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ABSTRACT

Optical gradient index media have the property where the spatial variation of the index
of refraction is continuous along the direction transverse to the optical axis. Many emerging
technologies in optics require gradient index components, and a firm understanding of the
physics of light propagation in these components is required. Presented here are the math-
ematical foundations used to analyze light propagation in planar quadratic index profile
waveguides. One transverse direction is used in this analysis, and light propagation is seen
to have periodic behavior. Also presented here is a comparison of ray bundles and wave
intensities in quadratic index waveguides, with the intent to use this machinery to further

ray chaos theory.
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CHAPTER 1

WHY STUDY QUADRATIC INDEX WAVEGUIDES?

That question alone contains so much information that if one doesn’t know the meaning
of any of the words quadratic, indez, or wavequide, then the question "why study quadratic
index waveguides?" only has one answer, "I’d rather not." But if one does understand the
question, and wishes for some reason to read further, then what’s presented here as an
attempt to answer the title of this section will hopefully be informative, if not profound.

Quadratic index waveguides are devices that have an index of refraction that is spatially
varying perpendicular to the optical axis. This variation is quadratically decreasing to the
boundary from the center of the waveguide. Waveguides and optical devices that have this
feature are fundamental to the advancement of technologies such as optical communications,
laser systems, and photonic integrated circuits. A thorough understanding of quadratic in-
dex waveguides is also fundamental to problems involving chaotic ray behavior, and light
propagation in geometries with regular inhomogeneities in the axial direction. The mathe-
matical formulations used to describe light propagation in quadratic index waveguides can
also be used to describe other types of wave propagation, such as acoustic and ocean waves.

There are two approaches to analyzing light propagation in quadratic index waveguides.
One approach is to assume that the dimensions of the waveguide are much larger than the
wavelength of the incident light. We then only need to consider the propagation direction
of the energy of the wavefronts, and we can model light as rays. This is called the geomet-
ric optics treatment of light propagation. This approach to analyzing light propagation in
quadratic index waveguides has a remarkable connection to a physically different system,
the classical harmonic oscillator. That connection lies in the mathematics based on the
Hamiltonian formulation of particle dynamics. The Hamiltonian formulation uses a set of
first-order differential equations, called Hamilton’s Equations, to describe particle trajec-
tories subject to a force, and when applied to the classical harmonic oscillator, we obtain
analytic solutions that describe periodic, sinusoidal particle trajectories. When Hamilton’s
equations are applied to light propagation in quadratic index waveguides, we can think of the

index profile as the 'force’. After solving Hamilton’s Equations, we obtain analytic solutions



for ray trajectories in quadratic index waveguides, and the ray trajectories are shown to be
sinusoidal [2],[3],|6],[10]. The existence of the connection between ray paths in quadratic
index waveguides, and particle trajectories for the classical harmonic oscillator shows that
two physically different systems are described by the same mathematics.

The other approach to analyzing light propagation in quadratic index waveguides is to
assume that the dimensions of the waveguide are of the same length scale as the wavelength of
the incident light. The wavelength now matters, something that is ignored in the geometric
optics approach, and we now need to define quantities that will help describe the waves
interaction with the geometry of our analysis. This approach is called the wave optics
treatment of light propagation. Light propagation in quadratic index waveguides is described
by solving the Helmholtz wave equation, which is based upon Maxwell’s Equations. The
wave optics treatment of light propagation of our problem has a mathematical connection to
the quantum harmonic oscillator. Solutions to the quantum harmonic oscillator are found by
solving the Schrodinger Equation, and an exact solution can be found that will specify the
energy-levels. The solutions found are a complete set of solutions based upon the Hermite
polynomials. The solutions to the Helmholtz wave equation is also a complete set of solutions
based upon the Hermite polynomials. Again we see two physically different systems related
by the same mathematics. This thesis aims to not only show the geometric and wave
optics treatment of light propagation in quadratic index waveguides, but to also show how
mathematics, the language of physics, connects systems that are physically different.

So what is a quadratic index profile? In this thesis, the mathematical expression for the

refractive index profile is of the form

n?(@) = nj — (nf —nf) = 1

a4y
where n, is the maximum value at the center of the waveguide, and decreases quadratically
to ny at the boundary. The quantity a, is the distance from center of the waveguide, or the
waveguide half-width. The index profile (1) was chosen so that ng and n; are dimensionless,
and units of length are canceled by the factor 2?/a3. Equation (1) is one example of a

quadratic (or gradient) refractive index profile. One example of practical devices that utilizes



this type of index profile are gradient-index (GRIN) optics [13]. GRIN optics are discrete
optical components behaving like lenses that have, similar to quadratic-index waveguides, a
varying index of refraction in the radial direction. These optics have been used to reduce
aberrations in imaging systems, to reduce cost and weight in optical assemblies, and to
produce collimated optical fibers. Another gradient-index device application is the gradient-
index fiber. The index of refraction of the core decreases with radial distance from the
optical axis, and these fiber optics are used in optical communications applications for their
capability of guiding light over large distances [5].

The advancement of integrated photonics is increasingly becoming more reliant on optical
components that have a spatially varying index of refraction. It is becoming increasingly
desired to integrate conventional optics with GRIN-like optics to reduce cost and weight of

integrated photonic systems [15].
How Do We Simulate Light Propagation In Quadratic Index Waveguides?

Lets take a closer look at the two approaches to analyzing light propagation in quadratic
index waveguides. First the geometric optics treatment. This approach uses Hamilton’s
Equations which are first-order differential equations that couple the ray’s position and mo-
mentum. When Hamilton’s Equations are solved for light propagation in quadratic index
waveguides, they yield expressions that show ray paths propagate sinusoidally. The tech-
niques of ray tracing can be used to simulate this light propagation [1], [8]. The software
tool used in this thesis to simulate ray paths is Octave, a MatLab clone. An Octave script
can be written to define the waveguide dimensions and refractive indices, and the exact
solutions from Hamilton’s equations can be coded as well. Built-in plotting functions native
to Octave can then be used to create plots showing ray paths in our system. We can solve
Hamilton’s Equations directly by using a differential equation solver function native to Oc-
tave (and Matlab) called ode45. This function uses an iterative Runge-Kutta approximation
to directly solve Hamilton’s equations. This numerical approach can be compared to the
exact solutions to Hamilton’s equations, and it will be seen here to be in excellent agreement
with each other.

The wave optics treatment of light propagation in quadratic index waveguides requires us



to solve the Helmholtz wave equation, which is a second-order partial differential equation
whose solution represents any component of the wave. For the analysis in this thesis, a
Gaussian distribution is initially at the left boundary of the waveguide, and is expanded
in terms of the Hermite polynomials to solve the Helmholtz wave equation. The analytic
solution for the field profile is seen to have a periodic behavior. Octave was also used
to simulate wave propagation in quadratic index waveguides from the analytic solution to
the Helmholtz equation. The numerical software tool used to simulate wave propagation
is MEEP [12|, which utilizes the finite difference time domain (FDTD) method to solve
Maxwell’s Equations by discretizing space and time into regular rectangular grids [14]. The
electric and magnetic fields are calculated at appropriate grid locations, and the state of
the wave at any time step is based on the state of the wave at the previous time step.
This method is a popular choice for computational electromagnetic problems because of
the balance between computing requirements and accuracy. MEEP simulations are also
performed by first writing a script defining the computational cell size, refractive indices,
and initial Gaussian distribution at the left boundary. A comparison of the wave intensities

from the analytic solution to the MEEP simulations is also shown in this thesis.
Putting It All Together, And Where To Go From Here?

One goal of this thesis is to show that if we know how rays propagate in quadratic index
waveguides, we can then accurately predict the corresponding wave behavior, and vice-versa.
The validity of the numerical approaches used for the geometric and wave optics treatment
is reinforced by comparing each approach to known analytical solutions. This will create a
foundation to extend the numerical approaches to situations where analytical solutions to
the ray and wave treatments are no longer viable. Of special interest is the introduction
of axial modulation of the index of refraction. Such a system has been shown to generate
chaotic ray paths, and it is of interest to know how this translates into intensity variations of
light in actual systems. Thus, a numerical scheme to relate intensity profiles obtained from
the wave optics treatment to the concentration of bundles of trajectories from ray tracing
techniques is strongly desired.

Such a validated approach will be useful for fundamental studies of chaotic propagation in



axially modulated waveguides and will also be of great practical value in describing systems
in which light propagates through periodic structures whose scale of variation is larger than
the wavelength of light but not large enough to ignore the wave nature of light. An example
is media composed of regularly spaced living cells in which the nuclei creates a periodic

variation of the index of refraction.



CHAPTER I1
ELECTROMAGNETICS AND GEOMETRIC OPTICS

In physics we think of light as electromagnetic waves, the same kind of waves you would
see propagating in water. These electromagnetic waves are what we believe cause the per-
ception of light. A general mathematical expression that describes the motion of these waves
is

f(z,t) = f(z = vt,0) = g(z — vt) (2)

This equation describes the displacement of a wave a distance z at time ¢. Electromagnetic
waves are analogous to waves produced on a string that shakes up and down. These kinds of

dx

waves are called transverse waves. By using Newton’s second law, F'=m%3,

on a segment,
of the string which has a tension 7" on both ends as it is displaced from its equilibrium

position, the string will experience a force in the transverse direction between z and z + dz

0 0 0?
aper) ) -1l 3

If p is the mass per unit length, Newton’s second law for this system is AF = M(Az)%,

and equating this with (3) gives

OPf  porf

02 " Tae (4)
and for small disturbances

0?2 f 1 92 f

92 "o (5)

where v is the speed of propagation of the wave, and equal to \/% Equation (5) is the

classical wave equation in one dimension, and has solutions of the form

F(2,1) = g(z — vb). (6)



Electromagnetic Waves

Electromagnetic waves are most often represented as sinusoidal waves

f(z,t) = Acos[k(z — vt) + d]. (7)

The argument of cos is the phase of the wave, § is the phase constant which has values
between 0 < § < 27, and k is the wave number of the wave and is related to the wavelength
A by

k=T (8)

The wave number is the number of cycles per unit distance, or number of waves per unit
distance. When the wave travels a distance of one wavelength A = 2?”, the cosine executes
one complete cycle. At any fixed point z, the string vibrates up and down and completes

one cycle in a period T'
2

T="—.
kv

(9)
The period is related to the frequency v (number of oscillations per unit time) by

1 kv v
= —= = — = —, 10
YTT T o (10)
Sinusoidal waves can be written in terms of the angular frequency w = 27rv = kv, the

number of radians swept out per unit time. The expression for sinusoidal waves is of the

form

f(z,t) = Acos(kz — wt +9). (11)

0

Using Euler’s formula, ¢ = cosf + isin @, sinusoidal waves can be expressed in complex

notation

f(z,t) = Aeilkz—wt) (12)

where the complex amplitude is A = Ae®.



Any wave can be expressed as a linear combination of sinusoidal waves

+o00

flz,t) = A(k)e' k== ;. (13)

—00

Equation (13) shows that any wave can be written as a linear combination of sinusoidal
waves, and if we know the behavior of sinusoidal waves, we then know the behavior of any

types of waves.
Reflection and Transmission of Waves

Consider a sinusoidal wave incident on the xy plane arriving from the left. Immediately
after the incident wave interacts with the xy plane, a reflected wave is produced and travels
in the opposite direction of the incident wave. At the same time, a transmitted wave is
produced on the right side of the zy plane, and travels in the same direction as the incident
wave. The reflected and transmitted wave may have the same speed of propagation as the
incident wave, or the transmitted wave may have a different speed of propagation if it is in
a different medium. Taking z as the propagation direction, these waves are mathematically

represented as

fr(z,t) = Apetkriz=wt) for 2 <0 (14)
Fr(z,t) = AgeR==9) for 2 < 0 (15)
fr(z,t) = Ape'R25=9t for 2 >0 (16)

The displacement of the wave just to the left and right of the zy plane must be the same,

F(07,t) = f(0",t). Assuming the zy plane interface has negligible mass, then the derivative

of  _ 9f

of f is also confinuous, 77 - = 55+

Polarization

As stated earlier, electromagnetic waves are transverse waves, and the displacement of
these types of waves is perpendicular to the direction of propagation. Electromagnetic waves
have two quantities whose displacement is perpendicular to the propagation direction, and

can then have two states of polarization. Analogous to shaking a string, you can shake



it horizontally or vertically. For example, for a wave polarized in the x direction we have
f(z,t) = Ae'k>=wOx and for a wave polarized in the § direction f(z,t) = Ae'be=wty In
general

f(z,1) = Ae'k=Dp, (17)

The polarization vector n defines the plane of vibration, and since this plane is perpendicular
to the direction of propagation n-z = 0, and n = cos fx +sin fy. So a wave can be described

as a superposition of two waves, each wave in one of the states of polarization

f(z,t) = (Acos0)e'F*“Dx + (Asin §)e' P>y, (18)

Plane Waves

Sinusoidal waves traveling in the z direction and have no z and y dependence are called
plane waves. Plane waves have uniform fields over every plane perpendicular to the direction
of propagation. The expressions for plane waves for electric and magnetic fields in a vacuum

are

E(z,t) = Egelk#t) (19)
B(z,t) = Boe!F*=b), (20)

These are also solutions to Maxwell’s equations in a charge free, and current free medium.
E, and By are the complex amplitudes. Over small enough regions, any wave is a plane
wave, as long as its wavelength is much less than the radius of the curvature of the wavefront.

We can generalize the propagation direction kz to any direction r, and by introducing

the wave vector k, which points in the direction of propagation.



Energy and Momentum in Electromagnetic Waves

The energy per unit time in an electromagnetic field is

u= 1 <60E2 + 1B2> (23)
2 1o

where €q is the permitivity of free space, po is the permeability of free space. The energy

densities for the electric field is ug = %60E2, and ugp = % for the magnetic field. For

monochromatic plane waves, B? = C%EQ = poeoE?, so the electric and magnetic field

contributions are equal

u = eE? = egF3 cos?(kz — wt + ). (24)

The energy flux density, or energy per unit area, per unit time, is given by the Poynting

vector

1
S= - (BExB) (25)

and for monochromatic plane waves in the z direction

S = cegFE? cos?(kz — wt + 0)z

Il
Q
<
N>

—~

[\
(=]

~—

so that S is the energy density u times the velocity of the wave cz.

Electromagnetic fields also carry momentum, and the momentum density stored in the

field is
1
= gS (27)
and for monochromatic plane waves
1
o= —260E2 cos®(kz — wt + 6)2 = ~uz (28)
c
1 2
(uy = ieoE (29)
1 9.
(S) = §C€0E Z (30)
1 9.
() = %GOEOZ (31)



The brackets represent the time average over a complete cycle, or many cycles. The average

power per unit area transported by an electromagnetic wave is the intensity

I=(S)= %ceoEg (32)

Light can impart momentum on a surface if the material is a perfect absorber in a time
interval At the momentum transfer is Ap = () AcAt, so the radiation pressure (average
force per unit area) is

_1Ap 1

1
_— = = 2 — —
P == ek = (33)

Maxwell’s Equations

In a charge free and current free space, Maxwell’s equations are

V-E=0 (34)
V-B=0 (35)
VxE - _%]f (36)
VxB- MOGO% (37)

These equations are coupled, first-order partial differential equations for E and B. They

can be decoupled by taking the curl of the curl equations

Vx(VXxE)=V(V-E)-V?’E =V x (—%f’) :—gt(v x B) :—uoeoi)?;] (38)

Vx(VxB)=V(V-B)-V’B=V x (—%‘?) :—;(VXE) :—uoeo(?;];). (39)
Using the divergence equations (34) and (35), (38) and (39) become

V2E = uoeofg (40)

V2B = oo %25’ (41)

11



which are the wave equations for the electric and magnetic fields derived from Maxwell’s
equations in a vacuum. What started as coupled first-order partial differential equations are
not separate second-order partial differential equations.

Faraday’s Law (36) gives a relation between the amplitudes of the electric and magnetic

fields

and

These results can be generalized as
By = —(z x Eo). (42)

We then also have a relation between their real amplitudes

k 1
By = ~Ey = ~E,. (43)
w c
so that (22) becomes
_ 1~ -
B(r,t) = -(k x E) (44)
c

Maxwell’s Equations in Linear Media

Consider matter that allows for electromagnetic wave propagation, and is free from

charge and current. The electric displacement and auxiliary magnetic field due to the ma-

terial are
D =¢cE (45)
1
H=-B (46)
1

where € is the permitivity of the material, and p is the permeability of the material.

Maxwell’s equations for linear matter then become

V-D=0 (47)

12



V-B=0 (48)

0B

E=—— 4
V x 5 (49)
oD
H=—
V x 5 (50)

In a homogeneous medium, € and g do not vary from point to point. Maxwell’s equations

then reduce to

V-E=0 (51)

V-B=0 (52)
0B

VXxE= T (53)
OE

VxB= Heor (54)

The speed of propagation of an electromagnetic wave in a linear homogeneous medium is

v=-L = £ where n = pe

Ve n’ Ho€o

speed of propagation of electromagnetic waves in the medium and in a vacuum. For most

is the index of refraction. It is the ratio between the

materials, u & pg, therefore n ~ /e, where €, is the dielectric constant of the material.
Since €, is always greater and 1, light travels more slowly through matter.
Wave equations for E and B in linear media can be obtained by the same procedure that

yielded the wave equations (40) and (41)

9*°E

0’B

Looking just at the wave equation for E, which holds for all components of E, and is
equivalent to saying that all components of E also satisfy the scalar wave equation
1 0%

2 _
V= (57)

1/2

where v = 1/(ue)'/2. This describes interference and diffraction effects of the wave, and 1

13



can represent any component of E.

Boundary Conditions

Consider an electromagnetic wave interacting with an interface. The wave obeys the follow-

ing boundary conditions

e Bf = e2Fy (58)
Bif = By (59)
E| = E) (60)

Loy 14

~B'="-B 61

o= B (61)

These equations relate the electric and magnetic fields just to the left and right of an interface

between two linear media.

Geometric Approximations of Electromagnetics

Consider a wave incident on the xy plane from the left, and the zy plane separates two linear
media that supports wave propagation. Taking the propagation direction of the incident

wave in the +z direction, and polarized in the +z direction

Er(2,1) = Byre1=z (62)
51 L = i(k1z—wt) g
Bi(a.f) = - Bypel ey (63)

after the wave interacts with the interface, a reflected wave is produced which travels to the
right
ER(Z’, t) = E;Rei(_klz_wt)f( (64)

- 1 ~ )
Br(z,t) = ;E(,Re“-klz—wﬂy (65)

and a transmitted wave is produced on the right side of the xy plane, traveling to the left

Er(z,t) = Egre' "2 0% (66)

14



1

7E0Tei(k2z—wt)y‘ (67)
U1

P;T(Z, t) =

In general, electromagnetic waves are incident at a surface at many different angles. For

a monochromatic plane wave

- . 1 . .
Ej(r,t) = Eoe' ™m0 By(r,t) = a(kf x Ey) (68)

are the incident electric and magnetic fields approaching from the left. After interacting

with the interface, a reflected wave is produced

, ~ 1 . _
Eg(r,t) = E,pe’®r™=%D Bp(r,t) = a(kR x ER) (69)

and a transmitted wave is produced

Er(r,t) = Eope!® ™= Bo(r, 1) = —(kr x Er). (70)

The frequency w is the same for all three waves, and from the definition of angular frequency
w = kv

k‘jvl = k‘va = kTUQ = w, or l{:[ = ij = 2kiT = Ek‘T. (71)
V1 ng

The combined fields E; + Ex and B; +Bp in medium 1 must be joined with the transmitted

fields ET and BT using the boundary conditions. The fields share the mathematical form
( )ei(k]~r—wt) + ( )ei(kR'r—wt) _ ( )ei(kT-r—wt)’ at 2 = 0. (72)

Since the boundary conditions must hold for all points on the plane, for all times, then the

exponential factors must be equal. The spatial terms are then
ki-r=kpr-r=ky-r, when z=0,. (73)

or

z(kr)e +y(kr)y = z(kr)z + y(kr)y = 2(kr)s + y(kr)y, (74)
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for all z and all y. Equation(74) can only hold if the components are separately equal. If
x = 0, we have

(kr)y = (kr)y = (k1)y, (75)

and if y =0

(k1)e = (kr)z = (kr)a- (76)

If we orient our axes so that ky lies in the zz plane ((kr), = 0), then kg and kp also lie in

the xz plane. We can then generalize to conclude

e The plane which contains the incident, reflected, and transmitted

waves, and the normal to the surface is called the plane of incidence.

Equation (76) implies that
krsinf; = krsinOr = kp sin O, (77)

where 0 is the angle of incidence, 0y is the angle of reflection, and 07 is the angle of
transmission, or the angle of refraction. All of these angles are measured with respect to

the normal. We can then generalize and state two laws. The first is the law of reflection
e The angle of incidence and angle of reflection are equal.

The second is the law of refraction, also known as Snell’s Law
ny sin @7 = ns sin O (78)

which gives us the angle of the transmitted angle with respect to the normal of the interface.
These two laws, along with the definition of the plane of incidence, are the three fundamental
laws of geometric optics. Any other waves, such as water waves or sound waves, will obey

the same "optical" laws when they pass from one medium to anther.
Total Internal Reflection

Solving Snell’s Law for 0p

sin fp = % sin 0 (79)
2
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This implies that if n; < ns then 0p < 07 and if ny > ns then 67 > 6;. This implies that
in the case of ny > no for a certain angle of incidence 0; = 0.pitical, the refraction angle 61
is 90°, and the light will stay confined in the material with higher index of refraction. From

these assumptions, we have

n n
sinf, = — sinfp = — (80)
ni ni
and the critical angle is therefore
n
0, = arcsin —. (81)

ni

A waveguide is a light confining device with a higher index of refraction in its core, and
a lower index of refraction in its cladding. Light can be coupled into optical waveguides at

angles at which total internal reflection happens inside of the waveguide.

Core

Cladding

Figure 1: Total internal reflection inside a planar waveguide.

To find the maximum angle (relative to the normal of the waveguide) where we can still
couple light into the waveguide, we use the n = 1 for air, and the critical angle derived
above. From Snell’s law, using the entrance plane of the waveguide as our interface, and

n = 1 for air, we have

1-sin 0,40 = nq sin (g — 0c> = nq cosl, (82)
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using this with the critical angle, we have

ni

2
. . no
SN Opge = nq cosl, = ni V1 —sin?6. =nyq|1 — ()

Sin Opar = \/n3 — n3. (83)

The maximum angle also defines the numerical aperture (NA) of the waveguide

NA=/n? —ni. (84)

The Eikonal Equation

All propagation laws for pencils of rays of light can be derived from the Eikonal Equation.
The equation gets its name from the Greek word etk@v meaning image. Rays are the normals
to light wavefronts, and also represent the direction of energy propagation of these waves.
The Eikonal equation is a non-linear partial differential equation that can be derived from
the scalar wave equation, using a first-order, plane wave-like solution of the time-harmonic
electric and magnetic fields.

The scalar wave equation describes light propagation in a optical medium where the

index of refraction varies slowly as a function of position. Using v = \/1?6 = 0, the scalar
wave equation (57) becomes
2 2
n*(x) 0%
V) — —— =0 85
v & ot? (85)

where ¢ is the vacuum speed of light. A solution to (85) is of the form of a monochromatic

wave

) = ¢a)e ! (86)

and after taking the appropriate derivatives, the scalar wave equation becomes

V26 + k3n*(x)p =0 (87)

where ky = w/cg is the vacuum wavenumber, with units 1/length. The solution to (87),
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also known as the Helmholtz equation, is of the form
(x) = A(w)eos) (88)
where S(z) is the eikonal function. Taking the appropriate derivatives of (88)
Vo = {VA+ A(ikyVS)} eho5(®)

V2¢ = {VZA + VA(ZkOVS) + VA(Zk()VS) -+ A(Zk?()VQS) _ AI{ZS |VS|2} 6ik05($)

0 _

5 = A(—iw)eikos(z)

%) 2 ikoS(z
W:*Awe 0 ()

the Helmholtz equation becomes

2 .
{VQA + VAikgVS + VAikgVS + AikgV2S — AkZ |VS|* — ”(f)(—Aw?)} ethos(@) — ¢
€

{VQA + VAikgVS + VAikgVS + AikgV2S — AR2 |VS|* + k§n2(g;)A} ekoS@) — . (89)

Looking at just the real part

VZA — AR |VS]? + k3n*(z)A=0. (90)

Dividing by k3A, and in the geometric limit VoA 0 [3] [2], we have

KZA
VS(@)? = n(x) (91)
which is the eikonal equation.
We can define a local wave vector as
k=koVS (92)

and when S(x) = constant are surfaces of constant phase. Thus k points in the direction
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normal to the constant phase surfaces. The eikonal equation implies that the magnitude of

k is determined by the local index of refraction

k? = k2n?(z). (93)

The Vector Ray Equation

The vector ray equation is a vectorial equation that can determine ray paths in optical
media. It will first be derived here from the eikonal equation, then from least action princi-
ples.

From The Eikonal Equation

The eikonal equation is the basic equation that describes light ray propagation in the
geometric limit. It will be seen here that the eikonal equation can be further simplified
to obtain the vector ray equation. Taking the square root of (91), and defining s as the

arc-length of the ray, we have

dr
S=n—. 94
\% o (94)
Differentiating both sides of (94)
d d d

and using the definition of the grad operator V, we have

dr d dr

1 d dr

1 9, d dr
%VKVS) I= ds (nds>
1 o d dr
%Vn  ds <nds>

d dr
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Equation (96) is the eikonal equation for ray vectors, or the parazial ray equation whose
solutions correspond to ray paths.
From Least Action Principles

Fermat’s principle of least time states that a ray path between two specified points is

traversed in the least amount of time required

€2
/ nds = minimum (97)

1

where n is the index of refraction, and ds is the ray path’s arc length.
Hamilton’s principle of least action is the broadest of all dynamical principles, and it

yields the equations of motion for a classical particle

/L(qa,qa,w dt = 0 (98)

where L is the Lagrangian function equal to T'— V' (kinetic minus potential energy), and
is represented in generalized coordinates. Hamilton’s principle states that the evolution
of a dynamical system within a specified time interval is a stationary point of the action
functional. Hamilton’s principle minimizes functions of time, whereas Fermat’s principle
minimizes functions of length. From Hamilton’s principle we can derive Lagrange’s equations

d (0L oL
a (aq> = 9 (99)

which yield the equations of motion for a particle in any system, given a known Lagrangian
function. Lagrange’s equations are the basic relationship between Hamiltonian and Newto-
nian mechanics.

From Fermat’s principle, the optical Lagrangian can be determined, and then applied to

Lagrange’s equations to obtain the ray equations. Fermat’s principle can then be written as

5/n(:v,y,z) (1+:'L’2+y'2)1/2dz:0 (100)
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where

1/2

L= Loptical = n(l‘,y, Z) (1 + j"2 + y2) (101)

is the optical Lagrangian. If we choose the z-direction as the direction along which rays prop-
agate, then z plays the same role as time in Hamiltonian mechanics. Lagrange’s equations

then become

d [OL oL

s (ax) = (102)
d [OL oL

N B 1
dz (89) 0y (103)

From these two equations, we can derive the ray equation in vector form
d dr
=Vn (104)

ds''ds

which is the same result of (96), the vector ray equation.
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CHAPTER III
THE HAMILTONIAN FORMULATION OF GEOMETRIC OPTICS

Here the Hamiltonian formulation of geometric optics is presented, and applied to our
2D quadratic index waveguide system. Recall that we are defining rays as the direction of
energy propagation of the electromagnetic wavefronts. In an infinitesimal time dt, a point
on the ray path moves a distance cdt in the direction of the unit vector E/kj For the x

component of the ray path

dzx ks
— = —. 105
=l (105)
Since the medium is continuously varying with position in the z direction
<o
= . 106
o) = = (106)
and substituting (106) and (93) into (105)
dx co kg
g o 107
dt  n?(x) ko (107)
From (92), k = k(z(t)), and the equation for the z component of k is
dk Ok dx
— = 108
dt  dx dt (108)
Since k is proportional to the gradient of the eikonal function (92),
Ok, 0k
= 109
Jdxr  Ox (109)
and substituting (105) yields
dky co 1 10k?
i A il 110
dt  kon?(x)2 dx (110)
and from (93)
dk, 1 On(x)
— = cokp—— . 111
at On(a:) Ox (111)

By noting that w = c(z)k = %k, we can obtain a correspondence with Hamiltonian
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mechanics. From (105) and (111)

de _ 0w
dt Ok,
dho O
dt  Or

which represent Hamilton’s equations for particle dynamics.

(112)

(113)

For ray propagation in a waveguide, we assume that the ray never turns back upon itself,

and taking z as the optical axis

dx
— #£0
alz7£

(114)

This allows us to describe the ray paths by the one-way equations. Dividing equation (107)

by dz/dt, we have
dedt  co kg dl

dt dz  n?(x) ko dz’

The ray path in the z direction is

&k
dt ko
and after solving for k., (115) becomes
do _he
dz k,
Dividing (111) by dz/dt
dky dt 1 On(x)dt

dt dz

dh, _ 13 on(a)
dz k:zn ox

0 On(:L‘) ox dz

(115)

(116)

(117)

(118)

(119)

If we define p = k, /ko as the new conjugate variable to z, the dynamical system for the ray

trajectory becomes

dr D

dz n2 — p2
o)

ol

dz n2 — p2
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The equations for this dynamical system can be rewritten in the form of Hamilton’s equations

de O0H

&y Y 122
dz dp (122)
dp OH

T 12
dz ox (123)

where the Hamiltonian is given by

H = —/n?(z,y) — p>. (124)

The angle between the ray and the optical axis z is given by

dx
tanf = —. 125
P (125)
In terms of the index of refraction n and the ray angle 6, the Hamiltonian and momentum

can be written as

H = —ncos¥ (126)
p = mnsind. (127)

If the index of refraction is independent of the axial coordinate, then the Hamiltonian
H = —ncosf is a constant along the ray path. This is a generalization of Snell’s Law
for a medium with continuously varying index of refraction in transverse xz-direction. The
presence of cosine rather than sine is due to the definition of the angle 6 relative to the

optical axis.
Derivation of Ray Trajectories in Quadratic Index Profile Waveguides

The most common index profile for gradient-index optical waveguides is a quadratic func-
tion of the transverse coordinate x. For a rectangular optical waveguide of fixed thickness
a, the profile is

n*(z) =n§— (n§—1) = (128)
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for this index profile, the Hamiltonian is

H = —/n?(z) — p?. (129)

Hamilton’s equations (120) and (121) then become

d
a_ P (130)
dZ n2 — p2
dp _ M (131)
iz~ @yt p2
Using the chain rule
d (2 2
dp _ —(ny —m)r (132)
dx a“p
Separating variables, we have
(n2 2
pdp = de:p (133)
a
2 2Y,.2 2 2Y,.2
p2 :pg + (no agl)ma o (no a?l)x ) (134)
We now define
2 2y,.2
N2 :pg + (no ;/Ll)xo (135)
a
and
(n5 —ni)
An? = Tl (136)
The momentum then becomes
p? = N? — An?z? (137)

p=VN?— An222. (138)

(ng—ni)a?

e =n2 — An?z? into (130) gives

Substitution of p and n?(z) = n2 —

N2 — An2g2
d:)::\/ néx (139)

dz V/n2 — N2
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rearranging as

dz (140)

then integrating gives

arcsin | — | — aresin [ =2 | = _An (z — 20) (141)
2 2 Vg~ N? ’

N ) _ . :c0> An
r= - |]sin|arcsin | | + | —=—= | (2 — 20)| - (142)
(An [ (An /ng — N2
Looking just at N = \/pg + (n2 — n%)i—; = /p2 + An?22, and using p = nsinf =

V/n2 — An?x?sinf, we have after rearranging

N = \/n2sin20, + cos20,An2x2. (143)

If the initial angle is 6, = 0 at z, = 0, then cosf, = 1 and N = /An?z2 and & =
v/ An2z2

X~ = To, (142) becomes

o A
T = ToSin [arcsin (J;) + (n z (144)
Zo V/n2 — An?a?

T = T,Sin

T An
5 + (W = An%%) z] (145)

T = ToCOS oA z| . (146)
V/n2 — An2z2

From k = 27 /X, we define

2 2 _ AnZz2
\ T/ 15 news (147)

An ’

then the general expression for ray trajectories is

2mz

T = T,C08 (A) (148)
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CHAPTER 1V
COMPUTATIONAL SIMULATIONS OF RAY BUNDLES IN QUADRATIC
INDEX WAVEGUIDES

The analytic solution for ray trajectories in quadratic index waveguides (148) was simu-
lated in Octave. First, refractive indices are defined to be n, = 4 along the optical axis, and
ny = 1 at the boundary. The characteristic lengthscale of the simulation (and all simulation
in this thesis) is in microns. The waveguide half-width (distance to the boundary from the
center of the waveguide) is 5 microns, and the waveguide length is 32 microns. The ray’s
initial positions on the left boundary were given equal spacings, and each with an initial
angle of 6y = 0 degrees. All of this information is passed into a function that calculates
equation (147), and then equation (148). The result of this function is a column vector for
each ray that gives the transverse position at all axial locations. Figure 2 is the plot from

the simulation results (see Appendix A for code)

Figure 2: Ray bundle using general solution from Hamilton’s Equations

Note that from Figure 2, we see the wavelength dependence on the initial position of the
ray predicted in (147). This is more clearly seen at the second node. This is unique from

the other systems with oscillatory solutions such as the classical harmonic oscillator.
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Numerical Solutions To Hamilton’s Equations

The problem of light propagation in quadratic index media involve solving differential
equations for some initial values. The differential equations are Hamilton’s equations, and
the initial values that must be specified are the initial transverse positions of each ray, and the
initial axial position, which in all of our simulations is at z = 0. Given these initial values, we
can propagate Hamilton’s equations forward as the axial position increases. Euler’s method
is a numerical technique to solving ordinary differential equations. Hamilton’s equations
(120) and (121) are of the form

dx
- = f(z,t). (149)

Taking the Taylor series expansion of x about ¢ gives

dz 1 d*x 9

where x(t) is the initial value of the function. If we take At to be small enough so that the
terms second order and higher are negligible, then we can ignore those terms, and we are

left with an approximation for the value of the function at time step t + At.

d
2(t+ Ab) ~ z(t) + d—fAt. (151)

This approach is called the Fuler method. Euler’s method can be expressed by using the
indices @

w(tiv1) = 2(ti) + fx(t), ti) At (152)

where z(t;) is the initial value of the function. The local order of the approximation is
determined by the order in At to which the approximation agrees with the exact solution.
Fuler’s method is a first order approximation at ¢;41.

For an improved approximation method, we can keep higher orders of the Taylor expan-
sion. We can think of the problem of solving differential equations of the form of equation
(149) as integrating dz/dt from ¢ to t+At. Then, from the mean value theorem, there exists

a value t,, in the interval where the exact solution is found while stopping at first order in
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At
dx

z(t+ At) = x(t) + i

|, At. (153)

The slope dz/dt|;,, contains information of the curvature (second and higher order terms).
By properly estimating t,, and dz/dt|;, , approximations of higher order than the Euler

method can be obtained. One of those approximations is the second-order Runge-Kutta

approximation
z(t+ At) = z(t) + f(a', ')At (154)
where
v =ax(t) + %f(a:(t), t)At (155)
t'=t+ %At. (156)

The expression t' is the midpoint of the interval, and 2’ is the Euler approximated value of
x at t’, and this approximation is accurate to second order, and first order accurate globally.
The Runge-Kutta approximation estimates the slope dz/dt|;, by a weighted average of
several terms of the form f(’,t") where ¢; are suitably chosen values in the interval [¢,¢ +
At], and z, are obtained by an Euler-like approximation. Anther popular higher order

approximation is the fourth-order Runge-Kutta method

z(t+ At) = 2(t) + % [f (@, 8]) + 2f (b, t5) + 2 (a5, t5) + f(a), t))] At (157)
where
'y =z(t)
v = (1) + 5 f(ah, 1)
= a(t) + % Fah, £ At
xy = x(t) + f (5, t5) At
and

t

I
~
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1
thy=t+ At

2

1
th =t+ At
3 +2
ty =t+ At.

This fourth-order Runge-Kutta method requires the calculation of f(2/,¢) four times and
FEuler approximations four times, and thus requires roughly four times the computing re-
quirements per step of the Euler method at the same accuracy. But we can chose larger
values of At than with the Fuler method at the same accuracy. This makes the fourth-
order Runge-Kutta method the first choice for approximation methods for computational
problems requiring high accuracies.

Matlab’s ode45 function can be used to solve Hamilton’s equations. This function solves
non-stiff differential equations. It is based on an explicit Runge-Kutta method. The syntax

for using ode45 is

[Z,X]=0de45 (@funcname,t,x0,options,param) (158)

where Z is a column vector of axial points on the waveguide, and X is the solution array for
the transverse position of the ray at the respective axial position. For our simulation, t is
the interval of integration over a defined axial region. The ode45 solver will use the first
element of this vector, and integrate from the first element to the last. A row in the solution
array X contains two elements, which correspond to the solutions of Hamilton’s equations

for z(z) and p(z) at the corresponding axial location.
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L1

Figure 3: Ray bundle using ode45 to solve Hamilton’s equations.

The initial condition yO is a row vector of two elements, the first being the initial posi-
tion, and the second element is the initial momentum p (z = 0) = py = ngsinfy. The initial
angle 6y, indices’s of refraction ng and n;, and ag, the maximum transverse distance from
the center of the waveguide are all given.

A comparison of the two simulations can be made by overlaying the ode45 plot over the
analytic solution simulation. Figure 44 is the overlay plot of both simulations, and both are

in exact agreement with each other.
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Figure 4: Comparisons of analytic solution, and ode45 solution of Hamilton’s equations.

Simulation of a Gaussian Ray Bundle

In order to get insights of how a real laser beam will propagate in quadratic index
waveguides from the ray trajectories presented, we have to create an initial ray distribution
that represents a Gaussian function. To create a Gaussian ray bundle we define ray spacings

that are proportional to a Gaussian function as
Tig1 = X; + ae®i/2o (159)

where « is the initial spacing from the on-axis ray to both of its adjacent rays on each side.
The Gaussian ray spacing defined by (159) is implemented to the analytic solution for ray

trajectories, and the result is seen in Figure 5.
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Figure 5: Gaussian Ray Bundle.

Again we see the wavelength dependence on the initial position of each ray, and we can
predict that this will correspond to focusing regions of a real laser beam propagating in a

quadratic index waveguide.
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CHAPTER V
WAVE OPTICS TREATMENT OF LIGHT PROPAGATION IN
QUADRATIC INDEX WAVEGUIDES

Derivation of Gaussian Beams and its Properties
Starting with the Helmholtz (scalar) wave equation (87), and taking n(z) =1

V2 +k2p=0 (160)

where 1) is the complex field amplitude for any polarization of the electric field, and k& =

27 /A = w/v = w/eu is the vacuum wave number. Taking ¢ in the z direction as

¢ =u(z,y,2)e " (161)

the derivatives are
Vo = Vue %% — jkue™** (162)
V2p = Viue ™ — 2ikVue ** — g2ue*? (163)

and substituting back into the (160), we have
(V2u — 2ikVu) e ** = 0. (164)

At this point we impose the parazial approrimation in wave analysis. The first ap-
proximation is that the variation of propagation is slow on the scale of the wavelength A.
Mathematically this is expressed as

o
022

ou

2k | —
< 0z

. (165)

The next approximation is that the variation of propagation is slow in the transverse direc-

tion
9%u
Oy

d%u
- . (166)

?

o
022

<<‘
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the Helmholtz equation (160) them becomes

Pu  u ou
— + — —2ik— =0. 1
Ox? + Oy? e 0 (167)

Equation (167) is called the parazial wave equation.

To solve the paraxial wave equation, we assume the trial solution has the form [11]

w = Aexp {—i {P(z) + ;;ZJ } (168)

where 12 = 22 4+ y2. We can rewrite u using k = 27/A, and A =1 [9], [11],

u=exp {—i [P(z) + W} } . (169)

Taking the appropriate derivatives

ou ikx

oz qz)

and similarly for 9%u/0y?

Pu_ KR ik
dy? ?(z) q(z)

and
ou kr?
7 Pl _ /
5% = [P0~ e
the Helmholtz equation then becomes
k222 ik k2y? [ ker?
— —1 — 2ik | —iP'(2) +1i q/z]zo
PG dE PE e )+ e
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Fach term must vanish independently, so

dg(z)
5 =1 (170)
and
dP(z) 1
= ) (171)

The solution to (170) is ¢(2) = g, + 2.
Next we introduce the complex beam parameter, which relates two real beam parameters

R and w [9]

1 1 oA

When (172) is substituted into the trial solution (169), the physical meaning of the parame-
ters R and w is seen. The parameter R is the radius of curvature of the wavefront at z, and
w is the beam radius, which is defined as the distance from the maximum amplitude of the
field, to the point where it decreases to the value 1/e. The spot size of the beam is 2w, and
is also called the beam diameter. The minimum diameter of the beam is 2wy, and is called

the beam waist. The complex beam parameter at the waist is purely imaginary [9]

2
W
qo = ZTO. (173)
so that the solution to (170) then becomes
rw?
q=1i——+=z. (174)
A
Substituting (174) into (172), we have
1 1 A
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2 2,4 2,4
WG 1 [mfwy 9 A T W 9
—Z)\+Z—R( )\2 +Z>—Zﬂ_u}2< )\2 +Z> (175)

Equating the imaginary parts of (175), we obtain the expression for the square of the beam

radius
2 \ 2.4
L Tiwg L2
A Tw? A2
A2 2w
20N _ 0 2
w(z) = ?%U% < 2 +z >

w?(2) = wg

1+ (7%)2] . (176)

Equating the real parts of (175), we obtain the expression for the radius of curvature

1 (7w 9
ZZR( N2 +Z>

R(z) =z [(T’j)z +1] . (177)

The beam contour of w(z) is a hyperbola, with asymptotes that make an angle with the
optical axis z

o=—". (178)

Dividing (177) by (176), we obtain the relation

Az Tw?
== 179
ng AR (179)
which can be used to express wg and z in terms of w and R
2
L (180)
()
R
z = (181)
() +1]



Next we solve the differential equation for P(z), equation (171)

dP(z):i i (182)
e T

and integrating (182) yields

iPG) =In 1 (;ﬂjgﬂ

iP(z) =Iny[1+ <AZ2)2 —itan~! (AZQ) . (183)

Twg Twg
The real part of P(z) is the phase shift difference between the Gaussian beam and an ideal
plane wave. The imaginary part represents the expected intensity decrease of the beam due
to the expansion of the beam. The trial solution (161) of the Helmholtz wave equation is

now
. 1 ik
¢—TZ)OeXp{—Z(/~cz—<I>)—r2 <w2+21E>} (184)

where ® = tan™! (Az/mwg).
Hermite Polynomials

In Cartesian coordinates, the paraxial wave equation can be satisfied by

w

€ Y . ko o 2
o) =9 ()1 (L) e =i [P 4]} (185)
were ¢ is a function of x and z, and h is a function of y and z. Looking at only the transverse

w(z,2) = g (%) . exp {—i [P n ]Z”:] } (186)

Using (186) in the paraxial wave equation (167), we obtain Hermite’s differential equation

5

dimension z, (185) is

for the function g

d*H,, dH,,
-2 onH, = 0. 187
72 x T +2n 0 (187)

where H,, are the solutions to (187,) are the Hermite polynomials where n defines its order.

The Hermite polynomials are a complete set of orthogonal functions in the interval
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[—00, 00|, and have the orthogonality relation

/ dze™™ H,(2)Hp(z) = 2"/ T0pnm. (188)

—00
This relation can be used to define a set of polynomials ~, ()

1 22
n(r) = ————=e" 2 H,(x), n=0,1,2,... 189

so that the orthogonality relation becomes

/OO Az () Ym (z) = dpm.- (190)

—00

Since this defines a complete set, then any well-behaved function in the interval [—oo, 00]

can be expanded in terms of 7, (x)
P =3 Coala) (191)
n=0
where the coefficients can be found by
Cn = /_O; dx' f(2")yn(2') = (constant # 0). (192)

Hermite Polynomial Expansion of Gaussian Beams

A Gaussian function is defined as
2 b2 [ 22 2,
f(x) — e 202 = e_ﬁ(biz) = e_isz (193)

which we can expand in terms of Hermite polynomials (|4] equation 4.51) on the left bound-

ary z =0 as

f@) =" Cpm(a). (194)
n=0
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Using (192), the expansion (194) becomes

= - dz’ (") (2")ym ()
T;)/_OO Y (')

and then substituting (189), we have

oo

1= g [/ ' f(ae % )| e )

Just looking at the integral in the square bracket

o0 2,2 22 e8] 1( b2 "
/ da' f(a')e™ 57 ¢ F Hy(a )2/ da'e 2 (22+1) CH,(2).

— 00

(195)

(196)

(197)

(198)

Since we are modeling a Gaussian beam, which by symmetry is an even function, we only

use the even orders of the Hermite polynomials, n = 2m. Using the substitution p? =

(—% (3—22 + 1)) for the exponential on the right side of (198), and using the result from

Bayin [4] problem 4.10, (198) becomes

£y = B (10

o / / b2a? /
dx' f(x e 2Ze T Hy(z') =
| 't ) = ST (2

The expansion of the Gaussian function is now

[e.o]

1 (2m)! V7 m@_é )
o= gﬁ’”@?ﬂ)‘f m! p ( P? ) Hom()

2

_2\™
10 =3 g () ¢ Hana)
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Derivation of Analytic Solutions for Field Intensities in Quadratic Index

Waveguides

The analytic solution for modes in a planar quadratic index waveguide is derived here

from the reduced scalar wave equation, or the Helmholtz equation

V2p+n?(z)kd =0 (202)

where n?(z) is defined by (1), and kg = 27/) is the vacuum wave number. Waves are
assumed to have a harmonic time dependence ¢®!. The Helmholtz equation (202) is solved

using the trial solution

¢ = f(x)e " (203)

where we are only considering one transverse dimension z. A solution of the form (203) is
a mode of the quadratic index waveguide, and the functions f and [ are undetermined at

this point. Taking the appropriate derivatives of (203)

% e
62¢ —iBz
@ = —fﬂze p

and the substituting these derivative and the index of refraction (1) into (202), we have

ﬁ 2.2 _ 52 _ 12(p2 _ 2£2 —0 204
dx2 + (no o B o(no nl)a2)f - Y ( )
. . :[;2 .
f!(@)e™ % — B2 f ()" + kg (n% — (n§ —ni) 2> fla)e = = 0. (205)
a4y
The exponential terms vanish, and we have
" 2 2(, 2 2 2 &7
@) = B24(a) + 3 (1 = (0 = ) 25 ) f0) =0 (206)
0

This equation can be transformed into the form of the quantum harmonic oscillator (Ap-
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pendix F) by making the following substitution

n2 — n2 1/4
5—\/1%( R 1) x.
ap
Solving (207) for x
. §
N n2—n? 1/4°
0]
Using the chain rule
df _ df g
de  d€ dx

we have

df  df ng —n3\"*
L= (M)

2
g

2f d [df n2 —n2\ V| de
m—@hﬂ« )

> °s
ag dx

da? ~ g™

2f _ &, <ng—n§>1/2

Equation (206) becomes

0

2 2 2\ 1/2 2 2
o () e - ) 1 - 1 (M) ( S al©=0
k 0

nZ2—n?2 1/2
P2 f 212 — B2 ko( 3 ) 26y — 0
d7§2 nZ—n2 1/2f(€) 2 o 1/2§ f(é.)
()" ()
0 0
Defining
_ gk —p?
N n2—n?2 1/2
0 1
we have
d2
dé +(o—&)f=0

(207)

(208)

(209)

(210)

(211)

(212)

(213)

(214)

which is the same differential equation of the form of the quantum harmonic oscillator. The

modes of the square law media must be guided near the axis of the waveguide, which means

43



we require the function f to vanish as * — oco. The same requirement is imposed for the

wave functions of the quantum harmonic oscillator. Bound solutions are met if we impose

the condition

o=2p+1. (215)
This condition, together with (213), and with assigning the variable
Qo
b= |———— (216)
bo(n —nf)?
determine the possible values of the propagation constant f.
2.2 _ 2
2p+ 1= (nOkO 52)(10
ko(ng — nf)?
2p+ 1= (n2k2 — )b
(2p+1
Bp = \/ngkg - bg) (217)
Returning to (214), the general solution is
f=Hy(©e ¢/ (218)
taking the appropriate derivatives
df —dHp _e2 g2
Yo “p H.(— £%/2
i Tz e + H,(—¢)e
T e P O T Py H { (-6 (O — )
d’f d*H, dH, ., 2
— —£7/2 —£/2
@ am K T /2 Hye /2 (219)
Using the (215), (214) becomes
d’H, dH,
—26—2 4+ 2pH, = 220
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which of the same form of (187), Hermite’s Differential equation. Thus, the mode solutions
for the quadratic index waveguide are the Hermite Gaussian functions, and these modes
form a complete set of orthogonal functions. We can then describe every wave as a series
expansion in terms of these modes.

From (208) )
e S S (221)

z? = B (222)

z? = (223)

and solving for &2

g="2 (224)

and w? is

wr= ——— (225)

f=Hy(z)e™/? (226)

and this can be expanded in a series expansion following the same procedure that derived
(201). The trial solution (203) becomes
1

N m
)= Y <1 _2'02> Hp(z)cos(Bu)e =2 (227)
m=even % (% + 1) . 4mm) P

which gives the fields intensity profiles, or modes, of our planar quadratic index waveguide
system. Figure 5 is the Octave simulation using (227), where the waveguide length is 32um,

and the waveguide width is 10pm.
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Figure 6: Simulation of field intensity profile from the analytic solution.
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CHAPTER VI
NUMERICAL SOLUTIONS TO MAXWELL’S EQUATIONS

The Finite Difference Time Domain Method

The finite difference time domain (FDTD) method solves Maxwell’s curl equations (Fara-
day’s Law (36) and Ampere’s Law (37) by discretizing space and time into finite rectangular
grids. It uses central difference approximations, which has 2nd order accuracy, to 'propa-
gate’ equations (36) and (37) in time [14]. To obtain the central difference equations, first
consider the Taylor series expansion of a function f(z) expanded about the point zy with

an initial offset +0/2

§df S\ d2f 1/6\>a3f
Flzo +0/2) = f(2) + 5 le=z0 + <2> Sl t 3 <2> To3lz= T (228)
§df S\ d2f 1/8\*a3f
Feo=8/20 = 1) = 5Lyt (5) a3 (3) Gl 29
Subtracting (229) from (228)
f(z0+6/2) — f( —6/2)—5ﬁ| +3 0 3d3—f+--- (230)
0 0 %z T a\2) dlB
then dividing by the step size § we have
20+ 0/2) — fz0—6/2 1 /62

where the prime indicate differentiation with respect to z. Rearranging, we solve for f'(z)

df . _ fle0+6/2) = f(z0 = 6/2)
% z=zo0 — 0 5 0 + 0(62) (232)

and note that that the term O(62) contains all the second-order and higher terms. If
we choose a step size § that is sufficiently small enough so that all terms in O(§?) are

negligibly smaller than the first term on the right hand side, then we can make a reasonable

47



approximation for df /dz|,—,, by dropping O(6%). We have for our approximation

df _f(20+6/2) — f(z0 —6/2)
@ z=zp 5 + 0(52) (233)

This is the central difference approximation for the derivative of the function at zg. But the
function is not sampled at zg, but instead is sampled at the neighboring points 2o+ /2 and
20— 0/2.

For the simulations in this thesis, we consider the case for a wave traveling in the z-

direction polarized in the z-direction. Faraday’s law (36) is then

ot . 0B,
—— = E=2¢ 234
Mot VX Yz (234)
0H, O0E,
_ i 235
ot dz (235)
and Ampere’s law (37) is
OF - oH,
— = B=-¢é,—Y 2
ey V x €= (236)
0E, 0H,
-2 2
ot dz (237)

We now introduce notation to identify the spatial and temporal step of the fields. For E,,
we will use FE;(z,t) = EX(q), and for H, we will use H,(z,t) = H}/(q) where p indicates the
temporal step, and q indicates the spatial step.

To find the value of H,, a the next one-half spatial step ((¢1/2)Az, pAt) we use Faraday’s

law
M 1y2) - B P+ 1/2) | BRa+ 1) - BRG) (238)
At Az ’
Solving for H5+1/2(q +1/2), we obtain the update equation for H,
HPV2(g 1+ 1/2) = PV (g +1/2) — 2L (Br(g 1) — B2 239
Y (Q+/)_ Yy (q—’—/)_E[x(Q"i_ )_ x(q>] ( )

The corresponding update equation for E, is obtain from Ampere’s law using the same
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procedure. The central-difference approximation is

EP*l(q) — E2(q)  HyV(q+1/2) — HYTVP (g —1/2)
€ = .

At Az (240)
Solving for ELT!(q), we have
B () = S0 [H772g 4 1/2) - B2 - 1/2)] (241)
* eAz LY Y

These equations calculate the electric and magnetic fields in 1/2 increments, known as the
leapfrog method, in which the electric field is calculated in a unit grid volume, then the
magnetic field is calculated in the same unit grid volume, but at the next time step. The
FDTD first calculates the electric field for the entire space at the first time step, then the
magnetic fields for the entire space in the next time step. In other words, it solves the initial
value problem where the fields and currents are zero for ¢ < 0, then non-zero values evolve

in response to some currents, or sources.

MEEP

MEEP is a FDTD solver that simulates Maxwell’s curl equations. MEEP is used to
calculate field intensity profiles in computational electromagnetic problems [12]. It uses the
Yee grid discretization to divide space and time into regular finite rectangular grids. In this
grid, each field component is sampled at difference spatial locations offset by a half-pixel
using the center-difference calculation of space and time. A 2D illustration of the Yee grid
is shown in Figure 7. The time derivative of the vector field H produces an electric field
around it as predicted by Faraday’s Law. And as predicted by Ampere’s Law, the time
derivative of the electric field produces the curl of the vector field H around it. In MEEP,
the electric field and vector field H are initially zero at t = 0. The fields are calculated as
time increases, and the fields are found to be non-zero because of their interaction with a

source, and in our simulation, a Gaussian laser beam.
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(i,j+1) ’

(i.j) ‘ (i+1,)
Ex

Figure 7: Yee grid, in 2D.

MEEP uses the scripting language Scheme. Scheme differs in syntax from MatLab and
Octave in unique ways. For example, in Octave to perform the operation 4 minus 5, one

would implement this as

(4-5)

but in Scheme, this is implemented as
(— 4 5).

A Gaussian distribution

fw) =5= (242)

can be implemented in MEEP as
(exp (/(* —1 (vector3—y spoint) (vector3—y spoint)) (* 2 sourcesigma sourcesigma))))
where o is the variance (or spread) of the distribution.

Users can write scripts to define parameters, computational cell sizes, geometries, and
sources of the simulation. Access to the source code allows flexibility to the user not seen
in GUI-based or CAD-based FDTD packages.

MEEP uses dimensionless units, ¢, = p, = ¢ = 1. This emphasizes the scale invariance
of Maxwell’s equations, and the fact that most meaningful quantities are almost always
dimensionless ratios (such as scattered power over incident power). MEEP allows the user

to choose a lengthscale a, then all distances are given in units of a. All times are in units a/c,
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and all frequencies are in units ¢/a, or equivalently a/\, where A is the vacuum wavelength.
Relative permitivity and permeability constants can be defined in MEEP.

Boundary conditions can be defined and MEEP, and in the MEEP simulation used in this
thesis the perfectly matched layers (PML) boundary condition is used. This simulates open
boundary conditions by absorbing all waves incident on it, and does not allow reflections.
Strictly speaking, this is not a ’boundary condition’. Rather, it is a fictitious absorbing
material. The PML is given some finite thickness that causes the fictitious material to
gradually turn on. This is because in an actual discretized system, the PML material has

some small reflections.
MEEP Simulation

To simulate wave propagation in quadratic index waveguides using MEEP, we first define
the computational cell, which can also be interpreted as the dimensions of our waveguide.
Then we define the refractive indices along the optical axis and boundary, and define a
continuous Gaussian beam source. Defining x as the transverse dimension, a Gaussian

distribution is

fz) = e @2 (243)

where o is the variance of the distribution, and in this simulation is equal to 1.

The frequency was defined to equal v = 1.5. If a lengthscale of @ = 1um is used, then the
wavelength is A = a/v = 1uym/1.5 = 0.667um or 667nm. A half-waveguide width a, was
defined to equal 5um, and the long-axis waveguide dimension is 32um. These dimensions
were chosen to match the Gaussian ray bundle simulation.

The MEEP simulation of a Gaussian beam in a planar quadratic index waveguide was
performed using PML boundary’s, and an initial beam waist size of 10um. The index profile

is of the form of equation (1).
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Figure 8: Index profile simulation in MEEP.

The simulation yields the following intensity profile

e

Figure 9: MEEP simulation of a Gaussian beam in a quadratic index waveguide.

The corresponding grayscale image is

52



LR L

Figure 10: Grayscale image of MEEP simulation for a Gaussian beam in a quadratic index
waveguide.

Comparison of MEEP and Analytic Simulations

This sections shows plots that compare the analytic solution to the Helmholtz wave
equation to the simulation results obtain from MEEP. These are graphical comparisons
comparing the grayscale pixel intensities of the two simulation. Two plots are shown, one
comparing the MEEP simulation with the analytic solution up to 2nd order, and the other
using the analytic solution up 20th order. Currently, results are seen to agree only through

the first cycle. After that, the two simulations are out of phase.
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CHAPTER VII
COMPARISON OF GAUSSIAN RAY BUNDLES WITH THE NUMERICAL
SOLUTIONS TO MAXWELL’S EQUATIONS AND THE ANALYTIC
SOLUTIONS OF THE SCALAR WAVE EQUATION

Here the analytic solution to Hamilton’s equations for a Gaussian bundle of ray trajec-
tories will be graphically compared to the analytic solution to the Helmholtz wave equation.
Instead of using the signed field intensity solution, we want to use the time-average field
intensity. To find the time-average field intensity

e

z2/2 T
I= T /Ogﬁ(w,z)*gb(x,z)dt (244)

Going out to 2nd order

—a?/2 T , . . . . 4
I = € T / (C()Hoefzﬁoz + CQH2€71ﬁ2Z> et (C()Hoelﬁoz + CQHQGZ’BQZ> et (245)
0
e_IQ/Q . . . T
I = 7 <C§H§e—z(ﬁo—60)z + 20002H0H2€—7«(50—52)Z + C%ng—l(ﬁg—ﬁg)z) / 6_(w_w)tdt.
0

(246)
The time dependent integral equals 7', and the exponential factors of the squared terms

vanish, and we're left with
[=e @/ {C§H§ 4 200 Oy Ho Hae~(Po=52)= CSHQQ} . (247)

The generalized expression for the time-average field intensity for even orders n is

N N N
[=e /2 {Z Gr 42> > Gubmcos (B — Bim) Z)} : (248)
n=0

n=0m=n+2

The generalized field intensity was simulated in Octave. Figure 13 is the simulation up
to 2nd order, and Figure 14 is the simulation up to 20th order. We see that taking the
expansion to higher orders increases the accuracy of the simulation, producing a more real

looking beam that we would expect to see in experiment
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Figure 13: Time-average field intensity for the analytic solution to the Helmholtz equation
for order n=2.

Figure 14: Time-average field intensity for the analytic solution to the Helmholtz equation
for order n=20.



Next we wish to compare the Gaussian ray bundle with the average field intensity. Figure
15 is a plot overlaying the Gaussian ray bundles trajectories over the average field intensity

plot.

Figure 15: Comparison of analytic solution of Gaussian ray bundle trajectories with time-
average field intensity of analytic solution simulation up to 20th order.
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CHAPTER VIII
FUTURE WORK

This chapter describes future work on the analysis presented in this thesis, and problems
that will use all of the theory and simulation techniques used in this thesis. It’s suggested
that we can make predictions about the field intensity from the Gaussian ray bundle analysis.
An exact agreement wasn’t seen graphically, but future work would include quantifying how
the focus regions of the field intensities correspond with the nodes created by the Gaussian
ray bundle trajectories on the optical axis.

Simulating a Gaussian beam in planar quadratic index waveguides was performed by
expanding a Gaussian function in terms of Hermite polynomials. But it is also suggested by
Macuse [11] that there exists a closed-form solution for the modes in a square law medium.
Its proposed that this closed form solution can be verified by the same methods used in
this thesis, and a comparison to the series expansion can be made to reveal any potential
disagreements between the two solutions.

The comparisons between solution of scalar wave equation and the numerical solutions
to Maxwell’s equations from MEEP also required more detail investigation. The analytic so-
lution to the scalar wave equation was obtain by imposing paraxial approximations, whereas
the simulations performed in MEEP is a full vectorial wave simulation of Maxwell’s Equa-
tions. How do these differ, and how can these differences be quantified? If these differences
are understood, we can then make accurate prediction of ray propagation from the field
intensity profiles.

The theoretical development and simulations presented in this thesis can also be applied
to systems involving electromagnetic light propagation with spatially varying medium where
an analytic solution does not exist. One such system is a planar quadratic index waveguide
with periodic axial perturbations. The numerical simulations, verified by comparison with
analytic solutions, can be used to simulate light propagation in this system, and to determine

the conditions that predict chaotic ray behavior.
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APPENDIX A

Code: Analytic Solution for Ray Trajectories

FFTIFTIFTTEXACT _SOLN_MAIN. M

%uses function ’'qdinxexact.m’

%

%

n0=4; %center line index (optical axis)

nl=1; %index at the boundary

a0=5; %waveguide distance from center

z0=0;

zf=32; %waveguide length

thetaO_degs=0; %initial angle, in degrees

xstart =1.25; %initial transverse position

while xstart >=-1.25
thetaO_rads=theta0_degs=(3.14159/180); %convert initial
thetaO=thetaO_rads;
[x_z]=qdinxexact (n0,nl,a0,20,zf,xstart);
z=linspace (z0,zf ,2000);
xlabel (’z7);
yvlabel (’x(z) ’);
plot(z,x =z,’r—","LineWidth’ ,2);
legendexact=legend (’Exact Soln’);
hold on

xstart—=xstart —.25;

function [x_ z]—qdinxexact(n0,nl,a0,2z0,zf, xstart)

z—linspace (z0,zf ,2000);

lambda—2xpixa0*xsqrt (n0~2/(n0"2—nl1"2)—(xstart/a0)"2);

angle

to

x_z—xstartxcos ((2*pixz)/lambda); %general equation for ray trajectories

end
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APPENDIX B

Code: Hamilton’s Equations Solved Using ode45

AIITIIIIIIIIFFHAMILTONS _FQNS_RAYPATHS.M
%Uses ode45 to solve Hamilton’s equation
%to determine ray trajectories in a planar
%quadratic index waveguide.

%

%

%

n0=4; %center line index (optical axis)
nl=1; %index at the boundary

a0=5; %waveguide distance from center
z0=0;

zf=32; %waveguide length

thetaO_degs=0; %initial angle, in degrees
thetaO_rads=theta0_degs«(3.14159/180); %convert initial angle to radians
thetaO=theta0_rads;

p0=nOxsin (theta0);
options=[n0,nl,a0,theta0];

xinit =1.25; %initial transverse position

while xinit >=-1.25

x0=[xinit ,p0];
t=2z0:0.02: zf;

|z,x]=odeds (@Qraypath ,t,x0,options );

xx=x(:,1);
px(:,2);
plot(z,xx,’b—","LineWidth’,2)

legend2—legend ('Hamiltons Eqguations solved by oded5’);
hold on

xinit—xinit —0.25;

function dy — raypath(t,x0,options)

nO0—options (1);
nl=options (2);
a0=options (3);
thetaO=options (4);

if isreal (x0)
xx=x0 (1) 3
p=x0(2);

else

return

n=sqrt (n0~"2—(n0"2—nl"2)x(xx"2/a0"2));
dn=—((n0"2—nl1"2)x(xx/a0"~2));
dx=p/(sqrt (n"2—p~2));

dp=(dn)/(sqrt (n"2—p~2));

dy=[dx;dp];

pO=n=xsin (theta0);

end
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APPENDIX C

Code: Gaussian Ray Bundle

FTTFTISTIIGAUSSIAN. RAY BUNDLE.M

%Simulates the trajectories of a Gaussian ray bundle
%Uses function ’gdinxexact.m’

%

%

n0=4; %center line index (optical axis)

nl=1; %index at the boundary

a0=5; %waveguide distance from center

z0=0;

zf=32; %waveguide length

thetaO degs=0; %initial angle, in degrees

spacing =0.12; %spacing between on—axis ray and adjacent rays.

raydist (1)=0;

alphal=spacing;

raydist(2)=alphal;

raydist (3)=raydist(2)+alphalxe~(raydist(2)°2/2);

irays—=3;

rayflag =0;

while rayflag==0

Determines # of rays

raydist (irays+1l)=raydist(irays)talphalxe~(raydist(irays)~2/2);

irays=irays+1;
if raydist(irays)>a0
raydist (irays )=[];

rayflag=1;

end
raydist (length(raydist))=][];
raydist;

maxnumrays=length (raydist)
for iray=71:maxnumrays

xstart=raydist (iray );

thetaO rads=theta0_degs=(3.14159/180); %convert initial

thetaO=thetaO_rads;

[x_z]=qgdinxexact (n0,nl,a0,z0,zf,xstart);
z=linspace (z0,zf ,2000);

xlabel (’z7);

ylabel ("x(z) )

plot(z,x_z,’r—", LineWidth’ ,1);
legendexact=legend (*Exact Soln, Ray Trajectory ’);
hold on

angle

Y%mnow switch sign of inital ray postions, for other ’half’ of gaussian

for iray=1:maxnumrays

xstart=—raydist (iray );

thetaO_rads=theta0_degs=(3.14159/180); %convert initial

thetaO=theta0 rads;
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[x_z]=qdinxexact(n0,nl,a0,20,zf
z=linspace (z0,zf ,2000);

xlabel (’z7);

ylabel (*x (7))

plot{(z,x =, r—","LineWidth’  1);
legendexact=legend ("Exact Soln,
hold on

,xstart );

Ray Trajectory ’);
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APPENDIX D

Code: Analytic Solution to the Scalar Wave

SISTTTTTSITTITTITIT ST TS TSI ITTI ST TSI I TSI ST T TS TISTIITITSTII TSI TITSITTITS e
%YMAIN SCRIPT FOR ANALYTIC SOLN, WAVE EQUATION IN SQUARE LAW MEDIUM
%%Reqguired functions: bbeta.m, hermitecoeffs.m, mfac.m, EE004.m,
Y%%calcexpancoeffs.m, evalinten.m

%o

%

%

%

%

%

%

%

clear all

nn=20 %Hermite polynomial order, must be even

iorder=nn;

iorderdiv=iorder /2;

m=0:1:iorderdiv;

TITSTSITT TSI IW aveguide dims

%For comparison with MEEP simulation
y=-—9:0.03:9; %change step size to increase resolution of images

z=0:0.02:32;

%Parameters

a0=5.0; %Waveguide half width

%For comparison with MEEP simulation
n0=4.0; %center index of refraction

nl1=1.0; %boudary index of refraction

sourcesigma=1.0;

frequency =1.5; %This is meep’s dimensionless frequency

wavelength=1/frequency ;

k0=2%pi/wavelength;

b=sqrt (a0/(kO*sqrt (n0—nl))); %The natural scale
ggamma=sqrt (0.5 ((b/sourcesigma)”~2+1));
ggugga=(l—ggamma " 2)/ggamma "~ 2;

propconst=bbeta(m,n0,b,k0,1order );

fac=mfac (m,ggamma, ggugga ); %expansion coefficients
eeta=y/b; % y dimension divided by natural scale

x=eeta ;% Used to evaluate each Hermite polynomial
function H_0=HO(x)

H_0=x;

H_0(:)=1; %lowest order Hemite polynomial is 1 (single row)

65

Equation



ihermitepolys=1;
while iorder > 0
coeffs=hermitecoeffs (iorder);
numofcoeffs=length (coeffs);
istep=1;
while istep < numofcoeffs
if coeffs(istep)==
coeffs (istep )=][];
numofcoeffs=numofcoeffs —1;
end
istep=istep+1;
end
coeffs;

numofcoeffs=length (coeffs);

ipwr=iorder;
for icoeffs=1:numofcoeffs
coeffs(icoeffs); %debug point
term (:,icoeffs)=coeffs(icoeffs).*x(x."ipwr); %numerically calec each term
ipwr=ipwr —2;
if ipwr < O
msg="ipwr below condition

break

>3 %debug pt

end
H.(num?2str(ihermitepolys))=term;
term (:,(numofcoeffs —1))—=[];
ihermitepolys—ihermitepolys+1;

iorder—iorder —2;

T7TTTTAll H's evaluated with eeta’

struct levels to print(0) %adjust the argument to see specific fields of structure
H;

H 0-HO(x);

iorder—nnj;

[yy,inten]—EE004(y,z,b,m,fac ,propconst ,x H/H 0,iorder ,a0);

[TimeAvgIntensity ,crossfield ,sgrdfield]—evalinten (inten ,iorder ,propconst ,z,x,fac);
imagesc(z,y, TimeAvglntensity) %to plot time—avg field intensity
Z%imagesc(z,y,yy)%to plot signed field intensity

colormap (gray)

xlabel (’z”)

yvlabel ('x(z) ")

hold on

function propconst=bbeta(m,n0,b,k0,iorder)

iter =0;

im=1;

while iter <=iorder
propconst (im)=sqrt (k0. 2%xn0—(2xiter41)/b."~2);
iter=iter 42;
im=im-1;

end

endfunction
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function fac=mfac(m,ggamma,ggugga)

fac=ggugga. " m./(ggammax4. "m.xgamma(m+1));

endfunction

function hk = hermitecoeffs(n)
if n==0
hk = 1;
elseif n==
hk = [2 0];
else

hkm2 = zeros(1l,n-+1);
hkm2(n+1) = 1;

hkml = zeros(1l,n-+1);
hkml(n) = 2;

for

k=2:n
hk = zeros(1l,n+1);
for e=n—k-+1:2:n
hk(e) = 2x(hkml{(e+1) — (k—1)xhkm2(e));

end
hk(n+1) = —2%(k—1)xhkm2(n+1);
if k<n
hkm2 = hkml;
hkml = hk;
end

function [yy,inten]=EE004(y,z,b,m,fac,propconst ,x,H,H 0,iorder ,a0)

numofpolys—length (propconst ):
yy—fac (1)*xH Oxcos(propconst(1l)+z); %lowest order of expansion
inten.(num2str(1))—fac(1)+«H_0;
struct levels to print (0)
iinten—2;%index for intensity struct
ifac—2; %index to calec expansion coefficient
ibeta—2;%index to calc propagation constant
a—fieldnames (H);
iherm=length (a);%starts at Hermite order n=2, should be the (row)x2 (2
hn=0; %create variable to store evaluated expansion terms
while (iherm > 0)
Hn=(H.(num?2str (iherm )));
icols=length(Hn(1l,:)); %number of columns in the struct field
while (icols >=2)
if (rem(icols ,2)==0)% if number of columns is even
hn=hn+Hn(:,icols)+Hn(:,icols —1); %add last two

icols=icols —2; %subtract last two columns

columns) matrix

columns

elseif (rem(icols ,2)==1)% && (icols >1) %if number of columns is odd

hn=hn+Hn (:,icols );
icols=icols —1;

endif
endwhile %Have now evaulated each term for the current Hermite

inten.(num2str(iinten))=fac(ifac)xhnj;

yy=yy+fac (ifac)*hnxcos (propconst(ibeta)*z);
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hn=0;%reset variable
iinten=iinten+41;
ifac=ifac+1;
ibeta=ibeta+1;
iherm=iherm —1;
endwhile
moo=z ;
moo(:)=1;
yy=(exp(—0.5%x.72).%mo0).*xyy;

endfunction

function [TimeAvglntensity ,crossfield ,fieldsqrd]=evalinten(inten ,iorder ,propconst,z,x,fac)

moo=z ;

moo(:)=1;

intenfieldnames=fieldnames(inten );

N=length (intenfieldnames)

fieldsqrd =0;

ifieldsqrd=1;

while ifieldsqrd <= N
fieldsqrd=fieldsqrd+(inten.(num2str(ifieldsqrd )).~2); %Sums all of the squard terms
ifieldsqrd=ifieldsqrd +1;

end

%fieldsqrd =(exp(—0.5*%x."2).%moo).x fieldsqrd ;

field —0;
ifield —1;
while ifield <=N
ifieldnxt—ifield +1;
while ifieldnxt <=N
betadiff—=propconst(ifield)—propconst (ifieldnxt );
crossfield —2«inten .(num2str(ifield )).*inten.(num2str(ifieldnxt ))*xcos((betadiff)xz);%Sums all of the
field— field 4+ crossfield;
ifieldnxt—ifieldnxt +1;
end
ifield—ifield 41;
end
%field ;
intensum—(exp(—0.5xx.72).+moo).x* fieldsqrd + (exp(—0.5xx.72).%xmoo).x field;
TimeAvglntensity=(exp(—0.5%x."72).%moo0).xintensum;

end
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APPENDIX E.
Code: MEEP Simulation

(define mypoint (vector3 0 0 0))

(define spoint {(vector3 0 0 0))

(define a0 5.0) ; waveguide half—width

(define epsO0 4) ; center—line dielectric constant

(define epsl 1) ; edge dielectric constant

(define sourcesize 10.0); size of initial full beam waist
(define sourcesigma 1.0); variance of Gaussian distribution

(set! geometry—lattice {(make lattice (size 32 18 no—size)))

(define (epsfunc mypoint) (make dielectric (epsilon (if (> (vector3—y mypoint) a0) epsl
(— epsO (x (— epsO epsl) (/ (x (vector3—y mypoint) (vector3—y mypoint)) (*x a0 a0))))))))

(set! geometry (list
(make block (center 0 0) (size infinity 10 infinity)

(material (make material—function (material—func epsfunc))))))

(define (gaussprof spoint)

(exp (/(* —1 (vector3—y spoint) (vector3—y spoint)) (x 2 sourcesigma sourcesigma))))

(set! sources (list
(make source
(src (make continuous—src (frequency 1.5)))
(component Ez)
(center —15 0)
(size 0 sourcesize)

(amp—func gaussprof))))

(set! pml-layers (list (make pml (thickness 1.0))))
(set! resolution 20)
(run—until 200

(at—beginning output—epsilon)

(at—end output—efield —z))
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APPENDIX F

The Quantum Harmonic Oscillator
Introduction

The quantum harmonic oscillator is a system which can be solved analytically and has
significant importance in physics. The analytical solution of the quantum harmonic oscillator
also describes other quantum mechanical systems such as wave propagation in an enclosure.
The quantum mechanical behavior of the wave function at infinity from determined eigen-
values and their corresponding eigenfunctions and for angular momentum operators will

provide the basis to which such systems can be analyzed [7].
The Schrodinger Wave Equation

In quantum mechanics, the behavior of a particle is described by a wave function ¥(z, t)
(here in 1D), and this wave function is a solution to the Schrodinger wave equation
ov  h? 0%

th——

ot 2m or? +Vy (249)

where V is the potential energy of the system and 7 is Plank’s constant

h f
h=o = 1.054573210 34 Js. (250)
T

The Schrodinger equation allows us to find W(x,t) for all future times if we are given ap-

propriate initial conditions.
The Statistical Interpretation of the Wave Function

The wave function gives the probability of locating a particle at some specified time.
But it does not tell us where exactly the particle is located in x, but rather that the parti-
cle’s location is a function of z. Max Born proposed a statistical interpretation of the wave
function to allow us to describe the state of the particle in space and time. Born proposed

that |¥(z,t)|? gives the probability of finding the particle at a location z at time .
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The Time-Independent Schrodinger Equation

The Schrodinger equation can be used to find the wave function ¥(z,t) using separation

of variables, assuming the potential V is independent of time. The solutions are of the form

U(x,t) = () f(t) (251)
where 1 is a function of z alone, and f is a function of ¢ alone. Taking the derivatives

oV df 9V d*)

= f (252)

dt’ 0z da?
the Schrodinger equation becomes

L 1ldf h? 1 d%y
P e B ST V8 253
Nt T T omod? T (253)

The left side of (253) is a function of ¢ of alone, and the right side is a function of x alone.
This holds only if both sides are constant. We then set the left and right hand sides equal

to a separation constant F

df iE
y__= 254
i =i (254)
and
h? d*y
_—— pu— . 2
5 gz TV =FEv (255)

Separation of variables has turned a partial differential equation into two ordinary dif-
ferential equations (254) and (255). Equation (255) is the time-independent Schrodinger
equation and its general solution is C'exp(—iEt/h). The constant C' can be absorbed into

1) since the quantity of interest is the product ¢ f. Then

HOET R (256)
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The Quantum Harmonic Oscillator

The potential for the quantum harmonic oscillator is

V(z) = 1mwzx2 (257)

and the time-independent Schrodinger equation becomes

2 d*p 1
_%@ + imuﬂxzw = E’(/J (258)

Analytic Solution based on Hermite Polynomials

To solve (258), we rewrite it in terms of a dimensionless variable

¢= %z (259)
The Schrodinger equation then becomes
d*y 2
d—CQ:(C - K)v (260)

where K is the energy in units of (1/2)hw and is equal to K = 2. Solving (260) gives the
allowed values of K, and the corresponding energy values F.

For very large ¢ and z, the constant K dominates (2

d?1)
i ~ %) (261)
which has the approximate solutions
¢2 ¢
P(¢) ~ Ae” 7 + Be' 2, (262)

For x — 0o, The B term blows up and the physically acceptable solutions have an asymptotic

form given by
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¥(() —» De™ 2. (263)
Differentiating (263)
dy  (dh ¢

and taking the second derivative

d? d*h dh 9 2
— === —-2¢(— —1h|e 2 265
o= (G- K@) e (265)
the Schrodinger equation is then
d*h
—2(— —1)h=0. 266
T RALEE) (266)
To find solutions to (266), we expand A({) in a power series
h(Q) =ao+arC+axl+- - = a;¢l. (267)
§=0
Taking the first derivative of the series term by term we have
dh N . i1
— =a1 =2a2( +3a3¢" + - = Z]a](] . (268)

dg
Taking the second derivative of the series term by term we have

d*h

a¢? =20y +2-3agC + 3404+ =Y (G + 1)(j + 2)aj 2. (269)
=0

Putting these derivative into the Schrodinger equation (266) we have

716G+ D +2)aj2 — 2ja; + (K — 1)a;] ¢ =0. (270)
7=0

From the uniqueness of power series expansions, the coefficient of each power of { must

vanish
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(+ 15 +2)aj+2 — 2ja; + (K — 1)a; = 0. (271)

Solving for a;j 2, we have

(2j+1-K)
aj+2:(

maj. (272)

The recursion formula (272) is equivalent to the Schrodinger equation.

Writing h(C) as

h(C) = heven(C) + hodd(C) (273)
where heyen (¢) = ag + a2¢? + a4¢* + - -+ is an even function of ¢ built on ag, and hegq(¢) =
a1C 4+ asC® + as¢® + - -+ is an odd function built on a.

The condition for K to yield physically acceptable solutions is

K=2n+1 (274)

for some positive integer n. This is equivalent to

1
E,=(n+ §)hw, for n=0,1,2,.... (275)

which is the fundamental quantization condition for the energy levels of the quantum har-
monic oscillator.

For the allowed values of K, the recursion formula is

(276)

For n = 0, only one term in the energy series (276) exist, and a; = 0 (to eliminate hyqq). In
(276), when j =0, a2 =0
ho(() = ap (277)
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and the state function is

2
T2

Yo(¢) = age

(278)

For n =1, choose ap = 0, and in (276) when j = 1 we find that ag = 0. We then have

hi(¢) = a1

and the state function is
2

P1(¢) = alCe_%-

For n = 2,5 =0 yields as = —2ag, and j = 2 gives a4 = 0, so

ha(¢) = ag(1 — 2¢%)

and the state function is

2
2

¥2(¢) = ao(1 — 2¢%)e”

(279)

(280)

(281)

(282)

We can generalize these results, and see that h,(() is a polynomial of degree n in (,

involving only even powers if n is an even integer, and odd powers on if n is an odd integer.

Apart from the overall factor (ag or ay), these are polynomials are Hermite polynomials,

H,(¢). The first 5 Hermite polynomials are

Hy=1

H1 =2z
Hy = 42% — 2
Hs =823 — 122

Hy = 162* — 4822 + 12
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Hermite polynomials for N = 0 fo 4

H_n(X)

— N=0
— N=1
— N=2
— N=3
— N=4

Figure 16: The first 5 Hermite polynomials.

An arbitrary multiplicative factor is chosen so that the coefficient of the highest power

of ¢ is 2. The normalized stationary states for the harmonic oscillator are then

/4 1 2
val@) = (57 2nn!Hn(C)e_%. (288)
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Hermite Wavefunction for the Quantum Harmonic Oscillator

w

psi_n(x) (offset)

A%

Figure 17: The first 5 Hermite wavefunctions.

The differences between the classical harmonic oscillator and quantum harmonic oscilla-
tor are not only the energies (the quantum harmonic oscillator having quantized energies),
but there are also differences in their position distributions. For example, the probability
of finding the particle outside the classically allowed range (x is greater than the classical
amplitude for the energy in question) is not zero, and in all odd states the probability of

finding the particle at the center of the potential well is zero. Only for large n do we see

some similarities to the classical case.
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APPENDIX G
How To Use MEEP

This section describes operations in MEEP such as installing MEEP, defining parame-
ter, seting up geometries, how run MEEP simulations, and create visuals. MEEP can be

installed on a Ubuntu computer from the terminal by typing

apt-get install meep hbutils

The rest of this section assumes MEEP is used on a Ubuntu GNU/Linux operating sys-
tem.

Scripts written for MEEP must be saved as a .ctl file. Users can use text editors,
such as gedit, to create these scripts. For the example presented here (adopted from the
MEEP tutorial found at http://ab-initio.mit.edu/wiki/index.php), the file will be
called ezample.ctl, and saved in the location Documents/MeepFolder

Before the geometry of the simulation can be defined, the computational cell must be
defined. This is the total area of the simulation. The computational cell can be defined by

the following command

(set! geometry-lattice (make lattice (size 16 8 no—size)))‘

This command defines the computational area as 16 units in the horizontal (x) direction, and
8 units in the vertical (y) direction. The command means that the z dimension
is not defined a size, therefore we have defined a 2D geometry.

For this example, lets calculate the field intensity profile in a planar homogeneous waveg-

uide. The geometry of the waveguide can be defined by the following command

’(set! geometry (list (make block (center O O) (size infinity 1 infinity)

’ material (make dielectric(epsilon 12))))))
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The command |make block | creates a rectangular geometry,

rectangle to be centered at the point (0,0), and ’ (size infinity 1 no-size) ‘ defines a

(center 0 0) ‘ defines the

waveguide infinitively long in the z direction, 1 unit in the y direction, and the z direction
does not have a defined dimension. Other types of shapes that can be defined are spheres,
cylinders, cones, and ellipsoids. More complex geometries are created by overlaying these

shapes in a systematic way until the desired geometry is created.

The material is defined as a dielectric material by ’material (make dielectric|and the

dielectric constant of € = 12 is defined by | (epsilon 12) ‘ Other material properties such

as relative permeability, electric and magnetic conductivity can also be defined.

Sources are defined by the command

’ (set! sources(list‘

’ (make source‘

’ (src(make continuous-src(frequency 0.15)))

’ (component Ez) ‘

| (center -7 0))))]

This defines a continuous wave source proportional to exp(—iwt), with a frequency = 0.15
which is in units of ¢/distance, and w is in units of 2wc/distance. The source is located at
the point (—7,0), which is one unit away from the left boundary. This is so that the PML
boundary condition does not interfere with the source. The component E, is chosen as the
field component we wish to see. The data written in the corresponding .h5 file will only be
for the E, component of the field.

We wish to have reflectionless boundaries. We use the perfectly matched layers command

(set! pml-layers (list (make pml (thickness 1.0))))‘

with a thickness of 1 unit. The following command discretizes the geometry
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’(set! resolution 10)‘

This will create 160 grids in the z dimension, and 80 grids in the y dimension. Lastly,

we define how long to run the simulation, and what to output with the following command

(run-until 200 (at-beginning output-epsilon) (at-end output-efield-z))

This means the simulation will run for 200 time steps, and will create two output files. The

command | (at-beginning output-epsilon) | will write a file that will show the index pro-

file, or the dielectric profile of the geometry. The command | (at-end output-efield-z)

will create a file that contains the E, intensity profile data.
To run the MEEP simulation, from the terminal go to the directory where the simulation

was saved

unix:~$cd Documents/MeepFolder

then type the command

unix:~/Documents/MeepFolder$ meep example.ctl

MEEP outputs simulation results in the HDF5 format. These files can be post-processed
by any image processing software. An example of a command that will create a visual from

the .hb5 file is

unix:~/Documents/MeepFolder$ hbtopng -S3 example-eps-000000.00.h5

This uses the function, and will create a .png file of the geometry and dielec-

tric constant profile. The option -83 is a scaling option, which in this case scales the image

by 3. The image created by this command is Figure 17
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Figure 18: MEEP example.ctl geometry and dielectric constant profile.

An example of a command that will create a visual of the F, field intensity profile is

’unix:"/Documents/MeepFolder$ h5topng -S3 -Zc dkbluered -a yarg -A

’ example-eps-000000.00.h5 example-ez-000200.00.h5

The ]—Zc dkbluered\ option will create a color scale that makes areas of negative field

intensity blue, areas where the field intesity is zero white, and areas with positive field inte-

sity values as red. The will overlay the dielectric profile and geometry in light

gray. The resulting image of this simulation is

Figure 19: MEEP example.ctl E, field intensity profile.
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