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ABSTRACT

ROBUST AND RESILIENT CONTROL FOR TIME DELAYED POWER SYSTEMS

by

MOHAMMED K. JAMAL ALDEN

Chairperson: Professor Xin Wang

Power system is the backbone of modern society. Traditionally, over 90% of the electrical

energy is produced by power generation systems driven by steam turbines. Recently, with the

development of renewable energy resources, wind energy conversion systems are the proven

solutions for the next generation sustainable energy resources. Stability and performance of

these power systems are the primary concerns of power system engineers. To better characterize

the dynamical behaviors of power systems in practical applications, time delays in the feedback

state variables, systems modeling uncertainties, and external disturbances are included in the

state space model of the power system in this work. Linear matrix inequality based robust and

resilient controllers satisfying the H∞ performance objective for time delayed power systems are

proposed. Fixed time delays are assumed to exist within the system state and input signals. The

system model is assumed to have unstructured bounded uncertainties and L2 type of disturbances.

Furthermore, controller gain perturbations are assumed to be of additive type. The proposed

control techniques have been applied to variable speed permanent magnet synchronous generator

based wind energy conversion systems, and electrical power generation systems driven by steam

turbine. Computer simulations conducted in MATLAB show the effectiveness of the proposed

control algorithms.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Time Delay Systems

It is widely assumed that the future evaluation of a system state variable is dependent on

its current state only. However, this assumption does not hold for all systems, especially, the

systems involved in material or information transfer. These systems have their future state

variables dependent on both current and past states. Therefore, classical modeling and control

techniques cannot provide satisfactory and reliable solutions for these systems, which are known

as the time delay systems [9, 30, 37, 68]. The time delayed systems are also known as systems

with after affect, dead time systems, hereditary systems and systems with deviating argument

[9, 20, 36, 48, 61].

Time delays exist in a wide range of physical systems. The first observation of time delay

as a phenomenon was in biological systems [61]. After that, researchers recognized that time

delay also exist in engineering systems such as mechanical, fluid transmission systems, and

wide area control systems [61]. Time delays are considered as a major source of instability and

performance degradation. Therefore, tremendous volume of research work has been done in this

field. Several factors lead a time delay to occur in a system. Time delay may appear due to the

intrinsic property of the system. Moreover, measurements and feedback delays may also lead

to time delays appearing in a system. Furthermore, time delay may be introduced on purpose

to improve the stability. In this case, time delays are usually made to appear in the feedback

path. Besides, time delay may also exist due to simplification of partial differential equations.

Additionally, time delay occurs due to the system’s limited capacity to process information

and to disseminate data through the system channel. Finally, computational delays in digital

processors may also lead to time delays [17, 36, 37].

Time delay can take various sizes and types. It can be long or short, fixed or varying, known
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or unknown, stochastic or deterministic. In some systems with long time delay intervals, the

system behavior may not reflect the existence of a time delay. Analysis of such type of systems

is more difficult compared to other cases, when a system behavior reflects the existence of a

time delay in its dynamics [36, 68]. Based on the form of delay occurrence in a system, time

delay systems can be classified into two broad categories:

• Lumped delay systems.

• Distributed delay systems.

For systems of the first category, time delays are encapsulated by a specific number of

identified parameters. On the contrary, it is hard to characterize the delay by a specific number

of states, for systems within second category [36].

Several techniques have been used to describe the dynamics of a time delay system. Each

technique has its own advantages and disadvantageous. Time delay systems are mainly modeled

by one of the following three techniques:

1. Infinite dimensional system theory may be used to describe the dynamical model of a

time delay system. However, incomplete establishment of some system theories, such as

stability, leads to difficulties in applying this method of characterization [9, 36].

2. Time delay system dynamics can be characterized using functional differential equation.

This method provides flexibility in characterizing delays. Utilization of this approach

allows the usage of finite dimensional space or the function space to perform system

analysis and control design. Description of time delay systems as a finite dimensional

systems provides the ability to use classical analysis and design techniques. Moreover,

describing a time delay system by functional differential equations leads to simpler models

and facilitate the usage of classical control and analysis tools. However, results obtained

using functional differential equations may lead to conservative results [9, 15, 21, 22, 32,

36].
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3. Over Ring Differential Equations can also be used to describe the dynamics of time

delay systems. Moreover, this method provide powerful tools for system stability and

observability, especially when the previous knowledge about delay is not a necessity

[9, 15, 21, 22, 32, 36].

1.2 Motivations for Time Delay Analysis

Time delay studies are important in the following fields:

• Time delay exists widely in systems either as inherited phenomena or due model sim-

plification. The design of high performance control systems require highly accurate

mathematical description of the system. Therefore, including time delays in system

models is necessary [17, 36, 48].

• Classical controllers are designed for finite dimensional systems. However, time delay

systems are infinite dimensional systems. Therefore, classical control techniques are

still not suitable for time delay system application, even when a time delay system is

approximated by a functional differential equation[17, 36, 48].

• Time delays have unique characteristics. System stability can be improved by introducing

time delay in the feedback paths of some systems [48].

• The subject of time delay systems appear to be a simple problem compared with other

problems involving partial differential equations. Therefore, time delay systems are

considered as simplified infinite dimensional systems [48].

1.3 Functional Differential Equations: A Brief Overview

Time delay systems are usually characterized by functional differential equations. The

concept of functional differential equation can be introduced as follows. Assume that the set

of continuous functions which maps the interval [a, b] to Rn is represented by C([a, b],Rn).
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The time delay system has a maximum delay defined by h. Based on this definition, the

set of continuous functions which maps the interval [−h, 0] to Rn can be referred to as C =

C([−h, 0],Rn). Let A an arbitrary positive variable and let ψ be any continuous function such

that ψ ∈ C([t0 − h, t0 + A],Rn), for which t0 ≤ t ≤ t0 + A. Moreover, denote ψt ⊂ ψ ∈ C having

the following definition ψt(θ) = ψ(t + θ), −h ≤ θ ≤ 0. The retarded functional differential

equation is given as follows [17, 61]

ẋ(t) = f (t, xt) (1.1)

In Eqn. (1.1), x(t) ∈ Rn and f : R × C → Rn. Furthermore, Eqn. (1.1) shows that the time

derivative of state x at time t depend on t and x(ζ), where t − h ≤ ζ ≤ t. Therefore, the initial

conditions of system states should be defined over a time interval of length h to determine the

future states of the system

xt0 = φ, (1.2)

where φ ∈ C assumed to be given, i.e. x(t0 + θ) = φ(θ), for −h ≤ θ ≤ 0.

The main property of the retarded functional differential equation is that the highest order

derivative does not have a delay. If a delay occurs in the highest order derivative, then the system

under consideration is of the neutral type. The solution of a retarded functional differential

equation x for a specific time interval should meet the following conditions [17, 61]:

• Continuous

• Satisfy the retarded functional equation over that interval

• (t, xt) should be the domain of functional f satisfying the initial condition Eqn. (1.2)

1.4 Historical Review on the Stability of Time Delay System

Stability is one of the most important design considerations. Therefore, significant amount

of research has been done in this area to study solutions for this problem [13, 42, 47, 61]. Initial
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research work on the stability of time delay systems dated back in the mid-twentieth century.

Both of the frequency and time domain methods have been developed to study the stability of

time delayed systems. Frequency domain approaches are used to determine the stability of a

time delayed system which can be found in [17, 61, 68]. One of these schemes determines the

stability by checking the distribution of the characteristic equation roots [18, 61]. The frequency

domain approaches for time delay systems provide satisfactory results for systems with constant

delays [61].

Time domain approaches provide powerful analysis alternatives. Lyapunov-Krasovskii

functional and Razumikhin functions are the most common approaches for time domain stability

analysis. Developing Lyapunov-Krasovskii functionals and Razumikhin functions was very

difficult until the last century of the twentieth century. Therefore, the obtained results were

only the existence conditions. Recently, advances in the solution of linear matrix inequalities

and the introduction of Riccati equations led to the development of a general solution for

Lyapunov-Krasovskii functional and Razumikhin functions [18, 61].

1.5 Time Delay Systems Stability: Time Domain Methods

A general form of a state delayed system is given by the following functional differential

equation

ẋ(t) = Ax(t) + Ad x(t − h) (1.3)

x(t) = Φ(t), t ∈ [−h, 0] (1.4)

where, x(t) ∈ Rn represents the state vector. h > 0 is a scalar represents the state delay.

A and Ad ∈ R
n×n are the system and delay matrices respectively. Φ(t) is the initial condition.

As mentioned in section (1.4), Lyapunov-Krasovskii functional and the Razumikhin function

are the most commonly used techniques to test the stability of time delayed system. The basic

idea of Lyapunov-Krasovskii approach is to derive a suitable Lyapunov-Krasovskii functional
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to establish sufficient conditions for system stability. On the other hand, Razumikhin method

uses a Lyapunov function to develop the sufficient conditions for stability.[61].

Stability analysis and control studies of time delay systems can be broadly categorized

into delay independent and delay dependent cases. The delay independent case studies the

stability of a time delay system without considering the size of the delay. This method leads to

conservative results for systems with small delay size. A Lyapunov-Krasovskii functional of the

following form is usually used

V1(xt) = xT Px(t) +

∫ t

t−h
xT (s)Qx(s)ds. (1.5)

In Eqn. (1.5), P and Q are known as Lyapunov matrices, and they are positive definite.

To obtain stability condition, an LMI problem is formulated by differentiating Eqn. (1.5) and

substituting the solution of system (1.3) in the differential equation.

Delay dependent stability method studies the stability of a time delay system by first

assuming that the system is stable without a delay. Then, an upper bound of delay for which

the system remain stable is established. A Lyapunov-Krasovskii functional is usually used to

determine stability conditions. This functional will be of the following form [61]

V(xt) = V1(xt) + V2(xt) (1.6)

where

V2(xt) =

∫ 0

−h

∫ t

t+θ
XT (s)Zx(s)dsdθ

The derivative of V2(xt) will be given by the following

V̇2(xt) = hxT Zx(t) −
∫ t

t−h
xT (s)Zx(s)ds. (1.7)

The integral term in the right hand side of Eqn. (1.7) imposes difficulties on the application

of delay dependent stability cases. Several techniques has been developed to solve this issue.

Among them, the most popular method is based on the discretization of the Lyapunov-Krasovskii
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functional. This method studies the stability of a time delay system by employing a discretization

scheme to the Lyapunov-Krasovskii functional and present the results in the form of LMIs. This

method give an approximate value of the maximum delay bound, which the system may have

and remains stable. This method was introduced first by Gu in 1997 [61].

Fixed model transformation is another technique to treat the integral term in Eqn. (1.7).

Several transformation techniques were proposed. Each technique has its merits and demerits.

The usage of some transformation technique may lead to unrealistic results because these

technique will add dynamics to the system under study. The parameterized model transformation

can also be used to solve the integral issue of Eqn. (1.7). The stability problem can be divided

into two problems, a delay independent problem and fixed model transformation. Each problem

is treated separately [12, 19, 61].

1.5.1 Lyapunov-Krasovskii Theorem

Lyapunov-Krasovskii method is a powerful tool to study the stability of time delay systems.

The main idea of this method is to develop a functional V(t, xt), which measures the deviation

of the system state xt from the system trivial solution. Moreover, the system state xt is defined

over the interval [t − h, t].

To develop a more precise statement, V(t, φ) : R × C → Rn is assumed to be a differentiable

functional. Moreover, xt(τ, φ) is assumed to be the solution of retarded functional differential

equation (1.1) at time t with initial conditions given by xt = φ. Now, differentiating V(t, xt) and

evaluating the solution at time t = τ yields the following equation

V̇(τ, φ) =
d
dt

V(t, xt)|t=τ, xt=φ

= lim
∆t→0

sup
V(τ + ∆t, xτ+∆t(τ, φ)) − V(τ, φ)

∆t

If the derivative of functional V(t, xt) is negative, this means that xt is not growing with the time.

which also means that the time delay system defined by Eqn. (1.1) is stable [61, 17, 20].
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Theorem 1.1. [17, 20, 61] Lyapunov-Krasovskii Stability Theorem

For the system described by Eqn. (1.1), it is assumed that f : R × C → Rn. Moreover, it is

assumed that there exist continuous nondecreasing functions u, v, w, which have the following

properties

• u, v, w : R̄+ → R̄+

• u(τ) and v(τ) > 0, for τ > 0

• u(0) = v(0) = 0

Based on these assumptions, the following results hold

• The system (1.1) is uniformly stable, if the existence of a continuously differentiable

functional V : R × C is satisfied, where V is identified by the following inequalities

u(‖φ(0)‖) ≤ V(t, φ) ≤ v(‖φ‖) and

V̇(t, φ) ≤ −w(‖φ(0)‖)

• Asymptotic stability of the trivial solution of system (1.1) is established, if the system is

uniformly stable and w(t) > 0 when t = τ for τ > 0

• Global, uniform and asymptotic stability of system (1.1) is guaranteed if uniform asymp-

totic stability conditions were satisfied and lim
τ→∞

u(τ) = ∞.

1.5.2 Razumikhin Stability Theorem

Razumikhin methods is an alternative to Lyapunov-Krasovskii method, which uses functions

instead of functionals. The main idea of Razumikhin methods is the development of two

functions V(x) and V̄(xt). V(x) represents the size of x(t). while

V̄(xt) = max
θ∈[−r,0]

V(x(t + θ)) (1.8)
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is used to measure the size of xt. If V(x(t)) < V̄(xt), this means that V̄(xt) will not grow when

V̇(x(t)) > 0. To guarantee that V̄(xt) will not grow, V̇(xt) should always be negative when

V(x(t)) = V̄(xt) [17, 20, 61].

Theorem 1.2. [17, 20, 61] Razumikhin Theorem

For the system described by Eqn. (1.1), it is assumed that f : R × C → Rn. Moreover, it is

assumed that there exist continuous nondecreasing functions u, v, w, which have the following

properties

• u, v, w : R̄+ → R̄+

• u(τ) and v(τ) > 0, for τ > 0

• u(0) = v(0) = 0

Based on these assumptions, the following results hold

• The system (1.1), is uniformly stable if a continuously differentiable function V : R × Rn

exists. Furthermore, V is given by the following inequalities

u(‖x‖) ≤ V(t, x) ≤ v(‖x‖), t ∈ R, x ∈ Rn (1.9)

V̇(t, x(t)) ≤ −w(‖x(t)‖) whenever V(t + θ, x(t + θ)) ≤ V(t, x(t)) (1.10)

for θ ∈ [−h, 0]

• Asymptotic stability of the trivial solution of system (1.1) is established, if the following

conditions are satisfied

– u(‖x‖) ≤ V(t, x) ≤ v(‖x‖), t ∈ R, x ∈ Rn

– w(t) > 0 for t = τ and τ > 0

– Existence of a nondecreasing function p(t) > 0 for t = τ and τ > 0, such that

condition (1.10) can be rewritten as follows

V̇(t, x(t)) ≤ −w(‖x(t)‖) i f V(t + θ, x(t + θ)) ≤ p(V(t, x(t)))
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• Global, uniform and asymptotic stability of system (1.1) is guaranteed, if the conditions

of uniform asymptotic stability were satisfied and lim
τ→∞

u(τ) = ∞.

1.6 Robust Control

Due to the existence of modeling uncertainties and the external disturbances, robust control

is developed to provide the effective control solutions [39, 69, 70]. Significant amount of

research work has been done. Major results in robust control theory were made during the last

three decades of the twentieth century. Especially the advancement were made in[65] and [66]

by introducing a systematic approach for designing a robust H∞ controller for linear systems

[31, 39].

Exact mathematical description of a system dynamics is impossible. Therefore, the robust

control and stability techniques are intended to engage the control and stability problems of

systems with uncertainties. Several factors make uncertainties appear in system dynamics

• Lack of full knowledge about some systems and process parameters.

• Simpler models are used to describe system dynamics due to limited capabilities of

available mathematical tools. Therefore, some system dynamics are ignored

• The necessity for some control systems to operate over different operating conditions.

To encapsulate all these aspects and guarantee possible mathematical analysis, a bounded set is

identified such that all uncertainties will be contained within it [17].

1.6.1 H∞ norm

The H∞ norm measures the size of a system represented by a transfer function

‖G(s)‖∞ = sup
u(t),0

‖y(t)‖2
‖u(t)‖2

(1.11)
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where y(t) and u(t) are the system output and input, respectively. For a stable system, the H∞

norm can be computed as follows

‖G(s)‖∞ = sup
ω

|G( jω)| (1.12)

It is obvious from Eqn. (1.12) that the H∞ norm resembles the peak value of magnitude of a

system frequency response.

According to the Bounded Real Lemma, the following condition,

‖G(s)‖∞ ≤ γ (1.13)

can be satisfied, if and only if there exist matrix P = Pt ≥ 0 which satisfies the following

conditions [39, 16]

• Matrix P should be the solution of the following equation

PA + AtP + CtC + γ−2PBBtP = 0 (1.14)

• The following matrix has stable roots

A + γ−2BBtP (1.15)

The H∞ norm can be interpreted as the gain in energy from input to output, i.e.

‖G(s)‖∞ := max
u(t),0

∫ ∞
0

yt(t)y(t)dt∫ ∞
0

ut(t)u(t)dt
(1.16)

The formulation of condition (1.13) can take two paths. For frequency response based

system analysis, formulation of condition (1.13) is based on the H∞ norm definition in Eqn.

(1.11) and the application of the maximum singular value definition [39].

Defining the input and the output signals of the system as

u(t) = aue jωt au = [au1 au2 ... aum]t

y(t) = aye jωt, ay = [ay1 ay2 ... aym]t
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where au and ay are complex vectors. The vector ay is given by

ay = G( jω)au (1.17)

Based on the maximum singular value definition, we can get the following relation, similar to

Eqn. (1.11)

‖ay‖2

‖au‖2
≤ ‖G( jω)‖∞ =⇒ sup

au

‖ay‖2

‖au‖2
= σM(G( jω)) ≤ ‖G( jω)‖∞ (1.18)

On the other hand, formulating condition (1.13) for time domain based system analysis

involves the application of Parseval’s theorem:

‖y(t)‖22 =
1

2π

∫ ∞

−∞

y∗( jω)y( jω)dω

=
1

2π

∫ ∞

−∞

‖y( jω)‖22dω (1.19)

Since the relation between the input and output signals are given by

y( jω) = G( jω)u( jω)

where G( jω) is the transfer matrix.

Assuming that the input and output have zero initial conditions, the following inequality for

‖y( jω)‖2 is defined

‖y( jω)‖2 ≤ σM(G( jω))‖u( jω)‖2

≤ ‖G( jω)‖∞‖u( jω)‖2 (1.20)

Now, by substituting (1.20) into (1.19), we have

‖y(t)‖22 ≤
1

2π

∫ ∞

−∞

‖G( jω)‖∞‖u( jω)‖22dω

= ‖G( jω)‖∞
1

2π

∫ ∞

−∞

‖u( jω)‖22dω (1.21)
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By applying Parseval’s theorem

‖y(t)‖22 ≤ ‖G( jω)‖∞‖u(t)‖22 (1.22)

which implies that the following is true

‖y(t)‖22
‖u(t)‖22

≤ γ (1.23)

if the following condition holds

‖G( jω)‖∞ ≤ γ

Therefore, inequality (1.23) can be rewritten as

‖y(t)‖22 − γ
2‖u(t)‖22 < 0 ∀u(t) ∈ L2 (1.24)

1.6.2 H∞ control

The standard H∞ control problem block digram is shown in Fig. 1.1. G(s)

Fig. 1.1. Standard H∞ Control Problem Block Diagram
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is the system under consideration; K(s) is the controller to be designed. It is assumed that the

system and the controller belong to a class of finite dimensional linear time invariant systems.

Furthermore, signals shown on the block diagram, w, u, z, y are vectors representing external

input, control input, controlled output, measurement output respectively. Assuming that G(s)

and K(s) are rational, real and proper transfer function matrices. Based on Fig. 1.1, the following

equation is developed  z

y

 = G(s)

 w

u


where G(s) is given by the following

G(s) =


A B1 B2

C1 D11 D12

C2 D21 D22

 (1.25)

Changing G(s) into a decomposed form, we get G11(s) G12(s)

G21(s) G22(s)

 (1.26)

Comparison between (1.25) and (1.26) yields

Gi j(s) = Ci(sI − A)−1B j + Di j, i, j = 1, 2 (1.27)

Based on Eqn. (1.27), the closed loop transfer function from w to z is expressed by the following

Tzw(s) = G11(s) + G12(s)K(s)(I −G22K(s))−1G21(s) := Fl(G,K) (1.28)

where

Fl(G,K) : Lower linear fractional tranformation of G(s) and K(s).

Based on that, it can be seen that the H∞ control problem involves searching for a controller

K(s) which stabilizes the system and minimize the ‖Tzw(s)‖∞, i.e.

min
K
‖Fl(G,K)‖∞
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The optimal H∞ controller is not unique for a MIMO system. Moreover, theoretical and

computational steps to evaluate the optimal H∞ norm can be complicated. Despite the theoritical

advantage of the minimum value that H∞ norm can achieve, the optimal H∞ control solution

is difficult to obtain. Moreover, it would be easier to find controllers with norm values in the

vicinity of the optimal norm values, these controllers are called the suboptimal H∞ controllers

[39, 69, 70].

Suboptimal H∞ control problem necessitate finding a controller K(s) which stabilizes the

closed loop system and guaranties ‖Tzw(s)‖∞ < γ2 for γ > 0, i.e.

‖Fl(G,K)‖∞ < γ2

The H∞ norm can be employed in the design of a state feedback controller of the following form

u(t) = Kx(t) (1.29)

for a closed loop system described by

ẋ(t) = Asxs(t) + Γw(t)

z(t) = Gsxs(t) + Φw(t) (1.30)

with

As = A + BK Gs = G + DK (1.31)

In this case the H∞ design problem involves finding the state feedback gain K, which

guarantees both stability of the closed loop system and maintain ‖z‖2 < γ2‖w‖2 for a specific

positive value of γ2. A Lyapunov function is selected for the closed loop system to ensure

stability. Based on the LaSalle’s theorem, asymptotic stability is achieved, if the selected

Lyapunov function V is a positive definite V > 0 and its derivative V̇ is negative definite that

is V̇ < 0. Therefore, the design of state feedback controller which guarantees asymptotic
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stability and the H∞ norm condition, corresponds to finding a control K that makes the following

inequality feasible [39, 69]

V̇(xs) + ztz − γ2wtw < 0 (1.32)

1.7 Resilient Control

During the design phase of optimal and robust controllers, it is assumed that the controller

will be exactly realized, so it can provide required level of performance and stability [38, 28].

However, this assumption doesn’t hold in practice. Controller coefficients are exposed to various

types of uncertainties from different sources, such as the limited length of digital words used

in the system, accuracy issues in conversion between digital and analog systems, insufficient

accuracy of measuring system, numerical computations issues, components aging, etc. This

problem is known as controller fragility and it attracts the attention of researchers in the field

of robust and optimal control, because the consequences of these perturbations may lead loss

stability or performance deterioration. Controllers experiencing this issue are known as fragile

controllers [38].

It is very important to have a comprehensive understanding about the effects of uncertainties

in a robust controller feedback gain, because the existence of fragility in a controller may

compromise controller performance for the accuracy in hardware realization. Therefore, it is

important to include a model for controller uncertainties and develop design methods which

provide the best performance in robustness and resiliency [38].

There are different approaches to address controller fragility problem such that the designed

controller can be a non-fragile (resilient) robust controller. Most of these methods use the

following procedure in the design a resilient controller [38].

• The choice of a controller of explicit formula and define necessary design parameters.
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• The inclusion of multiple design performance requirement which guarantees appropriate

judgment for the desired performance.

• Decide the components to be used in the control system before processing the of controller

design.

The inclusion of uncertainties in controller parameters can be achieved by adding a matrix which

consists uncertainties. As such, the formula of a resilient controller can be expressed as [38]

K(∆c) = K + ∆K(t) (1.33)

where K is the original gain matrix, and ∆K is the gain uncertainty matrix.

The representation of the gain matrix shown in Eqn. (1.33) can take one of the following

two models

• Additive Type : In this type, the gain uncertainty matrix will be given as

∆K(t) = Ha∆c(t)Ea (1.34)

where Ha and Ea are fixed constant matrices of appropriate dimensions. Moreover, ∆c is

an uncertain matrix which posses the following property

∆c ∈ ∆
∆
= {∆c : ∆t

c∆c ≤ γcI} (1.35)

Checking the robustness of designed controller involves tweaking the values of Ha and Ea

matrices and observe the effects on performance. Controller uncertainty matrix ∆K can be

a constant matrix to be found during controller synthesis by applying proper optimization

techniques [38].

• Multiplicative Type: In this type, the gain uncertainty matrix will be given as

∆K(t) = Hm∆cEmK (1.36)
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where Hm and Em are the fixed constant matrices of appropriate dimensions. Moreover,

∆c is an uncertain matrix. Based on Eqn. (1.36), we can rewrite Eqn. (1.33) as follows

[11, 38]

K + ∆K =


k11(1 + γ11) . . . k1n(1 + γ1n)

...
. . .

...

km1(1 + γm1) · · · kmn(1 + γmn)


=


k11 · · · k1n

...
. . .

...

km1 · · · kmn

 +


k11γ11 · · · k1nγ1n

...
. . .

...

km1γm1 · · · kmnγmn


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CHAPTER 2

WIND ENERGY CONVERSION SYSTEMS

Wind energy conversion systems are complicated systems subjected to unforeseeable, tumul-

tuous operating conditions and inconsistent, demanding power grid. Furthermore, stability,

reliability and efficiency issues are important challenges for a wind energy conversion system.

Therefore, control systems play a dominant role in the advancement of wind energy industry

[14].

2.1 Introduction

Limitations of existing fossil fuel resources, and the increasing demands to satisfy the energy

requirements, make harvesting renewable energy resources one of the big challenges of the 21st

century. Wind energy is the fastest developing renewable energy source. The development of

seminal engineering techniques to improve wind energy harvesting is one of the major goals fof

control and power engineers.

Wind energy conversion systems are the devices, which capture wind kinetic energy and

convert it into electrical power. Significant developments have been achieved in upgrading the

generating capacity of each single unit, some offshore units posses the ability to generate more

than 7 MW of power. Out of the total globally generated energy, wind has a share of 2% and it is

predicted that wind is going to take a bigger role in energy production during next decades [14].

Wind energy conversion systems are complicated systems subjected to unforeseeable, tu-

multuous operating conditions. Additionally, a wind energy conversion system has to overcome

the challenges to integrate to the power grid. Furthermore, the output voltage of the wind energy

conversion system should match the voltage, power sequence, and frequency. Furthermore,

efficient, sustainable, and reliable energy production should be maintained. Therefore, control

systems are playing critical role in the development of wind energy conversion systems [14].
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2.2 Wind Energy Conversion System

A wind energy conversion system (WECS) is the system which captures the wind’s kinetic

energy and convert it into electrical power. The turbine rotor extract the energy from the wind

by converting it to mechanical speed. An electrical generator converts the extracted mechanical

energy into electrical energy [45].

There are two different arrangements of WECS, horizontal axis wind turbine (HAWT) and

vertical axis (VAWT). The horizontal axis wind turbine is currently the dominating scheme in

the wind energy industry. The horizontal axis wind turbine is shown in Fig. (2.1) [45].

Fig. 2.1. Two Blades HAWT WECS
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Wind energy conversion system consists of the following four sub-systems [45]

• The aerodynamic system: it basically contain parts of the WECS, which interact directly

with the wind.

• Drive train system: this system is responsible of interfacing the wind turbine rotor shaft

with the generator rotor shaft.

• Electromagnetic system: this part is basically the electrical power generation unit.

• Power electronics: this system is responsible to control the generated electrical energy

and make it compatible with the grid.

2.3 WECS Control Schemes

During last decades, wind industry witnessed the emergence of several methods for energy

extraction. The basic differences between these techniques are the applied control techniques

and the innovations in power electronics. Therefore, different types of wind energy conversion

system exist. Usually, wind energy conversion systems are classified based on whether a speed

control or a power control framework is adopted [45].

The difference in the speed control technique leads to two different types of wind energy

conversion systems, fixed speed WECS and variable speed WECS [45].

• Fixed speed wind energy conversion systems: These are the earliest discovered type

of wind energy conversion systems. They offer a simple, and economical solution for

harvesting wind energy. In these turbines, asynchronous generators are used, which are

connected directly to the grid. Therefore, rotor speed are fixed to the grid frequency

regardless of the wind speed [45].

• Variable speed wind energy conversion systems: They are the most commonly used type

of wind energy conversion systems. Variable speed configuration has several advantageous
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over fixed speed configuration. The generator is separated form the grid, which provide

flexibility in applying various control techniques for optimal energy generation. The

separation of generation unit from grid and the employment of advanced controllers

requires improved power electronics. The increment in cost is compensated by both of

the substantial controllability and hugely increased power generation levels. Wind energy

conversion system can reach its maximum efficiency over a wide range of wind speeds by

using this scheme. Moreover, variable speed wind turbines facilitate the application of

multi objective control design techniques [45, 1].

Wind energy conversion systems can be categorized into three types based on the control

design objective:

• Stall controlled WECS

• Pitch controlled WECS

• Active- stall controlled WECS

Major differences exist among these types of wind energy conversion systems. The stall

controlled wind energy conversion systems have fixed rotor blade angle. Therefore, controlling

the rotor blade is achieved without changing the rotor blade angle. On the other hand, pitch

control scheme is based on changing blade’s rotor angle of a wind turbine to reduce the impact of

incoming high speed wind. The third technique uses a combination of the stall and pitch control.

Moreover, each of theses techniques has its own merits and demerits. The stall technique is

simple, cost effective, but it imposes stress on the turbine and reduces its efficiency. Pitch

control provides flexibility for control. Furthermore, a turbine can achieve more efficient power

generation with the higher cost and complexity [45].

2.4 Characterization of the Wind Energy Resource

Wind speed model mainly depends on the operation location of the turbine, and on the

environmental conditions during the system operation. Therefore, the availability of useful wind
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speeds is time varying. The energy extracted from wind changes at a cubic rate of the wind

speed. Therefore, the amount of produced energy is dependent on the wind speed. Therefore,

prior to the establishment of a wind energy project, site survey is performed to asses the

economical profit of the project, to specify the optimal location for each turbine, and to measure

the maximum extreme wind speed for consideration in the turbine mechanical design.

Based on a time scale, variations in wind speed can be divided into three categories: large

tine scales, medium time scale, and short time scale [45].

• Large time scale variations: for time scales of years or decades.

• Medium time scale variations (also called monthly variations): for time scales of months

and up to year.

• Short time scale variations: for time scales of minutes or seconds.

Stochastic methods are usually used to describe monthly wind speed variations. The Weibull

distribution is the most commonly used technique [45]. The Weibull distribution equation used

for wind speed frequency is

P(v < vi < v + dv) = P(v > 0)
(
k
c

) (vi

c

)k−1
exp

[
−

(vi

c

)k
]

(2.1)

In Eqn. (2.1), c is the Weibull scale parameter, k stands for the Weibull shape parameter, v

represent wind speed, vi is a specific wind speed, dv is the increment in wind speed, P(v < vi <

v + dv) is a probability for the wind speed to be within the range of v + dv. Moreover, P(v > 0)

is a probability for the wind speed to be greater that zero. The term P(v < vi) can be given as

follows [45]

P(v < vi) = P(v ≥ 0)
{

1 − exp
[
−

(vi

c

)k
]}

(2.2)

Two methods may be used to compute Weibull distribution parameters (c, k). The first one is

based on using the natural logarithm and linear regression. The second method is based on the

maximum likelihood, in which time series is used to represent wind speed data.
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with only the knowledge about wind speed variations, one can not guarantee that maximum

economical profit will be achieved. Therefore, a new parameter, known as the wind power

density is introduced, representing the mixed effects of the wind speed frequency distribution,

air density, and change in wind energy [45].

2.5 Wind Turbine: Aerodynamics and Performance

As the incoming wind hits the surface of wind turbine rotor, the aerodynamic behavior of

the wind turbine is established. The aerodynamics are dependent on rotor blade position [45].

Fig. (2.2) shows the change in wind characteristics (speed and pressure) as it passes across

Fig. 2.2. The Actuator Disc of Energy Extraction

the actuator disc. In this figure, a subscript u will denote the wind pressure and speed before

the wind hits the actuator disc. Moreover, the subscript w is used to refer to wind speed and

pressure after the wind passes the actuator disc. Furthermore, wind speed and pressure having a

subscript 0 represent the wind speed and pressure at the actuator disc.

Force created by the an air mass m passing through a cross sectional area A of the disc with
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a momentum H = m(vu − vw), can be expressed by the following expression [45]

T =
∆H
∆t

=
∆m(vu − vw)

∆t
=
ρAv0∆t(vu − vw)

∆t
= ρAv0(vu − vw) (2.3)

Moreover, the force T can also be expressed as

T = A(p+
0 − p−0 ) (2.4)

(p+
0 − p−0 ) is the difference in pressure, and it can be expressed by the Bernoulli’s equation as

follows

p+
0 − p−0 =

1
2
ρ(v2

u − v2
w) (2.5)

Substituting (2.5) in (2.4), we have

T =
1
2
ρA(v2

u − v2
w) (2.6)

Based on (2.6) and (2.3), v0 can be expressed as

v0 =
1
2

(vu + vw) =⇒ vu − vw = 2(vu − v0) (2.7)

Expression for the kinetic energy developed by the wind is given as

Ek =
1
2

mv2 (2.8)

Based on (2.8), the power developed of air mass passing through the disc in specific unit of time

is characterized by

P =
1
2
ρAv0(v2

u − v2
w) (2.9)

An alternative expression for P is

P =
1
2
ρAv34a(1 − a)2 (2.10)

where a = 1 −
v0

vu

Power coefficient can be expressed as

Cp =
P
Pt

=
0.5.ρAv3.4a(1 − a)2

0.5.ρAv3 = 4a(1 − a)2 (2.11)
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Wind turbine is responsible for converting from wind energy form to rotor mechanical

energy. Efficiency of Energy conversion process dictates the amount of generated electrical

energy. The performance of a wind energy conversion system is dependent on its output torque,

thrust, and power. Therefore, dimensionless parameters representing these factors are developed

to determine the performance of a wind energy conversion system. Among the most important

performance indicators are the tip speed ratio, power coefficient, torque coefficient and number

of blades.

2.5.1 Tip speed ratio

The tip speed ratio measures the ratio of turbine blade speed to actual wind speed. Tip

speed ratio is characterized by λ, which shows how efficient a wind turbine in converting wind

power to mechanical power. Furthermore, it can also be used to evaluate acoustic noise levels.

Therefore, tip speed ratio plays an important role in development the control of a wind turbine.

The tip speed ratio can be mathematically expressed as [45]

λ =
R.ωr

v
(2.12)

where

R : Blade length

ωr : Wind turbine rotor speed

v : Wind speed

2.5.2 Power coefficient

This performance index assess how efficient the wind turbine is in harvesting energy from

the wind. Description of wind turbines aerodynamic performance is usually achieved using

a curve which shows how power coefficient (Cp) value changes as tip speed ratio (λ) varies.
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Fig. (2.3) shows the relation between Cp and λ for a wind turbine with two rotor blades. An

expression for extracted power is developed based on (2.11) and it is given by [45].

Pwt =
1
2
ρπR2v3Cp(λ) (2.13)

Fig. 2.3. Wind Turbine Aerodynamic Performance Curve

2.5.3 Torque coefficient

This coefficient is designated to characterize output torque from a wind turbine rotor. Thus,

torque coefficient CΓ provides a measure of turbine torque efficiency, which can be used for

control design purposes. Mathematical expression is given by the dividing power coefficient by

tip speed ratio [45]

CΓ(λ) =
Cp(λ)
λ

(2.14)
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2.5.4 Number of blades and safety procedures

The number of blades in a wind turbine has several effects on torque, structure, rotor speed

and cost. A wind turbine has either two or three blades. As the number of blades reduced,

turbine weight will decrease. As such, less structural support is required, which lead to cost

reduction. On the other hand, the higher the number of blades, the higher the torque that can be

generated form the turbine [45].

Another aspect which affect the performance of a wind turbine is the level of maximum

power to be extracted from wind. Wind turbines start to develop power as wind speed hits the

blades at cut-in speed. Power output from a wind turbine continue to increase cubically as in

(2.13) until wind speed hits a specific value, at which the turbine produces its rated power. Power

at this wind speed is considered to be the maximum power to be generated form the turbine.

Moreover, no further increase in generated power is allowed, even if wind speed continue to

increase. This procedure is usually done for safety purposes. Restricting the turbine from

developing torques is approached by reducing the power coefficient Cp. Several aerodynamic

power control procedures are used to achieve this goal, which include passive and active control

schemes. Figure (2.4) shows the developed power from a wind turbine as wind speed varies

from cut-in to cut-out speed [45].

2.6 WECS: Drive Train and Generator

After discussing the aerodynamic part of the a WECS, a discussion about the drive train and

the generator is presented in this section.

2.6.1 Drive train

The drive train is the part of WECS which is responsible for interfacing the wind turbine

rotor with the generator rotor. Therefore, its primary role is to transmit power, torque and speed
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Fig. 2.4. Wind Turbine Output Power Versus Wind Speed

extracted from wind to generator. The design of a drive train is unique for each type of wind

energy conversion system, specifically, it depends on the electrical generator equipped in the

system. Wind energy conversion systems which use a synchronous machine as a generator, the

turbine and the generator shafts are directly coupled on the same shaft. On the other hand, wind

energy conversion systems utilizing an induction machine, use a different coupling arrangement.

Adjustment of the wind turbine rotor speed and torque is required for this type of machines,

which is usually accomplished using gearboxes that provide necessary multiplication ratio.

Using a gearbox with specific multiplication ratio in a wind energy conversion system will

lead to differences between wind turbine rotor shaft speed and the generator rotor speed. Rigid

or flexible coupling may be used to interface low and high speed shafts. Each of these coupling

schemes has its own advantage and disadvantage. Flexible coupling adds cost and complexity,

but it provides better damping [45].

2.6.2 Generator

Electrical generators are systems used to convert the mechanical power to electrical power.

Usually, control of an electrical machine is accomplished using power electronics. From a

modeling prospective, regardless the control approach to be used, stator and rotor voltages can

be considered as inputs, while stator and rotor currents or fluxes may be considered as the states
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of the system.

Generally, generators consist of an electromechanical system, through which interface with

mechanical power source is performed. As a generator connected to a load, an electromagnetic

torque will be developed. The direction of the electromagnetic torque will be in the reverse direc-

tion of applied mechanical torque. The relation between electromechanical and electromagnetic

torque can be expressed by [45]

Jω̇m = τmec − τe (2.15)

where

τmec : applied mechanical torque

τe : developed electrmagnetic torque

J : inertia of the high speed shaft

Currently, permanent magnet synchronous generator (PMSG) plays an important role in the

wind energy industry. This trend of using the PMSG comes due the advantages and flexibility

provided by PMSGs, which can be summarized as follows

• It operates with high efficiency and power factors due to the fact that a PMSG is a self

excited machine.

• Excitation system has been waived due to the use of permanent magnet in the rotor.

Therefore, maintenance is reduced.

• The usage of direct coupling which allows removing the gearbox. As a result, more

reliable operation is achieved, due to high sensitivity of gearboxes.

2.7 Wind Energy Conversion Systems Model

In this section, a linearized state space model for the WECS will be developed.
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2.7.1 Nonlinear Model

After applying the Prak’s transformation to the (abc) coordinate frame permanent magnet

synchronous generator (PMSG) model, The nonlinear model d − q coordinate frame model is

given as follows [24] [41] [55][40]

ud = −Rsid + Ld i̇d + Lqiqωe (2.16)

uq = −Rsiq − Lq i̇q − Ldidωe + Ψmωe (2.17)

Consider the surface mounted permanent magnet synchronous generator (SPMSG) is used,

then Ld = Lq = L. Eqn. (2.16) and Eqn. (2.17) can be further rewritten as:

 i̇d(t)

i̇q(t)

 =


−Rs

L id(t) + ωeiq

−Rs
L iq − ωeid + Ψmωe

L

 +


−1
L 0

0 −1
L


 ud

uq

 (2.18)

where ωe = P
2ωr is the electrical speed of rotor, and P is the number of the poles. On the other

hand, based on Eqn. (2.15), the developed torque can be expressed as follows

ω̇r =
τm

J
−
τe

J
(2.19)

To achieve the control of the developed torque and rotor flux independently, the field oriented

control approach is used, the electrical torque τe in Eqn. (2.19) has the following form

τe =
3
2

P
2

Ψmiq (2.20)

Combining Eqn. (2.20) and Eqn. (2.18) yields the nonlinear model of a variable speed surface

mounted permanent magnet synchronous generator based wind energy conversion system as

follows 
i̇d(t)

i̇q(t)

ω̇r(t)

 =


−Rs

L id + P
2ωriq

−Rs
L −

P
2ωrid +

Ψm
P
2ωr

L

τm
J −

3P
4J Ψmiq

 +


−1
L 0

0 −1
L

0 0


 ud

uq

 (2.21)
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2.7.2 Linearized Model

The system is linearized by taking the partial derivatives. Since the field oriented control

framework is utilized, the operating conditions are obtained as follows [7, 6, 10].

i∗d = 0

i∗q =
k∗

kt
(ω∗r)2

ω∗r =
λ0v
R

i∗d is set to zero because it is desired to have the stator current to be aligned with the quadrature

axis, which will lead to generate the maximum toque. Moreover, based on Fig. (2.3) the optimal

value for the tip speed ratio ranges between 6 to 7 [6, 10]. Choosing the optimal λ0 = 7, the

optimal rotor shaft speed can be derived based on Eqn. (2.12). Furthermore, the mechanical

torque produced by a wind turbine is given by

τmec =
P
ωr

(2.22)

Substituting Eqn. (2.13) in Eqn. (2.22) yields

τmec =
ρπR3Cp(λ)v2

2λ
(2.23)

Substituting the optimal rotor shaft speed and optimal tip sped ratio in Eqn. (2.23) yields

τmax =
ρπR5Cmax(ω2

r )∗

2λ3
0

(2.24)

Neglecting losses, τe = τmec. Therefore, the optimal value for iq is given as

i∗q =
k∗

kt

where k∗ and kt are given by

k∗ =
ρπR5Cpmax

2λ3
0

kt =
3ΨmP

4
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Now taking the partial derivatives of the nonlinear model, the following linearized model for

the WECS is obtained:
∆i̇d

∆i̇q

∆ω̇r

 =


−Rs

L
Pω∗r

2
Pi∗q
2

Pω∗r
2

−Rs
L

4P
2L −

Pi∗d
2

0 −PΨm
4J 0




∆id

∆iq

∆ωr

 +


−1
L 0

0 −1
L

0 0


 ∆ud

∆uq

 (2.25)

For the sake of simplicity, let’s drop the ∆ terms. The delay appears in the system due to

feedback delay in ωr, we can rewrite the system in the following form

ẋ = A0x(t) + A1x(t − d) + B0u(t) (2.26)

Considering model uncertainties and disturbances, we have

ẋ = (A0 + ∆A0)x(t) + (A1 + ∆A1)(t − d) + B0u(t) + Dw(t) (2.27)

where ∆A1 and ∆A0 are the model uncertainties, w(t) is the external disturbance.

Based on Eqn. (2.27), the linearized model of a variable speed surface mounted permanent

magnet synchronous generator based wind energy conversion system is given as follows:
i̇d(t)

i̇q(t)

ω̇r(t)

 =


g1 g2 0

−g2 g1 0

0 g3 0




id(t)

iq(t)

ωr(t)

 +


0 0

Pi∗q
2

0 0 g4

0 0 0




iq(t − τ)

iq(t − τ)

ωr(t − τ)

 +


−1
L 0

0 −1
L

0 0


 ∆ud

∆uq

 +


1

1

1

 w (2.28)

where:

g1 =
−Rs + ∆Rs

L + ∆L

g2 =
Pω∗r

2

g3 =
−3PΨm

4

g4 =
4P

2L + ∆L
−

pi∗d
2
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2.8 Literature Survey

Controlling a wind energy conversion system is one of the most challenging fields for control

engineers. Control goals are set to achieve maximum power extraction, and to meet the grid

requirements [23, 51]. Many different control algorithms have been developed in literature. In

[33, 49, 50], robust controllers were developed to achieve robust performance, stability, and

high efficiency of energy extraction under existence of uncertainties. The nonlinear model of the

wind energy conversion system is linearized around multiple operating conditions corresponding

for different wind speeds in [56]. To achieve maximum power extraction, A robust H∞ controller

is developed for each operating condition. Based of Lagrange interpolation, adaptive control

techniques were used to switch to the corresponding controller for each wind speed. An adaptive

gain scheduling based robust controller is presented in [54]. Based on wind speed, a model

with variable parameters is established. Gain scheduling technique is used to switch around

different models of wind energy conversion system. Taking into consideration the case of high

fluctuations in wind speed, [23] discusses the implementation of a hardware based robust H∞

controller for a grid connected wind energy conversion system. In [24], uncertainties in stator

parameters were considered. Disturbance has been also taken into consideration. A robust H∞

mixed sensitivity method is considered for disturbance rejection and to achieve the stability

of the system. Linear matrix inequalities are used to formulate controller existence problem.

[8] presents a control method for maximum point power tracking of a wind energy conversion

system for wind speeds below rated levels. Perturb and observe control algorithm is adopted to

extract the maximum energy form wind. [44] proposes a H∞ controller to achieve two goals

in the same time. First goal is optimize wind energy extraction, while the second target is the

alleviation of cyclic load power train. [43] introduces a control scheme which uses pitch control

along with H∞. The H∞ controller is used to regulate the power electronics in the wind energy

conversion system . Results of [23, 24, 29] shows the effectiveness of a robust controller to

achieve stability and performance requirements for a wind energy conversion system involving
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uncertainties and disturbances.

2.9 Design of Robust and Resilient Controller for the Time Delayed WECS

This section presents the main result of this thesis. The general time delay system model is

given as

ẋ(t) = (A0 + ∆A0)x(t) + (A1 + ∆A1)x(t − d) + (B0 + ∆B0)u(t)+

(B1 + ∆B1)u(t − h) + Dw(t) (2.29)

z(t) = Ex(t)

It is required to design a state feedback controller of the form

u(t) = (K + ∆K)x(t) (2.30)

Therefore, the closed loop system is given by the following

ẋ(t) = (Ac + ∆Ac)x(t) + (A1 + ∆A1)x(t − d) + [(B1 + ∆B1)(K + ∆K)]x(t − h) + Dw(t) (2.31)

where

Ac = A0 + B0K (2.32)

∆Ac = ∆A0 + B0∆K + ∆B0K + ∆B0∆K (2.33)

Before proceeding to state the main theorem, the following Lemma and Assumption is stated

[25, 59].

Lemma 1.

ABt + BAt ≤ αAAt + α−1BBt

To prove this inequality, we can consider the following equivalent inequality which always

holds, given arbitrary α > 0:

(α1/2A − α−1/2B)(α1/2A − α−1/2B)t ≥ 0
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Further more, if A and B are chosen to be

 at

0

 and

 0

bt

 respectively, we get

 0 atb

bta 0

 ≤
 ζata 0

0 ζ−1btb


Assumption 1.

∆At
0∆A0 ≤ γA0 I

∆At
1∆A1 ≤ γA1 I

∆Bt
1∆B1 ≤ γB1 I

∆Bt
0∆B0 ≤ γB0 I

∆Kt∆K ≤ γkI

Theorem 2.1. Under the feedback control law (2.30), the system defined by (2.31) is asymptoti-

cally stable for all delays satisfying d, h ≥ 0, and the H∞ performance objective ‖Tzw‖∞ ≤ γ
2 can

be satisfied, if there exist symmetric positive definite matrix X,Y,Qt,Qs satisfies the following

linear matrix inequality

Φ1 X Y t A1X B1Y D

X Φ2 0 0 0 0

Y 0 −[α2 + α6]I 0 0 0

XAt
1 0 0 α−1

5 γA1 I − Qt 0 0

Y tBt
1 0 0 0 Φ3 0

Dt 0 0 0 0 −γ2I



< 0

Where

Φ1 = XAt
0 + Y tBt

0 + A0X + B0Y + Qt + Qs + α−1
1 γA0 I + (α−1

2 + α−1
4 )γB0 I + α3B0Bt

0

Φ2 = −([(α1 + α5) + (α−1
3 + α−1

4 + α7 + α8)γk]I + EtE)

Φ3 = (α−1
6 + α−1

8 )γB1 I + α−1
7 Bt

1B1 − Qs
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Proof. A Lyapunov-Krasovskii functional is chosen as follows:

V(x, t) = xt(t)Px(t) +

t∫
t−d

xt(v)Q1x(v)dv +

t∫
t−h

xt(v)Q2x(v)dv (2.34)

where V(x, t) is a positive definite functional. P,Q1,Q2 are all positive definite.

taking derivative of Eqn. (2.34) yields

V̇(x, t) = ẋt(t)Px(t) + xt(t)Pẋ(t) + xt(t)Q1x(t) − xt(t − d)Q1x(t − d)+

xt(t)Q2x(t) − xt(t − h)Q2x(t − h) (2.35)

Based on LaSalle’s Theorem, asymptotic stability is achieved if V > 0 and V̇ < 0

In order to satisfy H∞ performance objective, the following H∞ performance criterion is

adopted

J =

∞∫
0

(ztz − γ2wtw)dt < 0. (2.36)

Sufficient condition to achieve both the asymptotic stability and H∞ performance objective is

given as

J =

∞∫
0

(ztz − γ2wtw + V̇)dt < 0. (2.37)

Condition (2.37) implies

ztz − γ2wtw + V̇ < 0 (2.38)

Substituting Eqn. (2.35) into Eqn. (2.38) leads to the following

ẋt(t)Px(t) + xt(t)Pẋ(t) + xt(t)Q1x(t) − xt(t − d)Q1x(t − d)+

xt(t)Q2x(t) − xt(t − h)Q2x(t − h) + ztz − γ2wtw < 0 (2.39)
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Substituting Eqn. (2.31) into Eqn. (2.39) results

[(Ac + ∆Ac)x(t) + (A1 + ∆A1)x(t − d) + [(B1 + ∆B1)(K + ∆K)]x(t − h)

+ Dw(t)]tPx(t) + xtP[(Ac + ∆Ac)x(t) + (A1 + ∆A1)x(t − d) + [(B1 + ∆B1)

(K + ∆K)]x(t − h) + Dw(t)] + xt(t)Q1x(t) − xt(t − d)Q1x(t − d)+

xt(t)Q2x(t) − xt(t − h)Q2x(t − h) + ztz − γ2wtw < 0 (2.40)

Denote ζ =

[
x x(t − d) x(t − h) w

]t

and rearranging the terms, inequality (2.40) can be

written as ζWζ t < 0. W is given by the following

W =



W1 P(A1 + ∆A1) W3 PD

(A1 + ∆A1)tP −Q1 0 0

W2 0 −Q2 0

DtP 0 0 −γ2I


< 0 (2.41)

where

W1 = (Ac + ∆Ac)tP + P(Ac + ∆Ac) + Q1 + Q2 + EtE

W2 = [(B1 + ∆B1)(K + ∆K)]t P

W3 = P(B1 + ∆B1)(K + ∆K)

Pre and post multiply W by Ψ = diag[X I I I], with X = P−1 and Y = K.P−1 = K.X, yields

F1 A1 + ∆A1 F2 D

(A1 + ∆A1)t −Q1 0 0

F3 0 −Q2 0

Dt 0 0 −γ2I


< 0 (2.42)

Where

F1 = X(Ac + ∆Ac)t + (Ac + ∆Ac)X + X(Q1 + Q2 + EtE)X

F2 = (B1 + ∆B1)(K + ∆K)

F3 = (K + ∆K)t(B1 + ∆B1)t
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Substitute for Ac and ∆Ac from Eqn. (2.32) and Eqn. (2.33) respectively, by Defining Qt =

XQ1X and Qs = XQ2X and applying Shur complement, the following inequality is obtained

θ1 (A1 + ∆A1)X θ2 D

X(A1 + ∆A1)t −Qt 0 0

θ3 0 −Qs 0

Dt 0 0 −γ2I


< 0, (2.43)

where

θ1 = X [A0 + ∆A0 + (B0 + ∆B0)(K + ∆K)]t + [A0 + ∆A0 + (B0 + ∆B0)(K + ∆K)] X + Qt + Qs

θ2 = (B1 + ∆B1)(K + ∆K)X

θ3 = (K + ∆K)t(B1 + ∆B1)t

Inequality (2.43) can be partitioned into the sum of two matrices Ω1 and Ω2, where

Ω1 =



XA0 + Y tB0 + A0X + B0Y + EtE A1X B1Y D

XAt
1 −Qt 0 0

Y tBt
1 0 −Qs 0

Dt 0 0 −γ2I


(2.44)

And

Ω2 =



Ω21 ∆A1X Ω22 0

X∆At
1 0 0 0

Ω23 0 0 0

0 0 0 0


, (2.45)

with

Ω21 = X [∆A0 + ∆B0K + B0K + ∆B0∆K]t + [∆A0 + ∆B0K + B0K + ∆B0∆K] X

Ω22 = [∆B1K + B1∆K + ∆B1∆K] X

Ω23 = X [∆B1K + B1∆K + ∆B1∆K]t
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(2.44) is already in the form of linear matrix, but (2.45) is not. To convert (2.45) to linear matrix

form, Lemma 1 and assumption need to be applied as follows

Ω21 =X∆At
0 + Y t∆Bt

0 + X∆KtBt
0 + X∆Kt∆Bt

0 + ∆A0X + ∆B0Y+

B0∆KX + ∆B0∆kX ≤ α1XX + α−1∆At
0∆A0 + α2Y tY + α−1

2 ∆Bt
0∆B0+

α3B0Bt
0 + α−1

3 X∆Kt∆KX + α4∆Bt
0∆B0 + α−1

4 X∆Kt∆KX = α1XX+

α−1γA0 I + α2Y tY + α−1
2 γB0 I + α3B0Bt

0 + α−1
3 XγK IX + α4γB0 I + α−1

4 XγK IX

Ω2 ≤



G1 0 0 0

0 α−1
5 γA1 I 0 0

0 0 α−1
6 γB1 I + α−1

7 Bt
1B1 + α−1

8 γB1 I 0

0 0 0 0


(2.46)

Where

G1 = α1XX + α−1γA0 I + α2Y tY + α−1
2 γB0 I + α3B0Bt

0 + α−1
3 XγK IX+

α4γB0 I + α−1
4 XγK IX + α5XX + α6Y tY + α7XγK IX + α8XγK I (2.47)

Addition of inequality (2.44) and (2.46) yields the following

C1 A1X B1Y D

XAt
1 α−1

5 γA1 − Qt 0 0

Y tBt
1 0 C2 0

Dt 0 0 −γ2I


< 0 (2.48)

where

C1 = XAt
0 + Y tBt

0 + A0X + B0Y + EtE + Qt + Qs + α1XX + α−1γA0 I + α2Y tY+

α−1
2 γB0 I + α3B0Bt

0 + α−1
3 XγK IX + α4γB0 I + α−1

4 XγK IX + α5XX

+ α6Y tY + α7XγK IX + α8XγK I

C2 = α−1
6 γB1 + α−1

7 Bt
1B1 + α−1

8 γB1 − Qs
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Applying Schur complement to inequality (2.48) we get the proposed inequality, which com-

pletes the proof 

Φ1 X Y t A1X B1Y D

X Φ2 0 0 0 0

Y 0 −[α2 + α6]I 0 0 0

XAt
1 0 0 α−1

5 γA1 I − Qt 0 0

Y tBt
1 0 0 0 Φ3 0

Dt 0 0 0 0 −γ2I



< 0 (2.49)

Where

Φ1 = XAt
0 + Y tBt

0 + A0X + B0Y + Qt + Qs + α−1
1 γA0 I + (α−1

2 + α−1
4 )γB0 I + α3B0Bt

0

Φ2 = −([(α1 + α5) + (α−1
3 + α−1

4 + α7 + α8)γk]I + EtE)

Φ3 = (α−1
6 + α−1

8 )γB1 I + α−1
7 Bt

1B1 − Qs

�

2.10 Simulation Results

he proposed approach is applied to a variable speed fixed pitch permanent magnet syn-

chronous generator based wind energy conversion system in by Eqn. (2.28). The following

parameters are chosen for simulating the system

Based on model parameters, we obtain the state space model as follows.

A0 =


−0.0125 84 0

−84 −0.0125 0

0 −0.4598 0



A1 =


0 0 284.2

0 0 288.74

0 0 0


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Table 2.1

Parameters of the Wind Energy Conversion System

R 3.3

L 41.56 ∗ 10−3

P 6

Ψ 0.4832

ρ 1.25

Rt 2.5

λoptimal 7

Cp 0.47

J 1

V 12

B =


−1

41.56∗10−3 0

0 −1
41.56∗10−3

0 0


D =

[
1 1 1

]t

E =

[
1 1 1

]
Simulations are conducted with MATLAB robust control toolbox. Results show that the

proposed controller effectively controlled the wind energy conversion system. Figures 1 to 4

show the time response of the wind energy conversion system state variables and control input.
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Fig. 2.5. State Trajectory of d Axis Current

Fig. 2.6. State Trajectory of q Axis Current
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Fig. 2.7. State Trajectory of Rotational Speed

Fig. 2.8. Control Input Signals
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CHAPTER 3

POWER GENERATION SYSTEMS DRIVEN BY STEAM TURBINES

Power systems are the basic infrastructure of modern civilization. Stability analysis and control

system development of the smart power grid are becoming more and more important, due

to the rapid deployment of the distributed energy resources (DER). In practical engineering

applications, time delay plays a significant role in performance and stability of the overall power

systems. Severe delays can even lead to catastrophic breakdown of the entire energy system due

to instability [3, 4, 36, 46, 52, 60, 71]. For this reason, extensive research on the transient and

the steady state stability analysis and controller design for power generation systems have been

conducted during the past decade [27]. System design engineers should consider time delays in

designing and implementing practical power systems due to their significance [3][60][62]. This

chapter is mainly based on the discussion and results introduced in [25].

3.1 Basic Components of Power Generation Systems

A power generation system consists of: generation systems, transmission systems, distribu-

tion systems, and the loads [35].

3.1.1 Generation systems

The power generation systems are the devices by which energy conversion are taking place.

This subsystem contains the prime mover, generator, generator control (excitation system and

automatic voltage regulator) [35].

3.1.2 Transmission systems

Power systems are located near natural energy resources, and far away from load centers.

Therefore, transmission lines are used to transmit electrical power from power plants to load

centers [35].
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3.1.3 Distribution systems

Distribution networks are intended to transfer electrical energy from transmission line to the

consumers. Voltages of distribution networks are low to medium voltages [35].

3.2 Literature Survey

Many different control approaches have been studied in literature for effectively controlling

the time delayed power systems. Based on an optimal control approach, the effect of time delays

on the region of stability for small signals variation is studied in [26]. [67] proposes a robust

control method to design a proportional-integral-derivative type load frequency control of power

systems considering time delays. [53] introduces a robust controller for a wide-area power

system involving input time delays. The controller is developed based on the model reduction

and linear matrix inequalities. An adaptive wide area damping controller based on generalized

predictive control and model identification for time delayed power system is proposed in [63].

[64] proposes a nonlinear robust control algorithm for power system considering signal delays

and measurement incompleteness. [62] discusses the maximal allowable time delay margin for a

stable power systems based on Lyapunov method, for a power system involving three generators

and nine buses. [5] presents the nonlinear limit cycle effect of time delays on the local stability

of the single machine infinite bus (SMIB) system. In [34], the Cluster treatment of eigenvalues

is introduced to analyze the stability of a power system with time delays in the feedback loop.

3.3 Model of Steam Turbine Based Power System

In this section, the mathematical model of an infinite bus power system involving a syn-

chronous generator is developed.
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3.3.1 Synchronous generator model

A model for the synchronous generator is given as follows [58] :

Ė′q = −
1

T ′

do

(E
′

q − (Xd − X
′

d)Id − E f d) (3.1)

δ̇ = ω − ωs (3.2)

ω̇ =
ωs

2H
[Tmech − (E

′

qIq + (Xq − X
′

d)IdIq + Kd(ω − ωs))] (3.3)

The stator algebraic equations are

VT sin(δ − θ) + RsId − XqIq = 0 (3.4)

E
′

q − VT cos(δ − θ) − RsIq − X
′

dId = 0 (3.5)

Neglecting stator resistance by assuming Rs = 0, Eqns (3.4) and (3.5) can be rewritten as

VT sin(δ − θ) − XqIq = 0 (3.6)

E′q − VT cos(δ − θ) − X′dId = 0 (3.7)

Since

(Vd + jVq)e j(δ−π/2) = VT e jθ (3.8)

therefore,

Vd = VT sin(δ − θ) (3.9)

Vq = VT cos(δ − θ) (3.10)

Substituting in Eqn (3.6) and Eqn. (3.7) yields

Vd − XqIq = 0 (3.11)

E′q − Vq − X′dId = 0 (3.12)

Assuming zero degree phase angle for the infinite bus voltage

(Id + jIq)e j(δ−π/2) =
(Vd + jVq)e j(δ−π/2) − V∞∠0o

Re + jXe
(3.13)
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Separating the imaginary and real parts of Eqn. (3.13)

RdId − XeIq = Vd − V∞ sin(δ)

XeId − ReIq = Vq − V∞ cos(δ) (3.14)

Linearizing Eqn. (3.11) and Eqn. (3.12) ∆Vd

∆Vq

 =

 0 Xq

−X′d 0


 ∆Iq

∆Iq

 +

 0

∆E′q

 (3.15)

Moreover, linearizing Eqn. (3.14) ∆Vd

∆Vq

 =

 Re −Xe

Xe Re


 ∆Iq

∆Iq

 +

 V∞ sin(δ)

−V∞ cos(δ)

 ∆δ (3.16)

Equating the right hand sides of the Eqn. (3.15) and Eqn. (3.16) yields the following Re −(Xe + Xq)

(Xe + X
′

d) Re


∆Id

∆Iq

 =

 0

∆E
′

q

 +

−V∞cosδ

V∞sinδ

 ∆δ (3.17)

∆Id,∆Iq can be obtained from Eqn. (3.15), and Eqn. (3.16) as

∆Id

∆Iq

 =
1
∆

(Xe + Xq) −ReV∞cosδ + V∞sinδ(Xq + Xe)

Re ReV∞sinδ + V∞cosδ(X
′

d + Xe)


∆E

′

q

∆δ

 (3.18)

where

∆ = R2
e + (Xe + Xq)(Xe + X

′

d) (3.19)

Denote the normalized frequency ν = ω
ωs

. The linearized synchronous generator model of Eqns.

(3.1)-(3.3) is given as follows.
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
∆Ė

′

q

∆δ̇

∆ν̇

 =


− 1

T ′do
0 0

0 0 ωs

−
Io
q

2H 0 −
Kdωs
2H




∆E

′

q

∆δ

∆ν

 +


− 1

T ′d
(Xd − X

′

d) 0

0 0

1
2H (X

′

d − Xq)Io
q

1
2H (X

′

d − Xq)Io
d −

1
2H E

′o
q


∆Id

∆Iq



+


1

T ′do
0

0 0

0 1
2H


 ∆E f d

∆Tmech

 (3.20)

Substitute for ∆Id,∆Iq, results

∆Ė
′

q = −
1

K3T ′

do

∆E
′

q −
K4

T ′

do

∆δ +
1

T ′

do

∆E f d (3.21)

∆δ̇ = ωs∆ν (3.22)

∆ν̇ = −
K2

2H
∆E

′

q −
K1

2H
∆δ −

Kdωs

2H
∆ν +

1
2H

∆Tmech (3.23)

where

1
K3

= 1 +
(Xd − X

′

d)(Xq + Xe)
∆

(3.24)

K4 =
V∞(Xd − X

′

d)
∆

[(Xq + Xe)sinδ − Recosδ] (3.25)

K2 =
1
∆

[Io
q∆ − Io

q(X
′

d − Xq)(Xq + Xe) − Re(X
′

d − Xq)Io
d + ReE

′o
q ] (3.26)

K1 = −
1
∆

[Io
qV∞(X

′

d − Xq){(Xq + Xe)sinδ − Recosδ}

+V∞{(X
′

d − Xq)Io
d − E

′o
q }{(X

′

d + Xe)cosδ + Resinδ}] (3.27)

Since

V2
T = V2

d + V2
q

the differential terms is given as follows

∆VT =
Vo

d

VT
∆Vd +

Vo
q

VT
∆Vq (3.28)
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Substituting Eqn. (3.18) into Eqn. (3.15), leads to the following ∆Vd

∆Vq

 =
1
∆

 XqRe Xq(ReV∞sinδ + V∞cosδ(X
′

d + Xe)

−X
′

d(Xq + Xe) −X
′

d(−ReV∞cosδ + V∞(Xq + Xe)sinδ)


 ∆E

′

q

∆δ


+

 0

∆E
′

q

 (3.29)

Based on Eqn. (3.28), and Eqn. (3.29), the following result is obtained

∆VT = K5∆δ + K6∆E′q (3.30)

where

K5 =
1
∆
{
Vo

d

VT
Xq[ReV∞sinδ + V∞cosδ(X

′

d + Xe)]

+
Vo

q

VT
[X

′

d(ReV∞cosδ) − V∞(Xq + Xe)sinδ]} (3.31)

K6 =
1
∆
{
Vo

d

VT
XqRe −

Vo
q

VT
X
′

d(Xq + Xe)} +
Vo

q

VT
(3.32)

3.3.2 Automatic voltage regulator and exciter circuit dynamics

The following dynamical equations for Automatic Voltage Regulator (AVR) and excitation

control system are adopted:

Ė f d =
KA

TA
(Vre f − VT + Upss −

E f d

TA
) (3.33)

Linearizing (3.33) yields

∆Ė f d =
KA

TA
(∆Vre f − ∆VT + ∆Upss) −

∆E f d

TA
(3.34)

Based on Eqn. (3.30), Eqn. (3.34) can be rewritten as

∆Ė f d = −
∆E f d

TA
−

KAK5

TA
∆δ −

KAK6

TA
∆E′q +

KA

TA
∆Upss +

KA

TA
∆Vre f (3.35)
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A typical Power System Stabilizer (PSS) control scheme include a washout filter and two

lead-lag blocks. The retarded measure of ν propagates in the PSS equations. The linearized

form of power system stabilizer can be modeled as:

∆ż1 = −(Kw∆ν(t − τ) + ∆z1)/Tw

∆ż2 = [(1 −
T1

T2
)(Kw∆ν(t − τ) + ∆z1) − ∆z2]/T2

∆ż3 = {(1 −
T3

T4
)[∆z2 + (

T1

T2
(Kw∆ν(t − τ) + ∆z1)] − ∆z3}/T4

∆Upss = ∆z3 +
T3

T4
[∆z2 +

T1

T2
(Kw∆ν(t − τ) + ∆z1)]

Hence, the overall linearized model of power generation system is given as follows

∆δ̇ = ωs∆ν (3.36)

∆ν̇ = −
K2

2H
∆E

′

q −
K1

2H
∆δ −

Kdωs

2H
∆ν +

1
2H

∆Tmech (3.37)

∆Ė
′

q = −
1

K3T ′

do

∆E
′

q −
K4

T ′

do

∆δ +
1

T ′

do

∆E f d (3.38)

∆Ė f d = −
∆E f d

TA
−

KAK5

TA
∆δ −

KAK6

TA
∆E

′

q +
KA

TA
∆Vre f

+
KA

TA
{∆z3 +

T3

T4
[∆z2 +

T1

T2
(Kw∆ν(t − τ) + ∆z1)]} (3.39)

∆ż1 = −(Kw∆ν(t − τ) + ∆z1)/Tw (3.40)

∆ż2 = [(1 −
T1

T2
)(Kw∆ν(t − τ) + ∆z1) − ∆z2]/T2 (3.41)

∆ż3 = {(1 −
T3

T4
)[∆z2 + (

T1

T2
(Kw∆ν(t − τ) + ∆z1)] − ∆z3}/T4 (3.42)

Denote x = [∆δ,∆ν,∆E′q,∆E f d,∆z1,∆z2,∆z3]t and u = [∆Tmech,∆Vre f ]t, the linearized model

becomes

ẋ = A0x(t) + A1x(t − d) + B0u(t)
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where

A0 =



0 ωs 0 0 0 0 0

−
K1
2H −

Kdωs
2H −

K2
2H 0 0 0 0

−
K4

T ′do
0 − 1

K3T ′do
− 1

T ′do
0 0 0

−
KAK5

TA
0 −

KAK6
TA

− 1
TA

KAT3T1
TAT4T2

KAT3
TAT4

KA
TA

0 0 0 0 − 1
Tw

0 0

0 0 0 0 (1 − T1
T2

) 1
T2

− 1
T2

0

0 0 0 0 (1 − T3
T4

)T1
T2

1
T4

(1 − T3
T4

) 1
T4
− 1

T4



(3.43)

A1 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 T3T1Kw
T4T2

0 0 0 0 0

0 −
Kw
Tw

0 0 0 0 0

0 (1 − T1
T2

)Kw
1

T2
0 0 0 0 0

0 (1 − T3
T4

)T1
T2

Kw
1

T4
0 0 0 0 0



(3.44)

B0 =



0 0

1
2H 0

0 0

0 KA
TA

0 0

0 0

0 0



(3.45)

3.4 Robust H∞ Controller Design

In this section, a novel design of the robust controller satisfying H∞ performance objective

is proposed. A system with state and input delays, uncertainties and disturbances is considered.
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The system is of the form:

ẋ(t) =(A0 + ∆A0)x(t) + (A1 + ∆A1)x(t − d) + (B0 + ∆B0)u(t)+

(B1 + ∆B1)u(t − h) + Dw(t) (3.46)

the performance output is chosen as

z(t) = Ex(t)

and

x(t) = φ(t) f or t ∈ [−d, 0]

It is required to design a state feedback controller of the following form

u(t) = Kx(t) (3.47)

It is assumed that the state variables are available for feedback. Otherwise, estimators can be

developed for state estimation purposes. Therefore, the closed loop system becomes:

ẋ(t) =(A0 + ∆A0 + B0K + ∆B0)x(t) + (A1 + ∆A1)x(t − d)+

(B1 + ∆B1)Kx(t − h) + Dw(t) (3.48)

Rearranging Eqn. (3.48), yields

ẋ(t) = Acx(t) + ∆Acx(t) + (A1 + ∆A1)x(t − h) + (B1 + ∆B1)Kx(t − h) + Dw(t) (3.49)

where

Ac = A0 + B0K

∆Ac = ∆A0 + ∆B0K

Before proceeding to the theorem derivation, Assumption 1 and Lemma 1 are introduced [59].
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Assumption 1. The general form of unstructured L2 bounded uncertainties is used in this work:

∆A0∆At
0 ≤ γA0 I

∆A1∆At
1 ≤ γA1 I

∆B0∆Bt
0 ≤ γB0 I

∆B1∆Bt
1 ≤ γB1 I

Lemma 1.

ABt + BAt ≤ αAAt + α−1BBt

To prove this inequality, we can consider the following equivalent inequality which always

holds, given arbitrary α > 0:

(α1/2A − α−1/2B)(α1/2A − α−1/2B)t ≥ 0

Further more, if A and B are chosen to be

 at

0

 and

 0

bt

 respectively, we get

 0 atb

bta 0

 ≤
 ζata 0

0 ζ−1btb


Based on Assumption 1 and Lemma 1, the main theorem of the paper is summarized as follows:

Theorem 1. Under the feedback control law (3.47), the system of (3.49) is asymptotically

stable for all delays satisfying d, h ≥ 0. And the H∞ performance objective ‖Tzw‖∞ ≤ γ
2 can

be satisfied. if there exist symmetric positive definite matrix X,Y,Qt,Qs satisfies the following
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LMI: 

m1 A1X B1Y D X Y t

XAt
1 m2 0 0 0 0

Y tBt
1 0 m3 0 0 0

Dt 0 0 m4 0 0

X 0 0 0 m5 0

Y 0 0 0 0 m6



< 0 (3.50)

where

m1 = A0X + B0Y + XAt
0 + Y tBt

0 + Qt + Qs + α1(γA + γB)I

m2 = α−1
2 I − Qt

m3 = α−1
3 I − Qs

m4 = −γ2I

m5 = −[α−1
1 I + α2γA1I + EtE]−1

m6 = −[α−1
1 I + α3γB1I]−1

Proof. A Lyapunov-Krasovskii function is chosen as follows:

V(x, t) = xt(t)Px(t) +

t∫
t−d

xt(v)Q1x(v)dv +

t∫
t−h

xt(v)Q2x(v)dv (3.51)

where V(x, t) is a positive semi-definite functional and the matrices P,Q1,Q2 are all positive

definite.

By taking derivative, we have

V̇(x, t) = ẋt(t)Px(t)+xt(t)Pẋ(t)+xt(t)Q1x(t)−xt(t−d)Q1x(t−d)+xt(t)Q2x(t)−xt(t−h)Q2x(t−h)

(3.52)

Based on LaSalle’s Theorem, in order to achieve the asymptotic stability, the conditions V > 0
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and V̇ < 0 need to be satisfied.

In order to satisfy H∞ performance objective, the following H∞ performance inequality needs

be employed

J =

∞∫
0

(ztz − γ2wtw)dt < 0 (3.53)

The sufficient condition to achieve both the asymptotic stability and H∞ performance objective

is

J =

∞∫
0

(ztz − γ2wtw + V̇)dt < 0 (3.54)

Condition (3.54) implies

ztz − γ2wtw + V̇ < 0 (3.55)

Substituting Eqn. (3.49) into Eqn. (3.52), results

V̇(x, t) =[Acx(t) + ∆Acx(t) + (A1 + ∆A1)x(t − d) + (B1 + ∆B1)Kx(t − h) + Dw(t)]tPx(t)+

xt(t)P[Acx(t) + ∆Acx(t) + (A1 + ∆A1)x(t − d) + (B1 + ∆B1)Kx(t − h) + Dw(t)]+

xt(t)Q1x(t) − xt(t − d)Q1x(t − d) + xt(t)Q2x(t) − xt(t − h)Q2x(t − h) < 0 (3.56)

Based on condition (3.54), we have

[Acx(t) + ∆Acx(t) + (A1 + ∆A1)x(t − d) + (B1 + ∆B1)Kx(t − h) + Dw(t)]tPx(t)+

xt(t)P[Acx(t) + ∆Acx(t) + (A1 + ∆A1)x(t − d) + (B1 + ∆B1)Kx(t − h) + Dw(t)]+

xt(t)Q1x(t) − xt(t − d)Q1x(t − d) + xt(t)Q2x(t) − xt(t − h)Q2x(t − h) + ztz − γ2wtw < 0 (3.57)

Denote ζ(t) =

[
xt(t) xt(t − d) xt(t − h) wt(t)

]t

, then Eqn. (3.57) can be written as ζ t(t)Woζ(t) <

0
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where

Wo =



c1 P(A1 + ∆A1) P(B1 + ∆B1)K PD

(A1 + ∆A1)tP −Q1 0 0

Kt(B1 + ∆B1)tP 0 −Q2 0

DtP 0 0 −γ2I


< 0 (3.58)

where

c1 = P(Ac + ∆Ac) + (Ac + ∆Ac)tP + Q1 + Q2 + EtE

pre- and post-multiply Eqn. (3.58) with a diagonal matrix diag(X, I, I, I), and denote

X = P−1, Y = KX, Qt = XQ1X, Qs = XQ2X,

results in the following 

φ11 φ12 φ13 D

φt
12 φ22 0 0

φt
13 0 φ33 0

Dt 0 0 φ44


< 0 (3.59)

where

φ11 =(A0 + B0K + ∆A0 + ∆B0K)X + X(A0 + B0K + ∆A0 + ∆B0K)t + Qs + Qt + XEtEX

φ12 =(A1 + ∆A1)X

φ13 =(B1 + ∆B1)Y

φ22 = − Qt

φ33 = − Qs

φ44 = − γ2I
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Applying Lemma 1, yields

(∆A0 + ∆B0K)X + X(∆A0 + ∆B0K)t = X
[

I Kt
]t

 ∆At
0

∆Bt
0

 +

[
∆A0 ∆B0

]  I

K

 X

≤ α1

[
∆A0 ∆B0

]  ∆At
0

∆Bt
0

 + α−1
1 X

[
I Kt

]  I

K

 X

Applying Assumption 1, results the following

(∆A0 + ∆B0K)X + X(∆A0 + ∆B0K)t ≤ α1(γA0 I + γB0 I) + α−1
1 X

[
I Kt

]  I

K

 X (3.60)

Based on Lemma 1 and Assumption 1, the following matrix inequality is obtained:

0 ∆A1X ∆B1Y 0

Xt∆At
1 0 0 0

Y t∆Bt
1 0 0 0

0 0 0 0


≤



α2γA1 XtX + α3γB1Y
tY 0 0 0

0 α−1
2 I 0 0

0 0 α−1
3 I 0

0 0 0 0


(3.61)

Substituting Eqn. (3.60) and Eqn. (3.61) into Eqn. (3.59) and applying Schur complement,

results to the following linear matrix inequality

ζ11 ζ12 ζ13 D X Y t

ζ t
12 ζ22 0 0 0 0

ζ t
13 0 ζ33 0 0 0

Dt 0 0 ζ44 0 0

Xt 0 0 0 ζ55 0

Y 0 0 0 0 ζ66



< 0 (3.62)
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where

ζ11 =A0X + B0Y + XAt
0 + Y tBt

0 + Qt + Qs + α1(γA0 + γB0)I

ζ12 =A1X

ζ13 =B1Y

ζ22 =α−1
2 I − Qt

ζ33 =α−1
3 I − Qs

ζ44 = − γ2I

ζ55 = − [α−1
1 I + α2γA1 I + EtE]−1

ζ66 = − [α−1
1 I + α3γB1 I]−1

. �

3.5 Simulation and Results

The following parameters are used for simulations. Assuming that Re = 0, Xe = 0.5pu,

VT∠θ = 1∠15o pu, and V∞∠0o = 1.05∠0o pu. The generator, automatic voltage regulator and

exciter parameters are H = 3.2sec, T
′

do = 9.6sec, KA = 400, TA = 0.2sec, Rs = 0pu, Xq = 2.1pu,

Xd = 2.5pu, X
′

d = 0.39pu, Kd = 0, and ωs = 377. The power system stabilizer parameters are

Kw = 0.5,T1 = 0.5,T2 = 0.01,T3 = 1,T4 = 0.1,Tw = 10. Based on (3.24), (3.25), (3.26), (3.27),

(3.31) and (3.32), we can calculate the values: K1 = 0.9224,K2 = 1.0739.K3 = 0.296667,K4 =

2.26555,K5 = 0.005,K6 = 0.3572

The L2 of disturbance is chosen as w(t) = 5 × 0.9t, notice that the disturbance energy is finite.

MATLAB robust control toolbox provide the capability to design the optimal control feed-

back with LMI. Computer simulation shows that our proposed controller effectively stabilizes

the time response of rotor angle in Fig.1, normalized frequency in Fig.2, quadrature axis tran-

sient voltage in Fig.3 and excitation voltage in Fig.4. Simulation results have demonstrated the

effectiveness and robustness of our proposed approach.
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Fig. 3.1. Time Response of Rotor Angle

Fig. 3.2. Time Response of Normalized Frequency
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Fig. 3.3. Time Response of Quadrature Axis Transient Voltage

Fig. 3.4. Time Response of Excitation Voltage
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Fig. 3.5. Control Input
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CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

A seventh order state space model for an electrical generator system driven by a steam turbine

has been developed based on the nonlinear dynamics of a synchronous generator, automatic

voltage regulator, power system stabilized, and exciter. Moreover, A linearized model for a

variable speed surface mounted permanent magnet synchronous generator based wind energy

conversion system has been developed. A linear matrix inequality based robust and resilient

controller with H∞ performance criterion for a time delayed power system has been developed

to address the problems of time delays, model uncertainties, external disturbance, and controller

feedback gain perturbations. Computer simulations conducted in MATLAB shows the efficacy

of the proposed controller in power systems control applications.

4.2 Future Work

Further development for this are summarized as follows :

1. The discrete time system model will be studied and implemented by microcontrollers,

Digital Signal Processors (DSP), and Field Programmable Gate Array (FPGA)

2. The controller in this thesis is developed using the delay independent cases. However, the

delay dependent designs are based on the discretization of the Lyapunov-Krasovskii can

be studied in the future. Therefore, the maximum allowable delay can be determined.

3. This work consider the case of fixed and known delays. However, further development of

the work can consider the cases of varying and unknown time delays.
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APPENDIX A

PARK’S TRANSFORMATION

Three phase machines are usually characterized by their voltage equations. The dynamical

model of a three phase machine in the abc coordinate frame is time variant, which imposes

difficulties in system analysis and controller design. Therefore, an alternative coordinate frame

should be adopted to describe the machine dynamics, to result in a time-invariant model. To

achieve this goal, Park’s transformation is used to change systems description from the abc

coordinate frame to the dq0 coordinate frame.

A.0.1 Park’s transformation

Characterizing a three phase electrical machine using the stationary abc coordinates frame

leads to time variant coefficients system. Therefore, Park’s transformation is used to express

the the model of a three phase electrical model in a rotating coordinate frame rather than the

stationary one. This transformation is named after R. H. Park who introduces it in 1929 [2].

Park’s transformation is used essentially to express the model in the dq0 coordinate frame, in

which the machine inductances have fixed values. Moreover the Park’s transformation simplifies

the machine model because only two coordinates dq are used to model the system rather than

three, since 0 coordinate frame is used only to facilitate the transformation and make matrices

invertible. A schematic diagram of the abc and the dq0 coordinate frames are shown in Fig.

(A.1). The transformation of a machine from the abc to dq0 is called the Park’s transformation
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Fig. A.1. abc and dq0 Coordinate Frames

and it is given by

fdq0 = Tdq0 fabc (A.1)

On the other hand, the transformation of the machine model from the dq0 to abc coordinate

frame is called the inverse Park’s transformation and it can be mathematically stated as

fabc = T−1
dq0ddq0 (A.2)

In Eqn. (A.1) and Eqn. (A.2), f is a generic variable, which can represent the voltage, current,
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or flux linkage. Tdq0 is the Park’s transformation matrix and it is given by

Tdq0 =
2
3


cos(θ) cos(θ − 2π

3 ) cos(θ + 2π
3 )

sin(θ) sin(θ − 2π
3 ) sin(θ + 2π

3 )

1
2

1
2

1
2


(A.3)

T−1
dq0 =


cos(θ) sin(θ) 1

cos(θ − 2π
3 ) sin(θ − 2π

3 ) 1

cos(θ + 2π
3 ) sin(θ + 2π

3 ) 1


(A.4)

θ in Eqn. (A.3) and Eqn. (A.4) is the angular position of the rotor.

The development of Park’s transformation is based on the Calrke and rotational transformation.

A.0.2 Clarke’s transformation

The concept of mapping the stationary abc coordinate frame into to the αβ0 rotating

coordinate frame is first introduced by E. Clarke’s, Fig. (A.2) shows the abc and the αβ0. The

Clarke’s transformation and its inverse are given mathematically by the following notations

fαβ0 = K fabc (A.5)

fabc = K−1 fαβ0 (A.6)
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Where K and K−1 in Eqn. (A.5) and Eqn. (A.6) are given by [2]

K = 2
3


1 −1

2 −1
2

0
√

3
2 −

√
3

2

1
2

1
2

1
2


(A.7)

K−1 =


1 0 1

−1
2

√
3

2 1

−1
2

√
3

2 1


(A.8)

Fig. A.2. abc and αβ0 Coordinate Frames
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A.0.3 Rotational transformation

The last step of the Park’s transformation is the Rotational transformation. In this trans-

formation, the αβ0 coordinate frame is rotated to match the rotor dq0 coordinate frame. The

Rotational transformation and its matrix inverse can be expressed as follows

fdq = Q fαβ (A.9)

fαβ = Q−1 fdq (A.10)

where Q and Q−1 in (A.9) and (A.10) are given by

Q =


cos(σ) sin(σ)

− sin(σ) cos(σ)

 (A.11)

Q−1 =


cos(σ) − sin(σ)

sin(σ) cos(σ)

 (A.12)

σ in Eqn. (A.11) and Eqn. (A.12) is the angle of the dq0 coordinate frame.
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APPENDIX B

PERMANENT MAGNET SYNCHRONOUS GENERATOR MODEL IN THE dq0

COORDINATE FRAME

The development of the state space model for the permanent magnet synchronous generator in

the (dq0) coordinate frame is presented in this chapter. Appendix B derivation is based on [57].

B.0.4 Permanent magnet synchronous generator model in the abc coordinate frame

The state space model of a permanent magnet synchronous generator in the (abc) coordinate

frame is given as follows [57]
Vabc

0

 =


Rss 0

0 Rrr




Iabc

Isdsq

 +
d
dt



Lss Lsr

Lrs Lrr




Iabc

Isdsq


 +

d
dt

i f


Ls f

0


 (B.1)

Since Λ = L × I, Eqn. (B.1) can be rewritten as
Vabc

0

 =


Rss 0

0 Rrr




Iabc

Isdsq

 +
d
dt


Lss Lsr

Lrs Lrr



Λabc

Λsdsq

 +


Eabc

0

 (B.2)

Since Vabc = T−1Vdq0, Eqn. (B.2) can be expressed as follows
Vdq0

0

 =
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TRssT−1 0

0 Rrr
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

Idq0

Isdsq

 +


T 0

0 U

 d
dt


T−1Λdq0

Λsdsq

 +


Edq0

0

 (B.3)

Expanding Eqn. (B.3) yields

Vdq0 =
(
TRssT−1

)
Idq0 + T

d
dt

(
T−1Λdq0

)
+ Edq0 (B.4)

0 = RrrIsdsq +
d
dt

(
Λsdsq

)
(B.5)
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Since

T
d
dt

(
T−1Λdq0

)
= Λ̇dq0 −

(
ṪT−1Λdq0

)
(B.6)

and

Ṫ = ωGT (B.7)

where

G =


0 1 0

−1 0 0

0 0 0


(B.8)

T =
2
3


cos(σ) cos(σ − 2π

3 ) cos(σ − 4π
3 )

sin(σ) sin(σ − 2π
3 ) sin(σ − 4π

3 )

1
2

1
2

1
2


(B.9)

T−1 =


cos(σ) sin(σ) 1

2

cos(σ − 2π
3 ) sin(σ − 2π

3 ) 1
2

cos(σ − 4π
3 ) sin(σ − 4π

3 ) 1
2


(B.10)

Therefore, Eqn. (B.4) and Eqn. (B.5) can be expressed as follows

Vdq0 =
(
TRssT−1

)
Idq0 + Λ̇dq0 − ωGΛdq0 + Edq0 (B.11)

0 = RrrIsdsq + Λ̇sdsq (B.12)

Since

Λdq0 =
(
T LssT−1

)
Idq0 + (T Lsr) Isqsq (B.13)

Λsdsq =
(
Lt

srT
−1

)
Idq0 + (Lrr) Isdsq (B.14)
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where

(
T LssT−1

)
=


Ldd 0 0

0 Lqq 0

0 0 L00


(B.15)

(T Lsr) =


Lasdm 0

0 Lasqm

0 0


(B.16)

(
Lt

srT
−1

)
=


3
2 Lasdm 0 0

0 3
2 Lasqm 0

 (B.17)

The flux linkage is expressed in the dq0 coordinate frame in Eqn. (B.13) and Eqn. (B.14).

Therefore, all inductance matrices are time invariant. As such, the time derivative of the flux

linkage can be expressed as follows

Λ̇dq0 =
(
T LssT−1

)
İdq0 + (T Lsr) İsdsq (B.18)

Λ̇sdsq =
(
Lt

srT
−1

)
İdq0 + (Lrr) İsdsq (B.19)

Since (
TRssT−1

)
= Rss (B.20)
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Therefore, by substituting Eqns. (B.13), (B.14), (B.18), (B.19) and(B.20) into Eqn. (B.11) and

Eqn. (B.12), we have
Vdq0

0

 =


Rss 0

0 Rrr




Idq0

Isdsq

 +


−ωG

(
T LssT−1

)
−ωG (T Lsr)

0 0




Idq0

Isdsq

 +


(
T LssT−1

)
(T Lsr)(

Lt
srT
−1

)
(Lrr)




İdqo

İsdsq

 +


Edq0

0

 (B.21)

Since

−ωG
(
T LssT−1

)
=


0 −ωLqq 0

ωLdd 0 0

0 0 0


(B.22)

−ωG (T Lsr) =


0 −ωLasqm

ωLasdm 0

0 0


(B.23)

Rss =


rs 0 0

0 rs 0

0 0 rs


(B.24)

Rrr =


rsd 0

0 rsq

 (B.25)
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Substituting Eqns. (B.15), (B.16), (B.17), (B.22), (B.23), (B.24), and (B.25) into Eqn. (B.21)

yields

vd

vq

v0

0

0



=



rs 0 0 0 0

0 rs 0 0 0

0 0 rs 0 0

0 0 0 rsd 0

0 0 0 0 rsq





id

iq

i0

isd

isq



+



0 −ωLqq 0 0 −ωLasqm

ωLdd 0 0 ωLasdm 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0





id

iq

i0

isd

isq



+



Ldd 0 0 Lasdm 0

0 Lqq 0 0 Lasqm

0 0 L00 0 0

3
2 Lasdm 0 0 Lsdsd 0

0 3
2 Lasqm 0 0 Lsqsq





i̇d

i̇q

i̇0

i̇sd

i̇sq



+



ed

eq

e0

0

0



(B.26)

Since

eq = ωλm (B.27)

Neglecting damper winding effects and the ”0” coordinate, the state space model of a permanent

magnet synchronous generator can be expressed as


i̇d

i̇q

 =


−

rs
Ldd

ω
Lqq

Ldd

−ω Ldd
Lqq
−

rs
Lqq



id

iq

 +


1

Ldd
0 0

0 1
Lqq
− ω

Lqq




vd

vq

λm


(B.28)
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