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Abstract

The purposeofthis research was to analyze the potential forrecovering evidence from
deleted VMware vSphere Hypervisor (ESXi) virtual machines (VMs). Thereexists an absence of
scholarly research onthe topic of deleted VM forensic recovery. Research dedicated to forensic
recovery of ESXi VMs and VMware’s VM file system(VMFS) is nearly non-existent. This
paperexamined techniques to recover deleted ESXi VMs to a state where examination for
forensic artifacts ofuseractivity can occur. The paper examined the disk-provisioning methods
for allocation of virtual disk files and the challenges for forensic recovery associated with each
disk-provisioning type. The research determined thatthe two thick-provisioned virtual disk types
provided the bestopportunity for completerecovery, while certain characteristics ofthin-
provisioned virtual disk files made themless likely to recoverin their entirety. Fragmentation of
virtual disk files presented the greatest challenge forrecovery of deleted VMs. Testing of
alternate hypotheses attempting to reduce the likelihood of fragmentation within the virtual disk
file met with mixed results, leaving fragmentation of virtual disk files as a significantchallenge
to successful VM recovery. The paper examined the techniques forrecovering deleted files from
VMES volumes. Due to a lack of forensic tools with the ability to interpretthe VMFS filesystem,
forensic recovery focused on data streamsearching through the VMFS volume image and file
carving fromconsecutive disk sectors. This method proved to beinefficient, butultimately
successfulin most ofthe testcases. Keywords: Cybersecurity, Professor Cynthia Gonnella,

virtualization, VM DK.
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Recovering Evidence from Deleted VMware vSphere Hypervisor Virtual Machines

Forensic examinations in virtualized environments pose challenges to examiners beyond
thoseencountered in physical computer examinations. This fact stands in contrastto the
perceived easeofuse and rapid deployment capabilities associated with many oftoday’s
virtualization technology products. Much ofthe literature on virtualization technology focuses on
disaster recovery, performance optimizations, and security considerations. There exists a small
subsetofresearch into virtualization forensics. The purpose ofthis research was to analyze the
potential forrecovering evidence fromdeleted VMware vSphere Hypervisor (ESXi) virtual
machines (VMs).

According to a January 2012 Forrester Research Custom Technology A doption Profile
commissioned by Cisco Systems, 48% of servers in data centers were virtualized and, “85% of
North American enterprises have already adopted x86 server virtualization or [were] planning to
expand their implementation in the next 12months” (pp.1-2). With 85% of North American
enterprises using virtualization in the datacenter, virtualization is clearly mainstreamtechnology
in the Information Technology (IT) realm. Keith Ward, the Editor in Chiefof Virtualization
Review, quoted Andi Mann, Vice Presidentof CA Technologies, as saying, “in 2015 I predict
virtualization moves into broad mainstreambusiness and consumer use cases, not just I'T
mainstreamuse cases” (Ward, 2015, p. 1, para. 12). With virtualization becoming omnipresent in
the data centerand moving into the consumer market, forensic capabilities in this spaceare
lagging behind the momentumofvirtualization technology. Cyber security expert and SANS
Institute Instructor, Dr. Eric Cole (2010), explained the immature state of forensics within

virtualized environments:



If you aska forensic expert to performanalysis on a compromised system, this is a
straightforward task, and you willnotice the confidence in which he orshe can
implement the task. However, ifyou mention it is a completely virtualized environment,
the confidencechanges to fear very quickly [....] Our ability to analyze thesesystems is

still in its infancy even though the technology is quickly maturing. (p.xv, para. 2)

This research specifically probed the likelihood ofrecovering deleted VM for forensic
analysis. Through the exploration ofthese features within ESXi, the research sought to answer
the following questions: What tools and methods can examiners employ to attempt recovery of
entirely deleted VMs froma VMFS volume? Which disk-provisioning configuration poses the
greatest opportunity for forensic recovery and which disk-provisioning method poses the greatest
challenge for forensic recovery froma VMFS volume? Whatis the greatestchallenge to forensic
recovery of deleted ESXi VM files and what can increase the likelihood of successful forensic
recovery? What tools and methods can examiners employ to attempt completereconstructionof
deleted ESXiVMs?

Virtualization Terminology

Virtualization, as IBM Global Education (2007) explained, is, “a technique for hiding the
physical characteristics of computing resources fromthe way in which other systems,
applications or end users interact with thoseresources” (p. 2, para. 3). Virtualized operating
systems installed on complete virtual computers called VMs is the basis ofx86 virtualization. As
Diane Barrett and Gregory Kipper (2010) defined it,a VM is, “a software version ofa physical
computer thatoperates and executes like a physical machine” (p. 249, para. 5). The host system

is the physical machine that thehypervisorruns on, as it hosts the VMs.



The componentofvirtualization technology responsible for running multiple VMs on a
single host system, termed the hypervisor. As Diane Barrett(n.d.) fromthe University of
Advancing Technology explained, “a hypervisor or VM monitor (VMM)is a virtualization
platformthat provides more than one operating systems to runon a host computerat thesame
time” (How Virtualization W orks, para. 2). Bare-metal hypervisors, alsoknown as Type 1
hypervisors, install directly onto the systemhardware as opposedto type2 hypervisors, which
installon top ofa host operating system (Lowe, Marshall, Atwell, Guthrie, & Liebowitz, 2014, p.
4, para.2).

VMware vSphere Hypervisor (ESXi)

There are numerous implementations of virtualization technology available as either
commercial or free products. The virtualization technology thatthis research focused on was
VMware vSphere Hypervisor, alsoreferred to as ESXi. VMware Inc. is a commercial entity,
which developed vSphere, VMware’s enterprise-grade virtualization productsuite (Lowe et al.,
2014, p.1 para. 1). VMware offers a limited functionality free license forthe ESXibare-metal
hypervisor, which is the core ofthe vSphere product line. This research used themost current
version of ESXi at the time, version 5.5 update 2, with an evaluation license, which enabled all
features of ESXi.

Within VMware’s vSphere product suite, ESXi provides the foundation of virtualization
by way ofthe VMkernel. The VMkernelmanages the VMs’ access to the underlying physical
hardware through CPU scheduling, memory management, and virtual switch data processing
(Lowe etal., 2014, pp.4-5). Due to the lack of a service console within ESXi, remote

management utilities, of which VMware offers several options, performthe bulk of ESXi



configuration. The VMware vSphere Client, a free client application for ESXi host configuration
and VM management, created and made changes to the VMs used in the research.
Virtualization Flexibility

The flexibility of VM allows for dynamic reallocation ofhardware, a major benefit over
physicalmachines (W eadock, 2008, para. 2). This dynamic reallocation ofhardware makes it
quick and easy to shift hardware resources fromone VM to anotherand to quickly create or
delete VMs. The virtualisolation of VMs fromone another allows each VM to contain its own
operating system, applications, and networking configuration (Barrett & Kipper, 2010, p. 7, para.
3). This isolationis similar to physical machines, except that with virtualization, it can be
accomplished using shared hardware resources, reducing the duration and costofoperations.

This flexibility inherent to virtualization makes deleting VM, which may contain
forensic artifacts of significance, trivial for a userto perform. ESXi is not different, providing
administrators the ability to delete a VM from disk with a single mouse click. Performing a
forensic analysis ofthe deleted VM files requires file recovery fromthe host disk.
Forensic Challenges of ESXi

ESXi is a proprietary systemdevelopedby VMware thathas experienced wides pread
adoption in the virtualization community . Several ofthe features of ESXi and the proprietary
nature of VMware’s technology create challenges for forensic examiners. As Brett Shavers,
digital forensics consultant and former adjunct instructor at the University of Washington’s
Digital Forensics program, explained (2008), “virtualmachines can be a valuable toolin forensic
investigations and canalsobe usedto thwart forensics investigations justas easily” (p. 16, para.
1). Deleting VMs, snapshot rollbacks, and non-persistent changes to disk are examples of

techniques used to thwart forensic investigations.



ESXi uses a proprietary file system, called Virtual Machine File System (VMEFS), for all
storageon thehostsystem. There are several advantages to VMFS which enable the seamless
operationof VMs in a distributed vSphere environment, such as allowing multiple VMs to read
and write to shared volumes concurrently and direct-to-disk mput/output operations, achieving
high performance with low CPU overhead (Lowe et al., 2014, p. 310, para.4). Despite the
advantages to VMFS, since it is a proprietary file system, the vast majority ofregularly accepted
forensic tools are currentlynotable to interpret the VMFS file system.

Atthe time of this research, there were two versions of VMFS in regularuse, VMFS3
and VMFSS5. The most notable differencebetween VMFS3 and VMFSS5is VMFS5’s support for
disks greaterthan2TBin size (VMware Inc.,2014a, p. 134). Similarly, the files that ESXi
creates for suspended state and snapshot operations are VM ware proprietary file formats. These
proprietary file formats and the proprietary file system present multiple challenges for the
forensic examiner seeking to carve deleted files fromthe file systemand interpret recovered
files’ contents. While the methodology and techniques discussed in this research are specific to
ESXi, the concepts are adaptable to other type-1 hypervisors and potentially type-2 hypervisor

technologies as well.



Literature Review

Research of forensic analysis on VMs is limited when compared to the volume of
research of forensic analysis on physical machines. Thevast majority of research on forensic
analysis of VMs is from the perspectiveofanalyzingthe VM itself. Very limited research exists
which focuses on VM analysis fromthe hypervisorhost system. Research into forensic analysis
of ESXi as ahost systemis sparse, while research into the forensic analysis ofthe VMFS file
systemis nearly non-existent. This literature review presents data in four sections, forensic
analysis of ESXi technology, forensic analysis of other VMware hypervisor technologies, file
systemforensic analysis, and VMFS forensic analysis.
Forensic Analysis of ESXi Technology

Lowe etal. (2014) state thata VM is comprised ofseveral files on a storage device, with
the two most common files being the virtual hard disk file and the configuration file. In the case
of ESXi, the configuration file is a plain-text file referred to as the “VM X file, and is identified
by its extension, “.vmx.” The type of information available within the VM X file includes, among
many other parameters, the number of processors, theamount of RAM, network adapter
configurations, and virtual hard disk configurations (p. 484, para. 2). Lowe et al. further describe
virtual disk files, or “VMDK” files, which have the extension .vimdk. Each hard drive within a
VM has an associated VM DK file, which holds the VM’s stored data. The VM DK file is
comprised oftwo files with the .vmdk extension. The VM DK header file contains a plain-text
configurationand pointers to the VM DK flat file. The VM DK flat file is identified by the suffix
“-flat.vmdk” and contains the actual virtual hard disk data (p. 487).

VMware, Inc. (2014) documented the complete set of files that comprise ESXi VMs

within the “Introduction to vSphere Virtual Machines” section ofthe vSphere 5.5 Documentation



Center. (See Table 10 in AppendixB fora list of files that make up an ESXi VM). Notall of the
files are presentforevery VM.

ESXi supports several provisioning modes for virtual disks. The provisioningmode of
the virtual disk s significantto the chances of forensic recovery. The three provisioningmodes
are thin-provisioned disks, thick-provisioned lazy zeroed, and thick-provisioned eager zeroed.
Lowe et al. (2014) described a thin-provisioned disk as using only as much space on the
datastore as the VM itselfused. A thick-provisioned lazy zeroed diskuses as much spaceon the
datastore as the configured size ofthe virtual disk. Unallocated space on the virtual disk remains
untouched on the datastore file systemuntil /O occurs on the VM, at which time the VMkernel
zeroes out thespaceneeded forthe I/O operation. A thick-provisioned eager zeroed disk uses as
much space onthe datastore as the configured size ofthe virtual disk. The VMkernel pre-zeroes
unallocated space fromthe guest VM on the datastore file system (pp.360-361).

Forensic Analysis of Other VMware Hypervisor Technologies

Brett Shavers’ (2008) paper, “Virtual Forensics: A Discussionof Virtual Machines
Related to Forensic Analysis,” provides some detailed information on forensic analysis of
VMware’s type-2 hypervisor products, “in the context of VM ware, unless otherwisenoted, it is
intended that VMware refers to theapplications related to this paper to include VM ware
Workstation, VMware Player,and VMware Server” (pp. 9, para.4). While Shavers’ paperdid
not focus on ESXi, it did provide some insightinto performing forensic analysis in virtualized
systems. Shavers (2008) described thechallenges ofrecoveringa VM in full due to
fragmentation ofthe files. Shavers stated that becauseofthe large size of virtual disk files and a
certain amount of fragmentation, fully recovering the contents ofa deleted VM may not be

possible (p. 8, para. 2).



Shavers’ example assumed the use of Microsoft Windows as thehost’s operating system,
which is not applicable to this research, but the potential for file fragmentationis a consideration
for attempting to recover large deleted files. Brian Carrier is the author ofsome ofthe most
widely used forensic tools, including The Sleuth Kit and the Autopsy Forensic Browserand
holds a Ph.D. in Computer Science from Purdue University. Carrier has taught at SANS, FIRST,
the @stake Academy,and SEARCH in the areas of computer forensics, file systems, and
incident response. Carrier (2005) explained that an OS typically allocates consecutive dataunits,
but when thatis not possible, fragmentation, a condition when the data units that make up a file
are not consecutive, can occur (p. 179, para. 4).

Scott Lowe is a technical architect with VMware’s virtual networking business unit and
authorofsixbooks on VMware vSpheretechnology. Lowe (2009) recognized the potential for
fragmentation within the VMFS3 file system, but addressed the issue through the need for
defragmentation, stating that VMFS generally does notneed defragmentation to the degree that
most other file systems do. Lowe attributed this to thetype of files VMFS datastores typically
store: typically a lownumber of very large files (p. 255, para.2). While Lowe’s explanation
regarded the performance impact of fragmentation, froma forensic standpoint, the IMBblock
size of VMFSS5 volumes is significantbecause it reduces the number ofblocks, or clusters, that a
disk can contain when compared with other common file systems. Shavers’ warningaboutthe
likelihood of fragmentation pertainedto VMware’s Windows based hypervisor products. As
Microsoft(2002) documented, the default cluster size on the NTFS file systemfor disks over
2049MB in size is 4,096 bytes (MoreInformation, para. 4).

The other conceptreferred to in VMware, Inc.’s performance study was thatof thick-

provisioned and thin-provisioned disks. VMware, Inc. (2009) explained the difference in disk



provisioning methods as a thick-provisioned disk has its entire capacity pre-allocated on the
datastore. Meanwhile, a thin-provisioned disk only uses theamount of disk on the datastore
equalto the amount of dataallocated within the virtual disk (p.1, para. 5). Given this
information, the research analyzed thelikelihood ofrecovery of thick-provisioned disks against
that of thin-provisioned disks.

File System Forensic Analysis

In his book File System Forensics, Carrier (2005) explained the challenges of performing
file systemanalysis withoutdocumentation or source code:

One ofthe biggest challenges that [ have faced over the years while developing The

Sleuth Kit (TSK)has been finding good file and volume systemdocumentation|....] It is

easy to find resources that describe file systems at a high level, butsourcecode is

typically needed to learn the details. (Preface, p. xv, para. 1)

Carrier (2005) explained the data necessary fora file systemto functionandreferred to it
as “essential file systemdata.” In his text, File System Forensic Analysis, Carrier further
described theessential file systemdata necessary to save andretrievefiles. Data must be
available to identify thename ofa file, where that file’s content is stored, and a pointer fromthe
file’s name to the metadatastructure (p. 176, para. 1).

Cory Altheide has performed forensics and incident response work fornumerous public
and private sectoragencies, including Google, Mandiant, and the National Nuclear Security
Administration’s Information Assurance Response Center. Altheideis also a contributing author
of severalbooks on the topic of digital forensics. Harlan Carveyis an InfoSec Research Senior

Consultantat Dell SecureW orks and formerly Chief Forensics Scientistat Applied Security, Inc.



and Vice Presidentof Advanced Security Projects with Terremark W orldwide, Inc. Carvey has
developed several forensics tools, including the widely used RegRipper.

File carving, orcarving, is ameans ofrecovering deleted files thatremain within
unallocated space ona file system. Altheide and Carvey describe thepractice of carvingas
searching through an unstructured streamofdata for file headers or file signatures, determining
the file end point, and saving the extracted datato a carved file (2011, p. 58, Carving, para. 1).
Numerous programs exist to help automate the process of carving.

Scott Mueller is the presidentof Mueller Technical Research corporate training firm,
teacher of seminars on PCrepair, and author ofthe longest running PCrepairbook in the world,
Upgrading and Repairing PCs, as well as numerous articles for various computer publications
and newsletters. Mueller (2013), while describing the method of partition alignment on Windows
Vista and later Microsoftoperating systems, explained that because ofthe multiple types of
storagedevices with potentially variable block sizes, Windows Vista and later aligns partitions
along 2,048-sector boundaries (p. 475 para. 6).

VMES Forensic Analysis

The current version of VMFES, version 5, allows forread/write access fromESXi version
5.0 and above, but is not backward compatible with previous versions of ESXi. Table 1 shows
the relationship between VMFS version and ESXi version.

Table 1

VMF'S and ESXi Version Comparison

VMEFS ESX/ESXi 3.x host ESX/ESXi 4.x host ESXi 5.x host
VMFS2 Read-Only Read-Only Not Supported
VMES3 Read-Write Read-Write Read-Write
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VMEFS5 Not Supported Not Supported Read-Write

Note. Adapted from “ vSphere Storage,” p. 134, Understanding VMFS datastores, table 16-1,by VMWare Inc.,2014a.

This researchused VMFSS5 forall scenarios, as ESXiv5.5 update 2 was the host operating
systemversion used fortesting, and VMFSS5 was the most current versionof VMFS at the time
of the analysis.

Jason Perlow is a Senior Technology Editor at ZDnet, a technology news website, and a
Partner Technology Strategist with Microsoft Corp. In March 2009, Perlow wrote a column
named, “VMware’s filesystemclustering cracked open.” Within this article, Perlow alluded to
the secrecy that VM ware maintains with regard to the inner workings of VMFS, announcing that
a company named Fluid Operations published an open-source implementation of VMFS on the
Google Code website (Perlow, 2009, para. 1).

Perlow (2009) questioned whether VMware should openthe VMFS specificationas it
had previously done with VMDK (para. 6). At the time ofthis research, VMFS was stilla closed
source file system. Fluid Operations’ opensourceimplementation of VMFS which Perlow wrote
about was last updated over five years ago and only supported up to VMFS3 (Fluid Operations,
2010, para.?2). The Fluid Operations’ VMFS driver was not able to read the VMFSS5 volumes
used forthis research.

Christophe Fillot and Mike Hommey developed another open source VMFS
implementation, based on the VMFS code fromFluid Operations, named vmmfs -tools (Fillot &
Hommey, 2012, Introduction, para. 1). Unlike the Fluid Operations VMFS implementation,
vmfs-tools did have limited support for VMFS5 (Hommey, 2011, para. 1). The vinfs-tools source
code showed thefile systemsignature for VMFS volumes appears at offset 0x0100000 and has a
value of, “0xc001d00d.” The volume information structure immediately follows the VMFS
signature and includes metadata about the volume such as the VMFS version number, label, size,

11



universally unique identifier (UUID), creation time, and modification time (Fillot & Hommey,
2012, vinfs_volume.h, lines 24-41).

Diane Barrett holds a Master of Science in IT with an information security specialization.
Barrett has worked in the information technology industry forover 20 years andhas beena
primary or coauthor on several works on computer forensics. Gregory Kipper has overten years
of experience working in the field of digital forensics and has published numerous papers and
spoken at industry events onthe topic of digital forensics. In Barrett and Kipper’s book,
Virtualization and Forensics (2010), they provided a high-level overview ofhow essential file
systemdata is stored in VMFS through the metadatafiles. (See Table 1 1 in AppendixB for the
VMFS metadata files and their purpose). Barrett and Kipper provided useful information for
identifying therole ofthe metadata files of VMFS but providedno information about

interpreting the metadata file contents.
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Methodology

The methodology forthe research analysis followed the process model described in the
next section. Drawing information fromthe literature available on forensic analysis of ESXi,
VMEFS, and other VM ware hypervisor technologies, the methodology sought to performthree
tasks; recover deleted VM files from a VMFS volume, recover forensic artifacts ofuseractivity
from within those VMs, andreconstruct thedeleted VMs within ESXi. The deleted VM tested
with this methodology differed only in their ESXi virtual disk-provisioning mode, with the same
three recovery goals applied to each VM.

Process Model

This research followed the forensic process model outlined by the U.S. Department of
Commerce, National Institute for Standards in Technology’s (NIST) (2006) special publication
800-86, “Guide to Integrating Forensic Techniques into Incident Response.” NIST (2006)
detailed fourphases oftheir process model: Collection, Examination, Analysis, and Reporting.
This research process implemented all phases ofthe NIST process model.

Collection phase. Identification of potential data sources and acquisition of data from
thosesources occurs during the collectionphase. The collection phase follows a plan thattakes
into account the likely value ofeach potential data source, the volatility of each data source, the
amount of effort required to acquire each datasource, a process to acquire the data, and
verification ofthe acquired data’s integrity (NIST, 2006, p.3-3, Acquiring the Data, para. 1-5).

Examination Phase. Assessingand extracting relevant pieces of data fromthe collection
phase occur during the examination phase. The examination phase includes steps takenreduce

the amount ofdatato be analyzed and to mitigate features thatobscure data, suchas
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compression, encryption, and access control mechanisms (NIST, 2006, p. 3-6, Examination,
para. 1-2).

Analysis phase. Analysts study and draw conclusions fromthe extracted data during the
analysis phase. The analysis phase uses a methodical approach to analyze the data to reach a
conclusionordetermine that no conclusion exists with the evidence available (NIST, 2006, p. 3-
6, Analysis, para. 1).

Reporting phase. Preparing and presenting the information resulting fromthe analysis
phase occurs duringthereporting phase. The reporting phase identifies problems and addresses
shortcomings or errors. Careful documentation ofthe findings and all steps takenis an essential
part ofthe reporting phase (NIST, 2006, p. 3-6 —3-7, Reporting, para. 1-5). The “Discussionof
Findings”sectionrepresents the reporting phase of this research.

Data Collection and Analysis Tools

This section describes the tools used to carry out eachphase ofthe NIST Process model.
Alltools used toperformthe collection, examination, and analysis were freely available open
source tools. “Ubuntu 14 Forensics VM” was the examination systemon which each ofthese
tools ran. The VMware vSphere client ran onthe “Windows 8 x64” VM because thevSphere
client software only runs on Microsoft Windows.

dc3dd v7.1.614.Dc3dd is an opensource toolused during theanalysis for forensic
imaging with on-the-fly hashingand forensic disk wiping. Thetool’s authors describe dc3dd as a
patch to the GNU dd programwith several additional features, such as on-the-fly hashing
(Medico, Cordovano, Kornblum, Lowe, & Levendoski, 2014, Description, para. 1).

defldd v1.3.4-1. Nicholas Harbour at the Department of Defense Computer Forensics

Lab (DCFL) developed the opensource tool dcfldd. Harbour described dcfldd as an
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enhancement to GNU dd that includes security and forensics features (2006, Introduction, para.
1). The examination phase made use ofdcfldd for extracting specific disk sectors fromdisk
image files.

Fluid Ops VMES driver. The open source VMFS driver fromFluid Ops provided a way
to mount a VMFS volume as a read-only file system. The Fluid Ops VMFS driver provided
support foronly VMFS version 3 (Fluid Operations, 2010, para. 1-2). The examination phase
made use ofthe Fluid Ops VMFS driver code to interpret the VMFS file systemmetadata files.

foremostvl.5.7. Foremost, as Altheide and Carvey (2011) described it is an open source
file carving tool which uses configurable file headers and footers (p. 59, Foremost, para. 1). The
examination and analysis phases made use of foremost to carve specific file types fromthe
volume image and virtual disk images.

GNU dd v8.21.GNU dd is an open source tool presentin most Linux distributions as
part ofthe GNU core utilities. Brian Carrier (2005) described ddas a toolthat copies data
regardless ofthe data type. Dd reads data in chunks fromits input sourceand copies toits output
(p. 60, “A Case Study Using,”para 3-4). During the analysis, dd carved the VMFS file system
image fromthe physicaldiskimage.

GPT fdisk (gdisk) v0.8.1. GPT fdisk, or gdisk, is an open source toolused to create,
modify, or list information about GUID Partition Table (GPT) disks (Smith, 2014, Description,
para. 1). During the analysis, gdisk gathered information about the partitions onthe GPT (VM
datastore) disk.

GNU md5sum v8.21. Md5sumis an opensourcetool, bundled as partofthe GNU core
utilities in most Linux distributions. The Free Software Foundation is themain sponsor ofthe

GNU operating systemproject and describes the function of mdSsumas computing an MD5
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checksumforeach specified file (Free Software Foundation, 2014, “6.4 mdSsum: Print or,” para.
1). During the collection, extraction, and analysis phase of each test, mdSsumverified file
integrity.

hexedit v1.2.12. Hexeditis an open source hexediting tooldeveloped by Pascal Rigaux
that displays files in both hexadecimaland A SCII output formats. Hexedit permits file viewing,
editing, and searching within a text user interface (Rigaux, n.d. COMMANDS(full and
detailed)).

Okular v0.14.3. The open source document viewer application, okular, is part ofthe
KDE (“Kool Desktop Environment”) projectand can present “.pdf,” postscript, “.doc,” and other
file formats (Free Software Foundation Europe, 2015, Okular, para. 1). During the analysis phase
of each test, okular was the “.pdf” viewerused to openthe control documents.

Regripper v2.5. Regripperis an open source tool developed by Harlan Carvey that
extracts keys, values, and data fromthe Windows registry (Carvey, 2012, Regripper, para. 1).
Regripperextracted the computer name fromthe systemhive on each ofthe recovered virtual
disks.

Ssdeepv2.7. Jesse Kornblumdeveloped the open source tool ssdeep to provide Context
Triggered Piecewise Hashing, or “fuzzy hashing”. Fuzzy hashing, as Kornblum (2006)
explained, is a technique foridentifying sequences ofidentical bytes in the same order forthe
purpose of finding almost identical files (p. 92, para. 5). In this research, fuzzy hashing with
ssdeep helped to show that all the “.nvram” files carved fromthe VMFS volume were nearly
identical.

The Sleuth Kit v4.1.3. The Sleuth Kit is an open sourcesetofcommand line tools

developed by Brian Carrier that is used foranalyzing disk images (Carrier, 2015, The Sleuth Kit,
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para. 1). The Sleuth Kit tools analyzed the carved virtual disk images to identify partition extents
within the virtual disks.

mmls. The toolmmls is one of The Sleuth Kit tools, commonly used to list the contents
of the partitiontable (Carrier, 2010, para. 1). The use of mmls during this research was to
identify partition extents to use with dcfldd for volume carving.

vmfs-tools. VMFS-tools is an open-source project, based onthe Fluid Operations’ VMFS
code, and allows foraccess to VMFS with Linux virtual file systems through the FUSE (file
systemin userspace) framework (Fillot & Hommey, 2012, Introduction, para. 1). Use ofthe
vmfs-tools suite allowed formounting ofthe VMFS volume image and accessing active files on
the VMEFS file systemforanalysis.

VMware ESXi (vSphere Hypervisor) v5.5 update 2.ESXi is the common name forthe
VMware’s vSphere Hypervisor. Mike DiPetrillo, Global Cloud Services Architect & Principal
Software Engineer for VM ware explained that the acronym ESX stood for, “Elastic Sky,” and
the X was added to, “make it sound more technical” (DiPetrillo, 2010). The “i” was added,
accordingto Mohammed Raffic Kajamoideen, author of VMware ESXi 5.1 Cookbook, to
signify, “integrated” (Kajamoideen, 2013, What is VMware ESXi?, para. 1).

xxd V1.10. Writtenby Juergen Weigert, xxd is an open source tool which outputs a hex
dump fora given file or input stream(Moolenaar & Nugent, 1996, Description, para. 1). During
the analysis, xxd provideda means of outputting variable length ASCII text representations of
hexadecimal data streams to standard output or to a plain text files.

Tes ting Environment
The testing environment was comprised of two physical machines and sixVMs. An ESXi

host systemhosted fourofthe VMs used as testsystems forthe forensic analysis. The other
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physicalmachine was an Apple MacBook Pro, which hosted two VMware Fusion VMs that
performed the forensic analysis ofthe test VM's andthe ESXihost system’s datastore. The
details ofeach ofthosesystems follow.

ESXi hostsystem. An ESXi host system, named “vmhost21” was the physical machine
that hosted four VM's and was the target ofthe forensic analysis tests in this research. The ESXi
host systemhad the following software and main hardware components:

e Operating system: VMware vSphere Hypervisor (ESXi) 5.5 update 2

e CPU: Intel Core 15-3550, BX806237i53550, quad-core, 6MB L3 cache, 3.30GHz

e RAM:KingstonHyperX Blu, 16GB DDR3, 1600MHz

e Motherboard: Gigabyte GA-Z77X-UD3H, ATX

e Systemhard drive: OCZ Technology VertexPlus R2 MLC SATA 112.5” 120GB SSD

e VM datastoredrive: Western Digital Caviar WD2000JD-00HBBO SATA 3.5 200GB
The VM datastore drive, forensically wiped with zeroes using dc3dd prior to configuring the
datastore, held a single 80GB VMFSS5 volume labeled “Boston.” The “Boston” volume had a
formatted capacity of79.75GB.

Test VMs. Four VM had their files stored on the “Boston” volume. Three ofthe VMs
existed for specific tests focusing onrecovery ofartifacts after deletingthe VMs fromdisk, while
one VM existed to generatedisk activity to observe the effects on thethreedeleted VMs’ files.
Each of the VMs had the same software and virtual hardware configuration with the exceptionof
the virtual disk allocation method. The “Alpha” VM, used fortest#1, had a thick-provisioned,
eagerzeroed virtualdisk. The “Bravo” VM, used fortest#2, had the ESXi default method of

thick-provisioned, lazy zeroed virtual disk. The “Charlie” VM, used fortest #3, had a thin-
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provisioned virtual disk. The “Delta” VM had a thick-provisioned, lazy zeroed virtual disk.

Table 2 lists the configuration ofthe fourtest VMs.

Table 2
Test VM Configurations
VM 1 VM 2 VM 3 VM 4
VM Name Alpha Bravo Charlie Delta
VM working [Boston]/Alpha [Boston]/Bravo [Boston]/Charlie [Boston]/Delta
location
CPUs 1 1 1 1
RAM 1GB 1GB 1GB 1GB
HDD size 12GB 12GB 12GB 12GB

Virtual disk-

Thick-provisioned,

Thick-provisioned,

Thin-provisioned

Thick-provisioned,

provisioning eager zeroed lazy zeroed lazy zeroed

method

Virtual disk file [Boston]/Alpha/Alp | [Boston]/Bravo/Bra | [Boston]/Charlie/C | [Boston]/Delta/Delt
ha-flat.vmdk vo-flat.vmdk harlie-flat.vmdk a-flat.vmdk

VM configuration | [Boston]/Alpha/Alp | [Boston]/Bravo/Bra | [Boston]/Charlie/C | [Boston]/Delta/Delt

file ha.vimx VO.VIIX harlie.vimx a.vimx

Operating system Windows 7 Windows 7 Windows 7 Windows 7

Professional x64

Professional x64

Professional x64

Professional x64

Note. This table lists the virtual hardware, configuration files and operating systemofeach of the VMs on the “ Boston”
volume of, “vmhost21.”

Forensic analysis systems. The forensic analysis used two VMware Fusion VMs hosted
on asingle physicalmachine. The physical machine hostsystemhad the following
characteristics:

e Manufacturerand Model: Apple MacBook Pro 15-inch, mid-2012 edition
e RAM:16GB 1333MHz DDR3

e Graphics:NVIDIA GeForce GT 650M 512 MB
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e Operating system: OS X 10.9.5 (13F34)

e Software: VMware Fusion Professional version 7.1.1 (2498930)
The two analysis systems were VMs in VM ware Fusion on the MacBook Pro physical machine.
Table 3 lists the configuration ofthe two forensic analysis VMs.

Table 3

Forensic Analysis VMs Configuration

Analysis VM 1 Analysis VM 2
VM Name Ubuntu 14 Forensics VM Windows 8 x64
Operating system Ubuntu 14.04 LTS 64-bit Microsoft Windows 8.1 Pro
CPU cores 4 4
RAM 4GB 4GB
System hard disk capacity 60GB 60GB
Additional hard disk capacity 60GB 60GB
USB Compatibility 2.0 3.0

Note. This table lists the virtual hardware and operating system for each of the forensic analysis VMs.

Additional hardware. An Etekcity USB2.0/eSata Dual HDD docking station, model
number 08-W S-ST320A-ETEK, served as the means by whichthe VM datastore hard drive
connected to the forensic workstations and created image backups. Two Western Digital Green
3.0TB 3.5” SATA hard drives, modelnumber WD30EZRX, served as the working-copy image
media and preservation-copy image media.

TestScenarios

Three test scenarios sought to identify the feasibility of VM recovery froma VMFS
volume under different configurations. Each ofthe testscenarios contained identical VM, with
the exception ofthe virtual disk-provisioning mode, installed on thesame VMFS datastore ofthe

same ESXi host. The order of VM creation and virtual disk file provisioning was “Alpha,”
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“Bravo,” “Delta,” “Charlie.” Allfour VMs completed configuration according to the scenario
preparation section.

Test#1: Thick-provisioned, eager zeroedvirtual disk. The goaloftest#1 was to
recoverthe deleted VM, “Alpha,” fromthe VMFS file system, and analyze to identify forensic
artifacts ofuseractivity. Four “.pdf” control files, part of the scenario preparation, served as the
artifacts ofuseractivity. “Alpha”hada single virtual disk configured in thick-provisioned, eager
zeroed mode. As explained in the “Forensic Analysis of ESXi Technology” section, a thick-
provisioned eager zeroed disk uses as much space onthe datastore as the configured size ofthe
virtualdisk. The VMkernel pre-zeroes unallocated space fromthe guest VM on the datastore file
system(Lowe et al., 2014, pp.360-361).

Test#2: Thick-provisioned, lazy zeroedvirtual disk. The goal oftest#2 was to
recoverthe VM, “Bravo,” fromthe VMFS file systemand analyze it to identify forensic artifacts
of useractivity. Four “.pdf”’ control files, part of the scenario preparation, served as the artifacts
of useractivity. “Bravo” hada single virtual disk configured in thick-provisioned, lazy zeroed
mode, which is the default mode for ESXi.

Test#3: Thin-provisioned virtual disk. The goal oftest#3 was to recoverthe VM,
“Charlie,” from the VMFS file systemand analyze it to identify forensic artifacts ofuser activity.
Four“.pdf” controlfiles, part ofthe scenario preparation, served as the artifacts ofuseractivity.
“Charlie” had a single virtual disk configured in thin-provisioned mode.

Scenario preparation. The testing scenario consisted ofthe same series ofactions for
each VM. Table 4 lists the four “.pdf” control files used in the tests and the MD5 hash value of

each file.
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Table 4

Control File Names and MD5 Hash Values

File Name

MD5 Hash Value

ControlDocl .pdf

809176d892d68b147bdeb8ad3aba80bd

ControlDoc2.pdf

41e40c445740b9741428cfc772ceadb

ControlDoc3.pdf

cf6121190ad66330dc346e2d7455a63

ControlDoc4.pdf

40885cd433950c38cedafb61d1810c33

Note. This table lists the filename and MDS5 hash value of each control file used in the testing .

The MD5hash valuein Table 4 refers to the output of the MDS5 one-way cryptographic
hash function. One-way hash functions, which Pfleeger and Pfleeger explain in the fourth edition
of Security in Computing (2007), are functions thatare easy to compute, butwhoseinverse is
more difficult or impossible to compute (p. 79, Cryptographic Hash Functions, para. 4). Hashing,
or applyinga one-way hashroutingto a data stream, always produces the same result as longas
the data streamand the hash algorithmremain unchanged. During the testing, hashing the image

files before and after analysis ensured that, ifthe hash values matched, then no changes occurred

to the image files.

The following sequence of events prepared the test VMs:

1. Executed Internet Explorer from the Windows desktop;

2. MicrosoftBing search for, “Google Chrome™;

3. Downloadedandinstalled Google Chrome;

4. Google search for, “PDF reader,” using Google Chrome;
5. Downloadedandinstalled Foxit Reader 7.0.6.2216.

6. Using Google Chrome, saved “ControlDocl.pdf” fromhttp://10.32.128.142/control to

C:\Users\User\Desktop;
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7. Using Google Chrome, saved “ControlDoc3.pdf” and “ControlDoc4.pdf” from
http://10.32.128.142/control to C:\Users\User\Downloads;

8. Using Google Chrome, accessed “ControlDoc2.pdf” fromhttp://10.32.128.142/control
and opened with the Foxit Reader extension for Google Chrome;

9. “ControlDocl.pdf” sentto the Recycle Bin;

10. Deleted “ControlDoc3.pdf” and “ControlDoc4.pdf”

Following the completion ofthe VM configuration, the VMware vSphere Client
gracefully shutdown the ESXihost. Dc3dd created working-copy and preservation-copy raw
images, calculatedthe MDS5 hash value ofthe original source media, and both images, verified
the MD5 hash values after image creation, and saved thelog outputto the file,
“/media/hdd/capstone/preserve/VMD _physical 20150305 restore.log. The restoration images,
named “VMD_ physical 20150305 restore.raw” forthe working-copy and
“VMD physical restore.preserve” forthe preservation-copy, served as a comparison and restore
point in the event further testing needed to occur which compared the disk image priorto the
VMs’ deletion to datarecovered afterthe VM’ deletion. The ESXi host booted up following the
restore image creationand the VMware vSphere Client deleted the VM, “Alpha,” “Bravo,” and

“Charlie,” from the VM datastore.
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Analysis

Three phases comprised theresearch analysis: the collection phase, examination phase,
and analysis phase. This section presents the execution ofthe methodology throughout these
three phases and the findings observed. Based on the findings, testing ofadditional hypotheses
offered an opportunity toidentify alternate methods ofaccomplishing the goals ofthe analysis
where shortcomings were noted.

Collection Phase

The stepstocollect thediskimage ofthe VM datastore physical disk included: shutting
down “vmhost21,” removing the VM datastore physical disk and connecting the disk to the
Etekcity USB2.0/eSata Dual HDD docking station. The Etekcity docking station connected to
the forensic workstation VM, “Ubuntu 14 Forensics VM,” via USB2.0. The mount point
/media/hdd on the “Ubuntu 14 Forensics VM” mounted the target disk, WD Green, 3.0TB.
Underthe “/media/hdd/capstone” parent directory, the “preserve” path stored all preservation -
copies ofevidence, while the “working” path stored all the working-copies of evidence.

The collection phase for the three tests included the collection ofa single data source, a
bit-levelimage of the VM datastore physical disk from, “vmhost21.” Dc3dd created working-
copy and preservation-copy raw images, calculatedthe M D5 hash value ofthe original source
media, and bothimages, verified the MDS5 hash values after image creation, and saved the log
output to thefile, “/media/hdd/capstone/preserve/VMD_physical 20150305.1og”. (See Figure 16

in Appendix A for the contents of “VMD physical 20150305.log”).
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Examination Phase
Reducing theamount of dataforanalysis is one ofthe main purposes ofthe examination
phase. Extracting a VMFS volume image from the physical image,
“VMD_physical 20150305.raw,” reducedtheamount ofdata needed to examine for file carving.
Gdisk identified the partition boundaries ofthe partitions within the VMFS datastore
physicaldiskimage. Gdisk identified the sector size as 512 bytes and the only partition onthe

disk with a starting sector of2,048 and ending sector of 167,774,207 as shown in Figure 1.

Found walid GPT with protective MBR; using GPT.

Di=szk VMD phy=sical 20150305.raw: 390721968 sectors, 186.3 GiB
Logical sector size: 512 bytes
Disk identifier (GUID): ASEBESTE-BE63-41CD-AFAC-SDFEBOS0RA4BS3
Partition table holds up to 128 entries

First usable sector i=s 34, last usable sector is 390721534
Partitions will be aligned on 2048-sector boundaries

Total free space i=z 222949741 szectors (1l06.3 GiEB)

Humber |Start (sector) End (sector) Size Code Hame
1 2048 167774207 80.0 GiB FFFF

Figure 1. VMFS volume geometry. This figure shows the output ofthe command, “ gdisk —I
/media/hdd/capstone/working/VMD_physical 20150305.raw”, with 512-byte logical sectors, a volume start sector 0f2048 and
volume end sector of 167774207

A review of the contents of sector 2,048 in the “VMD_physical 20150305.raw” disk
image with xxd showedthat it was blank, as was every sector from2048 until4096. Next, xxd
allowed fora manualreview of the VMFS starting sector. As discussed in the literature review
section, “Forensic Analysis of VMFS,” the signature, “Oxc001d00d,” forthe VMFS volume
appearedat sector 2048 of the volume. Using a systemwith little-endian architecture, such as the
test ESXi host, “vmhost21,” the signature used the little-endian convention, meaning thatthe
least significant byte was in the left-most, or largest, address location. The little-endian
representation of Oxc001d00d was, “0d d0 01 c0,” so the signature value to identify the VMFS

volume within the “VMD _physical 20150305.raw” image was, “0x0dd001c0.” Note that the
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hexadecimal characters used to create the signature in big-endian notation resemble the phrase,
“cooldood,” which canmake it easier for examiners to remember the signature value ofa VMFS
volume.

According to the gdisk output fromthe “VMD_physical 20150305.raw” image, the
VMES volume started at sector 2048, or offset 0x100000. Offset 0x200000 of the
“VMD physical 20150305.raw” physical disk image represented offset 0x100000 of the VMFS
volume. The VMFS signature appeared at offset 0x100000 of the volume image, or 0x200000 of
the physicalimage. The remainder ofthe VMFS volume info header followed the signature
string immediately. Xxd retrieved volume information from“VMD _physical 20150305.raw” by
referencing the VMFS volume info structure fromthe vimfs-tools source code, as explained in
the Methodology sectionunder Data Collection and Analysis Tools, vimfs -tools. (See Table 9 in
AppendixB for the volume info retrieved from“VMD_physical 20150305.raw”).

The partition’s starting sector of 2048 was the starting point for the volume image
extract. To determine the partitionlengthin sectors, the calculation of subtracting the starting -
sector value fromthe ending sector value, resulted in a partition lengthof 167,772,159 sectors.
The tooldcfldd carved the VMFS volume from*“VMD_physical 20150305.raw” and saved
preservation-copy image, “Boston_volume 20150305.raw.preserve,” and working-copy volume
image files, “Boston_volume 20150305.raw.” Dcfldd calculated the MDS5 hash value ofthebit
streamsynchronously with the image file creation (See Figure 17 in Appendix A for the dcfldd
command syntaxand output). MDSsumcalculated the md5 hash values ofthe working-copy and
preservation-copy volume images and confirmed to match the dcfldd output MDS5 hash value.
The output ofthe mdSsumcalculations confirmed the volume image’s MDS5 hash valuematched

the original source MD5 hash value, as calculated by dcfldd, confirming thatthe image files
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matched the bit streamof 167,772,159 sectors starting at sector 2,048 within the physical disk
image, “VMD physical 20150305.raw.”

Several files of importance were necessary to extract fromthe volume image in order to
recreate oranalyze a VM. The files, listed by order of importance, with number one being most
important, were:

1. “-flat.vmmdk” virtual disk file;

2. “.vmdk” virtual disk configuration file;

3. “.vmx’ configuration file;

4. VM supporting files (ifpresent): “.vmsd,” “.vmsn,” “.vswp,” “.vimss,” “.nvram,”
and “.log;”

An analysis ofthe remainingactive VM files gave clues to help extract the deleted VM
files. The volume image file was mounted on “Ubuntu 14 Forensics VM” usinga tool fromthe
vmfs-tools suite, vmfs-fuse. The command, “vmfs-fuse
/media/hdd/capstone/working/Boston_volume 20150305.raw /media/vmfs,” mounted the
“Boston_volume 20150305.raw” image as a read-only volume to /media/vmfs.

Each VM file type contained specific characteristics that helped identify the deleted files
fromthe deleted VMs. The “.log,” “.vmx,” “.vmxf,” “.vimdk,” and “.vmsd” files were text based
and did not contain any file type signature. Log files usually hold the most informationabout the
VM, so the “.log” format was the first file type analyzed.

When reviewingthelog files from the Delta VM, the first line ofeach log file contained
similar text, not repeated anywhere else in the file. The first line of each log file contained the
phrase, “: Log for VMware ESX pid=", which was sufficiently uniqueto use as a log file

signature. Similarly, each log file ended with a stringbelieved tobe uniqueenoughto use as an
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end-of-file identifier. Each log file ended with the text “VM X has left the building: 0”. Assuming
the zero at the end ofthe phrase was an error code that could contain values other than zero, the
end-of-file phraseused for carving allowed for other values as the lastdigit by specifyinga
wildcard, “?” in place ofthe last digit in the foremost configuration.

Using a similar method to define the start andend ofeachlog file, and a custom foremost
configuration file that contained configurations for VMware “.log,” “.vmx,” “.vmxf,” “.nvram,”
and “.vmdk” files. Some trial-and-error carving led to the foremost configuration used to run
foremost. (See Figure 18 in AppendixB for a screenshot ofthe foremost vmware.conf
configuration). Using foremostand the customconfiguration file, the command “foremost—c
foremost vmware.confBoston volume 20150305.raw” carved VMware “.log,” “.vimx,”
“vmxt,” “nvram,” and “.vindk” files, fromthe “Boston_volume 20150305.raw” image.
Foremost carved 104 files from the “Boston volume 20150305.raw” image. MD5sum
calculated the MD5 hash value ofeach carved file. Files with matching MDS5 hash values had all
extra copies movedto a “duplicates” folder so only oneversionofeach file remained in the
working directory. Each ofthe carved files contained, somewhere in the text, the name ofthe
VM that the file belonged to with the exception of some “.nvram” files. A search foreach VM’s
name in each ofthe carved files enabled quick sorting ofthe files by VM. During the analysis
phase foreach VM, thesefiles helped to reconstruct the VM within ESXi.

In each “.vimdk” file was a section named, “Extent description,” which showed thesize,
in sectors, and file name, of each virtual disk file associated with the VM. Knowing the size of
the virtualdisk is useful when carving “-flat.vimdk” fromthe VMFS volume. In the “Extent
description” section of “00490890.vidk”™ the size of “Alpha-flat.vmdk was shown as

25,165,824 logical sectors, which equaled exactly 12GB with 512-byte sectors.
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Analyzing the “Delta-flat.vmdk” file showed that the ““-flat.vimdk” file was a complete
virtual hard drive image, starting with the master boot record and containing the partition table
and all partitions within the virtual disk. Indications of master bootrecord (MBR) sectors helped
to identify the beginning sector of “—flat.vimdk” files . Carrier (2005) detailed the data structure of
the MBR as a 512-byte structure with the first 446 bytes reserved for the boot code and the final
66 bytes containing the partition table entries and the MBR signature value “0x55AA” (p. 88,
para. 3). The MBR signature value identified sectors onthe “Boston” volume that contained
MBRs, as indicators ofthe presence ofa virtual disk.

In orderto eliminate as many matches to the “S5A A” pattern as possible that were not
associated with the MBR, the signature search only examined bytes 256 and 512 in each sector.
The toolxxd produces an ASClI representation ofa hexdump output fora data stream. The xxd
output is configurable in the number ofbytes to display in the hexdump. The last byte in the xxd
output, followed by two spaces, is the only column in the xxd output with two spaces following
it. This unique characteristic ofthe last bytein the xxd outputallowed for easyidentification of
the last byteby searching for the trailing double-space.

Setting the number of displayed bytes to 256 and filtering the results through a grep basic
expression searching for “\s55aa\s\s” ensured that only matches in bytes 255-256 and 511-512 in
each sector could matchthe search criteria. The 256-byte search boundary aligned with the 512-
byte sector boundary at every second occurrence, which greatly minimized the number offalse
matches, butstill produced many false matches to the MBR signature. Filtering for likely
matches within the partition table, the results narrowed to four MBR signatures on the “Boston”

volume.
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Focusingon expected values within the partition table priorto the MBR footer, the LBA
start sector ofthe first partition provided an opportunity to filter, given the limited possibilities of
values within that LBS start sector field. As Mueller (2013) explained, Windows Vista and later
aligns partitions along 2,048-sector boundaries (p. 475, para. 6). An additional Perl-compatible
regular expressionpattern match “00(([0-9A-F]8)|([1-9A-F]0))\s 0000\s ([0-9A -
F1{4}\s){26}55aa\s\s”applied to the previous command’s output. The added regular expression
searched for matching word values between “0x0008” and “0x00F0” in multiples 02048,
beginning 56 bytes priorto the “55aa” MBR signature, which aligned with the LBA start sector
of the first partition within the partitiontable. Figure 2 shows the commandused to identify the
byte locations ofthe MBR signatures within the “Boston” volume and the first result, matchinga

partition table entry and MBR footer.

Match " 55aa "

Match on partition kinchla@lab-yl4:/me¥fia/hdd/capstone/working$ xxd -c 256 Boston wolume 20150305.r
starting LBA multiple ay | grep -i ['\s55aavs\s] | grep -i -P [f00(([0-9A-F18) | ([1-9A-F10))\50000\s( [0-9
of 2,048 *—F {4}\5){26}55aa\s\s" |
starting byte offset 2 . 0066 GBO8 0000 0066 5366 5366 5566 6800 0000 0066 6GEOO
c0D 0066 6168 0000 07cd 1a5a 32f6 eadl 7c00 00cd 18a0 b707 eb08& alb6 07eb 03a0
507 32ed4 0500 078b f0ac 3c00 7409 bb07 00b4 Oecd 10eb f2f4 ebfd 2bc9 edtd eb0O
402 e0f8 2402 c349 6e76 616cC 6964 2070 6172 7469 7469 6f6e 2074 6162 6C65 0045
272 672 206c 661 6469 6267 206T 7065 7261 7469 6e67 2073 7973 7465 6d00 4de69
373 696e 6720 6F70 6572 6174 696e 6720 7379 7374 656d 0000 0063 7b%a 1474 ab70
000 8020 2100 07df 130c |0DDD& 0000|0020 0300 00df 140c 07fe ffff 0028 0300 00dO
c01 0000 0000 0000 0000 0O00O0M/OOOOD 0000 0000 0000 0000 0000 OCOO COOO 0000 0000
000 s5aa .fh....fh....f5fS h....fh.]..fah..... R 2.
I g +..d..$...% valid partition table.Error loading operating sys
tem.Missing operating syste @l cBeDeon lecccccoocs coooscoosce Qlocce|eccoscood
........................ u.

(=R = R = |

Found partition
at sector 2,048

Figure 2. MBR sector identification. This figure shows the xxd command filtered through grep to produce output showing the
last 256 bytes ofan MBR sector. The red characters show the portion ofthe outputthat matched the last grep expression. The
formatting of'the xxd output made it appear that the starting byte (in the green box) was, “ 0x4982001000066,” but the starting
byte was actually “ 0x498200100” and the last four digits, “0066,” were the displayed contents ofbytes 0x498200100-
0x498200101.

Analyzing the partition table within each MBR enabled the determination of disk extents

within the VMFS volume. Each MBR match within the xxd outputstarted at 256-bytes pastthe
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sector start. Subtracting 256 bytes, or 0x100, from the starting position ofthe xxd outputresulted
in the MBR’s starting byte. With 512-byte sectors on the “Boston” volume, dividing the starting
byte by 512 produced the starting sector forthe virtual disk. Figure 3 shows thelocations ofthe

partition-starting sector and partition length for the second partition within the partition table.

65 6D 00 00 00 63 7B 9A 14 74 AB 70 00 00|80 ZoWEEPartition #1
21 00 07 DF_ 13 OC 00 08 00 00 00 20 03 0000 Dremmpartition #2
14 0C 07 FE FF FF |00 28 , 03 00{ 00 DO »7C 01] 00 OO0
00 00 00 OO OO OO OO O 0 00 00 Uﬂﬁ{] 00 00 00

00 OO0 00 OO OO OO OO OO] (OO OO OO 0O| |00 00 55 AA

Partition starting  partition length
sector in sectors

Figure 3. Partitiontable entries. This figure shows the partition-starting sector and partition length values for the second partition
in the partition table, which identified the ending sector ofthe virtual disk file.

Adding the partition-starting sector to the partition length, then adding the MBR sector on
the “Boston” volume produced the virtual disk-ending sector on the “Boston” volume.
Subtracting the MBR sector fromthe virtual disk-ending sector produced the virtual disk length
in sectors. Thesector values displayed in each virtual disk file’s partition table are relative to the
virtual disk file, not the volume on which they reside. Dcfldd carved each ofthe four virtual disk
files using thecalculations described above and synchronously calculated the MD5 hash value of
each virtual disk file with the carving process. Table 5 shows the extents of each virtual disk file
within the “Boston” volume.

Table 5

Virtual disk file extents, carvedfile names

Volume starting | Volume ending | Number of File carved as Md5 Hash value
sector sector sectors
38,539,264 63,703,040 25,163,776 38539264-flat.vimdk 9137811117150dab01c178d0b5829894
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63,705,088 88,868,864 25,163,776 63705088-flat.vmdk 505f1086280e6¢cbd293502e8ef024f

97,521,664 122,685,440 25,163,776 97521664-flat.vmdk 7088480119123 c4e525e6dfccatsde

131,338,240 156,502,016 25,163,776 131338240-flat.vimdk | 651b21876ae3e3782642cec8bf721b4

Note. This table shows the extents ofeach ““ —flat.vmdk” file on the “ Boston” volume, the MDS5 hash value ofeach virtual disk
file, and the carved virtual disk file name.

Comparing the sector length ofthe virtual disks derived fromthe partitiontables tothe
sectorlengthshownin each “.vmdk” file showed that each “.vmdk” file was one VMFS5 block
longerthan the end ofthe last partition. Analyzingthe active virtual disk file, “Delta-flat.vimdk,”
confirmed that there was an additional 2048 sectors, orone VMFSS5 block, between theend of
the last partition within the virtual disk file and the end ofthe virtual disk file.

At this point in the examination, it was unknown which virtual disk file belonged to
which VM. It would have been possible to compare the number ofsectors ofthe carved files
from Table 5 to the values in the extentdescriptionsection ofthe “.vindk” files, but in the test
scenarios, each VM had the same size virtual disk so the number of sectors could not distinguish
the virtual disks used in this research.

Many ofthe files that foremostcarved fromdisk overlapped disk locations wherethe
VMFS metadata files “.fdc.sf’and ““.sbc.sf” resided. Each ofthe carved “.vmdk” files resided
within the metadata file ““.fdc.sf,” and each ofthe carved “.vmx” files resided within the “.sbc.sf”
metadata file. With the “Boston_volume 20150305.raw” image mountedto “/media/vmfs/”
using vimfs-fuseon “Ubuntu 14 Forensics VM,” “.fdc.sf” and “.sbc.sf” files, xxd reviewed the
contents of each system, or metadata, file and confirmed the presence ofeach carved “.vmdk”
and “.vmx” resident within the metadata files . A fter deleting the VMs, the “.vmdk” and *“.vmx”

files remained resident within the ““.fdc.sf” and “.sdc.sf” on the VMFS file system.
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Figure 4 shows a disk view chart with the locations ofthecarved files on the “Boston”
volume. The figure shows thatthe virtual disk files “Alpha-flat.vimdk,” “Bravo-flat.vmdk,” and
“Delta-flat.vmdk’ had uninterrupted contiguous blocks allocated to the files, which enabled
successfulrecovery ofthe files. Using dcfldd to carve consecutive sectors fromeach file’s
starting pointresulted in complete recovery ofthe virtual disk files. “Charlie-flat.vimdk,” on the
otherhand, had fragmentation throughout the virtual disk file. As aresult, the “Charlie -

flat.vmdk” file failed to recoversuccessfully when carving consecutive sectors fromthe

“Boston” volume.
"Boston" VMFS Volume Disk View
"’hf fbb.sf -pbﬂcsf -sbe.sf 'pbi'Sf
VMFS Metadata Files (top row]*'_ e EEEEE EEEEEEEEEEE HH
H u I *Note: Each cell represents 10
Hi.fdc.sf (frasmented) | VMFS blocks, or 100MB.
Legend
! ot o = log file
== nvram file
Alpha-flat.vmdk Eeiss:
Bravo-flat.vmdk

Delta-flat.vmdk

Charlie-flat.wmdk Charlie-flat.vmdk

Figure 4. Disk view of* Boston” volume. This figure shows a visual representation ofthe file allocation across the “Boston”
VMES volume. The figure shows the contiguous sectors that comprised the*“ Alpha-flat.vmdk,” “ Bravo-flat.vmdk,” and “ Delta-
flat.vmdk” virtual disk files and the fragmentation of* Charlie-flat.vmdk.” Each cell within the figure represents 10 VMFS
blocks.
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Xxd retrieved the file descriptor details and sub-block metadata for “Charlie-flat.vmdk.”
The metadata files contained block usage information aboutthe blocks used by each file within
the volume. The vimfs-tools source code, provided the information necessary to identify the
blocks used by the “Charlie-flat.vmdk” file from within the restoration image, prior to deleting
the “Charlie” VM from the VMFS volume. (See Table 12 m AppendixE forthe file descriptor
and sub-block metadata associated with “Charlie-flat.vmdk™).

Figure 5 shows the values within the file descriptor, “.fdc.sf,” systemfile and sub-block
systemfile, “.sbc.sf,” fromthe restoration image ofthe “Boston” volume. The values represent
the file descriptorand sub-block systementries for “Charlie-flat.vmfs” before deletion of the
“Charlie” VM. The file named “Charlie-flat.vmdk within “.sbc.sf,” had an inode ID of““44 8A 80
04.” The inode ID “44 8A 80 04 within “.fdc.sf” provided the file size and number of VMFS

blocks allocated to “Charlie-flat.vimmdk.”

"Boston" volume restoration image (prior to deleting "Charlie VM)

fde.sf inode ID = 0x448A8004 file size in bytes .shec.sf inode ID = 0x448A8004

[ ol
root@lab-uld gmedia/vmfs2# xxd - xd8ad200 -1 128 .fdc.sf root@lab-ul4:/media/vmigg?# xxd -s 0xE3162BC -1 140 .sbc.sf
d8ad200: [448a 8004|2000 0000 0100§0000 0300 e3162bc: 0300 0000 2000 0000 4368 6172 ....D... ... Char

.le3162cc: 6c69 652d 666C 6174 2e76 6d64 6b00 0000 lie-flat.vmdk...
.T||e3162dc: 0000 0000 0000 0000 000D 0000 ODOO DOOO
.[|e3162ec: 0000 0000 0000 0000 0000 0000 0000 OOOO
.lle3162fc: 0000 0000 0DOO DOOOD 0OOO 000D QODO 000D
.[|e31630c: 0000 0000 0000 0000 0000 0000 0000 O0OO  ................
e31631c: 0000 0000 0000 Q0000 0000 0000 0000 0000  ................
e31632c: 0000 0000 0000 0000 000D 0000 Q000 OOOO ................
e31633c: 0000 0000 0000 OOOO OOOO OOOO ............

d8ad210: 0000 0000[ 0000 0000 0300 0000|0000
d8ad220: 0000 0000| ab20 0000 0000 0000|5f27
d8ad230: 1227 f854 5f27 f854 00QD 0000 0000
d8ad240: 8001 0000 0300 0000 OOfH 0000 0000
d8ad250: ab20 0000 0000 0000 OO 0000 0000
d8ad260: 0000 0000 0000 0000 COfb 0000 0000
d8ad270: 0000 0000 0000 0000 0Ofb 0000 0000

number of VMFS blocks

Figure 5. Metadata of active file. This figure shows the metadata retrieved for “ Charlie-flat.vmdk” from the “ .fdc.sf” and “ sbc.sf”
systemfiles. This data showed the values prior to deleting the “Charlie” VM from the VMFS volume.

The “.fdc.sf” and “.sbc.sf” systemfiles from the restoration image comparedto the
“fdc.sf”and “sbe.sf” systemfiles fromthe “Boston volume 20150305.raw” image showedthat
deleting a file purges the entry for the file within “.sbc.sf.” Further, deleting the “Charlie -
flat.vimmdk,” file kept the inode ID entry in the “fdc.sf” file, but zeroed out the values for the file
size and number ofblocks allocated to the file, among other fields. Figure 6 shows the*“ fdc.sf”

contents forinodeID “44 8A 80 04” following the deletion of “Charlie-flat.vimdk.”
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From "Boston_volume_20150305.raw

fdc.sf inode 1D = Ox448A8004 file size zeroed out

rnnt@lab-u‘ld:iediafumfﬁ# xxd - xdBad200 -1 128 .fdc.sf

d8ad200: 4483 '8004| Z000 0000 OQOOW 0000 0300 0000 D... v.oevenvnnnn
d8ad210: 0000 DUDU|DUDU 0000 0000 Q0000000 1000 . .... .. eennennn.
d8ad220: 0000 DUDU|DUDU 0000 Q0OpO 0000 5f27 f854 ............ LT
d8ad230: 7545 fB854 5f27 f854 0080 0000 OOOOD OQODOO0 wE.T_".T........
d8ad240: 8001 0000 0300 0000 OCMO 0000 000D 0000 . ... envnnvnnnn
d8ad250: 0000 0000 0000 0QOO0OD O Q0000 Q000 0000 ..., e
d8ad260: 0000 0000 OOODO0 OOO0D OO0 0000 000D 0000 .....veevunvnnnn
d8ad270: 0000 0000 0000 OO0D OO0 0000 000D 0000 .....veevuernnnn

VMEFES blocks value zeroed out

Figure 6. Metadata of deleted file. This figure shows that the file size and number of VMFS blocks fields, among other fields,
zeroed out following the deletion of* Charlie-flat.vmdk.”

The changes made to the VMFS systemfiles following a file’s deletion fromthe file
systemmake it highly unlikely to recovera file comprised on a non-contiguous datastream.
Once the file systemdeletes the file and updates the supporting systemfiles, VMFS clears many
of the fields necessary to recover non-contiguous files. During the examination phase, the
“Charlie-flat.vmdk” file was unrecoverable using consecutive sector file carving techniques and
could not be recovered based on information obtained through the VMFS systemfiles. For this
research, the “Charlie-flat.vmdk” file was unrecoverable.

Analysis Phase

Test#1: Thick-provisioned, eager zeroedvirtual disk. The goaloftest#1 was to
recoverthe VM, “Alpha,” fromthe VMFS file systemand analyze it to recover the four control
files fromthe test scenario. “Alpha”had a single virtual disk configured in thick-provisioned,

eager zeroed mode, which is the default mode for ESXi.

Virtual diskidentification. A tool fromThe Sleuth Kit, mmls, inspectedeach “—
flat.vmdk” carved file and determined thateach had the same partition layout, with a 24,956,928-

sector,or 11.9 GB NTFS volume starting at sector 206,848. Each “-flat.vimdk” file, mounted one
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ata time to “/media/test” as a read-only volume at offset 105,906,176, provided file system
browsing ofthe activefiles in the 11.9 GB NTFS volume in each virtual disk file. Regripper
analyzed the systemregistry hive contained within the NTFS volume ofeach “—flat.vimdk” file to
determine the computer name associated with each file. Each “-flat.vmdk” file was unmounted
from “/media/test” following the identification of the computer name fromthe systemregistry
hive. The computer name found in the “Windows\System32\config\SYSTEM” registry hive of
“38539264-flat.vindk™ was, “Alpha,” as shownin Figure 7. The “Alpha” VM was the subjectof

test#1.

compname v.20090727
(System) Gets ComputerName and Hostname values from System hive

omputerName = ALPHA |
TCP/IFP Hostname = Alpha

Figure 7. Regripper identified “ Alpha” VM. This figure shows the Regripper output ofthe compname plugin run on the
“Windows\System32\config\SY STEM” file in the “ 38539264 -flat.vmdk” virtual disk. The computer name configured
within the registry was, “ALPHA.”

Control filerecovery. The second partition fromthe “38539264-flat.vimdk”™ virtual disk
file, mounted as a read-only volume at “/media/alpha” on “Ubuntu 14 Forensics VM,” enabled
file systembrowsingofthe “Alpha” VMs’ systemdrive. The command “mount—o
r0,0ffs et=8((206848* 512)) /media/hdd/capstone/working/38539264-flat.vimdk /media/alpha”
mounted the volume to “/media/alpha”. The partition start sector returned by mmls, multiplied
by the sectorsize in bytes, produced the offset value.

Browsing to the relative path of “/$Recycle.Bin/ S-1-5-21-1394914191-3772142883-
1012848598-1000/ showeda “.pdf” file, “SRMW UZ26.pdf.” MD5sumcalculated the MD5
hash valueof “SRMW UZ26.pdf”as “809176d892d68b 147bdeb8ad3aba80bd,” the same hash

value as ControlDoc 1.pdf. The file, opened in okularusing the command “okular
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SRMW UZ26.pdf” displayed the contents of“ControlDocl.pdf.” The contents simply read,
“Control Document #1”.

Having the known M D5 hash value for “ControlDoc2.pdf” allowed for the use of
MD5sumto search fora matching MD5 hash value within Alpha’s Google Chrome cache
directory. Fromwithin the “/media/alpha/Users/User/AppData/Local/Google/Chrome/User

Data/Default/Cache” folder, the command “mdSsum* | grep —i
“41e40c445740b974t428cfc772ceadb” returned a single file name, “f 00004a”. The file,
openedin okularusingthe command “okular f 00004a” displayed the contents of
“ControlDoc2.pdf.” The contents simply read, “Control Document #2”.

With a single file definition, for “pdf” files, enabled in the foremost configuration,
foremost attempted to recover the deleted files, “ControlDoc3.pdf,” and “ControlDoc4.pdf,”
fromunallocated space on the Alpha virtual disk. Foremost completed with 94 “.pdf” files
recovered, but none ofthe recovered “.pdf” files matched the MD5 hash values of
“ControlDoc3.pdf” or “ControlDoc4.pdf.”

Using hexedit to search for the control file’s identifiable hexadecimal string,
“2F417574686F 7228422E204B696E63686C6129, which is the hexadecimal representation of
the ASClIstring, “/Author(B. Kinchla)”, a fragment of “ControlFile3.pdf” was located at sector
offset 24,346,352 within the “Alpha-flat.vmdk” virtual disk file. Using dcfldd to extract each
sectorandhashthe results with mdSsumdetermined that “ControlFile3.pdf” contained 8,192
bytes, ortwo contiguous sectors, before the file fragmented to other blocks within the virtual file
system. Figure 8 shows the commands used to determine the offset where fragmentation

occurred.
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"ControlDoc3.pdf" Bytes carved from offset 12465332224 of "Alpha-flat.wmdk"

kinchla@lab-u14:/media/hdd/capstone/working$ dcfldd if=control/Cco  |kinchla@lab-ul4:/media/hdd/capstone/working$ dcfldd if=Alpha-flat
ntrolDoc3.pdf bs=1 count=8192 | md5sum .vmdk bs=1 skip=12465332224 count=8192 | md5sum

8192 blocks (OMb) written. 8192 blocks (OMb) written.

0e81681a671de2f885486800112b7119 8192+0 records in

8192+0 records in Matching MDS5 values at 8192 bytes 8192+0 records out

8192+0 records out eB1681a671de2f885486800112b7119 -
kinchla@lab-u14:/media/hdd/capstone/working$ dcfldd if=control/sco  |kinchla@lab-ul4:/media/hdd/capstone/working$ dcfldd if=Alpha-flat
ntrolDoc3.pdf bs=1 count=8193 | mdSsum .vmdk bs=1 skip=12465332224 count=8193 | md5sum

8192 blocks (OMb) written. 8192 blocks (OMb) written.
8193+0 records in

8193+0 records in

8193+0 records out ~ 8193+0 records out
f3802'\accz‘\caaeSad&Ef4c052378c25¢1°n'matcmngMstaluesat8193bvte*(TEaSa7QecO2bf8023e3c334c75c6376 .

Figure 8. Determining fragmentation offSet with dcfldd and mdSsum. This figure shows mdSsum calculating the MD5
hash value ofdcfldd output. The commands on the left calculated the MDS5 hash value of* ControlDoc3.pdf” for sectors
0-8191 and 0-8192. The commands on the left calculated the MDS5 hash value 0f8192 bytes beginningat byte offSet
12,465,332,224 and 0f8193 bytes beginning at byte ofiset 12,465,332,224. The results show matching MDS5 hash
values at 8192 bytes, but differing MDS5 hash values at 8193 bytes.

Continuingto search with hexedit for the string
“2F417574686F7228422E204B696 E63686C6129” returned only three results for
“ControlDoc1.pdf,” “ControlDoc2.pdf,” and thefirst fragment of “ControlDoc3.pdf.” Manually
searching within hexedit returned no matches for “ControlDoc4.pdf.” The research did not
continue further searching for fragments of “ControlDoc4.pdf.”

VM reconstruction. Identification ofthe most current copies ofeach “.vmx,” “.vmxf,”
“vmdk,” and “-flat.vmdk,” was the next challengeto reconstructing the VM in its most recent
state (See Table 14 in AppendixC for an inventory ofrecovered files belongingto the Alpha
VM). Becausethe “.log” files contained times tamps, they provided the bestclue to finding the
latest configuration ofthe VM priorto deletion. Using the command, “head —n 1 *.log”, the
output was the first line ofeach “.log” file. The log file 156733440.log had the latest timestamp,
at “2015-03-05T09:44:16.321Z2.”

Of'the files that foremost carved during the examination phase, there were nine “.vimx”
files belonging to the “Alpha” VM. The contents of*“15633440.log” identified the “.vmx” file
that associated with the “15633440.log” file. Using a series of “diff -a” commands to find
differences betweenthe various “.vimx” files and comparing those differences tothe contents of

“156733440.log,” identified the “.vmx” file that matched the log file. “01559408.vmx” matched
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the contents of*“156733440.log” and, therefore was the “.vmx” file last in use by the “Alpha”
VM.

With the recovery ofthe latest “.vimx” file from the “Alpha” VM, combined with the
“vmxf,” “.vmdk,” and “-flat.vmdk” files, there existed thenecessary files to reconstruct the VM
on an ESXi system. To find the original filenames ofthe Alpha VM files, the “.log” file, “.vmx”
file, and “.vmdk” file contained the names and file systempaths for each ofthe deleted files.
“156733440.log” provided thename ofthe VM directory and the “.vmx” file as
“Alpha\Alpha.vmx.” The “.vmx” file, “01559408.vmx” renamed to “Alpha.vmx,” had its
contents displayed in its entirety, within “156733440.log”. “Alpha.vimx’ provided filenames for
the “.vmxf,” file within the “extendedConfigFile” configuration parameter and “.vmmdk,” files,
“Alpha.vindk” and “Alpha.vmxf”. “Alpha.vmdk” provided the filename for the “-flat.vmdk” file,
“Alpha-flat.vimdk,” within the “Extent description” section. The files “01559088.vmxf” and
“38539264-flat.vimdk,” renamed to “Alpha.vmxf” and “Alpha-flat.vmdk,” were copied along
with “Alpha.vimdk” and “Alpha.vmx” to a new foldernamed “Alpha” on the datastore volume,
“Chicago,” on the ESXihost, “vmhost21.” Afterusing scpto copy the VM files to “vmhost21,”
mdSsumcalculated the MD5 hash values for the copied files on “vmhost21.” (See Table 14 in
AppendixC to reference the MDS5 hash values ofthe Alpha VM recovered files).

Within the vSphere Client, using the Datastore Browser, right-clicking on the
“Alpha.vmx” file name and selecting “Addto Inventory,” invoked the “Addto Inventory”
wizard. The Alpha VM was added to the ESXi server’s inventory as an available VM after
completing the “Addto Inventory” wizard. The “Alpha” VM failed to start, returning the error

shown in Figure 9, indicating a problemwith “Alpha.vimdk.”
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= Cannot open the disk '/vmfs/volumes/34c8e97a-ff317abc-e0c6-00151737301e/Alpha/Alpha.vmdk’ or one of the snapshot disks it

(0' depends on.

See the error stack for details on the cause of this problem.

Time: 3/27/2015 4:48:51 PM
Target:  Alpha
ESXi: 10.0.0.22

[l Error Stack

sk 54c8e97a-ff317abc-e0c6-0015173730§ e/Alpha/Alpha.vmdk' of one of the snapshot disks it depends on.
The file specified is not a virtual disk

Errorymessage indicates;

et

Submit error report...

Figure 9. ESXi error - .vimdk is not a virtual disk. This figure shows the error encountered when first attempting to boot
the “ Alpha” VM from the reconstructed files.

Seeing no obvious problemwith “Alpha.vmdk,” an analysis of “Alpha-flat.vindk,”
comparing “Alpha-flat vindk™ to the active file, “Delta-flat.vmdk,” fromthe
“Boston_volume 20150305.raw” image ensued. The comparisonrevealed that “Delta-
flat.vmdk” contained one VMFS5 block, or 2048 sectors, beyond the end ofthe last partition in
the virtualdisk image. The “Alpha-flat.vmdk” virtual disk file ended immediately following the
last partition in the virtual disk and did notcontain the extra block.

Comparing the sector length ofthe virtual disks derived fromthe partition tables tothe
sector length shownin the “extentdescription” section of each “.vmdk” file showed thateach ““-
flat.vmdk” file was one VMFS5blocklongerthanthe end ofthe lastpartition. Using dcfldd to
re-carve the virtual disk file “Alpha-flat.vmdk” from“Boston_volume 20150305.raw,” the
command, “dcfldd bs=512 skip=38539264 count=$((25163776+2048)) hash=md5
if=Boston_volume 20150305.raw 0f=38539264+2048-flat.vmdk,” produceda virtual disk with
an additional 2048 sectors at theend ofthe file named, “38539264+2048-flat.vmdk.” Dcfldd
calculated the MDS5 hash value ofthe extracted bit streamsimultaneously with the image

creation process.
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The new “-flat.vimdk” file for the “Alpha” VM, “38539264+2048-flat.vmdk,” was copied
to the Alpha directory on the datastore volume, “Chicago,” on the ESXihost, “vmhost21.”
Renaming the existing “Alpha-flat.vmdk” to““Alpha-flat.vmdk.old” and renaming

“38539264+2048-flat.vmdk™ to “Alpha-flat.vmdk,” allowed the VM to bootup properly. Figure

10 shows the fully booted VM within the vSphere Client console.

File View VM

BN OB GRS R

. Windows 7 Professional

Figure 10. Successful reconstruction of*“ Alpha” VM. This figure shows the fully booted “Alpha” VM to illustrate the
successful recovery of the VM from the VMFS volume.

Following the same process usedto carve “38539264+2048-flat.vindk,” the “-flat.vmdk”
files from sectors 63705088, 97521664, and 131338240, on the
“Boston_volume 20150305.raw” image were re-carved with the additional 2048 sectors

appendedto theendofeach virtual disk file. Dcfldd calculated the MDS5 hash value ofeach
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carved file simultaneously with the image file creation (See 7able 13 in AppendixB fora revised
table ofthe MD5 hash values for the “-flat.vmdk” files with the appended 2048 sectors).
Test#2: Thick-provisioned, lazy zeroedvirtual disk. The goal oftest#2 was to
recoverthe VM, “Bravo,” fromthe VMFS file systemand analyze to recover the four control
files fromthe test scenario. “Bravo”had a single virtual disk configured in thick-provisioned,

lazy zeroed mode, which is the default mode for ESXi.

Virtual disk identification. During the analysis phase oftest #1, Regripper analyzed the
systemregistry hive contained within each NTFS volume fromthe carved virtual disk images to
determine the computer name associated with each file “-flat.vmdk” file. The computername

found in the “Windows\System32\config\SYSTEM” registry hive of““63705088+2048-

flat.vmdk™ was, “Bravo,” as shown in Figure 11. The “Bravo” VM was the subject oftest #2.

compname v.20090727
(System) Gets ComputerName and Hostname values from System hive

omputeriName = BRHVD'
TCP/IP Hostname = Brawvo

Figure 11. Regripper identified “Bravo” virtual disk. This figure shows the Regripper output ofthe compname plugin
run on the “ Windows\System32\config\SY STEM” file in the “ 63705088+2048-flat.vmdk” virtual disk. The computer
name configured within the registry was, “BRAVO.”

Control filerecovery. The second partition fromthe “63705088+2048-flat.vimdk™ virtual
disk file, mounted as a read-only volume at “/media/brav/” on “Ubuntu 14 Forensics VM,”
enabled file systembrowsing ofthe “Bravo” VMs’ systemdrive. The command “mount—o
r0,01fset=8$((206848*512)) /media/hdd/capstone/working/63705088+2048-flat.vmdk
/media/bravo/” mounted the volume to “/media/bravo”. Thepartition start sector returned by
mmls, multiplied by the sectorsize in bytes, produced theoffset value.

Browsing to the relative path of, “/$Recycle.Bin/ S-1-5-21-2592085848-1128064398-
1000/, showed a “.pdf” file, “SRDMRHC9.pdf.” MD5sumcalculated the MD5 hash value of
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“$SRDMRHC9.pdf” as “809176d892d68b 147bdeb8ad3aba80bd,” the same hash value as
ControlDoc1.pdf. The file, opened in okularusing the command, “okular § RDMRHC9.pdf”,
displayedthecontents of*“ControlDocl.pdf.” The contents simply read, “Control Document#1.”

Having the known MD5 hash value for “ControlDoc2.pdf” allowed for the use of
MDSsumto search fora matching MD5 hash value within Beta’s Google Chrome cache
directory. Fromwithin the “/media/bravo/Users/User/ AppData/Local/Google/Chrome/User
Data/Default/Cache” folder, thecommand “mdSsum™* | grep —1
“41e40c445740b974t428cfc772ceadb” returned a single file name, “f 00004b”. The file,
openedin okularusing the command “okularf 00004b” displayedthe contents of
“ControlDoc2.pdf.” The contents simply read, “Control Document #2”.

With a single file definition, for “pdf” files, enabled in the foremost configuration,
foremost attempted to recover the deleted files, “ControlDoc3.pdf,” and “ControlDoc4.pdf,”
fromunallocated space on the Alpha virtual disk. Foremost completed with 102 “.pdf” files
recovered, but none ofthe recovered “.pdf” files matched the MD5 hash values of
“ControlDoc3.pdf” or “ControlDoc4.pdf.”

Using hexedit to search for the control file’s identifiable hexadecimal string,
“2F417574686F7228422E204B696 E63686C6129”, returned only threeresults for
“ControlDoc1.pdf,” “ControlDoc2.pdf,” and the first fragment of “ControlDoc3.pdf.” Using the
same techniquedescribed in Analysis, Analysis Phase, Test#1: Thick-provisioned, eager zeroed
virtual disk, Control file recovery, determined that thesearch string identified only the first
NTFS block of“ControlDoc3.pdf”. The fragmentof““ControlDoc3.pdf” differed fromthe

original control file at byte 4097. Manually searching within hexedit returned no matches for
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“ControlDoc4.pdf.” The research did not continue further searching for fragments of

“ControlDoc4.pdf.”

VM reconstruction. Identification of the most current copies of each “.vmx,” “.vmxf,”
“vmdk,” and “-flat.vimdk,” was the next challenge to reconstructing the VM in its most recent
state. (See Table 16 in AppendixD for an inventory ofrecovered files belongingto the Bravo
VM). Using the command, “head —n 1 *.log”, the output was the first line of each “.log” file. The
log file “159092736.log” had the latesttimestamp at “2015-03-05T09:44:33.798Z2.”

Of'the files that foremost carved during the examination phase, there were nine “.vmx”
files belonging to the “Bravo” VM. The contents of*“159092736.log” identified the “.vmx” file
that associated with the “159092736.log” file. Using a series of ““diff -a” commands to find
differences betweenthe various “.vimx” files and comparing those differences tothe contents of
“159092736.log,” identified the “.vmx” file that matched the log file. “01559424.vmx” matched
the contents 0f*“159092736.log” and, therefore was the “.vmx” file last in use by the “Bravo”

VM.

With the recovery ofthe latest “.vmx” file from the “Bravo” VM, combined with the
“vmxt,” “.vmdk,” and “-flat.vindk” files, there existed thenecessary files to reconstruct the VM
on an ESXi system. To find the original filenames ofthe Bravo VM files, the “.log” file, “.vmx”
file, and “.vimmdk” file contained the names and file systempaths foreach ofthe deleted files.
“159092736.log” providedthename ofthe VM directory and the “.vmx” file as
“Bravo\Bravo.vmx.” The “.vmx” file, “01559424.vmx” renamed to “Bravo.vmx,” had its
contents displayed in its entirety, within “159092736.log”. “Bravo.vmx”’ provided filenames for
the “.vmxf,” file within the “extendedConfigFile” configuration parameter and “.vimdk,” file

within the “scsi0:0.fileName” configuration parameter, “Bravo.vimdk’ and “Bravo.vimxf”.
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“Bravo.vmdk” provided the filename for the “-flat.vimdk” file, “Bravo-flat.vmdk” within the
“Extent description”section. The files “01559264.vmxt™ and “63705088+2048-flat.vimdk,”
renamed to “Bravo.vmxf”’ and “Bravo-flat.vmdk,” were copied along with “Bravo.vmdk” and
“Bravo.vmx’ to a new foldernamed “Bravo” onthe datastore volume, “Chicago,” onthe ESXi
host, “vmhost21.” Afterusingscpto copy the VM files to “vmhost21,” md5Ssumcalculated the
MD?5 hash values forthe copied files on “vmhost21.” (See Table 1 6in AppendixD to reference
the MD5 hash values ofthe Bravo VM recovered files).

Within the vSphere Client, using the Datastore Browser, right-clicking on the
“Bravo.vmx” file name and selecting “Addto Inventory” invoked the “Addto Inventory”
wizard. The “Bravo” VM was addedto the ESXi server’s inventory as an available VM after
completing the “Addto Inventory” wizard. The “Bravo” VM started without error. Figure 12

shows the fully booted VM within the vSphere Client console
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Figure 12. Successful reconstruction of* Bravo” VM. This figure shows the fully booted “Bravo” VM to illustrate the
successful recovery of the VM from the VMFS volume.

Test#3: Thin-provisioned virtual disk. The goaloftest #3 was to recoverthe VM,
“Charlie,” from the VMFS file systemand analyze to recover the four control files fromthe test
scenario. “Charlie” had a single virtual disk configured in thin-provisioned mode, which is the
default mode for ESXi.

Virtual disk identification. During the analysis phase oftest #1, the researcher mounted
each ofthe carved “~flat.vimdk” files at sector 206848 as an NTFS volume to /media/test on
“Ubuntu 14 Forensics VM.” Three ofthe four virtual disk files mounted successfully as an NTFS
volume at a sector 206848 ofthe virtual disk. The fourth disk file containedno data at sector
206848 and therefore was unable to be analyzed as a virtual disk file. Regripper analyzed the

systemregistry hive contained within each NTFS volume to determine the computer name
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associated with each file “-flat.vmdk” file. The registry hives for “Alpha,” “Bravo,” and “Delta”
were found, but the virtual disk file belonging to the “Charlie” VM was the disk file that was
missing the Windows systempartition.

Using xxd to open “VMD_physical 20150305 restore.raw” to offset 67,246,227,456, the
first byte ofthe “Charlie” virtual disk file from the physical volume, showed an MBR sector with
a complete partitiontable. The partition table contained two partitions; the first partition started
atsector 2,048 (relative to byte 67,246,227,456 as the startofsector 0)and had a length of
204,800 sectors. The second partitionstarted at sector 206,848 and had a length 0£24,956,928
sectors, or 11.9 GB.

Using xxd to review relative sector 206,848, offset 67,352,133,632 within the restoration
image, showed that no partition existed at thatlocation. Because no partition startsector existed
atrelative offset 206,848 within the restoration image, non-contiguous sectors on the VMFS
volume comprised the “Charlie” VM’s virtual disk prior to deleting the virtual disk file.
Therefore, file-carving techniques thatrely on contiguous allocation of datawould not be able to
recover the “Charlie” virtual disk file after deletion.

As discussed in the analysis, examination phase, deleting the “Charlie-flat.vimdk™ file
causedtheclearing of metadata fromthe systemfiles for the “Charlie-flat.vmdk” file. The blocks
allocated to the “Charlie-flat.vmdk’ file were unknown with the metadata cleared. Therefore, file
carving fromthe individual blocks was not reasonably possible to recover the complete virtual
diskfile forthe “Charlie” VM fromthe “Boston”volume.

Control filerecovery. Each ofthe control files resided within the “Charlie-flat.vmdk”
virtual disk file prior to deleting the “Charlie” VM. Without successful recovery of the “Charlie-

flat.vimmdk,” virtual disk file, there was no attemptto recover the control files. Unknown file
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extents for “Charlie-flat.vmdk™ made it impossible to know ifa file carved directly fromthe
VMEFS volume had previously been contained within the extents of “Charlie-flat.vmdk.

VM Reconstruction. To reconstruct each VM, the virtual disk file was necessary. The
“Charlie-flat.vmdk” was unrecoverable using thetechniques in this research. Therefore, the
“Charlie” VM was not reconstructed.

Hypotheses. Testing ofthree hypotheses occurred to explain some ofthe results
observed. The cause of fragmentation of “Charlie-flat.vmdk” prompted the testing of two
hypotheses. Thefirst hypothesis, referred to as the “non-consecutive writes”hypothesis offered
that thin-provisioned virtual disk files have a higher likelihood of fragmentation due to non -
consecutive writes to disk during virtual disk file expansion. For thin-provisioned virtual disks
which have notbeen fully allocated within the VMFS volume, unallocated blocks contiguous to,
or addressed closely to the lastallocated block of the virtual disk file are candidates forany ESXi
process towrite to. Doing so would cause fragmentation ofthe thin-provisioned virtual disk
when it requires allocation of more blocks. The second hypothesis, referred to as the “allocation
percentage” hypothesis offered thatany virtual disk file stands a higher chance of encountering
fragmentationas less allocated blocks remain within the volume. The inability to recoverthe
deleted control files from any ofthe deleted VMs prompted thetesting ofa third hypothesis,
referred to as the “control file” hypothesis. The “control file” hypothesis offered that chances for
recovery of deleted files within the VM decreased as unallocated space within the virtual disk
file decreased.

The testingofthe “allocation percentage’ hypothesis required an additional
testingenvironment be created using thesame scenario as the analysis testing scenario, except

with the VMs provisioned in a different order. The testing ofthe “control file” hypothesis

48



required an additional testing environmentbe created using the same scenario as the original
testing scenario, except the VMFS volume was doubled in capacity and each VM’s virtual disk
file was configured with 50% more capacity. The testing ofthe “non-consecutive writes”
hypothesis used data fromeach ofthe three testing environments to draw conclusions.

Non-consecutive writes hypothesis. The non-consecutive writes hypothesis stated that
thin-provisioned virtual disk files have a higher likelihood of fragmentation due to non -
consecutive writes to disk during virtual disk file expansion. Testing ofthis scenario required an
additional testing environment, which was identical to the analysis -testing environment except
the provisioning of VMs, occurred in a different order to change the physical location ofthe
virtual disk files within the VMFS volume.

The VM datastore drive, forensically wiped with zeroes usingdc3dd prior to configuring
the datastore, held a single 80GB VMFSS volume labeled “Dallas.” The “Dallas” volume had a
formatted capacity of 79.75GB. Four VMs had their files stored on the “Dallas” volume. Each of
the VM had the same software and virtual hardware configuration with the exception ofthe
virtual disk allocation method. The“Charlie2” VM had a thin-provisioned virtual disk. The
“Bravo2” VM had the ESXi default method of thick-provisioned, lazy zeroed virtualdisk. The
“Alpha2” VM had a thick-provisioned, eager zeroed virtual disk. The “Delta2” VM had a thick-
provisioned, lazy zeroed virtualdisk. Table 6 lists the configuration ofthe fourtest VMs.

Table 6

Non-Consecutive Writes Test VM Configurations

VM 1 VM 2 VM 3 VM 4
VM Name Charlie2 Bravo2 Alpha2 Delta2
VM working [Dallas]/Charlie2 [Dallas]/Bravo2 [Dallas]/Alpha2 [Dallas]/Delta2
location
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CPUs

1

1

1

1

RAM

1GB

1GB

1GB

1GB

HDD size

12GB

12GB

12GB

12GB

Virtual disk-

Thin-provisioned

Thick-provisioned,

Thick-provisioned,

Thick-provisioned,

Professional x64

Professional x64

Professional x64

provisioning lazy zeroed eager zeroed lazy zeroed

method

Virtual disk file [Dallas]/Charlie2/C | [Dallas]/Bravo2/Br | [Dallas]/Alpha2/Al | [Dallas]/Delta2/Del
harlie2-flat.vmdk avo2-flat.vmdk pha2-flat.vmdk ta2-flat.vmdk

VM configuration | [Dallas]/Charlie2/C | [Dallas]/Bravo2/Br | [Dallas]/Alpha2/Al | [Dallas]/Delta2/Del

file harlie2.vimx avo2.vimx pha2.vmx ta2.vimx

Operating system Windows 7 Windows 7 Windows 7 Windows 7

Professional x64

Note. This table lists the virtual hardware, configuration files and operating systemofeach of the VMs on the “ Dallas”
volume of “ vmhost21.”

The expected results ofthe testing ifthe hypothesis held true were twofold. Swapping the
provisioning order ofthe “Alpha”and “Charlie” VMs, named “Alpha2” and “Charlie2” in this
scenario, positioned “Charlie2-flat.vmdk” in a similar physical locationto “Alpha-flat.vmdk’s”
position within the original testing scenario. Given that “Alpha-flat.vmdk™ had no fragmentation
within the “Boston” volume, the expectation was that“Charlie-flat2.vimmdk” would similarly have
no fragmentation within the ““Dallas” volume. With further provisioning of VMs to the “Dallas™
volume, the expectation was that ESXiwould allocate blocks contiguous to, or within the
maximum consecutive length on disk ofthe “Charlie2-flat.vmdk” virtual disk, to other VM files.
That scenario, if shownto be true, would be highly likely to cause fragmentation ofthe
“Charlie2-flat.vimdk” virtual disk as it expands in size over time.

Aftercompleting thescenario setupand deletingthe“Alpha2,” “Bravo2,” and “Charlie2”
VMs, dcfldd captured a working-copy and preservation-copy image ofthe “Dallas” VMFS

volume. Using the command, “dcfldd bs=512 skip=2048 count=167772159 if=/dev/sdc
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of=/media/hdd/capstone/hypol/working/Dallas_volume 20150411.raw of=
of=/media/hdd/capstone/hypol/preserve/Dallas volume 20150411.raw.preserve”, dcfldd created
the working-copy and preservation-copy images ofthe““Dallas” VMFS volume. Following the
image creation, the foremost configuration file from the original scenario carved the VM ware
“log,” “.vmx,” “.vmxf,” “.nvram,” and “.vmdk” files fromthe “Dallas” volume. Using xxd in
the same manner as the original testing scenario, xxd identified the MBR sectors for the four
virtualdisk files. Using the same technique detailed in the original testing scenario, Dcfldd
carved eachofthe “-flat.vimdk” files fromthe “Dallas” volume according to the starting position
and length ofeach virtual disk’s partitions within thepartition table. Each “-flat.vmdk”, mounted
to /media/temp on “Ubuntu 14 Forensic VM”, produced the name ofthe VM to which it
belongedusingregripper’s compname plugin to parsethe “SYSTEM” registry hive at
“/media/temp/Windows/System32/config/ SYSTEM”. The identified locations and length ofeach
VMware “log,” “.vmx,” “.vmxf,” “.nvram,” and “.vimdk” file as well as the locationandlength

of each “-flat.vimdk” file, revealed the disk layoutofthe “Dallas” volume shown in Figure 13.
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Figure 13. Disk view of* Dallas” volume. This figure shows a visual representation ofthe file allocation across the
“Dallas” VMFS volume. The figure shows the contiguous sectors that comprised the “Charlie2 -flat.vmdk,” “ Bravo2-
flat.vmdk,” and “ Delta-flat.vmdk” virtual disk files and the fragmentation of* Alpha2 -flat.vmdk.” Each cell within the
figure represents 10 VMFS blocks.

The first finding ofthe scenario confirmed the expectation ofthe “non-consecutive
writes”” hypothesis that further provisioning of VMs to the “Dallas” volume after the allocation
of the “Charlie2-flat.vimdk” file, ESXi would allocate blocks contiguous to, or within the
maximum consecutive lengthon disk ofthe “Charlie2-flat.vmdk” virtual disk, to other VM files.
As can be seen in Figure 13, marked by dark purple cells, due to “Charlie2-flat.vimmdk” being a
thin-provisioned virtual disk file, ESXi did not allocate the full-configured length 0f25,165,824
sectors to “Charlie2-flat.vmdk.” Sector 0 of “Bravo2-flat.vmdk occurred ondisk at 20,971,520
sectors aftersector 0 of “Charlie2-flat.vindk.” Therefore, 4,194,304 sectors, or 2GB, of

“Charlie2-flat.vimdk” were unallocated and could not be allocated as contiguous blocks to the
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existing “Charlie2-flat.vmdk because ESXi had already allocated thoseblocks to “Bravo2-
flat.vmdk.”

The second finding ofthescenario confirmed the expectation ofthe “non-consecutive
writes” hypothesis that no fragmentation occurred within the “Charlie2-flat.vmdk” file. Within
the “Dallas” volume’s disk layout was the absence of fragmentation within the “Charlie2-
flat.vmdk” virtual disk file and the introduction of fragmentation within the virtual disk files that
were located at higher addresses onthe “Dallas” volume. This finding met the expectationofthe
“non-consecutive writes” hypothesis thatno fragmentation occurred within the “Charlie2-
flat.vmdk” file.

The mostrecent “.vmx,” “.vmxf,” and “.vmdk” files from the Charlie2 VM, identified
using the same technique described in the Analysis, Analysis Phase, Test#1: Thick-provisioned,
eager zeroed virtual disk, VM reconstruction section, were copied along with “Charlie2-
flat.vmdk™ using scp to the “Charlie2” folder on the “Chicago” VMFS volume on “vmhost21.”
Within the vSphere Client, using the Datastore Browser, right-clicking on the “Charlie2.vmx”
file name and selecting “Add to Inventory,” invoked the “Addto Inventory” wizard. A fter
adding the “Charlie2” VM to the VM inventory on “vmhost21,” it was powered on and
successfully booted the “Charlie2” VM as shown in Figure 14 In the original test scenario, each
of the thick-provisioned virtual disk files needed an additional IMB block added tothe end of
each virtual disk file for ESXi to accept it as a valid virtual disk. For the thin-provisioned virtual

disk file, no additional blocks were needed.
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Figure 14. Successful reconstruction of* Charlie2” VM. This figure shows the fully booted “Charlie2” VM to illustrate
the successful recovery of the VM fiom the VMFS volume “ Dallas” as part ofthe “ non-consecutive writes” hypothesis
testing.

Unallocated percentage hypothesis. The “unallocated percentage” hypothesis offered
that the likelihood of fragmentation within the VM virtual disk files decreased as the percentage
of unallocated space on the VMFS volume increased. The testing ofthe “unallocated percentage”
hypothesis required an additional testing environment, created using the same scenario as the
original testingscenario, except the VMFS volume had twice as much capacity and each VM’s
virtual disk file was configured with 50% more capacity.

The VM datastore drive, forensically wiped with zeroes usingdc3dd prior to configuring

the datastore, held a single 160GB VMFSS5 volume labeled “Edmonton.” Four VMs had their
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files stored on the “Edmonton” volume. Each ofthe VMs had the same software and virtual
hardware configuration with the exception ofthe virtual disk allocation method. The “Charlie3”
VM had a thin-provisioned virtual disk. The “Bravo3” VM had the ESXidefault method of
thick-provisioned, lazy zeroed virtualdisk. The “Alpha3” VM had a thick-provisioned, eager
zeroed virtual disk. The “Delta3” VM had a thick-provisioned, lazy zeroed virtualdisk. Table 7

lists the configuration ofthe fourtest VMs.

Table 7

Control File Hypothesis Test VM Configurations

VM 1 VM 2 VM 3 VM 4
VM Name Alpha3 Bravo3 Charlie3 Delta3
VM working [Edmonton]/Alpha | [Edmonton]/Bravo | [Edmonton]/Charli | [Edmonton]/Delta3
location 3 3 e3
CPUs 1 1 1 1
RAM 1GB 1GB 1GB 1GB
HDD size 18GB 18GB 18GB 18GB

Virtual disk

allocation method

Thick-provisioned,

eager zeroed

Thick-provisioned,

lazy zeroed

Thin-provisioned

Thick-provisioned,

lazy zeroed

Professional x64

Professional x64

Professional x64

Virtual disk file [Edmonton]/Alpha | [Edmonton]/Bravo | [Edmonton]/Charli | [Edmonton]/Delta3
3/Alpha3-flat.vimdk | 3/Bravo3-flat.vmdk | e3/Charlie3- /Delta3-flat.vimdk
flat.vimdk
VM configuration | [Edmonton]/Alpha | [Edmonton]/Bravo | [Edmonton]/Charli | [Edmonton]/Delta3
file 3/Alpha3.vmx 3/Bravo3.vix e3/Charlie3.vimx /Delta3.vimx
Operating system Windows 7 Windows 7 Windows 7 Windows 7

Professional x64

Note. This table lists the virtual hardware, configuration files and operating systemofeach of the VMs on the
“Edmonton” volume of* vmhost21.”

Increasingthe amountofunallocated space on the VMFS volume in this scenario allowed

for provisioning ofthe same number of VM as the original test scenario, but with unallocated
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streams of greater length available to avoid fragmentation of the virtual disk files. This test
environmentalso increased thedisk capacity ofeach VM’s virtual disk file by 50% in order to
test the “control file”” hypothesis with the same testing environment. The net increase in disk
capacity was an additional 24GB of configured virtual disk space for VM cumulatively and an
additional 80GB of disk spaceavailable on the VMFS volume. In the original testing scenario,
fragmentation ofthe “Charlie-flat.vmdk” virtual disk file was significant, rendering the file
unrecoverable using consecutive sector carving techniques. The expectation for the “allocation
percentage” hypothesis scenario is less, orno fragmentation ofthe virtual disk files due to the
higherpercentage ofunallocated spaceon the VMFS volume.

Aftercompleting thescenario setup and deletingthe“Alpha3,” “Bravo3,” and “Charlie3”
VMs, dcfldd captured a working-copy and preservation-copy image of the “Edmonton” VMFS
volume. Using the command, “dcfldd bs=512 skip=2048 count=335544320 if=/dev/sdc
of=/media/hdd/capstone/hypo2/working/Edmonton volume 20150412.raw of=
of=/media/hdd/capstone/hypo2/preserve/Edmonton volume 20150412.raw.preserve”, dcfldd
created the working-copy and preservation-copy images ofthe “Edmonton” VMFS volume.
Following the image creation, the foremost configuration file from the original scenario carved
the VMware “.log,” “.vmx,” “.vmxf,” “.nvram,” and “.vimdk” files fromthe “Edmonton”
volume. Using xxd in the same manneras the original testing scenario, xxd identified the MBR
sectors forthe four virtual disk files. Using the same technique detailed in the original testing
scenario, Dcfldd carved each ofthe “-flat.vimdk” files fromthe “Edmonton”volume according to
the starting positionand length ofeach virtual disk’s partitions within the partitiontable. The

While each VM had a configured virtual disk file of 37539840 sectors, there only existed

24090624 sectors between sector 0 0f286019584-flat.vimdk™ and sector 0 of*“310110208-
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flat.vmmdk.” This indicated that 286019584-flat.vmdk was thin-provisioned and, as the only thin-
provisioneddiskin the test, belonged to the “Charlie3” VM. The virtual disk file “310110208 -
flat.vmdk” extended beyond thebounds ofthe “Edmonton” volume. Xxd located the NTFS
trailer for the truncated partition within “310110208-flat.vmdk™ at sector offset 14,827,519.
Because the truncationof ““310110208-flat.vimdk™ left 12,312,576 sectors unaccounted for,
dcfldd merged the 12,312,576 sectors prior to sector 14,827,519 with “310110208-flat.vmdk™ to
forma complete “-flat.vmdk” file using the command, “dcfldd bs=512 skip=2514944
count=12312576 seek=25434112 if=Edmonton_20150412.raw of=310110208-flat.vmdk”.

Each “-flat.vmdk”, mounted to/media/temp on “Ubuntu 14 Forensic VM”, produced the name of
the VM to which it belonged using regripper’s compname plugin to parse the “SYSTEM”
registry hive at “/media/temp/Windows/System32/config/SYSTEM”. The identified locations
and length ofeach VMware “.log,” “.vmx,” “.vmxf,” “.nvram,” and “.vimdk” file as well as the

location and length of each “~flat.vimdk” file, revealed the disk layout ofthe “Edmonton” volume

shown in Figure 15.
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Figure 15.Disk view of*“ Edmonton” volume. This figure shows a visual representation ofthe file allocation across the
“Edmonton” VMFS volume. The figure shows the contiguous sectors that comprised the “Alpha3 -flat.vmdk” and
“Bravo3-flat.vmdk,” the fragmentation of “ Charlie3 -flat.vimdk,” and * Delta3-flat.vmdk” with a truncated data streamat

the end of the “ Edmonton” volume, which resumed at lower addresses withinthe “Edmonton” volume. Each cell
within the figure represents 20 VMFS blocks.

The expectationthatless, orno, fragmentation ofthe virtual disk files would occuras
part ofthe “unallocated percentage™ hypothesis testing was unsupported. “Charlie3-flat.vmdk”
experienced a similar amount of fragmentation duringthetest as in the original scenario testing.
Further, the provisioning of““Delta3-flat.vindk™ occurred in such a way thatthe contiguous data
streamofthe virtual disk file reached the end ofthe “Edmonton” volume and resumed at lower
addressed blocks. Although significantstreams of contiguous unallocated blocks existed on the
“Edmonton”volume, ESXi’s method of provisioning the virtual disk files did not seek to avoid
fragmentation by usingavailable unallocated data streams. The disk allocation method in useby
ESXi did not appearto place priority onavoiding fragmentation ofthe “-flat.vmdk” virtual disk

files.
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Control file hypothesis. The “control file” hypothesis offered thatchances forrecovery
of deleted files within the VM decreased as unallocated space within the virtual disk file
decreased. The testing ofthe “control file” hypothesis reviewed results of the original testing
scenario againstresults ofthe “unallocated percentage” testing scenario to determine ifan
increase in unallocated space within the VM virtual disk file increased the chances forrecovery
of the deleted control files. The difference between the two scenarios for this testing was the
configuredsize ofthe VM virtual disk files. Within the “unallocated percentage” hypothesis
testing, each VM’s virtual disk capacity increased by 50% overthe original testing scenario
VMs.

Using the same foremost-pdf control file used in the Analysis, Analysis Phase, Test#1:
Thick-provisioned, eager zeroed virtual disk, Control file recovery section, named “foremost -
pdf.conf.” foremostcarved 104 “.pdf” files from “Alpha3-flat.vindk,” 103 “.pdf” files from
“Bravo3-flat.vmdk,” and 29 “.pdf” files from‘““Charlie3-flat.vmdk.” Foremost carved a file
matching the MD5 hash value of “ControlDoc3.pdf” from“Alpha3-flat.vindk™ at sector
05938584. None ofthe files carved from“Bravo3-flat.vmdk” or “Charlie3-flat.vmdk™ matched
the MD5 hash value of “ControlDoc3.pdf” or “ControlDoc4.pdf”.

Hexedit searched for the control file’s identifiable hexadecimal string,
“2F417574686F7228422E204B696 E63686C6129”, in each ofthe “Alpha3-flat.vimdk,” “Bravo3-
flat.vmdk,” and “Charlie3-flat.vmdk’ virtual disk files. Each ofthe virtual disk files contained
fragments of “ControlFile3.pdf’and “ControlDoc4.pdf”, but only “ControlDoc3.pdf” from
“Alpha3-flat.vmdk”, which foremost successfully recovered, remained intact with no

fragmentation. The remaining fragmented controlfiles, listed in Table 8, fragmented following
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eitherthe first orsecond NTFS block, leaving the majority of each file overwritten orlocated
elsewhere within each virtual disk file.
Table 8

Control file fragments identified within virtual disk files

Virtual disk file Control file name Starting byte offset Length

Alpha3-flat.vmdk ControlDoc4 .pdf 3,058,921,472 4096 Bytes
Bravo3-flat.vmdk ControlDoc3 .pdf 6,201,188,352 4096 Bytes
Bravo3-flat.vmdk ControlDoc4.pdf 3,030,011,904 8192 Bytes
Charlie3-flat.vimdk ControlDoc3.pdf 7,172,034,560 4096 Bytes
Charlie3-flat.vmdk ControlDoc4.pdf 6,989,713,408 8192 Bytes

Note. This table lists the fragments of each control file and size ofthe fragments identified. Each ofthe control files
fragmented following either the first ofsecond NTFS block.

The result ofthe test that increasing the amount ofunallocated space within the virtual
disk file increases the likelihood ofrecovery of deleted artifacts ofuseractivity was
inconclusive. Amongthethree VMs each with two deleted control files, only one deleted control
file recovered fully and theremaining control files experienced fragmentation at an early point
within the file, eitherafter one ortwo NTFS blocks. The test produced one complete control file
and fragments ofall other control files sought. This result met the expectation that the likelihood
of userartifact recovery increased as the amount ofunallocated space onthe virtual disk file
increased. The result did not provide a significant increase in the chance ofrecovery, however.
Given that the recoverability ofthe deleted control files as part ofthe “control file” hypothesis
testing was not significantly greater thantherecovery experienced in the original testing

scenario, thehypothesis requires further testing to determine ifit holds true.
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Discussion of Findings
Major Findings

The purposeofthis research was to analyze the potential forrecovering evidence from
deleted VMware vSphere Hypervisor (ESX1) VMs under a variety of conditions. Specifically,
the conditions tested were the three different virtual disk-provisioning methods available within
ESXi: thick-provisioned, lazy zeroed virtual disk; thick-provisioned eager zeroed virtual disk;
and thin-provisioned virtual disk. Using three VM, each with a virtual disk configured in one of
the three disk-provisioning modes, an identical scenario applied to each VM with the results
recorded for comparison.

The sources selected for the literature review dealt primarily with one or more ofthe
main themes ofthe research or provided background information necessary to understand the
themes. The first theme ofthe research, understanding the VMFS file systemto the point wherea
complete file systemcouldbe extracted froma physical disk image, built on information
obtained fromsources that documented features of VMFS5, differences between VMFS5 and
VMFS3, and sourcecode fromthe opensource VMFS driver, vinfs -tools. Additionally,
information from sources that discussed general file systemforensics lent to the background
information necessary to performthe collection and extraction phases of the analysis.

The second theme ofthe research, comparing the forensic recoverability of virtual disk
files using thethreedisk provisioning modes in ESXi, built on information obtained from
sources thatspecifically discussed the disk provisioning modes of ESXi. Additionally, this theme
relied on information fromsources thatdocumented file fragmentation within VMFS and other
VMware hypervisor products. This theme relied on and further built on the research performed

during the first theme, understanding the VMFS file system.
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The third theme ofthe research, recovering deleted VM ware VM files froma VMFS
volume by carving fromcontiguous disk sectors, built on information obtained fromsources that
discussed data carving and the various files thatmake up VMs on ESXi. The research focused on
the VMware “.log,” “.vmx,” “.vmxf,” “.nvram,” “.vidk,” and “-flat.vmdk” file types, as those
were the file types associated with the basic VM built for the threetests. This theme relied on
research performed for the first two themes and built on existing file carving research to define
techniques for carving each ofthe VMware ESXi file types used in this research.

The fourth, and final, theme ofthe research, reconstructing deleted VMs, relied on the
research performed forall three other themes. The research for the fourth theme additionally
relied on analysis oftheopen source VMFS driver, vifs -tools, in order to correctand verify
some assumptions made during the analysis. Referencing sources on disk partitioning and
interpreting partition tables assisted with explaining and correcting problems encountered while
reconstructing deleted VMs.

Theme 1: The VMES file system. The research performed on the VMFS file system
revealed several critical pieces of information ofuse by anyone attempting to perform VMFS
analysis. There are several characteristics of VMFS and ofthe VMFS systemfiles encountered
during this research that were unexpected. Those characteristics are the use of file headers offset
fromthe beginning of systemfiles and the file systemitself, the static block size within VMFES,
and resident VM files within VMFS systemfiles.

The VMES file systemand the “.vh.sf” systemfile both havea single VMFS block offset
between the beginning ofthe volume or file and the volume or file signature. This initially
caused confusion during the analysis because the VMFS volume header was not located at the

physical disk offsetwhere the partition started according to the disk’s partitiontable. A review of
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the source code for vinfs-tools revealed the added block at the start ofthe VMFS volume prior to
the volume signature. The “.vh.sf” volume header systemfile contained a two-block offset
between the start ofthe file and the file header. The purpose ofthese offsetheaders was
unknown and not explored further during the research.

VMESS has a static block size of IMB. This is not a configurable settingin VMFSS as it
was in VMFS3 and previous versions. For comparison, thedefault block size ofan NTFS
volume is 4KB, so a VMFS blockis 256 times the size of an NTFS block. The effect ofthe
largerblock size on forensic recovery is that fragmentation cannotoccur on a VMFS volume for
files smaller than IMB. There are, however, only a few file types belongingto VMs that are
typically smallerthan IMBin size. Thosesmaller files are the “.log,” “.vmx,” “.vmxf,”
“nvram,” and “.vimdk” files, although “.log” files have the potential to grow larger than IMB.

The third unexpected characteristic of VMFS was the presenceof““.vmx” and “.vmdk”
files residentwithin the “.fdc.sf” systemfile. The “.vmx” and “.vmdk” files are both essential
files forreconstructingdeleted VMs. The files remained in the “.fdc.sf” file even after deleting
the parent VM, which is helpfulto examiners seekingto recover deleted VM orevento catalog
the VM present and deleted on the VMFS volume.

Theme 2: Forensic recoverability of dis k-provisioning modes. The research performed
an analysis ofthe likelihood forrecoverability of each ofthe three virtual disk-provisioning
modes available for ESXi VMs. The three virtual disk-provisioning modes are thin-provisioned
disks, thick-provisioned lazy zeroed, and thick-provisioned eager zeroed. The three modes differ
in the manner that allocation of blocks occurs within the VMFS volume and the method used to

zero spaceneeded for I/O operations.

63



The largest hurdle to carving virtual disk files fromthe VMFS volume was identification
of the MBR and each partition ofthe virtual disk. Using xxd to pass 256 bytes at a time ofthe
VMEFS volume’s data streamthrough grep, searching for the masterbootrecord (MBR) trailer
value of“0x55A A” in the position ofbytes 255 and 256, immediately preceded by values likely
to occurin a partition table, produced therough location ofeach virtual disk file’s MBR. The
start ofeach virtual disk file occurred 256 bytes prior to each searchresult. Analyzing each
virtual disk file’s partition table produced the extents ofthe virtual disk file.

This technique led to the discovery ofa caveat with carving virtual disk files in this
manner. The thick-provisioned disks required an additional VMFS block appended to the virtual
disk file following the end ofthe lastpartition in the virtual disk file. Without the additional
block appended to the end ofthe virtual disk file, ESXi failed to recognize the file for VM
reconstruction. This is not the case for thin-provisioned virtual disks. With thin-provisioned
virtual disks, no additional dataneeds appending to theend ofthe virtual disk file for ESXi to
recognize the virtual disk.

Thick-provisioned eager zeroed virtual disks. When a VM has a disk configured in
thick-provisioned eager zeroed mode, the full capacity of the virtual disk is allocateed within the
datastore and ESXi zeroes allallocated blocks forthe virtual disk at the time of virtual disk file
creation. Immediately following the virtual disk creation, ESXiwrites the full capacity ofthe
virtual disk file to the datastore with zeroes. The “Alpha” VM, usedin test#1, made use ofa
thick-provisioned eager zeroed virtual disk file, named “Alpha-flat.vimmdk”.

As Carrier (2005) explained, an OS typically allocates consecutive dataunits, but when
that is not possible, fragmentation, a condition when the dataunits that make up a file are not

consecutive, can occur (p. 179, para.4). “Alpha-flatvmdk” was a 12GB virtual disk file assigned
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to the “Alpha” VM. The way ESXi provisioned “Alpha-flat.vmdk” to the VMFS volume,
allocation of 12GB of contiguous zeroed VMFS blocks occurred in a single operation. A fter
deleting the “Alpha” VM, including the “Alpha-flatvmdk” virtual disk file, dd carved the
deleted “Alpha-flat.vmdk” file from the VMFS volume. Carving 25,165,824 consecutive sectors
from sector 38,539,264 to sector 63,705,088 on the VMFS volume produceda complete “Alpha-

flat.vimmdk” virtual disk file.

Thick-provisioned lazy zeroedvirtual disks. Whena VM has a disk configured in thick-
provisioned lazy zeroed mode, the full capacity ofthe virtual diskis allocate d within the
datastore, but ESXi does not zero allocated sectors for the virtual disk at the time of virtual disk
file creation. Zeroingofallocated sectors instead occurs when file I/O operations occur.
Immediately following the virtual disk creation, ESXi allocates the full capacity ofthe virtual
diskfile to the datastore and leaves any existing datawithin the allocated sectors intact. The
“Bravo” VM, used in test#2, made use of a thick-provisioned lazy zeroed virtual disk file,
named “Bravo-flat.vmdk”.

“Bravo-flat.vmdk™ was a 12GB virtual disk file assignedto the “Bravo” VM. The way
ESXi provisioned “Bravo-flat.vimdk to the VMFS volume, allocation of 12GB of contiguous
VMEFS blocks occurred in a single operation. A fter deletingthe “Bravo” VM, including the
“Bravo-flat.vmdk” virtual disk file, dd carved the deleted “Bravo-flat.vimdk’ file from the VMFS
volume. Carving 25,165,824 consecutive sectors fromsector 63,705,088 to sector 88,870,912 on
the VMFS volume produced a complete “Bravo-flat.vmdk” virtual disk file.

Thin-provisionedvirtual disks. Whena VM has a disk configured in thin-provisioned
mode, ESXi only allocates the capacity ofthe virtual disk file’s active data within the datastore.

Allocating additional blocks to the virtual disk file and zeroing the used sectors within those
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blocks occurs when file I/O operations occur. The “Charlie” VM, used in test #3, made useofa
thin-provisioned virtual disk file, named “Charlie-flat.vimdk”.

“Charlie-flat.vmdk™ was a 12GB virtual disk file assigned to the “Charlie” VM. The way
ESXi provisioned “Charlie-flat.vmdk™ to the VMFS volume, allocation of VMFS blocks
occurred as files were written to the virtual disk file. A fterdeleting the “Charlie” VM, including
the “Charlie-flat.vmdk” virtual disk file, dd carved 25,165,824 consecutive sectors fromsector
131,338,240 to sector 156,504,064 on the VMFS volume. The carved file was not a complete
virtualdiskfile. As seenin the diskview ofthe “Boston” VMFS volume in Figure 4,
fragmentation occurred within the “Charlie-flat.vimdk” file. At an undetermined point within the
allocation ofblocks tothe “Charlie-flat.vmdk” file, ESXi fragmented the file and continued
writing to unknown blocks within VMFS. The fragmentation ofthe “Charlie-flat.vmdk” file led
to the formulation of two hypotheses regarding the likelihood for fragmentation within ESXi and
VMESS.

The first hypothesis, called the “non-consecutive writes” hypothesis offered thatthin-
provisioned virtual disk files have a higher likelihood of fragmentation dueto non-consecutive
writes to the VMFS volume during virtual disk file expansion. Testing ofthe hypothesis
occurred through a recreation ofthe original test environmentand test scenario with a change
only in the provisioning order the VMs. There were two expected results ofthe “non-consecutive
writes” hypothesis testing. The first expected result was no fragmentation would occur within the
“Charlie2-flat.vimdk” file on the “Dallas” VMFS volume. The second expected result was future
writes to the “Charlie2-flat.vidk” file, resulting in expansion ofthe disk file on the “Dallas”

volume, would cause fragmentation.
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The “Charlie2-flat.vimdk” virtual disk file was the first virtual disk file written to the
“Dallas” VMFS volume. This change in provisioning order created a virtual disk file of
contiguous blocks with no fragmentation. Thenext virtual disk file provisioned, “Bravo2-
flat.vmdk™ had its first block located consecutively afterthelast block of “Charlie2-flat.vmdk.”
Because “Bravo2-flat.vimdk™ occupied the next contiguous block after the end of““Charlie2-
flat.vmdk,” any writes to the “Charlie” VM resulting in virtual disk file expansion would
inevitably cause fragmentation ofthe virtual disk file. As long as the “Bravo2-flat.vmdk” file
existed as an active file on the file system, the blocks contiguous to “Charlie2-flat.vmdk” would
be unavailable for writing other files to.

The second hypothesis, called the “unallocated percentage” hypothesis offered that as
unallocated space onthe VMFS volume increased, fragmentation ofthe virtual disk files would
be less likely to occur. Testing ofthe hypothesis occurred through a recreation ofthe original test
environmentandtest scenario with a change in the size ofthe VMFS volume, changing from
80GB to 160GB, and a changein each VM’s virtual disk size, changing from 12GB to 18GB.
Another hypothesis, “control file” hypothesis used the same testenvironment, which was the
reason forincreasingthe VM virtual disk size. The “Edmonton” VMFS volume used in this test
contained 70% unallocated space. The “Boston” VMFS volume used in the original test
environmentcontained 40% unallocated space.

The expected testing result was that the virtual disk files contained less fragmentation on
the “Edmonton” volume thanonthe “Boston” volume. The test produced inconclusive results
because while less fragmentation occurred within the “Charlie3-flat.vmdk” virtual disk file, the
file still fragmented and the“Delta3-flat.vimmdk” virtual disk file wrapped fromthe end ofthe

“Edmonton”volume to lower addressed blocks toward the beginning ofthe volume. Despite
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large areas of contiguous unallocated space available, as shown by the disk view in Figure 15,
ESXi wrote both “Charlie3-flat.vmdk’™ and “Delta3-flat.vmdk” to areas ofthe “Edmonton”
volume where there was not enough contiguous unallocated spaceto avoid fragmentation.

Theme 3: Recovering deleted VM files froma VMEFS volume. The research performed
an examination ofthe VMFS volume forrecovery ofdeleted VM files. The test placed four
“pdf’ controlfiles on each ofthe test VMs. The control files were named “ControlDocl.pdf,”
“ControlDoc2.pdf,” “ControlDoc3.pdf,” and “ControlDoc4.pdf.” Within each VM, each ofthe
control files had the same actions performed on them.

The scenario preparation downloaded “ControlDoc 1.pdf” to the user’s desktop folder,
openedthe file in Foxit Reader, and thensentthe file to the Windows recycle bin. “Thescenario
preparation opened “ControlDoc2.pdf” directly with the Foxit Reader Google Chrome plugin
and downloaded “ControlDoc3.pdf” and “ControlDoc4.pdf” to the user’s “Downloads” folder,
openedin Foxit Reader, then deleted fromthe VM’s disk.

During the original testing scenario, successful recovery of “ControlDoc1.pdf” and
“ControlDoc2.pdf” occurred fromboth the “Alpha-flat.vmdk” and “Bravo-flat. vmdk” virtual
disk files. Mounting thevirtual disk files as loopback devices on “Ubuntu 14 Forensics VM”
allowed forbrowsing ofthe active files within each ofthevirtual disk file systems. Successful
recovery of “ControlDoc1.pdf” occurred through browsing to the scenario preparationuser’s
recycle bin folder. Successfulrecovery of“ControlDoc2.pdf’ occurred by performing a MD5
hash calculation ofeach file within the relative path of
/Users/User/AppData/Local/Google/Chrome/User Data/Default/Cache/and comparingto the

known MD5 hash value of “ControlFile2.pdf”.
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To recover the remaining controlfiles, “ControlFile3.pdf” and “ControlFile4.pdf,”
deleted fromdisk during the scenario preparation, foremost ran with a configuration tocarve
only “.pdf’ documents. Foremost recovered “.pdf” files, whose MD5 hash values, compared to
the known MDS5S hashvalues of “ControlDoc3.pdf” and “ControlDoc4.pdf,” produced no
matches on either the “Alpha-flat.vmdk” or “Bravo-flat.vimdk™ virtual disk files. The deleted
controlfiles “ControlDoc3.pdf”and “ControlDoc4.pdf”” were unrecoverable using foremost and
manually searching for known strings within thefiles.

A hypothesis devised to test whether the control files stood a better chance ofrecovery
had there beenmore free space on each ofthe virtual disk files. The “control file” hypothesis
tested the recoverability ofthe same four control files, prepared using the same test scenario as
detailed in the original testing methodology, with the difference ofan increasein virtual disk size
from 12GB to 18GB. The test resulted in a marginal improvement in control file recoverability.
Ofthe six controlfiles deleted fromdiskin the “control file” hypothesis testing, foremost
recovered one control file in its entirety. Manual searching of each virtual disk file for a known
unique string in the control files resulted in id entification of fragments of the other five deleted
control files. The hypothesis test results were not strong enough to prove the hypothesis. To
prove ordisprovethe “control file”” hypothesis requires further testing.

Theme 4: Deleted VM reconstruction. The research performed a reconstruction ofthe
deleted files that made up the deleted VM and imported those files into ESXias a complete

929 ¢¢

VM. The deleted file types recovered were the VM’s “.log,” “.nvram,” “.vmdk,” “.vmx,”
“vmxf,” and “-flat.vmdk” files. Each ofthe “.log,” “.vmdk,” “.vmx,”” and “.vmxf” files types are
text file and therefore do not contain file type signatures to identify the specific file type within a

data stream. Analyzing each ofthe text files led to strings oftext whose uniquene ss served as file
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signatures for carving thefiles fromthe VMFS volume. (See Figure 18 in AppendixB for the

99 ¢¢

customforemost configuration that successfully carved “.log,” “.nvram,” “.vmdk,” “.vmx,” and

“vmxt” files from each ofthe VMFS volumes in this research).

Starting with each “.log” file, the parent VM, and the mostcurrent copy of each file
required identification. The “.log” files made fora logical starting pointbecause the “.log” files
contained timestamps on each “.log” entry, which made it simple to identify the latest version of
a VM’s “log” file. Each “.log” file contained the VM name and a complete copy ofthe “.vmx,”
“vmxt,” and “.vmdk” file used for that VM. Comparing the “.vmx,” “.vmxt,” and “.vmdk” files
to the log entries enabled the identification ofthe “.vmx,” “.vmxf,” and “.vidk” files that the
VM used duringthe same boot sequenceas shown in the “.log” file.

The “.vmx” and “.vmdk” files can, and frequently do, reside within the VMFS system
file, “.fdc.st.” This canbe helpful during forensic analysis because these resident files remain
intact even with a deleted parent VM. Referencing the “.fdc.sf”’ systemfile can give the examiner
excellent clues about deleted VM's fromthe VMFS volume and configuration parameters,
including virtual disk sizes ofany deleted VMs.

The virtual disk file type, “-flat.vmdk™, as described in Discussion of Findings, Major
Findings, Theme 2: Forensic recoverability of disk-provisioning modes canbe a challenge to
recover fully from the VMFS volume. A main obstacle to recovery ofthe virtual disk file volume
1s fragmentation within the disk file. Fragmentation was particularly prevalent in the thin-
provisioned virtual disk files. The testing revealed two different types of fragmentation and
additional hypotheses soughtto identify methods to reduce the likelihood of fragmented virtual

diskfiles. The findings ofthosehypotheses are detailed in the Discussion of Findings, Major
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Findings, Theme 2: Forensic recoverability of disk provisioning modes, thin-provisioned virtual
disks.
Comparison of the Findings

Forensic recovery ofevidence from ESXi VMs was a field of study with a lack of
available research. Particularly lacking was research onthe VMFS file system, which ESXiuses
as the datastore for VM. This research discovered techniques for recovering forensic artifacts
from deleted ESXi VMs, as well as areas where additional holes in research of ESXi forensics
exist.

As Carrier (2005) explained, essential file systemdatais necessary tosave and retrieve
files. Data must be available to identify thename ofa file, where that file’s content is stored, and
a pointer fromthe file’s name to the metadatastructure (p. 176, para. 1). This researchbriefly
looked at the mechanics and data layout ofthe VMFS file system. VMFS maintains the essential
file systemdata that Carrier referred to within a series of systemfiles. The “.fdc.sf” and “.sbc.sf”
systemfiles were of particularrelevanceto this research. The treatment of deleted files within
the VMFS file systemwas an area of interest for this research. The research discovered that
certain file types, notably the““.vmx” and “.vmdk” files, remain residentwithin the “.fdc.sf”
systemfile and recoverable after deleting the parent VM. Other files that are not resident within
a VMFS systemfile have theirsize, starting block, allocation bitmap, and other metadata wiped
fromthe VMES systemfiles upondeletion. Fortheseother file types, traditional file carving
techniques and tools can aid in theirrecovery.

Shavers (2008,) in research on VMware’s type-2 hypervisor products, described the
challenges ofrecoveringa VM in full due to fragmentation ofthe files. Shavers stated that

because ofthe large size of virtual disk files and a certain amount of fragmentation, fully
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recovering the contents ofa deleted VM may not be possible (pp. 9, para. 4). Shavers’
description ofthe challenges with fragmentation in recovering virtual disk files was a main
challenge in this research as well. Fragmentation was the single biggest challenge encountered
during the recovery of ESXi VM virtual disk files. Two hypotheses attempted to determine
methods forreducing fragmentation, with mixed results. Fragmentation remains the biggest
challenge to virtual disk file recovery from VMFS volumes.

Limitations of the Study

This research had several limitations dueto both time and scope restraints. There remains
a vast field ofresearch to performin the area of VMware ESXi forensics. Restraints imposed
during the research forthe sake oftime requirements limited the ability to furtherresearchthe
forensic capabilities ofthe VMFS file system, the VM BIOS setting to “.nvram” address value
mapping, and additional hypothesis testing of methods to reduce fragmentation within virtual
diskfiles.

The VMFS file systemremains largely undiscovered in academic research. This research
looked briefly into some components ofthe VMFS file systemas a means to an end. Dedicated
research intothe VMFS file system’s operation and forensic capabilities is an area that is
important to support efforts like this research going forward. A thorough understanding ofthe
VMES systemfiles, the data contained in each systemfile, and the layoutofthat datawithin the
file is essential to understandinghow the VMFS file systemworks. Due to scope restraints, this
research took a surface levellook at the “.fdc.sf” and “.sbc.sf”” systemfiles.

Many possible file types make up an ESXi VM. This research focused on VMs thatdid
not contain any snapshots, or suspended state information. This researchreviewed the“.log,”

“vmdk,” “.vmx,” “.vmxf,” and “-flat.vmdk” file types formethods to carve each deleted file
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fromthe file system,identify the parent VM ofeach file, identify the original file name of each
file, and identify thedirectory structureand location within the VMFS volume necessary for VM
reconstruction ofeach file. The “.nvram” file type requires additional research into methods for
identifying theparent VM. This research did notmap the “.nvram” address settings to BIOS
settings.

The scope and time requirements ofthis research excluded any analysis of VM snapshot,
snapshot data, suspended state, and swap files as part ofthe research. This research focused on
the recovery ofthe minimum deleted VM files necessary toreconstructa VM and have it boot
backinto Windows under ESXi. Expansion on this research could includerecovery ofall VM

file types and offline analysis of VM snapshot, suspended state, and swap files.
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Future Research Recommendations

The area of ESXi forensics remains fertile ground forresearchers. Four areas in
particular, closely related to this research, present opportunities to further the forensic
community’s ability to examine ESXi VMs. During this research, challenges arose with
fragmentation of virtual disk files, lack of documentation ofthe VMFS file system, lack of
documentationofthe “.nvram” VM file type, and inefficiency in methodology dueto lack of
VMES support in common forensic tools. An additional area not touched upon by this research,
butneeded by the forensic community is research into forensic analysis of VM snapshots and
suspended state operations.

Fragmentationof'virtual disk files emerged in this research as the most significant
challenge to forensic recovery of evidence fromESXi VMs. Eliminating fragmentation ofvirtual
disk files ordetermining a method ofrecoveringtheblocks assigned to deleted virtual disk files
are two improvements that would aid examiners with recovery of ESXi virtual disks. Research
into methods ofrecovery of fragmented virtual disk files and methods ofavoiding fragmentation
of virtual disk files would prove valuable to examiners seeking to recover deleted virtual disk
files froma VMFS volume.

Contributinga detailed analysis of VMFS’s operations would present examiners with the
opportunity to more efficiently recoverand analyze delete ESXi VMs. One ofthe challenges
encountered during this research was the absence of proper documentation on VMFS operations.
Throughoutthis research, the vinfs -tools source code and testing observations substituted for
documentation, but added a greatamount oftime and effort to accomplish the research goals.
Future research detailing VMFS operations will provide examiners with a useful reference for

accurate and efficient analysis of VMFS volumes.
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Analysis ofthe “.nvram” VM file type is necessary in order to understand the BIOS
settings ofthe parent VM and identify the parent VM ofa deleted “.nvram” file. The “.nvram”
file type is a binary file type that contains the VM BIOS settings. As BIOS settings change, so
does aparticular address’ setting within the “.nvram” file. Understanding what each address’
settingin the “.nvram” file translates to as a BIOS settingon the VM can assist in identifying a
parent VM.

Incorporation of VMFS parsing capabilities into dataunit level forensic tools, such as
blkls from The Sleuth Kit would improve examiners’ ability to focus recovery efforts strictly on
the unallocated blocks ofthe VMFS volume. During this research, data carving processes carved
deleted as wellas active files within the VMFS volume. Becausethe tools used to carvedataor
analyze the volume at the block level were unable to interpretthe VMFS file system, all blo cks
were treated as unallocated, an inefficient way to approach data carving. Future research, which
works with the authors of common opensource tools to recognize and interpretthe VMFS file
system, will result in time savings for examiners and better handling of'some fragmented files.

VM snapshots and suspended state operations are important areas for future research, as
these features of ESXi can preserve volatile data at a pointin time and create timelines of
activity via multiple snapshots. These features of ESXi expand the possibilities of forensic
recovery due to their unique characteristics thatdifferentiate VM analysis fromphysical machine
analysis. Research into both ofthese operations of ESXiwill be a highly valuable contributionto

the forensic community as virtualization technology continues to gain in popularity.
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Conclusions

The purposeofthis research was to analyze the potential forrecovering evidence
from deleted ESXi VMs. The research focused on ESXiversion 5.5update 2and VMware’s
proprietary file system VMFS version 5. In pursuit of fulfilling the purpose, the research
attempted to answer four questions: what tools and methods can examiners employ to attempt
recovery ofentirely deleted VMs froma VMFS volume? Which disk-provisioning configuration
poses the greatest opportunity for forensic recovery and which disk-provisioning method poses
the greatestchallenge for forensic recovery froma VMFS volume? What is the greatest
challenge to forensic recovery ofdeleted ESXi VM files and what can increase thelikelihood of
successful forensic recovery? Whattools and methods can examiners employ to attempt
complete reconstructionof deleted ESXi VMs?

At the time of the research, forensic tools that supported the VMFS file system were
scarce. Forthis reason, many ofthe tools and methods to recover deleted VMs froma VMFS
volume relied on recovery ofindividual or consecutive volume sectors. The tools during this
research that performed the best for this purpose were foremost, for carving deleted files based
on identified header and footer patterns, and dcfldd for carving deleted files based onidentified
start and end sectors. Themethod used to carve with foremost was to analyze known files ofthe
same file types to carve, identify patterns at thestart, orheader, ofthe file, and the end, or footer,
of'the file. Incorporating theidentified header and footer pattern into the foremost configuration
file and running foremostagainst an image ofthe VMFS file systemproduced results that
included bothdeleted and active files ofthe specified file types. Identifying start and end sectors

of files to carve with dcfldd relied on xxd to searchthe volume forindications ofthe file start or
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file end. Once identified, dcfldd was able to extract thespecific consecutive sectors that
comprised the completecarved file.

The research tested three VM disk-provisioning types; thick-provisioned, eager zeroed;
thick-provisioned, lazy zeroed; and thin-provisioned. The two thick-provisioned types differed
only in the method that the VMFS blocks were prepared prior to allocation. With eager zeroed
disks, ESXi zeroes all VMFS blocks allocated to the virtual disk as part ofthe virtual disk
creation process. With lazy zeroed disks, the VM zeroes allocated blocks within the VM file
systemas the allocation occurs. The difference between thick-provisioned and thin-provisioned
disks that thick-provisioned disks havethe entire length ofthe virtual disk allocated within
VMES at the time of the disk creation while thin-provisioned virtual disks have VMFS blocks
allocated as needed by the virtual disk. As such, a thin-provisioned virtual disk may only have a
percentageofits configured capacity allocated within VMFS at any time.

The research showed no difference in recoverability of the virtual disk file between the
thick-provisioned, eager zeroed disk type and the thick-provisioned, lazy zeroed disk type.
However, the research determined that thin-provisioned virtual disks experience fragmentation
because ofthe thin-provisioningmode of operation, which is likely to interfere with the ability to
recover deleted thin-provisioned virtual disk files. As a thin-provisioned virtual disk grows over
time, the likelihood to expand to a contiguous block on the VMFS volume reduces, resulting in a
fragmented virtual disk file. The research concluded thatthe two thick-provisioning modes
provide the greatest potential for successful recovery of virtual disk files. Thin -provisioned
virtual disk pose the greatest challenge for forensic recovery of virtual disk files froma VMFS

volume.
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The greatest challengeto forensic recovery of deleted ESXi VM is the fragmentation
within the VMFS volume of virtual disk files. Virtual disk files are typically large when
compared to most common file types. In order to avoid fragmentation within the VMFS volume,
the virtual disk file must be written to a portion ofthe volume with a continuous streamof
unallocated space equal to or greater than the length ofthe virtual disk file. During the testingof
scenarios thatmay increase the likelihood ofavoiding fragmentation of virtual disk files, one
finding was that ESXidoes not seek to avoid fragmentationat the expense of consecutive
allocation. In other words, ESXi seeks to write a new file to the next consecutive block as the
previous write operation, regardless of whether fragmentation will result, evenifthere exists
contiguous unallocated blocks with sufficient length to avoid fragmentation elsewhereon the
volume. During this research, the best method discovered to avoid fragmentation ofa virtual disk
file was if allocation ofthe virtual disk file occurred as oneofthe first files on the volume.
Commonly, allocation of virtual disk files occur well in advance ofthe need for forensic
examination, which makes this method generally outside the control ofthe forensic examiner.

Complete reconstruction ofa deleted VM relies on recovery oftheessential ESXi VM
file types, “.vmx,” “.vmxf,” “.vmdk,” “-flat.vimdk,” and “.nvram”. Additionally, recovery ofthe
VM’s “.log” file(s) is instrumental in identifying the mostrecently active “.vmx” and “.vmxf”’
files. Each “.log” file contains the VM’s complete configuration, recorded at the time ofthe
VM’s start, with each line time-stamped. This allows foridentification ofthe mostrecent “.log”
file and matching the configuration lines with the correct “.vmx” and “.vmxf” files. The contents
of the “.vmx” file shows the parent VM name and the file names ofthe “.vmdk,” “.vmxf,” and
“nvram” files. The “.vmxf” file contained the file name of the “.vmx” file. The “.vimdk” file

contains the directory structure ofthe parent VM within the VMFS file system, each -
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flat.vmdk” file name(s)and file size in disk sectors. Usingthe techniques described earlier in the
Conclusions sectionto recover the “-flat.vmdk”™, or virtual disk file, combined with the
techniques described here to identify thelatest version of ““.vmx” and “.vmxf™ files types, re-
assign file names to the recovered files, and recreate the directory structure o fthe deleted VM,

deleted VMs can be fully reconstructed ona VMFS volume.
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Appendices

Appendix A — Physical Datastore

de3dd 7.1.614 starcted atc 2015-03-05 12:15:41 +0000

compiled options:

command line: dc3dd if=/dey/sde hash=md5
log=/media/hdd/capstone/preserve/VMD physical 20150305.log
hof=/media/hdd/capstone/preserve/VHMD physical 20150305.raw.preserve
hof=/media/hdd/capstone/working/VMD physical 20150305.raw

device size: 390721968 sectors (probed)

gector size: 512 bytes (probed)

200049647616 bytes (186 ) copied (100%), S8158.38 =, 23 M/s

output hashing (100%)

input results for device “/dev/adg':
390721968 sectors in
0 bad =ectors replaced by zeros
3b6595cd3879e4e4b0922b392427a6ed]l (md5)

output results for file ~/media/hdd/capstone/preserve/VMD physical 20150305.raw.preserve’:
390721968 sectors out
[ok] 3b655cd3879%e4e4b05322b3524a7ab6edl (md5)

output results for file ~/media/hdd/capstone/working/VMD physical 20150305.raw’:
390721968 sectors out

[pk] 3b655cd3879%e4e4b0322b35924aTab6edl (mds)

dc3dd completed at 2015-03-05 14:35:39 +0000

Figure 16. Contents of VMD_physical 20150305 1og. This figure shows the output ofthe dc3dd command, verifying the MD5
hash value for the original source and both image copies matched.
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kinchla@lab-ul4:/% sudo dcfldd if=/media/hdd/capstone/working/VMD_physical_ 20150
305.raw bs=512 skip=2048 count=167772159 of=/media/hdd/capstone/working/Boston_v

olume_20150305.raw of=/media/hdd/capstone/preserve/Boston_volume_20150305.raw.pr
eserve hash=md5

[sudo] password for kinchla:
167771904 blocks (81919Mb) written.Total (md5): 1b16f409837f77a2cba7588432804682

16777215940 records in
16777215940 records out

Figure 17. Carving the VMFS volume with dcfldd. This figure shows the defldd command used to extract the sectors ofthe
VMFS volume and create the working-copy image, “ Boston_volume 20150305.raw,” and the preservation-copy image,
“Boston_volume_20150305.raw.preserve.” defldd calculated the MDS5 hash value ofthe extracted data and displayed the hash
value in the command output.
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Appendix B - VMFES Volume

Table 9

Known VMES Volume Info Header Fields

Description Offset Length (bytes) | Value Interpretation

Signature 0x100000 | 4 0D D001 CO “0xc001d00d”: signature value
Version 0x100004 | 4 05000000 VMFS Version 5

Name 0x10002E | 20 57442D 574D 414C38 | WD-WMALS81164377

3131363433373700

0000000000

Volume size 4 000000 14 “0x14000000: This value, multiplied by 256
provides the total number ofbytes in the

volume, 85899345920

UUID 0x100082 | 16 8C96F754519B3CDY9 | 54F7968C-D93C9B51-2D07-5C3F1E171500

072D 001517 1E3F3C

Created Time | 0x100092 | 8 93 C8 F6 E4 7TE 10 05 00 Wed, 04 Mar 2015 23:34:36 GMT

Modified time | 0x100100 | 8 7350454089100500 Thu, 05 Mar 2015 11:55:58 GMT

Note: Adapted from vmfS-tools source code (Fillott & Hommey, 2012). This table lists the known volume info header fields from
the VMFS volume contained within the “VMD_physical 20150305.raw” physical volume.
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Table 10

VM File Types
File Usage Description
.vmx Vmname.vmx VM configuration file
.vmfx Vmname.vmfx Additional VM configuration files
.vmdk Vmname.vmdk Virtual disk characteristics

-flat.vmdk Vmname-flat.vmdk

VM data disk

number starting with 1)

.nvram Vmname.nvram or nvram VM BIOS or EFI configuration
.vmsd Vmname.vmsd VM snapshots

.vmsn Vmnams.vmsn VM snapshot data file

.VSWp Vmname.vswp VM swap file

.vmss Vmname.vmss VM suspend file

Jdog Vmname.log Current VM log file

-#.log Vmware-#.log (where # is a Old VM log files

Note: From “ vSphere virtual machine administration,” p. 11, table 1-1, by VMware, Inc., 2014.
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Table 11

VMFS File System Metadata Files

Filename Role

fbb.sf File block system file
fdc.sf File descriptor system file
sbe.sf Sub-block system file
pbc.sf Pointer block system file
vh.sf Volume header system file

Note: Adapted from Virtualization and Forensics (2010) by Barrett & Kipper (p, 179, para. 2).
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Table 12

Ssdeep comparisonresults ofcarved “.nvram” files

Filel File2 Percent Match
25821184 .nvram 131336192.nvram 99
26249238 nvram 131336192.nvram 99
26249238 nvram 25821184 .nvram 99
88870934 nvram 131336192.nvram 99
88870934 .nvram 25821184 .nvram 97
88870934 .nvram 26249238.nvram 97
162947072 .nvram 131336192.nvram 97
162947072 .nvram 25821184 .nvram 97
162947072 nvram 26249238 nvram 99
162947072 .nvram 88870934 .nvram 99
132732950.nvram 131336192.nvram 99
132732950 nvram 25821184 .nvram 96
132732950 nvram 26249238 nvram 96
132732950.nvram 88870934 nvram 99
132732950.nvram 162947072 nvram 96
88942592 .nvram 131336192.nvram 99
88942592 nvram 25821184 .nvram 99
88942592 nvram 26249238 nvram 99
88942592 nvram 88870934 .nvram 97
88942592 nvram 162947072 .nvram 97
88942592 nvram 132732950 .nvram 96

Note: This table shows the results ofthe command ““ ssdeep —lrd nvrany”, comparing the similarity ofthe files contained within

the “nvram” folder.
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Table 13

Revised virtual disk file extents

Volume starting Volume ending Number of File carved as MDS5 Hash value

sector sector sectors

38,539,264 63,705,088 25,165,824 38539264- calc70318679d2770#a9a1593669 74
flat.vmdk

63,705,088 88,870,912 25,165,824 63705088+2048- 2#4ed440bad5c542341189688c0137da
flat.vmdk

97,521,664 122,687,488 25,165,824 97521664+2048- 2aa522c9b165e444b0d19dd4666efe6c
flat.vmdk

131,338,240 156,504,064 25,165,824 131338240+2048- | db21b80916b051dc9e6ad047339172¢
flat.vmdk

Note: This table is a revision of Table 5 from Methodology, Analysis, Examination Phase. ESXi virtual disks contain one empty
VMFS block following the end ofthe last partition ofthe virtual disk. The first set ofvirtual disks had been carved ffomthe
VMFS volume prior to this discovery, necessitating the files to be carved a second time with the added VMFS block included.
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Einchla@lab—u14:~fcap5tone$ cat foremost.conf
VMware log files
log y 1048510 2227777 22272772227272222722 \ x7c\ 20 \x76 \x6d\ x78\xT7c \x20\x497?? \x3a\x20 \ x4\ x6f\

XE7AX20A X606 AXE T A7 2\ 20 x50\ x4d \ X7 7\ X0 1\ x 72\ x65\ 20\ x45\x53 \ x58 \ 20\ x 70\ x69 \ x64 \x3d \x56\x4d\x58\x20
WS GEAS GRRVVEAY *UAS TR CGRAV LAY FEAT FUAE FE A (A HRAS SUAE GEAY SRR GLELY GTRY GEAS GLEAV GTAV GEAV E ERV wlIFRY #0018 (1]

b e -

FVitware VMX files

b e -

WVIMX y 1048510 \x2e\x65\x6e\x63\x6T A\ X4\ X609\ x6e\x67\x20\x3d\x207777277 7\ x0a \ x63 \x6T\ x6e\x66\

XEOAXET N2\ TO N6\ T2\ T3\ X609\ x6 T\ x6e\ x20\x3d \ 20?72\ %03\ X766 \X69\ X7 2\ x 74\ x 75\ x6 1\ X6\ x4B\ k57 x2e\x
TEAXESAXT2ANTINNE9 K6 T A6\ 20\ x3d A\ x20 \x7A\xE6F A6 T AX6CA XTI\ X2\ 72\ x65\x6d \ x69\ x6e \ x64 \ k49 \x6e\ x 73\

b o _______

#VMware NVRAM files

b o _______

nvram vy 10240 ‘\x4d\x52\x56\x4e\x01\x00\x00 \x00 \x43 \ x4d\ x4f\x53 \x00\x00\x00\xd0

b o _______

[#VMware VMXF files

b _______

wmx T ¥ 1048510 Ax3c\x3FAx7BAx6d\X6CcAX20 A X766\ X655\ XT2\x73\x69 \x6 T\ x6e\ x3d\x22777 %22 x3f\x3e\

wmdk Y 1024 Ax23Nx 20\ x4\ XB9\KTINKED A x 20\ x4\ KBS A KT INKEIN KT 2\ X6\ KTONXTA N6 T\ 72\ x46\ x69
\x6CAx65\%x0a

Figure 18. Contents offoremost vmware.conf This figure shows the contents of* foremost vmware.conf” used to carve the
VM, “.log,” “.vmx,” “ nvram” “ .vixf” and “.vmdk,” files.
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Appendix C — Alpha VM

Table 14

Carvedfiles fromthe “Alpha” VM

File Name File type Carved from Size (bytes) MDS hash value

(sector)
00490850.vnx VIIX 00490850 1048510 6b281747a065cdd9057455082e823385
00490890.vimdk vmdk 00490890 1024 7405e¢0d4cd450d8c1935¢015b5a1879b
01558752.vimx VX 01558752 19361 775015ab5bb#c31cace80a9¢7552b9d
01558816.vix Vi 01558816 2978 5a7¢00016147dc522edb9el7¢c8e3010
01558832.vix VX 01558832 2980 5485e4¢97dc20176dc3dbb059b24fab7
01558944 .vimx VX 01558944 2979 9059145772296810c911067¢2074c78e
01559088.vimx vinxf 01559088 3260 0b3597¢437059415¢1b5f7da75b50317
01559328.vimx \%10'4 01559328 2979 6f110e7805973b8767bc93f0759bc2d
01559392.vnx VI 01559392 2978 dd914915c¢566H031H9c5d0a37bd374a
01559408.vimx VITX 01559808 2979 b1227791e703d220b50f2669¢1b0dce0
131627008.log log 131627008 214185 03027c836572fcabac267ee71675ecd9
156733440.1og log 156733440 213356 627¢96923aef75BR1dd4b363de981l
88938496.1og log 88938496 583595 9810dd3b45804e¢197ec755d1d502¢
88940544 log log 88940544 383574 5832H37dal69b2638584cd205d8ab
88956928.log log 88956928 225850 683¢120325d5e26d919387bd40acb40
38539264-flat.vmdk | -flat.vmdk 38539264 12883853312 9137811117150dab01c178d0b5829894

Note: This table lists all carved files from the “ Boston volume 20150205.raw” image that could be associated with the“ Alpha”
VM. Red typeface denotes the files identified as the most current versions and used toreconstructthe “Alpha” VM.
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Table 15

Carved files used to reconstruct the “Alpha” VM

File Name File type Carved from Size (bytes) MDS5 hash value

(sector)
Alpha.vimdk vmdk 00490890 1024 7405e0d4cd450d8c1935e¢015b5a1879b
Alpha.vimx vixf 01559088 3260 0b3597e437059415e1b5f7da75b50317
Alpha.vnx VX 01559808 2979 b1£227791e703d220b50£a669c1b0dcel
Alpha-flat.vmdk -flat.vmdk 38539264 12883853312 9137811117150dab01c178d0b5829894
Alpha-flat.vmdk -flat.vmdk 38539264 12884901888 calc70318679d2770#a9a159366974¢

Note: This table lists the four carved files from the “ Boston_volume 20150205.raw” image used to reconstruct the “Alpha” VM
on the ESXi system “ vhost21.” Red typeface denotes a corrected entry. ““ Alpha-flat.vmdk” was re-carved after discovering that -
flat.vmdk” files require an additional 2048 sectors following the last partition on the virtual disk.
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Appendix D — Bravo VM
Table 16

Carved files fromthe “Bravo” VM

File Name File type Carved from Size (bytes) MDS5 hash value

(sector)
00490826.vimdk vimdk 00490826 1024 4eded3c80d193e37b11646457add3a6
01558688.vnx VX 01558688 2980 del3aada3el27275a28c8914ec7flc4
01558960.vix VIIX 01558960 2979 26cb192840a22e6bec3be543057ce9c6
01558992.vix VX 01558992 2980 dbaad0c6884729e¢a00207H25b9be50
01559008.vimx VX 01559008 2979 f£dbd6700ae465b1317£431%61c03067
01559024 .vmx VX 01559024 2979 b89e2e73abla32a5eca521df023085¢
01559040.vmx VX 01559040 2978 6c6670731cd7290ec531b74b2d8bbRBe
01559168.vimx VX 01559168 2979 b218al3eal0f77e65eael 6b238ebcldcd
01559264 .vimxf vinxf 01559264 3260 85a7210c278b62dcb73¢da2603dd092
01559424 vimx VX 01559424 2978 410c¢79a74182e10d9939580¢255d 1447
122757120.log log 122757120 402827 a82070151280c442d130bba25c34221d
123150336.log log 123150336 372585 3926483831172ed7302559b1e2372176
124286976.1og log 124286976 226770 2700£c2b811H169c57a2de255d69f77a
131203072.log log 131203072 113428 7139d9282data3a09e0decc28894029b
157386752 1og log 157386752 943282 9cl16e122c8db044a225b6b7b8ef046
159092736.1og log 159092736 227094 fle77b240b937b2313a5d36bad819e45
88936448.log log 88936448 300007 383a9a599a50d9c681d480d7bf1 12d14
63705088+2048- -flat.vmdk 63705088 12884901888 2fed440bad5c542341189688c0137da
flat.vmdk

Note: This table lists all carved files from the “ Boston_volume 20150205 .raw” image that could be associated with the“Bravo”
VM. Red typeface denotes the files identified as the most current versions and used toreconstructthe “Bravo” VM.
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Appendix E — Charlie VM
Table 17

“Charlie-flat.vmdk” file descriptor metadata fromvolume restorationimage:

Description Metadata | Offset Length | Value Interpretation
file name (bytes)
ID Adc.st 0x0D8AD200 | 4 44 8A 80 04 inode ID = 0x04808A44
ID2 Ade.st 0x0D8AD204 | 4 20000000 inode2 ID2 =0x20 (unknown
purpose)
Nlink Adc.st 0x0D8AD208 | 4 01000000 Nlink =0x01
Type Adc.sf 0x0D8AD20C | 4 03000000 Type=0x03 (file — from vmfs-file.h)
Flags Ade.sf 0x0D8AD210 | 4 000000 00
Size Ade.sf 0x0D8AD214 | 8 0000 000003000000 | 12884901888 Bytes
Block Size Ade.sf 0x0D8AD21C | 8 0000 100000000000 | 1048576-Byte block size (IMB)
Block Count | .fdc.sf 0x0D8AD224 | 8 AB20000000000000 | 43808 Blocks
MTime Adc.st 0x0D8AD22C | 4 SF27F8 54 Thu, 05 March 2015 09:52:31 UTC
CTime Ade.st 0x0D8AD230 | 4 1227 F8 54 Thu, 05 March 2015 09:51:14 UTC
ATime Ade.st 0x0D8AD234 | 4 SF27F8 54 Thu, 05 March 2015 09:52:31 UTC
Mode Ade.st 0x0D8AD240 | 4 80010000 0x0180
ZLA Ade.st 0x0D8AD244 | 4 03000000 0x03
Type sbe.sf 0x0E3162BC | 4 03000000 Type 3 (File)
Block ID sbe.sf 0x0E3162C0 | 4 44 8A 80 04 Block ID = “448A8004”, same as
“Node ID” from fdc.sf
Record ID sbe.sf 0x0E3162C4 | 4 20000000 Record ID =32
Name sbesf 0x0E3162C8 128 43686172 6C 69 652D | “Delta-flat.vmdk”
66 6C 6174 2E 76 6D 64
6B 000000 ...

Note: Adapted from vmfS-tools source code (Fillott & Hommey, 2012). This table shows the metadata associated with the
“ Charlie-flat.vmdk” inode within the restoration image.
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Appendix F —Non-consecutive Writes Hypothesis

Table 18

Carved files from “Dallas” volume

Filename Length (Bytes) | MDS Hash Filename Length (Bytes) MDS Hash
00490914 .vixf | 263 c915a29ad72ad4clc f 01558992 vimx 3069 cadald806a2bbedcf
8760ef2b6e3 1aa3 79019¢49ccc1d22
00490938 .vixf | 261 978108079942c4cae | 01559008.vimx 2856 fee31a2143569d2a
493ab81073c4b20 60b53396e41885a
00491010.vmxf | 261 bcd7190e68973a265 | 01559024 vimx 3067 c39a500a79ac7b8
8alcc9e94e3deaf 2485922a5151fcc6
00491030.vixf | 261 ada8ffd32096ae5a46 | 01559040 .vimx 3080 bObfld315b233ba53
214b97eab48af Obe0c2ab5abf8f
00490926.vindk | 1024 eed930657b633¢615 | 38537733.vindk 1024 a9a32a58Hb8fdc87d
€69c74caf054041 6167617fc7a6daa
00490950.vimmdk | 1024 ea30e66924deb51ee | 84742144.1og 683345 bf0b3d6514ca29aaa
2b0cd9855827d37 446cle5a3bfec60
00491042.vimdk | 1024 b00a6cl14b3a4b7a77 | 84744192.1og 683404 c24766813a31it1140
77ac50457b7063c¢ £71d501515¢c04
00491070.vidk | 1024 83421710310dc71b5 | 88938496.nvram 1024 85de00b97ec3a248
dObd03adbafdb 2¢5db044683175¢cc
01558784.vimx 19451 877b2b1d5450fb0a | 89131008.nvram 1024 7e1694ac44645881
36a7a5d82b6c9cd ae4e9a375cadbfc3
01558816.vimx 3067 c3f9a500a79ac7b82 | 135081984.log 683726 80d1e5811398c028
485922a515fcc6 7d51d5¢ce0d0b584
01558832.vimx 3080 bObfld315b233ba53 § 135084032.1og 766747 23aab6efaa3obfl27
Dbe0c2abSabBf a68db8bd4e2a5bl
01558848.vimx 3079 blade7d794f848e3 | 135086080.1og 219376 6063384 2cafd50ea
b19f%610cb31d5bd 21c¢7d5700116904
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01558864.vimx 3066 065e8fl1faa0c21dbS § 139302912.1og 207076 064d581169c9¢281
68ce2083ch547 01b170b9c409119
01558912.vimx 3069 cadald806a2bbedct | 139307008.1og 221678 d2a18c93900b2a3d
79019¢49cccld22 c53d88a94b44210
01558928.vimx 3068 341e6fl4c2accc53b 139470848 nvram | 1024 6a8bb0eec4433a25
d0e54867bb1510¢ 63dba71c3352111
01558944 vimx 2855 47733a927c2b6ftcl | 143994880.1og 221665 #e301780de71£503
Icbe4e7cb210710 €971672622fcl12
01558960.vmx 2856 fee31a2113569d2a6 | 148455424 log 220171 0leb7d410d6181dcO
0b53396e41885a 6db791fcfedeeScd
01558976.vimx 3067 c3fa500a79ac7b82 § 148383744 nvram | 1024 7e1694ae44645881
485922a5151fcc6 ae4e9a375cadbfc3

Note: This table lists the VMware files carved from the “ Dallas” volume as part ofthe testing for the “ non-consecutive writes”
hypothesis. Each filename’ s name is the first sector where the file was found. Duplicate items are denoted by a color, matching
the color of each identical file.

Table 19

“Dallas” carvedvirtual disk files

Volume starting Volume ending Number of File carved as MD5 Hash value

sector sector sectors

38,539,264 63,705,088 25,165,824 38539264- 105¢9d1d8d#4878#46c6eb284d6107¢
flat.vmdk

59,510,784 84,676,608 25,165,824 63705088+2048- P0090fa7cbcl4bla8a7e20155792c94
flat.vmdk

84,676,608 109,842,432 25,165,824 97521664+2048- 7%4539a30830e827c2#d78cc707d79
flat.vmdk

109,850,624 135,016,448 25,165,824 131338240+2048- | #a45ac054e32036cace5Sbbe9297bed3
flat.vmdk

Note: This table lists the virtual disk files identified and carved from the “ Dallas” volume. Note the overlap between the first an d
second virtual disk files due to“38539264-flat.vmdk” being a thin-provisioned virtual disk file.
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Appendix G — Unallocated Percentage Hypothesis

Table 20

Carved files from “Edmonton” volume

Filename Length (Bytes) MD5 Hash Filename Length (Bytes) MDS Hash
00490794.vixf | 261 50alf#£2db82065¢6 | 01558768.vimx 2985 40704101d33e4c02
9£8e0979ccb3dl a93abc0c5c45104a
00490814 .vixf | 261 flb78%51492a718e0f 01558784 . vimx 2984 37f5eaaea855b2912
70068e5b556480 d0d4a839fce54b2
00490838.vinxf | 263 097461836863193a | 01558800.vimx 2982 303e8c1408eceal3e
8defc2e4558b69¢ 2ad576ba493dbb8
00490938.vimxf | 261 21b231a5c7ce4c450 | 01558832.vimx 2983 0431beeefl 10b584c
91c6e7b488014a0 8de4fd19b52ae9b
00490826.vmdk | 1024 2029c¢98dbd533493a ] 01558848.vix 2982 b1fl3a6ffafl 2bcbe7
5c3a2e2d454c365 £d2169dd06a6a
00490850.vimmdk | 1024 laal7£2d1d319844 | 14895104.1og 683229 8aleS5cl7ec2¢c86458
a72de3cba51002 71768£6c0377b7
00490878.vimmdk | 1024 4b9041c74342c5d05 § 19283968 nvram 1024 cd1278de31696eflb
ee322978bcl31d d41137a979351fa
00490950.vmdk | 1024 O5efa6ad0bcefo5455 | 281628672.1og 685199 fa0cf3c535afce408
c4a5f061a63856 20c4722ae768cd
00490978.vmdk | 1024 4617cb527cadel3a0 | 286017536.nvram | 1024 6b53d2a4363d0e50
5109920e5181c8 be883b4579cef07
01558688.vimx 11175 4b67f6cl0doctlifba | 289654784 .1og 687859 £2b05cb89928c604¢e
6d56b57137977 49c4980050ec29
01558704.vix 2983 cd4985dbbd72e51dc | 294240256.nvram | 1024 cd1278de31696¢flb
d2b11365d42£2be d41137a979351fa
01558736.vix 2997 cc9e470ea4a975d56 | 294553600.1og 683229 91b46d817b5201077
9547dft73d2acl19 fl3a3601418ee3
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01558752.vmx 2996 5b08689b543adbd8 J 299036672.nvram | 1024 da623cbcbb03113d

9934d4607e113d24 b96d8b6£2960892¢

Note. This table lists the files carved from the “ Edmonton” VMFS volume as part of the “ unallocated percentage” hypothesis.
Each filename’s name is the first sector where the file was found. Duplicate items are denoted by a color, matching the color of
each identical file.

Table 21

“Edmonton” carvedvirtual disk files

Volume starting | Volume ending Number of File carved as MDS Hash value

sector sector sectors

206,065,664 243,605,504 37,539,840 206065664- 5411076220507dde418bc8823¢209588
flat.vmdk

243,814,400 281,354,240 37,539,840 243814400- 6122d00649b536bc4cf84c088£58b28
flat.vmdk

286,019,584 323,559,424 37,539,840 286019584- c56b10c234ba03b3c1921b0af7b98e4d
flat.vmdk

310,110,208 347,650,048 37,539,840 310110208- c5f56eca6a43955c¢3df701685c8bc2a2
flat.vmdk

310,110,208 & 335,544,320 & 37,539,840 310110208 _merged- | 44b5caf80368825aaa70a7c8a8d5e8bc

2,514,944 14,827,519 flat.vmdk

Note: This table lists the virtual disk files identified and carved from the “ Edmonton” volume. Note the overlap between the third
and fourth virtual disk files due to “310110208-flat.vimdk” being a thin-provisioned virtual disk file. “310110208-flat.vmdk”
extended beyond the end ofthe “ Edmonton” volume. The virtual disk file “310110208 merged-flat.vmdk” was a concatenation
of*“310110208-flat.vmdk™ and sectors 2,514,944 through 14,827,519 ofthe “Edmonton” volume.
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