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Thesis directed by Professor Gita Alaghband.

ABSTRACT

Linear spatial trees are typically constructed in two discrete, consecutive stages: cal-

culating location codes, and sorting the spatial data according to the codes. Additionally, a

GPU R-tree construction algorithm exists which likewise consists of sorting the spatial data

and calculating nodes’ bounding boxes. Current GPUs are approximately three orders of

magnitude faster than CPUs for perfectly vectorizable problems. However, the best known

GPU sorting algorithms only achieve 10–20 times speedup over sequential CPU algorithms.

Both calculating location codes and bounding boxes are perfectly vectorizable problems.

We thus investigate the construction of linear quadtrees, R-trees, and linear k-d trees using

the GPU for location code and bounding box calculation, and parallel CPU algorithms for

sorting. In this endeavor, we show how existing GPU linear quadtree and R-tree construc-

tion algorithmsmay bemodified to be heterogeneous, and we develop a novel linear k-d tree

construction algorithm which uses an existing parallel CPU quicksort partition algorithm.

We implement these heterogeneous construction algorithms, and we show that heteroge-

neous construction of spatial data structures can approach the speeds of homogeneous GPU

algorithms, while freeing the GPU to be used for better vectorizable problems.

The form and content of this abstract are approved. I recommend its publication.

Approved: Gita Alaghband
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CHAPTER I

INTRODUCTION

Traditionally, spatial tree construction algorithms have been homogeneous, being

implemented entirely on the SIMD (single instruction, multiple data) GPU co-processor,

or, less commonly, entirely on the MIMD (multiple instruction, multiple data) CPU.

For highly vectorizable problems, modern GPUs typically execute up to three orders

of magnitude (1000×) faster than sequential execution on the CPU [Garland et al., 2008]

[Ryoo et al., 2008], and well-vectorizable problems typically execute around two orders

of magnitude (100×) faster [Owens et al., 2008]. However, poorly vectorizable problems

may execute as slow as around one order of magnitude faster (10×) than sequential CPU

execution [Lee et al., 2010]. Many algorithms which are poorly vectorizable still parallelize

well for MIMD architectures. Hence, we posit that an algorithm which does not lend itself

to vectorization but is well-parallelizable may execute on a manycore MIMD architecture

comparably to a GPU architecture.

We therefore propose that existing homogeneous algorithms ought to be subdi-

vided, poorly vectorizable functions identified, and the algorithm implemented heteroge-

neously, wherein well-vectorizable functions are executed on the SIMD GPU and poorly-

vectorizable functions are executed on the MIMD CPU.We hypothesize that such a hetero-

geneous algorithm will execute approximately as fast or faster on a GPU-enabled manycore

architecture, and with greater efficiency, than a traditional homogeneous algorithm.

1



To this end, we have chosen to analyze construction algorithms for spatial data struc-

tures. GPU algorithms for spatial trees are typically implemented in two phases. Tree nodes

are constructed, and the spatial elements are sorted (not necessarily in that order). The node

construction phase is well vectorizable, typically consisting entirely of arithmetic operations

and each node being independent. Sorting is better suited for MIMD parallelization. GPU

sort algorithms typically execute around 10–20× faster than serial algorithms, or around one

order of magnitude [Satish et al., 2009a]. Contrariwise, sorting is a well-parallelizable prob-

lem, with MIMD algorithms theoretically seeing linear speedup with the number of cores

available, primarily constrained by memory bandwidth [Cormen et al., 2009, p. 803] [Mc-

Cool et al., 2012, p. 304] [Satish et al., 2010]. Hence, we hypothesize that a heterogeneous

construction algorithm which uses the SIMD GPU to construct nodes, and the MIMD CPU

to sort will perform comparably to a homogeneous GPU algorithm, with greater efficiency.

To test our hypothesis, we will develop heterogeneous algorithms for constructing

R-trees, linear quadtrees, and linear k-d trees. We will adapt existing GPU algorithms for

R-trees and linear quadtrees. We will also develop a novel heterogeneous linear k-d tree

construction algorithm.

All the spatial trees we construct are over 2-dimensional space and contain points,

for simplicity, without loss of generality. Our algorithms may be easily adapted for poly-

gons in 3-dimensional space, and our general technique should be applicable to any ex-

isting GPU tree construction algorithm which involves discrete sorting or other poorly-

vectorizable functions.

In Chapter II we review the spatial data structures which we investigate: quadtrees,

R-trees, and k-d trees. We provide an overview of their design, describe how they each
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subdivide space, and provide figures which illustrate the structures graphically.

In Chapter III we present our heterogeneous construction algorithms for quadtrees,

R-trees, and k-d trees. We present the homogeneous GPU algorithms which we adapt, and

we present how we have adapted them for heterogeneous construction. We also present

our novel heterogeneous k-d tree construction algorithm, and the parallel quicksort around

which our algorithm is based. We also present an overview of parallel pipelining, and how

it may be used with heterogeneous algorithms when constructing multiple spatial trees.

In Chapter IV we present our results implementing and executing our heterogeneous

algorithms.

In Chapter V we suggest future work which might be done to extend our research.

In Chapter VI we conclude by summarizing our algorithms and their results regard-

ing the heterogeneous construction of spatial data structures.
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CHAPTER II

BACKGROUND

There exist numerous spatial tree structures, with various advantages and disadvan-

tages. We have selected three of the most widely used for our heterogeneous research:

quadtrees, R-trees, and k-d trees.

Our motivations for this study were to ascertain whether heterogeneous physical

architectures might be more efficiently used to construct spatial data structures, specifically

spatial trees, with less time, cost, or power.

Here we provide an overview of quadtrees, R-trees, and k-d trees. We also overview

how spatial trees may be constructed as linear trees, with various advantages, of which we

are primiarly concerned with improved vectorizability. We briefly discuss their structure,

how each might be constructed, and provide figures visualizing their structures graphically.

We also briefly discuss applications of each tree.

Quadtree

Quadtrees [Samet, 1984] [Finkel and Bentley, 1974] are arguably the simplest spa-

tial data structure. Quadtrees recursively subdivide space into quadrants. Each node in the

tree represents a quadrant of its parent, and contains four child nodes, each representing a

quadrant of its own space. Each node has a fixed capacity of spatial elements. Typically,

but not necessarily, all nodes in the tree share the same constant capacity, to save space.

When a node reaches its capacity, it splits into four children into which further insertions
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will be recursively placed. Depending on the tree, upon splitting, existing elements may

either be retained or inserted into the newly created children. If elements are inserted into

children upon splitting, only leaf nodes will contain elements.

As with most tree structures, the quadtree can be searched in logarithmic time. To

search, the quadtree is traversed, and for each node, it is determined which children are con-

tained within the search space, and those children are in turn recursively searched. Thereby

only nodes of the tree which contain the search space are inspected.

.

Figure 1: quadtree visualization

Several quadtree variations exist for storing points, lines, and polygons. Addition-

ally, quadtrees may also be used to index images, whereby each pixel is a leaf node of the

tree. Image quadtrees need not store the actual pixel information, but only the spatial loca-

tion of the pixel. The quadtree paradigm also applies to higher dimensions. Quadtrees in
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3-dimensional space are called octrees.

Figure 1 presents a visualization of a quadtree which splits when any node contains

more than three spatial elements.

Quadtrees and octrees are often used in applications where a spacemust be searched,

and where the simplicity of implementation outweighs the speed and other advantages of

more complex trees.

For our research, we will be using 2-dimensional (linear) quadtrees which contain

points, without loss of generality.

R-tree

R-Trees [Guttman, 1984] recursively subdivide an n-dimensional space into mul-

tiple n-dimensional rectangles. R-trees are typically constructed by enclosing elements in

their minimum bounding rectangle, with each parent node representing the bounding rect-

angle of its children. The spatial tree may then be searched in logarithmic time like any

other tree.

The R-tree structure does not require a specific rectangles selection algorithm. Var-

ious algorithms for selecting rectangles exist [Guttman, 1984] [Greene, 1989]. Spatial ele-

ments are typically enclosed in a minimum bounding rectangle, and it is generally desirable

to enclose nearest-neighbors in their minimum bounding rectangles, in order to minimize

the search space.

The bounding rectangles of an R-tree are usually axis-aligned. Axis aligned bound-

ing boxes result in an increased search space over bounding boxes aligned to their contents,

at the benefit of much less expensive searches. Searching must compare a set of points,
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rather than checking for line intersection.

It may also be noted that bounding rectangles can and typically do overlap. It is a

goal of R-tree insertion and construction algorithms to minimize overlap, in order to mini-

mize the search space.

.

Figure 2: R-tree visualization

As with quadtrees, the nodes of an R-tree also have a fixed capacity. Each node

of the R-tree has a fixed number of children, and each node stores the minimum bounding

box of all its children. Hence, to search an R-tree, nodes are recursively traversed. For

each node, if that node’s bounding box contains the search space, the node’s children are

searched. Since rectangles may overlap, it is possible that multiple children will require

searching.

Figure 2 presents a visualization of an R-tree with an arbitrary node selection algo-
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rithm, in which the bounding boxes of each child node are drawn progressively thinner than

their parents.

R-trees are often used for disk storage by spatial databases. Since each tree node

may contain a set number of spatial elements, and a minimum fill may be guaranteed for

nodes, the structure is suitable for paging data, similar to a B-tree [Kriegel et al., 2008].

For our research, we will be constructing an R-tree using axis-aligned bounding

boxes. Due to the construction algorithm we use, [Luo et al., 2012] our bounding rectangles

will be automatically constructed per a sort, and hence the rectangle selection does not

apply. We will be constructing a 2-dimensional R-tree which contains points, without loss

of generality.

k-d tree

The k-d tree [Bentley, 1975] structure recursively subdivides space along a splitting

hyperplane (for 2D space, a line; for 3D space, a plane). The “k” stands for “k-dimensional,”

as the tree may be constructed for any number of dimensions.

The data structure does not specify how the dimension of the splitting hyperplane

is to be chosen. It is common to alternate dimensions. That is, for a 3-dimensional tree,

splitting along the x-axis, then the y-axis, then the z-axis. However, it is conceivable that

alternate dimension splitting may be optimal for certain data sets or search patterns. For

example, if it is known that most searches are over thin vertical subspaces, it may be optimal

to always split along the y-axis.

The data structure also does not require a specific algorithm for selecting the split-

ting location, and thus, many splitting algorithms exist. The middle of the splitting node
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can be trivially chosen, in which case the tree will be the binary equivalent of a quadtree.

Alternatively, if the median element value is chosen, the tree will be balanced. A balanced

k-d tree offers the same benefits of other balanced trees, such as guaranteed logarithmic

search time. Since the dimensions of the splitting hyperplane are not necessarily the same,

algorithms for balancing k-d trees are more complex, since the tree cannot simply be rotated

due to its multi-dimensional sorted nature.

For 3-dimensional k-d trees containing polygons, it is often desirable to minimize

or avoid splitting across polygons, which requires the split polygon either be divided or

included in both child nodes of the tree. More complex splitting algorithms exist, such as

the surface-area heuristic [MacDonald and Booth, 1990] [Feng, 2013] [Havran and Bittner,

2002], which are outside the scope of this paper.

.

Figure 3: k-d tree visualization
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Figure 3 presents a visualization of a k-d tree with a splitting algorithm which is

approximately the average of the spatial elements andwhich alternates dimensions, in which

the splitting hyperplanes (lines) of each child node are drawn progressively thinner than

their parents.

The k-d tree structure is often used for computer graphics applications such as ray

tracing and nearest-neighbor, due to its versatility. A k-d tree may be constructed very

quickly with a trivial splitting algorithm, or with a variety of benefits and costs via more

complex splitting algorithms [Feng, 2013] [Otair, 2013].

For our construction algorithm, we will be constructing a (linear) k-d tree which al-

ternates dimensions and which uses a simple heuristic median splitting function. While the

splitting function is not part of our research, simply selecting the middle of each subspace

obviates many of the advantages of a k-d tree over other spatial data structures. Hence, we

elect to use a simple function which results in an approximately balanced tree.

Linear Tree

Spatial tree GPU algorithms often use linear trees, which are better vectorizable than

traditional trees. Linear trees [Gargantini, 1982] [Kim and Park, 1989] involve construct-

ing the tree nodes from the given elements, wherein each node is constructed with a code

representing its location in the tree – a Morton code – and storing the nodes in a linear array

[Morton, 1966].

For example, for a quadtree, the position in a given node may be represented with 2

bits: 00 is top left, 01 is top right, 10 is bottom left, 11 is bottom right. Then, for a tree with

a fixed height of 4, every element’s position may be represented with 8 bits. The Morton
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code 00110110 then means that the element is in the top-left quadrant of the space, within

that, bottom-right, top-right, and bottom left, respectively.

The nodes are then sorted according to their Morton codes, and the result is a linear

array representing a tree. This linear tree may be searched via a binary search of the sorted

Morton codes.

..
10

.
11

.

00

.

01

Figure 4: linear tree Morton code visualization

..

[{node 0},{node 1}, ..., {node n}]

.

00 11 01 10 | spatial element | key

Figure 5: linear tree node visualization

Figure 4 presents a visualization ofMorton codes indexing a quadtree level. Figure 5

presents a visualization of a linear tree array, and an expanded view of a single node. As

we see, the tree is stored as a linear array, wherein each element of the array contains the

Morton code used to search the tree, the spatial element of that node, and a key indexing

external data. A key is not strictly required for a spatial element; however, a key will almost

always be required for applications, and therefore we assume its existence.

This sorted linear tree may be considered analogous to the linear array typically used

to store a binary heap for a heapsort. Once sorted by Morton code, the linear tree may be

searched in logarithmic time to find an element in a given position, or the elements in a

given range.
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CHAPTER III

ALGORITHMS

Here we present our algorithms for heterogeneous construction of linear quadtrees,

R-trees, and linear k-d trees. As aforementioned, we modify GPU algorithms for quadtree

construction [Lauterbach et al., 2009] and R-tree construction [Luo et al., 2012, p. 356],

and we present a novel heterogeneous k-d tree construction algorithm which is built around

a parallel quicksort algorithm [Tsigas and Zhang, 2003]. We overview the existing homo-

geneous GPU tree construction algorithms which we modify, detail how we have modified

them, detail our novel k-d tree construction algorithm, and overview a parallel quicksort

algorithm which it requires.

An SIMD processor is incapable of executing jump instructions on multiple data,

but must execute each jump serially. This is because a jump involves changing the instruc-

tion pointer, while each vector processing unit of the SIMD processor may only change

data. Modern GPUs are not true SIMD, but rather have a few MIMD processors – perhaps

one for every ten or hundred vector processing units [Lindholm et al., 2008]. The Nvidia

corporation calls this architecture “single instruction, multiple threads” or SIMT [Nvidia,

2009]. Even so, jumps, which primarily involve if statements in structured programming

languages, must be minimized to fully use the SIMD/SIMT GPU architecture. Part of our

algorithm design involves this minimization of conditionals and jumps.

For our pseudocode, we use the following conventions to denote parallelism. Re-
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gions which are executed in parallel on the MIMD CPU are denoted by parallelfor, which

indicates that the block is to execute for each index of the loop in parallel, or parallel, which

indicates that all statements within the block are to execute in parallel. Regions which are

executed in parallel on the SIMD GPU are denoted by vectorfor, which indicates that the

block is to execute for each index of the loop in parallel on a vector processing element.

Note that all data referenced within a vectorfor block must be allocated and copied to the

GPU co-processor, for a GPU implementation of the heterogeneous algorithm. The over-

head of transferring the GPU instructions to the co-processor is also incurred.

Linear Quadtree

The basic serial algorithm for creating a linear quadtree is presented in Algorithm 1.

We have adapted the GPU algorithm for linear bounded volume hierarchy construction

presented by Lauterbach et al. [2009].

As we see in Algorithm 1, the tree is constructed in two steps. First, we create the

nodes of the tree. Second, we sort the nodes based on their Morton code locations. The

tree may then be searched in logarithmic time via a binary search using the Morton codes

as keys.

Node Creation

The CreateNodes function in Algorithm 1 iterates over each point. For each point,

it creates that point’s Morton code. For the 2-dimensional tree, the code for each depth of

the tree consists of 2 bits: x and y. We calculate these bits, shift the existing location (of

previous depths) left by two bits, and logical or the code with this current depth’s bits. We

then recalculate the boundary for the next quadrant depth, and loop, for each depth.

13



Algorithm 1 serial algorithm for linear quadtree construction in pseudocode
1: procedure CreateNode(point, node, boundary, depth)
2: node.point← point
3: for i← 0, depth do
4: bit1← 0
5: bit2← 0
6: if point.y > (boundary.topleft.y + (boundary.bottomright.y −

boundary.topleft.y)/2) then
7: bit1← 1
8: end if
9: if point.x > (boundary.topleft.x + (boundary.bottomright.x −

boundary.topleft.x)/2) then
10: bit2← 1
11: end if
12: bits← (bit1 << 1)|bit2
13: node.location← node.location << 2)|bits
14: newwidth← (boundary.bottomright.x− boundary.topleft.x)/2
15: newheight← (boundary.bottomright.y − boundary.topleft.y)/2
16: if point.x− boundary.topleft.x > newwidth then
17: boundary.topleft.x← boundary.topleft.x+ newwidth
18: end if
19: if point.y − boundary.topleft.y > newheight then
20: boundary.topleft.y ← boundary.topleft.y + newheight
21: end if
22: boundary.bottomright.x← boundary.topleft.x+ newwidth
23: boundary.bottomright.y ← boundary.topleft.y + newheight
24: end for
25: return node
26: end procedure
27: procedure CreateNodes(points, boundary, depth)
28: tree← newLinearQuadtree
29: for i← 0, points.length do
30: tree.nodes[i]← CreateNode(points[i], tree.nodes[i], boundary, depth)
31: end for
32: return tree
33: end procedure
34: function Comparator(nodea, nodeb)
35: return nodea.location < nodeb.location
36: end function
37: procedure CreateLinearQuadtree(points, boundary, depth)
38: tree← CreateNodes(points, boundary, depth)
39: tree.nodes← Sort(tree.nodes, comparator)
40: return tree
41: end procedure

14



Algorithm 2 arithmetic equivalent of node boundary calculations in pseudocode
1: boundary.topleft.x ← floor((point.x − boundary.topleft.x)/newwidth) ∗

newwidth+ boundary.topleft.x
2: boundary.topleft.y ← floor((point.y − boundary.topleft.y)/newheight) ∗

newheight+ boundary.topleft.y

In order to efficiently execute this algorithm on a vector processor, we must elimi-

nate conditionals as much as possible, such that our algorithm is primarily or entirely arith-

metic. The node creation function as presented in Algorithm 1 has two pairs of identical

conditionals – setting the new boundary, and calculating the Morton codes. For vector

execution, the conditionals for setting the new boundary may be easily transformed into

arithmetic as in Algorithm 2. An optimizing compiler may automatically perform this op-

timization. However, it may not, so it is better that our implementation explicitly remove

the conditionals for vector execution.

Algorithm 3 arithmetic equivalent of Morton code calculations in pseudocode
1: bit1 ← point.y > (boundary.topleft.y + (boundary.bottomright.y −

boundary.topleft.y)/2)
2: bit2 ← point.x > (boundary.topleft.x + (boundary.bottomright.x −

boundary.topleft.x)/2)

We would also like to transform the Morton code calculations into logical opera-

tions. The assignment of logical operations to integral values is language-dependent. The

C and C++ languages guarantee that logical operations assigned to an integral type will

have a value of 0 when false, and a value of 1 when true [ISO, 1999, p. 86] [C++, 2003, p.

62]. Standard Fortran does not permit the assignment of logical values to integral types [J3,

1991, p. 72], but GNU Fortran Extensions (and some other compilers’ extensions) permit

said assignment with the same guarantees [FSF, 2007, p. 28]. Furthermore, in assembly

languages, logical instructions operate on numeric values. When using a language which
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permits the assignment of logical operations to integral values, and guarantees 0 or 1 values,

the Morton code calculations from Algorithm 1 may be transformed as in Algorithm 3.

We note that Algorithm 3 could be easily adapted for languages with different guar-

antees. For example, for a language which guarantees true values are greater than zero, and

false values are less than zero; or that false values are zero, and true values are nonzero. We

also note that, as in Algorithm 2, the compiler may or may not perform this optimization

automatically.

Our node creation function is now perfectly vectorizable at point-granularity. Typ-

ically, tree depth will range from 16–64, in order to fit the Morton code into an integer

approximately the size of the architecture, for performance. Since sorting and searching

the tree must compare each Morton code, codes of significantly greater size than the archi-

tecture will impact construction and search performance. Then, since depth is small, it is

sufficiently granular for each vector processing element to compute a whole point.

Our GPU algorithm then simply executes each iteration of the for loop in the

CreateNodes function on a GPU vector core, replaces the boundary calculations per Al-

gorithm 2, and replace the Sort call in CreateLinearQuadtree with a GPU sort. For our

results, we will be using a preexisting GPU radix sort library.

For our heterogeneous algorithm, we observe that theMorton code calculation func-

tions (CreateNodes,CreateNode) are perfectly vectorizable. There are no conditionals; it

is entirely arithmetical. Therefore, the only poorly vectorizable part of this algorithm is the

sort. As stated previously, sort is poorly vectorizable, and typically only results in a single

order of magnitude speedup over serial execution. Contrariwise, parallel MIMD algorithms

typically see linear speedup with the number of cores, minus overhead and memory band-
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width. So, for our heterogeneous algorithm, we will be implementing a parallel mergesort

which executes on the multicore CPU.

Parallel Mergesort

Our heterogeneous linear quadtree construction algorithm requires an MIMD par-

allel sort. We present an example parallel mergesort, as presented in McCool et al. [2012].

For a basic introduction to Mergesort, see Cormen et al. [2009, p. 34].

Parallel mergesort has two parallel components: subdivision and merge. Paralleliz-

ing the subdivision is trivial. The data of each subdivision is independent, and hence we

simply execute each partition of the subdivision in parallel. By virtue of the parallelized

subdivisions, merging the sorted sub-arrays will also be parallelized. However, because the

subdivisions create a tree structure, for an array of size nwe will only see a parallel speedup

of logn. In order to achieve a linear speedup with the number of MIMD cores, we must

parallelize the merge step. This is less trivial, and we present the basic algorithm here as

part of our overall construction algorithm.

The basic algorithm for parallel merging of two sorted subsequences A and B is as

follows [McCool et al., 2012, p. 300].

1. Let A0, A1 be two contiguous subsequences of A of approximately equal length.

2. Let a0 be the first element in A1.

3. Use a binary search (O(logn)) on B to find the element bq such that bq < a0 < bq+1.

4. Let B0, B1 be two contiguous subsequences of B such that bq ∈ B0, bq /∈ B1.

5. Let C0 be the recursive, parallel merge of A0 and B0.
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6. Let C1 be the recursive, parallel merge of A1 and B1.

7. LetC be the joining of sequencesC1 andC2 such thatC = {c0i|i = 0..q, c1i|i = q..}.

Algorithm 4 parallel merge in pseudocode
1: procedureMerge(A,B,C)
2: mergecutoff ← 2000 ▷ may be varied to optimize for architecture
3: if A.size+B.size < mergecutoff then
4: SerialMerge(A, B, C)
5: return
6: end if
7: amiddle← A.first
8: bmiddle← B.first
9: if A.size < B.size then
10: bmiddle← B.first+B.size/2
11: amiddle← upperbound(A.first, A.last, bmiddle)
12: else
13: amiddle← A.first+ A.size/2
14: bmiddle← lowerbound(B.first, B.last, amiddle)
15: end if
16: cmiddle← C.first+ (amiddle− A.first) + (bmiddle−B.first)
17: parallel
18: Merge(A.first, amiddle, B.first, bmiddle, C.first)
19: Merge(amiddle, A.last, bmiddle, B.last, cmiddle)
20: end parallel
21: end procedure

The parallel merge algorithm [McCool et al., 2012, p. 301] is demonstrated in

Algorithm 4.

Let T∞(n) be the time to execute a parallel algorithm on data of size nwith ∞ proces-

sors. The parallel mergesort has asymptotic runtime of T∞(n) = Θ(lg3 n), and an asymp-

totic speedup over serial mergesort of Θ(n/ lg2 n) [McCool et al., 2012, p. 304]. This

suggests that thousands of processors might be used for sequences with millions of ele-

ments. Unfortunately, as we will see, architectural constraints such as memory bandwidth

become a practical issue constraining parallel speedup.
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We note that parallel mergesort is a stable sort [McCool et al., 2012, p. 300].

R-tree

For our heterogeneous R-tree construction, we modify the GPU algorithm presented

in Luo et al. [2012, p. 356]. The GPU algorithm is presented in Algorithm 5.

Algorithm 5 GPU R-tree construction in pseudocode
1: function Point.Compare(a, b)
2: return a.x < b.x ▷ sorting creates an “xpack”
3: end function
4: function Rectangle.Compare(a, b)
5: return a.BottomLeft < b.BottomLeft ▷ sorting creates a “lowxpack”
6: end function
7: ELEMENTS-PER-NODE ← 10 ▷ may be changed for architecture optimization
8: procedure CreateRtree(Data)
9: Data← Sort(Data,Data.Type.Compare)
10: Nodes← newList
11: level ← 0 ▷ second level
12: Nodes[level]← newList
13: for i← 0, Data.length/ELEMENTS-PER-NODE do
14: for j ← 0, ELEMENTS-PER-NODE do
15: nodes[level].Insert(data[i + j])
16: end for
17: end for
18: level ← level + 1
19: while Nodes[level].length > 1 do ▷ until the root node
20: len← Nodes[level − 1].Length/ELEMENTS-PER-NODE
21: vector for i← 0, len
22: node← newNode
23: for j ← 0, ELEMENTS-PER-NODE do
24: node.Insert(Nodes[level - 1][i + j])
25: end for
26: nodes[level]← node
27: end vector for
28: end while
29: end procedure

We first sort the spatial data, and then create leaf nodes for each spatial element.

Then, for each level of the tree, we assign the sorted nodes, in order. Since the nodes are
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.

Figure 6: r-tree xpack visualization

sorted according to their bottom-left x coordinate, the structure of the tree is known as a

lowxpack [Luo et al., 2012, p. 356].

Figure 6 presents a visualization of an R-tree wherin nodes are selected by their

x-coordinate proximity, that is, a “xpack,” as performed by the GPU algorithm presented

by Luo et al. [2012, p. 356] and hence also our modified heterogeneous version of their

algorithm. Contrast this tree with the arbitrary selection algorithm presented in Figure 2.

Observe how nodes which are nearby on both axes may not be selected in favor of nodes

which are closer on the x-axis but distant on the y-axis.

Note that this is not a linear tree. While the construction algorithm is similar to the

previous linear quadtree, the constructed R-tree is an ordinary tree wherein each node con-

tains pointers to its children. This has the advantage of having logarithmic insert time. This
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has the disadvantage that for infinite processors, the parallelization speedup is O(logn).

The nature of the tree notwithstanding, if we inspect the construction algorithm, we notice

that we know the size of the tree and where each node will be placed beforehand. Therefore,

the tree’s memory may be allocated beforehand in a single allocation. This allows for both

faster allocation, as well as spatial locality (which may improve the performance of hard-

ware caching). We note that if memory is pre-allocated and the tree is mutable, additional

logic may be required to free memory of inserted nodes versus original nodes.

We observe that this algorithm is similar in structure to the linear quadtree construc-

tion algorithm, despite not constructing a linear tree. Both algorithms involve a discrete sort,

preceded or followed by node construction.

As with the linear quadtree, the nodes for this R-tree may be constructed entirely

arithmetically. Node construction for branches involves calculating the pointers to each

child node, and then calculating the bounding box given the boundaries of the child nodes.

Node construction for leaf nodes involves storing the spatial data. All of these operations

may be done entirely with arithmetical and memory operations, without conditionals or

jumps, and hence on a vector processing element.

Therefore, for our heterogeneous construction algorithm, we will be first sorting the

spatial data on the MIMD CPU, and then creating the nodes on the SIMD GPU.

As with the linear quadtree, the parallel mergesort presented in McCool et al. [2012,

p. 300] may be used, or any other fast parallel MIMD sorting algorithm.
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Linear k-d tree

For our linear k-d tree, we have designed a novel construction algorithm based

around quicksort partitioning. Linear k-d tree construction is similar to linear quadtree

construction. For the tree’s data layout, we will construct a linear array, wherein each ele-

ment is a spatial data with a corresponding location code. The location code value for each

level of the tree is a simple boolean: left or right of the splitting hyperplane.

Algorithm 6 heterogeneous k-d tree construction pseudocode
1: function CreateKdtreeIteration(Data, Splits, splitvalue)
2: buffer ← Copy(Data)
3: parallel
4: nextsplitright← FindNextSplitRight(buffer, splitvalue)
5: nextsplitleft← FindNextSplitLeft(buffer, splitvalue)
6: splitposition← ParallelQuicksortPartition(Data, splitvalue)
7: end parallel
8: parallel
9: CreateKdtreeIteration(Data[:splitposition], Splits, nextsplitleft)
10: CreateKdtreeIteration(Data[splitposition:], Splits, nextsplitright)
11: Splits.Insert((splitposition, splitvalue))
12: end parallel
13: end function
14: function CreateKdtree(Data)
15: Splits← newList
16: Splits[0]← FindSplit(Data)
17: CreateKdtreeIteration(Data, Splits, Splits[0])
18: MortonCodes← CreateMortonCodes(Data, Splits)
19: return (Data, Splits,MortonCodes)
20: end function

Unlike the linear quadtree, however, the k-d tree must also store the location of each

partition. We must know at what point the split takes place. We could avoid the necessity

of storing partition locations by always splitting along the middle of the parent’s bounding

box. However, this eliminates the k-d tree’s advantages from being able to select the split

location, and essentially reduces the k-d tree to a binary version of a quadtree.
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Algorithm 7 logarithmic parallel splitting hyperplane calculation pseudocode
1: function FindSplits(Data, Splits, splitlocation)
2: Splits[splitlocation]← FindSplit(Data)
3: splitleftindex← splitlocation ∗ 2 + 1
4: splitrightindex← splitlocation ∗ 2 + 2
5: if splitleftindex > Data.length or splitrightindex > Data.length then
6: return
7: end if
8: parallel
9: FindSplits(Data, Splits[splitleft], splitleft)
10: FindSplits(Data, Splits[splitright], splitright)
11: end parallel
12: return Splits
13: end function

Therefore, we desire to create a heterogeneous construction algorithmwhich permits

the selection of the splitting hyperplane.

Our algorithm is presented in basic pseudocode in Algorithm 6. The primary diffi-

culty, and the reason we cannot simply apply an existing sorting algorithm as-is, is that we

cannot efficiently calculate the splitting hyperplane for each node of the tree beforehand.

We could calculate each split in parallel before sorting by calculating the first split-

ting hyperplane, then calculating the splitting hyperplanes of its children, and so on, as

presented in Algorithm 7. This would allow us to subsequently perform a standard sort.

However, we observe that this method only experiences a parallel speedup of O(logn),

which is not scalable for manycore architectures.

Alternatively, for each leaf node in the tree, we could calculate all the preceding

splitting hyperplanes on the sameMIMD core, in order to achievemaximum parallelization,

as presented in Algorithm 8. While parallelizing linearly, it is obvious this solution will be

no faster than the preceding option.

Because each splitting hyperplane is dependent on the previous splitting hyperplane,
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Algorithm 8 linear inefficient parallel splitting hyperplane calculation pseudocode
1: function FindSplits(Data, TreeNodes, Splits)
2: parallel for each node in TreeNodes
3: nextsplit← FindSplit(Data)
4: for split← 0, node.depth do
5: nextsplit← FindSplit(Data, nextsplit)
6: end for
7: Splits[node]← nextsplit
8: end parallel for
9: return Splits
10: end function

it is not possible to independently parallelize the splitting hyperplane calculations with a

speedup greater than logn for n spatial elements.

Our solution for a scalable splitting hyperplane calculation is to perform the calcu-

lation in parallel with another calculation. Both the sort and the location code calculations

require the splitting hyperplanes for the parent of each node being calculated, and further-

more the sort must precede the location code calculation.

Therefore, our construction algorithm will calculate each preceding splitting hyper-

plane in parallel with each stage of the sort. That is, the splitting hyperplanes cannot be

independently calculated, but rather, at each stage of the sort, the preceding splitting hyper-

plane must be calculated in order to be used by the sort.

We observe that quicksort partitioning is a natural candidate for our construction

algorithm. At each stage of the sort, we wish to calculate the splitting hyperplane, and

then sort the spatial data such that all elements less than the hyperplane precede all ele-

ments which are greater than the hyperplane. This is precisely how each stage of quicksort

operates.

Our basic heterogeneous construction algorithm is presented in Algorithm 6. We
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begin by calculating the first split. Then, given the split point for the first node, in parallel,

we:

1. calculate the splitting hyperplane for the left child node, given the current splitting

hyperplane

2. calculate the splitting hyperplane for the right child node, given the current splitting

hyperplane

3. partition the spatial data such that all nodes less than the splitting hyperplane precede

all nodes greater than the splitting hyperplane.

We note that in order to calculate the splitting hyperplanes in parallel with sorting,

we are required to iterate over the pre-sorted data. Thus, our split functions must traverse

approximately twice the spatial elements (assuming a median split) of the child node for

which they are calculating. Therefore the sequential execution time for our split calculations

then becomes 2 logn. While this constant does not increase the asymptotic time, it does

double the work which must be done, and decrease the efficiency. Unfortunately, without

this inefficiency we cannot calculate the splitting hyperplanes in parallel with the sort, since

each sort requires the splitting hyperplane for that node of the tree.

We also note that in order to calculate the splitting hyperplanes of the children in

parallel with the sort, we cannot operate on the same data which is being concurrently

sorted. Therefore, we must create a buffer into which the data is copied, such that the

split and sort calculations do not operate on the same data. We also note that our partition

function requires a slight modification from the standard quicksort partition algorithm. In

the standard quicksort algorithm, one typically selects a pivot element, partitions the array,
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and then recursively partitions each side. With our construction algorithm, we do not have

an element, but rather a coordinate value for the splitting hyperplane. Thus, we partition

on this value rather than an element of the data. Once complete, the partition function

returns the index for which all elements preceding are less than the given hyperplane and

all elements following are greater. We then store both the index and the value of the splitting

hyperplane in the array of splits (which is required for searching the tree), and recursively

sort.

We observe that our algorithm is not dependent on any particular splitting algorithm.

Many splitting algorithms and heuristics exist, with various benefits and performance. It is

beyond the scope of our research to investigate or assert an ideal splitting algorithm. Rather,

our linear k-d tree construction algorithm is designed to work with any given splitting al-

gorithm. Ideally, the splitting algorithm itself should be parallelized in order to provide

further over-decomposition.

Algorithm 9 serial split calculation pseudocode
1: procedure CreateKdtreeIteration(Data, Splits, splitvalue)
2: nextsplitright← FindNextSplitRight(Data, splitvalue)
3: nextsplitleft← FindNextSplitLeft(Data, splitvalue)
4: splitposition← ParallelQuicksortPartition(Data, splitvalue)
5: parallel
6: CreateKdtreeIteration(Data[:splitposition], Splits, nextsplitleft)
7: CreateKdtreeIteration(Data[splitposition:], Splits, nextsplitright)
8: Splits.Insert(splitposition, splitvalue)
9: end parallel
10: end procedure

We note an alternative to the algorithm presented in Algorithm 6. Rather than using

a buffer and computing the split points in parallel with the quicksort partition, we may

compute them in serial without a buffer, as in Algorithm 9. This saves the cost of copying
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memory for each partition of the data. Since there are logn partitions, and we must copy

the entire data being partitioned, using a buffer to calculate split points in parallel with the

partitioning requires 2 · n memory copies. Whether the cost of these memory copies is

greater than the cost of calculation splitting hyperplanes in serial will depend on the cost of

the split calculation function.

Our simple median heuristic function is less expensive to serially compute than the

buffer cost. Therefore, for our results, we calculate splitting hyperplanes in serial, as in

Algorithm 9.

Parallel Quicksort Partition

Our heterogeneous linear k-d tree construction requires a parallel quicksort partition

function. Because children are recursively sorted in parallel, the recursion itself is only par-

allelized to degree logn for infinite processing elements. Hence, our partitioning function

must be parallelized to achieve scalability on manycore architectures.

For our parallel quicksort partition, we use the algorithm presented by Tsigas and

Zhang [2003]. We briefly describe their algorithm as we have implemented it here. Note

that we only use their partition function, not a unified quicksort. However, the parallel

partition is the greater part of parallelizing the quicksort algorithm.

Their partition algorithm has two basic phases. First, the array to be partitioned is

divided into blocks, which are independently partitioned in parallel with work-acquiring

parallel processes. Once the first stage is complete, the array is partitioned such that some

blocks are fully partitioned and some are not, and there exists a position in the array such

that every element of all fully partitioned blocks preceding the given position is less than
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the pivot, and every element of all fully partitioned blocks after the given position is greater

than the pivot. That is, the array is partitioned at a given point, with the exception of some

incomplete blocks. The number of incomplete blocks after the parallel partition stage will

not exceed the number of parallel processes.

The second stage involves serially sorting and moving the incompletely partitioned

blocks, such that the entire array is partitioned. The algorithm therefore scales well with the

size of the data and the number of parallel processes, as long as the ratio of data to processes

is sufficiently large.

Pseudocode for the parallel stage is presented in Algorithm 10. The parallel stage

consists of executing a partitioner task with any number of parallel processes. The parti-

tioner function takes the data and a block size, as well as iterators to the first and last block.

Each execution of the partitioner function increments the first iterator with an atomic fetch-

and-add function, and decrements the last iterator with an atomic fetch-and-subtract. Thus,

that parallel task acquires the fetched first and last iterators as block indexes. The task then

moves elements in the first block which are greater than the pivot to the second block, and

vica versa, until either the first block consists entirely of elements less than the pivot, or the

second block consists entirely of elements greater than the pivot (or both). The task then

replaces the completed block, and atomically fetches another block.

All tasks continue partitioning blocks in parallel, until there are no more blocks.

At this point, each task has at most one unfinished block. The indices of these unfinished

blocks are placed in a shared array via atomic fetch-and-add operations to acquire an index

into the unfinished array.

We note that because all operations to acquire data indices involve only atomic
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Algorithm 10 parallel quicksort partitioner pseudocode
1: procedure Partitioner(Data, pivot, nextleft, nextright, RemainingIndices, nextremain-

ing)
2: leftindex← AtomicFetchAdd(nextleft)
3: rightindex← AtomicFetchSubtract(nextright)
4: while leftindex < rightindex do
5: neutralized← Neutralize(Data[leftindex], Data[rightindex], pivot)
6: if neutralized = LEFT or neutralized = BOTH then
7: leftindex← AtomicFetchAdd(nextleft)
8: end if
9: if neutralized = RIGHT or neutralized = BOTH then
10: rightindex← AtomicFetchSubtract(nextright)
11: end if
12: end while
13: if leftindex is remaining then
14: RemainingIndices[AtomicFetchAdd((nextremaining)]← leftindex
15: end if
16: if rightindex is remaining then
17: RemainingIndices[AtomicFetchAdd((nextremaining)]← rightindex
18: end if
19: end procedure
20: function Neutralize(Left, Right, pivot)
21: leftindex← 0
22: rightindex← 0
23: while leftindex < Left.size and rightindex < Right.size do
24: while Left[leftindex] < pivot do
25: leftindex← leftindex+ 1
26: end while
27: while Right[rightindex] > pivot do
28: rightindex← rightindex+ 1
29: end whileSwap(Left[leftindex], Right[rightindex]))
30: end while
31: if leftindex = Left.size and rightindex = Right.size then
32: return BOTH
33: end if
34: if leftindex = Left.size then
35: return LEFT
36: end if
37: return RIGHT
38: end function

increment or decrement functions which cannot fail, this work-acquiring algorithm is wait-

free and no less efficient than a work-stealing algorithm.
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We also note that the number of identical partitioner tasks which may be executed

in parallel is only constrained by the overhead of parallel task scheduling and memory

bandwidth.

Algorithm 11 serial quicksort partitioning pseudocode
1: function PartitionRemaining(Data, pivot, RemainingIndices, middle)
2: Sort(RemainingIndices)
3: remainingleft← RemainingIndices[0]
4: remainingright← RemainingIndices[RemainingIndices.size]
5: while remainingleft < remainingright do
6: neutralized← Neutralize(Data[remainingleft], Data[remainingright])
7: if neutralized = LEFT or neutralized = BOTH then
8: if remainingleft > middle then
9: SwapBlocks(Data[remainingleft], middle)
10: middle← middle+BLOCKSIZE
11: end if
12: remainingleft← remainingleft+ 1
13: end if
14: if neutralized = RIGHT or neutralized = BOTH then
15: if remainingright < middle then
16: SwapBlocks(Data[remainingright], middle)
17: middle← middle−BLOCKSIZE
18: end if
19: remainingright← remainingright− 1
20: end if
21: end while
22: remainingindex← 0
23: if neutralized = LEFT then
24: remainingindex← remainingright
25: else
26: remainingindex← remainingleft
27: end if
28: SwapBlocks(Data[remainingindex], Data[middle])
29: Sort(Data[remainingindex])
30: pivotposition← remainingindex
31: while Data[pivotposition] < pivot do
32: pivotposition← pivotposition+ 1
33: end while
34: return pivotposition
35: end function

Once the parallel partition stage is complete, the array will be partitioned such that
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arbitrary blocks are incomplete. The serial phase will sort these blocks and place them

such that the final array is partitioned. Pseudocode for the serial phase is presented in

Algorithm 11.

The serial phase iterates over two blocks at a time and partitions them, much like

the parallel partitioner function. However, a block that is partitioned on one side will not

necessarily be on the correct side in the array. When this occurs, the serial phase must swap

that block with an unfinished block on the other side. If no unfinished blocks exist on the

other side, the block immediately beyond the partition will be swapped and the partition

location moved accordingly. Finally, when a single unfinished block remains, that block

will be sorted and placed in the middle, and the precise partition location calculated within

the final block.

Algorithm 12 parallel quicksort partitioning pseudocode
1: function ParallelQuicksortPartition(Data, pivot, threadsnumber)
2: nextleft← 0
3: nextright← Data.size
4: nextremaining ← 0
5: RemainingIndices← newArray[threadsnumber]
6: parallel for 0 to threadsnumber
7: Partitioner(Data, pivot, nextleft, nextright, RemainingIndices, nextremaining)
8: end parallel for
9: pivotposition← PartitionRemaining(Data, pivot, RemainingIndices, nextleft)
10: return pivotposition
11: end function

Then, the final parallel partition algorithm involves executing these two steps: the

parallel block partition phase, and the serial partitioning of remaining blocks, as presented

in Algorithm 12.

The parallel quicksort algorithm presented by Tsigas et al is significantly more com-

plex than the brief descriptions and pseudocode we present here for comprehension. For
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full details of the parallel quicksort algorithm, implementation, analysis, and performance,

see Tsigas and Zhang [2003].

We also note that our tree construction is not specific to this quicksort algorithm.

Any partitioning algorithmwhich may be given a value to partition on (rather than an index)

and returns the index is suitable. For example, Altman and Igarashi [1989] and Altman

and Chlebus [1990].

Vector Morton Code Calculation

Once the linear k-d tree is sorted and the splitting hyperplanes calculated, theMorton

codes for each contained elementmust be calculated, to be used by search and other traversal

operations. The pseudocode for the GPU Morton code calculation function is presented in

Algorithm 13.

Recall that Splits is a tree stored in a linear array. Calculating the Morton code for

each element is trivial, and entirely arithmetical. For each element, we traverse the Splits

linear tree. If the element is less than the current split, we insert an 0 in the Morton code;

else, a 1. We then traverse to the left or right child of the Splits tree, accordingly, for the

height of the tree.

We have presented human-readable pseudocode for Morton code calculation in Al-

gorithm 13. As with the linear quadtree, the conditionals may be transformed into arith-

metic for the vector processing element, either manually or by the compiler. We present

the pseudocode for this in Algorithm 14. Note that, as with the linear quadtree Morton code

calculations, this pseudocode assumes boolean logic may be manipulated as arithmetical

values, and that the language guarantees that a boolean value of false evaluates to 0 and
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Algorithm 13 vector Morton code calculation pseudocode
1: procedure CreateMortonCodes(Data, Splits)
2: MortonCodes← newArray[Data.size]
3: vector for each element in Data
4: MortonCodes[element]← CreateMortonCode(element, Splits)
5: end vector for
6: end procedure
7: function CreateMortonCode(element, Splits)
8: code← 0
9: currentsplit← 0
10: for 0 do to Splits.depth
11: code← code << 1
12: if element < Splits[currentsplit] then
13: code← code|0 ▷ no effect, but shown for comprehension
14: currentsplit← GetLeftChild(currentsplit)
15: else
16: code← code|1
17: currentsplit← GetRightChild(currentsplit)
18: end if
19: end for
20: return code
21: end function

true evaluates to 1. We also note that the split depth is a constant value, and thus the loop

in Algorithm 13 and Algorithm 14 may be unrolled by the compiler, in order to eliminate

the jump instruction required by the loop (which cannot be executed by a vector processing

element).

Algorithm 14 arithmetic morton code calculation pseudocode
1: function CreateMortonCode(element, Splits)
2: code← 0
3: currentsplit← 0
4: for 0 do to Splits.depth
5: code← code << 1
6: code← code|(element > Splits[currentsplit])
7: currentsplit ← (GetLeftChild(currentsplit) ∗ (element <

Splits[currentsplit])) + (GetRightChild(currentsplit) ∗ (element >=
Splits[currentsplit]))

8: return code
9: end for
10: end function
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Parallel Linear Fixed-Length Tree

Finally, the implementation of our linear k-d tree construction algorithm requires

a unique data structure for storing the calculated splitting hyperplanes: a parallel, linear,

fixed-length tree.

Our structure is presented in Algorithm 15. We require adding nodes to the tree to

be safe for parallel access, since many threads of execution will add to the tree in paral-

lel during construction. This would not be an issue for a traditional pointer tree [Cormen

et al., 2009, p. 246], as in Algorithm 16, wherein each child is represented with a different

variable, as long as memory allocation for each node were safe for parallel access, since

parallel assignment to different variables is safe. However, we also require a linear tree,

which may be easily passed to the vector co-processor (the GPU), and which may be tra-

versed arithmetically. It is not strictly necessary that the linear structure be of fixed length.

However, since we know the maximum length required – the length of the spatial input data

– creating a linear structure which does not require reallocations is simpler and faster.

Note that we do not require that, nor is the structure presented in Algorithm 15, safe

for parallel construction of the same tree node. In our linear k-d tree construction algorithm

(presented in Algorithm 6), only one thread of execution will ever attempt to create any

given child node of the splitting hyperplanes tree.

Also note that the static indexing traditionally used by heapsort is not sufficient,

because our k-d tree may not be perfectly balanced. When the tree is not perfectly balanced,

statically indexing children (e.g. 2n + 1 and 2n + 2) will produce large empty spaces in

the linear tree. Then, either a very large array will be required to store the Morton codes,
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Algorithm 15 parallel linear fixed-length tree pseudocode
1: structure FixLenTree
2: treeend← ∞
3: structure Node
4: Spatial V alue ▷ this is the hyperplane, of one dimension smaller than the input

space
5: Integer Right
6: Integer Left
7: end structure
8: procedure FixLenTree(length)
9: Length← length
10: Nodes← newArray
11: NodeAcquirer ← 0
12: end procedure
13: function InsertRoot(value)
14: position← AtomicFetchAdd(NodeAcquirer)
15: node← Nodes[position]
16: node.V alue← value
17: node.Left← treeend
18: node.Right← treeend
19: return position
20: end function
21: function Insert(parent, left, value)
22: position← AtomicFetchAdd(NodeAcquirer)
23: if position≥Length then ▷ this safeguard will never occur in the k-d tree

construction algorithm
24: return treeend
25: end if
26: node← Nodes[position]
27: node.V alue← value
28: node.Left← treeend
29: node.Right← treeend
30: if left then
31: Nodes[parent].Left← position
32: else
33: Nodes[parent].Right← position
34: end if
35: return position
36: end function
37: Integer Length
38: Node Array Nodes
39: Integer NodeAcquirer
40: end structure
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Algorithm 16 traditional pointer tree pseudocode
1: structure TreeNode
2: Data key
3: TreeNode left-child
4: TreeNode right-child
5: end structure

or the tree depth (as specified by the Morton codes) will be very small. By using dynamic

indexing (which must be safe for parallel access) we only require an array as large as we

need, with no empty locations.
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Pipelining

In the event that multiple trees must be constructed, heterogeneous algorithms may

be pipelined. Homogeneous algorithms cannot be pipelined, since the tree construction is

fully utilizing the CPU or GPU for each tree which is constructed. However, a hetero-

geneous algorithm can be pipelined such that for two sequential procedures which must

execute on the CPU and GPU, the nth tree may execute the first procedure on one pro-

cessor architecture while the (n + 1)th tree is executing the second procedure on the other

architecture.

..

CPU
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GPU

.

CPU

.
GPU

.

CPU

.

…

.
GPU

.

CPU

.

GPU

Figure 7: pipeline visualization

Figure 7 presents a visualization of pipelining. As we can see, the time to construct

each of n trees, the construction of each of which consists of two sequential stages on

different types of processors, where p is the time to execute on the first processor and q is

the time to execute on the second processor, will be p+n·max(p, q)+q, orO(n·max(p, q))

for each tree. That is, the amortized time to construct n trees is n times the slowest execution

time of the two architectures. In contrast, the time to construct n trees with a homogeneous

algorithm which may not be pipelined is n·k, where k is the execution time of the algorithm

for a single tree.

The pipeline pattern for parallel processing is discussed in McCool et al. [2012, p.

99] and detailed in Mattson et al. [2010, p. 103].
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CHAPTER IV

RESULTS

We present our results of executing implementations of our heterogeneous algo-

rithms, contrasted with the running time of analogous homogeneous CPU and GPU algo-

rithms. We present the running times of constructing an individual tree, for each of our

linear quadtree, R-tree, and linear k-d tree construction algorithms. We also present the

running times for pipelined construction of ten trees, for each respective algorithm.

Methodology

Our tests are performed on a machine with two 64-bit 2.2 Ghz 6-core AMDOpteron

2427 processors, eachwith 6x64KBL1 instruction cache, 6x64KBL1 data cache, 6x512KB

L2 cache, and 6MB L3 cache. The GPU is part of an NVidia Tesla S2050 Computing Sys-

tem, with 448 CUDA cores at 1.15Ghz and 3GB GDDR5 memory. The operating system

is CentOS 5.8 running Linux kernel 2.6.18 x86_64.

All tests are the average (mean) of three executions, rounded to the nearest mil-

lisecond. There were no outliers. All tree construction algorithms are controlled for both

the number of MIMD threads and the number of points. Charts are plotted as line graphs

with straight lines between measured values. For varying point tests, numbers of points are

tested for each order of magnitude from 10 to 10,000,000 (10, 100, 1000, et cetera). For

varying threads of execution, threads are tested for 1, 2, 4, 8, 12, 14, and 16 on the 12-core

machine.
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All our algorithms are implemented in the C++11 language, with CUDA bindings

for vector GPU execution, and the Intel Threading Building Blocks library for parallel CPU

execution. CUDA is a compute platform for general purpose computing on NVidia GPUs

[Garland et al., 2008]. Intel Threading Building Blocks is a C++ library which allows for

directly programming high-level parallel constructs such as parallelfor [Kim and Voss,

2011].

All timing is gathered via the C++11 std::chrono::high_resolution_clock. Timing

results are only for the construction of the trees, not for the entire program execution. Re-

sults include both the time to create CPU threads and initialize the threading library, and

the time to initialize the GPU kernel and transfer data.

Code is compiled with G++ 4.8 and NVCC 5.0, using −O3 optimization. We note

that the AMD Opteron 2427 has SSE vector extensions [AMD, 2005], and therefore com-

piled with optimizations [FSF, 2013], the CPU code itself is heterogeneous, in that it in-

cludes vector instructions which will be executed by the MIMD processor.

Linear Quadtree

Our linear quadtree for testing is implemented in C++11 and CUDA, as previously

noted.

For our homogoeneousGPU comparison algorithm, we use the CUB library [Nvidia,

2014] which implements a GPU radix sort as presented by Satish et al. [2009b]. For our

heterogeneous algorithm, we found that the Threading Building Blocks parallel_sort was

faster than our parallel mergesort implementation on our testing architecture. Therefore,

our we use tbb::parallel_sort for our heterogeneous results [Kim and Voss, 2011].
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Figure 8: linear quadtree for 1–12 MIMD threads, with 10,000,000 points

Our testing results are plotted in Figure 8 and Figure 9. Note the x-axis of Figure 9

is logarithmic. We see that our heterogeneous algorithm is approximately 90% as fast as

the homogeneous GPU algorithm (843 versus 957 milliseconds with 8 threads).

We note that the performance of the homogeneous CUDA algorithm in Figure 8 is

not affected by the number of MIMD threads, because the algorithm is executed entirely on

the GPU. For all homogeneous GPU and heterogeneous results, we fully utilize all vector

processing elements (CUDA cores) on the GPU.

We expect this to be the slowest relative heterogeneous algorithm, since the quadtree

is an extremely simple data structure, and only a single pass is required by the GPU for

morton code calculation and sorting.

With only a 10% difference, we would expect that the results are dependent on
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Figure 9: linear quadtree for 10–10,000,000 points, with 12 threads

the architecture. That is, with a GPU which is slower or has less vector processing ele-

ments, the heterogeneous algorithm might outperform the homogeneous GPU algorithm.

Likewise, with a faster CPU, or with a greater number of cores, assuming the MIMD sort

scales with the number of cores and is not limited by memory bandwidth or other archi-

tectural constraints, the heterogeneous algorithm may also perform better relative to the

homogeneous algorithm. An improved parallel MIMD sorting algorithm would also affect

the relative performance.

R-tree

Our R-tree for testing is implemented in C++11 and CUDA, as aforementioned. As

with our linear quadtree analysis, for our R-tree homogeneous GPU comparison algorithm

we use the CUB library [Nvidia, 2014] which implements a GPU radix sort as presented by
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Satish et al. [2009b].
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Figure 10: R-tree for 1–12 MIMD threads, with 10,000,000 points

Our testing results are plotted in Figure 10 and Figure 11. We see that our hetero-

geneous algorithm is approximately 105% as fast as the homogeneous GPU algorithm (751

versus 791 milliseconds with 12 threads).

Once again, we note that values this close suggest architectural changes would sig-

nificantly impact the results. A faster GPU or slower CPU with fewer MIMD cores might

easily make the homogeneous algorithm faster.

We note that, as with the linear quadtree results, the performance of the homoge-

neous CUDA algorithm in Figure 10 is not affected by the number of MIMD threads.

We also note that we expect the relative performance of the heterogeneous R-tree

construction to exceed that of the quadtree, since the R-tree requires multiple passes by the
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Figure 11: R-tree for 10–10,000,000 points, with 12 threads

vector processor, for each level of the tree.

Linear k-d tree

Our linear k-d tree for testing is implemented in C++11 and CUDA, as above.

MIMD parallelism is implemented via the Intel Threading Building Blocks library [Kim

and Voss, 2011].

Our linear k-d tree does not have a corresponding vector (GPU) algorithm. How-

ever, it is relatively easy to modify to create an MIMD algorithm. We must simply perform

the morton code calculations via the CPU rather than the GPU.

Thus, we have implemented a modified MIMD algorithm for performance compar-

isons. The MIMD morton code calculation is performed on the MIMD CPU with a high

degree of parallelism using Intel Threading Building Blocks, and as previously noted, with
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Figure 12: linear k-d tree for 1–12 MIMD threads, with 10,000,000 points

x86 SSE vector extensions which are automatically generated by the compiler.

Our testing results are plotted in Figure 12 and Figure 13. With an optimal number

of threads for the architecture, we see our heterogeneous algorithm is 108% faster than the

MIMD algorithm (2425 versus 2612 milliseconds). However, since we are comparing het-

erogeneous to homogeneous MIMD, we see improved relative heterogeneous performance

with fewer threads. The heterogeneous algorithm is 132% faster with 2 threads (8095 versus

10686 milliseconds) and 136% faster with 1 thread (14786 versus 20244 milliseconds).

We also see that as the number of points approaches zero in Figure 13 the homo-

geneous CPU algorithm approaches 1 millisecond, while the heterogeneous algorithm ap-

proaches approximately 140 milliseconds. Hence, 140 milliseconds appears to be the over-

head of GPU execution on our architecture with our application.
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Figure 13: linear k-d for 10–10,000,000 points, with 12 threads

Since we are comparing our heterogeneous algorithm with a MIMD algorithm, a

directly faster or slower MIMD CPU may affect the ratio of relative performance, but will

not affect which algorithm is faster. However, a CPU with better vector extensions may

affect the relative performance. Likewise, a slower GPU could also result in a relatively

slower heterogeneous algorithm.

Pipelining

As mentioned in Section III, our heterogeneous construction algorithms may be

pipelined when constructing multiple trees. We present here the results of pipelining, com-

pared with unpipelined heterogeneous and homogeneous construction algorithms.

We see that in all cases, as expected, pipelined heterogeneous construction alogrithms

are faster than unpipelined heterogeneous construction.
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Figure 14: pipelined linear quadtree for 10 trees, using 1–16 MIMD threads, with
10,000,000 points
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Figure 15: pipelined linear quadtree for 10 trees, with 10–10,000,000 points, with 12 threads
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Figure 16: pipelined R-tree for 10 trees, with 10,000,000 points, using 1–16 MIMD threads
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Figure 17: pipelined R-tree for 10 trees, with 10–10,000,000 points, using 12 threads

47



...

..

0

.

2

.

4

.

6

.

8

.

10

.

12

.

14

.

16

.

0

.
5,000

.

10,000

.

15,000

.

20,000

.

25,000

.

30,000

.

MIMD threads

.

m
ill
is
ec
on
ds

.

. ..Heterogeneous Pipelined

. ..Heterogeneous Unpipelined

. ..Homogeneous (CPU) Unpipelined
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Figure 19: pipelined linear k-d tree for 10 trees, with 10–10,000,000 points, using 12 threads
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We also see that pipelined heterogeneous algorithms widen the performance gap

between homogeneous algorithms in the event the heterogeneous algorithm is faster for

a single tree construction, and that pipelined heterogeneous algorithms may narrow the

performance gap in the event the single heterogeneous construction algorithm is slower

than the homogeneous algorithm.

We observe that the heterogeneous pipelined results in Figure 17 is almost linear in

time, even with 1 and 2 threads. We hypothesize this is due to the inherent MIMD paral-

lelization with pipelining. That is, even when only 1 thread is used for the MIMD sorting,

the pipeline uses, of necessity, another CPU thread to initiate the GPU kernel, while the

MIMD sorting thread may continue with another tree. This is only a hypothesis; perform-

ing a detailed analysis to determine why the pipelined construction does not slow as the

unpipelined construction does is outside the scope of our research.

Summary

We have seen that our heterogeneous linear quadtree construction algorithm exe-

cutes within 90% of the performance of the homogeneous SIMD (GPU) algorithm, and that

our heterogeneous R-tree construction algorithm executes approximately 105% as fast as

the homogeneous SIMD algorithm.

We have also seen that our novel heterogeneous linear k-d tree construction algo-

rithm performs within the same order of magnitude as the linear quadtree and R-tree con-

struction algorithms, and that it outperforms a homogeneous MIMD algorithm as expected.

Once again, We note that all our heterogeneous algorithms are heavily dependent

on sorting. Hence, a faster MIMD sorting algorithm, or faster MIMD architecture, will
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significantly impact their performance.

We note that even inferior heterogeneous performance may be desirable for certain

environments. For example, in an environment wherein the CPU is underutilized and the

GPU is fully utilized, a heterogeneous algorithm may be faster overall. Similarly, since the

GPU sort is inefficient, in an environment where spatial tree construction is a significant

percentage of the overall system’s computation, it may save power and therefore costs to use

a heterogeneous algorithm. (Additional power consumption experiments would be required

to verify this conjecture, which are outside the scope of our research.)
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CHAPTER V

FUTUREWORK

GPU Optimizations

Our algorithms do not consider GPU architecture, but rather are purely theoretical in

their vector implementation. It would be valuable to research performance improvements

to these algorithms which consider architecture, and optimize for modern AMD and NVidia

architectures, considering block sizes, local memory, and other architectural considerations.

As our GPU sorting uses existing libraries, we do not expect these optimizations

to affect whether our heterogeneous algorithms are comparable in performance, although

they may affect the ratio of heterogeneous versus homogeneous performance. Regardless,

architectural optimizations would be valuable, if only for practical performance improve-

ments.

k-d tree Homogeneous Granularity

Our heterogeneous k-d tree split point and sort calculation is entirely MIMD, while

the subsequent morton code calculation is entirely SIMD.While this may be ideal for certain

scenarios – for example, for pipelining – it would be ideal if the split-point and sort could be

further decomposed. For example, could the split-point calculation be vectorized in parallel

with the partition? Further decomposition might increase MIMD–SIMD parallelism, and

increase performance of the overall algorithm.

It may also be possible to parallelize the GPUmorton code calculation with the sort.
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For example, if there exist 10 · n points and n vector processing elements, if the parallel

split-point is fully calculated for n points which are sorted in their final locations, could

a single GPU pass be made in parallel with the ongoing sort? Is there an efficient way

to determine which points are sorted? Is there a way to prioritize the parallel sort so that

points are sorted depth-first, and thus more points are fully sorted before moving on to other

points?

3-Dimensional Implementations

Arguably the majority of spatial partitioning applications involve 3-dimensional

data. While our heterogeneous research generalizes, it would nevertheless be valuable to

implement 3-dimensional versions of our heterogeneous construction algorithms, and to

provide benchmarks comparing their performance with other existing 3-dimensional spa-

tial tree construction algorithms.

Such implementations and performance analyses would be of great practical value

to research and practical applications such as ray tracing and collision detection.

Investigation of k-d tree Splitting Algorithms

For our performance analyses, we used a simple median heuristic splitting algo-

rithm. However, for practical applications, more intelligent splitting algorithms are gen-

erally preferred, such as the surface-area heuristic algorithm. It would be valuable to im-

plement various splitting algorithms with our heterogeneous linear k-d tree construction

algorithm, in order to test their respective performance compared with their other advan-

tages.
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Investigation of the Effect of Memory Bandwidth on Parallel Sorting

We note that the parallel scalability of our heterogeneous algorithms relative to their

analogous homogeneous algorithms is entirely dependent on the MIMD CPU sort relative

to the SIMD/SIMT GPU sort. The order of growth of parallel MIMD sorting algorithms

scales well with the number of cores [McCool et al., 2012, p. 304]. However, in practice,

scalability is often constrained by memory bandwidth and other architectural constraints.

Our spatial trees in particular are very memory-intensive (we were limited to test-

ing 10,000,000 points due to GPU memory constraints). We observe that our performance

results in Figure 8, Figure 10, and Figure 12 all see performance levelling off around 8

threads. Recall that our testing platform has 12 MIMD cores. This suggests that architec-

tural constraints are becoming an issue even before 12 cores.

We hypothesize that the architectural constraint is memory bandwidth. Our algo-

rithms are very memory-intensive, and without further evidence, memory speed and latency

seems like the most likely cause, considering that the sorting algorithms theoretically scale

to several orders of magnitude more processors than we are using [McCool et al., 2012,

p. 304]. However, accurately measuring memory bandwidth usage can be difficult, and is

outside the scope of our research.

It would certainly be valuable for future research to confirm or refute this hypothe-

sis, and moreover to confirm the reason MIMD sorting is not scaling with our algorithms,

and what would be necessary architecturally or algorithmically to scale to manycore archi-

tectures.
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CHAPTER VI

CONCLUSION

We have seen that homogeneous GPU algorithms for spatial trees which involve

discrete sorting and location code generation (or bounding box generation) may be easily

converted to heterogeneous algorithms. We have seen that these heterogeneous algorithms

perform comparably to homogeneous algorithms on our 12-core testing architecture.

We have also seen a novel heterogeneous linear k-d tree construction algorithm

based around a parallel quicksort, which allows for the use of any desirable splitting hyper-

plane function, and which performs within the same order of magnitude as our observed

quadtree and R-tree algorithms on our testing architecture. We also observe that the het-

erogeneous algorithm is primarily MIMD in nature, while using the SIMD GPU for the

vectorizable task of calculating Morton codes. Hence, our linear k-d tree construction al-

gorithm is also easily adaptable to a homogeneous parallel MIMD CPU algorithm.

We have unfortunately seen evidence suggesting our heterogeneous algorithms,

specifically their usage of MIMD sorting, may not scale to manycore architectures (Chapter

V). The sorting algorithms scale in theory, and thus, manycore scalability may be achiev-

able with architectural or algorithmic improvements.

On a heterogeneous architecture, heterogeneous algorithms allow for fully using the

architecture, as well as for balancing usage to reduce the load of an overused processor type

(SIMD, MIMD), and to increase the load of an underused processor type. Heterogeneous
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algorithms also allow for using the optimal processor type for each procedure (that is, using

a vector processor [GPU] for procedures which are well-vectorizable, and using a parallel

MIMD processor [CPU] for procedures which are poorly vectorizable). Such ideal usage

for respective processors may lead to greater efficiency and performance of both individual

procedures and algorithms, as well as overall systems.
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