
 
 

 

 

 

 

ABSTRACT 

A TEMPORAL AND ECOLOGICAL ANALYSIS OF THE HUNTINGTON BEACH 

WETLANDS THROUGH AN UNMANNED AERIAL SYSTEM REMOTE SENSING 

PERSPECTIVE 

By 

Talha Rafiq 

August 2015 

 

 Wetland monitoring and preservation efforts have the potential to be enhanced 

with advanced remote sensing acquisition and digital image analysis approaches.  

Progress in the development and utilization of Unmanned Aerial Systems (UAS) and 

Unmanned Aerial Vehicles (UAV) as remote sensing platforms has offered significant 

spatial and temporal advantages over traditional aerial and orbital remote sensing 

platforms.  Photogrammetric approaches to generate high spatial resolution orthophotos 

of UAV acquired imagery along with the UAV’s low-cost and temporally flexible 

characteristics are explored.  A comparative analysis of different spectral based land 

cover maps derived from imagery captured using UAV, satellite, and airplane platforms 

provide an assessment of the Huntington Beach Wetlands.  This research presents a UAS 

remote sensing methodology encompassing data collection, image processing, and 

analysis in constructing spectral based land cover maps to augment the efforts of the 

Huntington Beach Wetlands Conservancy by assessing ecological and temporal changes 

at the Huntington Beach Wetlands.  
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CHAPTER 1 

 

INTRODUCTION 

 

Aerial mapping has a valuable ability to offer a unique perspective of the Earth’s 

surface.  This capability has been demonstrated and has exponentially increased for well 

over a century due to the continued development of platforms in conjunction with the 

increasing sophistication of cameras, imaging devices, and spectral sensors.  The 

developments in Unmanned Aerial Vehicles (UAV) as remote sensing platforms has 

transformed the landscape of aerial mapping.  While there have been numerous studies 

demonstrating UAV remote sensing applicability, this study documents their capability in 

studies involving wetland land cover analysis.  This research documents a comprehensive 

breakdown of the acquisition and analysis strategies needed to utilize UAV aerial 

imagery for the purposes of assessment of a coastal wetland in Huntington Beach, 

California.  The term Unmanned Aerial Vehicle (UAV) refers to the DJI Phantom 

Quadcopter which is the actual vehicle that was used to acquire aerial imagery.  In this 

research, the Unmanned Aerial System (UAS) refers to the entire structure relating to 

UAV aerial image acquisition.  This structure includes the software that was used to 

flight plan, the DJI Phantom Quadcopter, and the acquisition, processing, and analysis of 

the UAV aerial imagery.   

Wetlands are complex ecosystems that produce, protect and preserve life.  Their 

importance stems from the diversity of functions they serve for the environment 

especially for the countless species of plants and animals that inhabit them.  Wetlands are 
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a type of ecosystem that comprise both land and aquatic systems and make up about 6 

percent of the planet’s total land surface (Shuyt and Brander 1997; Peterson et al. 2003).  

They provide environmental, socio-cultural, and economic value.  They are home to an 

abundance of species such as birds, mammals, reptiles, amphibians, and fish (Shuyt and 

Brander 1997; Toronto and Region Conservation Authority 2011).  They also hold high 

religious, historical, and aesthetical value for communities and provide populations with 

tremendous economic worth for consumption of goods such as water for drinking, fish 

for food, trees for fuel, or wood for building material (Shuyt and Brander 1997).  There 

are three main types of wetlands: marine/coastal wetlands, inland wetlands, and man-

made wetlands.  This research focuses on a marine/coastal wetland system.  Often times, 

coastal wetlands are thought to be one of the last remaining ecosystems to preserve 

littoral biodiversity and should be monitored and preserved using the most efficient 

technology available (Coiacetto 1996; Godet and Thomas 2013). The coastal wetland that 

is the focus of this research is the Huntington Beach Wetlands located in Southern 

California (Figure 1).  The Huntington Beach Wetland is a 57 ha coastal sanctuary 

located in Orange County.  It is situated between the Pacific Coast Highway on one side 

and oil fields and residential housing on the other (Woodfield and Merkel 2011; 

Whitcraft, Allen, and Lowe 2013).  This research will focus on land cover distribution 

change at the Huntington Beach Wetlands using UAV acquired imagery and image 

analysis approaches.   

Over the past few decades, anthropogenic effects resulted in an increasingly 

degraded wetland environment and downsized the once 3000 acre wetland area by 94 

percent in 2007 (Huntington Beach Wetland Conservancy 2013).  Development of 
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adjacent oil fields, the construction of the Pacific Coast Highway and nearby roadways, 

along with land modification of wetland into residential and commercial landscapes 

produced toxins and pollution that have destroyed habitats and cut off crucial tidal flows 

in the area.  Without these tidal flows, the wetlands slowly dried up and in the process, 

damaged the vegetation and animals that relied on it for sustenance (Woodfield and 

Merkel 2011; Whitcraft, Allen, and Lowe 2013).  Essentially, these anthropogenic factors 

reduced vegetation in this area and dramatically reduced wildlife populations.  Because 

the Huntington Beach Wetlands incorporate all the basic characteristics of a traditional 

wetland ecosystem, it is an important environmental resource and a significant subject for 

monitoring and preservation analysis.   

 

FIGURE 1. Huntington Beach Wetlands located in Orange County, California.  
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Founded in 1985, the Huntington Beach Wetlands Conservancy (HBWC) is a 

non-profit community based organization that owns and manages the Huntington Beach 

Wetlands (HBWC 2013).  They began their construction and restoration of the wetlands 

in 1993 to revitalize its biological production.  Research and analysis of the restoration 

began in 2007 by Merkel and Associates, Inc. (M&A) in conjunction with HBWC and 

California State University, Long Beach’s (CSULB) Biology department.  With an 

overall focus on restoration and preservation, one major concern of HBWC and 

CSULB’s Biology department is to monitor vegetation dynamics in the area on an annual 

basis.  (Woodfield and Merkel 2011; Whitcraft, Allen, and Lowe 2013).  Since 2007, 

preservation tasks have focused on monitoring land cover changes in annual vegetation 

abundance through comparison of aerial imagery captured annually.  HBWC’s physical 

restoration phase of the wetlands ended in 2009.  The work these organizations have done 

in assessing the preservation of wildlife in Brookhurst Marsh since then, is built upon in 

this research.  

The purpose of this thesis is to assist the preservation task by providing a baseline 

aerial assessment of Brookhurst Marsh in the Huntington Beach Wetlands.  The UAV 

data collection methods established for this research can be used to ensure repeatability in 

subsequent surveys for longitudinal assessment.  This study provides a step-by-step 

method for updating the annual vegetation monitoring of the Huntington Beach Wetlands 

through the capture and spectral land cover analysis of aerial imagery in the hopes that 

this research and methodology can be utilized by other land managers and agencies to 

enhance and ease their research and monitoring efforts.  By utilizing UAV aerial 

imagery, this research attempts to build a foundation for rapid temporally dynamic 
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vegetation community mapping thereby reducing the time and expense needed for 

conventional aerial photographic acquisition and extensive ground surveys.  The goal of 

this thesis is to provide a viable, efficient, and flexible alternative to current airplane and 

satellite imagery in the form of UAV acquired aerial imagery using both per pixel 

spectral mapping and photogrammetric approaches to develop and compare land cover 

maps, in the hopes of aiding the HBWC in assessing the Huntington Beach Wetlands.  
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CHAPTER 2 

 

LITERATURE REVIEW 

This chapter provides a comprehensive review of approaches utilized in past 

scholarly research that cover the foundations of remote sensing, land cover mapping, and 

temporal vegetation analysis.  Additionally, it covers the fundamentals of 

photogrammetry and how they relate to digital model construction.  These approaches 

helped assess the land cover at Huntington Beach Wetlands, both temporally and 

ecologically.  The development of Unmanned Aerial vehicles (UAV), their transition into 

Unmanned Aerial Systems (UAS) and overview of research conducted using UAV and 

UAS for data collection are provided.  A variety of previous studies have demonstrated 

the applicability of different remote sensing platforms for the purposes of vegetation 

analysis.  The framework, objective, and significance of this research is discussed in 

context of the literature reviewed.   

Remote Sensing and Photogrammetry 

 The developments of both remote sensing and photogrammetry go hand-in-hand.  

The actual practice of remote sensing first embodied in aerial photography was not 

possible until the development of the photograph and the camera in the nineteenth 

century (Watts, Ambrosia, and Hinkley 2012; Théau 2012; Wolf, DeWitt, and Wilkinson 

2014).  In 1859, Gaspard Félix Tournachon, became the first person to take aerial 

photographs using a hot-air-balloon (Watts, Ambrosia, and Hinkley 2012; Théau 2012; 

Wolf, DeWitt, and Wilkinson 2014).  His development of aerial photography paved the 
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way for modern day aerial photography and remote sensing.  Improvements in cameras 

and film helped propel the use of photography for mapping.  In 1859, Colonel Laussedat 

experimented using photogrammetry for topographic mapping but limitations with aerial 

photography restricted his work to using terrestrial photographs (Wolf, DeWitt, and 

Wilkinson 2014).  By 1886, Captain Eduard Deville introduced topographic mapping 

through photogrammetry to North America and in 1894 he mapped the border between 

Canada and Alaska (Wolf, DeWitt, and Wilkinson 2014).  The invention of the airplane 

in 1903 by the Wright brothers paved the way for modern-day aerial photography.  Ten 

years later aerial photography was captured using an airplane.  This platform offered 

more sophisticated approaches to both remote sensing and photogrammetry for the 

purposes of mapping the surface.  Eventually further technological advances in both 

aerial vehicles, cameras and sensors along with computer and software offered extensive 

aerial photographic capabilities.  These capabilities are illustrated in this research through 

the utilization of aerial photography for the construction of spectral-based land cover 

maps for wetland monitoring.  

Remote Sensing 

 Modern day remote sensing is defined as collecting or sensing radiation that is 

naturally emitted or reflected by the earth’s surface, from the atmosphere, or by sensing 

signals transmitted from a device and reflected back to it.  Essentially, this is done at a 

distance to interpret information about the environment and the surface of the earth 

(Pidwirny 2006; Wolf, DeWitt, and Wilkinson 2014).  Aerial remote sensing offers 

researchers and scientists the capability to observe something on the surface without ever 

to have come in physical contact with the object in question.  Deriving and classifying 
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spectral information from aerial photography for the purposes of land cover mapping is 

the remote sensing methodology used in this research.   

 Objects can be remotely sensed in two forms:  actively and passively.  Active 

remote sensing refers to a sensor that provides its own source of electromagnetic 

radiation to illuminate the object in question and then captures its reflectance (Wolf, 

DeWitt, and Wilkinson 2014).  Passive sensors do not have their own source of 

electromagnetic radiation, rather they measure the amount of electromagnetic radiation 

that is reflected or emitted by an object (Wolf, DeWitt, and Wilkinson 2014).  Remote 

sensing platforms enable sensors to reach certain locations to capture a phenomena.  The 

three types of platforms include terrestrial, aerial, and orbital.  Terrestrial platforms refer 

to ground-based platforms which include tripods or a ground-based vehicle such as a 

truck with a sensor attached to it.  Aerial platforms hover and fly across within Earth’s 

atmosphere.  These include kites, balloons, and airplanes (Watts, Ambrosia, and Hinkley  

2012).  Orbital platforms are suspended in orbit around the Earth and they include 

satellites like the Landsat 8 or something more sophisticated like the International Space 

Station (ISS) (Peterson et al. 2003).  The focus of this study primarily touches upon aerial 

and orbital platforms, specifically Unmanned Aerial Vehicles (UAV), airplanes, and 

satellites.   

 Historically, remote sensing was critical in gathering reconnaissance of enemy 

troop movement in World War I (Rango et al. 2009; Théau 2012; Wolf, DeWitt, and 

Wilkinson 2014).  These aerial photographs were taken using an airplane as the primary 

platform.  World War II brought with it the induction of color photography, increasing 

the amount of information that could be gathered about the surface (Rango et al. 2009; 
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Théau 2012; Wolf, DeWitt, and Wilkinson 2014).  Sensors and cameras attached to 

airplanes gave an unprecedented amount of surface information at the time.  The ability 

to systematically capture aerial photography through the use of an airplane offered 

greater spatial coverage than was possible with kite or balloon aerial photography.  

 The next phase in remote sensing took place with the revolution of satellite 

technology.  The first artificial satellite was successfully launched and put into orbit by 

the Soviet Union in 1957 (Watts, Ambrosia, and Hinkley  2012; Wolf, DeWitt, and 

Wilkinson 2014).  The fervor generated from this carried over to the United States and 

other countries that wanted to install their own satellites for a wide variety of 

applications.  The development and advancement of satellite technology paved the way 

for modern-day digital remote sensing (Théau 2012).  For this purpose, satellites are a 

tremendously valuable platform.  They can provide fairly high resolution images of 

nearly any point on Earth.  With respect to geography and geospatial science, their most 

significant characteristic lies in their ability to provide synoptic coverage in a single 

image (Peterson et al. 2003).  This characteristic is very important for researchers dealing 

with continental to global phenomenon in applications such as climatology or 

oceanography (Peterson et al. 2003).  While there are many types of satellites currently in 

orbit, this discussion only refers to a handful of those satellites responsible for Earth and 

environmental monitoring.  Famous examples of earth monitoring satellites and sensors 

that are currently in orbit include Landsat, MODIS, MERIS, and NEMO (Peterson et al. 

2003).  
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Photogrammetry 

 The concept of photogrammetry contains some relevance to this research as it 

relates to data collection using UAVs and data processing in the form of constructing 

digital models using advanced image-based software.  “Photogrammetry has been 

defined by the American Society for Photogrammetry and Remote Sensing [ASPRS] as 

the art, science, and technology of obtaining reliable information about physical objects 

and the environment through processes of recording, measuring, and interpreting 

photographic images and patterns of recorded radiant electromagnetic energy and other 

phenomena” (Wolf, DeWitt, and Wilkinson 2014, 12).  The transition from analog to 

digital photogrammetry redefined the way in which data is collected (Hassani and 

Carswell 1992; Taylor and Neely 1994).  Digital, as it relates to photogrammetry, refers 

to the use of storing data in computer memory, which in this case would be pixel 

information that expresses the exposure on an electronic sensing device (Hassani and 

Carswell 1992; Wolf, DeWitt, and Wilkinson 2014).  This type of photogrammetry relies 

on digital cameras and sensors that can manipulate and capture images using a computer.  

This research uses digital photogrammetry for its data collection and data processing 

through the utilization of Agisoft PhotoScan for digital model and orthophoto 

construction using sequential aerial images gathered from a UAV.   

 There are two types of areas within photogrammetry: metric photogrammetry and 

interpretative photogrammetry (Wolf, DeWitt, and Wilkinson 2014).  Metric 

photogrammetry involves making exact measurements such as size, distance, angles, 

areas, and shapes from photos to determine the relative location of points (Wolf, DeWitt, 

and Wilkinson 2014).  Metric photogrammetric applications includes the development of 
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planimetric and topographic maps derived from photographs (Wolf, DeWitt, and 

Wilkinson 2014).  Interpretative photogrammetry deals with recognizing and identifying 

objects and judging their significance through a systematic analysis and it puts an 

emphasis on image interpretation and remote sensing (Wolf, DeWitt, and Wilkinson 

2014).  For the purposes of this research, metric photogrammetric approaches are used in 

the algorithms of the image based Structure-from-Motion (SfM) software Agisoft 

PhotoScan to create a digital model of Brookhurst Marsh.  This software uses angles, 

distances, areas, and shapes across sequences of images to construct digital models.  

Photogrammetry is especially important when it comes to acquiring the UAV aerial 

imagery.  It requires images to be captured at specific angles, overlaps, and intervals to 

properly create these high quality models (Rango et al. 2009; Eisenbeiss and Sauerbier 

2011; Wolf, DeWitt, and Wilkinson 2014).  In this study, photogrammetric workflows 

are used to create two-dimensional orthophotos for the purposes of spectral-based land 

cover mapping.  An in depth look of these photogrammetric workflows used to develop a 

digital model of Brookhurst Marsh are provided in Phase III of the methodology.  

 Developments in photogrammetry and remote sensing have shared a similar path 

to get to where they are presently in the world of physical geography and geospatial 

science (Wolf, DeWitt, and Wilkinson 2014).  Airplanes and satellites have traditionally 

been the main platforms for remote sensing for over a century.  While their capabilities 

are still valuable, this study centers on an aerial platform that has been making significant 

advances in the remote sensing world during the past decade.  Development in aerospace 

technologies have expanded the capability of Unmanned Aerial Vehicles (UAV) to 

function as remote sensing platforms (Rango et al. 2009; Eisenbeiss and Sauerbier 2011; 
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D’Oleire-Oltmanns et al. 2012; Kelcey and Lucieer 2012; Watts, Ambrosia, and Hinkley 

2012).    

Unmanned Aerial Vehicles (UAV) 

The development of the aircraft coincides with the development of Unmanned 

Aerial Vehicles (UAV) also known as Unmanned Aerial Systems (UAS) or Remotely 

Piloted Vehicle (RPV) (Eisenbeiss and Sauerbier 2011; Watts, Ambrosia, and Hinkley 

2012).  UAV are aerial vehicles that do not have a human pilot onboard.  They are aerial 

platforms that are autonomous or remotely controlled by a ground operator.  An 

Unmanned Aerial System (UAS) encompasses the aircraft component, sensor payloads, 

and a ground control station.   

Beginning in the 1800s, bombs attached to unmanned balloons were dropped in 

Venice and the American Civil War (Watts, Ambrosia, and Hinkley 2012).  The modern 

UAV/UAS technology most people are familiar with, was introduced in the 1960s.  

Developed out of the necessity to protect pilots from potential physical harm, engineers 

began designing systems and architecture to enable control of these aerial platforms 

without ever having to set foot in them (Rango et al. 2009; Watts, Ambrosia, and Hinkley 

2012).  Initially, UAVs were strictly a military technology.  They were utilized for 

reconnaissance, patrol and enforcement, and armed countermeasures.  The first UAV to 

take photography for aerial reconnaissance was the Radioplane RP-71 in 1955 in the 

United States (Rango et al. 2009).  Modern UAV capabilities for civilian applications 

were produced from the advancement of military capabilities during the Vietnam War era 

(Rango et al. 2009; Watts, Ambrosia, and Hinkley 2012).  The most renowned of these is 
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the Predator drone.  Developed in the 1990s, the Predator drone was able to capture 30cm 

resolution imagery (Rango et al. 2009).   

UAVs are categorized into six classes based on their size, flight endurance, and 

capabilities.  These are Micro or Nano Air Vehicles (MAV) (NAV), Vertical Take-Off 

and Landing (VTOL), Low Altitude-Short Endurance (LASE), Low Altitude-Long 

Endurance (LALE), Medium Altitude-Long Endurance (MALE), and High Altitude-

Long Endurance (HALE) (Watts, Ambrosia, and Hinkley 2012).  The MAV or NAV type 

is utilized for this research.  The MAV is designed for short duration missions that 

operate under an altitude of around 1000 feet and have flight times shorter than 20 

minutes (Watts, Ambrosia, and Hinkley 2012).  The size limitations of these type of 

UAVs tend be to be favorable to deploying in the field for efficient field data gathering 

but have payload constraints (Kelcey and Lucieer 2012; Watts, Ambrosia, and Hinkley 

2012).  The flight mode is dependent on the type of UAV used.  As UAV flight 

automation increases, the cost of the UAV does as well (Peterson et al. 2003; Rango et al. 

2009; Kelcey and Lucieer 2012; Watts, Ambrosia, and Hinkley 2012).  For this research, 

the flight mode utilized is the manual flight mode.  This means that all degrees of 

freedom and motion are controlled by a human operator (Watts, Ambrosia, and Hinkley  

2012).  

With respect to remote sensing, UAV inclusion is relatively new (D'Oleire-

Oltmanns et al. 2012).  The spatial characteristic of UAVs makes them more viable for 

localized research (Peterson et al. 2003; Kelcey and Lucieer 2012).  Depending on their 

payload configurations, UAVs can offer high spatial resolution datasets that are tailored 

for researchers conducting studies over areas that are difficult to access otherwise 
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(Peterson et al. 2003; Rango et al. 2009; Eisenbeiss and Sauerbier 2011; D'Oleire-

Oltmanns et al. 2012; Kelcey and Lucieer 2012).  Repeatability and flexibility is 

increased using the UAV platform because of their ready-to-deploy capability.  The 

ability of UAVs to provide these valuable datasets comes at a minimal cost with respect 

to training and risk (Peterson et al. 2003).  Additionally, the UAV utilized for this study 

offers higher spatial resolution capability than airplane or satellites because it operates at 

altitudes much lower than orbital or standard airplane platforms.  Spatial resolution refers 

to the level of detail in an image which is based on the number of pixels in that image.  

This characteristic makes the utilization of UAV acquired imagery valuable and 

advantageous bearing in mind that payloads across all platforms are of consistent quality 

(Peterson et al. 2003; Rango et al. 2009; Eisenbeiss and Sauerbier 2011; Lin, Hyyppa, 

and Jaakkola 2011; Kelcey and Lucieer 2012; Chabot, Carignan, and Bird 2014).   

There are inconsistencies in aerial data collection using the UAV platform 

(Mitchell et al. 2012).  This accuracy is completely dependent upon the UAS that is 

utilized.  In order to achieve higher accuracy datasets, a UAS has to incorporate more 

sophisticated navigation systems, precise control mechanisms and higher quality payload 

configurations (Eisenbeiss and Sauerbier 2011; Watts, Ambrosia, and Hinkley 2012).  

Unfortunately the cost of the hardware can be prohibitive for independent researchers 

(Watts, Ambrosia, and Hinkley 2012).  Thus traditional UAS applications rely on 

consumer grade cameras and sensors and their accuracy is dependent on aerial trajectory, 

global positioning systems, and inertial measurement units.  These limits have been 

circumvented with the utilization of advanced computer visualization and tracking 
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software that provide a new level of image processing and manipulation even with access 

to less sophisticated UASs.   

A broad spectrum of environmental applications have been enhanced by the 

utilization of UAVs in conjunction with different image software sets.  These UAV 

remote sensing based applications are illustrated in the following section.  For the 

purposes of this study, the term “UAV” is used to describe the actual vehicle or platform 

while the term “UAS” refers to the complete end-to-end structure that includes the UAV, 

any flight planning or navigation software/hardware, the remote sensing payload or 

sensor, and the processing and analysis of UAV acquired products.   

Remote Sensing Applicability 

The use of UAV/UAS remote sensing platforms is relatively new.  UASs provide 

flexibility with respect to spatial and temporal resolution, reduce costs, and are relatively 

easy to deploy in the field, all of which are qualities that benefit researchers and increase 

feasibility of data collection (Peterson et al. 2003; Rango et al. 2009; Eisenbeiss and 

Sauerbier 2011; Lin, Hyyppa, and Jaakkola 2011; Kelcey and Lucieer 2012; Mitchell et 

al. 2012; Flener et al.  2013; Mancini et al.  2013; Chabot, Carignan, and Bird 2014).  The 

following overview illustrates the diversity of functions the UAV platform can provide in 

numerous fields of research.   

D’Oleire-Oltmanns et al. (2012) incorporated a fixed UAV platform called, Wing 

Sirius I, equipped with a Panasonic Lumix GF1 digital camera to study the volumetric 

change of alluvium in Souss in southern Morocco near the city of Taroudant, Souss-

Massa-Drâa (D’Oleire-Oltmanns et al. 2012).  The UAS they utilized was an 

autonomously piloted UAV that captured aerial imagery of the test site at elevations of 
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50-600m (D’Oleire-Oltmanns et al. 2012).  It was given preflight trajectories through the 

use of a flight program.  Additionally they collected ground control points to 

georeference and geometrically correct their datasets by placing markers along the study 

area that would be captured by the UAV when imaging the study site.  Using small-

format aerial photography (SFAP) and triangulation methods they were able to create 

orthoimages and develop three-dimensional digital terrain models of the area.  Using this 

information they were able to conduct GIS analysis and measure soil erosion by 

measuring volume change in the gully of the test site (D’Oleire-Oltmanns et al. 2012).  

D’Oleire-Oltmanns et al.’s research provides great insight into photogrammetry, 

specifically as it relates to capturing data and constructing orthophotos using both ground 

control points and georeferencing techniques.  Their methodology provides meaningful 

information for the construction of UAV orthophotos of Brookhurst Marsh which are 

used to develop spectral based land cover maps.  

One of the most common applications of UAV is in rangeland assessment, and it 

was one of the first civilian protocols to be established as soon as UAV development 

transferred from being strictly military (Rango et al. 2009).  Because rangeland 

monitoring requires high spatial resolution, usually better than 25cm, UAV platforms are 

best for the task (Rango et al. 2009).  In order to test out UAV capabilities in a rangeland 

environment, Rango et al. researched and bought the BAT-3 mini-UAV system which 

contains an onboard navigation unit.  A ground operator was manually piloting the UAV.  

Basically, they wanted to test an off-the-shelf system that was tailored for the needs of 

the U. S. Natural Resources Conservation Services and similar agencies, so that these 

agencies could see the benefits of utilizing UAV technology (Rango et al. 2009).  They 
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conducted the evaluation at the Jornada Experimental Range in southern New Mexico 

and Arizona (Rango et al. 2009).  Their assessment resulted in sub 5cm spatial resolution 

which easily allowed for the “detection of individual plants, vegetation type, bare soil, 

gaps between vegetation, and patterns over the landscape not previously possible with the 

normal remote sensing data” (Rango et al. 2009, Pg. 6).  With that they generated land 

cover maps of the rangeland through mosaicking and orthorectification of the UAV 

imagery.  Similar to other research, they noted that wind and thermals could potentially 

cause some instability in the UAV platform and that storage limitations can be an issue 

since UAVs could take thousands of high quality images on a single flight (Rango et al. 

2009).  The conclusions presented by Rango et al.  (2009) were taken into account and 

presented in detail in the methodology.   

Case study of UAV flight modes.  A detailed discourse on UAV flight modes and 

photogrammetric methods was developed by Eisenbeiss and Sauerbier (2011).  They 

analyzed different methods of UAV aerial flight modes.  These included the manual 

flight mode, the semi-automated/assisted system, and the autonomous flight mode 

(Eisenbeiss and Sauerbier 2011).  They looked at three different image acquisition 

modes:  manual, stop mode, and cruising mode (Eisenbeiss and Sauerbier 2011).  They 

accomplished this by conducting four case studies at ancient archaeological sites:  two 

Peruvian sites at Pinchango Alto and Pernil Alto, a Mayan site in Copa´n, Honduras and 

a Bhutanese site at Drapham Dzong (Eisenbeiss and Sauerbier 2011).   

At Pinchango Alto, they utilized a UAV helicopter equipped with a Canon D20 

still-video camera.  In this case, they used stop mode image acquisition with an assisted 

flight mode (Eisenbeiss and Sauerbier 2011).  They were able to derive digital surface 
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models and orthophotos of Pinchango Alto using the UAV acquired imagery along using 

the Leica Photogrammetry Suite (LPS) software package along with an in-house software 

set called BUN (Eisenbeiss and Sauerbier 2011).  In addition, they discussed image 

storage as being another consideration to be taken into account and that it will depend on 

the needs of the specific research (Eisenbeiss and Sauerbier 2011).  At Pernil Alto, they 

utilized the same methods and the same UAV helicopter except this one had an upgraded 

navigation unit and was equipped with a Nikon D2Xs 24mm lens camera unit (Eisenbeiss 

and Sauerbier 2011).  For this assessment they employed the assisted flight mode with a 

ground operator and used the manual image acquisition mode at two different altitudes of 

75m and 300m (Eisenbeiss and Sauerbier 2011).  They followed the same 

photogrammetric approaches as they did for the Pinchango Alto imagery to create digital 

surface models and orthophotos of Pernil Alto (Eisenbeiss and Sauerbier 2011).  They did 

not go into detail on specific workflows used within these software sets.  Their 

experience with capturing aerial imagery at Pinchango Alto helped them conclude that 

the size of the area flown for aerial acquisition has to be taken into consideration.  They 

recommended that flight lines should be extended to capture the entire object of study.  

They also mentioned that ground control points are necessary for camera calibration 

purposes (Eisenbeiss and Sauerbier 2011).  At Pernil Alto, they noted that people had to 

be moved out of the test site during the flight so that the acquired aerial imagery would 

not be affected.  Thier findings about planning and pre-flight considerations are all 

presented in detail in Phase I of this research.  The photogrammetric ideas presented in 

this part of the study were beneficial in framing Phase III of the methodology.  
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Specifically, their utilization of LPS and BUN in developing digital models and 

orthophotos is noted in this research for the construction of land cover maps.  

At Copa’n, they, again, used the same UAV helicopter but this time they used a 

35mm lens along with the 24mm lens for their digital camera unit (Eisenbeiss and 

Sauerbier 2011).  They also noted an upgraded navigation unit was used in the UAV 

helicopter.  For this case study they used an autonomous flight mode and employed the 

cruising image acquisition mode (Eisenbeiss and Sauerbier 2011).  One unique feature to 

note was that they used digital maps for their preflight planning and they pointed out that 

wind influences had negatively affected the imaging results.  Essentially they stated that 

weather is an important consideration in flight planning when operating a UAV 

(Eisenbeiss and Sauerbier 2011).  These two considerations are important and are 

detailed in Phase I of the next methodology.   

Lastly, their final application site took them to the isolated area of Drapham 

Dzong, in Bhutan, where they utilized a UAV quadcopter for data collection.  They had 

chosen it because of its lightweight characteristic which enabled it to reach higher 

altitudes with less energy (Eisenbeiss and Sauerbier 2011).  It was also easy to transport 

to and from the test site.  The one downside to their choice was that this UAV was more 

susceptible to wind turbulence.  Just like the other UAV, it contained an on board 

navigation unit, operated under the assisted flight mode and utilized a cruising image 

acquisition mode.  They noted that the tailwind affects image acquisition more than the 

downwind (Eisenbeiss and Sauerbier 2011).  The digital surface model product they 

produced using LPS contained a 5cm spatial resolution.  Using that model they were able 

to generate orthophotos, a three-dimensional textured model, as well as a map of the 
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archaeological site.  Their conclusions about Quadcopter performance in moderate wind 

situations at this site informed Phase I of this research.  Eisenbeiss and Sauerbier’s (2011) 

workflows for collecting the aerial imagery and generating surface models are important 

for the methodology of this research.   

In summary, Eisenbeiss and Sauerbier (2011) concluded that the UAS affects the 

photogrammetric analysis.  Manually controlled UAVs are not as stable as assisted or 

autonomously controlled UAVs (Eisenbeiss and Sauerbier 2011).  The stop mode image 

acquisition reduces overall flight time, but is not as stable in maintaining flight direction 

as the other image acquisition methods.  Additionally, the UAVs they utilized were 

successfully tested under extreme weather conditions in their analysis (Eisenbeiss and 

Sauerbier 2011).  The increased spatial resolution and accuracy of the UAV 

photogrammetric derived products and the ease of accessing isolated archaeological sites 

make the UAV a much more viable platform (Eisenbeiss and Sauerbier 2011).  Lastly, 

the low cost to purchase and operate such platforms should be very attractive for 

researchers looking for a more customizable data set.  The trend for UAV platforms is 

shifting towards multi-rotor systems because of their stability (Eisenbeiss and Sauerbier 

2011).  The ideas presented in this study related to pre-flight planning, UAV operation, 

and photogrammetry contribute significantly to this research.   

UAV payload and deployment.  The important feature in all UAV are their 

payload configurations.  In remote sensing, higher spectral resolution offers a more 

accurate representation of an object’s spectral response pattern.  Spectral resolution refers 

to the ability of a sensor in a payload to distinguish fine wavelength intervals (Wolf, 

DeWitt, and Wilkinson 2014).  The payload is a critical element that is related to the type 
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of data that can be collected (Watts, Ambrosia, and Hinkley  2012; Chabot, Carignan, and 

Bird  2014).  Kelcey and Lucieer (2012) conducted a study where they tested low-cost 

consumer grade multispectral sensors aboard a UAV platform.  They provided an in 

depth analysis on which spectral filters to use and for which purpose.  They conducted 

this study for vegetation monitoring in order to illustrate how data quality can be 

improved through the utilization of different sensors by and analyzing their characteristic 

(Kelcey and Lucieer 2012).  They employed an octocopter UAV platform and installed a 

miniature camera array that housed six band multispectral sensors from Tetracam Inc.  

and gathered UAV imagery of salt marsh communities in Ralphs Bay, Australia (Kelcey 

and Lucieer 2012).  In order to gather high quality vegetation reflectance data, they made 

the necessary sensor corrections and radiometric calibrations.  Their analysis went into 

detail about which various sensor calibrations worked best for their purposes of 

vegetation monitoring in the area.  Essentially, their reasons for using UAV as opposed to 

another platform included the low preparation time and the ability of UAVs to serve as a 

scale gap between satellite and full scale aerial photography, along with field surveys 

(Kelcey and Lucieer 2012).  The discourse about spectral vegetation monitoring and the 

use of filters for aerial imagery was very important in shaping the data collection and data 

analysis especially as it related to the spectral-based land cover mapping methodologies 

for this research.  

The one advantage UAV remote sensing provides is capturing features at a higher 

spatial resolution than normal aerial remote sensing methods.  There are a lot of studies 

that discuss the types of sensor payloads UAVs can carry.  Lin, Hyyppa, and Jaakkola  

(2011) provide a great example of utilizing UAV remote sensing for high spatial 



22 
 

resolution mapping by outfitting it with a Light Detection and Ranging (LIDAR) system.  

In their study, they equipped a LIDAR system called Sensei onto their UAV Alight T-

Rex 600 E copter.  This UAV had a payload of 7kg, it was low cost, was able to supply 

local reference data with high spatial resolution, and it could collect high temporal 

resolution data efficiently.  Its applicability was found to be very useful in dangerous 

situations such as measuring floods.  After obtaining the necessary data using the UAV 

they utilized point cloud post processing methods to develop various tree models of the 

study area in Finland.  Similar methods are showcased in the methodology of this 

research.  Their findings indicated that high spatial resolution mapping by mini UAV 

LIDAR could definitely resolve the underestimation of tree heights.  Along with that they 

developed a multi-scaled rasterization schematic which was proposed with their canopy 

surface model.  They concluded that UAV LIDAR could essentially produce more 

accurate tree models, more integral pole morphologies, more applicable information for 

road extraction, and more definitive variables for digital terrain model refinement.  Their 

use of a LIDAR payload offers a great example of the potential that UAV remote sensing 

has to offer for mapping and modeling the surface.  This study shows UAV acquired 

aerial image applicability for high resolution spectral based land cover mapping.   

In general, surfaces on the planet differ based on the reflective and emissive 

characteristics of the material that comprises them.  UAV offers researchers the unique 

capability to capture these surfaces at a higher spatial resolution than other aerial and 

orbital platforms while offering a greater degree of flexibility (Rango et al. 2009; 

Eisenbeiss and Sauerbier 2011; Lin et al. 2011; Kelcey and Lucieer 2012; Chabot, 

Carignan, and Bird 2014).  An example of an area of environmental spatial analysis that 
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has been challenging in the past has been modeling river bed terrain.  Accurate terrain 

models are crucial for hydraulic modeling applications and fluvial geomorphology, but 

gathering spatial datasets can be difficult using conventional methods.  Flener et al.  

(2013) proposed a new methodology to create seamless topographic models in river 

environments by combining both boat-based terrestrial laser surveys (TLS) and UAV 

aerial imagery to create optical bathymetric models of the river bed and topographic 

models of the floodplains.  They attempted to overcome the major hurdle in mapping 

river environments, which lies in creating accurate and continuous representation of the 

submerged river bed (Flener et al. 2013).  Traditional methods have included using sonar 

systems, but with river beds being so shallow, that method is virtually useless because of 

the standard 1m depth requirement.  As a result, airborne remote sensing allows the 

mapping of larger river areas contiguously without any minimum depth requirements.  

They performed their study at a meander bend of the River Pulmanki in Finnish Lapland.  

Employing two TLS’s and the UAV aerial imagery, they generated digital terrain models.  

The UAV they used was a 700-800 MHz class radio controlled helicopter that was 

outfitted with a 12. 3 megapixel Nikon D5000 camera and a 16. 2 megapixel 

NikonD5100 camera (Flener et al. 2013).  For this study the UAV was manually 

controlled.  The river bed mosaics produced by the UAV imagery contained elevation 

accuracies under 10cm (Flener et al. 2013).  Their conclusion rated the TLS as being the 

more accurate technology for their purposes but was extremely time consuming.  Flener 

et al.  (2013) recommended that combining the TLS with a UAV is the best option in 

terms of accuracy, but a UAV-only schema is sufficient for basic modeling purposes.  
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The methodology and conclusions discussed by Flener et al. provided valuable 

information for the methodology and influence the findings of this research.   

Advanced UAV applications.  UAV remote sensing is not limited to two-

dimensional modeling.  The most state-of-the-art UAV application is taking place in 

three-dimensional digital modeling.  As geovisualizations are increasing in complexity, 

the need for accurate spatial terrain data is increasing as well (D’Oleire-Oltmanns et al. 

2012 and Mancini et al. 2013).  Thus high resolution imagery taken by UAV is in 

increasing demand.  Three-dimensional modeling offers the capability to see the 

topography of the surface.  Mancini et al. discuss this notion by referring to one area of 

photogrammetry called Structure-from-Motion (SfM), which is a three-dimensional 

digital model generation method (Mancini et al. 2013).  Specifically, they wanted to 

develop digital surface models using a high spatial resolution and vertically accurate 

dataset for coastal geomorphology.  To accomplish this, they used a vertical-takeoff-and-

landing (VTOL) hexacopter designed by SAL Engineering which was equipped with a 

Canon EOS mode 550D digital camera to capture high quality aerial images of the fore-

dune located in Ravenna, Italy, on the north Adriatic coast (Mancini et al. 2013).  They 

conducted an accuracy assessment through TLS ground referenced points and they 

collected one image per second with a flight time of 7 minutes images at 40m altitude 

(Mancini et al. 2013).  They used Agisoft PhotoScan to perform the SfM algorithm on the 

550 images collected to generate a spatial model of the beach-dune system (Mancini et al. 

2013).  Their results showed an accuracy comparison between the TLS and UAV derived 

data to be extremely similar and under 5cm accuracy, with UAV just edging out TLS in 

being slightly more accurate and they noted that their TLS surveys took much longer to 
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initiate than the 7 minutes it took the UAV to capture the same data (Mancini et al. 2013).  

The photogrammetric ideas presented by Mancini et al. were used in this research.  

Overall, their results provides a noteworthy example of the spatial and temporal 

efficiency of the UAV remote sensing platform for the development of high resolution 

digital modeling.  It also shows the power the UAV platform can offer in developing 

sophisticated visualizations.  Mancini et al.’s (2013) PhotoScan workflow for the 

construction of digital terrain models was used as part of Phase III of this research 

methodology.   

The different studies in this section present an overview of the progress that has 

taken place in the field of UAV remote sensing.  The UAV platform provides researchers 

capabilities that have demonstrated to exceed other platforms when it comes to 

flexibility, costs, accuracy, and time.  The increasing sophistication of both UAV and 

payload sensors continue to offer significant advantages to collecting accurate data.  Data 

collection is an integral part of any research, and UAV remote sensing is easing the way 

for researchers towards achieving their goals.   

Vegetation Land Cover Analysis 

 This research is focused on a temporal and ecological assessment of Brookhurst 

Marsh at the Huntington Beach Wetlands.  Time is a critical element which assesses the 

degree to which a certain phenomenon has changed or not changed.  Time in this instance 

illustrates how vegetation distribution at the Huntington Beach Wetlands has altered over 

the last few years.  Ecologically speaking, vegetation is analyzed by its spatial 

distribution across the study area.  Consequently, one of the main foundations of all the 

methods used in this study is vegetation land cover analysis.  The purpose of this land 
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cover analysis is to attempt to narrow the gap between UAV aerial image collection and 

limiting ground surveys for land cover based vegetation community mapping.  This 

section details the different analytical techniques for developing spectral based land cover 

maps that were successfully utilized in other studies and are implemented in this research.  

 The inception of satellite remote sensing was revolutionized with the launch of 

the first Landsat satellite.  This offered researchers the capability to periodically monitor 

phenomenon at a sub-continental scale.  Vittek et al. (2014) present a land cover change 

assessment of West Africa between 1975 and 1990.  Specifically they utilized Landsat 

data to track changes in forest characteristics including tree cover, tree cover mosaic, 

wooded land, and other vegetation cover to observe the rate at which deforestation was 

occurring (Vittek et al. 2014).  Because this research relies on spectrally analyzing and 

classifying satellite remote sensing, their breakdown of satellite image analysis is very 

important.  Their image sources were acquired from the Landsat multi-spectral scanner 

(MSS), between 1972 and 1980.  The multispectral sensor on-board Landsat 1 and 2 

satellites acquired images through four spectral bands with a spatial resolution of 80 

meters.  For the 1990 reference year, Landsat Thematic Mapper images acquired by 

Landsat 4 and 5 satellites between 1985 and 1995 were used.  The Thematic Mapper 

images were acquired in six spectral bands with a spatial resolution of 30 meters.  With 

the necessary data acquired, they needed to process it before using it for any type of 

analysis.  They performed a dedicated image selection process to utilize only the highest 

quality images for their analysis.  Continuing with their processing tasks, they had to co-

register and radiometrically calibrate the images.  For these tasks they used the 1990 

image as their reference image and georeferenced the 1975 image in accordance with the 
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1990 image for accuracy.  Their image processing workflow is replicated for all datasets 

in this research and is detailed in Phase III of the methodology.     

 For their data analysis, they used eCognition, a popular object based image 

analysis (OBIA) software package to perform their image analysis.  Within eCognition 

they used the image segmentation tool to group pixels based on spectral similarity and 

spatial adjacency and they performed a multi-date segmentation by stacking the two 

individual sets of data (Vittek et al. 2014).  Finally, they used a supervised classification 

with a spectral library and performed a change detection analysis.  They delineated 

classes of “changed” and “unchanged” based on the Euclidean distance from red, near-

infrared, and shortwave-infrared bands (Vittek et al. 2014).  With their data they were 

able to derive statistics to quantify the amount of change in vegetation cover that took 

place in Western Africa between 1975 and 1990.  While this research does not utilize 

eCognition, Vittek et al.’s (2014) work developing supervised classifications using 

spectral based classes is used in Phase IV of the methodology.  Specifically, land cover 

maps using airplane, satellite, and UAV imagery are developed through the construction 

of spectral-based classes.   

 Ali and Pelkey (2013) undertook a study to determine vegetation cover change 

from invasive herbivores on the Andaman Islands located in the Indian Ocean.  They 

calculated two different types of vegetation indices from two different satellite datasets 

for their analysis.  They utilized the 1986-1995 from Advanced Very High Resolution 

Radiometer as well as 2000-2005 imagery from the Moderate-resolution Imaging 

Spectroradiometer (MODIS) for their research.  (Ali and Pelkey 2013; NOAA 2015) 

They first mosaicked the AVHRR dataset that contained cloud-free Normalized 
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Difference Vegetation Index (NDVI) images.  These images were further processed to 

reduce interference through bands 1 and 2 from the dataset (Ali and Pelkey 2013).  They 

obtained NDVI composite imagery which was derived from MODIS.  The resulting 

NDVI images from both sensors were used to conduct an analysis across four sites on the 

islands.  They were able to identify vegetation that was affected by anthropogenic and 

natural effects.  Their work with using temporally different NDVI images is very similar 

to the analysis of this research especially as it relates to utilizing specific spectral bands 

within the UAV and satellite imagery to perform the NDVI calculation.  Ali and Pelkey’s 

(2013) methods helped shape the data processing and data analysis portion of this 

research.   

Literature Assessment and Research Goals 

This chapter has covered the fundamentals of remote sensing, photogrammetry, 

the UAV platform, and temporal vegetation land cover analysis.  Specifically, it has 

illustrated the photogrammetric approaches that were used to develop and process the 

UAV and airplane imagery, shown the applicability of UAV for remote sensing, and 

presented methodologies for vegetation land cover analysis using both satellite and UAV 

platforms.  While UAV based aerial photography has been well documented, this study 

presents it as a better option over both satellite and airplane platforms.  The premise 

established in this study is that the UAV platform is more feasible and flexible in regards 

to spatial and temporal remote sensing analysis.     

The literature presented also shows that UAV remote sensing in Southern 

California has been limited, especially for wetland restoration efforts.  This is due in part 

to the fact that federal policy is currently being developed in the United States to 
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incorporate UAV in the realm of commercial and academic research (Watts, Ambrosia, 

and Hinkley 2012, FAA 2015).  This study is fashioned around delivering a land cover 

analysis and a comparative framework towards the viability of UAV remote sensing for 

field work.  It provides a detailed data collection, processing, and analysis methodology 

that can be implemented by other conservancies.  This research also provides the 

potential of using UAV aerial images for periodic change detection analysis.   

Traditionally, vegetation land cover analysis especially as it relates to wetland 

monitoring at the Huntington Beach Wetlands, requires extensive land surveys involving 

ground-based sampling transects (Whitcraft, Allen, and Lowe 2013).  These ground-

based methodologies often interfere with local wildlife, are extremely time consuming 

especially when accurate aerial data is not available for evaluation, and can be costly for 

researchers (TRCA 2011).  This study proposes a viable and cost-effective technique for 

the assessment of wetland vegetation with minimal potential impact to wildlife.  While 

currently, no method exists to map vegetation communities and species solely from UAV 

imagery without any ground-based operations, this research provides a way to close that 

gap by illustrating its viability and accuracy in mapping vegetation land cover.  This 

concrete research methodology can potentially be implemented by land managers.  

Justification and preference of the UAV platform is demonstrated through the 

development of spectral-based land cover maps, which are compared and evaluated to 

land cover maps derived from airplane and satellite based imagery.  Ultimately this 

research augments the assessment conducted by Merkel & Associates (2011) and 

California State University, Long Beach Biology Department’s Dr. Christine Whitcraft 
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(2013) by providing a unique research methodology that can potentially be implemented 

to update their 2014-2015 ecological assessment of the Huntington Beach Wetlands.   
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CHAPTER 3 

 

METHODOLOGY 

The goal of this research is to document a UAV-based data collection approach 

that can be repeated by conservation managers for longitudinal assessment of the 

Brookhurst Marsh wetland in Huntington Beach, CA.  The approach developed can be 

implemented by conservancy personnel with minimal training.  Data collection methods 

serve as the foundation of any research and operational monitoring program.  This 

chapter outlines the methods used to conduct this research and form the basis for a 

monitoring workflow.  The workflow is separated into four sections: Phase I: Planning 

and Training, Phase II: Data Collection, Phase III: Data Processing, and Phase IV: Data 

Analysis.  These sections define the study area and present the procedures that went into 

the project preparation.  Additionally, they outline the hardware and equipment used to 

gather the data and detail the software and tools used to process and analyze those data.   

Phase I: Planning and Training 

Preparation is the first step to any field data collection methodology.  This section 

is organized into three parts: Site Selection, Pre-Flight Considerations, and Equipment 

and Payload.  The Site Selection section details the specific study site within the 

Huntington Beach Wetlands that is chosen for analysis.  Next, the Equipment and 

Payload section examines all the hardware and devices used to effectively gather the data 

in the field.  Lastly, Pre-Flight Considerations breaks down the critical and necessary 

elements to account for prior to data collection.   
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Site Selection 

Completing careful site selection is necessary in order to obtain the appropriate 

data.  Site selection also incorporates obtaining permissions from land owners or land 

managers in order to operate the UAV and collect data.  These are examined in the Pre-

Flight Considerations sub-section.  The Huntington Beach Wetlands are sectioned off 

into three main marshes: Magnolia Marsh (16 ha), Brookhurst Marsh (27 ha), and Talbert 

Marsh (11 ha) (Figure 2).   

 

FIGURE 2. Three marshes of the Huntington Beach Wetland ecosystem.   

 

Brookhurst Marsh was chosen because it is the largest of the three marshes in 

terms of area and it contains a higher variety of land cover than Magnolia Marsh and 
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Talbert Marsh.  In addition, its location between the other two marshes is ideal for UAV 

operation because it is away from the Santa Ana River near the south end of Talbert 

Marsh and the power plants near Magnolia Marsh.  Brookhurst Marsh is enclosed by 

Brookhurst Street on the east side, Magnolia Street on the west side, Pacific Highway on 

the south and a Residential district on the north along with a small waterway that leads 

into the Santa Ana River.  The marsh is 1000 meters in length, 290 meters wide on the 

west side and 160 meters wide on the east side.  It is a 27 ha wetland that encompasses a 

wide variety of land cover including water, soil, vegetation, and gravel land cover 

features (Figure 3).   

 

 

FIGURE 3. Brookhurst Marsh at the Huntington Beach Wetlands.  
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Equipment and Payload 

In order to collect the data, steps needed to be taken to ensure proper handling, 

care, and use of each piece of equipment.  This not only guarantees their proper 

functioning in the field, but also extends the longevity of the hardware for future use.  

More importantly, proper use of equipment will provide better results.  This section is 

broken down into three basic elements for further clarification: Platform, Payload, and 

Ground Operations.    

Platform.  The platform is the tool used to deliver all the necessary data collection 

components to the study site through air, land, or water.  For this study, the DJI Phantom 

Quadcopter was used to fly over Brookhurst Marsh and collect aerial imagery (Figure 4).  

The Phantom is classified as a Micro-UAV (MAV) multirotor system (Watts, Ambrosia, 

and Hinkley 2012).  The standard Phantom 1 costs under US $400 as of May 2015 

(Dajiang Innovation Technology 2015).  The platform and controller specifications are 

presented in Table 1.  Initially the standard package requires minimal assemblage of 

propellers, landing gears, and battery mounting.  Knowing the operational limits of the 

UAV is important to flight performance because the addition of different size payloads 

can alter these limits and change the performance of the platform itself while airborne.  

Consequently it is necessary to conduct test flights with all payloads that will be utilized 

beforehand in order to assess the performance of the UAV and make any adjustments to 

optimize its performance as necessary.  
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FIGURE 4. DJI Phantom Quadcopter.  
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TABLE 1. DJI Phantom Quadcopter Specifications (DJI Innovation Technology 2015)  

DJI Phantom Quadcopter   

(Out of the Box/No additional attachments) 

Operating Temperature -10°C ~ 50°C  

Power Consumption 3. 12W 

Take-off Weight <1200g 

Hovering Accuracy (GPS 

Mode) Vertical: 0. 8m | Horizontal: 2. 5m 

Max Yaw Angular Velocity 200°/s 

Max Tilt Angle  45° 

Max Ascent/Descent Speed 6 m/s 

Max Flight Velocity 10 m/s 

Diagonal Distance  

(Motor Center to Motor 

Center) 

350 mm 

Phantom Prop Guard 

Weight (Single): 18. 7g 

Size (Single): Angle: 155. 0° | Radius: 

112. 32mm  

Whole Size with Four Prop Guards: 

575. 5 mm 

Power 20W 

Battery Type 

LiPo 11. 1  V Lithium-polymer 2200 

mAh capacity 

Max Flight Time 10 min 

Max Payload 365 grams 

DJI Phantom 1 Controller 

Working Frequency 2. 4 GHz ISM 

Control Channels 7 Channels 

Communication Distance 1000 m 

Power 4 AA Batteries 
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Payload.  The remote sensing payload consists of components that are attached to 

the platform, in this case the cameras that capture and store the data from the field.  For 

this study, two different cameras were used to capture aerial images of the Huntington 

Beach Wetlands.  Both cameras were set to interval mode to capture the aerial images.  

Interval mode is a type of capture mode that automatically captures a frame per given 

time period.  The time period can be set depending on the settings of the camera.  For 

aerial imaging, it is best to set the time period to the minimum the camera allows in order 

to capture the maximum amount of frames per flight (Wolf, DeWitt, and Wilkinson 

2014).  The increase in frames leads to an increase in percent overlap per frame which is 

ideal for aerial imagery and makes it easier for the software to generate orthophotos.  

Simply stated, the more frames that a given point or object appears in, the higher the 

geometric and photogrammetric quality of the resulting orthophoto.  The first camera 

used was the PENTAX Optio WG-II GPS (Figure 5).  This camera was used as the 

payload for the test flight at Brookhurst Marsh.  The Pentax Optio is a standard three-

band color camera that captures images at a minimum interval of ten seconds.  The 

second camera was the Ricoh GR III and it was used to capture the final data at 

Brookhurst Marsh at an interval of five seconds (Figure 5).  The Ricoh GR III is a three-

band camera with the internal charge-couple device (CCD) filter removed so in addition 

to visible wavelengths the camera is sensitive to near-infrared (NIR) energy.  The near-

infrared wavelength is important in vegetation detection and is detailed in Phase IV.  By 

placing a yellow filter on the camera lens, in this case a Tiffen #15 deep yellow filter 

(Figure 6), the blue wavelengths are filtered out resulting in a three band image 

comprised of green, red, and NIR information, much like the traditional Kodak color 
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infrared film that has been used in vegetation studies for decades (Fisher 2004; Mortimer 

and Davidson 2012).  Specifications for the two cameras are presented in Table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. PENTAX Optio WG-II GPS (top) and Ricoh GR III (bottom) digital 

cameras.  

 

 

 

 

 

 

 

 

 

FIGURE 6. Tiffen 43DY15 43mm deep yellow 15 filter (left). It was outfitted on the 

Ricoh GR III (right).  
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TABLE 2. Camera Specifications Comparison (Amazon. com 2015; Ricoh Imaging 

2015)  

 PENTAX Optio WG-II GPS Ricoh GR DIGITAL III 

Resolution 16 Megapixels 10 Megapixels 

Sensor Type 

1/2. 3 inch CMOS 

(Complementary Metal 

Oxide Semiconductor) 

(Backside Illuminated) 

1/1. 7 inch CCD  

(Charge-Coupled Device) 

Max Shutter Speed 4 seconds 1/2000 of a second 

ISO Range 125, 6400 
Auto, 64, 100, 200,  

400, 800, 1600 

Image Stabilization Electronic NONE 

Dimensions 1. 9 x 5 x 1. 2 inches 2. 32 x 4. 29 x 1. 02 inches 

Maximum Focal 

Length 
25 mm 28 mm 

Optical Zoom 5x 1x 

Digital Zoom 7. 2x 4x 

Battery Lithium-Ion Lithium-Ion 

Focus Type Manual Autofocus & Manual 

Weight (with Battery) 198 g 218 g 

Additional 

Attachments 
NONE 

Tiffen 43DY15 43mm 

Deep  

Yellow 15 Filter 

 

 

This study also required outfitting the Phantom with a mount that would carry the 

two different cameras.  Because the Phantom is originally designed to carry GoPro 

Cameras, additional mounts and screws were utilized to enable it to carry the Pentax 

Optio and the Ricoh cameras (Figure 7).  In the case of aerial platforms weight is an 

added dimension to account for.  Payloads need to be light enough for the aerial platform 

to carry without jeopardizing operation of the platform or reducing data quality 

(Eisenbeiss and Sauerbier 2011; Wolf, DeWitt, and Wilkinson 2014).  The quadcopter 

was outfitted with a proper shock and vibration absorbing mounting system to allow both 

the Pentax Optio and Ricoh cameras to be mounted without interfering with image 
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capture or flight maneuverability (Figure 8).  It is important that the camera lens remain 

as perpendicular or vertical to the ground as possible.  Any type of angle or shift in the 

way the camera is situated can result in distorted images or impaired flight 

maneuverability which can affect the photogrammetric processes for developing 

orthophotos (Wolf, DeWitt, and Wilkinson 2014).  

 

 

 

 

 

 

 

FIGURE 7. DJI Phantom Quadcopter payload mounts and screws.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 8. PENTAX Optio WG-II GPS mount (top) and Ricoh GR III mount (bottom).   
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Ground operations.  To successfully collect a complete, high quality dataset for 

analysis, steps were taken to ensure proper operation of all the equipment.  All necessary 

equipment needed to be properly assembled and prepared for deployment in the field.  

For the DJI Phantom quadcopter used in this research, one battery pack provided up to 

seven minutes of flight time.  To cover the study site in a single series of flights 15 

battery packs were taken into the field.  Also batteries for the cameras were fully charged 

and camera data cards were emptied to ensure maximum storage availability for image 

collection.  Cameras settings were adjusted on site to account for lighting conditions as 

they existed in the field and set to interval shooting capture mode before take-off.  In 

addition a Trimble Juno 3B GPS unit loaded with Esri ArcPad software, and ground 

control markers were taken into the field to collect ground control points (GCP’s) while 

conducting flights (Figure 9).  The Trimble unit was placed at the center of the marker to 

capture the coordinates at that exact location.  The markers were placed on the edges of 

Brookhurst Marsh and can be seen in the final orthophoto.  Using ArcPad, the Trimble 

unit connects to satellites overhead and triangulates a point which stores coordinate 

information.  This point was saved onto a map document in ArcPad and later transferred 

onto Agisoft PhotoScan and included in the orthophotorectification process.   

Pre-Flight Considerations  

There were seven logistical elements that were acknowledged and assessed before 

data were collected in the field.  These elements are applicable to this project but can be 

molded to fit other research methodologies as needed.  These elements are: Flight and 

Site Permissions, Federal Aviation Administration Regulations, Safety and Surroundings, 

Weather and Visibility, Surface Conditions, Seasonal Variability, and Flight Training. 
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FIGURE 9. Trimble Juno 3B placed on ground control marker in the field.   

 

 

Flight and land permissions.  Appropriate permissions have to be obtained from 

land owner(s) or land manager(s) before any data collection can occur.  It is important for 

researchers to notify land owners of their intent as specifically as possible, whether this 

includes physically traversing on the site or just flying over it with a UAV.  Additionally, 

they should be notified the date of the collection, the type of data collected, and the extent 

to which the data will be used and/or published.  Furthermore, researchers need to assess 

the degree to which they can operate a UAV and collect data on someone’s land based on 

the permissions granted by land owners.  In the case of this study, landowners were 

contacted by Dr. Christine Whitcraft and permission was obtained to collect data for both 

the test flight (September 14th, 2014) and the final flight (October 17th, 2014).  The land 

owners in return requested that any and all aerial imagery including orthophotos 

developed of the study site be shared.  They also requested that all individuals on the site 



43 
 

stay close to the edge of the marshes so as to not damage or alter the wildlife or plants. 

Currently in the United States, the National Park Service has prohibited all UAV 

commercial operations in National Parks due to concerns for wildlife (NPS 2014).  

Federal Aviation Administration (FAA) regulations.  Because of the recent rise in 

recreational and commercial UAV/UAS use, the Federal Aviation Administration (FAA) 

has been developing ways to regulate their operations as they do with manned aircraft 

operations.  Practice flights, test flights, and the field flight were all conducted in 2014 in 

accordance with these regulations.  During that time, the FAA had a standard policy for 

recreational and commercial utilization of UAV’s.  Their 2014 regulations are outlined 

for both recreational and commercial model aircraft operations (Appendix A).  

All flights were conducted on days where there were no Notices to Airmen 

(NOTAMs) or Temporary Flight Restrictions (TFRs) issued for the Southern California 

area.  The UAV flown in this project was well within the acceptable altitude and speed 

limits set by the FAA (Appendix A).  Beginning in 2015, the FAA updated their 

recreational and commercial UAV regulations.  The FAA used the term small Unmanned 

Aerial System (sUAS) in their regulations to define UAV’s that are portable enough to be 

carried by a person, such as the DJI Phantom quadcopter.  According to these new 

regulations, the FAA defined recreational use as follows: 

“The recreational use of sUAS is the operation of an unmanned aircraft for 

personal interests and enjoyment.  For example, using a sUAS to take 

photographs for your own personal use would be considered recreational; using 

the same device to take photographs or videos for compensation or sale to another 
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individual would be considered a commercial operation.”  (Know Before You Fly 

2015) 

They defined commercial operation as:  

“Any commercial use in connection with a business, including: Selling photos or 

videos taken from a UAS, Using UAS to provide contract services, such as 

industrial equipment or factory inspection, Using UAS to provide a professional 

services, such as security or telecommunications, or providing contract services 

for mapping or land surveys.  If you want to use UAS for a commercial purpose, 

you have a few options.  You can apply for an exemption from the FAA to 

operate commercially.  You can use UAV with an FAA airworthiness certificate 

and operate pursuant to FAA rules.  In both cases you would also need an FAA 

Certificate of Authorization (COA).”   (Know Before you Fly 2015) 

Because California State University, Long Beach is classified as a commercial entity, 

future flights would have to follow the UAV commercial regulations set forth by the 

FAA.  Additional flights were not conducted for this research because of the new FAA 

commercial UAV regulations.  

Safety and surroundings.  Safety is another important aspect to consider when 

operating UAV’s for data collection.  Safety for other researchers in the field, other 

people in the vicinity, vehicles, pedestrians, and wildlife especially birds should be noted.  

In this case, Brookhurst Marsh encompasses a variety of these factors.  Because it is 

adjacent to the Pacific Coast Highway and Huntington Beach, there is constant traffic 

from both pedestrians and vehicles especially during the noon hours.  One very useful 

feature at Brookhurst Marsh is that it is enclosed by standard fencing on three sides 
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limiting access to the public.  The north side of Brookhurst Marsh leads into a small river 

approximately 30 meters wide that buffers the residential area from the actual marsh.  In 

regards to the entire Huntington Beach Wetlands, some notable features include a closed 

power plant northwest of Magnolia Marsh, Brookhurst Street and Magnolia Street in 

between the three marshes, and the Santa River east of Talbert Marsh (Figure 2).  

Weather and visibility.  Weather and visibility play a crucial role in the 

optimization of UAV operation and data quality (Rango et al. 2009; Eisenbeiss and 

Sauerbier 2011).  In order to capture aerial imagery of the highest quality and ensure safe 

UAV operations, flights have to be conducted on days where weather will not interfere.  

This means that a UAV should be flown on days with very little to no cloud coverage.  It 

is especially hazardous to fly during periods of low cloud ceiling because the probability 

of losing track of the UAV while in flight is higher.  Additionally, cloud coverage also 

affects the light from the sun and could darken aerial imagery causing issues in image 

clarity.  Another aspect to consider is wind, primarily for data quality (Eisenbeiss and 

Sauerbier 2011).  While the DJI Phantom can function fine in winds in excess of 20mph 

the angular shifts it can cause to the sensors and cameras on board can alter and warp the 

aerial imagery.  In relation to photogrammetry, this would be critical for developing 

orthophotos.  Those aerial images captured with an aggressive tilt can result in more 

differences in size, shape, and area than images captured using a more vertical camera tilt 

angle (Wolf, DeWitt, and Wilkinson 2014).  Distorted and warped imagery can reduce 

the image quality and accuracy of the orthophoto.  While it is impossible to fly the 

Phantom and capture aerial photos using a near-perfect vertical camera angle, SfM 

programs like Agisoft PhotoScan can use images with unintentional camera tilts and 
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process them with little to no loss in accuracy.  Finally, it is important that flights are 

primarily conducted in a four hour window centered on noon to maintain a near-

perpendicular sun angle with the surface.  If the sun is too low in the sky, there is 

potential for long shadows projected from even the smallest structures over the study 

field which could mask features of importance.  

Seasonal variability.  Seasonal variations affect the amount of vegetation present.  

On an annual basis there is a phenology of growth and decay as the season shifts from 

spring all the way to winter.  Because of its regional location in Southern California, the 

Huntington Beach Wetlands have longer periods of flowering and bloom.  These 

variations would alter the data, if they were collected in a different season.  At the 

Huntington Beach, Wetlands, the season for optimal bloom is between April and late 

October/early November.  All the data collected for this research is obtained during the 

optimal bloom period, thus limiting any sort of variation that may occur as a result of 

seasonal differences in vegetation abundance.  

Surface conditions.  Tidal influence affects the surface conditions at the 

Huntington Beach Wetlands (Woodfield and Merkel 2011; Whitcraft, Allen, and Lowe 

2013).  This was accounted for during the UAV flight scheduling.  Being so close to the 

Pacific Ocean and the Santa Ana River, the tides in this area can fluctuate between 0.15 

and one meter.  Tidal flows can interfere with the aerial imagery by covering up 

landscape with vegetation on it resulting in incomplete assessments.  The tidal height 

recommendation by Dr. Whitcraft was less than 0.5 meters for optimal data collection of 

vegetation.  As a result, both flights conducted at Brookhurst Marsh were scheduled for 
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times of the lowest possible tide.  National Oceanic and Atmospheric Administration 

(NOAA) tide charts were used to plan the appropriate flight times (NOAA 2015).   

Flight training.  Learning how to correctly operate the UAV is very important for 

safety and aerial image acquisition purposes.  High quality aerial photography is reliant 

on the altitude and angle at which images are captured, consistent overlapping of images, 

correct camera and sensor calibration, and the accuracy of global positioning systems for 

georeferencing the imagery (Wolf, DeWitt, and Wilkinson 2014).  In aerial 

photogrammetry, images should contain between 50-80% overlap (Eisenbeiss and 

Sauerbier 2011; D’Oleire-Oltmanns et al. 2012; Flener et al. 2013; Mancini et al. 2013; 

Wolf, DeWitt, and Wilkinson 2014).  Photogrammetric methods for developing 

orthophotos are strengthened by improving image quality and continuity.  High quality 

images are produced by practicing UAV maneuvers suited for aerial photography.  These 

include maintaining proper horizontal speed, correct altitude, and proper flight trajectory.  

Moving too fast or overlapping a previously flown path can negatively affect the quality 

of image acquisition.  Practice flights are a sure way to overcome these issues and were 

done in preparation for the actual flight and data collection.  Four practice flights were 

conducted to gain experience in both flying the Phantom and learning how to operate the 

different cameras for aerial image acquisition.  These practices helped develop the skills 

necessary to ensure optimum control of the UAV for data collection.  It is recommended 

that at least one or two other people besides the operator help with data collection, so that 

one can help set up ground control markers and gather ground control points while the 

other can serve as a second pair of eyes in case the operator loses track of the UAV in the 

sky.  Appendix B shows an example of the test aerial PhotoScan orthophoto collected on 
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September 14th, 2014.  Tables 3 and 4 showcase the different practice, test and final 

flights conducted for this research.   

 

TABLE 3. DJI Phantom Quadcopter Practice Flight Record 

 

 

 

 

 

 

 

 

 

 

TABLE 4. DJI Phantom Quadcopter Brookhurst Marsh Flight Record 

 

 

 

 

 

 

 

 

 

Flight Date 5/9/2014 9/6/2014 9/10/2014 9/14/2014 10/17/2014

Flight Type Practice Practice Practice Test Final

Location CSULB Quad
CSULB 22 Acres 

(near Japanese Gardens)
CSULB Quad

Huntington Beach 

Wetlands, 1/4th 

Brookhurst Marsh

Huntington Beach 

Wetlands, Entire 

Brookhurst Marsh

Payload NONE
PENTAX Optio 

WG-II GPS

Ricoh GR III equipped 

with Tiffen Filter

PENTAX Optio 

WG-II GPS

Ricoh GR III equipped 

with Tiffen Filter

Start Time 3:00 PM 10:00 AM 2:00 PM 7:00 AM 9:30 AM

Duration (Hours) 2 2 0.3 1 2.5

Number of Flights 4 5 1 3 12

Weather
75 Degrees, Clear Skies, 

No wind

86 Degrees, Clear Skies, 

No wind

90 Degrees, Clear 

Skies, No Wind

70 Degrees, Clear 

Skies, No wind

73 Degrees, Clear 

Skies, No wind

Objective
Introduction to flight 

operations for the 

Phantom

Practice flight to test out 

Optio camera

Practice flight to test out 

Ricoh Camera and filter

Preliminary assesment of 

area and data collection

Final assesment and data 

collection

Number of 

Images Collected
NONE 196 30 92 918

Flight Date 5/9/2014 9/6/2014 9/10/2014 9/14/2014 10/17/2014

Flight Type Practice Practice Practice Test Final

Location CSULB Quad
CSULB 22 Acres 

(near Japanese Gardens)
CSULB Quad

Huntington Beach 

Wetlands, 1/4th 

Brookhurst Marsh

Huntington Beach 

Wetlands, Entire 

Brookhurst Marsh

Payload NONE
PENTAX Optio 

WG-II GPS

Ricoh GR III equipped 

with Tiffen Filter

PENTAX Optio 

WG-II GPS

Ricoh GR III equipped 

with Tiffen Filter

Start Time 3:00 PM 10:00 AM 2:00 PM 7:00 AM 9:30 AM

Duration (Hours) 2 2 0.3 1 2.5

Number of Flights 4 5 1 3 12

Weather
75 Degrees, Clear Skies, 

No wind

86 Degrees, Clear Skies, 

No wind

90 Degrees, Clear 

Skies, No Wind

70 Degrees, Clear 

Skies, No wind

73 Degrees, Clear 

Skies, No wind

Objective
Introduction to flight 

operations for the 

Phantom

Practice flight to test out 

Optio camera

Practice flight to test out 

Ricoh Camera and filter

Preliminary assesment of 

area and data collection

Final assesment and data 

collection

Number of 

Images Collected
NONE 196 30 92 918

Flight Date 5/9/2014 9/6/2014 9/10/2014 9/14/2014 10/17/2014

Flight Type Practice Practice Practice Test Final

Location CSULB Quad
CSULB 22 Acres 

(near Japanese Gardens)
CSULB Quad

Huntington Beach 

Wetlands, 1/4th 

Brookhurst Marsh

Huntington Beach 

Wetlands, Entire 

Brookhurst Marsh

Payload NONE
PENTAX Optio 

WG-II GPS

Ricoh GR III equipped 

with Tiffen Filter

PENTAX Optio 

WG-II GPS

Ricoh GR III equipped 

with Tiffen Filter

Start Time 3:00 PM 10:00 AM 2:00 PM 7:00 AM 9:30 AM

Duration (Hours) 2 2 0.3 1 2.5

Number of Flights 4 5 1 3 12

Weather
75 Degrees, Clear Skies, 

No wind

86 Degrees, Clear Skies, 

No wind

90 Degrees, Clear 

Skies, No Wind

70 Degrees, Clear 

Skies, No wind

73 Degrees, Clear 

Skies, No wind

Objective
Introduction to flight 

operations for the 

Phantom

Practice flight to test out 

Optio camera

Practice flight to test out 

Ricoh Camera and filter

Preliminary assesment of 

area and data collection

Final assesment and data 

collection

Number of 

Images Collected
NONE 196 30 92 918
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This section has outlined the steps taken prior to heading out to the field for field 

data collection.  It discussed the specific steps taken for site selection, it broke down the 

equipment and payloads used to collect the data, and listed the key features to consider 

for UAV data acquisition.    

Phase II: Data Collection 

This section arranges the data collected into two separate types: primary 

acquisition and secondary acquisition.  Primary data acquisition involves going out in the 

field and capturing data using the planned methodology illustrated in Phase I.  UAV 

aerial imagery was the primary data acquisition source used in this research.  Secondary 

data acquisition involves utilizing data that has already been collected and developed by 

another person or group.  Satellite imagery and airplane imagery encompassed the 

secondary data acquisition.  

Primary Acquisition 

UAV aerial image acquisition is the basis of this study.  For both the test flight 

and the final flight, the flight operations were the same.  Flight operations involved 

maintaining proper flight lines and proper altitude.  Because of the basic design of the 

Phantom, this was manually determined while flying.  The benefits of the Phantom is that 

it has GPS calibration allowing it to maintain a constant altitude as long as no additional 

user inputs are made.  When taking vertical aerial photographs, the flight height and a 

consistent overlap must be maintained to optimize the coverage and quality of the aerial 

imagery.  The flying height is the altitude above ground level (AGL) of the camera at 

exposure time.  The overlap is the lateral or side coverage that is common between 

adjacent strips of imagery (Figure 10).  The amount of recommended overlap for the 
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aerial imagery is between 50-80 percent (Eisenbeiss and Sauerbier 2011; D’Oleire-

Oltmanns et al. 2012; Flener et al. 2013; Mancini et al. 2013; Wolf, DeWitt, and 

Wilkinson 2014).   

 

 

FIGURE 10. Ideal aerial remote sensing acquisition overlap. 

   

 

Because of the difficult nature of judging the amount of overlap while using the 

Phantom, a steady rate of horizontal forward movement was maintained for each flight 

line.  For this study, the ideal altitude while using the Phantom was between 90-120 

meters.  At this altitude, coverage of each image is maximized without reducing image 

quality.  These parameters were experimented with during all the practice flights and test 

flight.  The imaging results from these flights offered a better understanding of what 

corrections to make for the final flight.  More advance UAS have relatively sophisticated 

flight computers that can track movement in real-time and can even offer preflight or 

autopilot capabilities to remove any user induced error.  They can be programmed to fly a 
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preset flight plan and maintain a certain altitude.  Dajaing Innovation Technology, for 

example, have more advanced models of the Phantom:  Phantom 2 Vision Plus and the 

Phantom 3 Advanced.  These systems cost less than US $1,300 and include built in high-

definition cameras, programmable flight plans, and offer real-time telemetry and flight 

data (DJI Innovation Technology 2015).  

For the test flight, the workflow primarily encompassed flight operations which 

consisted of properly piloting the UAV and following flight lines.  Ground operations 

were only conducted during battery swaps and Pentax Optio activation.  Because the DJI 

Phantom was equipped with the GPS enabled Pentax Optio camera, it was not necessary 

to capture additional GCP’s for detailed georeferencing.  The test flight was conducted on 

September 14th, 2014 and captured one-fourth of Brookhurst Marsh in three flights, all 

originating from the same take-off and landing point located near the northwest entrance 

to the wetland (Appendix B).  The altitude flown for this dataset was between 90-100 

meters from the surface.   

For the final flight conducted on October 17th, 2014, the tasks included flight 

operations and a more extensive ground operation workflow than the test flight.  Ground 

operations consisted of first properly placing ground control markers and obtaining 

GCP’s using the Trimble GPS handheld unit.  Next fresh battery packs were put in the 

Phantom for each flight.  Because of the way the Ricoh camera was attached to the 

Phantom, the struts on the Phantom were held by hand to hold it upright for takeoff.  At 

the same time the interval mode on the Ricoh GR III camera was activated right before 

launch.  After takeoff, UAV flight time was monitored and a secondary pair of eyes 

helped keep track of the Phantom in the air.  Test images were taken on the field with the 
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Ricoh camera to ensure proper exposure and focus.  Because the Ricoh GR III camera 

does not contain any geotagging feature for captured photos it was necessary to collect 

GCP’s at the study site.  Ground operations for the final flight consisted of placing 

ground control markers at launch sites two, three, six, and twelve (Figure 13).  The exact 

coordinates at the center of the ground control maker were recorded using a GPS unit.  

The GPS unit was left at the center of the ground control marker for 5-7 minutes in order 

to give it time to align with the satellites overhead for optimum accuracy (Figure 9).  

Four ground control points were captured using Esri ArcPad in the Trimble Juno 3B 

Handheld GPS unit.  These were recorded using the Universal Traverse Mercator (UTM) 

Zone 11 North coordinate system and the World Geodetic System 1984 datum.  While 

operating the UAV, the altitude maintained was between 100-120 meters from the 

surface.  The flight trajectory consisted of moving in a circular pattern in order to make 

sure the full extent of the area was captured and image overlapping was correctly 

performed as best as possible.  There were a total of 12 flights conducted each lasting 

around 6 minutes and the total acquisition time was 2. 6 hours.  The final UAV 

acquisition started from site one near the north western-most portion of Brookhurst 

Marsh, next to Magnolia Street and ended southeastward at site 12 towards Brookhurst 

Street (Figure 13).  PhotoScan provided a three-dimensional visualization of the final 

texture which illustrated both the height of the image taken by the camera at each 5 

second interval and the overlap pattern flown by the UAV for the final image acquisition 

of Brookhurst Marsh (see Figures 11 and 12).   
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FIGURE 11. PhotoScan visualization: UAV image acquisition capture altitude. Observed 

using the three-dimensional height from the surface (texture) for each image. This helped 

determine the estimated height each photo was taken at and helped inform decisions in 

the photo selection process.    

 

 

 

 

 

Camera 

height from 

the surface 

of the 

digital 

texture 



54 
 

F
IG

U
R

E
 1

2
. 
P

h
o
to

S
ca

n
 v

is
u

al
iz

at
io

n
: 

U
A

V
 i

m
ag

e 
ac

q
u
is

it
io

n
 c

ap
tu

re
 o

v
er

la
p
. 
S

h
o
w

s 
al

l 
th

e 
in

d
iv

id
u
al

 i
m

ag
es

 t
ak

en
 a

t 

B
ro

o
k
h
u
rs

t 
M

ar
sh

. 
T

h
is

 o
ff

er
ed

 a
n
 i

d
ea

 o
f 

th
e 

o
v

er
la

p
 a

ch
ie

v
ed

 d
u

ri
n
g
 t

h
e 

fi
n
al

 U
A

V
 i

m
ag

e 
ac

q
u
is

it
io

n
. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

F
IG

U
R

E
 1

3
. 
P

h
an

to
m

 l
au

n
ch

 l
o
ca

ti
o
n
s 

fo
r 

th
e 

fi
n
al

 f
li

g
h
t 

in
 B

ro
o
k
h
u
rs

t 
M

ar
sh

. 
O

f 
th

e 
1
2
 l

au
n
ch

es
, 

G
C

P
’s

 w
er

e 

co
ll

ec
te

d
 u

si
n

g
 t

h
e 

T
ri

m
b
le

 G
P

S
 u

n
it

 a
n
d
 g

ro
u
n
d
 c

o
n
tr

o
l 

m
ar

k
er

s 
at

 f
o
u
r 

si
te

s:
 2

, 
3
, 
6
, 
an

d
 1

2
. 

 

 

 

 

 



56 
 

Secondary Acquisition 

 

In order to understand how vegetation changed over time, previous research 

conducted at the Huntington Beach Wetland ecosystem was analyzed.  Merkel & 

Associates, Inc. and Whitcraft, Allen, and Lowe (2013) developed a thorough ecological 

analysis of the Huntington Beach Wetland ecosystem that dates from 2007 to 2013.  

Their documents provided a detailed understanding as to what the state of the wetlands 

was in previous years and how it has changed over time.   

The Huntington Beach Wetlands Conservancy obtained aerial imagery over the 

Huntington Beach Wetlands study area through contract flights conducted annually to 

photograph the site at a scale of 1:18,900 from true vertical position on true color film 

(Woodfield and Merkel 2011; Whitcraft, Allen, and Lowe 2013).  This imagery was 

provided by Dr.  Christine Whitcraft from the California State University, Long Beach 

Biology Department for the purposes of this study.  These were in the form of 29 aerial 

images of Brookhurst Marsh which were captured in spring 2013.  The 2007-2009 vector 

and tabular data detailing the vegetation community types and land cover at the 

Huntington Beach Wetlands were also provided by Dr. Whitcraft.  Only the July 2009 

vector data were utilized because they were the most recent dataset accessible for this 

research and because they were collected and generated after the completion of the 

physical restoration of the Huntington Beach Wetlands.  These data were recoded to 

provide reference land cover measures to compare consistency and changes in land cover 

in the 2013 and 2014 airplane, satellite, and UAV datasets.  Additionally, satellite 

imagery of the Huntington Beach Wetlands was purchased.  This imagery was captured 

by the GeoEye-1 satellite on November 13th, 2013 and is made up of a multispectral 
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image and a panchromatic image.  It encompasses a large swath of the Orange County 

coast and includes the Huntington Beach Wetlands.  The spatial resolution of the 

multispectral imagery was 2 meters while the resolution of the panchromatic imagery was 

0.5 meters.  

Phase III: Data Processing 

This section introduces a discussion of the software used to process the data 

collected and it provides a breakdown of the steps taken to ensure proper preparation of 

all datasets that were acquired through primary and secondary means.  Subsequent 

surveys should follow the approach documented here for consistency and comparability 

of results.  Processing techniques are separated by three main functions: aggregation, 

standardization, and configuration.  Aggregation involves creating orthophotos through 

photogrammetric construction of separate aerial images using workflows in Agisoft 

PhotoScan.  Standardization comprises of matching all the orthophotos and imagery to a 

reference map.  Configuration requires correct identification of the band sequences from 

each data source for proper image analysis.  Figure 14 illustrates the sequence of the 

workflow used for both data processing and data analysis using ERDAS Imagine 2014.     

Software  

Two software packages were used to generate orthophotos, standardize all 

imagery, determine band configurations, and analyze imagery – Agisoft PhotoScan and 

ERDAS Imagine 2014.  Agisoft PhotoScan Professional 64 edition is an advanced image-

based software that can create two-dimensional and three-dimensional content from still 

images using a Structure from Motion (SfM) algorithm (Verhoeven 2011).  SfM is a type 

of processing technique that can estimate different types of three-dimensional structures 
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from two-dimensional image sequences (Verhoeven 2011).  For this research, SfM was 

used to generate two-dimensional orthophotos from the collected UAV and airplane-

based imagery.  The other program used was ERDAS Imagine 2014, which is a remote 

sensing image processor designed for geospatial applications.  ERDAS Imagine 2014 was 

used for standardization including georeferencing, determining band configurations, and 

performing image analysis classifications, all of which are presented in the following 

sections.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 14. ERDAS Imagine 2014 data processing and data analysis workflow.  
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Aggregation 

UAV and airplane imagery.  With the exception of the GeoEye-1 satellite 

imagery, both the aerial imagery collected from the airplane and the UAV had to be 

mosaicked using Agisoft PhotoScan.  Image analysis cannot be done without the creation 

of orthophotos.  An orthophoto is an aerial photograph geometrically corrected such that 

the scale is uniform and it lacks any distortion (Taylor and Neely 1994).  PhotoScan was 

used to generate orthophotos of the study site using both the UAV and airplane aerial 

imagery.  Figure 15 overviews the basic steps taken to generate these orthophotos in 

PhotoScan.    

Before using the workflows within PhotoScan, the aerial imagery had to be 

preselected and sorted out.  This required looking at each photo and determining whether 

it is of sufficient quality.  Any photos that were blurry, too light or too dark, or were 

irrelevant such as photos taken too close to the ground, were removed from the final 

batch.  The aerial photos received from Dr. Whitcraft were already preselected into their 

final batch thus requiring no additional sorting.  On the other hand, the UAV aerial 

imagery had to be sorted out.  Selecting the UAV imagery required removing all photos 

that were not close to the flight height.  The flight height was determined using 

PhotoScan’s 3D environment (Figure 11).  Any photos below the flight height were 

automatically removed.  There were many irrelevant photos because the Ricoh GR III 

interval mode was activated right before the Phantom was launched into the air.  As a 

result, it captured the entire hand launch motion as well and those photos had to be 

removed. The UAV imagery was reduced from 918 photos down to 698.  Utilizing the 

workflows within PhotoScan was the next step after proper aerial image selection.   



60 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15. Agisoft PhotoScan orthophoto construction workflow.  

 

 

 

PhotoScan offers a very powerful yet easy to use workflow for creating an 

orthophoto from a set of images.  These methods are applied in a step-by-step manner 

and are located under the ‘Workflow’ tab of the main menu.  First, the preselected images 

were imported into PhotoScan using ‘Add Photos’.  Next the ‘Align Photos’ process was 
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used (Figure 16).  At this point PhotoScan finds the camera position and orientation for 

each photo and builds a sparse point cloud model (Agisoft LLC 2014). \The accuracy 

setting was set to “High” and Pair preselection was set to “Generic”.  Accuracy was set to 

“High” to maximize the precision of all the camera locations while Pair preselection was 

set to “Generic” because these photos were captured by the Ricoh GR III which does not 

geotag captured images.  The “Generic” setting allows for the program to consider the 

order in which the images were taken based on the order of acquisition when processing.  

The Key Point limit which “indicates upper limit of feature points on every image to be 

taken into account during current processing stage” was set to the default of 40,000.  The 

Tie Point Limit which “indicates upper limit of matching points for every image” was set 

to the default of 1000 (Agisoft LLC 2014).  The outcome produced a three-dimensional 

sparse point cloud based on the camera position and orientation of each photo.   

 

 

 

 

 

 

 

 

FIGURE 16. PhotoScan dialog: align photos.  

 

 

 

One additional thing that can be done is point filtering.  This involves looking at 

individual points or groups of points and removing them from the overall model that do 
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not appear to coincide with the rest of the point cloud model or are clear outliers.  

Because no outliers were observed and since this project deals with two-dimensional 

models, point filtering was not needed.   

Building a dense point cloud was the next step in the workflow (Figure 17).  

“Based on the estimated camera positions the program calculates depth information for 

each camera to be combined into a single dense point cloud” (Agisoft LLC 2014).  The 

quality of the dense cloud was set to “High” in order to maximize precision while 

limiting processing time.  Depth filtering was set to “Aggressive” because the Huntington 

Beach Wetlands is a relatively flat area requiring no concern about small changes in 

elevation across Brookhurst Marsh.  This mode is used to identify and reconstruct an area 

that does not contain meaningful small details, and sorts out most of the outliers (if any 

exist).  For this study, all features of interest are horizontally distributed rather than 

vertically distributed thus “Aggressive” depth filtering was chosen.  

 

 

 

 

 

 

 

 

 

FIGURE 17. PhotoScan dialog: build dense cloud.  
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To offer a comparative perspective in this example, the Sparse Point Cloud generated 

1,385,809 points while the Dense Point Cloud generated 387,689,564 points for the UAV 

imagery.  For the airplane imagery, the Sparse Point Cloud generated 146,741 points 

while the Dense Point Cloud generated 46,371,352 points.  

The next step in the workflow was “Building Mesh” (Figure 18).  This is one 

structuring option for the dense point cloud model.  A mesh is created using algorithms 

that interpolate features through a point-by-point basis to create a seamless visualization.  

For this workflow, the “Surface Type” was set to “Height field”.  “Height field” is used 

to optimize “modeling of planar surfaces, such as terrains or bas-reliefs.  It should be 

selected for aerial photography processing as it requires lower amount of memory and 

allows for larger data sets processing” (Agisoft LLC 2014).   “Arbitrary” is only used for 

three-dimensional objects and not utilized for this study.  The “Source data” selected was 

the dense point cloud model since it yields a result with higher detail and accuracy over 

the sparse point cloud.  The “Face count” was set to “High” to provide the best possible 

visualization.  “Interpolation” was set to “Enabled (default)” interpolation mode as 

PhotoScan will interpolate some surface areas within a circle of a certain radius around 

every dense cloud point.  Some holes in the mesh can be automatically covered using this 

mode while left over holes can be filled in during the post processing step.  Agisoft 

(2014) recommends using the “Enabled (default)” setting for building the mesh for the 

orthophoto. Because preliminary dense point cloud classifications were not done for this 

research, the Point classes were set to “All” points in the model.  The resulting features 

offered a shaded, solid, and wireframe visualization based on the dense point cloud 

model.   
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FIGURE 18. PhotoScan dialog: build mesh.  

 

The second structuring option for the dense point cloud model is a texture.  A 

texture is the final build of the orthophoto where GCP’s can be added and the orthophoto 

can be exported into a raster or other image type for analysis.  On the PhotoScan 

workflow, “Build Texture” was selected to utilize this option (Figure 19).  Under the 

General Tab, the “Mapping mode” was set to “Orthophoto” because it produces a more 

compact texture representation than the “Adaptive orthophoto” mode at the expense of 

texture quality in vertical regions.  Since there are relatively no vertical regions in 

Brookhurst Marsh, there was no need to select the “Adaptive orthophoto” mode.   

 

 

 

 

 

 

 

 

FIGURE 19. PhotoScan dialog: build texture.  
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The next texture generation parameter, “Blending mode” was set to “Mosaic (default)” 

because it offers better quality for orthophoto and texture atlas than “Average” mode 

since it does not mix image details of overlapping photos but uses most appropriate 

photo.  “Mosaic texture blending mode is especially useful for orthophoto generation 

based on approximate geometric model” (Agisoft LLC 2014).  The “Texture size/count” 

was set to “32768 x 1”.  This specifies the width and the length of the texture in pixels 

and also determines the amount of total files for the texture.  The texture size was 

quadrupled for greater precision and the count was left as default to minimize the amount 

of files that would need to be exported for image analysis.  Under the Advanced tab, 

color correction was not enabled because these were all high quality photos.  The 

textured icon was enabled for viewing the final texture after completion.  Once the 

texture was built, GCP’s were added by transferring the data collected from the Trimble 

Juno 3B through Esri ArcPad.  From there an orthophoto of the texture was exported for 

analysis in ERDAS Imagine 2014.  This process was repeated for the aerial imagery 

obtained from Whitcraft, Allen, and Lowe (2013) and Merkel & Associates, Inc. (2011).  

GeoEye-1 satellite imagery.  The GeoEye-1 satellite imagery was delivered as 

two separate files.  The satellite imagery includes both 0. 5 m panchromatic and 2 m 

multispectral imagery.  Panchromatic imagery consists of only one band and is displayed 

as a high resolution grayscale image (CRISP 2001).  In a panchromatic image, the 

brightness of a pixel corresponds to the intensity of solar radiation which is the visible 

portion of the electromagnetic spectrum reflected by the ground resolution cell 

represented in that pixel.  Multispectral imagery consists of multiple spectral bands of 

data which can be viewed as a color composite image (CRISP 2001).  Pan sharpening an 
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image fusion technique that combines both the multispectral imagery and the 

panchromatic imagery to produce a high spatial resolution color image, was used to 

increase the resolution of the multispectral imagery (Intergraph Corporation 2013; Mishra 

and Zhang 2013).  ERDAS Imagine 2014 was used to merge the two datasets.  The 

Subtractive Resolution Merge and the High Pass Filter (HPF) Resolution Merge 

algorithms were utilized for this process (Appendix C).  The Subtractive Resolution 

Merge is a pan sharpen merge that retains the colors of the multispectral image while 

maintaining the spatial detail of the pan image (Intergraph Corporation 2013).  The HPF 

process involves a convolution using a high pass filter on the high resolution pan data and 

then combines this with the lower resolution multispectral data (Intergraph Corporation 

2013).  All the values were left as default, and the weighting factor was maximized to 

provide the best result.  This number determines how much "weight" is given to the 

filtered high resolution input in the final result.  Higher numbers result in a very crisp 

output, while lower numbers result in a smoother output.  The default value results in 

moderate crispness (Intergraph Corporation 2013).  Both value distribution of these 

merged image sets were analyzed and because they were relatively different from the 

original multispectral imagery, they were not used in Phase IV.  Instead the original 

multispectral imagery was utilized.   

Standardization 

In order to successfully analyze and compare all three datasets they need to be 

standardized and georeferenced.  Without standardization, comparison and analysis 

among the different datasets is not possible (Lu et al. 2003; Balakeristanan and Said 

2012; Vittek et al. 2014).  Standardization is the process of defining all datasets to use the 
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exact same datum, coordinate system, reference basemap, and extent.  This process was 

completely done using ERDAS Imagine 2014.  First, all the datasets have to use the same 

projections.  As mentioned in Phase II, the spatial information used in this research was 

the Universal Traverse Mercator (UTM) Zone 11 North coordinate system and the World 

Geodetic System 1984 datum.  Datasets have to either have their projections defined for 

the first time or redefined to fit the right projection.  The “Reproject” tool in ERDAS 

Imagine 2014 was used for this task.   

Next, all three types of imagery have to be georeferenced to a common basemap 

in order to match each other’s spatial extent.  Geographic data was aligned to a known 

coordinate system so it could be viewed, queried, and analyzed with other geographic 

data.  The reference extent of both the GeoEye-1 satellite imagery and the aerial imagery 

were chosen to match UAV imagery using the “Mask” tool in ERDAS Imagine 2014.  

Both the UAV and airplane imagery was referenced to the GeoEye-1 satellite imagery.  

Using the Multipoint Geometric Correction tool in ERDAS Imagine 2014, points were 

visually chosen on the UAV and airplane imagery and then automatically linked to the 

GeoEye-1 satellite imagery in order to spatially match it.  Points that contained features 

that stood out were chosen to be linked.  Twenty points from each the UAV imagery and 

the airplane imagery were chosen and referenced to the GeoEye-1 Satellite imagery.  

Once all the links were complete, the image was transformed so that it properly overlaid 

on top of the GeoEye-1 satellite image.  

Spectral Configuration 

Configuration and determination of the spectral resolution in the related datasets 

is crucial for any sort of image analysis, especially when it relates to vegetation detection.  
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The representation of an object’s spectral response pattern increases in accuracy when 

using a dataset with higher spectral resolution.  Spectral information of an image is stored 

in bands (USDA 2013; Wolf, DeWitt, and Wilkinson 2014).  For example, the spectral 

resolution of color film corresponds to three spectral bands: blue, green, and red.  For 

more complex image sensors, devices can image an object ranging from several bands to 

hundreds of bands (Pidwirny 2006; USDA 2013; Wolf, DeWitt, and Wilkinson 2014).  

The GeoEye-1 multispectral imagery consisted of four bands.  The aerial imagery 

consisted of three bands because it was captured using a true color camera.  Band 

information for the UAV imagery, GeoEye-1 satellite imagery, and the aerial 

photography was determined and verified using ERDAS Imagine 2014.  Spectral band 

information is presented in Table 5.  

 

 

TABLE 5. Image Spectral Information  

  

Airplane 

Imagery  

GeoEye-1 satellite 

Imagery 
UAV Imagery 

Band 1 Red Blue Green 

Band 2 Green Green Red 

Band 3 Blue Red Near-Infrared (NIR) 

Band 4   Near-Infrared (NIR)   

 

 

 

For the UAV imagery, a standard true color image captured using the Ricoh GR 

III includes the three basic bands blue, green, and red.  But as described in Phase I, the 

imagery captured for this dataset utilized a lens filter outfitted on the Ricoh camera.  

Using a lens filter is advantageous because it allows for strategic targeting of specific 

bands on the spectrum (Kelcey and Lucieer 2012).  The two general types of color 

camera filters are absorption filters and interference filters (Mortimer and Davidson 
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2012).  Interference filters are built using thin film coatings onto an optical lens and they 

reflect unwanted wavelengths while absorption filters are built using colored glass lens 

that absorb unwanted wavelengths (Fisher 2004; Mortimer and Davidson 2012).  The 

Tiffen 43DY15 43mm Deep Yellow 15 Filter is a type of color lens absorption filter that 

alters the color of an image by absorbing certain wavelengths of light (Tiffen Company 

LLC 2015).  This filter absorbs the passage of some blue wavelengths in order to enhance 

the remaining wavelengths to improve the detail of vegetation features in the UAV aerial 

imagery.  This Tiffen filter is also a tone control filter.  It acts on color variations to 

produce tonal differences by lighting objects that are yellow and darkening objects that 

are its color compliment, violet.  This filter is designed to produce progressively deeper 

and artificially more dramatic representations of blue sky and enhances landscape and 

marine scenes in aerial photography (Tiffen Company LLC 2015).  

Band combinations for the UAV aerial images captured using this filter were 

determined using both the “Inquire” tool and the “Spectral Profile” tool in ERDAS 

Imagine 2014.  The Inquire tool was used to look at the pixel values of each image type 

individually to determine the correct band combinations.  The File Pixel values and the 

Look Up Table (LUT) values of pixels were analyzed to make these determinations.  

Analyzing select locations where features of one kind are known to exist, such as 

locations with high abundance of vegetation, were used as part of the process.  Viewing 

the LUT values at those locations offered a clear indicator of how the band combinations 

looked.  The band with the highest LUT values indicated that it was the near-infrared 

band.  The next highest LUT value indicated it was the red band, and the lowest LUT 

value indicated that it was the green band.  After looking at the LUT values of the test 
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filter images along with the actual UAV aerial images the correct band combination was 

determined for the UAV imagery (Table 5).  The same process was repeated for the 

airplane imagery and the GeoEye-1 satellite imagery for verification (Table 5).    

Phase III has outlined all the steps taken to properly process all the datasets that 

were used for this research.  These processes included developing orthophotos of the 

UAV and airplane imagery using the workflows from Agisoft PhotoScan.  Next, it 

detailed the processes done to standardize and georeferenced all datasets using ERDAS 

Imagine 2014.  Finally, it illustrated how the spectral resolution of each respective dataset 

was configured and verified using ERDAS Imagine 2014.  All these processes were vital 

to the next Phase, data analysis.  The results of these analyses are presented in the next 

chapter.  

Phase IV: Data Analysis 

This section details how the analysis of the processed imagery was conducted to 

develop spectral based land cover maps.  The main goal was to use methods that 

evaluated vegetation occurrence and density and demonstrated the overall land cover 

change that has taken place at Brookhurst Marsh.  This section breaks down the analysis 

into four portions: Vegetation Distribution, Classification, Accuracy Assessment, and 

Land Cover Change Analysis.  Vegetation distribution refers to visualizing the degree of 

vegetation land cover in the UAV and GeoEye-1 dataset using the Normalized Difference 

Vegetation Index (NDVI) formula.  The classification section details the different 

methods used to develop the land cover maps of Brookhurst Marsh.  The accuracy 

assessment section breaks down the measures used to assess the supervised 
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classifications.  Land cover change analysis shows the formulas used to calculate and 

compare percent change using the 2009 data as reference.  

Vegetation Distribution  

In order to assess the change that has taken place at Brookhurst Marsh, the 

vegetation land cover distribution was calculated for each dataset in order to see the 

spatial distribution of it across the study area.  While there are many methods to 

accomplish this task, this study used the NDVI to assess the occurrence of vegetation.  

Remote sensing phenology studies use data gathered by sensors that measure 

wavelengths of light absorbed and reflected by green plants (USDA 2013; USGS 2015).  

Certain pigments in plant leaves strongly absorb wavelengths of visible red light.  NIR 

wavelengths are strongly reflected by leaves.  As plants cycles from early spring to late 

fall, these reflectance properties also change.  Many sensors carried aboard aerial 

platforms measure red and near-infrared light waves reflected by plants.  Using 

mathematical formulas, raw data measured from these sensors about these light waves 

can be transformed into vegetation indices.  A vegetation index describes the degree of 

the relative density and health of vegetation for each pixel in a given image (Ali and 

Pelkey 2013; USDA 2013; USGS 2015).  

One of the most widely used vegetation index is the Normalized Difference 

Vegetation Index (NDVI).  NDVI values range from +1. 0 to -1. 0.  Areas containing 

water, rock, sand, or snow usually show very low NDVI values between -1 to 0. 1.  

Sparse vegetation such as shrubs, grasslands, and crops can result in moderate NDVI 

values around 0. 2 to 0. 5.  Higher NDVI values around 0. 6 to 0. 9 relate to dense 

vegetation, such as those found in forests or healthy crops.  NDVI values can be viewed 
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across time to establish growing condition standards in a region for a given time of year 

(USDA 2013; USGS 2015).  Health of vegetation can be temporally analyzed by 

identifying where vegetation is thriving and where it is under stress.  It can also help 

detect vegetation changes due to anthropogenic activities such as deforestation, natural 

disturbances such as wild fires, or changes in plants' phenological cycle (USDA 2013; 

USGS 2015).  

ERDAS Imagine 2014 provides an assortment of band operation toolsets that can 

be used to analyze imagery, one of which includes the NDVI operation.  The per-pixel 

NDVI calculation was performed using the formula in Figure 20. 

 

 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

FIGURE 20. Normalized difference vegetation index (NDVI) formula.  

 

 

 

Because this formula requires the use of the NIR band, only the UAV imagery and the 

GeoEye-1 satellite imagery could be utilized since they both contain that band in their 

respective band sequences.  ERDAS Imagine 2014 does a pixel-by-pixel calculation 

using this formula to create a new black and white image output that ranges from dark to 

bright depending on the pixel value.  Brighter areas showcased vegetation, areas that are 

dark grey illustrate unvegetated areas and darker areas show pixels containing water.   

Using the Normalized Difference Vegetation Index, pseudo color classified 

images of the GeoEye-1 satellite imagery and the UAV imagery were developed.  This 

level-slicing procedure was based on the pixel location in Brookhurst Marsh and the 

ability of the image specialist to interpret and classify the groups of pixels appropriately.  
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There were 256 bins in the original NDVI images and each bin represented different pixel 

clusters of a specific NDVI value.  Pixel clusters in that bin were classified into the three 

classes that were utilized in all the other classification methods in this research: water, 

vegetation, and unvegetated.  Vegetation included any of the local grasses, shrubbery, 

and any other plant features.  Unvegetated included any features that did not belong in the 

first two classes including barren land, open soil, sidewalks, roadways, and housing.  The 

classes were determined by looking at individual bins and the pixels they contained.  The 

majority of the pixels that seemed to represent a certain information class were classified 

accordingly.  Pixels closer to the class breakpoints were harder to classify and thus 

required a trial-and-error method for completion.  The distribution of the three different 

classes for these NDVI level-slices was compared between the GeoEye-1 and the UAV 

imagery.  

Classification  

Digital classification of imagery is the process of isolating, grouping, and 

arranging the reflectance statistics of pixels based on what they actually represent in the 

real world (Eastman 2003).  The three basic types of classification techniques are object 

based classification, unsupervised classification, and supervised classification.  This 

research utilized unsupervised and supervised classifications in order to analyze land 

cover variations at Brookhurst Marsh using aerial images captured using airplanes, 

satellites, and UAV’s.  Additionally, the vector and tabular data provided by Dr.  

Whitcraft were reclassified into the three main land cover classes.  All these products 

were developed using ERDAS Imagine 2014 and are shown in Chapter 4.  
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Unsupervised classification.  Unsupervised classifications utilize specific 

algorithms to make determinations about what objects within an image should be 

classified as (Eastman 2003).  When using the unsupervised classification function within 

ERDAS Imagine 2014, it uses the ISODATA algorithm.  This stands for Iterative Self-

Organizing Data Analysis Technique and it’s iterative in that it continually performs an 

entire classification and recalculates statistics (Intergraph Corporation 2013).  It is self-

organizing because of the way in which it locates the clusters that are intrinsic in the 

actual data (Intergraph Corporation 2013).  Basically, clusters are formed using the 

minimum spectral distance formula which is part of the ISODATA clustering method.  It 

begins with either random cluster means or the means of an existing signature set.  Each 

time the clustering repeats, the means of these clusters are moved and the new cluster 

means are used for the next iteration.  This clustering method repeats itself until a 

maximum number of iterations is performed or the convergence threshold is reached 

between two iterations.  Each dataset was grouped into 30 different spectral clusters and 

the convergence threshold was set to 0.950.  The convergence threshold is the maximum 

percentage of pixels whose cluster assignments can go unchanged between iterations.  In 

other words, as soon as 95% or more of the pixels stay in the same cluster between one 

iteration and the next, the algorithm will stop processing.  The maximum iteration was set 

to 10 to decrease processing time and maintain accuracy.  The clustering option is set to 

initialize from the statistics of the image.  After performing the unsupervised 

classification, all 30 spectral were individually classified into the three land cover classes: 

water, vegetation, and unvegetated using the original image as reference.  All three types 

of datasets were used to develop unsupervised land cover maps. 
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Supervised classification.  Unlike the unsupervised classification, the supervised 

classification is completely dependent on the skills and cognition of the image specialist 

or analyst and requires familiarity with the actual study site (Eastman 2003; Mitchell et 

al. 2012).  Signature sets were developed for the three base classes: water, vegetation, and 

unvegetated using the original imagery as reference.  Spectral signatures were developed 

using the Region Grow Tool in ERDAS Imagine 2014.  Region grow is a method of 

collecting spectral signatures for image classification based on geographic constraints 

(Intergraph Corporation 2013).  These constraints are set anywhere between 100,000 to 

10,000,000,000 pixels depending on the actual type of signature that had to be collected.  

These were done on a pixel-by-pixel level and were constructed by analyzing each 

feature in the imagery.  Images were divided into quadrants and multiple signatures were 

collected for each individual feature to minimize any error and discrepancy in signature 

development.   

Once all the signatures were compiled, the final signature sets were evaluated 

using the DN values as a function of band sequences to verify the accuracy of the spectral 

examples collected from the image sets.  These signature sets must be consistent using 

multiple features during comparison in order to complete verification.  Once verified, the 

supervised classification was performed, by setting the parametric rules as maximum 

likelihood and the non-parametric rules as parallelepiped.  In the parallelepiped decision 

rule, the values of the candidate pixel are compared to upper and lower limits.  These 

limits can be either the minimum and maximum values of each band in the signature set 

or the mean of each band including their standard deviations (Intergraph Corporation 

2013).  The advantage of using this rule set is that it is fast and efficient.  The maximum 
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likelihood decision rule is based on the probability that a pixel belongs to a particular 

class.  It assumes that these probabilities are equal for all classes and that the input bands 

have normal distributions (Intergraph Corporation 2013).  Out of the parametric rules this 

is the most accurate in ERDAS Imagine 2014.  Figure 21 shows the decision rule 

workflow that ERDAS Imagine 2014 uses to complete supervised classifications.  The 

output of this tool resulted with a supervised classification image that incorporated the 

three land cover classes along with a distance image file that was used to assess the 

accuracy of the classification based on the original signature sets. 

Accuracy Assessment   

Separate accuracy assessments were completed to further verify the validity of 

these supervised classifications (Eastman 2003).  The distance image file evaluates the 

supervised classified image and illustrates the variation between each classified pixel as it 

actually relates to the features in the field (Intergraph Corporation 2013).  Brighter pixels 

(containing the higher distance file values) are spectrally farther from the signature means 

for the classes to which they are assigned.  They are more likely to be misclassified.  

Darker pixels are spectrally nearer, and more likely to be classified correctly.  Since 

supervised training was used, the darkest pixels are usually related to the training 

samples.  Thresholding is the process of identifying pixels in a classified image that are 

most likely incorrectly classified (Intergraph Corporation 2013).  This was accomplished 

by viewing the distance file value histogram and determining the chi-square parameter.  

If the chi-square distribution was relatively smooth with a tail on the right side, then that 

classification was correct and the values or pixels in the tail could be removed.   
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FIGURE 21. ERDAS Imagine 2014 supervised classification decision ruleset. Adapted 

from the ERDAS Field Guide (Intergraph Corporation 2013).  
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The confidence level used was 0.05, which means that 0.05% of the pixels were 

believed to be misclassified by the software.  Accuracy assessments in the form of pixel 

reference were completed for each classification.  Finally, accuracy reports were created 

through the method of selecting random test pixels from the image for evaluation.  These 

test pixels were chosen at random by ERDAS Imagine 2014.  From there, these test 

pixels were individually sorted into the three main classes by only using the original 

image as reference.  Twenty five test pixels were generated by the software and classified 

for an accuracy assessment for each supervised classification.  

After determining the classes for all the test points based on the original imagery, 

ERDAS Imagine 2014 calculated the precision of the selection of the pixel classes by 

checking to see if the test point classification matched the supervised classification in the 

form of an error matrix.  The error matrix shows the amount of classified test pixels that 

matched the supervised classification.  The Kappa Coefficient is used to statistically 

analyze the accuracy derived from the error matrix (Gómez and Montero 2011).  The 

same standard Kappa Coefficient formulas which are assessed in Gómez and Montero’s 

(2011) analysis were utilized in ERDAS Imagine 2014.  These standard formulas were 

used to assess the accuracy of the supervised classifications in this research. 

First, the overall accuracy (𝑂𝑐) from the error matrix was calculated. This is 

defined as a proportion of the sum of the elements in the error matrix where each element 

represents the number of pixels classified by the image specialist and the pixels classified 

by the software (∑ 𝑛𝑖𝑖
𝑘
𝑖=1 ) over the number of pixels being tested (|𝑇|), (Figure 22). 
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𝑂𝑐 =  
∑ 𝑛𝑖𝑖

𝑘
𝑖=1

|𝑇|
 

FIGURE 22. Kappa coefficient: overall Accuracy (𝑂𝑐) formula (Gómez and Montero 

2011). 

 

Next, the percentage of pixels classified correctly (𝑝𝑒), defined as the proportion of the 

number of test pixels that matched the image specialist’s classification and the original 

supervised classification (∑ 𝑛𝑖𝑛𝑖𝑖 ) over the total number of test pixels (𝑛), was calculated 

(Figure 23).  

 

𝑝𝑒 =  
∑ 𝑛𝑖𝑛𝑖𝑖

𝑛
 

FIGURE 23. Kappa coefficient: correct classified pixels percentage formula (𝑝𝑒) (Gómez 

and Montero 2011). 

 

 

Finally, the Kappa Coefficient (𝐾), which is defined as the proportion of the difference 

between the overall accuracy (𝑂𝑐) and the percentage of items that were classified 

correctly (𝑝𝑒) over the percentage of items that were classified incorrectly, was generated 

(Figure 24).  

 

𝐾 =  
𝑂𝑐 − 𝑝𝑒

1 − 𝑝𝑒
 

FIGURE 24. Kappa coefficient (𝐾) formula (Gómez and Montero 2011). 

 

The Kappa Coefficient determines what percentage of the supervised classification 

process avoids errors that a completely random classification would generate by 
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outputting values between 0 and 1 (Intergraph Corporation 2013).  The closer the value is 

to 1, the more accurate that supervised classification is considered to be.  Accuracy 

assessments using the Kappa Coefficient were completed for the satellite, airplane, and 

UAV supervised classifications.  

Land Cover Change Analysis 

Land cover change was assessed using the percent change of water, vegetation, 

and unvegetated land cover classes in Brookhurst Marsh.  Percent change refers to the 

degree to which a variable increases or decreases in value.  The percent change figures 

were used to assess the land cover change using the conditions of Brookhurst Marsh in 

2009 (Balakeristanan and Said 2012; Vittek et al. 2014).  Pixel proportions of each land 

cover type for each classification were used because the raw numbers for each type of 

imagery used different metrics. These were obtained using ERDAS Imagine 2014.  In a 

particular classification, all the pixels classified as a certain land cover class (𝑃𝑐) were 

divided by the total number of pixels (𝑃𝑡) in that classification to obtain the proportion of 

pixels classified as that certain land cover class (𝑃𝑝) (Figure 25).  These proportions were 

then converted into percentages and are shown in Chapter 4.  Land cover percentages 

were also calculated for the recoded July 2009 vector data by deriving the total area of 

each land cover class type from the tabular information. 

 

𝑃𝑝 = (
𝑃𝑐

𝑃𝑡
) ∗ 100 

FIGURE 25. Land cover class percentage formula (𝑃𝑝). 
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Since physical restoration was completed in July 2009, the ideal land cover conditions 

most likely existed at the marsh at that time which is why the 2009 vegetation community 

map is used as reference to assess accuracy and land cover change among the datasets.  

Percent change figures were calculated from the pixel proportions of land cover for each 

classification.  Each percent change figure (𝐶) was calculated using the difference 

between the proportion of pixels classified as a certain information class in a particular 

classification (𝑃𝑐) and the proportion of pixels classified as that same information class in 

the 2009 vegetation community map (𝑃𝑣).  This difference was divided by the same 

figure referring to the proportion of pixels for the 2009 vegetation community map (𝑃𝑣) 

in order to normalize the percent change figures and enable comparison among the 

datasets (Figure 26).   

 

 

𝐶 = (
𝑃𝑐 − 𝑃𝑣

𝑃𝑣
) ∗ 100 

FIGURE 26. Percent change formula (𝐶). 

 

 

The average percent change (𝐶𝑎𝑣𝑔) refers to the proportion of the sum of the absolute 

value of percent change figures relating to water (𝐶𝑤), vegetation (𝐶𝑣), and unvegetated 

(𝐶𝑢) land cover over the total number of land cover class types which in this case was 

three (Figure 27).  The percent change figures were used to assess the degree of change 

among datasets at Brookhurst Marsh. 

 

 

𝐶𝑎𝑣𝑔 =
∑ |𝐶𝑤𝑣𝑢|

3
 

FIGURE 27. Average percent change formula (𝐶𝑎𝑣𝑔). 
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This chapter provides a detailed description of the methods used in this research.  

The methodology presented was designed so that it can be implemented by the 

Huntington Beach Wetland Conservancy as an effective method of analyzing land cover 

at the Huntington Beach Wetlands and determining changes taking place at a high spatial 

and temporal level.  
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CHAPTER 4 

RESULTS 

This chapter presents the visual products and statistical analyses produced.  The 

orthophotos, Normalized Difference Vegetation Indices (NDVI), NDVI level-slices, 

unsupervised classifications and supervised classifications were derived from the UAV 

imagery, GeoEye-1 satellite multispectral imagery, and airplane imagery.  The 2009 

vegetation community vector data developed by Whitcraft, Allen, and Lowe  (2013) was 

classified into water, vegetation, and unvegetated land cover classes and used for visual 

comparison to the every spectral based land cover maps developed for this study.  The 

NDVI images along with the NDVI level-slices of each product that were derived from 

the UAV PhotoScan orthophoto and the GeoEye-1 satellite imagery are provided.  

Results of the unsupervised and supervised classifications performed on the UAV 

PhotoScan product, the GeoEye-1 satellite multispectral imagery, and the airplane 

PhotoScan orthophoto are provided.  Both types of classifications were compared to the 

classified 2009 vegetation community map and the NDVI level-slice land cover maps.  

Accuracy assessments of each supervised classification are provided for the airplane, 

GeoEye-1 satellite, and UAV as well.  These techniques and products demonstrate the 

effectiveness of studying vegetation distribution and land cover in a coastal wetland 

environment.  More importantly these results illustrate the comparability and utility of the 

UAV products to those derived using the airplane and satellite platforms.   
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Aerial Imagery and Derived Products 

The pixel resolution of the UAV – derived orthophoto was 0.03 m2 (Figure 31).  

The orthophoto derived from the airplane acquired imagery was 0.1m2 (Figure 29).  Both 

were georeferenced to the GeoEye-1 satellite multispectral imagery.  The airplane 

imagery was captured in spring 2013, and as such differs from the land cover depicted in 

the UAV – derived orthophotos captured in October 2014.  Of note are the pronounced 

white barren areas that were not visible in either the GeoEye-1 multispectral imagery or 

the UAV orthophoto.  This was a veneer of salt as a result of tidal fluxes in Brookhurst 

Marsh in 2013.  The flight path did not follow a straight line across the bottom half of 

Brookhurst Marsh when capturing the aerial photos in spring 2013.  As a result, 11.3% 

percent of Brookhurst Marsh was missing from the overall extent in the airplane – 

derived orthophoto.  The sequential images drift to the right as a result of crabbing of the 

aircraft and not only resulted in missing images in the southwestern portion of the marsh 

but also created warped distortions across multiple sections of the orthophoto.  For 

example, in PhotoScan’s attempt to use photogrammetric methods to accurately map the 

southwestern portion of Brookhurst Marsh, the street and curb were pushed further 

inward towards the marsh creating a noticeable distortion in the imagery.  This clearly is 

a major issue that has to be addressed to the HBWC if they wish to continue utilizing 

piloted flights in the future to obtain aerial imagery.  

The multispectral satellite imagery had a coarser resolution than the panchromatic 

imagery. The High Pass Filter Merge of the multispectral and panchromatic image is 

shown in Appendix C.  The histograms of the HPF Merge image, the Pan Sharpening 

technique and the original GeoEye-1 multispectral image contained relatively similar 
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mean values but displayed significant differences in shape (Figure 28).  This indicated 

that there were spectral changes in the image, which was a by-product of the merging 

process and would alter the analytical results if used in this research.  In order to maintain 

the spectral integrity of the original multispectral imagery, the HPF merge and the Pan 

Sharpening merge images were not used.  The original, multispectral imagery with a 

spatial resolution of two meters was utilized for this analysis (Figure 30).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 28. Multispectral and panchromatic merge technique histograms. Subtractive 

Resolution merge histogram and mean value (Top Left).  High Pass Filter (HPF) merge 

histogram and mean value (Top Right).  GeoEye-1 multispectral imagery histogram and 

mean value (Bottom).   

Mean = 254.955 

Mean = 255.188 

Mean = 264.365 
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The UAV orthophoto captured images using a lens filter (Figure 32). In the 

format presented here vegetation appears in shades of purple, while shades of orange 

show different land features such as roadways, barren soil, and sand.  Turbid water shows 

up as much darker colors.  The ground control markers in the UAV orthophoto were also 

visible when zoomed in demonstrating the level of detail inherent in this product. This 

level of spatial detail made it easier to determine the class that pixels belonged to while 

developing the NDVI-level slice class break points and supervised classification training 

samples.  The major issue with the UAV imagery collected for this research was in the 

northern portion of the marsh.  Close to five percent of Brookhurst Marsh was missing 

from this imagery which were a result of the flight path flown from launch locations six 

through nine (Figure 13).  The radius of these flight paths didn’t completely cover the 

northern extent of Brookhurst Marsh and resulted in some missing extents of the final 

UAV orthophoto.  Because of the recent change in the FAA ruling for commercial UAV 

usage, it was not possible to conduct flights to correct this issue and capture the missing 

extent of Brookhurst Marsh.  Nonetheless, the upper northern sections of Brookhurst 

Marsh are primarily covered by water which was taken into account in the land cover 

analysis.  

The vegetation community vector data was constructed by Dr. Whitcraft by 

combining an unsupervised classification of the 2009 airplane imagery along with the 

corresponding 2009 ground transect data (Figure 32).  This vector data aided in assessing 

the validity of the UAV, GeoEye-1, and 2013 airplane land cover maps.  The 2009 

vegetation community data contained specific spatial and tabular information about the 

distribution of vegetation communities.  It detailed eight different types of vegetation 
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Brookhurst Marsh than the GeoEye-1 NDVI image.  

 

communities found in Brookhurst Marsh at that time.  These included brackish marsh, 

coastal salt marsh, coastal scrub, dune scrub, freshwater marsh, mulefat scrub, southern 

willow scrub, and non-native vegetation.  Coastal salt marsh was the predominant 

vegetative community found in Brookhurst Marsh in 2009.  The original 2009 vector data 

was reclassified into a land cover map using ERDAS Imagine 2014 to reflect the three 

classes that were also used in the land cover maps for the UAV, GeoEye-1, and 2013 

airplane datasets.  The borders of the vegetation class in this map were color coded to 

highlight the location of the different vegetation communities as they existed in 2009.  

The vegetation land cover class from the reclassified 2009 vegetation community map 

coincided fairly well with the vegetation distribution observed in all three UAV and 

GeoEye-1 spectral based land cover maps.  

Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index image was generated for both the 

GeoEye-1 satellite multispectral imagery and the UAV orthophoto using ERDAS 

Imagine 2014 (see Figures 34 and 35).  Brighter areas on the grayscale images indicate 

areas encompassing heavy concentrations of vegetation.  Shades of gray refer to areas of 

barren and urban features while darker pixels indicate locations covered with water.  Due 

to the lack of a near-infrared band in the airplane imagery, an NDVI calculation was not 

completed.  NIR bands only existed in the GeoEye-1 satellite and UAV images and their 

histograms show a fairly normal distribution of values (Figure 33). The overall 

distribution of vegetated areas between the two NDVI images show visual similarities 

and offered a good baseline visual on what land cover distributions to expect from the 

classifications.  The UAV NDVI imagery offered a more detailed and smoother look at  
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FIGURE 33. GeoEye-1 NDVI histogram (top) and UAV NDVI histogram (bottom).  
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Classification Products 

Three classification methods were implemented using ERDAS Imagine 2014 to 

show and compare the land cover distribution at Brookhurst Marsh.  These included a 

NDVI level-slice, an unsupervised classification, and a supervised classification.  The 

goal of using these methods was to demonstrate that the UAV has the potential to rival 

satellite and airplane image acquisitions through the comparison of spectral based land 

cover distribution percentages.  The errors and discrepancies within each classification 

are detailed in the next chapter.  Table 6 shows the land cover distribution percentages of 

Brookhurst Marsh for each type of classification that was derived from all the datasets.  

For this study, it was assumed that the land cover results for the 2009 vegetation 

community map were completely accurate so that reference measures, changes in land 

cover, and accuracy comparisons among the three datasets could be presented.  

 

TABLE 6. Brookhurst Marsh Land Cover Distribution  

  Water Vegetation Unvegetated 

2009 Vegetation Community Map 20.79% 32.29% 46.92% 
        

2013 Airplane  

Unsupervised Classification 
35.24% 14.95% 49.81% 

GeoEye-1 Satellite  

Unsupervised Classification 
20.74% 28.12% 51.14% 

UAV Unsupervised Classification 20.45% 29.61% 49.94% 
  

GeoEye-1 Satellite  

NDVI Level-Slice Classification 
23.39% 24.79% 51.82% 

UAV NDVI Level-Slice 

Classification 
25.52% 28.79% 45.69% 

  

2013 Airplane  

Supervised Classification 
47.42% 27.75% 24.83% 

GeoEye-1 Satellite  

Supervised Classification 
22.72% 25.85% 51.43% 

UAV Supervised Classification 20.56% 28.87% 50.57% 
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NDVI Level-Slice 

The NDVI level-slices of both the GeoEye-1 satellite multispectral imagery and 

the UAV imagery were visually consistent with the other two methods of classification. 

Specifically, these two land cover maps showed some visual vegetation distribution 

consistency with the 2009 vegetation community map, the unsupervised classifications 

and the supervised classifications.  Table 7 shows the percent increase or decrease in 

water, vegetation, and unvegetated land cover as defined by the difference in land cover 

percentages using the 2009 vegetation community map as reference. Both NDVI level-

slices showed a percent increase in water land cover and a percent decrease in vegetation 

land cover since 2009.  The percent increase in water cover was greater for the UAV 

NDVI level-slice than the GeoEye-1 level-slice.   

The average percent change for the GeoEye-1 NDVI level-slice was slightly 

greater than the UAV NDVI level-slice which could be caused by few potential reasons 

that could relate to accuracy and land cover change.  It is possible that the UAV NDVI-

level slice was a more accurate land cover representation of Brookhurst Marsh for 

October 2014 than the GeoEye-1 NDVI level-slice was for Brookhurst Marsh in 

November 2013.  This could be because the UAV imagery has a higher spatial resolution 

than the GeoEye-1 multispectral imagery which makes it easier to determine information 

classes for individual pixels.  The second reason for the GeoEye-1 NDVI level-slice 

having a greater average percent increase than the UAV NDVI level-slice could be the 

result of small changes in land cover distribution which are probable over a 4 or 5 year 

period.  

It should be noted that there were some discrepancies within these land cover 

maps.  Table 8 breaks down the class breakpoints along with the classification they 
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represent for both the UAV and the GeoEye-1 satellite NDVI level-slices. Because a 

trial-and-error method was used to determine the class association for each scaled NDVI 

value in the NDVI image, not all the pixels could be attributed to that chosen 

classification from the 256 individual bins.  This was especially so for the bins centered 

on the breakpoints of the three classes.  Selective bias exists when determining which 

class an NDVI value belongs to and was reduced by utilizing prior knowledge of the 

features in Brookhurst Marsh.  Figures 36 and 37 show the GeoEye-1 and UAV NDVI 

level-slice maps. 

 

TABLE 7. Percent Change: NDVI Level-Slice  

  

Water Vegetation  Unvegetated 

Average 

Percent 

Change  

2013 GeoEye-1 NDVI Level-slice 

&  

2009 Vegetation Community Map  

(Reference) 

12.51% -23.23% 10.44% 15.39% 

2014 UAV NDVI Level-slice &  

2009 Vegetation Community Map  

(Reference) 

22.75% -12.16% -2.62% 12.51% 

   

 

 

TABLE 8. NDVI Level-Slice Class Breakpoints  

 2014 UAV NDVI Level-slice 
2013 GeoEye-1 Satellite NDVI 

Level-slice 

Water -1 to -0.548112 -0.465302 to 0.32474 

Unvegetated -0.543091 to -0.201665  0.332486 to 0.54936 

Vegetation -0.196644 to -0.194993 0.557106 to 0.897909 
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Unsupervised Classification 

The unsupervised classified images used the statistics of the actual imagery to 

generate 30 distinct spectral clusters, which were then individually classified to the three 

main land cover classes: water, vegetation, and unvegetated.  Figures 38, 39, and 40 show 

the unsupervised classifications all three sets of imagery.  The GeoEye-1 and UAV 

unsupervised land cover classes were visually and proportionally consistent.  Both 

identified water at 20%, recognized vegetation between 28-29%, and identified 

unvegetated surfaces between 50-51% (Table 6).  The similarity in land cover 

distribution percentages verified that the procedures used for the unsupervised 

classification in ERDAS Imagine 2014 were consistent for both the UAV and the 

GeoEye-1 images.  This similarity also spoke to the minimal change that took place at 

Brookhurst Marsh from November 2013 to October 2014.  These figures also potentially 

indicated that there was a slight increase in vegetation over that period of time which 

bodes well for the monitoring measures placed on Brookhurst Marsh.  Furthermore, the 

UAV and GeoEye-1 unsupervised classifications showed visual consistency with the 

2009 vegetation community map and the NDVI-level slice land cover maps.  The 

airplane unsupervised land cover classification suffered significantly when compared to 

the other two unsupervised maps.  There was about a 14% difference in the vegetation 

class and water class for the airplane unsupervised map when compared to the GeoEye-1 

and UAV unsupervised maps (Table 6).  The most significant reason for these differences 

was caused by a lack of a NIR band. While performing the unsupervised classification, 

the software could only utilize the visible bands in the true color airplane imagery to 

develop spectral clusters which resulted in spectral redundancy.  
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Similar to the NDVI level-slice maps, the average percent change for the UAV 

unsupervised classification was less than both airplane and GeoEye-1 unsupervised land 

cover maps (Table 9).  Again, this could be a good indicator of the UAV unsupervised 

map being a more accurate representation of Brookhurst Marsh land cover for October 

2014 than either the airplane (Spring 2013) or GeoEye-1 (November 2013) unsupervised 

classifications were for their respective time periods.  This also demonstrates the strength 

of using higher spatial resolution UAV datasets since the average percent change for it 

was the lowest among the three unsupervised classifications.  The numbers for all three 

show a percent decrease in vegetation land cover since 2009 (Table 9).  

 

TABLE 9. Percent Change: Unsupervised Classifications 

 

  

Water Vegetation  Unvegetated 

Average 

Percent 

Change 

2013 Airplane Unsupervised 

Classification  

&  

2009 Vegetation Community 

Map (Reference) 

69.50% -53.70% 6.16% 43.12% 

2013 GeoEye-1 Satellite 

Unsupervised Classification  

&  

2009 Vegetation Community 

Map (Reference) 

-0.24% -12.91% 8.99% 7.38% 

2014 UAV Unsupervised 

Classification  

&  

2009 Vegetation Community 

Map (Reference) 

-1.64% -8.30% 6.44% 5.46% 
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Supervised Classification 

Figures 41, 42, and 43 show the airplane, GeoEye-1, and UAV supervised 

classifications.  Both land cover maps showed water between 20-22% and unvegetated 

surfaces between 50-51% in Brookhurst Marsh (Table 6).  The vegetation distribution 

was 28.87% for the UAV supervised land cover map while the GeoEye-1 satellite 

supervised classification showed vegetation distribution 25.85% (Table 5).  Similar to the 

NDVI level-slice maps and the unsupervised classifications, the figures in Table 10 show 

that the UAV supervised classifications had the lowest average percent change most 

likely due to its’ high spatial resolution characteristic. For all three supervised 

classifications, vegetation land cover showed an overall percent decrease since 2009 

(Table 10). Again, the average percent change can also be attributed to errors and 

differences in classifying the 2009 land cover map and the supervised classifications.  

 

 

TABLE 10. Percent Change: Supervised Classifications 

  

Water Vegetation Unvegetated 

Average 

Percent 

Change 

2013 Airplane Supervised 

Classification &  

2009 Vegetation Community 

Map (Reference) 

128.09% -14.06% -47.08% 63.08% 

2013 GeoEye-1 Satellite 

Supervised Classification &  

2009 Vegetation Community 

Map (Reference) 

9.28% -19.94% 9.61% 12.94% 

2014 UAV Supervised 

Classification &  

2009 Vegetation Community 

Map (Reference) 

-1.11% -10.59% 7.78% 6.49% 
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Again due to the limited reliance on the visible bands of the airplane imagery and 

a lack of spectral difference, the airplane supervised land cover map shows a lot of visual 

errors in attempting to distinguish intertidal mudflat areas and water (Figure 29).  Even 

though the GeoEye-1 and UAV supervised training samples had minor issues with 

distinguishing water and unvegetated land cover classes, they showed strong overall 

visual consistency with the 2009 vegetation community map, the NDVI-level slice land 

cover maps, and the unsupervised classifications.  

Accuracy assessment.  The three types of accuracy assessments that were 

conducted to evaluate the supervised classified images are the distance image files, 

thresholding, and overall accuracy reports.  While distance images are not a complete 

measurement of accuracy, they provide a general overview of distributions between the 

classification and the original imagery.  The supervised classification distance file 

histograms for all three types of imagery indicated a chi-squared distribution which was 

to be expected if the maximum likelihood classification was performed correctly 

(Appendix D).  In regards to thresholding, both the GeoEye-1 and UAV imagery 

displayed a smooth chi-square histogram distribution at the 0.05 confidence level for all 

three signature classes.  On the other hand, the airplane imagery struggled with defining 

water and vegetation signature classes.  These spectral signature classes were showing 

polymodal (multiple peaks) chi-squared distributions which are indicative of inaccurate 

class feature representations. These were the caused by insufficient spectral differencing 

due to a lack of a NIR band in the airplane imagery.   

Generating the assessment report for all three types of imagery offered a better 

perspective on the degree of accuracy for the supervised classifications. Table 10 
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provides the overall accuracy percentages and corresponding kappa coefficient figures for 

the three supervised classifications.  It should be emphasized that these accuracy reports 

were user driven. The accuracy figures can fluctuate based on the skill of the image 

specialist in determining the appropriate class for the test pixels based on the original 

imagery.  The higher the overall accuracy percentage for the supervised classification the 

more accurate those supervised training classes were at representing land cover at 

Brookhurst Marsh for the respective time periods.  The kappa coefficient, which ranges 

between 0 and 1 with 1 being the most accurate, indicates the proportion of errors a 

classification avoids that a completely random classification would generate.  Both the 

GeoEye-1 and UAV supervised classifications had the same overall accuracy but the 

UAV had the highest kappa coefficient (Table 10).  This meant that the GeoEye-1 had 

markedly more issues spectrally classifying individual pixels than the UAV supervised 

classification.  Similar to the results of the thresholding, the airplane supervised 

classification’s overall accuracy and kappa coefficient numbers were the lowest because 

of insufficient spectral differencing in the original imagery (Table 10).  

 

TABLE 10. Supervised Classification Overall Accuracy and Kappa Coefficients 

  Overall Accuracy Kappa Coefficient 

2013 Airplane Supervised 

Classification  
60% 0.34 

2013 GeoEye-1 Satellite 

Supervised Classification 
84% 0.64 

2014 UAV Supervised 

Classification 
84% 0.72 
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This chapter provides the analytical and statistical results of the comparison 

between classifications of the different data products.  These included the base products: 

the airplane PhotoScan aerial orthophoto, the GeoEye-1 multispectral satellite imagery, 

and the UAV PhotoScan aerial orthophoto.  The 2009 vegetation community vector data 

was reclassified into a land cover map for visual and statistical reference to the spectral 

based land cover maps of the UAV, GeoEye-1, and airplane datasets.  The Normalized 

Difference Vegetation Index analysis produced the GeoEye-1 NDVI and UAV NDVI 

images, along with the GeoEye-1 and UAV NDVI level-slice land cover maps.  Finally, 

unsupervised classification and supervised classifications were performed for all three 

datasets and lastly accuracy assessments were completed for each corresponding 

supervised classification.  Each land cover map was referenced to the 2009 vegetation 

community map to determine percent change statistics relating to increases or decreases 

in water, vegetation, and unvegetated land cover types in Brookhurst Marsh.  
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CHAPTER 5 

 

DISCUSSION 

This study demonstrates the applicability of a method for conducting aerial 

surveys using Unmanned Aerial Vehicles (UAV).  This research demonstrates and 

compares methods of image analysis through different classification techniques in order 

to limit the degree of ground survey data required for annual community and species 

mapping at the Huntington Beach Wetlands and by extension, to other wetland 

environments.  

Assessment and Significance 

This research has demonstrated some important features of remote sensing as they 

relate to UAV acquired aerial imagery.  Images derived from the UAV platform offers 

both spatial and temporal advantages over airplanes and satellites.  It should be noted that 

UAV platforms, especially quadcopters are best suited for research limited to small 

spatial extents.  Studies of areas on the order of a few square kilometers can benefit from 

UASs.  Image analysis of both the GeoEye-1 satellite and UAV imagery demonstrated 

that commercial off-the-shelf (COTS) cameras, modified to capture NIR wavelengths can 

yield comparable results to satellite sensors if the images are captured using a UAV 

platform and processed using a systematic approach.  In this study, the high spatial 

resolution UAV imagery has shown to offer a more detailed land cover assessment for 

water, vegetation, and unvegetated surfaces at Brookhurst Marsh over airplane and 

satellite derived imagery.  Basically, a higher level of spatial detail makes the detection 



113 
 

and distinction of vegetation cover much easier.  It should be noted that aerial imagery 

captured by airplane and satellite platforms have a coarser spatial resolution than the 

imagery captured by the UAV because of the respective altitude from which these images 

were taken at.  While achieving sub-centimeter resolution is possible through both 

airplane and satellite platforms, the UAV platform provides temporal resolution 

capabilities far beyond those available with airplane and satellite platforms.  Instead of 

having to rely on the repeat time for satellites or scheduling flights with a private pilot, a 

UAV can be readily deployed over the marsh and capture aerial imagery whenever 

updated surveys are needed and when plant phenology is favorable for identifying 

specific plant species or communities.  

This study demonstrated a viable first step towards vegetation community and 

even species mapping.  There was visual consistency in vegetation land cover between 

the reclassified 2009 vegetation community map and all three UAV and GeoEye-1 

spectral based land cover maps.  Consequently, the similarity of land cover percentages 

and consistency in location of water, vegetation and unvegetated surfaces between the 

UAV and GeoEye-1 satellite images was indicative of the spectral potential that UAV 

imagery can offer.  The relative consistency between the GeoEye-1 and the UAV 

supervised classifications also illustrated that the land cover has not changed significantly 

and even more importantly the vegetation cover has remained consistent if not increased 

from November 2013 to October 2014 at Brookhurst Marsh.  This consistency also 

speaks to the success of the HBWC in implementing preservation policies that 

encouraged vegetation growth during that period of time.  The vegetation land cover 

percentages in the NDVI level-slice, the unsupervised, and supervised land cover maps of 



114 
 

the GeoEye-1 satellite multispectral imagery displayed more variation than the UAV land 

cover maps.  The water and vegetation land cover percentages showed variation to a 

lesser degree in all the UAV land cover maps as well.  These small percentage variations 

can be attributed to either human errors in processing and calculation, the spatial 

resolution of the datasets, or actual differences in land cover between November 2013 

and October 2014.  The location of some of the pixels classified as vegetation in the 

airplane unsupervised classification were sporadically consistent with the vegetation 

locations of the unsupervised classifications derived from the other two platforms.  The 

GeoEye-1 satellite and UAV aerial image unsupervised classifications also showed a 

much clearer representation of the different land cover classes than the NDVI level-

slices.   

All land cover maps showed a percent decrease in vegetation cover when 

compared to the 2009 vegetation community map.  While this could indicate that 

vegetation cover has decreased in Brookhurst Marsh since 2009, it was most likely the 

case of overestimation of vegetation land cover in the 2009 vector data.  As concluded in 

the study completed by Wade et al. (2003), there were no significant differences in vector 

data and raster-based land cover assessments but some cases illustrated statistically 

higher efficiency and accuracy when using raster data to assess land cover.  All three 

spectral based UAV land cover maps showed the smallest average percent change when 

compared accordingly to the airplane and satellite maps.  This speaks well for the 

accuracy of the UAV imagery as the smallest average percent change makes it the closest 

statistical match to the 2009 vegetation community land cover map.  Additionally, the 

visual similarity and land cover percentage agreement of the three land cover classes 
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among the 2009 vegetation community land cover map, NDVI level-slice maps, and the 

unsupervised and supervised classifications for both the UAV and GeoEye-1 satellite 

imagery is significant because it shows that the NDVI level-slice method can be 

comparable to the other classification methods.  This is important and ideally beneficial 

for environmental agencies requiring timely data because the NDVI level-slice method of 

developing land cover maps takes less time to implement than a complete supervised 

classification.   

As demonstrated in this research, aerial photography provides an overall picture 

of land over change within Brookhurst Marsh.  Along with this, permissions from land 

owners that only require a few hours installing ground transects are more easily attainable 

than those consisting of days.  This study has also shown that the aerial imagery collected 

from Dr. Whitcraft was much more spectrally limited for land cover analysis than the 

UAV or satellite imagery.  This airplane imagery was inadequate because the spatial 

extents were incomplete, the image quality was somewhat poor due to atmospheric 

effects, and the utilization of a true color digital camera without any proper filtration of 

the lens could not capture NIR wavelengths.  All these factors yielded poor spectral based 

land cover maps.  The UAV imagery was more comparable to the satellite imagery than 

the airplane imagery was to the satellite imagery based on the land cover statistics of 

water, vegetation, and unvegetated surfaces derived from these maps.  With access to 

higher spatial imagery as offered by the low cost UAV platform used in this study, the 

vegetation community maps developed by Dr. Whitcraft and Merkel & Associates can 

potentially be improved.  The agreement in land cover with the 2009 vegetation 
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community map and the GeoEye-1 maps demonstrates that the UAV platform can be 

ideal for future annual mapping and assessment of Brookhurst Marsh.  

Errors and Limitations 

 This study contained limitations as they relate to data collection, data processing, 

and data analysis.  As mentioned earlier, the spatial extent of both the UAV imagery and 

the airplane imagery did not completely encompass the extent of Brookhurst Marsh.  

With data collection, the main constraint with using the DJI Phantom quadcopter was that 

it was manually piloted using only line of sight.  There were no real-time feedback 

capabilities in this system that could inform an operator of altitude, speed, angle, and 

perspective while capturing aerial imagery.  All this was done using visual cues from the 

ground.  This limitation can be solved by using a UAS that is fully autonomous or one 

that offers flight planning capabilities such as the advanced Phantom models offered by 

Dajiang Innovation Technology.  As a result of manual flight operation and acquisition, 

the northeast portions were slightly cut off in the UAV imagery.   

There were many more limitations for the airplane imagery used in this study.  A 

significant amount of images in the northeast and southwest portions of the marsh were 

not captured during the initial flight in spring 2013.  Additionally, there were visible 

distortions along the edges of the marsh because of incomplete overlapping during the 

image collection by the pilot.  A lack of a NIR band also created some difficulty in 

assessing this airplane imagery.  These difficulties rose from the fact that the visible 

bands derived from a true color image are highly correlated.  This high correlation makes 

the information derived from them redundant since they originate from the same range on 

the electromagnetic spectrum (CRISP 2001; Eastman 2001; Pidwirny 2006).  A NIR 
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band would allow for some spectral variation which could yield better results for the 

spectral based land cover maps as shown with the successful construction and analysis of 

the GeoEye-1 and UAV spectral based land cover maps.  This also meant that a NDVI 

could not be computed nor could an NDVI level-slice be performed for this aerial 

imagery.   

 Due to time constraints, ground based observations for the purposes of assessing 

the potential for vegetation community and species level mapping could not be 

performed.  Merkel & Associates and Dr. Whitcraft did not collect ground transect data 

for 2014 hence constraining this analysis from potentially developing vegetation 

community maps derived from the October 2014 UAV acquired imagery.  It would have 

been important to see if the Ricoh GR III camera along with this Phantom quadcopter 

could be successfully utilized to develop vegetation community maps.  As seen with the 

2009 vegetation community map, Merkel & Associates along with Dr. Whitcraft used a 

combination of aerial imagery and ground transects to develop these maps.  While they 

used the same unsupervised image classification technique, they do not detail the specific 

methods they used to create estimates based on the ground transect data.  Having their 

methodology could have helped inform the construction of the unsupervised and 

supervised land cover maps for this research. This information would also be required for 

future research and vegetation community map development.   

There were also some issues in calculating the percent change figures for all the 

land cover maps.  The land cover proportions from the 2009 vector data were used to 

normalize the percent change for each type of land cover map.  The 2009 vector data is 

not perfect for a few reasons. In the final reports developed by Merkel & Associates 
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(2011) and Whitcraft, Allen, and Lowe (2013), there were no measures utilized to check 

the accuracy and validity of their land cover distribution results.  It is assumed that their 

analysis was representative of the land cover conditions in 2009 to provide a baseline 

reference to compare land cover measures and accuracy.  Additionally, each area of 

individual classes in the 2009 vegetation community map was derived from data in vector 

format, which means that it is probable that the class areas from the 2009 map could have 

been under or overestimated since vector data is based on individual observations rather 

than continuous data that is inherent in raster-based imagery (Wade et al. 2003).    

A lack of access to earlier aerial imagery of the marsh is another factor that 

limited this research.  If the UAS utilized for this study is shown to successfully develop 

vegetation community maps, then this type of map could be compared to historical aerial 

imagery and older vegetation community maps such as the 2009 vegetation community 

map.  This type of analysis could essentially provide a better perspective on the degree of 

change that has taken place at the vegetation community level in Brookhurst Marsh.  It 

could potentially help inform the Huntington Beach Wetlands Conservancy of the types 

of measures that have aided in the preservation and growth of the vegetation communities 

at different periods of time in Brookhurst Marsh.   

As far as the analysis portion is concerned, supervised training samples are 

dependent on the manual interpretation skills of the image specialist and the tools used to 

create those samples with the image analysis software.  The methods used to develop the 

supervised signatures in ERDAS Imagine 2014 displayed difficulty at times 

distinguishing the spectral differences between water features and unvegetated features in 

some areas for all three types of aerial images.  This was especially evident in the 



119 
 

intertidal mudflat areas where the water was shallow enough that it resembled 

unvegetated features such as soil or barren land.  It was increasingly difficult to develop 

distinct signature classes for the airplane imagery because of these indistinguishable 

spectral resemblances.  The same was occasionally seen in the GeoEye-1 satellite 

imagery where there were examples of intertidal mudflat areas which caused some of the 

errors in the supervised classification.  

Because the airplane imagery and the GeoEye-1 satellite imagery were taken in 

2013, it was difficult to judge what some features might have looked based on the 2014 

field observations.  Of course drastic changes would most likely not have occurred but 

changes to a lesser degree are much more probable.  Since some features were 

indistinguishable between one another in both the airplane and GeoEye-1 satellite 

imagery, it would have been valuable to have the knowledge of the features and their 

distributions as they existed in 2013, when these datasets were captured.  In turn, this 

knowledge would have helped out in the field while capturing the UAV imagery by 

offering a better indication of the types of features that exist in Brookhurst Marsh.  It 

would have also assisted during the data analysis phase because it could help inform the 

construction of spectral signature classes for the land cover features.  Additionally, this 

knowledge could further assist in the possible quantification of the degree of changes in 

the conditions at the marsh.  Again, it is difficult to make assumptions based off of other 

sourced aerial imagery since the field conditions might not have been as similar as they 

were when the UAV data was captured in October 2014.   

There were also some errors with the NDVI level-slice images.  Each of the 256 

bins in the original NDVI image represented a certain NDVI value which pertained to a 
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group of pixel clusters.  Some of these pixels near the edge of the class breakpoints 

belonged to multiple information classes.  The GeoEye-1 NDVI level-slice was noisier 

than the UAV NDVI level-slice land cover map when it came to making distinctions 

between water and suspended sediments along with incorrectly classifying known 

unvegetated pixels as water in the southeastern most portion of the marsh.  For both 

images, there were multiple locations especially in the southeast portion and central 

portion of the marsh where pixels were clearly misidentified as water or unvegetated 

classes.  The average percent change figures for the UAV and GeoEye-1 was the highest 

in the NDVI level-slices in comparison to the unsupervised and supervised land cover 

maps’ average percent values which showed some limitation of the accuracy this method 

produced. There was an overall consistency in location of the vegetation classes between 

the GeoEye-1 and UAV NDVI level-slice maps which spoke to the reliability of how this 

method was performed.  

The unsupervised classification of the airplane imagery was the noisiest in regards 

to what the actual conditions on the field should have looked at the time.  Again, the 

issues came from the fact that the actual imagery lacked an NIR band which affected the 

decisions that ERDAS Imagine 2014 made about the spectral clusters.  An insufficient 

spectral difference limited the software to solely rely on the true color wavelengths of the 

airplane imagery which resulted in a poor unsupervised classification.  The issues of 

clusters being misclassified incorrectly existed in all three image sets but were most 

prevalent in the airplane imagery because of the previously mentioned issues.  Again, 

some of the suspended sediments in the water around Brookhurst Marsh were very 

similar in spectral reflectance to soil landscape.  The unsupervised calculation over 
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classified cells as water rather than vegetation for the airplane orthophoto.  For both the 

GeoEye-1 and UAV unsupervised classifications, the southernmost portions of the marsh 

exhibited some inconsistency mainly with known vegetation and unvegetated surfaces 

being classified as water pixels.  The GeoEye-1 unsupervised classification showed some 

additional discrepancy by classifying areas where water existed as unvegetated pixels.   

With the supervised classifications, the discrepancies from the airplane displayed 

a similar erroneous result as seen with the unsupervised land cover map.  Pixels were 

predominantly over classified as water over both vegetation and unvegetated surfaces.  

These discrepancies rose from the spectral redundancy of the airplane imagery which 

resulted in difficulty in differentiating the water, vegetation, and unvegetated land cover 

classes when the training samples were being developed.  Additionally, defining 

signature classes for the supervised classification became increasingly difficult especially 

when looking at specific pixels because of the haze like effect in the airplane imagery.  

As mentioned earlier, the individual images contained these hazy effects that were 

possibly caused by clouds overhead or limited sunlight on the area when the airplane was 

flown in April 2013.  The GeoEye-1 supervised classification showed more visual 

improvement over the unsupervised classification.  The UAV supervised classification 

was able to correctly classify more pixels as vegetation in the southern portion of the 

marsh over the unsupervised classification.  Similar to the unsupervised classification, the 

inconsistencies for both the GeoEye-1 and the UAV supervised classifications were seen 

in the southern portions of the marsh where pixels were classified as water in areas that 

were actually vegetation and unvegetated in the original imagery.  
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Future Research 

Overall, the visual and statistical consistency among the UAV and GeoEye-1 

spectral based land cover maps and the reclassified 2009 vegetation community map was 

a strong indicator that the methods used in this research are viable for ecological 

assessment at Brookhurst Marsh.  Furthermore, the spectral limitations in the airplane 

imagery, which has been used by the Huntington Beach Wetland Conservancy, yielded 

very poor unsupervised and supervised classifications.  This combined with the 

successful comparability of the UAV land cover maps should be evidence enough for the 

implementation of UAS remote sensing for the ecological and temporal assessment of the 

Huntington Beach Wetlands.   

The next step in this research can potentially come with the development of 

vegetation community and/or species maps.  As illustrated with the 2009 vegetation 

community land cover map, HBWC along with Dr. Whitcraft have been using aerial 

imagery captured by airplane for their analysis in developing these types of maps over the 

past few years.  The development of vegetation community maps required extensive 

manual interpretation and ground surveys which in turn necessitated resources in the 

form of time and effort.  Ground surveys are necessary for obtaining metrics (e.g. 

abundance, percent cover, species richness, community composition) that are 

unattainable through aerial remote sensing (Woodfield and Merkel 2011; Whitcraft, 

Allen, and Lowe 2013).  Using aerial photography, physical access to the marsh is not 

required during sensitive times of the year such as bird breeding season (Woodfield and 

Merkel 2011; Whitcraft, Allen, and Lowe 2013).  The UAV platform can potentially 

reduce the time needed to spend ground surveying and potentially reduce the instance of 
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harm coming to wildlife that inhabit the marsh. The accuracy and flexibility of the UAS 

can augment the efforts of the HBWC in monitoring the Huntington Beach Wetlands.  
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CHAPTER 6 

 

CONCLUSION 

 

This research provides a detailed methodology for Unmanned Aerial Vehicle 

(UAV) aerial image acquisition for the purposes of vegetation analysis at the Huntington 

Beach Wetlands.  These methods provide a systematic approach to planning and training, 

data collection, data processing, and data analysis in order to assess the land cover and 

vegetation in Brookhurst Marsh.  This systematic approach demonstrates the advantages 

of UAV acquired aerial imagery in comparison to imagery captured using satellite and 

airplane platforms.  Essentially, these methods build the first step towards a foundation 

for creating vegetation community based classifications and cartographic products.   

 The method includes four steps.  Phase I describes planning and data collection 

training and includes recommendations for site selection, calibrating and prepping all 

necessary equipment, and considering all pre-flight factors including permissions, safety, 

weather, and training.  Phase II provides steps required for consistent data collection.  

This includes all primary and secondary acquisitions.  Specifically, these encompassed 

the UAV, airplane, and GeoEye-1 satellite aerial imagery of Brookhurst Marsh.  Phase III 

comprised of all data processing tasks including standardization, georeferencing, 

photogrammetric image assembly, and band configuration.  Lastly, Phase IV consisted of 

all the image analysis techniques used.  These entailed reclassifying the 2009 vegetation 

community vector data into a land cover map, calculating the Normalized Difference 
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Vegetation Indices (NDVI), creating the NDVI level-slices, and performing the 

unsupervised and supervised classifications along with generating accuracy reports.  

 The results across all three types of spectral based land cover maps and the 

reclassified 2009 vegetation community map illustrate distributional consistency among 

the vegetation, unvegetated, and water land cover classes between the UAV aerial 

imagery and the GeoEye-1 satellite multispectral imagery.  These consistent results also 

demonstrated that the degree of land cover change has been minimal from November 

2013 to October 2014.  These results also showed some semblance of distributional 

consistency among pixels classified as vegetation in the airplane unsupervised and 

supervised land cover maps when compared to the UAV and GeoEye-1 classifications.  

But the two main limitations in the airplane aerial imagery stemming from a lack of a 

NIR band which limited the degree of spectral difference that could be utilized along with 

poor flight trajectory which created image distortions resulted in very poor unsupervised 

and supervised land cover maps.  The level of high spatial and temporal resolution was 

highlighted by the UAV acquired aerial imagery and provides a great advantage for 

future acquisitions over satellite and airplane platforms at Brookhurst Marsh.  The visual 

similarity between the 2009 vegetation community land cover map and the three spectral 

based land cover maps for the UAV and GeoEye-1 speak to the consistency and success 

of preservation methods employed by the Huntington Beach Wetland Conservancy.  

Additionally, the consistency and distributional agreement of all three land cover classes 

between the UAV and GeoEye-1 NDVI level-slices and their respective supervised 

classifications suggested that the NDVI level-slice method can potentially be utilized for 
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a rapid and accurate first-step vegetation assessment by environmental conservancies 

looking to develop spectral based land cover maps.      

Suggestions for Potential Work 

 The methods described and implemented in this research require further 

development and progression with respect to data collection and data analysis.  First it 

would be important to assess the Unmanned Aerial System (UAS) utilized for this study 

in conjunction with concurrent ground surveys for developing an updated vegetation 

community based map of Brookhurst marsh.  Consequently, capturing updated UAV 

aerial imagery of Brookhurst Marsh and gathering concurrent vegetation ground survey 

data will be required for future analysis.  If the UAS utilized in this research, which 

incorporated the Ricoh GR III and Phantom quadcopter, coupled with vegetation ground 

transect data prove to be insufficient for mapping vegetation communities, then aerial 

image acquisition should be enhanced with the use of more sophisticated UASs.  This 

would entail using larger UAV platforms that can hold a heavier and ideally a more 

sophisticated payload than what was utilized for this study (Watts, Ambrosia, and 

Hinkley 2012).  Examples of such UAS include the Phantom 2 Vision Plus or the 

Phantom 3 Advanced which have the ability to automatically plan and execute flight 

operations for more precise aerial image acquisition missions.   

This research provides a first step towards mapping vegetation communities.  

Future work will undoubtedly necessitate the utilization of ground transect methodologies 

as conducted by Whitcraft, Allen, and Lowe (2013) or similar wetland vegetation 

monitoring protocols as established in their report by the Toronto and Region 

Conservation Authority (2011).  Developing vegetation community and species level 
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maps of Brookhurst Marsh require ground surveys to an extent (Woodfield and Merkel 

2011; Whitcraft, Allen, and Lowe 2013).  Essentially the land cover analysis presented 

here can be taken further with vegetation ground survey data and could potentially help in 

the development of vegetation community mapping.  Furthermore, a more sophisticated 

development of spectral signatures of select communities or species through the 

investigation of textures in the UAV aerial imagery could be a valuable addition for 

future research in mapping Brookhurst Marsh’s vegetation habitat distribution.  Research 

in object-based image analysis (OBIA) for species and community spectral differencing 

through using software such as eCognition could be an easier and efficient means to 

creating vegetation community maps (Willhauck 2000; Niemeyer and Canty 2003; Shi, 

Wang, and Xu 2011).  The OBIA software environment, eCognition 9. 0, is used to 

develop rulesets such as spectral signatures for remote sensing image analysis (Trimble 

2015).  A creation of an extensive spectral library developed using this type of software 

can provide the framework for automation.  This type of enhanced streamlined method of 

analysis coupled with a sophisticated remote sensing UAS could potentially reduce the 

use of the ground survey methodology previously used by Whitcraft, Allen, and Lowe 

(2013) and Merkel & Associates, Inc (2011).  Ultimately, it could potentially provide 

significant and efficient ecological and temporal insights detailing plant phenology and 

land cover at Brookhurst Marsh.  

 Because of the temporal flexibility as illustrated by this study, of the UAV remote 

sensing platform, future analysis involving change detection could be more feasible.  

Change detection is the process of identifying differences in the state of an object or 

phenomenon by observing it at different times (Singh 1989, Lu et al. 2003; Théau 2012; 
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Vittek et al. 2014).  It involves the application of multi-temporal datasets to quantitatively 

analyze the temporal effects of a phenomenon such as land cover distribution or changes 

in plant phenology (Théau 2012).  Datasets can potentially be acquired using a UAV at 

designated times.  For example, a UAV can be deployed on a monthly basis to assess the 

change in vegetation distribution over the course of a year, or they can be deployed daily 

to assess the change at the marsh on a weekly basis.  The end goal would be to streamline 

UAV remote sensing aerial image acquisitions and spectral based land cover analysis 

with the ground survey methods developed by Whitcraft, Allen, and Lowe (2013) to 

create accurate time-sensitive vegetation community and/or species maps of the 

Huntington Beach Wetlands.  
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 These are the 2014 regulations set forth by the United States Federal Aviation 

Administration (FAA) regarding the use of Unmanned Aerial Vehicles in commercial 

airspace for recreational purposes (FAA 2014). These rules were followed during all 

UAV aerial image acquisition procedures: 

 Fly below 400 feet and remain clear of surrounding obstacles, flight speed cannot 

exceed 200 kts of true airspeed 

 Keep the aircraft within visual line of sight at all times 

 Remain well clear of and do not interfere with manned aircraft operations 

 Don't fly within 5 miles of an airport unless you contact the airport and control 

tower before flying 

 Don't fly near people or stadiums 

 Don't fly an aircraft that weighs more than 55 lbs unless it is certified by an 

aeromodeling community-based organization 

 Don't be careless or reckless with your unmanned aircraft as it could result in a 

fine for endangering people or other aircrafts  
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SATELLITE PANCHROMATIC AND PAN-SHARPENED MODELS 
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SUPERVISED CLASSIFICATION ACCURACY HISTOGRAMS 
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FIGURE 48. Distance histogram of the airplane aerial supervised classification. The 

histogram shows a chi-square distribution indicative of proper classification procedures. 

 

 

 

 

 

FIGURE 49. Distance histogram of the GeoEye-1 satellite supervised classification. The 

histogram shows a chi-square distribution indicative of proper classification procedures. 
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FIGURE 50. Distance histogram for the UAV supervised classification. The histogram 

shows a chi-square distribution indicative of proper classification procedures. 
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