive sectors from sector 63,705,088 to sector 88,870,912 on

the VMFS volume produced a complete “Bravo-flat.vmdk” virtual disk file.

 Thin-provisioned virtual disks. When a VM has a disk configured in thin-provisioned

mode, ESXi only allocates the capacity of the virtual disk file’s active data within the datastore.

Allocating additional blocks to the virtual disk file and zeroing the used sectors within those

66

blocks occurs when file I/O operations occur. The “Charlie” VM, used in test #3, made use of a

thin-provisioned virtual disk file, named “Charlie-flat.vmdk”.

 “Charlie-flat.vmdk” was a 12GB virtual disk file assigned to the “Charlie” VM. The way

ESXi provisioned “Charlie-flat.vmdk” to the VMFS volume, allocation of VMFS blocks

occurred as files were written to the virtual disk file. After deleting the “Charlie” VM, including

the “Charlie-flat.vmdk” virtual disk file, dd carved 25,165,824 consecutive sectors from sector

131,338,240 to sector 156,504,064 on the VMFS volume. The carved file was not a complete

virtual disk file. As seen in the disk view of the “Boston” VMFS volume in Figure 4,

fragmentation occurred within the “Charlie-flat.vmdk” file. At an undetermined point within the

allocation of blocks to the “Charlie-flat.vmdk” file, ESXi fragmented the file and continued

writing to unknown blocks within VMFS. The fragmentation of the “Charlie-flat.vmdk” file led

to the formulation of two hypotheses regarding the likelihood for fragmentation within ESXi and

VMFS5.

 The first hypothesis, called the “non-consecutive writes” hypothesis offered that thin-

provisioned virtual disk files have a higher likelihood of fragmentation due to non-consecutive

writes to the VMFS volume during virtual disk file expansion. Testing of the hypothesis

occurred through a recreation of the original test environment and test scenario with a change

only in the provisioning order the VMs. There were two expected results of the “non-consecutive

writes” hypothesis testing. The first expected result was no fragmentation would occur within the

“Charlie2-flat.vmdk” file on the “Dallas” VMFS volume. The second expected result was future

writes to the “Charlie2-flat.vmdk” file, resulting in expansion of the disk file on the “Dallas”

volume, would cause fragmentation.

67

 The “Charlie2-flat.vmdk” virtual disk file was the first virtual disk file written to the

“Dallas” VMFS volume. This change in provisioning order created a virtual disk file of

contiguous blocks with no fragmentation. The next virtual disk file provisioned, “Bravo2-

flat.vmdk” had its first block located consecutively after the last block of “Charlie2-flat.vmdk.”

Because “Bravo2-flat.vmdk” occupied the next contiguous block after the end of “Charlie2-

flat.vmdk,” any writes to the “Charlie” VM resulting in virtual disk file expansion would

inevitably cause fragmentation of the virtual disk file. As long as the “Bravo2-flat.vmdk” file

existed as an active file on the file system, the blocks contiguous to “Charlie2-flat.vmdk” would

be unavailable for writing other files to.

 The second hypothesis, called the “unallocated percentage” hypothesis offered that as

unallocated space on the VMFS volume increased, fragmentation of the virtual disk files would

be less likely to occur. Testing of the hypothesis occurred through a recreation of the original test

environment and test scenario with a change in the size of the VMFS volume, changing from

80GB to 160GB, and a change in each VM’s virtual disk size, changing from 12GB to 18GB.

Another hypothesis, “control file” hypothesis used the same test environment, which was the

reason for increasing the VM virtual disk size. The “Edmonton” VMFS volume used in this test

contained 70% unallocated space. The “Boston” VMFS volume used in the original test

environment contained 40% unallocated space.

 The expected testing result was that the virtual disk files contained less fragmentation on

the “Edmonton” volume than on the “Boston” volume. The test produced inconclusive results

because while less fragmentation occurred within the “Charlie3-flat.vmdk” virtual disk file, the

file still fragmented and the “Delta3-flat.vmdk” virtual disk file wrapped from the end of the

“Edmonton” volume to lower addressed blocks toward the beginning of the volume. Despite

68

large areas of contiguous unallocated space available, as shown by the disk view in Figure 15,

ESXi wrote both “Charlie3-flat.vmdk” and “Delta3-flat.vmdk” to areas of the “Edmonton”

volume where there was not enough contiguous unallocated space to avoid fragmentation.

 Theme 3: Recovering deleted VM files from a VMFS volume. The research performed

an examination of the VMFS volume for recovery of deleted VM files. The test placed four

“.pdf” control files on each of the test VMs. The control files were named “ControlDoc1.pdf,”

“ControlDoc2.pdf,” “ControlDoc3.pdf,” and “ControlDoc4.pdf.” Within each VM, each of the

control files had the same actions performed on them.

 The scenario preparation downloaded “ControlDoc1.pdf” to the user’s desktop folder,

opened the file in Foxit Reader, and then sent the file to the Windows recycle bin. “The scenario

preparation opened “ControlDoc2.pdf” directly with the Foxit Reader Google Chrome plugin

and downloaded “ControlDoc3.pdf” and “ControlDoc4.pdf” to the user’s “Downloads” folder,

opened in Foxit Reader, then deleted from the VM’s disk.

 During the original testing scenario, successful recovery of “ControlDoc1.pdf” and

“ControlDoc2.pdf” occurred from both the “Alpha-flat.vmdk” and “Bravo-flat.vmdk” virtual

disk files. Mounting the virtual disk files as loopback devices on “Ubuntu 14 Forensics VM”

allowed for browsing of the active files within each of the virtual disk file systems. Successful

recovery of “ControlDoc1.pdf” occurred through browsing to the scenario preparation user’s

recycle bin folder. Successful recovery of “ControlDoc2.pdf” occurred by performing a MD5

hash calculation of each file within the relative path of

/Users/User/AppData/Local/Google/Chrome/User Data/Default/Cache/ and comparing to the

known MD5 hash value of “ControlFile2.pdf”.

69

 To recover the remaining control files, “ControlFile3.pdf” and “ControlFile4.pdf,”

deleted from disk during the scenario preparation, foremost ran with a configuration to carve

only “.pdf” documents. Foremost recovered “.pdf” files, whose MD5 hash values, compared to

the known MD5 hash values of “ControlDoc3.pdf” and “ControlDoc4.pdf,” produced no

matches on either the “Alpha-flat.vmdk” or “Bravo-flat.vmdk” virtual disk files. The deleted

control files “ControlDoc3.pdf” and “ControlDoc4.pdf” were unrecoverable using foremost and

manually searching for known strings within the files.

 A hypothesis devised to test whether the control files stood a better chance of recovery

had there been more free space on each of the virtual disk files. The “control file” hypothesis

tested the recoverability of the same four control files, prepared using the same test scenario as

detailed in the original testing methodology, with the difference of an increase in virtual disk size

from 12GB to 18GB. The test resulted in a marginal improvement in control file recoverability.

Of the six control files deleted from disk in the “control file” hypothesis testing, foremost

recovered one control file in its entirety. Manual searching of each virtual disk file for a known

unique string in the control files resulted in identification of fragments of the other five deleted

control files. The hypothesis test results were not strong enough to prove the hypothesis. To

prove or disprove the “control file” hypothesis requires further testing.

 Theme 4: Deleted VM reconstruction. The research performed a reconstruction of the

deleted files that made up the deleted VMs and imported those files into ESXi as a complete

VM. The deleted file types recovered were the VM’s “.log,” “.nvram,” “.vmdk,” “.vmx,”

“.vmxf,” and “-flat.vmdk” files. Each of the “.log,” “.vmdk,” “.vmx,” and “.vmxf” files types are

text file and therefore do not contain file type signatures to identify the specific file type within a

data stream. Analyzing each of the text files led to strings of text whose uniqueness served as file

70

signatures for carving the files from the VMFS volume. (See Figure 18 in Appendix B for the

custom foremost configuration that successfully carved “.log,” “.nvram,” “.vmdk,” “.vmx,” and

“.vmxf” files from each of the VMFS volumes in this research).

 Starting with each “.log” file, the parent VM, and the most current copy of each file

required identification. The “.log” files made for a logical starting point because the “.log” files

contained timestamps on each “.log” entry, which made it simple to identify the latest version of

a VM’s “.log” file. Each “.log” file contained the VM name and a complete copy of the “.vmx,”

“.vmxf,” and “.vmdk” file used for that VM. Comparing the “.vmx,” “.vmxf,” and “.vmdk” files

to the log entries enabled the identification of the “.vmx,” “.vmxf,” and “.vmdk” files that the

VM used during the same boot sequence as shown in the “.log” file.

 The “.vmx” and “.vmdk” files can, and frequently do, reside within the VMFS system

file, “.fdc.sf.” This can be helpful during forensic analysis because these resident files remain

intact even with a deleted parent VM. Referencing the “.fdc.sf” system file can give the examiner

excellent clues about deleted VMs from the VMFS volume and configuration parameters,

including virtual disk sizes of any deleted VMs.

 The virtual disk file type, “-flat.vmdk”, as described in Discussion of Findings, Major

Findings, Theme 2: Forensic recoverability of disk-provisioning modes can be a challenge to

recover fully from the VMFS volume. A main obstacle to recovery of the virtual disk file volume

is fragmentation within the disk file. Fragmentation was particularly prevalent in the thin-

provisioned virtual disk files. The testing revealed two different types of fragmentation and

additional hypotheses sought to identify methods to reduce the likelihood of fragmented virtual

disk files. The findings of those hypotheses are detailed in the Discussion of Findings, Major

71

Findings, Theme 2: Forensic recoverability of disk provisioning modes, thin-provisioned virtual

disks.

Comparison of the Findings

 Forensic recovery of evidence from ESXi VMs was a field of study with a lack of

available research. Particularly lacking was research on the VMFS file system, which ESXi uses

as the datastore for VMs. This research discovered techniques for recovering forensic artifacts

from deleted ESXi VMs, as well as areas where additional holes in research of ESXi forensics

exist.

 As Carrier (2005) explained, essential file system data is necessary to save and retrieve

files. Data must be available to identify the name of a file, where that file’s content is stored, and

a pointer from the file’s name to the metadata structure (p. 176, para. 1). This research briefly

looked at the mechanics and data layout of the VMFS file system. VMFS maintains the essential

file system data that Carrier referred to within a series of system files. The “.fdc.sf” and “.sbc.sf”

system files were of particular relevance to this research. The treatment of deleted files within

the VMFS file system was an area of interest for this research. The research discovered that

certain file types, notably the “.vmx” and “.vmdk” files, remain resident within the “.fdc.sf”

system file and recoverable after deleting the parent VM. Other files that are not resident within

a VMFS system file have their size, starting block, allocation bitmap, and other metadata wiped

from the VMFS system files upon deletion. For these other file types, traditional file carving

techniques and tools can aid in their recovery.

 Shavers (2008,) in research on VMware’s type-2 hypervisor products, described the

challenges of recovering a VM in full due to fragmentation of the files. Shavers stated that

because of the large size of virtual disk files and a certain amount of fragmentation, fully

72

recovering the contents of a deleted VM may not be possible (pp. 9, para. 4). Shavers’

description of the challenges with fragmentation in recovering virtual disk files was a main

challenge in this research as well. Fragmentation was the single biggest challenge encountered

during the recovery of ESXi VM virtual disk files. Two hypotheses attempted to determine

methods for reducing fragmentation, with mixed results. Fragmentation remains the biggest

challenge to virtual disk file recovery from VMFS volumes.

Limitations of the Study

 This research had several limitations due to both time and scope restraints. There remains

a vast field of research to perform in the area of VMware ESXi forensics. Restraints imposed

during the research for the sake of time requirements limited the ability to further research the

forensic capabilities of the VMFS file system, the VM BIOS setting to “.nvram” address value

mapping, and additional hypothesis testing of methods to reduce fragmentation within virtual

disk files.

 The VMFS file system remains largely undiscovered in academic research. This research

looked briefly into some components of the VMFS file system as a means to an end. Dedicated

research into the VMFS file system’s operation and forensic capabilities is an area that is

important to support efforts like this research going forward. A thorough understanding of the

VMFS system files, the data contained in each system file, and the layout of that data within the

file is essential to understanding how the VMFS file system works. Due to scope restraints, this

research took a surface level look at the “.fdc.sf” and “.sbc.sf” system files.

 Many possible file types make up an ESXi VM. This research focused on VMs that did

not contain any snapshots, or suspended state information. This research reviewed the “.log,”

“.vmdk,” “.vmx,” “.vmxf,” and “-flat.vmdk” file types for methods to carve each deleted file

73

from the file system, identify the parent VM of each file, identify the original file name of each

file, and identify the directory structure and location within the VMFS volume necessary for VM

reconstruction of each file. The “.nvram” file type requires additional research into methods for

identifying the parent VM. This research did not map the “.nvram” address settings to BIOS

settings.

 The scope and time requirements of this research excluded any analysis of VM snapshot,

snapshot data, suspended state, and swap files as part of the research. This research focused on

the recovery of the minimum deleted VM files necessary to reconstruct a VM and have it boot

back into Windows under ESXi. Expansion on this research could include recovery of all VM

file types and offline analysis of VM snapshot, suspended state, and swap files.

74

Future Research Recommendations

 The area of ESXi forensics remains fertile ground for researchers. Four areas in

particular, closely related to this research, present opportunities to further the forensic

community’s ability to examine ESXi VMs. During this research, challenges arose with

fragmentation of virtual disk files, lack of documentation of the VMFS file system, lack of

documentation of the “.nvram” VM file type, and inefficiency in methodology due to lack of

VMFS support in common forensic tools. An additional area not touched upon by this research,

but needed by the forensic community is research into forensic analysis of VM snapshots and

suspended state operations.

 Fragmentation of virtual disk files emerged in this research as the most significant

challenge to forensic recovery of evidence from ESXi VMs. Eliminating fragmentation of virtual

disk files or determining a method of recovering the blocks assigned to deleted virtual disk files

are two improvements that would aid examiners with recovery of ESXi virtual disks. Research

into methods of recovery of fragmented virtual disk files and methods of avoiding fragmentation

of virtual disk files would prove valuable to examiners seeking to recover deleted virtual disk

files from a VMFS volume.

 Contributing a detailed analysis of VMFS’s operations would present examiners with the

opportunity to more efficiently recover and analyze delete ESXi VMs. One of the challenges

encountered during this research was the absence of proper documentation on VMFS operations.

Throughout this research, the vmfs-tools source code and testing observations substituted for

documentation, but added a great amount of time and effort to accomplish the research goals.

Future research detailing VMFS operations will provide examiners with a useful reference for

accurate and efficient analysis of VMFS volumes.

75

 Analysis of the “.nvram” VM file type is necessary in order to understand the BIOS

settings of the parent VM and identify the parent VM of a deleted “.nvram” file. The “.nvram”

file type is a binary file type that contains the VM BIOS settings. As BIOS settings change, so

does a particular address’ setting within the “.nvram” file. Understanding what each address’

setting in the “.nvram” file translates to as a BIOS setting on the VM can assist in identifying a

parent VM.

 Incorporation of VMFS parsing capabilities into data unit level forensic tools, such as

blkls from The Sleuth Kit would improve examiners’ ability to focus recovery efforts strictly on

the unallocated blocks of the VMFS volume. During this research, data carving processes carved

deleted as well as active files within the VMFS volume. Because the tools used to carve data or

analyze the volume at the block level were unable to interpret the VMFS file system, all blo cks

were treated as unallocated, an inefficient way to approach data carving. Future research, which

works with the authors of common open source tools to recognize and interpret the VMFS file

system, will result in time savings for examiners and better handling of some fragmented files.

 VM snapshots and suspended state operations are important areas for future research, as

these features of ESXi can preserve volatile data at a point in time and create timelines of

activity via multiple snapshots. These features of ESXi expand the possibilities of forensic

recovery due to their unique characteristics that differentiate VM analysis from physical machine

analysis. Research into both of these operations of ESXi will be a highly valuable contribution to

the forensic community as virtualization technology continues to gain in popularity.

76

Conclusions

 The purpose of this research was to analyze the potential for recovering evidence

from deleted ESXi VMs. The research focused on ESXi version 5.5 update 2 and VMware’s

proprietary file system VMFS version 5. In pursuit of fulfilling the purpose, the research

attempted to answer four questions: what tools and methods can examiners employ to attempt

recovery of entirely deleted VMs from a VMFS volume? Which disk-provisioning configuration

poses the greatest opportunity for forensic recovery and which disk-provisioning method poses

the greatest challenge for forensic recovery from a VMFS volume? What is the greatest

challenge to forensic recovery of deleted ESXi VM files and what can increase the likelihood of

successful forensic recovery? What tools and methods can examiners employ to attempt

complete reconstruction of deleted ESXi VMs?

 At the time of the research, forensic tools that supported the VMFS file system were

scarce. For this reason, many of the tools and methods to recover deleted VMs from a VMFS

volume relied on recovery of individual or consecutive volume sectors. The tools during this

research that performed the best for this purpose were foremost, for carving deleted files based

on identified header and footer patterns, and dcfldd for carving deleted files based on identified

start and end sectors. The method used to carve with foremost was to analyze known files of the

same file types to carve, identify patterns at the start, or header, of the file, and the end, or footer,

of the file. Incorporating the identified header and footer pattern into the foremost configuration

file and running foremost against an image of the VMFS file system produced results that

included both deleted and active files of the specified file types. Identifying start and end sectors

of files to carve with dcfldd relied on xxd to search the volume for indications of the file start or

77

file end. Once identified, dcfldd was able to extract the specific consecutive sectors that

comprised the complete carved file.

 The research tested three VM disk-provisioning types; thick-provisioned, eager zeroed;

thick-provisioned, lazy zeroed; and thin-provisioned. The two thick-provisioned types differed

only in the method that the VMFS blocks were prepared prior to allocation. With eager zeroed

disks, ESXi zeroes all VMFS blocks allocated to the virtual disk as part of the virtual disk

creation process. With lazy zeroed disks, the VM zeroes allocated blocks within the VM file

system as the allocation occurs. The difference between thick-provisioned and thin-provisioned

disks that thick-provisioned disks have the entire length of the virtual disk allocated within

VMFS at the time of the disk creation while thin-provisioned virtual disks have VMFS blocks

allocated as needed by the virtual disk. As such, a thin-provisioned virtual disk may only have a

percentage of its configured capacity allocated within VMFS at any time.

 The research showed no difference in recoverability of the virtual disk file between the

thick-provisioned, eager zeroed disk type and the thick-provisioned, lazy zeroed disk type.

However, the research determined that thin-provisioned virtual disks experience fragmentation

because of the thin-provisioning mode of operation, which is likely to interfere with the ability to

recover deleted thin-provisioned virtual disk files. As a thin-provisioned virtual disk grows over

time, the likelihood to expand to a contiguous block on the VMFS volume reduces, resulting in a

fragmented virtual disk file. The research concluded that the two thick-provisioning modes

provide the greatest potential for successful recovery of virtual disk files. Thin-provisioned

virtual disk pose the greatest challenge for forensic recovery of virtual disk files from a VMFS

volume.

78

 The greatest challenge to forensic recovery of deleted ESXi VMs is the fragmentation

within the VMFS volume of virtual disk files. Virtual disk files are typically large when

compared to most common file types. In order to avoid fragmentation within the VMFS volume,

the virtual disk file must be written to a portion of the volume with a continuous stream of

unallocated space equal to or greater than the length of the virtual disk file. During the testing of

scenarios that may increase the likelihood of avoiding fragmentation of virtual disk files, one

finding was that ESXi does not seek to avoid fragmentation at the expense of consecutive

allocation. In other words, ESXi seeks to write a new file to the next consecutive block as the

previous write operation, regardless of whether fragmentation will result, even if there exists

contiguous unallocated blocks with sufficient length to avoid fragmentation elsewhere on the

volume. During this research, the best method discovered to avoid fragmentation of a virtual disk

file was if allocation of the virtual disk file occurred as one of the first files on the volume.

Commonly, allocation of virtual disk files occur well in advance of the need for forensic

examination, which makes this method generally outside the control of the forensic examiner.

 Complete reconstruction of a deleted VM relies on recovery of the essential ESXi VM

file types, “.vmx,” “.vmxf,” “.vmdk,” “-flat.vmdk,” and “.nvram”. Additionally, recovery of the

VM’s “.log” file(s) is instrumental in identifying the most recently active “.vmx” and “.vmxf”

files. Each “.log” file contains the VM’s complete configuration, recorded at the time of the

VM’s start, with each line time-stamped. This allows for identification of the most recent “.log”

file and matching the configuration lines with the correct “.vmx” and “.vmxf” files. The contents

of the “.vmx” file shows the parent VM name and the file names of the “.vmdk,” “.vmxf,” and

“.nvram” files. The “.vmxf” file contained the file name of the “.vmx” file. The “.vmdk” file

contains the directory structure of the parent VM within the VMFS file system, each “-

79

flat.vmdk” file name(s) and file size in disk sectors. Using the techniques described earlier in the

Conclusions section to recover the “-flat.vmdk”, or virtual disk file, combined with the

techniques described here to identify the latest version of “.vmx” and “.vmxf” files types, re -

assign file names to the recovered files, and recreate the directory structure of the deleted VM,

deleted VMs can be fully reconstructed on a VMFS volume.

80

References

Altheide, C., & Carvey, H. (2011). Digital forensics with open source tools. Waltham, MA:

Syngress.

Barrett, D. (n.d.). Forensic challenges in virtualized environments. Retrieved from University of

Advancing Technology:

http://www.uat.edu/academics/forensic_challenges_in_virtualized_environments.aspx

Barrett, D., & Kipper, G. (2010). Virtualization and forensics: A digital forensic investigator's

guide to virtual environments. Burlington, MA: Syngress.

Carrier, B. (2005). File System Forensic Analysis. Boston, MA: Addison-Wesley.

Carrier, B. (2010, March 18). Mmls. Retrieved from Sleuth kit wiki:

http://wiki.sleuthkit.org/index.php?title=Mmls

Carrier, B. (2015). Open source digital forensics. Retrieved from The sleuth kit:

http://www.sleuthkit.org/

Carvey, H. (2012, July 27). Regripper. Retrieved from Google code project for regripper:

https://code.google.com/p/regripper/wiki/RegRipper

Cole, D. E. (2010). Introduction. In D. Barrett, & G. Kipper, Virtualization and forensics, A

digital forensic investigator's guide to virtual environments (p. xv). Burlington, MA:

Syngress.

DiPetrillo, M. (2010, April 7). Mike DiPetrillo from VMware talks cloud. (R. Haywood,

Interviewer) Retrieved from http://rodos.haywood.org/2010/04/mike-dipetrillo-from-

vmware-talks-cloud.html

Fillot, C., & Hommey, M. (2012, March 25). vmfs-tools. Retrieved from Glandium:

http://glandium.org/projects/vmfs-tools/

81

Fluid Operations. (2010, January 25). Open source VMFS driver. Retrieved from Google Project

Hosting: https://code.google.com/p/vmfs/

Forrester Research, Inc. (2012, January). Virtual security in the data center. Retrieved from

Cisco Systems: http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-

virtualization/unified-fabric/tap_virtual_security_032012.pdf

Free Software Foundation. (2014, July 19). Summarizing files. Retrieved from GNU Coreutils:

http://www.gnu.org/software/coreutils/manual/coreutils.html#md5sum-invocation

Free Software Foundation Europe. (2015, March 24). Get a free software PDF reader. Retrieved

from FSFE: http://pdfreaders.org/

Harbour, N. (2006, December 19). dcfldd - Latest version 1.3.4-1. Retrieved from dcfldd:

http://dcfldd.sourceforge.net/

Hommey, M. (2011, September 09). Initial VMFS 5 support. Retrieved from glandium.org:

http://glandium.org/blog/?p=2194

IBM Global Education. (2007, October). Virtualization in education. Retrieved from

http://www-

07.ibm.com/solutions/in/education/download/Virtualization%20in%20Education.pdf

Kajamoideen, M. R. (2013, July 2). Mohammed Raffic Kajamoideen's blog. Retrieved from

VMware Community:

https://communities.vmware.com/people/raffic_ncc/blog/2013/07/01/difference-between-

vmware-esx-and-esxi

Kornblum, J. (2006). Identifying almost identical files using context triggered. Digital

Investigation(3), 91-97.

Lowe, S. (2009). Mastering VMware vSphere 4. Indianapolis, IN: Wiley Publishing, Inc.

82

Lowe, S., Marshall, N., Guthrie, F., Liebowitz, M., & Atwell, J. (2014). Mastering VMware

vSphere 5.5. Indianapolis: Sybex.

Medico, A., Cordovano, R., Kornblum, J., Lowe, J., & Levendoski, M. (2014, 06 06). dc3dd.

Retrieved from sourceforge.net: http://sourceforge.net/projects/dc3dd/

Microsoft. (2002, January 31). The default cluster size for the NTFS and FAT file systems.

Retrieved February 2015, 20, from Microsoft Support:

http://support.microsoft.com/kb/314878

Moolenaar, B., & Nugent, T. (1996, August). xxd. Retrieved from LinuxCommand.org:

http://linuxcommand.org/man_pages/xxd1.html

Mueller, S. (2013). Upgrading and Repairing PCs. (21, Ed.) Indianapolis, IN: Que Publishing.

Perlow, J. (2009, March 3). VMWare's filesystem clustering cracked open . Retrieved from

ZDnet: http://www.zdnet.com/article/vmwares-filesystem-clustering-cracked-open/

Pfleeger, C. P., & Pfleeger, S. L. (2007). Security in Computing. (4, Ed.) Boston, MA: Pearson

Education, Inc.

Rigaux, P. (n.d.). Hexedit (1). Retrieved from Pixel's Home Page: http://rigaux.org/hexedit.html

Shavers, B. (2008). Virtual forensics: a discussion of virtual machines related to forensic

analysis. Retrieved from http://www.forensicfocus.com/downloads/virtual-machines-

forensics-analysis.pdf

Smith, R. W. (2014, March 02). GPT fdisk . Retrieved from sourceforge.net:

http://sourceforge.net/projects/gptfdisk/

U.S. Department of Commerce, National Institute for Standards in Technology. (2006). Guide to

integrating forensic techniques into incident response. (NIST Special Publication 800-

86). Retrieved from http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf

83

VMWare Inc. (2014, October 9). vSphere virtual machine administration. Retrieved from

VMware vSphere 5.5 Documentation Center: http://pubs.vmware.com/vsphere-

55/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-552-virtual-machine-

admin-guide.pdf

VMware Inc. (2014a, November 17). vSphere storage. Retrieved from VMware vSphere 5.5

Documentation Center: http://pubs.vmware.com/vsphere-

55/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-552-storage-guide.pdf

VMware, Inc. (2009). Performance study of VMware vStorage thin provisioning. Retrieved from

VMware.com: http://www.vmware.com/pdf/vsp_4_thinprov_perf.pdf

Ward, K. (2015, January 5). 2015 Virtualization predictions. Retrieved from Virtualization

Review: http://virtualizationreview.com/articles/2015/01/01/2015-virtualization-

predictions.aspx

Weadock, G. (2008, October 22). Biggest benefits of virtualization? Retrieved from Network

World: http://www.networkworld.com/article/2346841/microsoft-subnet/biggest-

benefits-of-virtualization-.html

84

Appendices

Appendix A – Physical Datastore

Figure 16. Contents of VMD_physical_20150305.log. This figure shows the output of the dc3dd command, verifying the MD5

hash value for the original source and both image copies matched.

85

Figure 17. Carving the VMFS volume with dcfldd. This figure shows the dcfldd command used to extract the sectors of the

VMFS volume and create the working-copy image, “ Boston_volume_20150305.raw,” and the preservation -copy image,
“ Boston_volume_20150305.raw.preserve.” dcfldd calculated the MD5 hash value of the ext racted data and displayed the hash

value in the command output.

86

Appendix B – VMFS Volume

Table 9

Known VMFS Volume Info Header Fields

Description Offset Length (bytes) Value Interpretation

Signature 0x100000 4 0D D0 01 C0 “ 0xc001d00d”: signature value

Version 0x100004 4 05 00 00 00 VMFS Version 5

Name 0x10002E 20 57 44 2D 57 4D 41 4C 38

31 31 36 34 33 37 37 00

00 00 00 00 00

WD-WMAL81164377

Volume size 4 00 00 00 14 “ 0x14000000”: This value, multiplied by 256

provides the total number of bytes in the

volume, 85899345920

UUID 0x100082 16 8C 96 F7 54 51 9B 3C D9

07 2D 00 15 17 1E 3F 3C

54F7968C-D93C9B51-2D07-5C3F1E171500

Created Time 0x100092 8 93 C8 F6 E4 7E 10 05 00 Wed, 04 Mar 2015 23:34:36 GMT

Modified time 0x100100 8 73 50 45 40 89 10 05 00 Thu, 05 Mar 2015 11:55:58 GMT

Note: Adapted from vmfs-tools source code (Fillott & Hommey, 2012). This table lists the known volume info header fields from

the VMFS volume contained within the “VMD_physical_20150305.raw” physical volume.

87

Table 10

VM File Types

File Usage Description

.vmx Vmname.vmx VM configuration file

.vmfx Vmname.vmfx Additional VM configuration files

.vmdk Vmname.vmdk Virtual disk characteristics

-flat.vmdk Vmname-flat.vmdk VM data disk

.nvram Vmname.nvram or nvram VM BIOS or EFI configuration

.vmsd Vmname.vmsd VM snapshots

.vmsn Vmnams.vmsn VM snapshot data file

.vswp Vmname.vswp VM swap file

.vmss Vmname.vmss VM suspend file

.log Vmname.log Current VM log file

-#.log Vmware-#.log (where # is a

number starting with 1)

Old VM log files

Note: From “ vSphere virtual machine administration,” p. 11, table 1 -1, by VMware, Inc., 2014.

88

Table 11

VMFS File System Metadata Files

Filename Role

fbb.sf File block system file

fdc.sf File descriptor system file

sbc.sf Sub-block system file

pbc.sf Pointer block system file

vh.sf Volume header system file

Note: Adapted from Virtualization and Forensics (2010) by Barrett & Kipper (p, 179, para. 2).

89

Table 12

Ssdeep comparison results of carved “.nvram” files

File1 File2 Percent Match

25821184.nvram 131336192.nvram 99

26249238.nvram 131336192.nvram 99

26249238.nvram 25821184.nvram 99

88870934.nvram 131336192.nvram 99

88870934.nvram 25821184.nvram 97

88870934.nvram 26249238.nvram 97

162947072.nvram 131336192.nvram 97

162947072.nvram 25821184.nvram 97

162947072.nvram 26249238.nvram 99

162947072.nvram 88870934.nvram 99

132732950.nvram 131336192.nvram 99

132732950.nvram 25821184.nvram 96

132732950.nvram 26249238.nvram 96

132732950.nvram 88870934.nvram 99

132732950.nvram 162947072.nvram 96

88942592.nvram 131336192.nvram 99

88942592.nvram 25821184.nvram 99

88942592.nvram 26249238.nvram 99

88942592.nvram 88870934.nvram 97

88942592.nvram 162947072.nvram 97

88942592.nvram 132732950.nvram 96

Note: This table shows the results of the command “ ssdeep –lrd nvram/”, comparing the similarity of the files contained within

the “ nvram” folder.

90

Table 13

Revised virtual disk file extents

Volume starting

sector

Volume ending

sector

Number of

sectors

File carved as MD5 Hash value

38,539,264 63,705,088 25,165,824 38539264-

flat.vmdk

ca1c70318679d2770f4a9a159366974e

63,705,088 88,870,912 25,165,824 63705088+2048-

flat.vmdk

2f4ed440bad5c542341189688c0137da

97,521,664 122,687,488 25,165,824 97521664+2048-

flat.vmdk

2aa522c9b165e444b0d19dd4666efe6c

131,338,240 156,504,064 25,165,824 131338240+2048-

flat.vmdk

db21b80916b0f51dc9e6ad047339f72e

Note: This table is a revision of Table 5 from Methodology, Analysis, Examination Phase. ESXi virtual disks contain one empty

VMFS block following the end of the last partition of the virtual disk. The first set of virtual disks had been carved from the

VMFS volume prior to this discovery, necessitating the files to be carved a second time with the added VMFS block included.

91

Figure 18. Contents of foremost_vmware.conf. This figure shows the contents of “ foremost_vmware.conf” used to carve the
VM, “ .log,” “ .vmx,” “ .nvram,” “ .vmxf,” and “ .vmdk,” files.

92

Appendix C – Alpha VM

Table 14

Carved files from the “Alpha” VM

File Name File type Carved from

(sector)

Size (bytes) MD5 hash value

00490850.vmx vmx 00490850 1048510 6b28f747a065cdd9057455082e823385

00490890.vmdk vmdk 00490890 1024 7405e0d4cd450d8c1935e015b5a1879b

01558752.vmx vmx 01558752 19361 775015ab5bbf4c31cace80a9c7552b9d

01558816.vmx vmx 01558816 2978 5a7e000f6147dc522edfb9e17c8e30f0

01558832.vmx vmx 01558832 2980 5485e4c97dc20f76dc3dbb059b24fab7

01558944.vmx vmx 01558944 2979 9059145772a968f0c9f1067e2074c78e

01559088.vmx vmxf 01559088 3260 0b3597e4370594f5e1b5f7da75b50317

01559328.vmx vmx 01559328 2979 6ff10e7805973b8767bc93ff0759bc2d

01559392.vmx vmx 01559392 2978 dd914915c566fb03fb9c5d0a37bd374a

01559408.vmx vmx 01559808 2979 b1f27791e703d220b50fa669c1b0dce0

131627008.log log 131627008 214185 03027c836572feabac267ee71675ecd9

156733440.log log 156733440 213356 627c96923aef75f3f8fdd4b363de98f1

88938496.log log 88938496 583595 98ff0dd3b4fa5804e197ec755d1d502c

88940544.log log 88940544 383574 583f2fb37da169b2638584cd20f5d8ab

88956928.log log 88956928 225850 683e120325d5e26d9fe9387bd40aeb40

38539264-flat.vmdk -flat.vmdk 38539264 12883853312 9f37811117150dab01c178d0b5829894

Note: This table lists all carved files from the “ Boston_volume_20150205.raw” image that could be associated with the “Alpha”
VM. Red typeface denotes the files identified as the most current versions and used to reconstruct the “Alpha” VM.

93

Table 15

Carved files used to reconstruct the “Alpha” VM

File Name File type Carved from

(sector)

Size (bytes) MD5 hash value

Alpha.vmdk vmdk 00490890 1024 7405e0d4cd450d8c1935e015b5a1879b

Alpha.vmx vmxf 01559088 3260 0b3597e4370594f5e1b5f7da75b50317

Alpha.vmx vmx 01559808 2979 b1f27791e703d220b50fa669c1b0dce0

Alpha-flat.vmdk -flat.vmdk 38539264 12883853312 9f37811117150dab01c178d0b5829894

Alpha-flat.vmdk -flat.vmdk 38539264 12884901888 ca1c70318679d2770f4a9a159366974e

Note: This table lists the four carved files from the “ Boston_volume_20150205.raw” image used to reconstruct the “Alpha” VM

on the ESXi system “ vhost21.” Red typeface denotes a corrected entry. “ Alpha-flat.vmdk” was re-carved after discovering that “ -

flat.vmdk” files require an additional 2048 sectors following the last partition on the virtual disk.

94

Appendix D – Bravo VM

Table 16

Carved files from the “Bravo” VM

File Name File type Carved from

(sector)

Size (bytes) MD5 hash value

00490826.vmdk vmdk 00490826 1024 4eded3c8f9d193e37b11646457add3a6

01558688.vmx vmx 01558688 2980 de13aada3e12727f5a28c8914ec7f1c4

01558960.vmx vmx 01558960 2979 26cb192840a22e6bec3be543057ce9c6

01558992.vmx vmx 01558992 2980 dbaad0c6884729ea00207f62f5b9be50

01559008.vmx vmx 01559008 2979 fedbd6700ae465bf317fe43f61c03067

01559024.vmx vmx 01559024 2979 b89e2e73ab1a32a5eca521df02f3085e

01559040.vmx vmx 01559040 2978 6c6670731cd7290ec531b74b2d8bbf8e

01559168.vmx vmx 01559168 2979 b218a13ea0f77e65eae16b238ebc1dc4

01559264.vmxf vmxf 01559264 3260 85a72f0c27f8b62dcb73cda2603dd092

01559424.vmx vmx 01559424 2978 410c79a74182e10d9939580c255df447

122757120.log log 122757120 402827 a82070151280c442df30bba25c3422fd

123150336.log log 123150336 372585 392648383f172ed7302559b1e2372176

124286976.log log 124286976 226770 2700fc2b81fb169c57a2de255d69f77a

131203072.log log 131203072 113428 7139d9282dafa3a09e0decc28894029b

157386752.log log 157386752 943282 9c16e122c8db044faa225b6b7b8ef046

159092736.log log 159092736 227094 f1e77b240b937b2313a5d36ba4819e45

88936448.log log 88936448 300007 383a9a599a50d9c68fd480d7bf112d14

63705088+2048-

flat.vmdk

-flat.vmdk 63705088 12884901888 2f4ed440bad5c542341189688c0137da

Note: This table lists all carved files from the “ Boston_volume_20150205.raw” image that could be associated with the “Bravo”
VM. Red typeface denotes the files identified as the most current versions and used to reconstruct the “Bravo” VM.

95

Appendix E – Charlie VM

Table 17

“Charlie-flat.vmdk” file descriptor metadata from volume restoration image:

Description Metadata

f ile name

Offset Length

(bytes)

Value Interpretation

ID .fdc.sf 0x0D8AD200 4 44 8A 80 04 inode ID = 0x04808A44

ID2 .fdc.sf 0x0D8AD204 4 20 00 00 00 inode2 ID2 = 0x20 (unknown

purpose)

Nlink .fdc.sf 0x0D8AD208 4 01 00 00 00 Nlink = 0x01

Type .fdc.sf 0x0D8AD20C 4 03 00 00 00 Type=0x03 (file – from vmfs-file.h)

Flags .fdc.sf 0x0D8AD210 4 00 00 00 00

Size .fdc.sf 0x0D8AD214 8 00 00 00 00 03 00 00 00 12884901888 Bytes

Block Size .fdc.sf 0x0D8AD21C 8 00 00 10 00 00 00 00 00 1048576-Byte block size (1MB)

Block Count .fdc.sf 0x0D8AD224 8 AB 20 00 00 00 00 00 00 43808 Blocks

MTime .fdc.sf 0x0D8AD22C 4 5F 27 F8 54 Thu, 05 March 2015 09:52:31 UTC

CTime .fdc.sf 0x0D8AD230 4 12 27 F8 54 Thu, 05 March 2015 09:51:14 UTC

ATime .fdc.sf 0x0D8AD234 4 5F 27 F8 54 Thu, 05 March 2015 09:52:31 UTC

Mode .fdc.sf 0x0D8AD240 4 80 01 00 00 0x0180

ZLA .fdc.sf 0x0D8AD244 4 03 00 00 00 0x03

Type .sbc.sf 0x0E3162BC 4 03 00 00 00 Type 3 (File)

Block ID .sbc.sf 0x0E3162C0 4 44 8A 80 04 Block ID = “ 448A8004”, same as

“ Node ID” from .fdc.sf.

Record ID .sbc.sf 0x0E3162C4 4 20 00 00 00 Record ID = 32

Name .sbc.sf 0x0E3162C8 128 43 68 61 72 6C 69 65 2D

66 6C 61 74 2E 76 6D 64

6B 00 00 00 …

“ Delta-flat.vmdk”

Note: Adapted from vmfs-tools source code (Fillott & Hommey, 2012). This table shows the metadata associated with the

“ Charlie-flat.vmdk” inode within the restoration image.

96

Appendix F – Non-consecutive Writes Hypothesis

Table 18

Carved files from “Dallas” volume

Filename Length (Bytes) MD5 Hash Filename Length (Bytes) MD5 Hash

00490914.vmxf 263 c915a29ad72ad4c1c

8760ef2b6e31aa3

01558992.vmx 3069 cada1d806a2bbe4cf

79019c49ccc1d22

00490938.vmxf 261 978108079942c4cae

493ab8f073c4b20

01559008.vmx 2856 fee31a2ff43569d2a

60b53396e41885a

00491010.vmxf 261 bcd7190e68973a265

8a0cc9e94e3deaf

01559024.vmx 3067 c3ff9a500a79ac7b8

2485922a515fcc6

00491030.vmxf 261 ada8ffd32096ae5a46

f214b97eab48af

01559040.vmx 3080 b0bffd315b233ba53

f9be0c2ab5abf8f

00490926.vmdk 1024 eed930657b633e615

e69c74caf054041

38537733.vmdk 1024 a9a32a58fb8fdc87d

6167617fc7a6daa

00490950.vmdk 1024 ea30e66924deb51ee

2b0cd9855827d37

84742144.log 683345 bf0b3d6514ca29aaa

446c1e5a3bfec60

00491042.vmdk 1024 b00a6c14b3a4b7a77

77ac50457b7063c

84744192.log 683404 c247668f3a3fff1140

fc71d501515c04

00491070.vmdk 1024 8342f7103f0dc71b5

d0bd03adbf6afdb

88938496.nvram 1024 85de00b97ec3a248

2c5db044683175cc

01558784.vmx 19451 877b2b1d54f50fb0a

36a7a5d82b6c9cd

89131008.nvram 1024 7e1694ae44645881

ae4e9a375cadbfc3

01558816.vmx 3067 c3ff9a500a79ac7b82

485922a515fcc6

135081984.log 683726 80d1e581f1398c028

7d51d5ce0d0b584

01558832.vmx 3080 b0bffd315b233ba53

f9be0c2ab5abf8f

135084032.log 766747 23aa66efaa36bf127

a68db8bd4e2a5b1

01558848.vmx 3079 b1ade7d794fe848e3

b19f610cb3fd5bd

135086080.log 219376 606338f42caf450ea

21c7d57f01f6904

97

01558864.vmx 3066 065e8f1faa0c21df65

68ce2083cfb547

139302912.log 207076 064d581fe69c9e281

01b170b9c409f19

01558912.vmx 3069 cada1d806a2bbe4cf

79019c49ccc1d22

139307008.log 221678 d2a18c93900b2a3d

c53d88a94b442ff0

01558928.vmx 3068 341e6f14c2accc53b

d0e54867bb1510e

139470848.nvram 1024 6a8bb0eec4f433a25

63dba71c3352f11

01558944.vmx 2855 47733a927c2b6f4c1

1cbe4e7cb2107f0

143994880.log 221665 f4e301780de71f503

e971672622f4c12

01558960.vmx 2856 fee31a2ff43569d2a6

0b53396e41885a

148455424.log 220171 01eb7d4f0d618fdc0

6db79fcfcdee5cd

01558976.vmx 3067 c3ff9a500a79ac7b82

485922a515fcc6

148383744.nvram 1024 7e1694ae44645881

ae4e9a375cadbfc3

Note: This table lists the VMware files carved from the “ Dallas” volume as part of the testing for the “ non-consecutive writes”

hypothesis. Each filename’ s name is the first sector where the file was found. Duplicate items are denoted by a color, matching

the color of each identical file.

Table 19

“Dallas” carved virtual disk files

Volume starting

sector

Volume ending

sector

Number of

sectors

File carved as MD5 Hash value

38,539,264 63,705,088 25,165,824 38539264-

flat.vmdk

105c9d1d8df4878f46c6eb2f84d6107e

59,510,784 84,676,608 25,165,824 63705088+2048-

flat.vmdk

f90090fa7cbc14b1a8a7e20f55792c94

84,676,608 109,842,432 25,165,824 97521664+2048-

flat.vmdk

7f4539a3f9830e827c2f4d78cc707d79

109,850,624 135,016,448 25,165,824 131338240+2048-

flat.vmdk

f4a45ac054e32036cace5bbe9297be83

Note: This table lists the virtual disk files identified and carved from the “ Dallas” volume. Note the overlap between the first an d
second virtual disk files due to “38539264-flat.vmdk” being a thin-provisioned virtual disk file.

98

Appendix G – Unallocated Percentage Hypothesis

Table 20

Carved files from “Edmonton” volume

Filename Length (Bytes) MD5 Hash Filename Length (Bytes) MD5 Hash

00490794.vmxf 261 50a1f4f2db82065e6

9fe8e0979ccb3d1

01558768.vmx 2985 40704101d33e4c02

a93abc0c5c45104a

00490814.vmxf 261 f1b78f61492a718e0f

70068e5b556480

01558784.vmx 2984 37f5eaaea855b2912

d0d4a839fce54b2

00490838.vmxf 263 ff9746f836863193a

8defc2e4558b69e

01558800.vmx 2982 303e8c1408ecea03e

2ad576ba493dbb8

00490938.vmxf 261 21b231a5c7ce4c450

91c6e7b488014a0

01558832.vmx 2983 0431beeef110b584c

8de4fd19b52ae9b

00490826.vmdk 1024 2029c98dbd533493a

5c3a2e2d454c365

01558848.vmx 2982 b1f13a6ffaf12bcbe7

fed2169dd06a6a

00490850.vmdk 1024 1aa17fe2d1d319844

a72de3cba51f902

14895104.log 683229 8a1e5c17ec2c86458

71768fe6c0377b7

00490878.vmdk 1024 4b9041c74342c5d05

ee322978bc1f31d

19283968.nvram 1024 cd1278de31696ef1b

d41137a979351fa

00490950.vmdk 1024 f95efa6ad0bcf65455

c4a5f061a63856

281628672.log 685199 fa0cff3c535afce408

20c4722ae768cd

00490978.vmdk 1024 4617cb527cade13a0

f51f9920e5181c8

286017536.nvram 1024 6b53d2a4363d0e50

be8f83b4579cef07

01558688.vmx 11175 4b67f6c10d6cff1f6a

6d56b5713797f7

289654784.log 687859 f2b05cb89928c604e

49c49f80050ec29

01558704.vmx 2983 cd4985dbbd72e51dc

d2b11365d42f2be

294240256.nvram 1024 cd1278de31696ef1b

d41137a979351fa

01558736.vmx 2997 cc9e470ea4a975d56

9547dff73d2ac19

294553600.log 683229 9fb46d8f7b5201077

f1f3a3601418ee3

99

01558752.vmx 2996 5b08689b543adbd8

9934d4607e113d24

299036672.nvram 1024 da623cbcbb03113d

b96d8b6fa960892e

Note. This table lists the files carved from the “ Edmonton” VMFS volume as part of the “ unallocated percentage” hypothesis.

Each filename’s name is the first sector where the file was found. Duplicate items are denoted by a color, matching the color of

each identical file.

Table 21

“Edmonton” carved virtual disk files

Volume starting

sector

Volume ending

sector

Number of

sectors

File carved as MD5 Hash value

206,065,664 243,605,504 37,539,840 206065664-

flat.vmdk

5411076220507dde418bc8823c209588

243,814,400 281,354,240 37,539,840 243814400-

flat.vmdk

6fa2d00649b536bc4cf84c088fe58b28

286,019,584 323,559,424 37,539,840 286019584-

flat.vmdk

c56b10c234ba03b3c1921b0af7b98e4d

310,110,208 347,650,048 37,539,840 310110208-

flat.vmdk

c5f56eca6a43955c3df701685c8bc2a2

310,110,208 &

2,514,944

335,544,320 &

14,827,519

37,539,840 310110208_merged-

flat.vmdk

44b5caf80368825aaa70a7c8a8d5e8bc

Note: This table lists the virtual disk files identified and carved from the “ Edmonton” volume. Note the overlap between the third

and fourth virtual disk files due to “ 310110208-flat.vmdk” being a thin-provisioned virtual disk file. “ 310110208-flat.vmdk”
extended beyond the end of the “ Edmonton” volume. The virtual disk file “ 310110208_merged-flat.vmdk” was a concatenation

of “ 310110208-flat.vmdk” and sectors 2,514,944 through 14,827,519 of the “Edmonton” volume.

