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ABSTRACT 

 

TIME DEPENDENT VEHICLE ROUTING IN A LARGE ROAD NETWORK 

By 

 

ZHU ZHANG 

 

Chairperson: Professor Xin Chen 

 

 

Vehicle Routing Problems (VRP) deal with the delivery of vehicles to multiple destinations 

(or customers). The objective of VRP is to minimize the total travel cost (e.g., time). This 

thesis investigates and develops algorithms to solve VRP in time-dependent large road 

networks. An efficient and effective time-dependent shortest path algorithm is developed. 

Experiment results show that the arc labeling algorithm is more space efficient compared to 

the classic node labeling algorithm. This thesis also develops assignment algorithms in order 

to minimize the maximum travel cost while minimizing the total travel cost. Several methods 

are implemented to investigate the factors that affect computation efficiency of VRP, 

including road network size and structure, and computer programming. The applicability of 

Genetic Algorithms is also studied. Computer programs of algorithms are developed in 

several software environments including General Algebraic Modeling System (GAMS; 

GAMS Development Corporation, 2013), MATLAB, Microsoft Excel 2013, and Microsoft 

Visual Studio 2013. The results show that VRP in a time-dependent large road network can 

be solved efficiently and effectively using the algorithms and methods developed in this 

thesis. 
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CHAPTER I 

INTRODUCTION 

Problem Statement 

Generalized Vehicle Routing Problems (VRP) deal with the delivery of certain number of 

vehicles to several destinations (or customers). The objective of VRP is to minimize the total 

travel cost or time. Often, it is convertible from time to cost, and vice versa; so cost or time 

will have duplicate meanings hereafter in this thesis. In most cases VRP problems have been 

modified in order to meet the demand of real life. Hereby, there are many variations arising in 

the research paper and most of them have specific implications. 

 

In this thesis, the VRP problem would be extended in a time-dependent road network where 

multiple vehicles will travel from several depots to several destinations with some 

preparation time. The problem is also called Time Dependent Vehicle Routing Problem 

(TDVRP), though it differs from typical TDVRP featuring traveling salesman problems in 

several factors as below: 

1. One vehicle can go to only one destination. 

2. There is no requirement that vehicles should return to depot after servicing 

destination. 

 

Hence, the core of TDVRPs in this thesis is to find out time-dependent shortest path between 

depots and destinations and then minimize the total travel cost for the vehicles available. 
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Purpose of the Study 

This thesis is an extension of the author’s research group’s previous work on evacuation 

planning (Kuru et al., 2013). In their research, VRP in a time-dependent transportation 

network, which has around 300 nodes, could be solved in around half an hour. While the 

transportation network size increases to more than 1000 nodes, their methodologies could not 

generate proper results within certain computation time due to memory limitation. Since 

TDVRP in real-life applications, like evacuation planning, requires very short computation 

time in order to respond to an emergency situation. The thesis aims at efficiently and 

effectively solving TDVRP in large road networks which has more than 3,000 nodes. The 

thesis will investigate and develop time-dependent shortest path algorithms to solve time-

dependent shortest path problems, as well as apply assignment algorithms to solve some real-

life assignment applications. Moreover, several factors affecting computation time for 

TDVRP will be discussed. Relevant literatures will be reviewed and future research 

directions will be suggested. 

Significance of the Problem 

It has been more than half a century since researchers started to investigate VRPs. The 

problem still receives highlight and attention due to its widespread applications and the fact 

that, practically it could not be solved optimally and efficiently. The VRP has a wide range of 

applications such as bank or postal deliveries and school bus or emergency vehicle routing. 

Research on the VRP stemmed from the travelling salesman problem (Dantzig, 1954) and 

was further developed in some early applications (Balas and Toth, 1985; Clarke and Wright, 

1964; Haimovich et al., 1988; Laporte et al., 1987). Recent research focused on heuristic and 
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meta-heuristic approaches (Bräysy and Gendreau, 2005). Most early studies assumed vehicle 

travel time between two nodes was static and did not change along with traffic conditions. 

 

During the last decade, TDVRPs have gained increasing attention (Almoustafa and 

Mladenović, 2013; Ando, 2006; Chen et al., 2005; Figliozzi, 2012; Haghani and Jung, 2005; 

Ichoua et al., 2003; Kritzinger, 2012; Lecluyse et al., 2009; Maden and Black, 2010; Spliet 

and Gabor, 2012; Vidal et al., 2013; Woensel et al., 2008). In the TDVRP, travel time 

between two directly connected nodes is dynamic and depends on many factors such as traffic 

and traffic signal timing. In many cases, travel time may be described as a function of the 

departure node, time at which a vehicle begins to travel, and the node at which the vehicle 

plans to arrive. 

 

To date, there is yet no effective algorithms that could solve TDVRP in a large road network 

which has more than 3000 nodes. The purpose of this thesis is to research and develop 

TDVRP algorithms as well as investigate factors that affect computation time in order to 

efficiently solve TDVRPs. 
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CHAPTER II 

REVIEW OF LITERATURE 

Vehicle Routing Problem 

The Vehicles Routing Problem has been extensively studied in recent years. There are 

innumerable variants of VRP emerging in the literature. In terms of input parameters, VRP 

includes the number and origins of vehicles, the size and structure of a road network, the 

number of destinations, and travel times (dynamic or static), preparation time, time window 

and etc.; In terms of output parameters, the methods introduced to solve the VRP could be 

single objective, bi-objective, or even triple-objective. These methods stipulated various 

conditions for one or more parameters. One of the most common conditions was the upper 

limit for the size of road networks. Other examples of conditions include static travel time 

and upper limit for the number of destinations. These methods become ineffective (solutions 

far from optimal) or inefficient (could not identify a good or optimal solution within an 

acceptable amount of time) when stipulated conditions do not hold. To develop effective and 

efficient algorithms to solve VRPs with a wide range of parameter values remains a 

considerable challenge (Vidal et al., 2013). 

 

Since exact methods that identify optimal vehicle assignments and routes are either 

ineffective or inefficient for generalized VRPs, heuristic methods including Genetic 

Algorithms (Haghani and Jung, 2005), tabu search (Ichoua et al., 2003, Archetti et al., 2006), 

branch and price algorithm (Almoustafa and Mladenović, 2013), and column generation 

algorithm (Spliet and Gabor, 2012) were studied. Haghani and Jung (2005) presented a 
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Genetic Algorithm to solve a pick-up or delivery VRP with soft time windows. The study 

considered multiple vehicles with different capacities, real-time service requests, and 

dynamic travel times between destinations. Ichoua et al. (2003) conducted experiments to 

solve the VRP with time-dependent travel speeds, which satisfy the first-in-first-out (FIFO) 

property, using a parallel tabu search heuristic. Almoustafa and Mladenović (2013) improved 

a branch-and-bound method to solve the asymmetric distance–constrained VRP suggested by 

Laporte et al. (1987). Chen et al. (2005) formulated a real-time TDVRP with time windows 

as a series of mixed integer programming models and developed a heuristic algorithm, which 

included route construction and improvement. Spliet and Gabor (2012) proposed a 

formulation of a time window asymmetric VRP and developed two variants of a column 

generation algorithm to solve the linear programming relaxation of this formulation. 

Kritzinger (2012) applied variable neighborhood search algorithm to solve the TDVRP with 

time windows. Maden and Black (2010) proposed a heuristic algorithm for the VRP to 

minimize the total travel time. 

 

Road networks with different sizes were studied. Laporte et al. (1988) examined a class of 

asymmetrical multi-depot VRPs and location-routing problems for a network of 80 nodes. 

Haghani and Jung (2005) solved the TDVRP for networks with 30 demand nodes over 30 

time intervals. In the paper of Archetti et al. (2006), while problems with up to 10 nodes 

could be solved in a few seconds, larger problems with more than 10 nodes required between 

one hour and four days of computation. Kok et al. (2012) developed 15, 50, and 100 

customer problem instances. The 100 customer problem instances were approximately the 

largest instances which they could solve within practical computation times. Almoustafa and 
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Mladenović (2013) solved an asymmetric distance–constrained VRP for a network of 1,000 

demand nodes. 

Time Dependent Shortest Path Problem 

The time-dependent shortest path (TDSP) problem was initially proposed by Cooke and 

Halsey (1966). In their paper, network with discrete time was considered. Orda and Rom 

(1990) introduced a shortest path problem in a network where link delays are time dependent. 

In their model, modified Dijkstra Algorithm was used to solve the problem in the case that 

waiting at nodes is allowed. Ziliaskopoulos and Mahmassani (1993) suggested an algorithm 

based on Bellman’s Principle of optimality, finding it is not advisable in the worst case 

scenario. 

 

Time Dependent Dijkstra Algorithm with node labeling was first mentioned by Dreyfus 

(1969) and validated by Kaufman and Smith (1993) to solve TDSP problem when non-

passing and non-waiting rules are satisfied. When time is discretized as integer intervals, 

Time Dependent Dijkstra Algorithm can provide optimal solution with the same complexity 

as the static shortest path problem. 

 

While many other time-dependent shortest path algorithms were proposed in literature, most 

of them are practically not suitable to apply in transportation networks, either because of 

lacking efficiency or violating transportation network properties such as non-passing rule, 

non-waiting rule. 



7 

 

 

Assignment Problem 

When the input parameters of VRP contain multiple vehicles and multiple destination, 

assignment decision is generally required to determine which vehicle goes to which 

destination in order to minimize the total cost. Assignment Problem (AP) is a sub-problem of 

VRP. There are several variants of APs (Pentico, 2007), such as generalized AP, bottleneck 

AP, quadratic AP, and semi-AP. The Hungarian Algorithm (Kuhn, 1955) is the most used 

method to solve AP. 

 

In summary, previous research predominately focused on developing heuristic methods for 

subsets of VRPs or TDVRPs. Effective and efficient algorithms which can be applied to 

generalized TDVRPs to obtain optimal vehicle assignments and routes were not available. 

Most algorithms and methods developed in previous research were not tested using real-

world road networks and could not be validated for effectiveness or efficiency. The objective 

of this research is to investigate and develop effective and efficient algorithms for TDVRP. 

 

This rest of this thesis is organized as follows: chapter 3 presents the problem and 

methodology. Chapter 4 validates the algorithms using real-world road networks and 

investigates the factors that affect computation time. Chapter 5 concludes the article with 

future research directions. 
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CHAPTER III 

METHODOLOGY 

Problem Definition 

Let  represent sets of vehicles, depots, and demand points, respectively, in a time-

dependent road network. There are total  vehicles stationed at  depots at the beginning 

of a planning period. Some or all of the  vehicles need to be dispatched to  demand 

points, each of which requires  vehicles, where  represents a demand point, . Let 

 be the cost (time) it requires for a vehicle , , to travel from node  at time  and 

to node . , where V is the node set in the road network. . Let  represent 

an arc that originates from node  and points at node , , where E is the arc set in the 

road network.  if . When ,  is a depot and , , , if  is 

not stationed at  or if  is not ready to travel from  at time . 

 

In the TDVRP, the first objective is to identify the earliest time for  to arrive at a demand 

point  when  travels from its depot .  may travel from  when or after  is ready 

for travel. Suppose  may travel from  at time  and arrive at  at time . 

Alternatively,  may travel from  at time  and arrive at  at time . According to the 

First In First Out (FIFO) property,  if . Therefore,  should travel from  as 

soon as  is ready for travel. Let  be the time that  becomes ready for travel at . 

 when , .  when  and . The first objective of the 

TDVRP is to identify the TDSP for  to travel from  at  to . Eq. (1) is the model 

whose optimal solution is the TDSP between  and  when  travels from  at . 
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Subject to: 

 

 

 

 

 (1) 

 

The second objective of the TDVRP is to minimize the total travel time. Let  represent 

the optimal value of Eq. (1), i.e., the travel time for  to travel from  and arrive at  at 

the earliest time. Eq. (2) models an assignment problem (AP) that determines which vehicles 

are dispatched to a demand point to meet its demand. Note that the objective of Eq. (2) is not 

to minimize the summation of arrival times or the latest arrival time. Since Eq. (1) identifies 

the earliest arrival times, Eq. (2) intends to minimize the total travel time. In many VRPs, 

lower average travel time implies less uncertainty and more reliable vehicle routing and 

assignment. Both Eqs. (1) and (2) are pure integer programming problems. If , 

Eq. (2) is a balanced transportation problem and both constrains may be changed to equality 

constraints. If , Eq. (2) is infeasible. 

 

 

Subject to: 
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 (2) 

Methodology 

Optimization software packages may be used to solve models in Eqs. (1) and (2). For 

example, GAMS is a high-level modeling system for mathematical programming and 

optimization. Eqs. (1) and (2) may be described in algebraic statements in GAMS input files 

and solvers may be used to find optimal solutions and values. For medium to large road 

networks, however, this approach is ineffective or inefficient due to limitation of computer 

memory and extremely long computation time. For real-time transportation planning, time- 

and space-efficient algorithms must be developed to solve the models in Eqs. (1) and (2). 

There are three steps as follows to identify optimal solutions and values to the TDVRP. 

 

• Step 1: Develop and implement the TDSP algorithm to identify the shortest paths 

between pairs of depots and demand points 

• Step 2: Apply the assignment algorithm to output of Step 1 to minimize the total 

travel time 

• Step 3: Validate and present optimal solutions and values to the TDVRP 

 

All the computation results in this thesis, if not indicated, were obtained using a Windows 8 

x64 Laptop, Intel i7-4700 CPU @2.40 GHZ, and 8.0 GB RAM. 



11 

 

 

 

TDSP Algorithms 

Real-time TDVRPs remain a great challenge due to time and space complexities. In the 

TDVRP, characteristics of the road network change with time; a shortest path computed from 

a snapshot of the road network may not be the shortest path at a different time. The TDSP 

algorithm is developed to find the shortest paths between depots and demand points in real-

time. Three assumptions related to the TDSP algorithms are: 

 

(a) The road network satisfies the FIFO principle, which specifies that if two vehicles take 

the same route from the same depot to the same demand point, the vehicle leaving the 

depot first always arrives at the demand point first. According to the FIFO principle, a 

vehicle should leave its depot or other nodes whenever it is ready. Waiting at any node 

is never beneficial because a vehicle that leaves later always arrives later (Dean, 2004); 

(b) The planning period is “discretized” into sufficiently small time intervals, ’s, 

 and , where  is the set of time intervals over the planning period; 

and 

(c) Travel time between two nodes connected by an arc depends on the time at which a 

vehicle leaves the beginning node of the arc. 

 

The TDSP algorithm with node labeling (or Time Dependent Dijkstra Algorithm) was first 

developed by Dreyfus (1969) and further validated by Kaufman and Smith (1993). The TDSP 

algorithm with node labeling listed below finds the earliest arrival time of a vehicle at a 

demand point given that the vehicle is stationed at a depot when travel begins. The algorithm 
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is executed for each pair of demand point and depot for each vehicle. Please note that 

vehicles stationed at the same depot may be ready to travel from the depot at different times 

because different vehicles may require different preparation times. For example, time for a 

driver to arrive at the depot and get ready may vary. The earliest arrival times of vehicles, 

which are stationed at the same depot, at the same demand point may be different and need to 

be calculated separately using the TDSP algorithm. 

TDSP algorithm with node labeling 

1: Assign to every node , , in a transportation network a value representing the arrival 

time of a vehicle , , at the node. For a depot node  where  is stationed, set the 

value to a finite positive integer number representing the time at which  is ready to travel 

from . Set the value to infinity for all other nodes ’s,  and ; 

 

2: Mark  visited. Mark all other ’s unvisited. Set  as the current node; 

 

3: Calculate the arrival time of  at each unvisited neighbor , , of the current node , 

. A node  is a neighbor of  if there is an arc that begins at  and points at , i.e., 

. The arrival time at  is the summation of the value set for  and the travel time 

 between  and . The travel time  is obtained from a three-dimensional matrix, 

, which stores time-dependent travel times. For example, if , , and 

the value set for node 1 is 15, the travel time between nodes 1 and 2, , is a component 

in the matrix identified by node 1, node 2, and ,  indicates  begins 

travelling from node 1 at time 15; 
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4: For each unvisited neighbor  of the current node , compare the arrival time at  

calculated in Step 3 and the value set for . Set the value for  as the smaller one between 

the two; 

 

5: Identify the unvisited node with the smallest value. Mark the node visited. Set the node as 

the current node. If the node is the desired demand point , , stop. The value set for  is 

the earliest arrival time of  travelling from  at . Otherwise go to Step 3.    

 

The TDSP algorithm with node labeling was implemented in Visual Basic Application 

(VBA) for Microsoft Excel and GAMS. The algorithm can only solve TDVRPs for small 

road networks with less than 1,000 nodes when there are more than 600 time intervals using a 

Windows 7 x64 PC, Intel i7-3770 CPU @3.40 GHZ, and 16.0 GB RAM. The main reason 

for size limitation on the road network is the large random-access memory (RAM) space 

required by node labeling. The algorithm needs to manipulate a three-dimensional matrix, 

, for node labeling. Each component in the matrix is travel time from one node 

to the other during a time interval. These travel times are often obtained through field 

observations (Rakha et al., 2006).  is the size of the road network, i.e., the number of 

nodes.  is the number of time intervals. For example, if the road network size increases 

by tenfold, the storage space for the three-dimensional matrix increases by 100 times. 

The degree of a node in a network is the number of arcs connected to the node. Most real-

world road networks have a mean degree between two and four (Barabasi, 2002; Jeong, 

2003). On average, each node is connected to two to four arcs. If arc labeling is used, the 

TDSP algorithm manipulates a two-dimensional matrix, , where  is the number 

of arcs in the road network. Each component in the two-dimensional matrix is travel time 
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along an arc during a time interval. Travel times in the two-dimensional matrix are the same 

as those in the three-dimensional matrix, but are organized in a different format that reduces 

space requirement. Since  according to the mean degree of a road network, 

storage space requirement for arc labeling is at most , which is much less than 

 required for node labeling for large road networks. The TDSP algorithm with 

arc labeling described below is used to identify the earliest arrival times of vehicles at 

demand points. This proposed change is a major improvement over TDSP algorithm with 

node labeling and will greatly enhance memory performance in solving TDVRP for a larger 

road network. 

TDSP algorithm with arc labeling 

1: Assign to every arc , , in a transportation network a value representing the 

arrival time of a vehicle , , at , . For  in which , a depot node 

where  is stationed, set the value to a finite positive integer number representing the time 

at which  arrives at . The arrival time at  is the summation of time at which  is ready 

to travel from  and travel time from  to . The travel time from  to , , is 

obtained from a two-dimensional matrix, , which stores time-dependent travel 

times. For example, if , , and the time at which  is ready to travel from  is 

, the travel time between nodes 1 and 2, , is a component in the matrix 

identified by arc  and . Set the value to infinity for all other arcs , 

 and ; 

 

2: Mark all  unvisited; 
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3: Identify the unvisited  with the smallest value. Mark  visited. Set the 

destination node, i.e., the second node , in  as the current node. If  is the desired 

demand point , , stop. The value set for  is the earliest arrival time of  

travelling from  at ; 

 

4: For each unvisited  whose  is the current node, compare the arrival time at  and 

the value set for . The arrival time at  is the summation of time at which  arrives at 

 and travel time from  to . The arrival time at  is the value set for the arc marked as 

visited in Step 3. The travel time from  to , , is obtained from the matrix . 

 is the value set for the arc marked as visited in Step 3; 

 

5: For each unvisited  whose  is the current node, set its value as the smaller one 

between the arrival time at  calculated in Step 4 and the value set for . Go to Step 3. 

 

The TDSP algorithm with arc labeling is implemented in VBA and Visual Basic (VB). The 

algorithm can not only solve TDVRPs for small road networks with less than 500 nodes, but 

also TDVRPS for large road networks with more than 3000 nodes using a Windows 7 x64 

PC, Intel i7-3770 CPU @3.40 GHZ, and 16.0 GB RAM. 

Assignment Algorithm 

After calculating all the shortest paths between depots and demand points, an assignment 

algorithm needs to be implemented to determine which vehicles from a depot will travel to a 

demand point to meet the demand. There are several variants of APs (Pentico, 2007), e.g., 

generalized AP, bottleneck AP, quadratic AP, and semi-AP. The TDVRP is a semi-AP that a 
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vehicle is not required to be assigned to a demand point. The Hungarian Algorithm (Kuhn, 

1955) is used as the assignment method to solve the TDVRP. 

Revised Hungarian Algorithm 

To best of knowledge, Hungarian Algorithm can only be used to minimize or maximize the 

total cost. In some circumstances, though, maximum cost of assignment is strictly enforced in 

order to meet specific cost limit. This kind of problem is being referred in literature as 

bottleneck assignment problem (BAP). The objective of BAP is to minimize the maximum 

cost of assignment. To give an example, an ambulance is required to arrive at an incident site 

within a stipulated time. If one area is equipped with several ambulances while at the same 

time they are dispatched to different locations, minimizing the maximum traveling time for 

ambulances is more real-life practical than minimizing the total time spent on routing for all 

the ambulances. Similar examples were also given in other literatures (such as Gross, 1959; 

Ford and Fulkerson, 1966; Ravindran and Ramaswami, 1977). In their work, even though 

multiple models and approaches of solving such problems were developed, solutions are still 

too complex to be implemented. Hungarian Algorithm will be revised for the purpose of 

minimizing the maximum cost of assignment problem while minimizing the total cost. 

 

Problem description:  

Assume cost matrix can be expressed as (M, N), where M denotes the number of vehicles, N 

denotes the number of customers. In order to simplify the explanation, assume every 

customer needs one vehicle and every vehicle can be dispatched to only one customer. In 

other words, there are more vehicles than customers (i.e.: M is greater than N) 
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Procedures: 

1. Subtract the largest of the smallest entries in each column from all the entries of cost 

matrix. 

2. Draw lines through appropriate rows and columns so that all the non-positive entries 

of the cost matrix are covered and the minimum number of such lines is used. Check 

whether the number of covering lines is greater than or equal to N. If yes, then go to 

step 4, otherwise go to step 3. 

3. Subtract the smallest positive entry of the new matrix from all the rows, then go to 

step 2. 

4. Label all the non-positive entries while replacing all unlabeled entry with infinity. 

5. Solve the problem from step 4 using Hungarian Algorithm. 

 

Reductio ad absurdum: 

After step 1, 2, 3 and 4, the maximum cost is minimized based on following two facts: 

a) Number of marked entries in each column is equal or greater than one and number of 

rows that contain marked entries is equal or greater than one. i.e.: there is at least one 

vehicle is selected for each customer. 

b) For each non-positive entry that is marked, a connection is established between 

customers and vehicles. Any increase in updated cost matrix will result in no-

connection for at least one customer. Any decrease in updated cost matrix will result 

in more than one connection for at least one customer. 

Step 5 will minimize the total cost after minimizing the maximum cost. 

 

Example 1: An original cost matrix was given in table 1. 
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Table 1: Original cost matrix for example 1 

3 2 0 

5 4 3 

4 4 4 

4 4 2 

Step 1: Subtract the largest of the smallest entries (respectively as 3, 2, and 0) in each column 

from all the entries of cost matrix. (i.e. subtract 3 from each column) 

Table 2: Cost matrix after step 1 for example 1 

0 -1 -3 

2 1 0 

1 1 1 

1 1 -1 

Step 2: The number of covering lines is 2 (less than column number), so go to step 3. 

Step 3: Subtract 1 from all the entries. 

Table 3: Cost matrix after step 3 for example 1 

-1 -2 -4 

1 0 -1 

0 0 0 

0 0 -2 

Step 2: The number of covering lines is 3, so go to step 4. 

Step 4: Label all the non-positive entries while replacing all unlabeled entry with infinity. 
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Table 4: Cost matrix after step 4 for example 1 

-1 -2 -4 

∞ 0 -1 

0 0 0 

0 0 -2 

Step 5: Solve the matrix in table 4 using Hungarian Algorithm, the resulting matrix is shown 

in table 5. 

Table 5: Cost matrix after step 5 for example 1 

0 0 0 

0 4 0 

4 0 0 

0 0 0 

After implementing the revised Hungarian Algorithm, the maximum cost is 4 and the total 

cost is 8. 

Example 2: Another cost matrix was given in table 6. 
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Table 6: Original cost matrix for example 2 

158 7 144 164 28 143 70 140 101 

64 152 171 128 66 82 19 79 163 

40 43 50 150 8 169 108 72 48 

137 166 3 52 68 53 85 1 131 

29 113 41 59 65 62 23 153 149 

69 110 37 134 57 103 114 18 26 

61 139 16 160 93 34 4 49 71 

117 54 5 39 33 83 138 15 31 

141 77 87 99 17 90 104 60 146 

136 20 44 32 63 30 147 123 130 

23 67 118 112 109 24 84 86 111 

16 96 162 14 47 91 167 106 17 

11 125 157 38 148 151 161 111 16 

142 36 98 168 121 92 76 35 126 

102 165 58 124 127 78 105 80 107 

22 2 73 9 6 88 156 100 25 

154 89 25 74 116 45 159 133 135 

129 170 94 119 21 12 132 120 81 

18 56 122 42 46 97 27 51 75 

Calculated by Hungarian Algorithm, the maximum cost is 17 and total cost is 74. The 

resulting matrix is in table 7. 
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Table 7: Resulting matrix after applying Hungarian Algorithm for example 2 

0 7 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 8 0 0 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 4 0 0 

0 0 5 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 17 

11 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 9 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 12 0 0 0 

0 0 0 0 0 0 0 0 0 

However, after applying the revised Hungarian Algorithm, the maximum cost is 16, 

decreasing by 1 while the total cost increases to 78. The resulting matrix is shown in table 8. 
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Table 8: Resulting matrix after applying the revised Hungarian Algorithm for example 2 

0 7 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 8 0 0 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 4 0 0 

0 0 5 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 16 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 9 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 12 0 0 0 

0 0 0 0 0 0 0 0 0 

 

The above examples showed each step of the revised Hungarian Algorithm and made 

comparisons between the resulting matrixes calculated by Hungarian Algorithm and the 

revised Hungarian Algorithm. 

 

Since computation time for assignment problem is trivial comparing to that of TDSP in this 

thesis, the remaining section will not implement these two algorithms at the same time. 

Instead, all the experiments in the next chapter, other than indicated, will only be using 

Hungarian Algorithm to solve assignment problems. 
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CHAPTER IV 

EXPERIMENTS AND RESULTS 

Case Study of a Small Road Network 

A road network in the Midwest of the United States of America (Figure 2) was analyzed to 

validate the TDSP and assignment algorithms. The network has 346 nodes (diamonds in 

Figure 2), out of which 6 are depots and 15 are demand points. There are 654 roads (arcs in 

Figure 2) connecting all the nodes (mean degree is . Total 92 vehicles are available 

at 6 depots. Each time interval is one minute. The TDSP and assignment algorithms were 

implemented in VBA and GAMS. The computation results were obtained using a Windows 7 

x64 PC with Intel i7-3770 CPU @3.40 GHZ and 16.0 GB RAM. 
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Figure 1: A transportation network in the metropolitan area of St. Louis, USA 

 

Table 9 summarizes run times of the algorithms in VBA and GAMS. It shows that there is a 

substantial advantage in using VBA to identify the optimal solution and value for real-time 

TDVRPs. GAMS employs a suite of solvers, e.g., CPLEX, and algorithms, e.g., simplex and 

branch-and-cut algorithms, to solve linear programming and mixed integer programming 

problems, but lacks efficiency in computer memory management. The TDSP and assignment 

algorithms implemented in VBA directly manipulate data and are customized to solve the 

TDVRPs; they are more efficient in terms of run time and computer memory space. Table 9 

does not show a substantial difference in run times between node labeling and arc labeling for 

the TDSP algorithm. The difference between these two methods needs to be further 

investigated using larger road networks. 
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Table 9: Algorithms run time (seconds) for the road network in figure 1 

Planning Period GAMS VBA Node Labeling VBA Arc Labeling 

120 minutes 191 9 13 

240 minutes 449 11 13 

360 minutes 681 13 13 

480 minutes 872 15 15 

1,440 minutes 1,954 33 24 

 

Table 10 shows the snapshot from Microsoft Excel spreadsheet, where we can easily see the 

information of depot, destination, vehicle number, preparation time and travel time as well as 

route. All of the results were obtained by implementing TDSP algorithm with arc labeling and 

Hungarian Algorithm in VBA for Microsoft Excel 2013. 
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Table 10: Results for TDVRP in figure 1 

Depot Dest. 
Vehicle 

No. 

Prep. 

Time 

Travel 

Time 
Route 

345 36 v67 11 17 345>340>38>39>36 

344 37 v53 12 27 344>338>104>103>52>49>47>43>37 

345 41 v66 11 18 345>340>38>39>41 

345 41 v64 12 18 345>340>38>39>41 

344 51 v49 12 31 344>338>104>103>52>50>56>57>51 

344 51 v47 11 31 344>338>104>103>52>50>56>57>51 

345 53 v62 12 29 345>340>38>39>36>42>46>48>53 

344 54 v50 10 33 344>338>104>103>52>55>153>154>54 

344 55 v51 12 23 344>338>104>103>52>55 

342 123 v28 14 22 342>119>121>123 

342 123 v27 14 22 342>119>121>123 

345 125 v59 11 
43 

345>340>339>338>104>105>142>143>141

>139>136>131>129>125 

342 125 v24 14 28 342>119>121>123>125 

342 125 v23 10 21 342>133>131>129>125 

342 125 v26 12 21 342>119>121>123>125 

342 125 v20 12 21 342>119>121>123>125 

342 125 v18 10 21 342>133>131>129>125 

342 125 v15 12 21 342>119>121>123>125 

342 125 v13 15 31 342>119>121>123>125 

342 125 v12 12 21 342>119>121>123>125 

344 129 v54 16 
39 

344>338>104>105>142>143>141>139>136

>131>129 

342 129 v22 15 27 342>133>131>129 

342 129 v17 15 27 342>133>131>129 

342 129 v14 15 27 342>133>131>129 

342 133 v19 16 17 342>133 

342 133 v16 16 17 342>133 

342 134 v25 13 23 342>133>135>134 

342 134 v21 13 23 342>133>135>134 

345 136 v58 11 
33 

345>340>339>338>104>105>142>143>141

>139>136 

345 136 v57 12 
33 

345>340>339>338>104>105>142>143>141

>139>136 

345 143 v56 12 26 345>340>339>338>104>105>142>143 

344 145 v55 16 31 344>338>104>105>142>144>146>147>145 

345 145 v61 12 
31 

345>340>339>338>104>105>142>144>146

>147>145 

344 161 v52 12 
34 

344>338>104>103>52>55>153>155>159>1

61 

346 166 v74 12 27 346>195>337>172>170>166 

346 166 v75 12 27 346>195>337>172>170>166 

346 168 v85 10 35 346>195>337>258>259>257>255>251>168 
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Study of a Larger Road Network 

Figure 2 shows a road network in the City of San Francisco (Brinkhoff, 2002), which 

included 174,956 nodes and 223,001 arcs with a mean degree of 2.55 ( ). 

 

Figure 2: A road network in the city of San Francisco (Brinkhoff, 2002) 

Because the entire San Francisco road network in figure 2 is too large to apply existing TDSP 

algorithms to calculate TDVRP, 9 different portions of the network were selected for 

experiment. As shown in Figure 3, each portion has the same area size (i.e.: 500*500); dense 

area means there are more roads, therefore the arc/node ratio is high; Likewise, sparse area 

means the arc/node ratio is relatively low. 

 



28 

 

 

a b c  

d e f  

g h i  

Figure 3: 9 sub road networks taken from figure 2 with the same area size 

Table 11 summarizes the mean degree of the 9 sub road networks which are shown in figure 

3. For the same area size road network, the mean degree ranges from 2.23 to 3.21; the node 

number ranges from some 500 to 4,000; the arc number ranges from some 500 to 6,000. In 

order to be consistent throughout the study hereafter, it was assumed that depot points and 

demand points are randomly uniformly selected among the network nodes. There are 100 

vehicles which are randomly uniformly stationed at random number of depots (i.e.: depot 

number ranges from 1 to 100) and there are 20 random destinations where 40 vehicles will be 

needed. The planning horizon is 600 minutes with one minute time interval. For each vehicle, 

preparation time is randomly generated. 
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Table 11: Mean degree of the 9 sub road networks shown in figure 3 

Network Node 

Number 

Arc 

Number 

Mean 

Degree 

a 508 572 2.25 

b 512 571 2.23 

c 669 780 2.33 

d 1,459 1,760 2.41 

e 1,629 1,872 2.30 

f 2,172 2,589 2.38 

g 3,674 4,861 2.65 

h 3,926 6,299 3.21 

i 4,078 4,998 2.45 

 

As TDSP algorithm with node labeling is not feasible to solve TDVRP in a road network 

with more than 500 nodes because of limitation of computer memory and GAMS requires 

more than 10 hours to compute the optimal solution to the TDVRP for 500-node network and 

sometimes stops unexpectedly due to insufficient memory. The study, hereafter, will only use 

TDSP algorithm with arc labeling if not indicated, otherwise. Computation time for VBA 

program is summarized in table 12. 

 

 

 

 

 

 

 

 

 

 



30 

 

 

Table 12: Computation time for TDVRP in each road network of figure 3 (seconds) 

      Node Number 

Number of Depots 
508 512 669 1,459 1,629 2,172 3,674 3,926 4,078 

1 95 64 68 272 323 526 1,720 2,907 1,813 

2 58 61 69 263 297 546 1,708 2,872 1,895 

3 44 52 66 292 289 509 1,703 2,841 1,777 

4 59 52 70 263 313 550 1,746 2,780 1,778 

5 45 44 71 290 269 532 1,696 2,878 1,799 

6 54 95 73 301 275 549 1,722 2,839 1,865 

7 39 60 56 259 279 504 1,641 2,767 1,788 

8 44 46 65 426 293 519 1,709 2,804 1,852 

9 49 59 73 309 303 539 1,680 2,759 1,876 

10 58 55 75 253 303 571 1,672 2,769 1,819 

20 55 65 74 250 276 556 1,738 2,778 1,870 

30 62 57 79 274 284 527 1,731 2,860 1,939 

40 45 52 78 264 302 512 1,666 2,830 1,791 

50 83 51 65 267 305 525 1,692 2,722 1,807 

60 96 61 75 288 289 523 1,731 2,780 1,963 

70 49 43 58 295 299 535 1,741 2,837 1,776 

80 46 55 78 262 289 509 1,714 2,811 1,853 

90 60 51 72 287 280 497 1,694 3,142 1,775 

100 55 46 64 308 327 523 1,647 2,835 1,855 

AVERAGE 58 56 70 286 295 529 1,703 2,832 1,836 

STANDARD 

DEVIATION (STD) 
16 11 6 39 16 19 31 89 56 

STD/AVERAGE 0.29 0.20 0.09 0.14 0.05 0.04 0.02 0.03 0.03 

Even though TDSP algorithm with node labeling and GAMS could not provide optimal 

solution to TDVRP in a large road network due to insufficient memory, TDSP algorithm with 

arc labeling still worked effectively with adequate computation time. This finding further 

indicated that TDSP algorithm with arc labeling is more suitable than node labeling in 

calculating TDVRP in a large road network. 

 

As shown in table 12, we can see that average run time increased along with node number 

and mean degree. Noticeably, though 4,078 nodes was the largest sub road network, it 

required less computation time comparing to the road network which has 3,926 nodes. The 
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only reason could be the difference of mean degree since the other factors are the same. The 

coming section will discuss the factors that affect computation time. 

Factors that Affect Computation Time 

Effects of road network size on computation time 

For whatever kind of VRPs, size of road network is a major concern for computation time. 

Harwood et at. (2013) observed that under certain circumstances when number of nodes 

increases, run time grows rather more slowly than one may expect, in relation to the size of 

the instance. 

 

As we can see from table 12, computation time varied significantly along with node number 

and mean degree; other minor factors such as number of depots, had a limited effect on 

computation time. To decrease complexity of problem, node number and mean degree were 

treated as the two main factors that affect computation time in this study. Two more sub road 

networks obtained from the road network in the City of San Francisco, together with two 

existing sub road networks from figure 3, are shown in figure 4. 
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a b  

c d  

Figure 4: 4 sub road networks (2 levels of node number and 2 levels of mean degree) 

Table 13 shows the information of the sub road networks in figure 4. For simplicity of 

investigation of individual effects of each factor, the four sub road networks were divided 

into two levels for each factor. Some 500 nodes was considered as small road networks (-1) 

while some 3,900 nodes was considered as large road networks (+1); Road network with 

mean degree of 2.23 was considered as sparse (-1) while mean degree of 3.21 was regarded 

as dense (+1). 

Table 13: Mean degree of four road networks in figure 4 

Network Node 

Number 

Arc 

Number 

Mean 

Degree 

a 512 571 2.23 

b 516 828 3.21 

c 3,916 4,375 2.23 

d 3,926 6,299 3.21 
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Parameters of TDVRP in these four road networks were set the same with previous section, 

i.e., there are 100 vehicles which will be randomly assigned to every depot (number of depot 

may vary from 1 to 100) and there are 20 destinations (or customers) where 40 vehicles are 

required. The planning horizon is 600 minutes with one minute time interval. To ensure 

unbiased result and balance out inequality, location of every depot point and destination point 

was randomly generated, computation time for each road network was considered as a block, 

computation for each problem ran in a random sequence. The proposed regression model can 

be written as: 

t=𝛽0+𝛽1𝑥1+𝛽2𝑥2+𝛽12𝑥1𝑥2+π+𝜀  (3) 

t: computation time 

𝑥1: node number 

𝑥2: mean degree 

𝛽0: average run time 

𝛽1: coefficient of node number 

𝛽12: coefficient of interaction between node number and run time 

π: block effect 

𝜀: error effect 

Data in table 14 was analyzed in Minitab 16 using above regression model. Figure 5 below 

shows the normal probability plot of residuals. Since the plot is approximately linear, it 

means residuals conform to normality assumption and regression model can adequately 

describe relationship between computation time and node number and mean degree. (Note: 

residual is arithmetic difference between actual computation time and computation time 

predicted by regression model.) 
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Table 14: Computation time for TDVRP in four road networks shown in figure 4 (seconds) 

          Node Number     

Number of depot 

512 516 3,916 3,926 

Replicate Replicate Replicate Replicate 

1 2 1 2 1 2 1 2 

1 64 59 105 80 1,481 1,555 2,972 3,058 

2 58 57 97 78 1,512 1,552 2,986 3,108 

3 66 56 106 93 1,521 1,552 3,000 3,057 

4 63 63 87 100 1,515 1,530 2,963 3,104 

5 66 60 100 82 1,510 1,505 2,958 3,049 

6 52 68 87 69 1,492 1,529 2,968 2,966 

7 56 54 98 108 1,531 1,548 3,004 3,060 

8 54 55 95 103 1,493 1,579 3,023 3,158 

9 47 51 105 101 1,564 1,495 3,008 3,103 

10 45 54 98 102 1,486 1,587 2,996 2,959 

20 58 56 92 100 1,543 1,580 2,931 3,037 

30 55 48 169 90 1,477 1,561 3,162 3,111 

40 56 57 114 82 1,454 1,561 2,934 3,106 

50 55 61 101 106 1,514 1,638 2,942 3,154 

60 58 58 104 78 1,484 1,551 2,997 3,138 

70 70 56 100 99 1,463 1,571 3,017 3,045 

80 66 61 94 102 1,522 1,530 3,071 3,168 

90 50 69 91 90 1,512 1,525 2,956 2,916 

100 58 55 95 87 1,524 1,504 2,990 3,117 
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Figure 5: Normal probability plot of computation time residuals 

Figure 6 shows the main effects of node number and mean degree on run time. As we can 

see, neither of the two lines is horizontal, it means both factors have main effects on run time. 

When node number is higher, run time mean is higher. When mean degree of road network is 

higher, run time mean is also higher. The line for node number is steeper than that of the 

mean degree, it means the magnitude of node number is greater in this setup. 



36 

 

 

3900500

2500

2000

1500

1000

500

0

3.212.23

NODE NO.

M
e

a
n

 (
s
e

c
o

n
d

s
)

MEAN DEGREE

Main Effects Plot for RUN TIME

Data Means

 

Figure 6: Main effects plot for run time 

The interaction effect plot in figure 7 shows there is an interaction between node number and 

mean degree since the two lines are not parallel. When the node number is high, mean degree 

has a substantial positive effect; but when node number is low, mean degree has a minor 

positive effect. 
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Figure 7: Interaction effect plot for run time 

A simple mathematic model for the effects of node number and mean degree on run time is 

proposed as follows: 

t=1,179+1,102x1+386x2-1,465-1,098x1*x2  (4) 

Where: t is run time, x1, x2 represents node number and mean degree respectively. 

Table 15 summarizes estimated effects and coefficients for run time. 

Table 15: Estimated effects and coefficients for run time (coded units) 

Term Effect Coef SE Coef T P 

Constant   1,179 3.446 342.12 0 

Block   -1,465 21.45 -68.29 0 

C2 2,203 1,102 3.446 319.69 0 

C3 773 386 3.446 112.11 0 

C2*C3 -2,196 -1098 21.452 -51.18 0 

S = 42.3459, R-Sq(adj) = 99.88% 
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Effects of computer programming and parallel computing 

Ghiani et al. (2003) pointed out one of the three major developments that have contributed to 

the acceleration and quality of algorithms relevant in a real-time context is parallel 

computing. In their paper, several parallel algorithms such as tabu-search were introduced. 

This section works on parallel computation as well as computer programming. 

 

Let’s still take a large time-dependent road network from figure 4 which has 3,926 nodes and 

6,299 arcs as an example, the parameter for TDVRP were kept the same with previous setup. 

As far as we understand, computation of TDVRP in the computer program could be divided 

into three steps as follows: 

• Reading data into memory 

• The Shortest path calculation  

• Assignment calculation. 

The computation time for each step of TDVRP using VBA in Microsoft Excel is shown in 

table 16. 

Table 16: Run time for each step of TDVRP using VBA 

Run times 1 2 3 4 5 Average 

Reading data into memory (seconds) 114 113 110 116 114 113 

Shortest path calculation (seconds) 2,885 2,950 2,875 2,910 2,820 2,888 

Vehicle assignment (seconds) 169 170 156 163 177 167 

Total (seconds) 3,168 3,233 3,141 3,189 3,111 3,168 

Total (minutes) 53 54 52 53 52 53 

It took around one hour to calculate the TDVRP for a road network with 3,926 nodes using 

VBA. Most of the run time was spent on the calculation of time-dependent shortest path. 

Around 90% of computation time was spent on the calculation of the shortest path while 
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reading data into memory and assignment calculation consumed a small portion of total time 

(around 10%). 

 

Figure 8: Percentage of run time in each step using VBA 

The same VBA code was implemented in Visual Basic .NET Framework based Microsoft 

Visual Studio 2013. Table 17 summarizes the run time for each step of TDVRP using the VB 

program. 

Table 17: Run time for each step of TDVRP using VB 

Run times 1 2 3 4 5 Average 

Reading data into memory (seconds) 145 145 144 144 144 144 

Shortest path calculation (seconds) 238 239 242 244 238 240 

Vehicle assignment (seconds) 3 2 3 3 3 3 

Total (seconds) 385 386 389 390 385 387 

Total (minutes) 6 6 6 7 6 6 

Total computation time for the VB program decreased significantly to around 6 minutes from 

52 minutes of the VBA program even though both programs have the same code. There was 

no big difference for time spent on data reading between VB and VBA programs; however, 

calculation for the shortest path and vehicle assignment took much less time for the VB 
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program than VBA. About 60% of computation time was spent on calculating the shortest 

path, while percentage of run time in reading data increased significantly to 37% of total 

time. Overall, TDVRP for a large road network which has around 4,000 nodes, could be 

solved in around 6 minutes by TDSP algorithms with arc labeling through the VB program. 

 

Figure 9: Percentage of run time in each step using VB 

Furthermore, in order to implement parallel computing, VB code was revised in Microsoft 

Visual Studio 2013. Run time of each step for the revised VB program is shown in table 18. 

Table 18: Run time for each step of TDVRP using the revised VB program 

Run times 1 2 3 4 5 Average 

Reading data into memory (seconds) 8 7 7 8 7 7 

Shortest path calculation (seconds) 350 398 385 320 310 353 

Vehicle assignment (seconds) 2 3 2 2 3 2 

Total (seconds) 360 408 394 330 320 362 

Total (minutes) 6 7 7 6 5 6 

Total run time almost did not vary too much between the VB program and the revised VB 

program. However, run time for calculating the shortest path took 2 minutes longer than that 
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of the VB program. From figure 10 we can see, calculation of the shortest path almost 

consumed 97% of total computation time. 

 

Figure 10: Percentage of run time in each step using the revised VB program 

Part of the reason could be that, even though the code ran in a parallel way, slack time of 

CPU was not being utilized. Generally, long operation process like calculating the shortest 

path, requires a high level of coordination and synchronization of resources in operation 

system. The overhead of using parallel computing is expensive. The same reasoning could 

also be found in literature as Barney (2010) stated that parallel applications are much more 

complex than corresponding serial applications, perhaps an order of magnitude. The amount 

of time required to coordinate parallel tasks, as opposed to doing useful work. Parallel 

overhead can include factors such as: task start-up time, synchronizations, data 

communications and etc. Figure 11 shows the comparison of run time in the VBA, VB and 

revised VB programs. 
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Figure 11: A comparison of run time in different computer programs (seconds) 

Genetic Algorithm for Solving TDVRP 

The idea of Genetic Algorithms originates from evolutionary theory. It incorporates natural 

selection, genetic crossover and mutation to select the offspring with the highest fitness. 

Genetic Algorithms have been widely applied in computer science, engineering, economics, 

manufacturing and physics, etc. This section will discuss the applicability of Genetic 

Algorithms in solving TDVRP. The program will be coded in MATLAB. 

 

Considering the complexity of TDVRP in this thesis, using Genetic Algorithms to solve static 

shortest path problem in a small road network was tested ahead of applying for TDVRP. Take 

one of the road networks from figure 4 which has 512 nodes and 571 arcs as an example to 

calculate the shortest path. Figure 12 shows the trend of average shortest path (upper curve) 

and optimal shortest path in each generation (lower curve). 
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Figure 12: Trend of average shortest path (upper curve) and minimum shortest path in each 

generation (lower curve) (population size is 50, generation size is 100, crossover probability 

0.9 and mutation probability 0.01 with random initial population) 

The trend indicated randomized initial population did not contain a feasible solution. The 

Genetic Algorithm improved solutions through generation by generation. Similarly, while we 

increased population size and generation size, the trend did not vary too much and result was 

still far from optimality. 

 

Before we reached the conclusion that it is not suitable to apply Genetic Algorithms to the 

shortest path problem, we made further investigation about Genetic Algorithms in the case 

that initial population was selected among the feasible solutions instead of random 

generation. We found that under no circumstance there will be feasible solutions for a large 

network, if population is randomly generated. 

 

Case 1: If setting the probability of mutation to positive number, the trend of average shortest 

path for the population is shown in figure 13. Trend shown in figure 13 is right opposite of 

result shown in figure 12. The population started at a very good point. Along with generation, 
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more and more infeasible solutions made the overall population worse. It is obvious that 

initial feasible population could not guarantee feasible computation results when mutation 

rate is positive. 

 

Figure 13: Trend of average shortest path (upper curve) and minimum shortest path in each 

generation (lower curve) (population size is 50, generation size is 100, crossover probability 

0.9 and mutation probability 0.01 with selected initial population) 

Case 2: If setting probability of mutation to 0, the population turned better and better along 

with generation till all the individuals turned to the best initial point by genetic assimilation. 

The result shows that the Genetic Algorithms are able to pick up the best solution if all the 

solutions in initial population are feasible and the mutation rate is 0. 
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Figure 14: Trend of average shortest path (upper curve) and minimum shortest path in each 

generation (lower curve) (population size is 50, generation size is 100, crossover probability 

0.9 and mutation probability 0 with selected initial population) 

 

Combining all the scenarios we discussed above, though it has been extensively applied in 

solving traveling salesman problem (TSP) (Baker, 2003; Vidal et al., 2012 and etc.), we can 

conclude that Genetic Algorithms are not suitable for solving the shortest path problem, not 

to mention those with time dependencies. 

Summary of Findings 

In this chapter, we investigated and implemented TDSP algorithms with node labeling and 

arc labeling, assignment algorithms as well as Genetic Algorithms. Computation programs 

were developed in several software environments like GAMS, MATLAB, Microsoft Excel 

2013 and Microsoft Visual Studio 2013. TDSP algorithms with arc labeling and node 

labeling both worked efficiently for TDVRP in a small network. In a large road network, 

TDSP algorithm with arc labeling showed great competence in terms of memory efficiency. 
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With regard to memory limitation of current technology, TDSP algorithm with arc labeling is 

strongly suggested to solve time-dependent shortest path problem. 

 

Both Node number and mean degree of road network play important roles in affecting 

computation time. When the road network size is given, computer programs should be 

carefully reviewed before implementation of algorithms. The TDVRP, discussed in this 

thesis, could not be solved by Genetic Algorithms. 
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CHAPTER V 

CONCLUSIONS AND FUTURE RESEARCH  

This thesis investigated TDSP algorithm with node labeling in a time-dependent shortest path 

problem. Even though node labeling algorithm is very efficient in solving TDVRP in a small 

road network, it could not be applied to a large road network which has more than 1000 

nodes due to memory limitation. Hence, more memory-efficient algorithm was proposed in 

order to solve TDSP problems in a larger road network. Multiple experiment results validated 

the accuracy of TDSP algorithm with arc labeling; also, they showed that arc labeling 

algorithm is both efficient and effective in solving TDVRP for a road network which has 

more than 3000 nodes within around 6 minutes. Besides TDSP algorithms, this paper also 

applied assignment algorithms to assignment problems. Revise Hungarian Algorithm was 

developed in order to minimize the maximum cost of assignment while minimizing the total 

cost. Two examples about the revised Hungarian Algorithm were shown and calculation 

results were compared to Hungarian Algorithm. Combining TDSP algorithms and Hungarian 

Algorithms investigated and developed in this thesis, optimal results of TDVRP could be 

obtained. 

 

Moreover, multiple factors that affect computation efficiency were discussed. The size of 

road network, including node number and mean degree, substantially determines the 

complexity of TDVRP for a road network. Computation time increases tremendously along 

with the increase of node number when mean degree is high. A simple mathematical model 

was proposed by a two-factor two-level design of experiment to describe the effects of node 

number and mean degree on computation time. Besides road network size, computation time 
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of TDVRP through several computer programs was presented. When different software is 

used, computation performance may vary significantly. 

 

Genetic Algorithms, even though very popular in the literature, were found not suitable in 

solving the shortest path problem, not to mention TDVRP in this thesis. The reason could be 

the difficulties of generating feasible solutions as initial population. However, other meta-

heuristic algorithms, such as tabu search, could be tested in future studies. Parallel computing 

still remains an intriguing and challenging area to be discovered to improve computation 

efficiency for repetitive tasks. 
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