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Abstract

A theorem by Kurtz on convergence of Markov jump processes is presented as it relates

to the use of the chemical master equation. Necessary mathematical background in the

theory of stochastic processes is developed, as well as requirements of the mathematical

model necessitated by results in the physical sciences. Applicability and usefulness of the

master equation for this type of combinatorial model in chemistry is discussed, as well as

analytical connections and modern applications in multiple research fields.
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Chapter 1

Introduction

My work in chemical physics has involved frequent interactions with the “master equation”

for the probability, as a function of time, describing the states of a chemical system. This

equation is usually presented together with an intuitive apology for its attendance in the

description. The master equation seemed to me, for some time, to have an origin and deriva-

tion as mysterious as its pervading usage. During my work on a particular computational

model of intermediate states involved in a RNA folding process, I was told that the probabil-

ities derived from solutions of the master equation corresponded to the macroscopic kinetic

rates derived from experiments. In other words, I was told that the values of the kinetic

rate constants and the constants in the probabilistic equations were identical. How such a

correspondence could be possible was not explained to me, and I soon discovered that the

reason behind the use of this “trick” was not entirely clear to most workers in chemistry and

the physical sciences.

Finally, I happened upon the explanation: that the probabilistic solutions to the master

equations actually converge to the macroscopic kinetic equations with rates equal to the

constants in the stochastic formulation, in the “thermodynamic limit.” Why and how this

occurred was not clear to me. However, I was directed to a three-page paper found in a 1972

issue of the Journal of Chemical Physics, written by a mathematician. In it, Thomas G.
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Kurtz [36] explains to the scientific community that, as had been hypothesized, a certain type

of combinatorial, “mesoscopic” stochastic model of chemical reactions— involving systems

of stochastic linear differential equations with coefficients set equal to the rates derived from

experiment— did, in fact, converge in mean to the solution of the corresponding deterministic

model for the same reactions— in a limit where the volume of the system was made very

large, but the density was kept constant (as long as the sequence of initial densities of the

stochastic processes converged to the initial conditions of the deterministic model). This

limit, with the number of members of some chemical population and the system volume

going to infinity, while the density, (or ratio of particle number to volume) is kept constant,

is known as the thermodynamic limit.

Apart from a handful of theoretical physical scientists whose work involves extensive use

of advanced mathematical methods [7, 10, 15, 28], I have not found mention of Kurtz’s the-

orem. Neither have I found mention of the requirement for a proof of the correspondence

between a stochastic description of chemical reactions and the deterministic one. It seems

that the use of macroscopic rates, in the stochastic description which counts molecule num-

bers, has become an accepted experimental fact [28]: in certain chemistry textbooks the

means of stochastic processes are presented as identical to the deterministic solutions, with

no mention of the thermodynamic limit [47]. Through my research on this topic, I have tried

to bridge my disconnect, and I have discovered that several decades ago, this question was

a new and exciting theoretical problem whose details have since become forgotten, as the

methods have become routine techniques. However, the use of such descriptions, and their

mathematical subtleties, are far from straight-forward. It is important to understand the ap-

plicability and the limitations of this, as any, mathematical model, whether one approaches

from the viewpoint of an applied mathematician or that of a physical scientist.

As early as the 1930s, scientists had attempted to apply the theory of stochastic pro-

cesses to model molecular events [14]. From the 1950s through the late 1970s, chemists and

physicists became well-versed in a type of stochastic process known as the Markovian birth-
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death description, and were fervently attempting to apply it, to model chemical reactions—

in order to gain more insight about the fluctuations around the deterministic curves seen

in experiments [39]. These were assumed to originate from the actual molecular nature of

the reactions, which the deterministic differential equations, with their continuous changes

in concentration, failed to address [7,47]. Connections between microscopic fluctuations and

macroscopic transport processes had become apparent via work relating to (and extend-

ing) Einstein and Smoluchowski’s descriptions of Brownian motion, and that of Langevin

[15]. Based on some preliminary results modeling unimolecular reactions with discrete-state,

continuous-time Markov chains and solving the associated Kolmogorov equations, it had

been found that the means of the stochastic processes were identical to the solutions of the

deterministic equations modeling the same processes, when the deterministic rates were used

as the stochastic intensities. This result was similar to a now-classical correspondence found

between the simple, deterministic, linear-rate, Malthusian population growth model and a

stochastic description of population growth applied to genetic lineage by Yule [34].

Unfortunately, for more complex reactions this did not turn out to be true. However,

as the particle number was allowed to grow large, while maintaining constant density, the

stochastic means seemed to converge appropriately [39]. I ultimately found a series of articles

[26], [27], (and references within), written around the same time as the Kurtz article, by a

mathematical physicist named Joel Keizer, who was interested in the same correspondence

but from the Fokker-Planck-type diffusion description. Kurtz’s theorem was important to

Keizer, because if the diffusion model was found to converge to the deterministic model,

and the Markov-chain model converged to both the diffusion model and the deterministic

model, the theories were consistent. Furthermore, using a synthesis of the results, Keizer

was able to estimate the appropriate time scales for the correct application of each of the

various descriptions, a highly important requirement for success in mathematical modeling

of a physical process.

The article by Kurtz in the Journal of Chemical Physics did not include mathematical
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details. Upon following its references to the Journal of Applied Probability, where the actual

proof of the Kurtz theorem could be found [34,35], I was a bit deterred by what seemed like a

mathematical theory very distant from the probability theory I had been exposed to. I then

found a piece by Keizer in a collection written in tribute to Marc Kac, with whom Keizer

had worked, in which he formulated another proof of the Kurtz theorem using a model from

chemical physics and a theorem of Kac’s [28]. Although this proof was less transparent to me

than what I had read in Kurtz’s mathematical paper, Keizer’s introduction gave me some

encouragement:

“In 1972 a short article by Kurtz [1] appeared in the Journal of Chemical Physics

which explained to chemists the relevance of some of his work on limit theorems

for stochastic processes. No proofs appear in that paper and for good reasons.

First, Kurtz had previously published the proofs in the mathematics literature

[2], and second the proofs make heavy use of martingale theorems, which are not

standard fare for physicists and chemists. Kurtz’s basic results state for certain

birth and death processes that the averages, conditioned on a precise knowledge

on the initial variables, satisfy simple differential equations when the size of

the system becomes large. Furthermore, the deviations from the conditional

average are nonstationary, Gaussian diffusion processes. For the birth and death

processes used to model chemical reactions [1, 3], Kurtz’s results imply that the

phenomenological mass action laws are satisfied by the conditionally averaged

concentration variables, a fact that had been anticipated in earlier work [4].”

(Here Keizer’s citations 1,2,3, and 4 translate to [36], [34, 35], [39], and [42],

respectively).

Keizer describes Kac’s reaction to the Kurtz paper as such: “The proof of Kurtz’s theorem

is, at best, difficult, and even Kac, after examining the proof, remarked that if such results

appear in the Journal of Applied Probability, what must the Journal of Pure Probability be

like!” [28]
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The paper by Kurtz introduced me not only to the theory of stochastic processes, but to a

deep analytical extension of this theory using methods from functional analysis and operator

theory. These results can only be attained using a rigorous measure-theoretic description

of probability spaces, and create a connection between stochastic differential equations and

branches of potential theory and the theory of dynamical systems, including the Abstract

Cauchy Problem. I discovered a rich mathematical field developed by the work of Dynkin,

Skorokhod, Feller, Doob, Hille, Yosida, and others. It is interesting that to prove such

a commonly accepted experimental idea requires such a detailed mathematical description

and such advanced methods. On the other hand, these same areas of mathematics are the

foundations for a number of other methods in physics, including the perturbation theory

and semigroup methods used quantum mechanics, and the mathematical formalism used to

interpret all spectroscopic experimental data [10,15].

Does the knowledge of the details of Kurtz’s proof change the way I choose to model

physical phenomena? Possibly. For the computational physical scientist, having a deeper

understanding of the mathematical theory, including the limitations and implications of its

use in modeling, can only prove beneficial. As Karlin wrote in the introduction his classic

text [24], one of his desires was “to make the student who is more concerned with application

aware of the relevance and importance of the mathematical subtleties underlying stochastic

processes.” It is possible that fundamental errors may result from the improper application

and incomplete understanding of a mathematical model.

The successful application of mathematical models to study physical phenomena relies in

large part on effective communication between the mathematician and the physical scientist.

It is important for the physical scientist to have awareness about the complexities and

subtleties relating to the mathematical theory being used. Not only will results be easier to

interpret if they do, or do not, agree with experiment, but awareness about the existence

of multiple fields in mathematics as well as their connections to each other may prove to

be useful at some point in other applications, and will surely improve communication with
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the mathematical community. Alternately, from an applied mathematics perspective, it is

crucial to understand the phenomena being modeled as deeply as possible, and the results

of making certain assumptions and approximations.

For this reason, I have chosen to approach the writing of this text in the following way:

I include textual explanations of essential mathematical results and limit the level of rigor

for the more advanced topics to that of an introductory survey— one of my aims is to fill

in the gap in knowledge that may exist in the scientific community about deeper results in

stochastic processes, as well as to provide the mathematical community with an overview

of a complex and continually developing modeling problem. Therefore I present some in-

depth discussions about the use of Markov models in chemical kinetics and the limits of their

validity. Additionally, it is important to understand how the current model relates to other

models being used to describe the same phenomena and the differences in the applications,

both from a theoretical and practical standpoint. Consequently I shall briefly present other

methods and representations that relate to the chemical master equation technique.

Mathematics has frequently been both guided and inspired by its connection and relation-

ship with physical theories [12], and as Feller wrote, “many parts of the purest mathematics

owe their origin to physical problems.” The equations resulting from the use of Markov

models for biology, physics, and chemistry, such as the Kolmogorov equations, offered math-

ematics “integrodifferential equations of a type never studied before,”[12]. Therefore, even if

the model is shown to be less accurate than expected, its associated methods offer stimula-

tion for the development of new theories, which can in turn be used to explore other physical

systems.

“As for practical usefulness, it should be borne in mind that for a mathematical

theory to be applicable it is by no means necessary that it be able to provide

accurate models of observed phenomena. Very often in applications the construc-

tive role of mathematical theories is less important than the economy of thought

and experimentation resulting from the ease with which qualitatively reasonable
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working hypotheses can be eliminated by mathematical arguments. Perhaps even

more important is the constant interpretations of observations in the light of the-

ory and of theory in the light of observations; in this way mathematical theory

can become an indispensable guide not only to a better understanding, but even

to a proper formulation of scientific problems.” William Feller [12].
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Chapter 2

Mathematical Basics

2.1 Preliminaries

In this thesis I assume the reader is familiar with basic, non-measure-theoretic probability

theory, including definitions such as event, state space, random variable, probability density

function, cumulative distribution function, expectation, etc. However, in this section I review

some basic results and definitions that will be necessary for the following sections. This

section follows presentations of Durrett, [8], Ross, [44], and Karlin, [24].

Definition. The exponential distribution with parameter λ:

The exponential (λ) distribution has probability density function (p.d.f.):

f(x) =

 λe−λx x > 0

0 otherwise,
(2.1)

and cumulative distribution function (c.d.f):

F (x) =

 1− e−λx x > 0

0 otherwise.
(2.2)
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Definition. The Poisson distribution with parameter λ:

P(X = k) = e−λ
λk

k!
for k = 0, 1, . . . (2.3)

Proposition. The sum of two independent Poisson random variables is a Poisson random

variable.

Proof: The moment generating function for the Poisson distribution is:

φx(t) = E(etX) =
∞∑
k=0

λk

k!
e−λetk = e−λ

∞∑
k=0

(λet)k

k!
= e−λ(1−et) (2.4)

If X and Y are two independent random variables, and X ∼ Poisson(λ), Y ∼ Poisson(µ),

then

φx+y = φxφy = e−λ(1−et)e−u(1−et) = e−(λ+u)(1−et) −→ X + Y ∼ Poisson(λ+ u) (2.5)

Definition. The gamma (n, λ) distribution:

Γ(n, λ) =

 λe−λt (λt)n−1

(n−1)!
= e−λtλntn−1

Γ(n)
t > 0

0 otherwise
(2.6)

Proposition. The sum of n independent exponential (λ) distributions is a gamma(n, λ)

distribution: If X1, X2, . . . , Xn are independent exponential(λ) distributions, then if Yn =

X1 +X2 + · · ·+Xn,

P(Yn = t) = λe−λt
(λt)n−1

(n− 1)!
, for t > 0, 0 otherwise. (2.7)

In other words, Yn is gamma(n, λ).

Proof:

(By induction). We see for n = 1, this is true. Also, for n = 2, we can compute the probability

distribution for an exponential waiting time of s, plus another exponential waiting time of
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t− s, for a total waiting time of t:

∫ t

0

λe−λsλe−λ(t−s)ds = λe−λt · λt, (2.8)

which is gamma(2, λ). Now, assuming the statement is true for n, then for n+ 1, we have:

∫ t

0

λe−λs
(λs)n−1

(n− 1)!
λe−λ(t−s)ds =

∫ t

0

λ2e−λt
(λs)n−1

(n− 1)!
ds = λe−λtλn

[
sn

n!

]t
0

=

λe−λtλntn

n!
= Γ(n+ 1, λ)

(2.9)

Definition. The probability generating function, or simply the generating function:

If X takes on only nonnegative integer values, we can use a different function (besides the

characteristic function or the moment-generating function) to obtain the moments. For a

nonnegative, integer-valued random variable, define

gX(s) = E[sX ] =
∞∑
k=0

skP(s = k) (2.10)

Differentiating the generating function and setting s = 1, we obtain the factorial moments:

gX(s)′
∣∣∣∣
s=1

=
∞∑
k=1

ksk−1P(s = k)

∣∣∣∣
s=1

= E [k] , (2.11)

gX(s)′′
∣∣∣∣
s=1

=
∞∑
k=2

k(k − 1)sk−2P(s = k)

∣∣∣∣
s=1

= E [k(k − 1)] , etc. (2.12)

Properties:

g(s) determines the distribution function uniquely, and for independent nonnegative integer-

valued random variables,

gX+Y (s) = gX(s)gY (s) (2.13)

10



Definition. The Laplace transform: For nonnegative random variables we can also use

the Laplace transform instead of the characteristic function:

ψX(s) =
∞∑
n=0

e−sλnP(X = λn), or

ψX(s) =

∫ ∞
0

e−sXpX(x)dx

(2.14)

2.2 Stochastic Processes- An Introduction

A stochastic process is a sequence of events with associated probabilities. We say the stochas-

tic process Xt, t ∈ T , is a collection of random variables such that for each t,Xt is a random

variable. The index is often interpreted as time and, as a result, we can say Xt is the state of

the process at time t. T is the index set of the process. Thus the process can be thought of

as moving forward in time, through a series of time steps. A state space is the set of possible

states or values for Xt. For a stochastic process, both the state space and the index set can

be defined to be discrete or continuous. By discrete we mean finite or countable.

Stochastic processes can be differentiated by state space, index parameter, and the type

of dependence that exists between the random variables. Therefore we can have a discrete-

time, discrete-space process, a discrete-state continuous-time process, etc. In this paper I

will focus primarily on discrete-state stochastic processes that occur in either discrete time

or continuous time.

Dependence relations among variables are defined by stating the joint distribution func-

tions for every finite family of random variables of the process. We can also talk about the

difference in values between steps of the process, or its increments, which are also random

variables. Several types of relations between the increments will prove to be important:
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Definition. Independent increments: If the random variables

Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −Xtn−1 (2.15)

are independent for all choices of t1, . . . , tn, satisfying t1 < t2, . . . , < tn, we say Xt is a process

with independent increments.

Definition. Stationary increments: Xt is a stochastic process with stationary increments

if the distribution ofXt1+h−Xt1 is equal to the distribution of Xt2+h−Xt2 for all t2, t1, and h.

The simplest type of stochastic process would have every time step independent of every

other one. Because this type of process would be uninteresting and not very useful for

applications, we would like the variables to have some type of memory about their past. This

is because in many physical processes, such as the motion of a particle in some medium, the

particles past history (in terms of velocity, position, momentum, etc.) has some influence on

its future trajectory. However, taking account of long periods of past history proves to be

highly difficult and cumbersome mathematically. Therefore, we define a type of process that

has no memory of its past, but its current state and its next-step transition are dependent,

probabilistically. Thus the process is defined via a conditional probability:

Definition. Markov Processes: A process is Markovian if

P{a < Xt 6 b|Xt1 = x1, Xt2 = x2, . . . , Xtn = xn} = P{a < Xt 6 b|Xtn = xn},

for t1 < t2 < · · · < tn < t.

(2.16)

A realization, or sample function, of a stochastic process Xt is an assignment to each t

some value of Xt. Here I will call a Markov process with a finite or denumerable state space

a Markov chain, whether the time index is discrete or continuous. A Markov process for

which all sample functions are continuous is called a diffusion process.

I present discrete-time Markov chains, continuous-time Markov chains, and continuous

state space, continuous time Markov processes, but I will focus on continuous time Markov
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chains, which are a type of “jump process.” Discrete state space, continuous time processes

are the types most commonly found in scientific applications, because the description is

simpler, although the solutions of associated differential equations may be more difficult to

compute [17]. For computational applications, discrete time chains are also common, and for

those there is an established theory that provides many methods for performing calculations

[8].

2.3 Markov Chains: Discrete Time

In this section a brief survey of essential definitions and results from the theory of discrete-

time Markov chains is presented, for finite and infinite, but countable, state spaces. Although

this thesis will focus on continuous-time Markov chains and their use in modeling chemical

reactions, certain key results from the theory of discrete-time chains have analogies in, or offer

insights into, the continuous-time theory. Additionally, for computer simulations of Markov

processes, the time domain must necessarily be discrete, even if the process being simulated

is a continuous-time process, in which case the simulation must approximate the continuous-

time domain. Therefore, an understanding of the discrete-time process is important. This

section follows the expositions of Karlin [24], Durrett [8], Anderson [1], Lawler [37], and Ross

[44]. Proofs of some theorems and lemmas and further details can be found there.

A discrete-time Markov chain, Xn, has a finite or countable state space and also T =

{0, 1, 2, . . . }. As the time index advances by one, the process transitions to the next state

(which may possibly be the same state as current state). The position in time may or may

not be important to the process. If the probability of transition from a state j to a state

k depends on the current value of the time index, we call the process nonstationary. If the

same probability does not depend on the position in time but only the length of the time

interval, we call the process stationary. Therefore for the one-step transition probability of a

nonstationary Markov chain, we have Pn(i, j), where n is the time index, and i and j are the

13



events ei and ej. A stationary Markov process is also called a time-homogeneous process,

and is completely determined by

P (i, j) = P(Xn+1 = j|Xn = i) for any n, (2.17)

and the initial distribution or state.

In this paper I will only consider stationary processes. The above equation is the Markov

property for discrete time Markov chains. It states that the conditional probability that the

process is in state j one time step after it was in state i, given the entire history of the process

from the initial state, is the same as the conditional probability given only the previous state

and time. In other words, the process has a memoryless property.

For discrete time Markov chains, the transition probabilities can be arranged in matrix

form, where the current state is represented by the row, the next state by the column, and

the entry (i, j) is the probability of transitioning from state i to state j. This is known as

the transition matrix. The transition matrix must have all elements > 0, and the row sums

must equal 1, because the probability of transitioning to one of any of the possible states

must be a sure event. An absorbing state is a state for which the probability of transitioning

back into the same state on the next step (i.e. staying in the current state) is 1, and thus

the probability of transitioning into any other state is 0.

The probability Pm(i, j) = P(Xn+m = j|Xn = i) is the probability that, given the value

of X was i at time n, it reaches a value of j, m steps later. To offer insight about what this

probability may be, we consider a three-state chain, and ask what is the probability that we

are at state 1 on day n+ 1, given we were in state 2 on day n− 1?

P(Xn+1 = 1|Xn−1 = 2) =
3∑

k=1

P(Xn+1 = 1|Xn−1 = 2) =

3∑
k=1

P (2, k)P (k, 1)

(2.18)
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In words, we must sum over the probabilities of all possible intermediate states in the transi-

tion from state 2 to state 1. Likewise, for the transition from state i to state j in m+n steps,

we can split the path into two pieces, and due to the Markov property, the probabilities of

the individual pieces are independent. Thus we have the Chapman-Kolmogorov equation:

Pm+n(i, j) =
∑
k

Pm(i, k)P n(k, j) (2.19)

The above equation is also the equation for matrix multiplication for a matrix Pm by a

matrix P n. Therefore, since we can write the transition probabilities in matrix form, we see

that the Chapman-Kolmogorov equations imply that the m-step transition probability is the

mth power of the one-step transition matrix P.

2.3.1 Long-term behavior of the discrete-time Markov chain

Now that we see that multiple steps of the process are expressible as powers of the transition

matrix, we can suppose that there may be some results relating to long term behavior of the

chain, after many steps, and that this behavior may be related to results from linear algebra.

In fact, this is true. For some finite transition matrices, a simple computer calculation can

show that powers of the matrix can rapidly converge to a matrix whose rows are identical.

This implies that there may exist a limiting distribution, such that after some time, the

probabilities of transitioning into a particular state from any other state are the same, and

are independent of the starting distribution. These probabilities can also be seen as a limiting

fraction of time spent in each state, or as a fixed distribution of the states. For these matrices,

the limiting distribution can be thought of as “stationary.” However, we will see that the

term “stationary distribution” will be defined in a different way, and will apply to both cases

where the matrix powers converge, and when they do not. Studying limit behaviors of the

transition matrices can help to answer some important questions, such as: if there is an

absorbing state, what is the probability that ultimately, the process will be absorbed or will
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avoid absorption? More generally, what fractions of the states will ultimately be populated

if the process stabilizes over long time scales? To answer these questions, it is necessary to

classify states and sets of states based on their potential for recurrence and their interaction

with each other.

Definition. Classification of States of a Markov chain:

Accessible −→: A state y is accessible from a state x, x −→ y if there is a positive

probability of transitioning from state x to state y, directly or via any series of transitions

through other states: P n(x, y) > 0 for some n > 0.

Communicates ←→: Two states communicate if each is accessible to the other. We

write x←→ y.

Communication, or ←→, has the following properties: reflexivity, symmetry, and tran-

sitivity. Thus it is an equivalence relation and partitions the state space into equivalence

classes. The space is called irreducible if the equivalence relation induces only one class.

Definition. Time of first return: Let Ty = min{n > 1 : Xn = y} be the first return to a

state, after having been there once before at time n = 0. Then the probability that a process

that starts at y ever returns to y can be written as fy = P(Ty <∞|X0 = y).

Definition. Stopping time: T is a stopping time if the occurrence of an event at {T = n}

is completely determinable by the values of the process up to that time. In others words, if

we had to decide to stop at time n, based on some criteria, we would know it was time to

stop when {T = n}. The time of a first return to a state, Ty, is a stopping time. However,

the time of last return to a state is not a stopping time, because we do not know if the

current state is the last time the state will be visited, based only on the past history of

events. NOTE: T is a random variable.

Definition. Strong Markov Property (for discrete-time processes): Let T be a stopping

time. Then given T = n and XT = y, XT+k for k > 0 is also a Markov chain with initial

state y.
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As a result of the Strong Markov Property, the probability of a second return to y is

(fy)
2 , and thus the probability of an nth return is (fy)

n. Because of this, we see that there

are two possibilities for (fy)
n as n −→∞. If fy < 1, then (fy)

n −→ 0 as n −→∞. If fy = 1,

then (fy)
n = 1 for all n, so the chain returns to y infinitely many times.

Thus we have the following definitions:

Definition. Transient state: A state is transient if fy < 1. The probability of returning

to it eventually goes to zero: (fy)
n −→ 0 as n −→∞.

Definition. Recurrent state: A state is recurrent if fy = 1. The probability of the state’s

repeated occurrence in the chain, (fy)
n, also equals 1. The state will continually be returned

to as the process proceeds in time.

We can now express the concept of accessibility more formally, using the Strong Markov

Property:

Definition. Accessible (second definition): A state x is accessible to a state y if

P(Ty <∞|X0 = x) > 0 (2.20)

Using the above, we can now derive the following

Theorem. If y is accessible from x, but x is not accessible from y, then x is transient.
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The sets of states of a Markov chain, due to the fact that communication of states defines

an equivalence relation, can be partitioned into disjoint sets and classified in the following

way:

Definition. Classification of Sets of the State Space:

Closed set- a set of states is closed if it is impossible to ever leave the set:

If A is closed and i ∈ A and j /∈ A, then P (i, j) = 0. (2.21)

Irreducible set- a set S is irreducible if, whenever i, j ∈ S, then j is accessible from i.

Lemma. If x is recurrent and x −→ y, then y is recurrent.

Lemma. In a finite, closed set there must be at least one recurrent state.

Theorem. If S is a finite, closed, irreducible set, then all states in S are recurrent.

Theorem. Any finite state space of a discrete-time Markov chain can be partitioned into a

disjoint union T ∪R1 ∪ · · · ∪Rk , where T is a set of all the transient states, and the Ri are

closed, irreducible sets of recurrent states.

Let Px(A) = P(A|X0 = x) be the probability of A given that the initial state was x, and

Ex be the expectation with respect to this initial state. Let N(y) be the total number of

visits to y, after time n = 0, i.e. for times n > 1. Thus if X0 = y, N(y) counts returns to y.

Because of the Strong Markov Property, the probability that we make k visits to y, when

we started at x, equals Px(Ty < ∞)(Py(Ty < ∞))k−1. Let iN(k) = 1 if N > k, and 0

otherwise. Then since N =
∑∞

k=1 iN(k), we have that E(iN(k)) = P(N > k), and thus

EN =
∞∑
k=1

E(iN(k)) =
∞∑
k=1

P(N > k). (2.22)
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But P(N > k) = Px(Ty <∞)(Py(Ty <∞))k−1, thus we have

ExN(y) =
∞∑
k=1

Px(Ty <∞)(Py(Ty <∞))k−1 = Px(Ty <∞)
∞∑
k=1

(Py(Ty <∞))k−1

=
Px(Ty <∞)

1− Py(Ty <∞)

(2.23)

From the above we can see that EyN(y) = ∞ if and only if Py(Ty < ∞) = 1, which is

the definition of recurrence. Furthermore, noting that N(y) =
∑∞

n=1 1{Xn=y}, we see that

ExN(y) =
∑∞

n=1 Px(Xn = y) =
∑∞

n=1 P
n(x, y). Thus we have proved the following theorem:

Theorem. y is recurrent if and only if

∞∑
n=1

P n(y, y) = EyN(y) =∞ (2.24)

Thus we see that a state is either recurrent or transient— there is no in-between, and if

it is recurrent, the number of times we visit that state will be infinite with probability one.

If a state is transient, then it will NOT be visited infinitely, with probability one, and it

will eventually never be visited again. Furthermore, the number of times it is visited has a

finite expectation. We also see that if a chain has absorbing states which are accessible from

other states, then the chain will eventually stay in one of those states, and the states that

communicate with it are necessarily transient and will eventually be unpopulated.

Periodicity and limiting behavior

In a discrete-time Markov chain, we have the possibility that a particular set of states

can recur in regular alternation for all time, thus preventing the convergence to a limiting

distribution. For instance, P n(x, x) may equal zero for n odd, or unless n is a multiple of

some number. A classic example is the Ehrenfest chain, where we have two urns containing

a total of N balls. We pick one ball at random and transfer it into the other urn. The states

consist of the number of balls at time n in only one chosen urn, say urn 1. The transition
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matrix for N = 3 is then: 

0 1 0 0

1
3

0 2
3

0

0 2
3

0 1
3

0 0 1 0


(2.25)

From this we see that if we go from one to zero, we cannot go back to zero until two steps

later. In general, the zeros will persist infinitely, and will prevent convergence of P n(x, y)

as n −→ ∞. The behavior of the chain is cyclical. Using this idea we can formulate the

following definition:

Definition. The period of a state is the greatest common divisor of all n such that

P n(x, x) > 0.

A chain with all states having period 1 is called aperiodic. Obviously, if P (x, x) > 0,

then x has period 1. However, a state whose one-step transition probability to itself is zero

may still have period 1, for example, if it is possible to go from x back to x in either 5 steps

or in 6 steps.

Lemma. If x and y communicate, then x and y have the same period.

From this we can see that if all states communicate with each other in a chain, in other

words, if the chain is irreducible, and one state has period 1, then all states have period 1,

and we can say that the chain is aperiodic. It seems that for an irreducible, aperiodic chain,

convergence to some limiting distribution is possible. From our initial experiment with a

converging matrix, we define:

Definition. A stationary distribution is a solution of the matrix equation πP = π, where

P is the transition matrix, and π is a row vector.
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Theorem. If the state space is finite, then there is at least one stationary distribution.

In the introductory discussion, π would be one of the identical rows in our converging

matrix. Note, however, that this definition does not mention any convergence. We guess

that if P n(x, y) converges as n −→∞ it must be to π(y). Interestingly, even if convergence

cannot occur due to periodicity, in a finite state space, we still have a solution to the equation

πP = π. We can see that π is a left eigenvector of the matrix P, with eigenvalue 1. If the

chain is reducible with r recurrence classes, then we will have r different solutions to the

equation πP = π; eigenvalue 1 will have multiplicity r. If the chain is irreducible but periodic

with period d, P will have d eigenvalues with absolute value 1: z with zd = 1, z complex.

Each of these is a simple eigenvalue, and corresponding to the simple eigenvalue of 1 is a

unique solution to πP = π.

Theorem. If P is irreducible, then the stationary distribution is unique.

Therefore, if the chain is irreducible and periodic, we still have a unique stationary

distribution. This distribution gives us a limiting percentage of time spent in each state.

This can be shown using a strong law of large numbers for Markov chains:

Theorem. Suppose P is irreducible and has stationary distribution π. Let r(x) be some

function of state x such that
∑

x π(x)|r(x)| <∞. Then

lim
n−→∞

1

n

n∑
k=1

r(Xk) =
∑
x

π(x)r(x), (2.26)

Putting r(y) = 1 and r(x) = 0 for x 6= y,
∑n

k=1 r(Xk) gives the sum of the number of times

we reach state y by time n, or Nn(y). Thus we have

lim
n−→∞

Nn(y)

n
−→ π(y) (2.27)

showing that π is the limiting fraction of time spent in the state y.
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Finally, if P is neither reducible nor periodic, we have convergence of P n to the stationary

distribution π as n −→∞:

Theorem. If P is irreducible, aperiodic, and has stationary distribution π, then P n(x, y) −→

π(y) as n −→∞.

2.3.2 Infinite state space considerations

Several results above were limited to the case of a finite state space. For a Markov chain in

discrete time but with countable but infinite state space, additional definitions are necessary.

The classic example of difficulties that may arise in the case of the infinite state space is

the one-dimensional random walk with a one-sided reflection: a particle can make one step

to the right with probability p, one step to the left with probability 1 − p, but if it reaches

zero, it cannot go further to the left so it either stays at zero with probability 1−p or moves

back right. For this chain we have three separate types of limiting behavior, in the case

p > 1
2
, p < 1

2
, or p = 1

2
. A stationary distribution exists only for the case p < 1

2
. However,

it can be shown that for p = 1
2
, the probability, starting from any point x > 0, that we

return to 0 in a finite amount of time, is 1. On the other hand, when we try to calculate

the expectation time for our first return to 0, we obtain infinity: P(T0 < ∞|X0) = 1, but

E(T0|X0 = x) =∞.

A similar situation occurs in a population model called binary branching, where the states

of the Markov chain is the population number at time n. Here it can be shown that, for

the case where the mean number of offspring per individual is 1, the probability for eventual

extinction as n −→ ∞ is 1, but the expected time for extinction is infinite. Thus we must

create two additional definitions:

Definition. A state x is called positive recurrent if E(T0|X0 = x) <∞.

Definition. A state x is called null recurrent if it is recurrent but not positive recurrent:

P(T0 <∞|X0 = x) = 1, but E(T0|X0 = x) =∞
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The definition for a transient state is the same as in the case of a finite state space.

We now can state the following theorems:

Theorem. For an irreducible discrete-time Markov chain the following are equivalent:

1) Some state is positive recurrent

2) All states are positive recurrent

3) There is a stationary distribution π.

Theorem. If P is irreducible, aperiodic, and all states are positive recurrent, then

lim
n−→∞

P n(x, y) = π(y) (2.28)

where π is the unique nonnegative solution of πP = π, with
∑

i π(i) = 1.

2.4 Markov chains in continuous time

This section follows the expositions of Durrett [8], Karlin [24], Feller [13], and Norris [41],

with additional details from Barucha-Reid [5], Vrbik [54], and Bartholomay [2].

2.4.1 Introduction to continuous time Markov chains:

Continuous time Markov chains are Markov processes with a discrete state space but a

continuous time parameter. Because the possible transition times are no longer denumerable,

the Markov property takes on a slightly different form:

Definition. Xt, t > 0, is Markovian if, for any 0 6 s0 < s1 < · · · < sn < s,

P(Xt+s = j|Xs = i,Xsn = in, . . . , Xs0 = io) = P(Xt+s = j|Xs = i). (2.29)

Note that once again we assume the process is time-homogeneous, in that the transition

probabilities only depend on the time difference (t+s)−s = t and not the value of t+s or s.
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The notation for the transition probabilities now contains an index for the time increment,

t:

pt(i, j) = P(Xt = j|X0 = i). (2.30)

The continuous-time version of the Chapman-Kolmogorov (CK) equation is:

∑
k

ps(i, k)pt(k, j) = ps+t(i, j). (2.31)

In discrete and continuous time, it is possible to construct stochastic processes which

satisfy the Chapman-Kolmogorov equations, but are not Markovian. Thus, although it was

conjectured for some time that the Markov property could be defined by the CK equations,

this is not the case. However, if a process is Markovian and satisfies the CK equations, then

it is a unique Markovian solution to these equations, and the Markovian process is uniquely

and completely determined by its transition probabilities and the initial condition.

For the continuous-time Markov chain, because transitions can happen at any time on the

continuum and not in a regularly-spaced way as in the discrete-time case, it makes sense to

talk about an average rate of transitions per unit time. If the unit of time is allowed to go to

zero, under appropriate assumptions for the process, we are able to define an instantaneous

jump rate.

2.4.2 Exponential distribution of waiting times

Let Ti be the waiting time until transition into the next state. This is also sometimes called

the “holding time.” By the Markov property, Ti must be memoryless and thus must be

exponentially distributed.
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Proposition. Memoryless property of the exponential distribution:

P(X > t) = 1− P(X 6 t) = 1− F (t) = e−λt,

P(T > t+ s|T > t) =
P(T > t+ s)

P(T > t)
=
e−λ(t+s)

e−λt
= e−λs = P(T > s).

(2.32)

We have shown that the exponential distribution has the memoryless property, but we

must show that it is the only such function with this property. This proof is not as easy,

and a completely rigorous version requires some advanced methods.

Theorem. The exponential equation: This is the functional equation u(s+t) = u(s)u(t).

It has been shown that monotone solutions of this equation are necessarily of the form

e−λt. According to Feller, “This is a logarithmic variant of the famous Hamel equation

f(t+ s) = f(t) + f(s). [It can be proved that] its solutions are either of the form at or else

unbounded in every interval,” [13]. If we are allowed to assume that u is differentiable, we

can show the following:

Proof:

Let u(s) = 1 − F (s), where F (s) is the c.d.f. of some distribution. Also, assume u(s) is

differentiable. Then, if

u(s+ t) = u(s)u(t),

u′(s+ t) =
∂

∂s
[u(s+ t)] = u′(s)u(t), and

u′(s+ t) =
∂

∂t
[u(s+ t)] = u(s)u′(t),

(2.33)

Thus u′(s) = au(s), where a = u′(t0)
u(t0)

, for some t0 such that u(t0) 6= 0. The solution to this

differential equation is Ae−as. Because u(0) = 1 − F (0) = 1, A = 1. Because u(s) can be

< 1, a is a negative number. Thus u(s) = e−λs for λ > 0.
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Now we can provide another description of the continuous time Markov chain using the

property of exponentially distributed waiting times.

Definition. Alternate definition for a continuous time, discrete state Markov

process: A continuous time, discrete state stochastic process is Markovian if, with each

transition into state i,

1) the waiting time before transition into a different state is exponentially distributed,

2) upon leaving state i, it enters state j with probability P (i, j), where as in the discrete

time version,
∑

j P (i, j) = 1, and additionally, P (i, i) = 0,

3) the waiting times and the transition probabilities are independent random variables.

The following type of process will be helpful for use in the next section:

Definition. Counting process: A stochastic process {N(t), t > 0} is a counting process

if N(t) is a number of events that occur by time t. Formally, N(t) must satisfy:

1) N(t) > 0,

2) N(t) is integer-valued,

3) If s < t, N(s) 6 N(t),

4) For s < t, N(t)−N(s) is the number of events that occur in the interval (s, t].

A counting process has independent increments if the number of events that occur in

disjoint time intervals are independent. It has stationary increments if the distribution of

the number of events that occur in any interval of time depends only on the length of the

time interval.

2.4.3 Poisson Process

The Poisson process is the simplest continuous time Markov chain, which is what makes it

the classical starting point to examine these types of processes. Yet it has some interesting

properties and numerous applications in the physical sciences as a descriptive and predictive

model. For the Poisson process, the only possible transition from a state n is to state
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n + 1, and the rate of transitions is constant. Phenomena modeled by Poisson processes

include rates of chromosome breakages and disintegrations of radioactive particles [13, 24].

Such physical processes involve the occurrence of relatively rare events: for instance, for

radioactive disintegration, the Poisson model is more accurate if the observation time is

brief compared to the half life of the radioactive particles. Furthermore, successfully modeled

phenomena are those for which we can assume that the averages of all forces affecting the

physical process remain constant [13].

Consider the zero term of the Poisson distribution with parameter λt. For fixed t, we have

our basic discrete Poisson distribution, which can also can be understood as the probability

that no event occurs within a fixed time interval of length t. But if we allow t to be a

continuous variable, the same expression can also be seen as the probability that the waiting

time for the first event exceeds t, so that now a discrete probability distribution becomes a

continuous random process.

Consider this latter definition of the Poisson function, and let the kth term in the expres-

sion e−λt (λt)k

k!
be the probability that k events have occurred by time t. Each state k in the

process is defined by the expression “k events have occurred,” thus with each new event, we

have a “jump” to the next state along the time continuum. Define Pn(t) as the number of

events occurring by time t, and thus let P0(h) be the probability that no event, or jump,

occurs by time h (thus the waiting time exceeds h). Partition a time interval of unit length

into N subintervals of length h = 1
N

. The probability of a jump within any one of these

subintervals is 1− P0(h), and the expected number of subintervals containing a jump must

thus be N(1− P0(h)) =

1− P0(h)

h
(2.34)

We imagine that as h −→ 0, this expression should converge to the expected number of

jumps within any time interval of unit length, in other words the “rate” of jumping:

1− P0(h)

h
−→ λ as h −→ 0. (2.35)
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This was an intuitive introduction to the idea of a Poisson process. Formally, we can define

the Poisson process in a number of ways; here I show three equivalent definitions which each

illuminate a different aspect of the process.

Definition. Poisson Process I: Let t1, t2, . . . be independent exponential (λ) random

variables, and let Tn = t1 + · · · + tn, n > 1, and T0 = 0. Then a Poisson process N(s) is

a counting process, such that

N(s) = max{n : Tn 6 s}. (2.36)

From the above, we can derive the functional form of the distribution:

P(tn+1 > s− t) = e−λ(s−t)

P(Tn+1 > s|Tn = t) = P(tn+1 > s− t) = e−λ(s−t)

P(N(s) = n) =

∫ s

0

P(Tn = t)P(Tn+1 > s|Tn = t)dt =∫ s

0

λe−λt
(λt)n−1

(n− 1)!
e−λ(s−t)dt

(2.37)

(because the sum of n exponential (λ) distributions is a gamma (n, λ) distribution, from

section 1),

=
(λt)n

(n− 1)!
e−λs

∫ s

0

tn−1dt =
(λs)n

(n)!
e−λs (2.38)

Before we give the second definition of a Poisson Process, we must prove the following

Lemma. If N(s) is a Poisson process, as defined above, then N(t + s) − N(s), t > 0, is a

rate λ Poisson process independent of N(r), 0 6 r 6 s. Additionally, N(t) has independent

increments.

Proof:

By the “sum of Poisson distributions property” proved in section 1, N(t+s)−N(s) is Poisson

distributed. Because of the memoryless property of the exponential distribution, and by the
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properties of a counting process, the increments are independent.

Conversely, if N(t+s)−N(s) is Poisson (λ) distributed, and has independent increments,

they must be exponentially distributed, thus N(s) is also Poisson (λ).

Thus we have established an equivalent definition:

Definition. Poisson Process II: A counting process N(s) is a Poisson process if and only

if:

1) N(0) = 0,

2) N(t+ s)−N(s) is Poisson (λt),

3) N(t) has independent increments.

We now derive the third definition of the Poisson Process. Assume we have a counting

process N(s), and let Pm(t) be the probability that the number of events occurring by time

t is m. Assume also that the process is time-homogeneous and has independent increments.

Furthermore, assume that the probability of one event occurring in a time h, as h −→ 0, is

λh+ o(h), (where a function f is said to be o(h) if f(h)
h
→ 0 as h→ 0), and the probability

of two or more events occurring in time h is o(h). Thus we have the
∑∞

m=2 Pm(h) −→ 0 as

h −→ 0 as well.

Therefore, for m = 0, we can write:

P0(t+ h) = P0(t)P0(h) (by independent increments),

= P0(t)

(
1− P1(h)−

∞∑
m=2

Pm(h)

)
,

P0(t+ h)− P0(t) = −P0(t)P1(h)− P0(t)

(
∞∑
m=2

Pm(h)

)

=⇒ P0(t+ h)− P0(t)

h
=
−P0(t)P1(h)

h
− P0(t) (

∑∞
m=2 Pm(h))

h

(2.39)

Now taking the limit as h −→ 0, we have P ′(t) = −λP0(t), which is a differential equation

whose solution is P0(t) = Ce−λt. Since P0(0) = 1, C = 1, so P0(t) = e−λt. We must now
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solve for the remaining Pm(t).

Pm(t+ h) = Pm(t)P0(h) + Pm−1(t)P1(h) +
m∑
i=2

Pm−i(t)Pi(h)

Note :
m∑
i=2

Pm−i(t)Pi(h) 6
m∑
i=2

Pi(h) = o(h),

(2.40)

(because probabilities are 6 1). Thus
∑m

i=2 Pm−i(t)Pi(h) = o(h). Also, P0(h) = 1− P1(h) +

o(h). So we have:

Pm(t+ h) = Pm(t)[1− P1(h) + o(h)] + Pm−1(t)P1(h) + o(h)

=⇒ Pm(t+ h)− Pm(t) = −Pm(t)P1(h) + Pm(t)o(h) + Pm−1(t)P1(h) + o(h)

(2.41)

Again, by dividing by h and taking limh −→ 0, we have

P ′m(t) = −λPm(t) + λPm−1(t) (2.42)

We do not have to check differentiability conditions for the Pm(t) because by definition, o(h)

does not depend on t. Note also that equation (2.41) says: the probability that we have m

events by time t + h is equal to the probability that, either we had m events at time t and

no events occurred in the additional time interval h, or, that we had m−1 events happen by

time t, and one event occurred in the next interval of time length h, or that multiple events

happened between t and t+ h.

We now need to solve the differential equation (2.43), with initial conditions Pm(0) = 0

for m = 1, 2, . . . . Let Qm(t) = Pm(t)eλt. Then Q′m(t) = P ′m(t)eλt + Pm(t)λeλt =

[−λPm(t) + λPm−1(t)]eλt + λQm(t)

= −λPm(t)eλt + λPm−1(t)eλt + λQm(t)

= λPm−1(t)eλt = λQm−1(t)

(2.43)
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So Q′m(t) = λQm−1(t), with Qm(t) ≡ 1. The initial conditions are Qm(0) = 0 for m =

1, 2, . . . . Thus Q′1(t) = λQ0(t), Q1(t) = λt + c1, and with c1 = 0, by the initial conditions,

gives Q1(t) = λt. Therefore,

P1(t) = Q1(t)e−λt = λe−λt. (2.44)

Likewise, Q′2(t) = λQ′1(t), so Q2(t) = λ2t2

2
, after finding that c2 = 0. So

P2(t) = e−λt
λ2t2

2
,

Q3(t) =
λ3t3

3!
and P3(t) = e−λt

λ3t3

3!
,

. . .Qm(t) =
λmtm

m!
, and Pm(t) = e−λt

λmtm

m!
,

(2.45)

which is the Poisson distribution.

We have thus established a third definition for the Poisson Process:

Definition. Poisson Process III

The counting process N(t), t > 0, is a Poisson Process with rate λ, λ > 0, if

1) N(0) = 0,

2) The process has stationary, independent increments,

3) P(N(h) = 1) = λh+ o(h),

4) P(N(h) > 2) = o(h)

(the remaining parts of the proof of equivalence to the other two definitions follow triv-

ially).

The solution to the above differential equations can also be obtained with the use of

Laplace transform methods. I demonstrate this here, because this type of technique was used

often in solving more difficult such equations for specific models in biology and chemistry.

We begin identically to the above with the solution P0(t) = e−λt. Then, let Ψk(s) =
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L{Pk(t)} be the Laplace transform of Pk(t). The differential equations for Pk(t) become:

sΨk(s) = −λΨk(s) + λΨk−1(s)

Ψk(s) =
λΨk−1(s)

s+ λ

=⇒ Ψ1(s) =
λ

(s+ λ)2
, Ψ2(s) =

λ2

(s+ λ)3

. . .Ψk(s) =
λk

(s+ λ)k+1

(2.46)

Note, for Ψ0(s) we also have 1
s+h

. The inverse Laplace transform of n!
(s−a)n+1 = tneat. Thus

the inverse transform of λk

(s+λ)k+1 ,

L−1

[
λk

(s+ λ)k+1

]
=
λktk

k!
e−λt. (2.47)

We can see that this saves a bit of writing!

2.4.4 Pure birth process

We slightly generalize the Poisson process to obtain the pure birth process. The rate is now

no longer constant, but is assumed to be a function of n. Thus we allow the probability of

an event occurring at a given time to depend upon the number of events which have already

occurred.

Let {λk} be a sequence of positive numbers. Assume:

1. P(Xt+h −Xt = 1|Xt = k) = λkh+ o(h)

2. P(Xt+h −Xt = 0|Xt = k) = 1− λkh+ o(h)

3. P(Xt+h −Xt < 0|Xt = k) = 0

4. P(Xt+h −Xt > 2|Xt = k) = o(h).

We can also assume (optional):
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5. X(0) = 0. In this case we are counting the number of births, not the population, and

the definition is closer to the Poisson process.

Note that by the description, limn→∞
o(h)
h

= 0 uniformly in t > 0, since o(h) does not

depend on t. This property will be shown to be important in a rigorous description of the

more general process.

A differentiation procedure similar to the one used for the Poisson process can now be

performed to attain another set of differential equations for the transition probabilities [24]:

Set

Pn(t) = P(Xt = n|X0 = 0). (2.48)

Then we have

P ′0(t) = −λP0(t), for n = 0,

P ′n(t) = −λnPn(t) + λn−1Pn−1(t), for n > 1,

(2.49)

with boundary conditions P0(0) = 1, Pn(0) = 0. The above equations are obtained by

the following:

Pn(t+ h) = Pn(t)[1− λnh+ o(h)] + Pn−1(t)[λn−1h+ o(h)] +
n−2∑
k=2

Pk(t)o(h)

= Pn(t)− λnhPn(t) + Pn(t)o(h) + Pn−1(t)λn−1h+ Pn−1(o(h)) + o(h)

(2.50)

=⇒ Pn(t+ h)− Pn(t)

h
=
−λnhPn(t)

h
+
Pn(t)(o(h))

h
+
Pn−1(t)λn−1h

h
+
Pn−1(o(h))

h
+
o(h)

h
.

(2.51)

Taking limh −→ 0 gives the equations (2.50).

The Yule Process

The Yule process, or Yule-Furry process, as it is sometimes called, was a description used

by Udny Yule in 1924 to analyze creation of new species via random genetic mutations [56].

It was also used by W. H. Furry in 1937 to model phenomena associated with cosmic rays

[14]. In both cases the descriptions are crude, because the required assumptions neglect
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important details of the processes. For the species case, the assumption that each species

(member) has the same probability as any other species of undergoing a genetic mutation that

leads to diversification neglects large variations due to species sizes, as well as genome sizes.

Additionally, the chance of extinction has been neglected. In both cases, the assumption of no

interaction among members that results in the independence of each members reproduction

is relatively unrealistic [13].

Yule process: The rates are defined to be linear functions of n: λn = nλ. Let n0 be

the initial population. We have:

P ′n(t) = −λnPn(t), for n = n0,

P ′n(t) = −λnPn(t) + λ(n− 1)Pn−1(t), for n > n0

(2.52)

Note that now we have not used the optional condition that X0 = 0, because we want to

count population numbers, not numbers of births. The initial conditions are: Pn(0) = 1 for

n = n0, 0 for n 6= n0. Consider first the case where n0 = 1. Then P1(t) = c1e
−λt, and by the

initial conditions, c1 = 1. We can solve for the remaining Pn(t) inductively, and we obtain

Pn(t) = e−λt(1− e−λt)n−1, for n = 1, 2, . . . (2.53)

To check this, we can use the generating function; g(s, t) =
∑∞

n=0 Pn(t)sn. Then, using the

second differential equation in (2.53), we have

∂g

∂t
= −λs

∞∑
n=0

ns(n−1)Pn(t) + λ

∞∑
k=0

(k − 1)skPk−1(t)

= −λs
∞∑
n=1

ns(n−1)Pn(t) + λ
∞∑
k=2

(k − 1)skPn(t),

(2.54)

(because the zeroth term is zero in the left sum and the first two terms of the right sum are
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zero),

= −λs
∞∑
n=1

ns(n−1)Pn(t) + λ

∞∑
n=1

ns(n+1)Pn(t), (2.55)

(after setting n = k − 1),

= −λs
∞∑
n=1

ns(n−1)Pn(t) + λs2

∞∑
n=1

ns(n−1)Pn(t), (2.56)

and

∂g

∂s
=
∞∑
n=1

ns(n−1)Pn(t). (2.57)

Thus

∂g

∂t
= λs(s− 1)

∂g

∂s
. (2.58)

The general solution [5] of this p.d.e. is

g(s, t) = f [(1− 1

s
)eλt], (2.59)

where f is an arbitrary function. At time t = 0, Pn(t) is nonzero only for n = 1, so g(s, 0) = s,

and thus s = f(1− 1
s
). Consequently, f(ξ) = 1

1−ξ , and

g(s, t) =
se−λt

1− (1− e−λt)s
. (2.60)

We can rewrite the above using an infinite sum:

g(s, t) = se−λt
∞∑
k=0

(1− e−λt)ksk = e−λt
∞∑
k=0

(1− e−λt)ks(k+1). (2.61)

Setting n = k + 1, and noting that P0(t) = 0 for all t, we have

g(s, t) = e−λt
∞∑
n=1

(1− e−λt)(n−1)sn =⇒ Pn(t) = e−λt(1− e−λt)(n−1). (2.62)
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Now we find the solution for the general case, where n0 = N is arbitrary (but greater than

1). Let these probabilities be called PnN (t). Since we have assumed that each member of the

population reproduces independently, we have the equivalent of N separate Yule processes,

each with an initial population of 1. By properties of the generating function, gN(s), the

generating function for PnN , equals [g(s)]N , where g(s) was the generating function for the

Yule process above. Therefore

gN(s) =

[
se−λt

1− (1− e−λt)s

]N
= (se−λt)N

∞∑
m=0

(
m+N − 1

m

)
(1− e−λt)msm, (2.63)

the negative binomial series. Putting n = N +m, we have

gN(s) =
∞∑
n=N

(
n− 1

n−N

)
(e−λt)N(1− e−λt)n−Nsn (2.64)

From this we can immediately see PnN (t) as the coefficient of sn in gN , i.e.

PnN (t) =

(
n− 1

n−N

)
(e−λt)N(1− e−λt)n−N . (2.65)

Existence and uniqueness of the pure birth process:

For these processes, the initial conditions uniquely determine the solution. However, for

some choices of λ, the sum of total probability is less than 1, so existence of a properly

normalized probability function fails. Thus we have a result known as the

Divergent birth process- With rapidly increasing λ, it may happen that

∑
n

Pn(t) < 1 (2.66)

For the linear rates in the Yule process, this was not a problem. But for nonlinearly

increasing rates, we find that the probabilities may not sum to one. This can be understood

as indicating that it is possible for an infinite number of transitions (jumps) to occur in a
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finite time. If the rates increase too fast in time, this type of explosion is possible. It can be

shown that:

Theorem. In order that
∑

n Pn(t) = 1 for all t, it is necessary and sufficient that the series∑
n λ
−1
n diverges.

This theorem is proved rigorously in Feller [13], but the following gives an informal proof

based on probabilistic reasoning:

We begin by defining the expectation that the first waiting time for a pure birth process

exceeds t:

E(T0) =

∫ ∞
0

te−λ0tλ0dt =
1

λ0

(2.67)

Then by the Strong Markov Property, E(Tj) = 1
λj

, and thus λ−1
0 + λ−1

1 + · · · + λ−1
n is the

expected time it takes the system to pass through the states s0, s1, . . . , sn. Consequently,∑
n λ
−1
n is the expected time it takes the system to pass through all of the (infinite number

of ) states. If
∑

n λ
−1
n converges, then the expected time to pass through an infinite number

of states is finite. Therefore, since 1−
∑

n Pn(t), which is the probability that we have gone

through all states by time t, is greater than zero,
∑

n Pn(t) must be < 1.

2.4.5 Birth and death processes

We now allow the system to move one step in either direction: the addition of a member, or

the removal of one.

NOTE: For most of this section, I revert to the original notation introduced in section

2.4.1, because now we would like to explicitly list the time, as well as both the current state

and the one being jumped to: pt(i, j) represents a jump from state i to state j in time t.

Definition. Postulates for the birth-death process:

1)Xt is Markov on states 1, 2, . . . and pt(i, j) = P(X(s+t) = j|Xs = i) is time-homogeneous.

2) ph(i, i+ 1) = λih+ o(h), i > 0.

3) ph(i, i− 1) = µih+ o(h), i > 0.
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4) ph(i, i) = 1− (λi + µi)h+ o(h), i > 0.

5) p0(i, j) = δij.

6) µ0 = 0, λ0 > 0; µi, λi > 0 for i = 1, 2, . . . .

7) ph(i, j) = o(h) for j 6= i− 1, i, i+ 1.

We now have:

pt+h(i, j) =
∞∑
k=0

ph(i, k)pt(k, j) = ph(i, i− 1)pt(i− 1, j)+

ph(i, i)pt(i, j) + ph(i, i+ 1)pt(i+ 1, j) +
∑

k 6=i−1,i,i+1

ph(i, k)pt(k, j).

(2.68)

Again the last sum is o(h), and we obtain

lim
h→0

pt+h(i, j)− pt(i, j)
h

=

lim
h→0

[µihpt(i− 1, j)− (λi + µi)hpt(i, j) + λihpt(i+ 1, j)] + 0.

(2.69)

Thus

p′t(0, j) = −λ0pt(0, j) + λ0pt(1, j),

p′t(i, j) = µipt(i− 1, j)− (λi + µi)pt(i, j) + λipt(i+ 1, j), i > 1.

(2.70)

Note that here the initial state is variable, and the final state, j, is fixed. We chose to split

the time interval (0, t+h] into (0, h] and (h, t+h]. We are, in a sense, observing the process

in retrospect. This is an example of what is called the backward Kolmogorov equation. We

could also have chosen the subintervals (0, t], (t, t + h]; as we did with the Poisson process

and the pure birth process. However, because the chain can now move in two directions,

we cannot deduce from the postulates that the last summation,
∑

k 6=j−1,j,j+1 pt(i, k)ph(k, j)

would be o(h). It turns out that we must impose a uniformity condition on the probabilities

in order to obtain a similar set of differential equations. One example of a sufficient condition

is that, for k 6= j−1, j, j+1, ph(k,j)
h

= o(1), where o(1) tends to zero and is uniformly bounded

for fixed j, as h→ 0, [24].
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In this case, we obtain:

p′t(i, 0) = −λ0pt(i, 0) + µ1pt(i, 1),

p′t(i, j) = λj−1pt(i, j − 1)− (λj + µj)pt(i, j) + µj+1pt(i, j + 1), j > 1.

(2.71)

These are the forward Kolmogorov equations for the birth-death process.

Existence and uniqueness for the birth-death process:

The problem of existence and uniqueness for the birth-death process already becomes a

difficult one. In the Poisson process and the pure birth process the systems of differential

equations were recurrence relations, so existence and uniqueness depended completely upon

the initial conditions as well as the choice of properly bounded rates. For the birth-death

process, this is not so. The solutions for all of the Pn(t) = P(Xt = n) must be found

simultaneously. Consequently, existence and uniqueness proofs require the use of advanced

methods, [13], which reveal the following:

Theorem. For any coefficients λn > 0, µn > 0, there always exists a positive solution {Pn(t)}

of the forward equations such that
∑

n Pn(t) 6 1. If the coefficients are bounded or increase

sufficiently slowly, the solution is unique and satisfies the regularity condition
∑

n Pn(t) = 1.

However, it is possible to find coefficients such that
∑

n Pn(t) < 1 and such that there are

an infinite number of solutions, [13].

Limit theorems for the birth-death process:

In all cases, limt→∞ Pn(t) = πn, for the forward equations, exist, and are independent of

the initial conditions. They satisfy the equations obtained by setting the derivatives on the

left hand sides of equations (2.71) and (2.72) equal to zero [13]. The limiting probabilities

are related to the properties of the underlying discrete-time Markov chain. For the case of

linear rates, we have a result similar to the reflecting random walk: π0 = limt→∞ P0(t), the

probability of ultimate extinction, is 1 if λ 6 µ, and (µ
λ
)i if λ > µ, where i is the initial state.
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Often the explicit solutions of the birth-death differential equations are too difficult to

find, and if what is needed is actually just the mean and variance of the process, this can be

calculated directly from starting equations with more ease, using methods such as generating

functions, and Laplace transforms.

The forward and backward equations are not independent of each other: a solution of

the backward equations with the given initial conditions is automatically a solution of the

forward equations, except when the solution is not unique. This can occur for reasons similar

to those that lead to the case of a divergent pure birth process.

2.4.6 General continuous-time Markov chains

We can generalize Markov processes with discrete states in continuous time to those for

which we now assume a transition from a particular state to any other state is possible.

(Another possible generalization is to drop the time-homogeneous assumption, although I

will not elaborate on that here). The corresponding forward and backward equations can

be derived in the same way, and under “ordinary circumstances” each system of equations

uniquely determines the transition probabilities of the process.

Assuming differentiability of the transition probabilities, we find that the transition prob-

abilities can be determined by their derivatives at zero:

q(i, j) = lim
h→0

ph(i, j)

h
for j 6= i. (2.72)

The above defines the “jump rate” from i to j. If we know the rates, we are able to construct

the rest of the Markov process:

Let λi =
∑

j 6=i q(i, j) be the rate at which Xt leaves i, and assume 0 < λi < ∞. Let

r(i, j) = q(i,j)
λi

. This is the “probability that the chain goes to j when it leaves i,” [8].

We are now able to obtain the transition probabilities from the jump rates via the Kol-

mogorov equations:
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Using the backward equations, and that as h→ 0, t+ h→ t we can write:

pt+h(i, j) =
∑
k

ph(i, k)pt(k, j)

pt+h(i, j)− pt(i, j) =

[∑
k

ph(i, k)pt(k, j)

]
− pt(i, j)

=
∑
k 6=i

ph(i, k)pt(k, j) + ph(i, i)pt(i, j)− pt(i, j)

=
∑
k 6=i

ph(i, k)pt(k, j) + [ph(i, i)− 1]pt(i, j).

(2.73)

We are about to divide by h and take the limit, as in the previous cases. But first note

that, since by definition, q(i, j) = limh→0
ph(i,j)
h

, for i 6= j, and assuming we can interchange

the limit and the sum, we have

lim
h→0

1

h

∑
k 6=i

ph(i, k)pt(k, j) =
∑
k 6=i

q(i, k)pt(k, j). (2.74)

Also note that 1− ph(i, i) =
∑

k 6=i ph(i, k), so

lim
h→0

ph(i, i)− 1

h
= − lim

h→0

∑
k 6=i

ph(i, k)

h
= −

∑
k 6=i

q(i, k) = −λi.

Thus lim
h→0

∑
k 6=i

[ph(i, i)− 1] pt(i, j)

h
= −λipt(i, j).

(2.75)

Therefore, we have:

p′t(i, j) =
∑
k 6=i

q(i, k)pt(k, j)− λipt(i, j). (2.76)

Noticing that the right hand side can be written in matrix notation, we can define

Q(i, j) =


q(i, j), if i 6= j,

−λi, if i = j,

(2.77)
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and thus the right hand side of equation (2.77) can be written Qpt. We therefore can write

(2.77) as a matrix equation p′t = Qpt.

For the forward equations:

pt+h(i, j)− pt(i, j) =
∑
k

pt(i, k)ph(k, j)− pt(i, j) =

∑
k 6=j

pt(i, k)ph(k, j) + [ph(j, j)− 1]pt(i, j),

and p′t(i, j) =
∑
k 6=j

pt(i, k)q(k, j)− pt(i, j)λj,

or p′t = ptQ.

(2.78)

We now use this result to define the Q-matrix:

Definition. Let I be a countable set. A Q-matrix on I is a matrix Q = {q(i, j) : i, j,∈ I}

satisfying the following:

1) 0 6 −q(i, i) <∞ for all i;

2) q(i, j) > 0 for all i 6= j;

3)
∑

j∈I q(i, j) = 0 for all i.

As with usual differential equations, for finite Q-matrices, we can solve p′t = Qpt with

pt = eQt, where the matrix exponential is defined as follows:

eQt ≡
∞∑
n=0

(Qt)n

n!
=
∞∑
n=0

Qntn

n!
(2.79)

Assuming we can interchange summation and differentiation, we can check the solution:

d

dt
eQt =

∞∑
n=1

Qntn−1

(n− 1)!
=
∞∑
n=1

Q
Qn−1tn−1

(n− 1)!
= QeQt. (2.80)
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We can also see that ptQ = Qpt, because

QeQt =
∞∑
n=0

Q
(Qt)n

n!
=
∞∑
n=0

(Qt)n

n!
Q = eQtQ, (2.81)

(the only matrices being multiplied are powers of Q which commute).

The Q-matrix, for a finite state space, can be used to make some interesting connections,

which suggest the way that more advanced methods such as semigroups of operators may

become involved:

Theorem. Let Q be a matrix on a finite set I. Set pt = eQt. Then pt, t > 0, has the

following properties:

1) ps+t = pspt. This is the semigroup property.

2) pt, t > 0, is the unique solution of the forward equation p′t = ptQ, p0 = I, and the

backward equation p′t = Qpt, p0 = I.

3) For k = 0, 1, 2, . . . , we have
(
d
dt

)k∣∣∣
t=0

pt = Qk

Proof:

1) The matrices Qs and Qt commute, so eQseQt = eQ(s+t).

3) The matrix-valued power series pt =
∑∞

k=0
(Qt)k

k!
, for finite matrices, has an infinite

radius of convergence, so each component is differentiable by term-by-term differentiation:

(
d

dt

)k∣∣∣∣∣
t=0

pt =

(
d

dt

)k∣∣∣∣∣
t=0

eQt =
∞∑
n=1

Qntn−k

(n− k)!

∣∣∣∣∣
t=0

=

∞∑
n=1

QkQn−ktn−k

(n− k)!

∣∣∣∣∣
t=0

= QkeQt
∣∣
t=0

= Qk.

(2.82)

This also shows that pt satisfies the forward and backward equations, proving the first part

of (2).
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2) uniqueness: Suppose M(t) satisfies the forward equation. Then

d

dt

(
M(t)e−Qt

)
=

(
d

dt
M(t)

)
e−Qt +M(t)

(
d

dt
e−Qt

)
= M(t)Qe−Qt +M(t)(−Q)e−Qt = 0.

(2.83)

This means that M(t)e−Qt is a constant function. This is only possible if

M(t) = eQt = pt. (2.84)

Finally we have:

Theorem. A matrix Q on a finite set I is a Q-matrix if and only if pt = eQt is a stochastic

matrix for all t > 0.

For infinite, countable state space Markov processes, more advanced methods such as

measure theory and functional analysis are required to obtain similar results. Some of these

techniques and results are discussed in chapter 4.

We now consider limiting behavior for the general continuous-time Markov chain.

Limiting behavior

Because the exponential waiting times are random variables, we cannot have periodic be-

havior in continuous-time Markov chains. Therefore, the limiting distributions are easier to

discover. Again we have some similar definitions:

Definition. Irreducible- A continuous time Markov chain is irreducible if, for any two

states x and y, it is possible to go from x to y in a finite number of jumps.

Definition. Stationary distribution- Now we have πpt = π for all t > 0.

We can now state the following theorems:

44



Theorem. If a continuous-time Markov chain Xt is irreducible and has stationary distribu-

tion π, then

lim
t→∞

pt(i, j) = π(j). (2.85)

Furthermore, if rj is a function of the state space, and
∑

j |rj| <∞, then

as t→∞, 1

t

∫ t

0

r(Xs)ds −→
∑
y

π(y)r(y). (2.86)

Note, however, it is difficult to determine whether a particular distribution is stationary

because the equation must be checked for all t. Fortunately, we have another means of

checking using the Q-matrix, via the

Theorem. π is a stationary distribution if and only if πQ = 0.

Existence and Uniqueness:

The most general requirements for the existence of the above solutions, and also for our ability

to use the above definitions for the “jump rates” obtained via differentiation of the transition

probabilities, as well as those instances where orders of operations such as summation and

differentiation were interchanged, are obtained by more advanced techniques. The simplest

proof of a requirement for differentiability will be given in the chapter 4.

Because the definition of the forward equations requires a uniformity condition, it has

been argued that the forward equations are less connected to deeper properties of the system.

According to Feller, “It will be recalled that [the uniformity assumption] is of a purely

analytical character and was introduced only for convenience. . . Thus the backward equations

express probabilistically meaningful conditions and lead to interesting processes, but the

same cannot be said for the forward equations. This explains why the whole theory of

Markov processes must be based on the backward equations (or abstractly, on semi-groups

of transformations of functions rather than probability measures),” [13].
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Feller was able to provide a proof of the existence of minimal solutions for the backward

and forward systems. It was shown that there always exists a minimal solution,

p(τ,t)(i, j) 6 p(τ,t)(i, j), (2.87)

where p(τ,t)(i, j) is the minimal solution, and p(τ,t)(i, j) is any other solution satisfying both

systems of differential equations as well as the Chapman-Kolmogorov identity [13]. Notice

the presence of two time variables- this result is general and applies to processes which are

not time-homogeneous as well, in those cases the time position must be specified in addition

to the time step.

When the minimal solution is not “defective,” (when the total probabilities sum to one),

then it is the only probabilistically meaningful solution, because all other solutions will sum

to more than one, and cannot be used to define a probability function. In this case the

Markov process is uniquely determined by a solution to either system. Otherwise, there may

exist infinitely many Markov processes which satisfy the given backward equations [13].

2.5 Markov Processes in Continuous Time With Con-

tinuous State Space

When a stochastic process has a continuous state space, its possible realization may be con-

tinuous or discontinuous functions. A Markov process in continuous time, with a continuous

state space but for which almost all sample functions are discontinuous may still be called

a “jump process.” On the other hand, a diffusion is a Markov process in continuous time

but whose sample functions are continuous as well. The simplest type of diffusion process

is called the Weiner process, or Brownian motion. Terminology differs between the physics

community and the mathematical community, and sometimes within each of these as well.

In this section I will present some introductory definitions of diffusion processes, simply be-
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cause in the Kurtz theorem, as well as in an alternate expansion of the master equation in

the thermodynamic limit given by physicist N.G. van Kampen [51], the Markov chains are

found to converge in particular ways to diffusion processes, the means of which approach

the deterministic equations. Furthermore, alternate ways of modeling chemical and physi-

cal processes involve the use of the Fokker-Planck equation, which is a partial differential

equation for the transition probabilities of a Markov process that is usually assumed to be

a diffusion [15].

The mathematical condition for the existence of continuous sample paths was derived

by Gikhman and Skorohod [15]. It is sometimes referred to as the Lindeberg condition (for

Markov processes):

Theorem. With probability one, the sample paths of a Markov process are continuous

functions of t, if, for any ε > 0, we have

lim
∆t→0

1

t

∫
|x−z|>ε

dx p(x, t+ ∆t|z, t) = 0, (2.88)

uniformly in z, t, and ∆t.

This means that the probability for x to be different from z goes to zero faster than ∆t,

as ∆t goes to zero.

One dimensional Brownian motion, the simplest example of a diffusion, can be defined

by the following two assumptions [54]:

Definition. Brownian Motion:

1) For all δ > 0,

lim
s→0

P(|Xt+s −Xt| > δ)

s
= 0, (2.89)

2) Each increment is independent not only of the previous values (the Markov property),

but also of the current value of Xt, and the increments are time-homogeneous. This implies

that the increments Xt+s −Xt are normally distributed.
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Thus we see that Brownian motion is a process with independent increments, such that

for an interval of length t, the distribution µt of the increments is normal (mt, σ2t), where m

is an arbitrary constant. A general diffusion process is defined similarly, but the mean and

variance are no longer constant. They may depend on the time, the position, or both [53].

The mathematical definition of Brownian motion, or the Weiner process, and the associ-

ated extensions to general diffusions, induce a rich and complex mathematical theory. This

involves the definition of the Weiner measure, defining appropriate function spaces, and has

led to the formulation of the basis for stochastic integration and ergodic theory.
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Chapter 3

Modeling Natural Phenomena With

Stochastic Processes

3.1 Markovian descriptions in physical sciences

A chemical system can usually be described by a finite-dimensional vector corresponding to

quantities of essential constituents of the system [10]. Chemical kinetics describes the rates

of changes in the quantities of these vector components. The first mathematical descriptions

of chemical reactions were deterministic: systems of coupled differential equations. This

is know as the macroscopic approach. Of course, such a model assumes that the process

is continuous and completely predictable [7]. This description was based on an empirical

agreement between measured experimental changes in concentrations of compounds of in-

terest and formulas assumed to follow the law of mass action. The law of mass action is a

postulate in the phenomenological theory of chemical reaction kinetics, and as such, it is

not directly derivable from first principles of particle physics. However, it has been exper-

imentally validated consistently and repeatedly over the course of several centuries, and is

therefore accepted as an inherent property of chemical processes [10]. It states that the rate

of a reaction is proportional to products of powers of the concentrations of the reactants
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involved.

When the deterministic description becomes excessively complicated, such as in the de-

scription of the positions and momentums of a large number of gas particles, we have no

choice but to use a simplified model. Assuming a system can be described by some probability

distribution, and then connecting the averages of certain properties to mass phenomena, such

as diffusion, was such a solution. The introduction of the use of probability theory in physics

began for this exact reason– with the invention of statistical mechanics due to Gibbs and

Boltzmann, and the description of Brownian motion given by Einstein and Smolochowski—

in the beginning of the twentieth century. The mathematical description of Brownian motion

is the “oldest and best-known example” of a successful description of a physical process by a

Markov model [51]. The description can be created in two ways, using two time scales. On

the shortest time scale, velocity is Markovian (the velocity autocorrelation decays quickly).

On a much larger time scale, particle position can be assumed to be Markovian. Thus the

“same physical system can be described by two different Markov processes,” [51].

As an illustrative example, it is possible, given complete information about all of the

interacting forces involved in the toss of a die from a hand, that we could actually pre-

dict the exact result of the throw. However, it is obvious that this complete description

would be impossible, and even if it were not, the differential equations resulting from such

a description may be impossible to solve. Thus we have become accustomed to the use of

probability to describe the outcome of a roll of a die. We must be satisfied with a descrip-

tion of average aspects of the process. In studying physical processes that evolve in time,

probabilistic methods require the choice of a time interval such that very rapid phenomena

are averaged out, but overall change is still apparent. The existence of such an increment of

time is necessary for the use of the model. This is the “stochastic mesoscopic description.”

It is “semi-phenomenological,” in that the equations cannot in general be derived from ex-

act microscopic descriptions. But the mesoscopic description is more fine-grained than the

macroscopic description [51]. According to Keizer [26], chemical reaction systems separate
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into four time scales, each of which can be accurately described by a separate model. The

third time scale is of the order of the “chemical relaxation time.” The time scale for comple-

tion of a chemical reaction in gas phase is of the same order as the time scale for the collision

of two particles. This is the minimum time for the use of the discrete-space Markovian

description [15]. Keizer showed, for a first-order reaction, that the stochastic description is

not valid until this time scale has arrived. Furthermore, he demonstrated that the time-

homogeneous Markovian stochastic model can only be used for near-equilibrium phenomena

[26].

Another reason to use a probabilistic description is as an attempt to study inherent fluc-

tuations in the system. Deterministic models may be satisfactory as long as fluctuations from

macroscopic averages are negligible [10], but for very noisy systems, mass action descriptions

may fail. Highly fluctuating signals can be found in systems with small numbers of particles,

and in reactions that occur near instability points in the deterministic solution space. In

certain situations, the fluctuations provide important information, and accurately describing

their properties mathematically is highly desirable. A deep result know as the fluctuation-

dissipation theorem in statistical physics was discovered during the twentieth century. In

summary, it states that “dissipative processes leading to equilibrium are interconnected with

the fluctuations around the equilibrium point,” [10]. The microscopic fluctuations seem to

be intimately connected with the transport processes that describe mass phenomena, such

as diffusion: “fluctuations are the driving force of the [macroscopic] theory— constantly ex-

amining nearby states and testing them for stability. . . because of this intimate connection

between fluctuations and the dynamics, fluctuations simply cannot be ignored,” [26].

According to atomic and molecular theory, ultimately a change in a chemical population

is a discrete process. A truly fine-grained description of a chemical reaction would thus

necessarily be discrete in state space. Quantitatively, magnitudes of fluctuations of properties

of a chemical system about their average values have been estimated to have order
√
N , where

N is related to particle number. The ratio of fluctuations to the number of particles is then
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√
N
N

or 1√
N

. This is not much when N is large, but ratios like 25% are chemically significant,

as seen when N is small [7].

With the desire to model physical processes that occur over time with probability theory,

came the need for more robust mathematical descriptions of such random processes. The

creation of a random function for which time is a parameter, by the mathematical commu-

nity, was partially in response to this need in the physical sciences. As pointed out by B.V.

Gnedenko, such need and its resulting stimulus was highly adventitious to mathematics be-

cause it resulted in a rich, stand-alone branch of mathematics. Work initiated, of course, by

Kolmogorov, and additionally, Khintchine, Lévy, Lindeberg, and Feller, among others, for-

mulated the descriptions in terms of measure theory and functional analysis [19]. Gnedenko

elaborates:

“This theory serves as a beautiful example of the organic synthesis of mathemati-

cal and scientific thought, in which the mathematician, in mastering the physical

essence of the main problem of some science, finds a suitable mathematical lan-

guage in which to express it,” [19].

Chemical reactions can be modeled by discrete state space, continuous time Markov

chains or “Markovian jump processes.” The time evolution of the process is thus the time

evolution of the transition probabilities, described by the Kolmogorov equations. In chem-

istry and physics, these equations have come to be known as “the master equation,” [7,10,15,

17,47,51]. Important information to obtain from these models, in addition to quantification

of the fluctuation in terms of the mean and variance, includes qualitative insights, such as

can be obtained from studying the recurrence, stationarity, and ergodic properties of the

model [10].

The most important property of the model, however, is the correspondence of the mean

of the process, as a function of time, to the deterministic description, in the thermodynamic

limit. This is because the deterministic description is not only validated by extensive em-

pirical evidence, but because the truly microscopic physical description using the Liouville
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equation has been found to converge, in the thermodynamic limit, to the deterministic de-

scriptions, for certain systems, such as the ideal-gas at equilibrium, thus validating them

theoretically and providing consistency between the two models. Any other models must

therefore be consistent as well, to be considered valid [26,27,42].

3.1.1 Correspondence in mean

For certain specific stochastic models, the mean of the stochastic process is exactly the

solution to the differential equations of the deterministic model. In these situations, the

thermodynamic limit is not required. Initially, based on these types of results, it was thought

that taking the mean of the process would be sufficient for models of all chemical reactions.

Later, it was found that this was not the case.

Poisson Equations: a simple example

A zeroth-order reaction in chemistry, Aon surface −→ (products), which occurs in surface

reactions, can be modeled by the deterministic differential equation

d[A]

dt
= −k, (3.1)

whose solution is, of course, [A]t = [A]0 − kt, where [A] is the concentration of substance A,

[A]0 is the initial concentration, and [A]t is the concentration at time t. For the zeroth-order

reaction, the amount of product does not affect the reaction rate, as it can for other types

of reactions.

If we consider not the disappearance of some chemical species, but rather, its appearance

on the product side of the equation, we have, for the deterministic model with initial condition

[B]0 = 0, (where B is the product formed),

d[B]

dt
= k, [B]t = kt. (3.2)
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This type of system can also be modeled as a Poisson process, similar to the way particles

being emitted from radioactive disintegration have been modeled. For the Poisson process,

we know the mean is of the form λt, which corresponds in functional form to the deterministic

solution.

Birth-Death Equations

The Malthusian model for geometric population growth, presented in 1798, was a deter-

ministic model- a very simple differential equation [20]:

dN

dt
= λN, N(t) = N0e

λt, (3.3)

In 1924, Udny Yule created a stochastic model for populations of genetic variants that

resulted in formations of new species, under very simple assumptions [13, 56]. This model,

consisting of pure birth equations with linear rate functions, know as the Yule process, was

presented in chapter 2. However, here the correspondence in mean to the solution of the

Malthusian differential equation (3.3) is shown.

Correspondence in mean of the Yule process to the Malthusian model:

For an initial population of 1, our solution to the Yule process differential equation was

found in chapter 2 to be:

Pn(t) = e−λt(1− e−λt)n−1. (3.4)

This is a geometric distribution with parameter ρ = e−λt, and mean 1
ρ
, so

E[Pn(t)] =
1

e−λt
= eλt, (3.5)

which is the functional form of the solution of the Malthusian equation for an initial popu-

lation of one. For initial population N0 arbitrary, we found the generating function

gN0(s) =

[
se−λt

1− (1− e−λt)s

]N0

= ([1− (1− e−λt)s]−N0sN0)e−λtN0 . (3.6)
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To find the mean, we differentiate gN0(s) and set s = 1:

∂gN0s

∂s
= e−λtN0 [−N0[1−(1−e−λt)s]−(N0+1)[−(1−e−λt]+[1−(1−e−λt)s]−(N0(N0)s(N0−1) (3.7)

at s = 1:
∂gN0s

∂s

∣∣∣∣
s=1

= e−λtN0 [N0(eλt(N0+1))(1− e−λt) +N0e
λtN0 ] =

e−λtN0 [N0e
λt(N0+1) −N0e

λt(N0+1))e−λt +N0e
λtN0 ] =

N0[eλt − eλtN0e−λtN0 + eλtN0e−λtN0 ] = N0e
λt,

(3.8)

which is the functional form for the deterministic solution for an initial population of N0.

Note that to obtain exact correspondence of solutions, the same rate constants must be

used in both the deterministic equations and the stochastic ones (i.e. we would

have to have λ = k).

Why use the stochastic models for these types of population studies? Although the

means of the stochastic processes correspond to the solutions of the deterministic versions,

the fluctuations about the mean offer models of the possible variations from this mean,

which is not the case in the deterministic description. Because of this, it was thought

that the stochastic models were superior to the deterministic ones, as they could predict the

magnitude of the fluctuations, and this resulted in different estimates for potential population

values. Population sizes predicted from stochastic models can attain values not predicted in

the deterministic method, due to the fluctuations, which may be important from a practical

standpoint. Furthermore, there is no need to assume that the population was a continuous

variable: its discrete nature was more readily apparent in this model [20].

Use of birth-death equations in physics and chemistry

In 1937, Furry [14] used the same approach as Yule to model fluctuations in average

behaviors of atomic particles, such as those found in cosmic rays, and their effects on and

relationships to unusual phenomena such as rapidly multiplying particle “showers.” In 1953,
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Singer studied chemical reactions with a similar technique [45]. Some chemical reactions were

found to be irreproducible due to occurrence of fast sequences of rare events that cascade

to form an explosive but rare end-reaction. These events are attributed to fluctuations

around the average (deterministic) behavior of the process, and possible reliance on intense

sensitivity to initial conditions. Examples include the nucleation of crystal formation from

solutions. Singer used birth-death type Markov models of changes in particle numbers over

time, to obtain estimates of mean behavior as a function of time, thus attempting to quantify

fluctuations and deviations from deterministic models. He used approximate methods as

well as the method of generating functions to obtain some preliminary solutions for the

probabilities, for specific examples.

In 1958, Anthony Bartholomay, a chemistry student at Harvard, presented the potential

for using such models in chemistry in a more expounded, formal way, and demonstrated the

use of the Q-matrix decomposition as well as generating function techniques in this context

[2]. The rates for the Q matrix were assumed to be the same numbers as the rates obtained

from the deterministic models, and he obtained correspondence to the deterministic models

by taking the mean of the stochastic process after solving the Kolmogorov equations for the

transition probabilities using generating functions. Because the linear birth-death stochastic

model’s solutions corresponded in mean to the deterministic solution, he proposed that this

method could be used for studying fluctuations about average values of macroscopic models

in areas such as chemical kinetics.

Pure death model of the first order reaction

In a second article by Bartholomay, also from 1958, the above method was applied to a

simple unimolecular chemical reaction, and much like the classic example of Yule’s model,

correspondence between the mean and the deterministic solution was again obtained [3].

Bartholomay, like Singer, claimed that the fluctuations predicted and quantified by the

stochastic model were a more accurate description both of the time course of the process

and of the deterministic rate constant: he proposed a new method of calculating the rate
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constant, not by fitting a curve corresponding to the deterministic model to the experimental

data using least squares, but by fitting the stochastic model to calculations of experimental

fluctuations over intervals of time. The method, using maximum likelihood analysis, was

developed in the subsequent paper [4]. There, Bartholomay used maximum likelihood es-

timation and data from a time-series of concentration values for sucrose inversion, for two

different temperatures, to obtain the rate values. In both instances, his values agreed with

the deterministic, accepted values with high accuracy. He claimed that this method not

only provided an accurate mean value for the time-course of the process, but also provided

estimates of the fluctuation behavior via the variance about the mean as a function of time.

In 1963 a chemist named Donald McQuarrie expanded upon the Bartholomay technique

[38]. He was able to solve the Kolmogorov equations for some specific models of unimolecular

chemical reactions using generating functions and methods of cumulants. He considered

three types of reactions, including parallel reactions, and also obtained correspondence of

the stochastic means to the deterministic equations in each case. He, too, claimed that this

method will provide a more accurate and informative description of chemical equations and

could be used to describe small systems. McQuarrie had found an article in a Hungarian

journal by A. Rényi, in which, he stated, it had been proved that the “law of mass-action

(even for ideal systems) does not hold,” [38].

Here I present a simple example of the model of first order reaction that has now become

common in chemical kinetics textbooks:

For a first-order, unimolecular reaction such as A −→ B, we have:

d[A]

dt
= −kt, [A]t = [A]0e

−kt, (3.9)

57



for the deterministic model. The stochastic model is a “pure death” model, similar to the

pure birth model, but for which only “deaths” can occur:

dPn
dt

= −knPn(t), for n = n0,

dPn
dt

= k(n+ 1)Pn+1(t)− knPn(t), for n = 1, 2, . . . , n0 − 1,

(3.10)

with initial conditions:

Pn(0) =


1 n = n0

0 n 6= n0.

(3.11)

We have Pn0(t) = e−kn0t, and

dPn0−1

dt
= k(n0 − 1 + 1)e−kn0t − k(n0 − 1)Pn0−1(t) (3.12)

This equation can be solved iteratively, or with the use of generating functions. The solution

is:

Pn(t) =

(
n0

n

)
(e−kt)n(1− e−kt)n0−n, (3.13)

which is the binomial distribution with parameter ρ = e−kt, whose mean is known to be n0ρ,

or n0e
−kt. Again, the mean of the stochastic process has the same functional form as the

deterministic solution.

3.1.2 Bimolecular reactions and the failure of correspondence in

mean

In 1964, McQuarrie described various types of bimolecular reactions, A + B −→ products,

using the above methods. He obtained much more complicated differential equations for

the transition probabilities [40]. He nonetheless solved some of them, using Gegenbauer

polynomials, Legendre polynomials, and Jacobi polynomials, and approximated solutions

to other equations using various methods. This time, the mean values of the stochastic
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processes were not found to be the same functions as the deterministic equations used to

model the same processes:

deterministic:
d[A]

dt
= −k[A]2, solution: [A]t =

[A]0
1 + kt[A]0

stochastic: mean, 〈x〉 =

x0∑
n=2

(−An)Tn(t),where x0 is the number

of molecules of x, and

An =

(
1− 2n

2n

)[
Γ(x0 + 1)Γ(x0−n+1

2
)

Γ(x0 − n+ 1)Γ(x0+n+1
2

)

]
, Tn(t) = e−

1
2
kn(n−1)t

(3.14)

However, it was found that for increasing particle numbers, the mean values of the stochas-

tic solutions approached the values of the deterministic model in all cases studied [39, 40].

This result corresponded with the idea of the thermodynamic limit used in physics. Mc-

Quarrie stated that Rényi had in fact shown, that the unimolecular reaction models will

always correspond in mean to the deterministic models, using arguments about the implicit

assumptions of the independent random variables found in the models. Furthermore, he said

that Rényi had shown, using a similar argument, that the unimolecular reactions are the

only chemical reactions for which such correspondence can possibly hold [39].

Nevertheless, convergence in the thermodynamic limit was a promising result, even

though it had only been demonstrated for a few equations, and had not been proved. In-

creasing interest and use of such models in the chemical community was occurring at that

time. Perhaps it was hoped that other mathematical techniques could be found by which

to solve or better approximate solutions to the more complicated Kolmogorov equations for

chemical reactions beyond the simple ones already studied.

3.1.3 Convergence in mean in the thermodynamic limit

One of Kurtz’s few citations for his short article in the Journal of Chemical Physics, 1972, was

an article by Oppenheim, Shuler and Weiss, published in 1969 [42]. At that time, research
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into the use of stochastic models to describe chemical kinetics was over a decade old. The

Kolmogorov equations for the transition probabilities had become know as the “chemical

master equations.” The authors of this article discuss the required correspondence between

the mean of the stochastic description and the deterministic model, in the thermodynamic

limit.

They are able to show that, for two specific types of chemical reactions (described in a

more general way than previously), the mean does in fact converge, in the thermodynamic

limit, to the deterministic equation. The two reactions are the general bimolecular reac-

tion, and the general bimolecular reaction coupled with a unimolecular reaction. To obtain

convergence, authors use expansions of functions in power series and the introduction of

arbitrary parameters that assist in making approximations and taking limits. Additionally,

they make assumptions about the orders of certain terms, as is common in mathematical

physics. Using a series of approximations, rearrangements, and solutions of iterative equa-

tions involving the moments of the probabilities, the authors are able to show that that in

the thermodynamic limit, the smaller-order terms vanish, and convergence holds [42].

This paper paved the way for Kurtz’s more mathematically rigorous version in which he

showed that, using similar ideas, a system of equations of a much more general form but

similar description can also converge to the deterministic solution in the thermodynamic

limit.

3.2 The Kurtz Theorem

Using advanced mathematical methods, Kurtz was able to avoid the approximations and

assumptions used by Oppenheim, Shuler, and Weiss, and achieve a more rigorous proof, and

a more general result, for the convergence of certain types of discrete-state Markov processes

in the thermodynamic limit (where the particle number and the volume of the system goes to

infinity, but the ratio of the particle number to the volume— the density, or concentration—
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is held constant).

The Kurtz theorem can be proved in two ways. In his article in J. Chem. Phys. [36],

Kurtz gives three citations for where the proof can be found. The 1971 paper in the Journal

of Applied Probability uses martingale techniques [35]. The other citations, for Kurtz’s

1967 PhD thesis from Stanford University, entitled “Convergence of Operator Semigroups

with Applications to Markov Processes,” [31], and the 1970 paper from Journal of Applied

Probability, [34], use operator semigroup methods. The use of operator semigroups in the

study of Markov processes was an extension of the Hille, Yosida, and Phillips theory of

semigroups from functional analysis to probability spaces, and was developed heavily by

Dynkin and Feller [11,53]. It is a fusion of ideas and methods relating to dynamical systems

and potential theory, and operator theory. It was this approach that interested me the most,

especially because of the use of similar techniques in other areas of mathematical physics

such as quantum perturbation theory [51]. My presentation of his proof in the next chapter

will follow the semigroup approach.

3.2.1 The Kurtz theorem for chemical reactions- summary form

This section follows the exposition presented by Thomas G. Kurtz in his paper published in

the Journal of Chemical Physics, [36]. The system of chemical reactions modeled allows for

movement in both directions, i.e., the reactions are reversible. In this most general model,

any finite number of reactants can combine to form any finite number of products, and

similarly for the reverse reactions:



R1 = k1A1 + k2A2 + · · ·+ kkAk � j1B1 + j2B2 + · · ·+ jjBj

R2 = d1C1 + d2C2 + · · ·+ ddCd � g1D1 + g2D2 + · · ·+ ggDm

...

Rn = r1G1 + r2G2 + · · ·+ rrGr � s1H1 + s2H2 + · · ·+ ssDs

(3.15)
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Here the Rs represent each of the n reactions. On the left hand sides of the double arrows

are the reactants represented by capital letters, and their required numbers represented by

lowercase coefficients. On the right hand side of the arrows are the products. We can write

this more concisely in matrix form, where the matrix C = [(cnm)] contains the number of

molecules of the mth reactant required for the nth reaction, and D = [(dnm)] is the number

of molecules of the mth product formed in the nth reaction. Note: because the reactions

are reversible, the roles of “reactant” and “product” are reversed in the reverse reaction.

Thus [(dnm)] is also the number of molecules of the mth reactant required for the nth reverse

reaction. We let M represent the total number of chemical species involved in either direction

of the system, and N represent the total number of reactions. The Markov chain for this

sytsem can then be expressed by the random vector XV(t), representing the number of

molecules of each reactant present at time t, for a given volume V :

XV(t) = [XV
1 (t), XV

2 (t), . . . , XV
M ]. (3.16)

Thus XV(t) is a vector-valued Markov chain. We assume that the probability of x molecules

reacting in a short amount of time is proportional to (V x−1)−1 and the number of ways of

selecting the x molecules (this is the “combinatorial model”). Then the probability of the

nth reaction occurring in the forward direction during a short time ∆t is:

PnF (t+ ∆t) = αn(V cn−1)−1

[
M∏
m=1

(
im
cnm

)]
∆t, (3.17)

where im is the number of molecules of the mth reactant and αn is the rate constant for

reaction n in the forward direction. Note that im and the mth element of XV(t) are equal,

for a fixed t; im is introduced for ease of notation. The elements of XV(t) and thus the im

are nonnegative integers.

62



For the reverse reaction, we have

PnB(t+ ∆t) = βn(V dn−1)−1

[
M∏
m=1

(
im
dnm

)]
∆t, (3.18)

where βn is the reverse rate constant.

Using matrix notation, and letting YV(t) be the vector containing the number of times

each reaction has occurred in the forward direction, minus the number of times it has occurred

in the reverse direction by time t:

YV(t) = [Y V
1 (t), Y V

2 (t), . . . Y V
N (t)], (3.19)

we can also express the process by:

XV(t+ s) = XV(s) + [YV(t+ s)−YV(s)](D−C), (3.20)

which may provide a clearer description of certain systems, such as a single bimolecular

reversible reaction.

The expressions for the probabilities can be rewritten using the vector form as well:

PnF = V fVn (XV(t))∆t

PnB = V gVn (XV(t))∆t, where

fVn (XV(t)) ≡ αn

[
M∏
m=1

(V cnm)−1

(
im
cnm

)]
, and

gVn (XV(t)) ≡ βn

[
M∏
m=1

(V dnm)−1

(
im
dnm

)]
.

(3.21)

The system now is formulated like the general birth-death process introduced in chapter

2, where V fVn and V gVn are equivalent to the λn and µn rates which were allowed to be

functions of species number. What Kurtz has added to the model, which was not used by
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Bartholomay or McQuarrie, is explicit inclusion of the volume of the system, as well as its

inverse proportionality to the reactions’ occurrences, in the expression for the probabilities

[36].

Two additional functions are now introduced. For some nonnegative-integer-valued vector

X = [X1, X2, . . . , Xm], define

fn(X) ≡ αn

M∏
m=1

xcnmm

cnm!
, and

gn(X) ≡ βn

M∏
m=1

xdnmm

dnm!
.

(3.22)

Then fn(V −1XV(t)) is the usual deterministic model of chemical kinetics for the forward

reaction n, using the law of mass action, as in equation (3.14), and gn(V −1XV(t)) is the

same for the reverse reaction.

We have that

fVn (XV(t)) = fn(V −1XV(t)) +O(V −1), and

gVn (XV(t)) = gn(V −1XV(t)) +O(V −1),

(3.23)

where if g = O(f), then as x → ∞, g(x) 6 M |f(x)|, for some positive constant M . In the

above case, as V →∞, the function goes to zero, so as the volume becomes very large, the

last terms in both equations of (3.23) go to zero and equality is established between fVn and

fn and also for gVn and gn.

This is far from enough to prove convergence in mean in the thermodynamic limit of the

two models, however. If we define

F V
m (XV(t)) =

N∑
n=1

(dnm − cnm)[fVn (XV(t))− gVn (XV(t))], and

FV(XV(t)) = [F V
1 (XV(t)), . . . , F V

m (XV(t))],

(3.24)

we now have the Kolmogorov equations for the probability functions governing XV(t), the
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numbers of each of the m reactants at time t. Next, define

Fm(X) =
N∑
n=1

(dnm − cnm)[fn(X)− gn(X)], and

F(X) = [F1(X), . . . , Fm(X)].

(3.25)

What Kurtz proved, using advanced methods, was the following [36]:

Theorem. Let X(t,x0) be the solution of the initial value problem

∂X(t,x0)

∂t
= F(X(t,x0)), X(0,x0) = x0. (3.26)

Then, if lim
V→∞

V −1XV(0) = x0,

we have that lim
V→∞

P
{

sup
s6t
|V −1XV(s)−X(s,x0)| > ε

}
= 0,

for every t and ε > 0.

(3.27)

In order to prove this theorem, Kurtz uses the “convergence of generators” of Markov

processes, to establish “weak convergence,” or a type of convergence in distribution, of a

sequence of Markov processes to the required deterministic description. This can be done in

several ways: in Kurtz’s thesis, it was done directly, but required a number of preliminary

theorems and lemmas [31]. In later publications, Kurtz accomplishes the same result in a

more concise, elegant way, first proving convergence of the model to a Brownian motion,

[32]. In the infinite volume limit, it can be shown that this process then converges to the

solution of the differential equations that is the deterministic model.

The operator semigroup technique uses the idea that, if X is a time-homogeneous Markov

process, then the expectation of an appropriate function of X defines a semigroup of opera-

tors:

E[f(X(t))|X(0) = x] = T (t)f(x), (3.28)

Therefore, convergence theorems for semigroups can be applied to sequences of the Markov
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processes. H.F. Trotter proved several important results on this type of convergence in the

general semigroup setting, and Kurtz was able to extend some of these results so that they

became applicable in the context of these types of stochastic processes [32]. In chapter

5, I provide an introduction to semigroup methods and their use in probability theory, in

addition to other advanced topics. But first, it is important to discuss the impact of the

above theorem and the applicability of this type of model to the physical sciences.

3.2.2 Importance and usefulness of the theorem

Kurtz’s result contributed significantly to theoretical and computational chemistry and

physics. Besides confirming the validity of an experimental technique which was already

being applied, and generalizing the allowable description, it was the final missing link in the

connection between several different methods of modeling molecular processes at the “meso-

scopic” level. This link allowed for consistency and interchange between Fokker-Planck-

type, Langevin-type, and master equation-type descriptions. Connections had been made by

Keizer and others between Fokker-Planck equations and Langevin-type descriptions. Kurtz’s

addition of a connection between master equations and the Fokker-Planck method unified

all of the modeling schemes in the thermodynamic limit and connected them all to the

deterministic model’s results [26].

Moreover, it validates the use of computationally easier techniques which otherwise would

stand on a less rigorous platform. Two important such techniques are the van Kampen

expansion of the master equation, and the Gillespie simulation algorithm. Finally, it gave

the most rigorously derived mathematical description of the distribution of the fluctuations

about the mean of the birth-death model in the thermodynamic limit, which were found to

be described by a Gaussian, non-Markovian stochastic process.

For physical systems that consist of discrete particles, the use of jump processes as models

is highly preferred. Here the fluctuations are not added onto the deterministic equations as

an arbitrary, unrelated noise term, such as is done in the Langevin descriptions, but are
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an essential part of the inherent description of the process. Thus the mean values of the

stochastic process correspond to the deterministic part, and the fluctuations about the mean

as the additional noise [15]. For this reason the use of master equations as a starting point

is desired, however, convergence in mean to the deterministic model is essential.

Unfortunately, as was seen in McQuarrie’s attempts to solve some of the more complicated

master equations for bimolecular reactions, solutions to the Kolmogorov equations may be

very difficult to obtain. In fact, “only in rare cases is it possible to solve the master equation

explicitly,” [51]. A more computationally promising technique is the van Kampen expansion

of the master equation. This was developed in the seventies by physicist N.G. van Kampen.

Expansion of the master equation starts with the assumption that the mean of the process

corresponds to the deterministic equations. Then the master equation is expanded using

the introduction of a parameter that generally corresponds to the system volume as done in

Kurtz’s method. One obtains a Fokker-Planck equation for which the mean and the variance

can be calculated. The Fokker-Planck equation is the forward Kolmogorov equation for a

type of diffusion process (continuous state, continuous time), but is simpler to solve for

important properties like the mean and variance than the associated Kolmogorov equations

[51]. This Fokker Planck equation describes a diffusion process equivalent to that found by

Kurtz in his proof.

When the Fokker-Planck equation is used, the mathematical description is separable

into a deterministic part and a fluctuating part, and when this Fokker-Planck equation

has been derived via an expansion of the master equation, the fluctuating parts coefficients

are provided by the initial master equation. Thus it is a more preferable description of

discrete processes than a Langevin-based description. Furthermore, it is often possible to

write down the appropriate Fokker Planck equation corresponding to an expanded master

equation without ever expressing the master equation itself [15]. Thus the van Kampen

method can allow for reduced computational difficulty, but maintains a connection with the

original model, and allows for a description of fluctuations. Without Kurtz’s theorem, the
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initial assumption of correspondence used by van Kampen would be questionable.

Kurtz’s mathematical methods, used in his article and his thesis, could also be used for

specific cases, in a similar type of expansion leading to a Fokker-Planck equation. Kurtz’s

results are the “most general results on the asymptotic form of the solutions of master

equations,” and his theorem “applies to a broad class of sequences of jump processes,”

[26]. Furthermore, van Kampen’s method is considered less rigorous [15, 26]. However,

for physicists, the van Kampen method is less challenging, more familiar, and thus more

immediate. For practical purposes, the van Kampen expansion method is equivalent to

the Kurtz method: “In terms of quantities that can be calculated and measured, means,

variances, etc., Kurtz’s apparently stronger result is equivalent to van Kampen’s system size

expansion,” [15].

The Gillespie algorithm was presented by physicist Daniel T. Gillespie in 1976 as a way

to create a computational simulation of a Markovian birth-death process using the Q-matrix

and randomly generated exponential holding times [16]. Using rates from the deterministic

model, one can then create a simulated process whose mean and variance can be directly

calculated, as opposed to analytically solving the Kolmogorov equations. Obviously, the use

of these rates relies on the correspondence proved by Kurtz. The Gillespie algorithm has

been used in many scientific applications from chemistry to biology [17,50].

3.3 Accuracy of the Model

The Kurtz theorem showed that if a chemical system can be described by a certain type

of birth-death stochastic process, under specific initial conditions, the description can cor-

respond to the deterministic model. The next question for the physical scientist is whether

the “combinatorial,” mesoscopic model is appropriate and correct for a chemical reaction.

Finally, under what conditions can this model be used, and what are the limitations?

Oppenheim, Shuler and Weiss in their 1969 article investigated the validity of the linear
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birth-death model from a rigorous physical perspective. They concluded that such a model

may be too over-simplified to be a truly accurate description of the interaction of particles in a

chemical reactions. The most accurate description of the physical system would be a complete

Liouville equation for the interacting particles, which includes correlations between all of the

particles. The authors state that in the case of a dilute gas system, the Liouville equation

description does converge, in the thermodynamic limit, to the “stochastic version of the

Boltzmann equation in the limit N →∞,” wherein all transition probabilities factorize (i.e.

the variables become independent). This implies the deterministic description. Therefore,

in this same limit, the Markovian stochastic description of the same gas-phase processes

must converge to the deterministic description to be valid. However, the authors state

that although this condition is necessary, “it is by no means a sufficient one,” in that the

Markovian description may still not accurately describe the fluctuations and the process

itself outside of the thermodynamic limit.

The use of the Markovian description outside the thermodynamic limit was one of the

reasons it was so actively developed by chemists: they wished to model systems with small

particle numbers and predict the fluctuations that would occur in such systems. A com-

plete Liouville description of a chemical system with an Avogadro’s number of particles is

intractable, thus it is not readily possible to prove the sufficiency condition- that a stochastic

process that converges to the correct deterministic model is the correct mesoscopic model of

a particular microscopic phenomenon. “The Markov character of the chemical process rep-

resented by the component vector has not been derived from microscopic models. Therefore

Markovicity is not more (and of course not less) than a plausible assumption,” [10].

The plausibility of the assumption has been addressed in some detail. Gillespie has shown

[18] that for a “gas-phase system that is kept well stirred and in thermal equilibrium,”

the combinatorial stochastic model of a chemical reaction, and the resulting Kolmogorov

equations that have become known as the chemical master equations are in fact derivable

from a fairly rigorous physical description. Starting with the physical assumptions that
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the chemical reaction occurs as a result of the collision of individual molecules of reactant

species, and that the system is well stirred and in thermal equilibrium, Gillespie explains

that it follows that the density of particles can be considered as spatially homogeneous,

and therefore that the probability of finding a molecule in any subregion of the system is

expressible using the uniform distribution. Furthermore, the velocities of the particles can

be assumed to have the Maxwell-Boltzmann distribution, which is equivalent to a normal

distribution. From this, and considering the molecules as spheres with a “reactive core,”

and using other physically plausible assumptions, Gillespie is able to justify the use of the

time-homogeneous Markov model, the use of linear intensities that are scalar functions of

only the number of particles and are independent of time, and the assumption that certain

terms are o(h), as required in the theory [18].

The above assumptions fail in chemical reactions such as enzyme reactions. In such

reactions, a complex surface has to interact with another complex surface in intricate ways,

therefore the reaction would not be accurately described by the model of reactant species

as hard spheres colliding [10]. However, in recent years the use of the birth-death model

for reactions and its subsequent chemical master equation has been applied successfully to

noise in gene expression. The gene expression process involves many enzyme interactions,

with other enzymes, and with other molecules having highly specific, complicated three-

dimensional interaction surfaces [50]. It is therefore possible that to provide a course-grained

approximation of a molecular process that is more detailed than the macroscopic model, a

Markovian assumption and a combinatorial model is adequate. Stochastic theory, despite

objections as to rigor, can often provide a “first order approximation” that can be satisfactory

in many situations [7].

In fact, on the physical level, no process is truly Markovian. Under the appropriate

description and conditions, however, it can be successfully modeled as such: “The art of the

physicist is to find those variables that are needed to make the description (approximately)

Markovian,” [51]. For instance, in the Fokker-Planck and Langevin models, a process is
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often assumed to have a continuous sample path, and is modeled as a diffusion, for ease

of computation. For a physical particle, if one were to focus on the particle’s motion on

a fine enough scale to see continuous sample paths, the process would most likely not be

Markovian. The forces affecting the particle in the past would have some effect on the

particle’s current state on such a time scale. Thus a particle with a Markovian distribution

and a continuous sample path does not exist physically. On the other hand, such continuous

state-space processes exist mathematically, and are often convenient to use, and when they

provide an adequate approximate description of a process, they can be used effectively [15].

As for the thermodynamic limit, and the assumption that the number of particles as

well as the volume are infinite, it seems that for usual experimental conditions with finite

quantities of substances, this assumption is still appropriate. The difference between such

important values as the free energy density, evaluated for a system with Avogadro’s number

of particles, and a system with an infinite number, is “smaller than experimental error,” [48].

Practically, for many common experimental conditions the number of particles and volume

can effectively be considered infinite.
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Chapter 4

Advanced methods

4.1 General continuous-time Markov chains:

differentiability and existence

We saw that even for simple processes such as the birth-death process, the assumptions about

o(h) and differentiability, required for the forward Kolmogorov equations, did not follow

directly from the postulates defining the process, but required additional conditions. For

the general continuous-time Markov chain with time-homogeneous transition probabilities,

advanced techniques are required to prove differentiability properties. What has been shown

via these methods is the following [25]:

Theorem. Let Xt be a continuous-time, discrete-state Markov process with transition prob-

abilities pt(i, j) = P{Xt+s = j|Xs = i}. In addition to the usual assumptions on pt(i, j):

1) pt(i, j) > 0,

2)
∑

j pt(i, j) = 1,

3)
∑

k pt(i, k)ph(k, j) = pt+h(i, j), t, h > 0,

we also assume that:

4) the pt(i, j) are continuous for t > 0, and
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5)limt→0 pt(i, j) =


1 i = j

0 i 6= j.

This type of transition probability function is called “standard,” and with these condi-

tions, it turns out that the pt(i, j) are differentiable for every t > 0. [25]. The proof of this

is quite involved, even for the simplest case that the pt(i, j) are differentiable at t = 0.

Recall that we formally defined the derivatives of the pt(i, j) at zero as

q(i, j) = lim
h→0

ph(i, j)

h
for j 6= i, (4.1)

and

−λi = −
∑
j 6=i

q(i, j) = lim
h→0

ph(i, i)− 1

h
, (4.2)

in chapter 2, and also assumed that λi < ∞, for all i. These definitions are describ-

ing a continuous time Markov chain that is called “conservative.” Generally, as long as

the Markov process satisfies the above differentiability conditions, we have that q(i, j) =

limh→0
ph(i,j)
h

for j 6= i, and −λi = limh→0
ph(i,i)−1

h
, but not necessarily the remaining assump-

tions. With the differentiability conditions satisfied, we always have, for every i and j, j 6= i,

q(i, j) = limh→0
ph(i,j)
h

exists and is finite. However, we may have that limh→0
ph(i,i)−1

h
= −λi

exists but λi is infinite. Furthermore, we do not necessarily have λi =
∑

j 6=i q(i, j). For a

conservative process, we know that any Markov chain associated with the q(i, j) must at

least satisfy the backward equations. On the other hand, if λi =
∑

j 6=i q(i, j) for all i, but λi

is not necessarily finite, we know that we either have a unique Markov process, or an infinite

number of them. If we only have that
∑

j 6=i q(i, j) 6 λi for all i, any attempts at results

classifying the process and its associated infinitesimal Q-matrix become very complicated.

For a conservative process, it can be rigorously proved that there is a unique minimal

process that can be constructed using the Q-matrix and exponential holding times: the

holding times are exponentially distributed with parameter λi. This result is crucial for the
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use of the Gillespie simulation algorithm. This proof requires a separability assumption for

the process. Finding the actual minimal transition probability function requires “rather deep

measure theory methods,” [25].

A state i for which 0 6 λi < ∞ is called stable. A state i for which λi = ∞ is called

an instantaneous state. A continuous time Markov chain can be constructed with only

instantaneous states. This leads to problems involving pathological processes whose sample

paths may be difficult to determine.

Rigorous results about existence and types of solutions to the Kolmogorov equations

almost always involve the use of the strong Markov property. For a discrete time Markov

chain, the strong Markov property was uncomplicated. However, for the continuous time

case, the strong Markov property “cannot properly be understood without measure theory,”

[41]. Furthermore, in the continuous time case, there exist Markov processes that are not

strong Markov [25]. Recall that the strong Markov property requires that, for any stopping

time σ, (σ is a random variable), the probability distribution of

Xt1+σ, Xt2+σ, . . . Xtk+σ, (t1 < t2 < · · · < tk), (4.3)

given Xs, s 6 σ and Xσ = x, is identical with the probability distribution of

Xt1 , Xt2 , . . . Xtk , (t1 < t2 < · · · < tk), (4.4)

given X0 = x. This is “not a direct consequence of the statement of the Markov property

since the original formulation requires fixed times,” [25].

Fortunately, using advanced methods, it has been proved that “any continuous time,

conservative Markov chain with only stable states is strong Markov,” [25]. This is very

important for the use of renewal relations that can help to describe long-term behavior of

the stochastic process. Furthermore, “almost all continuous time Markov chains arising in

applications have only stable states,” [25].
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It is clear from the above exposition that without measure theoretic probability and pos-

sibly, techniques from other advanced fields such as functional analysis, further development

of the theory of stochastic processes from a rigorous perspective is impossible. I now present

an introduction to these advanced methods, which help to provide a clearer idea about the

way that Kurtz proved his theorem.

4.2 Measure Theory and Probability

This section follows Rosenthal [43], Norris [41], Gray [22], Skorokhod [46], and Varadhan

[52,53].

4.2.1 Measure theoretic probability basics

Probability was placed in an axiomatic setting by work pioneered by Kolmogorov in the

1930s. Using the concepts of countably additive measures on sigma-algebras, it became

possible to determine exactly what types of questions could be answered by probability

theory and remain consistent with the axioms. For instance, the question about what types

of sets of events could be assigned a probability was answered. Not all sets can be assigned

a probability measure, as is seen from the Vitali construction of non-measurable sets; some

subsets of an event space cannot be understood in terms of a probability measure. The sets

to which a probability measure can be assigned are the sigma-algebra of subsets of a given

event space.

Besides placing probability theory on a firm axiomatic footing, measure theoretic proba-

bility, or modern probability theory, unifies the notions of discrete and continuous probabil-

ity distributions, and allows for mixed distributions containing both discrete and continuous

parts, as integration theory does not make the artificial distinction between the two. Fur-

thermore, modern probability theory allows for the computation of quantities such as the

expectation of random variables which may not be Riemann integrable, but are Lebesgue
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integrable. Thus measure theory extends the applicability of probability theory.

In the following sections, I assume familiarity with basic measure and integration theory,

but not measure-theoretic probability theory. We begin by defining a probability space,

similar to a measure space, but normalized to [0,1] as is required for probabilities:

Definition. A probability space, or probability triple, is a triple (Ω,Σ,P), where:

1) Ω is the sample space, or any non-empty set of points representing “outcomes,”

2) Σ is a σ-algebra of Ω, consisting of sets of points of Ω called “events,”

3) P is a “probability measure,” which is a countably additive mapping from Σ to [0,1],

with P(Ø) = 0 and P(Ω) = 1.

Recall that a σ-algebra is a collection of all measurable sets of Ω with respect to the

measure P, contains Ø and Ω, and is closed under formation of complements, countable

unions, and countable intersections. It also follows that if A ⊆ B, then P(A) 6 P(B) (the

monotonicity property).

The Lebesgue measure on [0,1] is constructed using the Carethéodory Extension theorem

as is done in general introductory measure theory. Recall that this is accomplished via

the extension of a countably additive probability measure on an algebra of sets, such as

that generated by the set of all open intervals on [0,1], using the definition of the outer

measure P∗, to all sets in the space, and then by defining the σ-algebra of measurable

sets with respect to this measure, M, as consisting of all sets E whose outer measure

P∗(A) = P∗(A∩E)+P∗(A∩Ec) for any set A ⊂ [0, 1]. In terms of probability, this measure,

also known as the Lebesgue measure on [0,1], is the same as the uniform distribution on

[0,1].

In probability theory, we often do not wish to use the entire set M as our σ-algebra

of measurable sets. This is because M is much bigger than B, the Borel sets, or Borel σ-

algebra, the σ-algebra generated by the intervals. However, although B ⊆M, the Lebesgue

measure restricted to B is not complete. By complete we mean that all subsets of sets having

measure zero are measurable and also have measure zero. Because we often would like to
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use B as our σ-algebra, we can define a measure that completes our space, or exclude those

problematic subsets from being considered as “events.” See Gray [22] for further details.

Complete measures are important in defining uniqueness properties of random variables.

The distribution function:

Consider a class of subsets of the real numbers, J = {Ia,b : −∞ 6 a < b 6 ∞} where

Ia,b = {x : a < x 6 b} if b < ∞, and Ia,∞ = {x : a < x < ∞}, or the collection of intervals

that are left-open and right-closed. The class of sets of finite, disjoint unions of members of

J is an algebra, call it F , if the empty set is added. The Borel σ-algebra on the real line is

the σ-algebra generated by F . If we define a nondecreasing function F (x) on the real line

that satisfies limx→−∞ F (x) = 0 and limx→∞ F (x) = 1, and define P(Ia,b) = F (b)− F (a) for

intervals, then extending this measure to be finitely additive on F by taking sums, we can

then attain the following relation:

Theorem. P is countably additive on F if and only if F (x) is a right-continuous function

of x. Therefore, for each right-continuous, nondecreasing function F (x) with F (−∞) = 0

and F (∞) = 1, there is a unique probability measure P on the Borel subsets of the line such

that F (x) = P(I−∞,x). Conversely, every countably additive probability measure P on the

Borel subsets of the real line comes from some F . The correspondence between P and F is

one-to-one.

The function F is called the distribution function corresponding to the probability mea-

sure P.

Definition. A random variable is a measurable function: given a probability triple

(Ω,Σ,P), it is a map f(ω) : Ω→ R, ω ∈ Ω, such that for every Borel set B ⊂ R, f−1(B) =

{ω : f(ω) ∈ B} is a measurable subset of Ω : f−1(B) ∈ Σ.

Integration is built up from definitions using simple functions, then nonnegative functions,

up to arbitrary measurable functions, with respect to the probability measure P, just as in
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basic integration theory, to derive the Lebesgue integral. The expectation of a random

variable, if it is integrable, is defined as its Lebesgue integral:

E[X] =

∫
X(ω)dP (4.5)

Important theorems such as the Bounded Convergence Theorem, Dominated Convergence

Theorem, Monotone Convergence Theorem and Fatou’s Lemma transfer exactly. Some ter-

minology is often used in the case of convergence in the probability setting that replaces the

usual terminology:

1) Almost sure convergence (a.s.): equivalent to convergence almost everywhere (a.e.),

2) Convergence in probability: equivalent to convergence in measure,

3) Infinitely often (i.o.) and almost always (a.a.): given a sequence of events An ∈

Σ, {An i.o.} is equivalent to lim supnAn, and {An a.a.} to lim infnAn.

When the underlying probability triple is complete, if X is a random variable, and Y :

Ω→ R, such that P(X = Y ) = 1, then Y is also a random variable.

Given a random variable X on a probability triple (Ω,Σ,P), its distribution is the

probability measure induced on (R,B), i.e. it is the function µ defined on B, the Borel sets

on R, such that

µ(B) = P(X−1(B)), B ∈ B. (4.6)

If µ is the distribution of some random variable, then (R,B, µ) is a valid probability triple. As

in elementary probability theory, we have the result that distributions of a random variables

completely specify their expected values, and those of functions of the random variables. In

measure theoretic probability theory this is proved via the

Theorem. (Change of Variables): Given a probability triple (Ω,Σ,P), let X be a random

variable having distribution µ. Then for any Borel-measurable function f : R→ R, we have

∫
Ω

f(X(ω))P(dω) =

∫ ∞
−∞

f(t)µ(dt), (4.7)
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provided that each side is well-defined. In other words, the expectation of the random

variable f(X) with respect to the probability measure P on Ω is equal to the expectation of

the function f with respect to the measure µ on R.

Proof:

If f = 1B is the indicator function of a Borel set B ⊆ R, the claim in equation (4.7) is just

the definition of measurability and the induced measure. By linearity, the claim extends

to simple functions, and by uniform limits to bounded measurable functions. Then using

monotone limits, we extend the claim to nonnegative functions, and then considering positive

and negative parts of general measurable functions separately, we are done.

The distribution function induced on B is the function

F (x) = µ((−∞, x]) = P[ω : X(ω 6 x)]. (4.8)

The above results can be extended to the more general case of vector-valued random vari-

ables.

The following section introduces an important idea involved in the convergence of se-

quences of probability distributions. In fact, it is this notion upon which the methods

relating to the Kurtz theorem is based. Additionally, it is required for a precise statement

and proof of the Central Limit Theorem.

4.2.2 Weak convergence

Weak convergence is a way to establish a type of “distance” between probability distribu-

tions, in the sense that if two probability measures are “close,” they should assign similar

probabilities to the same sets. There are several ways to define weak convergence, and a

classic theorem connects the definitions. We must note, however, that any notion of weak

convergence implicitly uses aspects of the underlying topology of the space being studied.
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We will see later in this chapter that the most general setting for the more interesting aspects

of probability theory, including analysis of stochastic processes, involves a metric space in

addition to a measure.

Definition. Weak convergence 1: A sequence µn of probability distributions on R is said

to converge weakly to a probability distribution µ if limn→∞ µn[I] = µ[I] for any interval

I = [a, b] such that the single-point sets a and b have probability 0 under µ.

This is the most basic definition, yet the very idea of a closed interval, in the more general

setting, involves the idea of some type of distance between elements of the space. The next

definition also implicitly uses topological notions as it involves the continuous functions:

Definition. Weak convergence 2: A sequence µn of probability distributions on R is said

to converge weakly to a probability distribution µ if
∫
R fdµn →

∫
R fdµ, for all bounded,

continuous functions f : R→ R.

The reason that the topological connections are pointed out in the above definitions is

that the idea of weak convergence, and especially definition 2, corresponds to the weak*

topology from functional analysis, with the function space being the set of all continuous

functions on R vanishing at infinity, with norm defined by ||f || = supx∈R |f(x)|, and with

dual space consisting of all finite signed Borel measures on R. This topology is used often

by Dynkin and by Kurtz in establishing some of their results using operator semigroups on

probability function spaces. The next definition is stated with respect to the distribution

functions:

Definition. Weak convergence 3: A sequence µn of probability distributions on R with

distribution functions Fn(x) is said to converge weakly to a probability distribution µ with

distribution function F (x) if limn→∞ Fn(x) = F (x) for every x that is a continuity point of

F .

If µn converges weakly to µ, we often write µn ⇒ µ, and sometimes µn
w→ µ. The above
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definitions are equivalent, and additionally, there are several other statements that can be

shown to be equivalent as well. I give two of these below:

Definition. Weak convergence 4: µn ⇒ µ if there are random variables Y, Y1, Y2, . . .

defined jointly on some probability triple, with the distribution of Y = µ, and the distribution

of Yn = µn for each n ∈ N, such that as n→∞, Yn → Y with probability 1.

Definition. Weak convergence 5: (Recall that the boundary of a set A ⊆ R is ∂A =

{x ∈ R : ∀ ε > 0, A ∩ (x− ε, x+ ε) 6= Ø, Ac ∩ (x− ε, x+ ε) 6= Ø}). µn ⇒ µ if µn(A)→ µ(A)

for all measurable sets A such that µ(∂A) = 0.

Connections to other types of convergence:

Proposition. If {Xn} → X in probability, then the distributions of the Xn converge weakly

to the distribution of X.

Proposition. Suppose the distributions of Xn converge weakly to the distribution of X,

with Xn > 0. Then E(X) 6 lim inf(E(Xn)).

Proof:

By definition 4 above, we can find random variable Yn and Y with distribution of Yn =

distribution of Xn for each n, distribution of Y = the distribution of X, and Yn → Y with

probability 1. Then, using Fatou’s Lemma,

E(X) = E(Y ) = E(lim inf Yn) 6 lim inf(E(Yn)) = lim inf(E(Xn)) (4.9)

4.2.3 Independence

Definition. Two events A and B are independent if P(A ∪B) = P(A)P(B).

Two random variables X, Y are independent if for any two Borel sets S1, S2 on R,

P(X−1(S1) ∩ Y −1(S2)) = P(X−1(S1))P(X−1(S2)).
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A finite collection of random variables, {Xj : 1 6 j 6 n} is said to be independent if for

any n Borel sets A1, A2, . . . An on R,

P

[ ⋂
16j6n

[Xj ∈ Aj]

]
=
∏

16j6n

P[Xj ∈ Aj]. (4.10)

An infinite collection of random variables is independent if every finite subcollection is

independent.

Given two sets Ω1,Ω2, the Cartesian product Ω = Ω1 × Ω2 is the set of pairs (ω1, ω2)

with ω1 ∈ Ω1 and ω2 ∈ Ω2. F is the field of finite disjoint measurable “rectangles” formed

by the product of a set from each σ-algebra associated to Ω1,Ω2. The product σ-algebra

is the σ-algebra generated by F . The product measure is created by extension from the

measure of a rectangle P(A1 × A2) = P1(A1)P2(A2) to a countably additive measure on the

σ-algebra generated by F .

Proposition. Two random variables X, Y defined on (Ω,Σ,P) are independent if and only

if the measure induced on R2 by (X, Y ) is the product measure µ1 × µ2, where µ1 and µ2

are the distributions on R induced by X and Y , respectively.

Existence of sequences of independent random variables:

The most basic types of stochastic processes can be built up from sums of outcomes of

sequences of independent events, for instance, gambling games such as sequences of coin

tosses. Furthermore, ideas such as a stochastic process with independent increments, and the

strong Markov property, requires the existence of sequences of independent random variables.

The problem with existence is such: how do we know that there exists a probability measure

on the space of all sequences of random variables, each with a specified distribution, and

that this space is consistent with all projections onto finite dimensional spaces of sequences?

The proof of this is provided by the Kolmogorov Consistency Theorem. It also provides

the conditions for the existence of stochastic processes in general, and defines the type of
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“questions” that can be answered about a process probabilistically. The theorem is presented

in the section on stochastic processes later in this chapter, but a version is given here. First,

we construct a measure Pn on Rn, for every n, that is the joint distribution of the first

n random variables, using the construction of product measures described above. These

measures are consistent, in that if the spaces Rn+1 are projected onto Rn, the measures on

the projections are Pn. This is one way to define a consistent family of finite-dimensional

distributions.

Let Ω be the space of all real sequences, R∞, and the Σ be the σ-field generated by the

field of finite-dimensional cylinder sets, B = {ω : (x2, x2, . . . , xn) ∈ A}, for all A ∈ B(Rn)

and all n ∈ N.

Theorem. The Kolmogorov Consistency Theorem, version 1: Given a consistent family of

finite-dimensional distributions Pn, there exists a unique P on (Ω,Σ) such that for every n,

under the natural projection πn(ω) = (x1, x2, . . . , xn), the induced measure P(π−1
n ) = Pn on

Rn.

Finite dimensional distributions and the Kolmogorov Consistency Theorem can also be

expressed using the idea of π-systems and λ-systems:

Definition. π-system: Let Ω be a set. A π-system A on Ω is a collection of subsets of Ω

which is closed under finite intersections. Then σ(A) is the σ-algebra generated by A, and

if σ(A) = Σ, we say A generates Σ.

Definition. λ-system: Let D be a collection of sets. Then D is a λ-system if it has the

following properties:

1) Ω ∈ D,

2) (A,B ∈ D and A ⊆ B)⇒ B \ A ∈ D,

3) (An ∈ D, and A1 ⊂ A2 ⊂ . . . )⇒
⋃
n∈NAn ∈ D.

Lemma. Let A be a π-system and let D be a λ-system. Suppose A ⊆ D. Then σ(A) ⊆ D.
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Using this lemma, we can prove the following version of the consistency theorem:

Theorem. Let (Ω,Σ) be a measurable space. Let P1 and P2 be probability measures on

(Ω,Σ) which agree on a π-system generating Σ. Then P1 = P2.

Proof:

Let D = {A ∈ Σ : P1(A) = P2(A)}. We have assumed A ⊆ D. We can check that D is a

λ-system. Since A generates Σ,Σ ⊆ D, and P1 = P2 .

Using results from this theorem, and additional considerations involving the measure-

theoretic version of conditional probability, which is introduced in the next section, we also

have the following theorem about independence:

Theorem. Let A1 be a π-system generating Σ1 and A2 be a π-system generating Σ2. Sup-

pose that

P(A1 ∩ A2) = P(A1)P(A2) for all A1 ∈ A1, A2 ∈ A2. (4.11)

Then Σ1 and Σ2 are independent.

4.2.4 Conditioning

Conditional probability and expectation are essential concepts for defining Markov processes,

as well as for many other aspects of probability theory. The measure theoretic version

of conditioning is a concept relatively different from the intuitive version from elementary

probability and more technically involved. This is because we would like for our definition,

P(B|A) =
P(A ∩B)

P(A)
, (4.12)

to be able to be defined for sets A whose probabilities equal zero. The above ratio, with

P(A) = 0, suggests a type of derivative may be involved. In fact, the use of the Radon-

Nikodym derivative is needed to prove existence of conditional probabilities and expectations

as they are defined with measure theory.
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We define the conditional probability through the definition of the conditional expectation

in this approach. The conditional expectation is now thought of as a type of random variable

itself. It is defined as conditional on a sub-σ-algebra.

Definition. Given any sub-σ-algebra F ⊆ Σ, and given an integrable function G on Σ, we

define the conditional expectation of G given F as the function g(ω) such that

∫
A

g(ω)dP =

∫
A

G(ω)dP (4.13)

for all A ∈ F .

If we take G to be the indicator function, G = χB(ω) for B ∈ Σ, we have E(G|F) is the

conditional probability of B given F .

Given two random variables Y and X, if E|Y | <∞, E(Y |X) is a conditional expectation

of Y given X if it is a σ(X)-measurable random variable and, for any Borel S ⊆ R,

E(E(Y |X)1X∈S) = E(Y 1X∈S). (4.14)

Likewise, given an event A, the conditional probability of A given X, P(A|X) is a σ(X)-

measurable random variable and, for any Borel S ⊆ R,

E(P(A|X)1X∈S) = P(A ∩ {X ∈ S}). (4.15)

4.2.5 Stochastic Processes

Stochastic processes are here presented in a measure-theoretic setting, with additional con-

cepts using metric spaces and other advanced constructs. The theory of stochastic processes

generally studies infinite families of random variables.

Definition. A stochastic process, {x(θ) : θ ∈ Θ}, is a collection Xθ(ω) of random variables

defined on some shared probability space (Ω,Σ,P), and indexed by θ ∈ Θ, where Θ is any
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non-empty index set. θ is called the parameter of the process and often refers to time. A

stochastic process can also be thought of as a random function x(θ) = x(θ, ω).

We can also define a stochastic process more generally, as a measurable mapping from

one measure space to another. Either of the measure spaces may also be defined to be

a metric space by assigning an appropriate metric. A general measurable mapping is a

mapping x(θ, ω) : Θ × Ω → X, where (X,B) is another measurable space. Sometimes such

a generalization is called a random element [46]. The function x(θ, ω) : Θ × Ω → X, such

that x(θ, ω) is a random element in (X,B) for every θ ∈ Θ is a stochastic process.

Thus a random element may also be a function. A stochastic process may also be defined

as a mapping onto the space of random functions:

Definition. A stochastic process is a measurable mapping x(θ, ω) : Θ× Ω→ X, where

X =
∏
θ∈Θ

R (4.16)

is the space of R-valued functions on Θ.

For a general statement of this definition, where X is the set of E-valued functions on

Θ, E must be assumed to be a metric space with additional properties that provide certain

implicitly assumed requirements, such as separability.

The space (X,B, µ), where X is defined as in (4.16) and µ is the induced distribution

on X, can be the primary focus of study, as a probability space of its own. This space

can be studied in a functional analysis setting, as a space of functions with a metric or

norm, and without considering the underlying probability space (Ω,Σ,P). This is a “direct

representation of the process,” and was used by Kolmogorov [22]. In either case, we can

create an appropriate metric on the function space X which provides the space with a

topology that allows for easier analysis: for instance, creates a “Polish” space. Polish spaces

are discussed below.

86



In physical applications, the stochastic process describes a state of a certain system that

is varying with time, and generally, Θ = R>0. The probability space represents the types

of questions which can be answered probabilistically about the system. The space (X,B) is

often referred to as the phase space in physical applications. Elements of the above space X

of R-valued functions are sometimes called “waveforms.”

A third way of defining a stochastic process is as a single sequence or function on a proba-

bility space, together with a transformation or family of transformations on the space, which

“moves the sequence along in time.” This is the dynamical systems version of a stochastic

process. An example of such a construct is given here:

Let {Xn;n ∈ N} be a direct representation of the stochastic process. For each N, Xn

takes on some value from a set A, for instance, A = R in (4.16) above. Then the action of

“time” can be described by defining a left-shift transformation T : A∞ → A∞, where A∞ is

the space of infinite sequences of values from A, defined by:

T(. . . , xn−1, xn, xn+1, . . . ) = (. . . , xn, xn+1, xn+2, . . . ). (4.17)

T takes a sequence and moves every symbol in the sequence one slot to the left. Now the

time, n, can be written as a function of the sequence:

Xn(x) = X0(Tnx), (4.18)

and now the process is not viewed as an infinite collection of random variables on a shared

probability space, but as a single random variable or random function X0 together with

a transformation on the space. The collection (A∞,BA, µ,T) is then called a dynamical

system.

The finite-dimensional distributions introduced in section 4.2.3. define all the measurable

sets of events described by a stochastic process and thus describe all that can be determined

probabilistically about the process. The finite-dimensional distributions and another version

87



of the Kolmogorov consistency theorem can be used to establish the existence of stochastic

processes.

Recall the definition of a family of finite-dimensional distributions : For a collection of

random variables, Xt, t ∈ T = R>0, defined on (Ω,Σ,P), and taking values in R, we define

the Borel probability measure µt1,t2,...tk , k ∈ N on Rk by

µt1,t2,...tk(H) = P((Xt1 , . . . , Xtk) ∈ H), H ⊆ Rk Borel. (4.19)

The distributions {µt1,t2,...,tk ; k ∈ N, tk ∈ T distinct} are called the finite-dimension distribu-

tions of {Xt; t ∈ T}. The finite dimensional distributions satisfy two consistency conditions :

Definition. Consistency conditions for finite-dimensional distributions

1) If (s(1), s(2), . . . , s(k)) is any permutation of (1, 2, . . . , k), then for any distinct t1, . . . , tk ∈

T and any Borel H1, . . . , Hk ⊆ R, we have

µt1,t2,...,tk(H1 × · · · ×Hk) = µs(1),...,s(k)(Hs(1) × · · · ×Hs(k)). (4.20)

2) For distinct t1, . . . , tk ∈ T and any Borel H1, . . . , Hk−1 ⊆ R, we have

µt1,t2,...,tk(H1 × · · · ×Hk−1 × R) = µt1,...,tk−1
(H1 × · · · ×Hk−1). (4.21)

These conditions are ordinary and expected of any probability distributions. Remarkably,

they are all that is required to define a stochastic process associated with a given set of finite-

dimensional distributions satisfying them:

Theorem. Kolmogorov Consistency Theorem: Existence of a Stochastic Process

A family of Borel probability measures {µt1,t2,...,tk ; k ∈ N, tk ∈ T distinct}, with µt1,t2,...,tk

a measure on Rk, satisfies the consistency conditions above if and only if there exists a

probability triple (Ω,Σ,P) and a random function x(t, ω) : (T × Ω)→ (R,B(R)), such that
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for all k ∈ N, distinct t1, . . . , tk ∈ T , and Borel H ⊆ Rk, we have

P(ω : (x(t1, ω), . . . , x(tk, ω)) ∈ H) = µt1,t2,...,tk(H). (4.22)

One way to prove this theorem involves letting Ω =
∏

θ∈Θ R, the space of all R-valued

functions on T , and Σ = σ{{x(t) ∈ H}; t ∈ T,H ⊆ B(R)}. P is defined for finite-dimensional

sets, and then extended to Σ in a similar way to the creation of the Lebesgue outer measure.

For the proof of the general case, the underlying metric space must be a Polish space— a

complete, separable metric space. For discrete time processes, the finite-dimensional distri-

butions and their associated measurable sets give a complete description of all events related

to the process. This is also true for processes in continuous time but with a countable state

space. However, for stochastic processes with uncountable time index and uncountable state

space, certain events or “questions relating to the process” can not be addressed using the

measurable sets created via the method described above. This is because notions such as

boundedness, continuity, differentiability, etc., depend on knowledge of all values of the un-

countable number of the x(t, ω). Thus the “probability that x(t) is a continuous function,”

for instance, can not be determined.

Several methods are used to provide solutions to the above dilemma. One technique

is to consider the equivalency classes of those random variables that have the same finite-

dimensional distributions, which are called versions of each other, and prove theorems with

respect to these versions. Constraints may be placed on the types of random variables that

are considered, such as those whose moments satisfy certain conditions. These types of

techniques are used in developing the theory of diffusions. Alternately, one can choose to

consider only processes whose spaces consist of certain types of “nice” functions, such as the

space of all almost surely continuous functions, or the space of functions that are almost

surely continuous except for jumps. The standard Banach space C[a, b] of continuous func-

tions on the closed interval is a Polish space with its usual norm ||f || = supt∈[a,b] |f(t)|. The
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space D[a, b] is the space of right-continuous functions with left limits, or càdlàg functions,

using the classic french abbreviation “continue à droite, limite à gauche.” The metric for

these functions is unusual and several versions of it were created by Skorokhod; J1 is used

most frequently and is often referred to as the “Skorokhod metric,” creating the “Skorokhod

topology.”

Because Kurtz considered the space of operators on the space of random functions for

his proof, he was able to use the sup norm, and to modify some theorems on convergence of

sequences of operator semigroups to be applicable to semigroups of jump Markov processes.

However, he was forced to define “extended limits” with respect to which convergence was

achieved. The sample functions of jump processes with countable state spaces can be stud-

ied as a topological space DE[0,∞), and creation of compact sets allows convergence of

probability measures using topological arguments [11].

We are now able to define Markov processes in the measure-theoretic setting. Discrete

and continuous time Markov processes with a general state spaces, which may be countable

or uncountable, are defined in the following. Given a general state space X, which is any

non-empty set together with a σ-algebra B of measurable subsets, we have the following

processes:

Definition. Discrete-time Markov process.

The time index is n ∈ N. For each time step, the one-step transition probabilities are

given by {P (x,A)}x∈X,A∈B, and intuitively, can be thought of as the probability that the

process will be in some set A after one step, given it is currently in a state x. We make the

following two assumptions:

1) For each fixed x ∈ X, P (x, ·) is a probability measure on (X,B).

2) For each fixed A ∈ B, P (x,A) is a measurable function of x ∈ X.

We now define the initial distribution ν, which can be any probability distribution on

(X,B). We then have a discrete-time, general state space, time-homogeneous Markov process
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X0, X1, X2, . . . , where

P(X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An) =

∫
x0∈A0

ν(dx0)

∫
x1∈A1

P (x0, dx1) . . .

. . .

∫
xn−1∈An−1

P (xn−2, dxn−1)

∫
xn∈An

P (xn−1, dxn).

(4.23)

These integrals are well-defined because of assumption 2 above.

Definition. Continuous-time Markov process.

The transition probability P (s, t, x, A), 0 6 s < t, x ∈ A, A ∈ B defines the probability

of the event that the system found in the state x at the moment s will belong to the set A

at the moment t. As in the previous case, the transition probability has the properties that

1) it is a probability measure with respect to A ∈ B,

2) it is a measurable function with respect to x ∈ X.

The Chapman-Kolmogorov equation is satisfied for all 0 6 s < t < u:

P (s, x, u, A) =

∫
P (t, y, u, A)P (s, x, t, dy) (4.24)

For a time-homogeneous, continuous-time Markov process having initial distribution ν

P(X0 ∈ A0, Xt1 ∈ A1, . . . , Xtn ∈ An) =∫
A0

∫
A1

. . .

∫
An

ν(dx0)Pt1(x0, dxt1) . . . Ptn−tn−1(xtn−1 , dxtn)
(4.25)

for all times 0 6 t1 < · · · < tn and all subsets A1, . . . , An ∈ B.

Define the distribution of a random variable to be a point-mass δc if δc(B) = 1B(c) for

any measurable set B; in other words, δc(B) equals 1 if c ∈ B and 0 otherwise. Then, letting

P0(x, ·) be a point-mass at x, it then follows that

Ps+t(x,A) =

∫
Ps(x, dy)Pt(y, A), s, t > 0, x ∈ X, A ∈ B, (4.26)
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the Chapman-Kolmogorov equation in the time-homogeneous case.

4.2.6 Countable state spaces and finite-dimensional distributions

As we saw above, the probability of any event depending on a right-continuous process can

be determined by its finite-dimensional distributions, that is, from the probabilities

P(Xt0 = i0, Xt1 = i1, . . . , Xtn = in), for n > 0, 0 6 t0 6 t1 6 · · · 6 tn and i0, . . . , in ∈ I,

(4.27)

where I is a countable set, and Xt : Ω→ I, 0 6 t 6∞ is a family of random variables.

We used this information implicitly in chapters 2 and 3 when we calculated probabilities

of events that were not of the form {X0 = i0, . . . , Xn = in}. For instance, the notion of

a stopping time, and the definition of a jump process via its jump rates and exponential

holding times, depend on the measurability of sets of the form

{Xt = i for some t > 0)}. (4.28)

which may depend on all (Xt)t>0. These sets may not be measurable with respect to σ((Xt) :

t > 0), because sigma algebras involve countable unions and intersections. But for right-

continuous processes with countable state spaces, events of the form {X0 = i0, . . . , Xn = in}

form a π-system which generates the σ-algebra σ((Xt) : t > 0).

As an example, consider the notion of a stopping time. The concept of “depending only

on” can only be made precise, in a probabilistic sense, as measurability with respect to some

σ-algebra. Thus we let (Xt)t>0 be a right-continuous process with values in a countable set

I. Let Σt be the σ-algebra generated by {Xs : s 6 t}, in otherwords, all sets {Xs = i} for

s 6 t and i ∈ I.

Definition. A stopping time of (Xt)t>0 is a random variable T with values in [0,∞] if

{T 6 t} ∈ Σt for all t > 0.

92



For stopping times T , we define the collection of sets ΣT = {A ∈ Σ : A ∩ {T 6 t} ∈

Σt for all t > 0}. This is a way to precisely define the idea of “those sets that depend only

on {Xt : t 6 T}”.

The following results can be proved using countable unions and intersections of sets and

the assumption of right-continuity:

Lemma. Let S and T be stopping times of (Xt)t>0. Then both XT and {S 6 T} are

ΣT -measurable.

Theorem. Strong Markov property. Let (Xt)t>0 be a (minimal) right-continuous,

discrete-state Markov process, and let T be a stopping time of (Xt)t>0. Then, conditional

on T < ζ and XT = i, (XT+t)t>0 is Markov and independent of ΣT .

4.2.7 Martingales

An alternate way to describe stochastic processes is via the conditional expectations of a

sequence of random variables Xn with respect to a sequence of sub-σ-algebras, instead of by

using the conditional probability distributions.

Definition. Let (Ω,Σ,P) be a probability space. A discrete-time, discrete-state stochastic

process X0, X1, . . . , together with its sequence of corresponding sub-σ-algebras Σ1,Σ2 is a

martingale if:

1) For all n, Xn is measurable with respect to Σn, and E|Xn| <∞,

2) The sub-σ-algebras are increasing: Σn ⊂ Σn+1 for every n,

3) For every n, and with probability , E(Xn+1|Σn) = Xn.

The sequence is a submartingale if E|Xn| <∞ for all n, and E(Xn+1|Σn) > Xn.

A discrete-time Markov chain with transition probabilities Pi,j and with E|Xn| <∞ is a

martingale provided that ∑
j∈S

jPi,j = i i ∈ S. (4.29)
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An example of this type of Markov chain is the simple symmetric random walk, where

S = Z, X0 = 0, and Pi,i−1 = Pi,i+1 = 1
2
.

In the general case, for a continuous-time process, we first define a filtration. Given a

σ-algebra F on a set Ω, a filtration is a collection of sub-σ-algebras of F , {Ft, t ∈ [0,∞)},

if Fs ⊆ Ft for all s < t. A stochastic process (Xt)t>0 is said to be adapted to a filtration

{Ft, t > 0} if Xt is Ft-measurable for all t. We often think of the filtration as the information

available to the observer by time t.

Definition. A real-valued process (Xt)t>0 with E|Xt| < ∞ for all t > 0 and adapted to a

filtration {Ft} is a martingale if:

E[Xt|Fs] = Xs for 0 6 s < t, (4.30)

and a submartingale if

E[Xt|Fs] > Xs for 0 6 s < t. (4.31)

Results from martingale theory include convergence theorems and descriptions of under-

lying stochastic processes, and can be used to characterize Markov processes and establish

limiting approximations of sequences of Markov processes. Kurtz used martingale theory to

establish bounds and approximations of the limiting probability with respect to which the

stochastic models converged to the deterministic equation [35]. Furthermore, the original

proof of Kurtz’s theorem was revisited in [11] using martingales. An example of a basic

martingale convergence theorem is given here:

Theorem. Let {Xn} be a discrete-time submartingale. Suppose that supn E|Xn| < ∞.

Then there is a finite random variable X such that Xn → X almost surely.
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Chapter 5

Functional analysis, operator

semigroups, and the Kurtz theorem

Probability theory has “exploded” in the last 50 years, and now it is impossible to contain

the entirety of the theory in a single book or even collection. Specialization and integration of

methods from numerous other branches of mathematics have turned probability theory into

a vast field. From the basic foundations described in the previous chapters, many branching

trajectories are possible, depending on the particular problem and the methods chosen. The

use of functional analysis, operator theory, and specifically operator semigroup techniques to

study stochastic processes is one such example. An additional several hundred pages would

be required to provide a comprehensive exposition of these techniques, [23].

Treatments based solely on properties derived from the finite-dimensional distributions

constituted initial approaches in stochastic processes, but work pioneered by Doob, among

others, led to the realization that “most processes of interest have right-continuous versions

with left-hand limits,” [23]. Thus more general results can be attained by considering the

spaces of such processes. The “modern setup for Markov processes,” advanced by Dynkin in

the 50s and 60s, is one where a process is defined on a path space, with a filtration, a family

of shift operators, and a collection of probability measures [23].
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Kurtz’s thesis, his paper in the Journal of Applied Probability, and his subsequent expla-

nation of the applicability of his theorem to chemistry in the Journal of Chemical Physics

occurred during a time when a number of new methods in the theory of stochastic processes

were being developed. In fact, Kurtz himself helped to create multiple advances in this

area from 1969 through 1986 and later. Thus the original way that he proved the theorem

[31, 34], using less-specialized theory centered around convergence of generators of semi-

groups, quickly became outdated as more specialized methods appeared, and he revisited

the proofs several times in the years following, using new approaches that allowed for less

cumbersome, more elegant presentations and sometimes led to more general results. [11].

Nevertheless, the treatment of stochastic processes in the context of functional analysis

and operator theory originated in the early part of the twentieth century. Wiener, in his

approach to Brownian motion, was first to describe the distribution of a stochastic process

as a measure on a function space. [6, 23]. This insight even pre-dated the establishment

of measure theory in a truly rigorous framework. Kolmogorov, in 1935, was able to unify

the theory of Markov chains and diffusion processes, which were previously considered to be

disjoint fields, by describing transition kernels as operators, and using ideas from spectral

theory to describe local characteristics via associated infinitesimal generators. [23, 55].

This chapter follows expositions of Kallenberg [23], Kreyzig [30], Bobrowski [6], Ethier

and Kurtz [11], Goldstein [21], Keller-Ressel [29], Engel and Nagel [9], and Karlin [25] .

5.1 Functional analysis and probability spaces

Functional analysis became the modern setting for limit theorems and approximation results

for probability and stochastic processes because of the natural wide scope and generality of-

fered by its approach. Functional analysis does not focus on distinctions between elements

of a space, but rather on establishing general properties that apply to an entire class of these

elements. Once these general results are attained, they apply to entire groups of processes or
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measures. For instance, by creating a function-space setting for weak convergence theory, us-

ing the appropriate topology, convergence of sequences of functions, measures, and processes,

which were previously “derived by cumbersome embedding and approximation techniques”

now become “accessible by straightforward compactness arguments,” [23]. Such limit theo-

rems, like the Skorokhod embedding and its subsequent use in proving the functional version

of the Central Limit Theorem, traditionally used purely probabilistic and classical analysis

techniques based on characteristic functions and Taylor expansions for their derivations.

One topology created for the functional analysis method of proving convergence in distri-

bution is founded on the Prohorov metric, introduced on the space of probability measures

on a separable space S. Convergence with this metric in this space is weak convergence.

Furthermore, it turns out that if S is a Polish space, then so is the space of probability

measures on S with the Prohorov metric, [6]. A property called tightness is found to be

connected to a type of compactness called relative distributional compactness. Using these

concepts, classical compactness-related results can be transformed into results useful in the

probabilistic setting. The Arzelà-Ascoli theorem, for example, can be applied in this way for

the space of continuous processes.

The Hilbert space provides a setting for a number of fundamental examples of the contri-

butions of functional analysis to probability and stochastic processes. In 1940, von Neumann

initiated the Hilbert space approach to conditioning, which makes the connection between

the conditional expectation and orthogonal projections [6,23]. As a result, we find that “the

simplest and most intuitive general approach to conditioning is via projection” [6] in the

Hilbert space setting, and it avoids the difficulties encountered in the traditional approach

when having to use the Radon-Nikodym theorem [23]. The ergodic theorem, essential for

mathematical physics, was first rigorously proved by von Neumann in the Hilbert space

setting, after it was noted that there was a “connection between measure-preserving trans-

formations and unitary operators on a Hilbert space,” [23]. Modern treatments of Brownian

motion, diffusions, and stochastic integration all rely on the Hilbert space approach which
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provides the best-equipped framework for the most direct, general and insightful results in

these fields.

The modern setting for investigating stochastic processes using functional analysis usually

uses as the function space the path space of sample functions of the processes. Thus for

diffusions, the space is C(K,S) of continuous functions from the space (K, d) to (S, ρ),

where K is compact and S is separable and complete. K is the index or parameter set, and

the topology is that induced by the Prohorov metric. For jump processes, we have the space

D(R+, S), where D is the space of right continuous functions with left limits f : R+ → S, and

the jump processes have paths in D. We use one of the Skorokhod topologies on this space

to achieve similar results as the Prohorov metric created for continuous paths: convergence

in this space becomes convergence in distribution.

The approach taken by Kurtz to prove his theorem in its first two iterations did not use

this path space approach, but rather considered the space of operators mapping random

functions onto their integrals by means of a probability kernel :

Definition. Given two measurable spaces (S,S) and (T, T ), a mapping µ : S × T → R̂+,

(where R̂+ is the compactification of R+, or the extended real line) is called a probability

kernel from S to T if the function µ(s, B) is S-measurable in s ∈ S for fixed B ∈ T and a

probability measure in B ∈ T for fixed s ∈ S.

A probability kernel determines an associated operator that maps suitable functions

f : T → R into their integrals µf(s) =
∫
µ(s, dt)f(t). A Markov transition function is such

a kernel, and an associated operator is, for example, the expectation with respect to this

transition function.

As we see in the next section, the space of certain kinds of operators from one function

space to another forms its own space that can be a Banach space, and can thus enjoy some

important results that rely on completeness. For this type of approach, we do not have to

define a new type of metric, such as the Prohorov metric or the Skorokhod metric. However,

as we will see in the following sections, we do have to create extended definitions to allow for
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the proper convergence results when using operator spaces in the stochastic process setting.

5.2 Operator Theory

For this section, it is assumed the reader is familiar with basic notions about vector spaces

and function spaces, such as the definition of a norm, a normed linear space, a Banach space,

etc. Definitions and results relating to operator theory are included here for completeness,

however.

Operator theory is a branch of functional analysis that focuses on spaces of operators

(mappings) from one function space to another. Formally, an operator is a mapping from a

normed space X into a normed space Y . Operator theory is often concerned primarily with

bounded linear operators, since they “fully take advantage of the vector space structure,” [30].

One reason for this is the fundamental result that bounded linear operators are necessarily

continuous. With the appropriate norm, the space of bounded linear operators forms a

Banach space.

The notion of a Banach space incorporates two important components: an algebraic

component, and a topological component [6]. The topological component comes from the

definition of the norm which creates the open sets. Continuous functions on normed linear

spaces take advantage of the topological component because they preserve the opens sets.

The algebraic component of a Banach space, that the elements can be added together and

multiplied by scalars, is important in the creation of topological groups and semigroups,

addressed in the next section.

The study of Banach spaces forms a central part of functional analysis because some

important properties can be proved for them which cannot be proved for incomplete normed

spaces, for instance, the Hahn Banach theorem, the Uniform Boundedness theorem, the

Open mapping theorem, and the Closed Graph theorem [30]. The last two are especially

important in the operator semigroup methods discussed in the next section, as certain oper-
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ators considered are not bounded but are closed, or are closable. This provides an alternate

criterion for proving continuity.

Necessary definitions and results for use in the next section will now be introduced.

Definition. Linear Operator: A linear operator T is an operator such that

1) The domain D(T ) of T is a vector space and the range R(T ) lies in a vector space

over the same field.

2) For all x, y ∈ D(T ) and scalars α, T (x+ y) = Tx+ Ty, and T (αx) = αTx.

Definition. Bounded linear operator: LetX and Y be normed spaces and T : D(T )→ Y

be a linear operator, where D(T ) ⊂ X. The operator T is said to be bounded if there is a

real number c such that for all x ∈ D(T ), ||Tx|| 6 c||x||, where the norm on the left is that

on Y , and the norm on the right is that on X.

From the above definition we can see that a bounded linear operator maps bounded sets

in D(T ) onto bounded sets in Y . This is one reason that the bounded linear operators prove

to be so useful.

If c in the above definition is set to equal 1, then the operator T is called a contraction.

Contraction operators from an essential part of the semigroup theory used in the next section.

The above definition also serves to create the definition of a norm for a bounded linear

operator:

Definition. For x = 0, Tx = 0. For x 6= 0, we define the operator norm of T , also written

||T ||, as

||T || = sup
x∈D(T ),x 6=0

||Tx||
||x||

(5.1)

An equivalent formula for this expression, also called the operator norm of T , can be shown

to be

||T || = sup
x∈D(T ),||x||=1

||Tx|| (5.2)
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Definition. Continuous operator An operator T is continuous at a point x0 ∈ D(T ) if

for every ε > 0, there is a δ > 0 such that ||Tx − Tx0|| < ε for all x ∈ D(T ) satisfying

||x− x0|| < δ. T is continuous if T is continuous at every x ∈ D(T ).

Now we can state the fundamental

Theorem. (Continuity and Boundedness): Let T : D(T ) → Y be a linear operator, where

D(T ) ⊂ X and X, Y are normed spaces. Then

1) T is continuous if and only if T is bounded, and

2) If T is continuous at a single point, T is continuous.

Definition. The restriction of an operator T : D(T )→ Y to a subset B ⊂ D(T ) is denoted

by T |B, and is the operator defined by T |B : B → Y, T |Bx = Tx for all x ∈ B.

Definition. An extension of an operator T to a set M ⊃ D(T ) is an operator T̃ : M → Y ,

such that T̃ |D(T ) = T , that is, T̃ x = Tx for all x ∈ D(T ).

Many possible extensions exist for T when D(T ) is a proper subset of M , for instance,

an extension from a dense set in X to all of X, or an extension from a normed space

to its completion. Some of the most useful extensions are those that preserve an important

property, such as boundedness or linearity. That way, for instance, a result about convergence

in the original space can be extended to a similar result in the extended space, under certain

criteria. This type of operator extension is used several times by Kurtz in the each version

of the proof of his theorem. The following theorem gives a basic but important example of

such an extension theorem:

Theorem. Let T : D(T ) → Y be a bounded linear operator, where D(T ) lies in a normed

space X, and Y is a Banach space, and let D(T ) be the closure of D(T ). Then T has an

extension T̃ : D(T )→ Y , where T̃ is a bounded, linear operator of norm ||T̃ || = ||T ||.

The following results show that the space of bounded linear operators from one normed

space to another is also a normed space, and can be a Banach space.
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Theorem. The vector space B(X, Y ) of all bounded linear operators from one normed linear

space X into a normed linear space Y is itself a normed space, with norm defined by

||T || = sup
x∈D(T ),x 6=0

||Tx||
||x||

= sup
x∈D(T ),||x||=1

||Tx||. (5.3)

Theorem. If Y is a Banach space, then B(X, Y ) is a Banach space.

The Banach space of bounded linear operators creates a setting for several types of con-

vergence of sequences of these operators. Three types of convergence form the most often

used and studied. These are convergence in the norm, strong convergence, and weak conver-

gence. Recall that weak convergence was defined on measure spaces in the previous chapter.

This idea can be generalized for normed spaces. Also, a type of convergence familiar from

elementary analysis, which is convergence in the norm, is called strong convergence. The

two versions for normed spaces are listed below. But first, we need some more terminology.

Definition. Bounded linear functional: A bounded linear functional f is a bounded

linear operator with range in the scalar field over which the normed space X in which the

domain D(f) of f lies. Thus, there exists a real number c such that for all x ∈ D(f),

|f(x)| 6 c||x||.

Definition. Dual Space X ′: Let X be a normed space. Then the set of all bounded linear

functionals on X is also a normed space with norm defined by

||f || = sup
x∈X,x 6=0

|f(x)|
||x||

= sup
x∈X,||x||=1

|f(x)|. (5.4)

This space is called the dual space of X and is denoted by X ′.

Theorem. The dual space X ′ of a normed space X is a Banach space, regardless of whether

X is. .

Definition. A sequence (xn) in a normed space X is said to be strongly convergent if there
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is an x ∈ X such that limn→∞ ||xn − x|| = 0. We can also write limn→∞ xn = x, or simply

xn −→ x.

Definition. A sequence (xn) in a normed space X is said to be weakly convergent if there

is an x ∈ X such that for every f ∈ X ′, limn→∞ f(xn) = f(x). We can also write xn ⇒ x.

In finite-dimensional spaces there is no difference between strong and weak convergence.

However, in infinite-dimensional spaces, strong convergence implies weak convergence, but

the converse is not true.

Definition. Convergence in the operator norm is also called uniform convergence, and a

sequence (Tn) of operators Tn ∈ B(X, Y ) is said to be uniformly operator convergence,

or simply uniformly convergent, if (Tn) converges in the norm on B(X, Y ), or or there is an

operator T : X → Y such that ||Tn − T || −→ 0, as n→∞

Definition. A sequence (Tn) of operators Tn ∈ B(X, Y ) is said to be strongly operator

convergent, or simply strongly convergent, if (Tnx) converges strongly in Y for every x ∈ X,

or there is an operator T : X → Y such that ||Tnx− Tx|| −→ 0 for all x ∈ X.

Definition. A sequence (Tn) of operators Tn ∈ B(X, Y ) is said to be weakly operator

convergent, or simply weakly convergent, if (Tnx) converges weakly in Y for every x ∈ X,

or there is an operator T : X → Y such that |f(Tnx) − f(Tx)| −→ 0 for all x ∈ X and all

f ∈ Y ′.

Uniform convergence implies strong convergence, which implies weak convergence. Con-

vergence in the operator norm is called uniform convergence because it is strong convergence

that is uniform in any ball. Uniform convergence turns out not to be a useful requirement for

proving convergence in many instances, especially for stochastic processes, because it can be

much too restrictive. More often, in such settings, we see the use of strong convergence, weak

convergence, or some other type of convergence related to these, and defined specifically for

the proof at hand. The definition of additional types of operator limits is central to the way

that the Kurtz theorem is proved.
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A few additional definitions in operator theory are required for the presentation of op-

erator semigroup methods in stochastic processes. Not all operators which are encountered

in applications are bounded. For instance, the differential operator is not bounded, yet it

has an important role in many areas of mathematics. However, a different property that

is useful which the differential possess is that of being closed. For the operator semigroup

approach, this is another important property to consider.

Definition. Let X and Y be normed spaces and T : D(T ) → Y be a linear operator

with domain D(T ) ⊂ X. Then T is called a closed linear operator if its graph G(T ) =

{(x, y)|x ∈ D(T ), y = Tx} is closed in the normed space X×Y . The two algebraic operations

in X × Y are defined in the usual way, as

(x1, y1) + (x2, y2) = (x1 + x2, y1, y2), and α(x, y) = (αx, αy) (5.5)

(with α a scalar). The norm on X × Y can be given as ||(x, y)|| = ||x||+ ||y||, or a number

of other versions.

The following theorems illustrate some important results about closed linear operators.

Theorem. Closed Graph Theorem. Let X and Y be Banach spaces and T : D(T )→ Y

a closed linear operator, where D(T ) ⊂ X. Then if D(T ) is closed in X, the operator T is

bounded.

Theorem. Let T : D(T ) → Y be a linear operator, where D(T ) ⊂ X, and X and Y are

normed spaces. Then if T is closed if and only if it has the following property. If xn → x,

where xn ∈ D(T ), and Txn → y, then x ∈ D(T ) and Tx = y.

Subsequently, we have the closable operator:

Definition. Closable Operator: If a linear operator T has an extension T̃ which is a closed

linear operator, then T is said to be closable, and T̃ is called a closed linear extension.
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Definition. Closure of an operator: A closed linear extension T of a closable linear

operator T is said to be minimal if every closed linear extension TL of T is a closed linear

extension of T . This minimal extension of T , if it exists, is said called the closure of T .

Definition. An operator T is called densely defined in a space B, if D(T ) is dense in B.

5.2.1 Spectral Theory and Resolvents

Spectral theory developed in part to be used in the solution of problems in differential and

integral equations, such as in the Sturm-Liouville theory and Fredholm theory. It studies

inverse operators associated with particular originally-defined operators, and describes how

their properties are related to the original. Elements of spectral theory of operators helps

to characterize properties of the operators considered, and in this way, can be useful for

convergence and approximation analyses as we shall see in the next section.

The most important aspect of spectral theory that applies to the operator semigroup

method is the idea of the resolvent. For the finite-dimension spaces that are studied in

elementary mathematics courses, we have the characteristic equation from which we are

able to find eigenvectors and eigenvalues of a matrix that relates to a set of differential

equations. In infinite spaces, an analogous approach is taken, but the theory becomes more

complicated. However, as in the finite case, we begin with the operator Tλ = T − λI,

associated with T : D(T )→ X, for X 6= {0}, a normed space, and D(T ) ⊂ X. λ is a scalar,

and I is the identity operator on D(T ).

If Tλ has an inverse, we denote it by Rλ(T ) = T−1
λ = (T−λI)−1, and call it the resolvent

operator of T . The notation is often shortened to Rλ, and called simply the resolvent of

T , if the meaning is clear. The name “resolvent” comes from the fact that the resolvent

helps to solve the equation Tλx = y. In many texts, the resolvent is alternately defined by

(λI − T )−1.

The resolvent has a connection to the Laplace transform method of the one-dimensional,

nonrandom case. If g(t) = eαt for some scalar α, we can take the Laplace transform of g(t)
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to recover α:

L(g)(λ) =

∫ ∞
0

e−λtg(t)dt =
1

λ− α
, λ > 0. (5.6)

If α was not a scalar, but an operator A, in certain situations, we can write a representation of

eAt, and a representation of the Laplace transform of eAt, and thus obtain 1
λ−A = (λI−A)−1.

Of course, the operator λI −A has to be invertible. A scalar λ is said to be in the resolvent

set of a bounded linear operator A if λI−A has a bounded linear inverse. As we shall see in

the next section, these types of generalizations of finite-dimensional results of real analysis

to function-valued operators on function spaces is what constitutes the theory of operator

semigroups. The types of operators considered must be carefully specified, as an exponential

representation does not make sense for all operators.

5.3 Operator semigroups

At the end of section 2.4.6 of chapter 2, we saw that for finite state spaces, we have a finite

Q-matrix that allows for an exponential representation pt = eQt for the solution to the

Kolmogorov equations, and that the rate matrix Q was recoverable by taking the derivative

of pt at zero, provided this exists. We would like to be able to extend this notion to the

infinite-state space case, and to the general setting using infinite-dimensional operators on

probability spaces. This type of theory was created as a functional analysis approach to the

Abstract Cauchy Problem:
d

dt
u(t) = A[u(t)], (t > 0),

u(0) = f,

(5.7)

where we would like A to be an operator on a Banach space B(X,X). From this desire grew

the theory of operator semigroups. Consider again the one-dimensional, nonrandom case,

and recall that if U(t) is a nonconstant, real-valued function satisfying U(t+ s) = U(t)U(s),

with t, s > 0, and |U(t)| 6 1 for t > 0, then U(t) must necessarily be of the form eat for

some constant a, and furthermore, when U(t) is continuous at t = 0, so that limt→0 U(t) = 1,
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then a is finite, U(t) is differentiable, and a = d
dt
U(t)|t=0. Alternately, using the Laplace

transform, as above, we can also recover a, showing the connection between the derivative

at zero of U(t), and the resolvent.

The property described by the Chapman-Kolmogorov equation is precisely the relation

T (s+t) = T (s)T (t), where T (t)f(x) = E[f(Xt)|X0 = x]. Thus, this expectation operator, for

Markov processes, can be treated in a similar way to the method proposed above, provided

the needed requirements are met, including those that allow for a definition of an operator

exponentiation representation, a resolvent, and a “derivative” at zero.

Note that the exponential function and the expectation operator above depend on a

continuous parameter, t. Continuous binary operations on algebraic groups of operators

form the theory of topological groups, and for those sets of operators that do not necessarily

have inverses or an identity element, continuous mapping · of a set G × G → G creates a

topological semigroup. Because it is continuous, this map is also measurable with respect to

the appropriate Borel σ-algebras.

At the heart of this theory, we have the idea of the exponent of an operator. For bounded

linear operators, we have the following

Theorem. Let A be a bounded linear operator in a Banach space X and let An = A ·

An−1, n > 2, be its nth power. Then the series

∞∑
n=0

tnAn

n!
(5.8)

converges for all t ∈ R in the operator topology.

Operator semigroup theory was initiated by Hille and Yosida in the late 1940s to study

problems related to generalized and abstract initial value problems for differential equations,

for instance, such as the Abstract Cauchy Problem above. It was later applied to the context

of Markov processes.

In order to have a generalization of the finite, one-dimensional results above, we must
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have appropriate definitions and conditions for equation 5.7 above. First, assuming the

function u(t) takes values in some set X, we must make sense of the expression

du(t)

dt
= lim

h→0
h−1[u(t+ h)− u(t)]. (5.9)

To meet these requirements, X must be a vector space, and one in which limits make sense.

Thus it is most common for X to be a Banach space. Furthermore, for the equation du
dt

= Au

to make sense, u(t) must belong to the domain of A, and also, we must have that

lim
h→0
||h−1[u(t+ h)− u(t)]− A[u(t)]|| = 0, (5.10)

where || · || denotes the norm in X. As is usual in the theory of differential equations,

we would like to have a well-posed problem, Therefore, we would like to prove existence,

uniqueness, and stability of our solutions, where stability refers to a proof showing that the

solution depends continuously on the initial condition and the operator A. For these criteria

to be met for the Abstract Cauchy Problem, we find that assumptions of time-homogeneity,

the semigroup property, continuity of operators, and density of the domain, among other

things, are important.

Let the solution u(t + s) at time t + s be computed as T (t + s)f . Alternately, we have

that u(t + s) = T (t)(T (s)f). Uniqueness of the solution implies the semigroup property

T (t + s) = T (t)T (s), t, s > 0. The initial condition, f , must be required to belong to the

domain of A, which must be dense in X. Additionally, each T (t) must be linear if A is linear.

To create such a setting, we introduce the concept of the “strongly continuous one-

parameter semigroup of bounded linear operators on a Banach space H.” This type of semi-

group is called a (C0)-semigroup. The space C0 is the space of all continuous functions

vanishing at infinity. Formally, we have the following definition:

Definition. (C0) semigroup: A family T = {T (t) : 0 6 t <∞} of linear operators from a

Banach space H to a Banach space H is called a (C0) semigroup if
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1) ||T (t)|| <∞ where || · || is the supremum (operator) norm,

2) T (t+ s)f = T (t)T (s)f for all f ∈ H and all t, s > 0,

3) T (0)f = f for all f ∈ H,

4) t→ T (t)f is continuous for t > 0 for each f ∈ H

in addition, if

5) ||T (t)f || 6 ||f || for all t > 0 and all f ∈ H, (i.e. ||T (t)|| 6 1 for each t > 0),

T is called a (C0) contraction semigroup.

Contraction semigroups are important in this theory, and are used in its application

to stochastic processes. The importance of contraction mappings in proving existence and

uniqueness in differential equations comes from their relation to the existence and uniqueness

of fixed points, and to the methods of successive approximations. Every contraction mapping

defined in a complete metric space has one and only one fixed point, thus the equation

f(x) = x has one and only one solution. Furthermore, a contraction on a metric space is a

continuous mapping.

An operator semigroup of class C0 is also called of class “continuous at the origin,”

because we have from the definition above, that limt→0 Ttf = f , for all f ∈ H. Thus we

can define the “derivative at zero” of T (t) in analogy to the finite-dimensional case above.

Formally, this represents the suggestion that T (t) = eAt, where A = d
dt
T (t)|t=0, and that the

solution of equation 5.7 is given by u(t) = T (t)f , where T is the “semigroup generated by

A”. Therefore, A is called the generator of T . In earlier literature, this was also called the

“infinitesimal generator” or “infinitesimal operator.”

Definition. The generator A : D(A) ⊆ X → X of a strongly continuous semigroup

(T (t))t>0 on a Banach space X is the operator

Af = lim
h→0

(T (h)− I)f

h
= lim

h→0

T (h)f − f
h

, (5.11)

where f is in the domain of A, D(A) if and only if this limit exists. The domain D(A) is an
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essential part of the definition of the generator A.

In order to use the generator to describe a semigroup, the domain of the generator must

be carefully characterized, and multiple theorems address this type of characterization. The

generator is not a bounded operator, thus much of the theory of bounded linear operators

may not be applicable. Instead, we must use results about closed operators, and properties

relating to closed and compact sets. Therefore, the domain of the generator is preferentially

dense, and we find that a densely defined generator is the type that generates a strongly

continuous semigroup. We would like to know when equivalence of the generators of two

semigroups implies equivalence of the semigroups themselves, and additionally, when conver-

gence of sequences of generators or resolvents imply convergence of the semigroup. This is

because in the application of operator semigroup theory to Markov processes, strong conver-

gence of sequences of semigroups can imply weak convergence of the processes. This exact

method was how Kurtz was able to prove his result– that of convergence in distribution of

a sequence of Markov processes to a limiting process.

In order to do this, however, in the setting of jump processes converging to a determin-

istic process, multiple technicalities had to be addressed, and multiple extensions of both

operators and existing theorems had to be undertaken. The elegance of the approach comes

from the recognition that both the Markov processes, and the deterministic process described

by the system of differential equations, could be described by operator semigroup theory.

Thus if the convergence of the semigroups could be described by means of convergence of the

respective generators, the result would follow. One of the difficulties is that the spaces that

the Markov processes are defined in, may not be the same spaces that the limiting process is

defined in, and furthermore, that each process in the sequence may be defined in a different

space. Thus we also must consider the convergence of sequences of spaces that contain the

processes.

A brief overview of basic theorems about characterization of operator semigroups by their

generators follows, including two versions of the famous Hille-Yosida generation theorems.
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Theorem. The generator of a strongly continuous contraction semigroup is a closed and

densely defined linear operator that determines the semigroup uniquely.

Corollary. For a strongly continuous semigroup (T (t))t>0 on a Banach space X with gen-

erator (A,D(A)), the following are equivalent:

1) The generator is bounded.

2) The domain D(A) is all of X.

3) The domain D(A) is closed in X.

4) The semigroup (T (t))t>0 is uniformly continuous.

5) The semigroup is given by:

T (t) = eAt :=
∞∑
n=0

tnAn

n!
, t > 0. (5.12)

Of course, we can not expect the generator to be bounded, so we must consider alternative

properties. Let A be a closed linear operator on a real Banach space L, for some real

λ, λ − A (≡ λI − A) is one-to-one, the range R(λ − A) = L, and (λ − A)−1 is a bounded

linear operator on L. Then denote the resolvent set of A as ρ(A), and the resolvent (at λ)

of A as Rλ(A). We then have the following

Proposition. Let (T (t))t>0 be a strongly continuous contraction semigroup on L with gen-

erator A. Then (0,∞) ⊂ ρ(A), and

Rλg =

∫ ∞
0

e−λtT (t)gdt (5.13)

for all g ∈ L and λ > 0.

Theorem. Hille-Yosida Theorem, contraction case, version 1: For a linear operator

A on a real Banach space L, the following two properties are equivalent:

1) A generates a strongly continuous contraction semigroup.

2) A is closed, densely defined, and for every λ > 0, one has λ ∈ ρ(A), and
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||λRλ(A)|| 6 1.

In order to use the Hille-Yosida theorem to decide if a given operator is the generator of

a strongly continuous contraction semigroup, it is necessary to estimate the operator norm

of the resolvent. This may not always be possible. An alternate version of the Hille-Yosida

theorem allows for the characterization of the generator without explicit knowledge of the

resolvent. In order to state this version, we need another operator definition:

Definition. A linear operator A on L is said to be dissipative if ||λf − Af || > λ||f || for

every f ∈ D(A) and λ > 0.

First we state the following useful

Lemma. Let A be a dissipative operator on L and let λ > 0. Then A is closed if and only

if the range of (λ− A) is closed.

Theorem. Hille-Yosida Theorem, contraction case, version 2: A linear operator A

on a real Banach space L is the generator of a strongly continuous contraction semigroup on

L if and only if:

1) D(A) is dense in L,

2) A is dissipative, and

3) The range, R(λ− A) = L, for some λ > 0.

We can now state one of the first results relating relationships between generators to

relationships between their corresponding semigroups:

Proposition. Let (T (t))t>0 and (S(t))t>0 be strongly contiuous contraction semigroups on

L with generators A and B, respectively. If A = B, then T (t) = S(t) for all t > 0.

An extension of the Hille-Yosida theorem is often used, which considers a closable A.

Recall that if A is closable, then the closure of A is the minimal closed linear extension of

A. First we have a lemma:
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Lemma. Let A be a dissipative linear operator on L with D(A) dense in L. Then A is

closable and R(λ− A) = R(λ− A) for every λ > 0.

Theorem. A linear operator A on L is closable and its closure A is the generator of a

strongly continuous contraction semigroup on L if and only if:

1) D(A) is dense in L,

2) A is dissipative, and

3) R(λ− A) is dense in L, for some λ > 0.

Often the domain of the generator is difficult to determine. Instead, we may find that

it is sufficient to characterize a subset of the space that serves as the domain of another

operator, whose extension is the operator we are concerned with. For situations like this, we

find that the definition of a core for a generator is useful.

Definition. Let A be a closed linear operator on L. A subspace D of D(A) is said to be a

core for A if the closure of the restriction of A to D is equal to A.

Proposition. Let A be the generator of a strongly continuous contraction semigroup on L.

Then a subspace D of D(A) is a core for A if and only if D is dense in L and R(λ−A|D) is

dense in L for some λ > 0.

For example, given a dissipative linear operator A with D(A) dense in L, we may want

to show that A generates a strongly continuous contraction semigroup on L. The problem

at hand is then to verify the range conditions. This type of approach is used by Kurtz in

his theorems, and additionally, other extensions and “extended limits” are introduced. For

instance, the dissipative operator initially considered may not be single valued. This situation

arises in Kurtz’s proof. For example, for n = 1, 2, . . . , let Ln and L be Banach spaces, and

let πn : L → Ln be a bounded linear transformation. Assume that supn ||πn|| < ∞. If

An ⊂ Ln × Ln is linear for each n > 1, the extended limit of the sequence {An} is defined
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by

ex− limn→∞An =

{(f, g) ∈ L× L : there exists

(fn, gn) ∈ An for each n > 1 such that ||fn − πnf || → 0 and ||gn − πng|| → 0}.

(5.14)

Then ex− limn→∞An is necessarily closed in L × L, but need not be single valued, even if

each An is. This extended limit is essential for the precursor proofs to the Kurtz theorem

from 1970, namely, his extensions of the Trotter approximation theorems discussed in the

next section. Additional extensions are required to show measurability, because for jump

processes, integrals must be computed in the Lebesgue sense, as functions are discontinuous.

These are the types of considerations required for the use of semigroup methods in the

context of stochastic processes.

5.3.1 Operator semigroups in stochastic processes

To characterize a generators of semigroup that correspond to stochastic processes, suitable

regularity conditions must be established in order to use the Hille-Yosida theorems. The

establishment of these regularity conditions can be an exceedingly complicated process, and

here only the most basic case is described. For this case, we consider a probability kernel µ

on a measurable space (S,S), and introduce the associated transition operator given by

Tf(x) = (Tf)(x) =

∫
µ(x, dy)f(y), x ∈ S, (5.15)

where we assume f : S → R to be measurable and either bounded or nonnegative. By

approximation by simple functions, we find that Tf is then also measurable on S. Further-

more, T is a positive contraction operator. The identity operator, I, corresponds to the

kernel µ(x, ·) ≡ δx, the distribution of the point mass at x. We see that if the probability

kernels satisfy Chapman-Kolmogorov relation, the transition operators (T (t))t>0 have the

114



semigroup property. Now assuming that S is a locally compact, separable metric space, we

introduce the class C0 = C0(S) of continuous functions f : S → R with f(x)→ 0 as x→∞.

We make C0 into a Banach space by using the sup norm, ||f || = supx |f(x)|.

We now introduce the notion of a Feller semigroup, named after William Feller for his

extensive development of this theory. The term was apparently not commonly used when

Kurtz was writing his thesis, as he did not make use of it, nor did he in the 1970 version of

the proof in Journal of Applied Probability. However, in his 1986 textbook with Ethier, the

proof is explained using this terminology. The idea of a Feller semigroup and the associated

results helps to organize and generalize convergence results concerning semigroup methods

in stochastic processes.

Definition. A semigroup of positive contraction operators (T (t))t>0 on C0 is called a Feller

semigroup if it has the additional regularity properties

1) T (t)C0 ⊂ C0, t > 0,

2) T (t)f(x)→ f(x) as t→ 0, for all f ∈ C0, x ∈ S.

Property 1 and 2 above, together with the semigroup property, imply the required strong

continuity property for use of the Hille-Yosida theory:

3) T (t)f → f as t→ 0, for all f ∈ C0.

Furthemore we can prove the following results:

Theorem. Let T (t)f(x) → f(x) be a Feller semigroup on C0 with resolvents Rλ, λ > 0.

Then the operators λRλ are injective contractions on C0 such that λRλ → I strongly as

λ→∞. Furthermore, the range D = RλC0 is independent of λ and dense in C0, and there

exists an operator A on C0 with domain D such that R−1
λ = λ − A on D for every λ > 0.

Finally, A commutes on D with every T (t).
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Lemma. A Feller semigroup is uniquely determined by its generator.

Proof:

The operator A determines Rλ = (λ − A)−1 for all λ > 0. By the uniqueness of Laplace

transforms, it then uniquely determines the measure µ(dt) = T (t)f(x)dt on R+ for any

f ∈ C0 and x ∈ S. Since the density T (t)f(x) is right-continuous in t for fixed x, the

assertion follows.

Theorem. Let (T (t))t>0 be a Feller semigroup with generator (A,D(A)). Then (T (t))t>0 is

strongly continuous and satisfies

T (t)f − f =

∫ t

0

T (s)Afds, f ∈ D(A), t > 0. (5.16)

Furthermore, T (t)f is differentiable at 0 if and only if f ∈ D(A), in which case

d

dt
(T (t)f) = T (t)Af = AT (t)f, t > 0 (5.17)

To give an idea of the probabilistic applications of these conditions, we make a further

simplification and assume that S is compact, and also that (T (t))t>0 is conservative, in other

words, T (t)1S = 1S for all t. For every initial state x, let Xx(t), t > 0 be an associated

Markov process with transition operators T (t). The following properties hold, where the

numbers refer to the regularity conditions 1-3 from the definition of a Feller semigroup

above:

Proposition. Let (T (t))t>0 be a conservative transition semigroup on a compact metric

space (S, ρ). Then

1) Feller property 1 holds if and only if Xx(t)⇒ Xy(t) as x→ y for fixed t > 0.

2) Feller property 2 holds if and only if Xx(t)→ x in probability as t→ 0, for fixed x.

3) Feller property 3 holds if and only if supx Ex[ρ(X(s), X(t))∧ 1]→ 0 as s− t→ 0.
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As a simple example of a generator for a Markov jump process, consider the compound

Poisson process. The compound Poisson process is created as follows:

Let Xn, n ∈ N be a sequence of i.i.d. random variables with distribution function F (x)

and let N(t) be a Poisson process with parameter λ. Let Sn = X1 + · · · + Xn be the nth

partial sum over the Xi. Then the compound Poisson process is defined by

Y (t) :=
∑
n>1

Sn1{N(t)=n} (5.18)

We assume f belongs to the space Cb(R) of bounded continuous functions on R, and define

the transition operator T (t) of Y by Ex[Y (t)]. Also define an operator L by

Lf(x) = E[f(x+X1)] =

∫
R
f(x+ y)F (dy), (5.19)

in order to make calculations easier. Note that Lnf(x) = E[f(x + X1 + · · · + Xn)] =

E[f(x+ Sn)]. Now we have that

(T (t)f)(x) = Ex[f(Y (t)] =
∑
n>0

E[f(x+ Sn)]P(N(t) = n) =
∑
n>0

e−λt
(λt)n

n!
E[f(x+ Sn)]

∑
n>0

e−λt
(λt)n

n!
Lnf(x) = (eλt(L−I)f)(x),

(5.20)

thus we can explicitly see that the transition semigroup can be expressed as eAt, where A is

given by

Af(x) = λ(L− I)f(x) = λ

∫
R
(f(x+ y)− f(x))F (dy). (5.21)

5.4 The Kurtz theorem

The proof of the convergence in distribution of a sequence of Markov jump processes to the

solution of a deterministic differential equation modeling the same physical process, in the

thermodynamic limit, as was done by Kurtz in 1967 and 1970, requires the use of several
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precursory results on the convergence of semigroups. These convergence results were based

on the establishment of sufficient conditions under which convergence of the generators of

the semigroups implied convergence of the semigroups themselves. The two main results

were proved by Trotter in 1958 [49], and Kurtz in 1969 [33].

5.4.1 Precursory Theorems

Theorems proved by H.F. Trotter and published in 1958 [49] established conditions for con-

vergence of sequences of semigroups in terms of both the generators and the resolvents, in

the context of sequences of Banach spaces each containing an element of a sequence of semi-

groups. The idea of the convergence of a sequence of Banach spaces Xn to a limiting space X

is introduced, in the following sense: given a sequence of Banach spaces Xn, together with a

sequence of linear maps Pn with ||Pn|| 6 1, mapping the limiting space onto each element of

the sequence of spaces (Pn : X → Xn), we have that limn→∞ ||Pnf || = ||f || for every f ∈ X.

The maps Pn become isomorphisms, in the limit, in a certain way that is made precise in

Trotter’s paper [49]. Trotter introduces new definitions which extend ideas about uniformity

and convergence and allow him to prove convergence of random walks to one-dimensional

diffusion processes using these methods.

Kurtz further extended Trotter’s theorems to be applicable to general Markov processes,

by using the extended limit described above, and furthermore, replacing the need for a

uniform type of convergence with a bounded, pointwise convergence, among other additions

[33]. This required the use of associated extensions of the generator. The theorem was

further extended and revised by Sova and Mackevičius, and can be presented as a cumulated

combination of results called the “Trotter, Sova, Kurtz, Mackevičius” theorem [23]. The

Kurtz version as presented in the Ethier and Kurtz 1986 text is given here [11]:

Theorem 1. Let L and Ln, n = 1, 2, . . . be Banach spaces with norms all denoted by || · ||,

and πn : L→ L be a bounded linear transformation. Assume also that supn ||πn|| <∞. Let

the notation fn → f indicate that fn ∈ Ln for each n > 1, f ∈ L, and limn→∞ ||fn−πnf || = 0.
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For n = 1, 2, . . . , let (Tn(t))t>0 and (T (t))t>0 be strongly continuous contraction semigroups

on Ln and L, respectively, with generators An and A. Let D be a core for A. Then the

following are equivalent:

1) For each f ∈ L, Tn(t)πnf → T (t)f for all t > 0, uniformly on bounded intervals.

2) For each f ∈ L, Tn(t)πnf → T (t)f for all t > 0.

3) For each f ∈ D, there exists fn ∈ D(An) for each n > 1, such that fn → f and

Anfn → Af , i.e., {(f, Af) : f ∈ D} ⊂ ex− limn→∞An.

5.4.2 Original presentations of the theorem and later version

In the original versions of the Kurtz theorem, various terms and results that were created,

proved and solidified later did not exist. The thesis version of the proof required that each

step of the multiple extensions and approximations required to achieve the results were

fleshed out individually, which made for a more cumbersome and lengthy exposition. In the

1986 textbook version the use of the Feller semigroup terminology and associated results is

found [11].

The steps of the theorem are summarized here, based on the later version [11], together

with a simple example illustrating the method. The basis of the proof requires the definition

of a density dependent family of processes:

Definition. Let βl be a collection of nonnegative functions with l ∈ Zd, defined on a subset

E ⊂ Rd. Set En = E ∩ {n−1k : k ∈ Zd}, and assume that if x ∈ En and βl(x) > 0 then

x + n−1l ∈ En. A density dependent family of processes corresponding to the βl is a

sequence {Xn} of jump Markov processes such that Xn has state space En and transition

rates

q(n)
x,y = nβn(x−y)(x), x, y ∈ En. (5.22)

For the simple example, we begin by defining a sequence of processes as follows:
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For n > 1, define

λn(x) = 1 + 3x

(
x− 1

n

)
,

µn(x) = 3x+ x

(
x− 1

n

)(
x− 2

n

)
,

(5.23)

and let {Yn} be a sequence of birth-death processes in Z+, with transition probabilities

satisfying

P{Yn(t+ h) = j + 1|Yn(t) = j} = nλn

(
j

n

)
h+ o(h)

P{Yn(t+ h) = j − 1|Yn(t) = j} = nµn

(
j

n

)
h+ o(h)

(5.24)

This process represents the number of molecules of a chemical species R in a volume n

undergoing the following chemical reactions:

A
1


3
R, B + 2R

3


1

3R (5.25)

The deterministic model corresponding to this process, based on the law of mass-action,

would be d[R]
dt

= [R]+3[R]2− [R]3−3[R] . We rescale and renormalize for ease of calculation,

setting

Xn(t) = n
1
4 (n−1Yn(n

1
2 t)− 1), t > 0. (5.26)

Let En = {n 1
4 (n−1y − 1) : y ∈ Z+}, and note that

Tn(t)f(x) ≡ E[f(Xn(t))|Xn(0) = x] (5.27)

defines a semigroup (Tn(t))t>0 on B(En) (the Borel sets of En) with generator

Gnf(x) = n
3
2λn(1 +n−

1
4x)[f(x+n−

3
4 )− f(x)] +n

3
2µn(1 +n−

1
4x)[f(x−n−

3
4 )− f(x)] (5.28)

Now let X be another process with rates λ(x) = 1 + 3x2, and µ(x) = 3x+ x3, and generator

Gf(x) = 4f ′′(x) − x3f ′(x). We can show using a Taylor expansion of Gnf(x) that for
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appropriate f ,

lim
n→∞

sup
x∈En
|Gnf(x)−Gf(x)| = 0. (5.29)

Using theorems such as those described above, it can be shown that

A ≡ {(f,Gf) : f ∈ C[−∞,∞] ∩ C2(R), Gf ∈ C[−∞,∞]} (5.30)

is the generator of a Feller semigroup (T (t))t>0 on C[−∞,∞]. By use of some additional

theorems, it can be shown that there is a diffusion process X corresponding to (T (t))t>0.

To prove that Xn ⇒ X, it suffices to show that equation 5.29 holds for all f in a core D

for the generator A [11]. This diffusion process then can be shown to converge in the same

way to the deterministic process, as long as the initial conditions also converge. Note the

similarity between the expression for the rates of the diffusion and the differential equation

of the deterministic version above. For the proof of the general version, as summarized in

chapter 3, a number of proofs relating to the specific forms of the functions βl are required

as well.
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Chapter 6

Modern Applications and Conclusion

We have seen that, from more basic mathematical beginnings such as those used to show

convergence in the mean of the simple unimolecular reaction to the deterministic solution

without the use of limits, the theory can explode in complexity. For a convergence proof such

as the one given by Kurtz to show convergence in the thermodynamic limit, quite advanced

methods were used. Of course, Kurtz’s aim was not to prove applicability of the use of

stochastic models in chemistry per se, as his theorems have much broader consequences

and apply to much more general aspects of the pure theory than for this singular purpose.

However, even the van Kampen expansion is quite advanced, and we see that when there

is a limit involved such that the state space becomes infinite, extreme difficulties can arise.

For the semigroup approach, this is of course because a finite transition matrix becomes an

infinite operator, and therefore representations such as the exponent and the derivative at

zero become difficult to justify without extreme care.

On the other hand, we saw that even for some bimolecular reactions, solving for the tran-

sition function itself can be daunting, if not intractable. Therefore, the alternate description

of a process via its semigroup or the generator of the semigroup can often offer another

avenue. The connections found between jump Markov processes, diffusions, and determin-

istic processes as viewed through the lens of their associated semigroups offers a deep and
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cohesive way to understand dynamical systems of all types from a similar standpoint.

A revival in the birth-death type description in the sciences has occurred over the past two

decades. It has been found that gene expression in cells seems to contain a random component

[50]. Although, according to Gillespie’s rigorous derivation of the master equation, this type

of simple birth-death model is only expected to be applicable in an ideal-gas, well-stirred

system at equilibrium, it seems that these same basic, combinatorial stochastic models offer

remarkably appropriate predictions of gene expression. This is especially surprising due

to the fact that the reactions between enzymes in the cell occur between complex three-

dimensional surfaces and involve numerous co-factors. Additionally, the crowded solution-

state environment is very far from gas phase. Models are computationally created using

the Gillespie algorithm or one of its subsequent variants, and often the rates that are used

are from kinetic experiments and based on deterministic models. An interesting question

is whether the success of these types of models, for such systems that are theoretically

completely inappropriate, results from a cancelation of errors, or if there is another way to

justify the approximation in these situations. For instance, the use of these types of models

to describe population dynamics (for humans or animals, etc.) has not been rigorously

validated, based on first principles and atomic details, the way that the physics community

required of the chemical master equation. However, they have nevertheless proved to be

useful models and can make predictions that can, in some situations, be more accurate than

the deterministic models provide. We may have that, for processes in biochemistry such as

complex enzymatic pathways in the cell, we are already at such a macroscopic scale that

we are no longer modeling a chemical reaction with the birth-death model, but a biological

population much like the canonical foxes and rabbits models do. Thus the atom-based,

rigorous derivation is not required or appropriate.

It should be noted that the Kurtz theorem (in its 1970 version) was originally intended to

show correspondence between the stochastic population models and the deterministic ones,

as well as the application in chemistry. For the deterministic population model, there is
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no validation from first principles as there is in chemical physics. However, we still have

convergence of the two. It is possible that something in our approach to creating a model

of a dynamical system is captured by the operator semigroup description, and that the

same underlying ideas expressed by both models are also expressed mathematically by the

transition semigroups and the associated generators for both the stochastic processes and

the deterministic version.
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