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ABSTRACT

An incomplete Latin square is a v×v array with an empty n×n subarray with every

row and every column containing each symbol at most once and no row or column with

an empty cell containing one of the last n symbols. A set of t incomplete mutually

orthogonal Latin squares of order v and hole size n, denoted t−IMOLS(v, n), is a set

of t incomplete Latin squares (containing the same empty subarray on the same set

of symbols) with a natural extension to the condition of orthogonality. The existence

of such sets have been previously explored only for small values of t. We determine

an asymptotic result for the existence of t−IMOLS(v;n) for general t requiring large

holes, which we develop from our results on incomplete pairwise balanced designs and

incomplete group divisible designs.
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Chapter 1

Introduction

1.1 Orthogonal Latin Squares

A Latin square of order v is a v by v array of cells in which each cell contains a

single integer between 1 and v and every row and every column contains each integer

between 1 and v exactly once. A common example of a Latin square is a completed

Sudoku puzzle, which is a Latin square of order 9 with the additional requirement

that the nine 3 by 3 subarrays of cells, which are denoted by thicker lines, each contain

each integer between 1 and 9 exactly once. A completed Sudoku puzzle is shown in

Figure 1.1.

Latin squares are easily seen to exist for all orders by constructing a group table

of v elements. A group 〈G, ∗〉 is a set of elements G together with a binary operation

∗ such that a ∗ b ∈ G for every a, b ∈ G (G is closed under ∗), (a ∗ b) ∗ c = a ∗ (b ∗ c)

for every a, b, c ∈ G (G is associative), there exists an element e ∈ G such that

a ∗ e = e ∗ a = a for every a ∈ G (G has an identity), and for every a ∈ G there

exists an element a′ ∈ G such that a ∗ a′ = a′ ∗ a = e (G contains inverses). As a

result of these group properties, the equations a ∗ x = b and y ∗ a = c, for a, b, c ∈ G,
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5 3 4 6 7 8 9 1 2

6 7 2 1 9 5 3 4 8

1 9 8 3 4 2 5 6 7

8 5 9 7 6 1 4 2 3

4 2 6 8 5 3 7 9 1

7 1 3 9 2 4 8 5 6

9 6 1 5 3 7 2 8 4

2 8 7 4 1 9 6 3 5

3 4 5 2 8 6 1 7 9

Figure 1.1: A Completed Sudoku

have unique solutions x, y, which is precisely what is needed to guarantee that every

row and every column contains each element exactly once in the group table. Hence,

〈Zv,+〉, the integers mod v under +, gives a group table which forms a Latin square

of order v. An example is given in Figure 1.2.

+ 1 2 3 4 5 6

1 2 3 4 5 6 1
2 3 4 5 6 1 2
3 4 5 6 1 2 3
4 5 6 1 2 3 4
5 6 1 2 3 4 5
6 1 2 3 4 5 6

Figure 1.2: A Latin Square Constructed from the Group 〈Z6,+〉

Two Latin squares are said to be orthogonal if, by forming ordered pairs of el-

ements of corresponding cells, each ordered pair occurs exactly once. We can use

playing cards to formulate a problem whose solution is a pair of orthogonal Latin

squares. The problem is to arrange the face cards and aces from a standard deck of

cards in a 4 by 4 array such that each row and each column contains one card of each

rank and one card of each suit. Equivalently, this problem is to construct a pair of

orthogonal Latin squares, one representing the rank and the other representing the
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A♠ K♥ Q♦ J♣
K♦ A♣ J♠ Q♥
Q♣ J♦ A♥ K♠
J♥ Q♠ K♣ A♦

A K Q J
K A J Q
Q J A K
J Q K A

♠ ♥ ♦ ♣
♦ ♣ ♠ ♥
♣ ♦ ♥ ♠
♥ ♠ ♣ ♦

Figure 1.3: Playing Card Problem

suit. A solution to this problem is given in Figure 1.3. A second problem is Euler’s

36 Officer Problem, which requires arranging six regiments, each with six officers of

different ranks, in a 6 by 6 array so that each row and each column contains one

officer from each regiment and one officer from each rank. Equivalently, the prob-

lem is to construct orthogonal Latin squares of order 6. There is no solution to this

problem, however; 6 is one of only two orders for which orthogonal Latin squares do

not exist. This nonnexistence result was proven exhaustively by Tarry [56]; a shorter

and more elegant proof was later given by Stinson [52]. The nonexistence of a pair

of orthogonal Latin squares of order 2 is a simple exercise. Euler determined the

existence of orthogonal Latin squares whose order was odd or a multiple of four, but

made the conjecture that orthogonal Latin squares of the remaining orders, that is,

those orders equivalent to 2 (mod 4), did not exist. Existence for these orders was

eventually shown by Bose, Shrikhande, and Parker [10].

Theorem 1.1.1. [10] Orthogonal Latin squares of order v exist for all v 6= 2, 6.

A set of Latin squares is said to be mutually orthogonal if every pair of Latin

squares in the set is orthogonal. The maximum number of mutually orthogonal Latin

squares of order v is denoted N(v) and an upper bound on N(v) is v − 1. To see

this, we can assume that the first row of each Latin square in the set has its entries

in ascending order, as permuting symbols within a square preserves orthogonality.

Now, consider the first cell in the second row of each square. In no square can this

cell contain a 1, as in each square the cell above it contains a 1. Further, each square
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1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

1 2 3 4 5
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3

1 2 3 4 5
4 5 1 2 3
2 3 4 5 1
5 1 2 3 4
3 4 5 1 2

1 2 3 4 5
5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 1

Figure 1.4: Mutually Orthogonal Latin Squares of Orders 4 and 5

must contain a distinct entry in this cell, because between any pair of squares, the

ordered pair where both entries are the same is already contained in the first row.

Hence, the maximum number of mutually orthogonal Latin squares of order v is at

most v−1. This upper bound is achieved when v is a prime power. To construct such

an example, we work in Fq, the finite field of order q, and let entry (i, j) of square s,

i, j ∈ Fq, s ∈ Fq \ {0}, be si+ j. Maximum sets of mutually orthogonal Latin squares

of orders 4 and 5 are given in Figure 1.4. This idea also leads to the following lower

bound, due to MacNeish [44].

Theorem 1.1.2. [44] If v = pe11 p
e2
2 · · · pett , where each pi is a distinct prime, then

N(v) ≥ min{peii − 1 : i = 1, 2, . . . , t}.

Two equivalent structures to mutually orthogonal Latin squares are transversal

designs and orthogonal arrays. A transversal design of order v and block size k,

denoted TD(k, v), is a triple (V,Π,B) such that V is a set of vk points, Π is a

partition of V into k groups of v points each, and B is a collection of k-subsets of V ,

called blocks, such that no block contains two points in the same group, and every pair

of points from different groups appears in exactly one block. A TD(k, v) is equivalent

to k − 2 mutually orthogonal Latin squares of order v; the first two groups of the
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transversal design index the rows and the columns, and entry (i, j) in square s is the

element in group s + 2 in the block containing i and j. Since every pair of points

from different groups appears exactly once, it follows that cells have unique entries,

rows and columns contain every symbol, and every pair of Latin squares contains

every ordered pair of symbols. An orthogonal array of order v and depth k, denoted

OA(v, k) is an array of k rows and v2 columns in which each cell contains a symbol

from 1 to v and every pair of rows contains each ordered pair of symbols exactly

once. An OA(v, k) is equivalent to k − 2 mutually orthogonal Latin squares of order

v; the first two rows of the orthogonal array index the rows and columns, and each

subsequent row gives the entries of one of the Latin squares. Again, as every pair

of symbols occurs exactly once in any two rows of the orthogonal array, cells of the

squares have unique entries, rows and columns contain every symbol, and every pair

of Latin squares contains every ordered pair of symbols. An example of an orthogonal

array of order 4 and depth 5, corresponding to the mutually orthogonal Latin squares

of order 4 in Figure 1.4, is given in Figure 1.5.

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1
1 2 3 4 3 4 1 2 4 3 2 1 2 1 4 3
1 2 3 4 4 3 2 1 2 1 4 3 3 4 1 2

Figure 1.5: An Orthogonal Array of Order 4 and Depth 5

Chowla, Erdős, and Straus [14] proved the asymptotic result that the maximum

number of mutually orthogonal Latin squares of order v tends to infinity with v. More

precisely, they showed that there exists a positive constant c such that N(v) > vc for

all sufficiently large v, and obtained the specific bound N(v) > 1
3
v

1
91 . The exponent c

was improved to 1
17

by Wilson [59] and further improved to 1
14.8

by Beth [9]. For later

convenience, we state this result (in a weak form) in terms of transversal designs.
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Theorem 1.1.3. [14] Given k, there exist TD(k, v) for all sufficiently large integers

v.

On the other hand, for values of v < 10000, Colbourn and Dinitz [18] give a table

of the best known lower bounds of the number of mutually orthogonal Latin squares

of order v. Using this table, an upper bound can be stated for the minimum order vt

such that t mutually orthogonal Latin squares exist for all orders v ≥ vt, as presented

below.

Theorem 1.1.4. [18] A set of t mutually orthogonal Latin squares exist for all v ≥ vt

given by Table 1.1.

Table 1.1: Upper Bound on v for the Existence of t Mutually Orthogonal Latin
Squares of Order v

t 2 3 4 5 6 7 8 9 10 11 12
vt 7 11 23 61 75 571 2767 3679 5805 7223 7287

1.2 Subsquares and Holes

A Latin square is said to contain a subsquare of order n if the subsquare itself is

a Latin square, that is, it contains n symbols each occurring exactly once in each

row and exactly once in each column. A pair of orthogonal Latin squares are said

to have aligned subsquares if the subsquares consist of the same cells and symbols,

and are themselves orthogonal. This concept also extends to mutually orthogonal

Latin squares with aligned subsquares. An example of orthogonal Latin squares with

aligned subsquares is given in Figure 1.6.

If each subsquare is removed from each Latin square in a set of mutually orthogonal

Latin squares with aligned subsquares, the result is a set of incomplete mutually

orthogonal Latin squares. A set of t incomplete mutually orthogonal Latin squares of
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8 9 3 0 5 6 7 1 2 4
9 7 0 2 3 4 8 5 6 1
4 0 6 7 1 8 9 2 3 5
0 3 4 5 8 9 1 6 7 2
7 1 2 8 9 5 0 3 4 6
5 6 8 9 2 0 4 7 1 3
3 8 9 6 0 1 2 4 5 7
1 4 7 3 6 2 5 8 9 0
6 2 5 1 4 7 3 9 0 8
2 5 1 4 7 3 6 0 8 9

1 2 8 4 0 9 7 3 6 5
5 8 7 0 9 3 4 6 2 1
8 3 0 9 6 7 1 2 5 4
6 0 9 2 3 4 8 5 1 7
0 9 5 6 7 8 2 1 4 3
9 1 2 3 8 5 0 4 7 6
4 5 6 8 1 0 9 7 3 2
2 6 3 7 4 1 5 8 9 0
7 4 1 5 2 6 3 0 8 9
3 7 4 1 5 2 6 9 0 8

Figure 1.6: Orthogonal Latin Squares of Order 10 with Aligned Subsquares of Order
3

order v with hole size n, denoted t−IMOLS(v, n) is a set of v by v arrays with a hole

N ⊆ [v] such that cell (i, j) is empty if {i, j} ⊆ N and contains an integer between

1 and v otherwise, every row and every column contains each symbol at most once,

symbols in N are not contained in a row or column index by N , and each ordered

pair in [v]2 \N2 occurs exactly once. For convenience, N is often the last n integers

of [v], which produces an empty subarray in the bottom-right corner of each square.

Analogously, we have incomplete transversal designs, denoted TD(k, v) − TD(k, n),

and incomplete orthogonal arrays, denoted IA(v, n, k). In an incomplete transversal

design, two points index by N are not contained in any common block, and in an

incomplete orthogonal array, ordered pairs in N2 do not occur. It is possible for a set

of incomplete mutually orthogonal Latin squares to exist even if the corresponding

set of mutually orthogonal Latin squares with aligned subsquares does not exist. For

example, two incomplete mutually orthogonal Latin squares of order 6 with hole size

2 exist, as depicted in Figure 1.7, but as there do not exist orthogonal Latin squares

of order 2, the empty subarrays cannot be completed. The first example of such a

design was constructed by Euler as part of his search for mutually orthogonal Latin

squares.
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5 6 3 4 1 2
2 1 6 5 3 4
6 5 1 2 4 3
4 3 5 6 2 1
1 4 2 3
3 2 4 1

1 2 5 6 3 4
6 5 1 2 4 3
4 3 6 5 1 2
5 6 4 3 2 1
2 4 3 1
3 1 2 4

Figure 1.7: 2−IMOLS(6, 2)

Horton [38] initiated the study of incomplete mutually orthogonal Latin squares

and identified the following necessary condition for their existence.

Theorem 1.2.1. [38] If t−IMOLS(v, n) exist, then v ≥ n(t+ 1).

Proof. Consider the last n integers and the top row of each square in a set of

t−IMOLS(v, n). Since there are no ordered pairs of these integers between any

two squares by definition, each column contains at most one of these integers in the

top row over all the squares. Further, the last n columns cannot contain these integers

in any square by definition. It follows that the number of columns, and hence the

order, is at least n(t+ 1).

While several results on the existence of t incomplete mutually orthogonal Latin

squares have been determined for small values of t, there is no discussion in the lit-

erature of results for general t, with the exception of the case where the size of the

hole is at most t + 2; these results are discussed in Section 6.2. The main result of

this thesis fills this hole (no pun intended). That is, we will show the existence of

t−IMOLS(v, n) for all sufficiently large v and n exceeding a ratio that is quadratic

in t. This result, which we prove in Chapter 6, follows from existence results on

incomplete pairwise balanced designs which we develop in Chapter 5. These designs,

along with their complete counterparts, are defined in Chapter 2. Chapter 3 consid-

ers the constructions required to prove the results on incomplete pairwise balanced
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designs, and Chapter 4 introduces and proves the asymptotic existence of incomplete

group divisible designs. Finally, Chapter 7 considers present challenges associated

with improving these results and future research directions. The results of this thesis

also appear in [31].
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Chapter 2

Pairwise Balanced Designs

2.1 Definition and Existence

A pairwise balanced design on v points with block size k, denoted PBD(v, k), is a pair

(V,B) such that V is a set of v points and B is a collection of k-subsets of V , called

blocks, such that every pair of distinct points occurs together in exactly one block. In

general, pairwise balanced designs also have an index λ, are denoted PBD(v, k, λ),

and each pair of distinct points occurs together in exactly λ blocks; however, we

consider exclusively the case λ = 1 for this and all subsequently introduced designs,

and drop the index from the notation. The case k = 2 is trivial: each pair forms a

block in B. At the other extreme, the case v = k is trivial, and B consists of a single

block containing all the points. The smallest nontrivial example is as follows.

Example 2.1.1. The blocks of a PBD(7, 3) on the point set {0, 1, 2, 3, 4, 5, 6} are

{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}.

This design is also represented as the Fano plane as pictured in Figure 2.1, where

each vertex represents a point and each line (including the circle) represents a block
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whose points are the three vertices on the line.

Figure 2.1: The Fano Plane

For a PBD(v, k), the number of pairs of points that need to be covered by the

blocks is
(
v
2

)
and the number of pairs covered by each block is

(
k
2

)
, so the number of

blocks required is
(
v
2

)
/
(
k
2

)
= v(v−1)

k(k−1)
. In addition, each point is paired with v− 1 other

points, and is paired with k − 1 other points in each block. So each point occurs

in v−1
k−1

blocks; this value is called the replication number. Since both of these values

must be integers, we obtain the following necessary conditions for pairwise balanced

designs.

Proposition 2.1.2. If a PBD(v, k) exists, then

v(v − 1) ≡ 0 (mod k(k − 1)), and (2.1.1)

v − 1 ≡ 0 (mod k − 1). (2.1.2)

Note that as (2.1.2) implies k − 1 | v(v − 1) and gcd(k, k − 1) = 1, we can

equivalently write (2.1.1) as v(v− 1) ≡ 0 (mod k). If the above necessary conditions

are satisfied by a particular set of values of v and k, those values are said to be

admissible. These necessary conditions are not, however, sufficient, as the following
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example shows.

Example 2.1.3. There exists no PBD(16, 6). If such a design existed, it would

consist of 16×15
6×5

= 8 blocks and have replication number 15
5

= 3. We can assume

without loss of generality that one of the blocks is {1, 2, 3, 4, 5, 6}. Then each of these

six points must be contained in two other blocks, and each of those blocks must be

distinct as a pair of points cannot occur together in more than one block. But then

we have at least thirteen blocks, contrary to the requirement for the number of blocks.

More generally, a pairwise balanced design can have multiple block sizes. Hence,

a PBD(v,K), where K ⊆ Z≥2, the set of integers greater than or equal to 2, is a

pair (V,B) such that V is a set of v points and B is a collection of subsets of V ,

called blocks, such that the size of each block is in K and every pair of points occurs

together in exactly one block. We consider the following example.

Example 2.1.4. The blocks of a PBD(10, {3, 4}) on the point set {0, 1, 2, 3, 4, 5, 6, 7,

8, 9} are

{1, 2, 3, 0}, {4, 5, 6, 0}, {7, 8, 9, 0}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9},

{1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {1, 6, 8}, {2, 4, 9}, {3, 5, 7}.

Unlike the case of a single block size, there is no way to simultaneously calcu-

late the number of blocks required in a pairwise balanced design and the replication

number (which, as the previous example shows, may not be constant). In fact, the

following example shows there may be multiple ways to construct a pairwise balanced

design using different numbers of blocks.

Example 2.1.5. Two possible block sets of a PBD(12, {3, 4}) on the point set V =



13

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are

1. {1, 2, 3, 10}, {4, 5, 6, 10}, {7, 8, 9, 10}, {1, 4, 7, 11}, {2, 5, 8, 11}, {3, 6, 9, 11},

{1, 5, 9, 12}, {2, 6, 7, 12}, {3, 4, 8, 12}, {1, 6, 8}, {2, 4, 9}, {3, 5, 7}, {10, 11, 12}.

2. {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {1, 5, 9}, {1, 6, 10}, {1, 7, 11}, {1, 8, 12},

{2, 5, 10}, {2, 6, 11}, {2, 7, 12}, {2, 8, 9}, {3, 5, 11}, {3, 6, 12}, {3, 7, 9}, {3, 8, 10},

{4, 5, 12}, {4, 6, 9}, {4, 7, 10}, {4, 8, 11}.

Despite being unable to simultaneously determine in advance the total number

of blocks or the number of times a point occurs, certain restrictions on the number

of points of a pairwise balanced design can be easily identified. The total number

of pairs of points must be expressible as a (nonnegative) integer linear combination

of the numbers of pairs contained in a block of each size in K, and if we choose a

particular point, the remaining points must be expressible as a (nonnegative) integer

linear combination of the numbers of remaining points contained in a block of each size

in K. To this end, let β(K) = gcd{k(k−1) : k ∈ K} and α(K) = gcd{k−1 : k ∈ K}.

Then the following necessary conditions are obtained.

Proposition 2.1.6. If a PBD(v,K) exists, then

v(v − 1) ≡ 0 (mod β(K)), and (2.1.3)

v − 1 ≡ 0 (mod α(K)). (2.1.4)

As with the case of a single block size, we can write an equivalent condition for

(2.1.3). To this end, let γ(K) = β(K)/α(K). It is clear from the definitions of β(K)

and α(K) that α(K) | β(K), so γ(K) is an integer. Further, it must be the case

that gcd(α(K), γ(K)) = 1. For if not, there exists a prime p such that p | γ(K) and
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p | α(K). Suppose pe ‖ α(K), that is pe is the largest power of p to divide α(K).

Then pe+1 | β(K). As p | α(K), p | k − 1 for all k ∈ K, and so gcd(p, k) = 1 for

all k ∈ K. Hence, as pe+1 | β(K), pe+1 | k − 1 for all k ∈ K, so pe+1 | α(K), which

contradicts that pe ‖ α(K). Hence, we can equivalently write (2.1.3) as v(v − 1) ≡ 0

(mod γ(K)).

Although these necessary conditions are not sufficient, Wilson [58] showed that

the conditions are in fact asymptotically sufficient.

Theorem 2.1.7. [58] Given any K ⊆ Z≥2, there exist PBD(v,K) for all sufficiently

large v satisfying (2.1.3) and (2.1.4).

2.2 Incomplete Pairwise Balanced Designs

An incomplete pairwise balanced design on v points with hole size w and block size k,

denoted IPBD((v;w), k), is a triple (V,W,B) such that V is a set of v points, W is

a subset of V containing w points called the hole, and B is a collection of k-subsets,

called blocks, such that no block contains two points in W , and every pair of points

not both in W appears in exactly one block. The cases w = 0 and w = 1 reduce to a

PBD(v, k) as there are no pairs of points in W . The case w = v is an empty design

as every pair of points is in W . Further, the case k = 2 is trivial as each pair of points

not both in W form a block in B. Hence, in what follows, we consider the nontrivial

cases in which 2 ≤ w ≤ v and k ≥ 3. A small example is given below.

Example 2.2.1. The blocks of an IPBD((11; 5), 3) with point set V = {1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11} and hole set W = {7, 8, 9, 10, 11} are
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{1, 2, 7}, {1, 3, 8}, {1, 4, 9}, {1, 5, 10}, {1, 6, 11},

{3, 6, 7}, {2, 4, 8}, {3, 5, 9}, {4, 6, 10}, {2, 5, 11},

{4, 5, 7}, {5, 6, 8}, {2, 6, 9}, {2, 3, 10}, {3, 4, 11}.

As with pairwise balanced designs, we can calculate the number of blocks required

for an incomplete pairwise balanced design. The number of pairs of points that need

to be covered by the blocks is
(
v
2

)
−
(
w
2

)
and the number of pairs covered by each

block is
(
k
2

)
, so the number of blocks required is v(v−1)−w(w−1)

k(k−1)
. Replication numbers,

however, need to be computed separately for points in the hole and points outside

the hole. Each point outside the hole is paired with v − 1 other points, and is paired

with k− 1 other points in each block, so its replication number is v−1
k−1

. Each point in

the hole is paired with v − w other points, and is paired with k − 1 other points in

each block, so its replication number is v−w
k−1

. Since each of these values must be an

integer, and the difference between these two values w−1
k−1

must also be an integer, we

obtain the following necessary conditions on incomplete pairwise balanced designs.

Proposition 2.2.2. If an IPBD((v;w), k) exists, then

v(v − 1)− w(w − 1) ≡ 0 (mod k(k − 1)), and (2.2.1)

v − 1 ≡ w − 1 ≡ 0 (mod k − 1). (2.2.2)

As (2.2.1) can also be expressed as (v − w)(v + w − 1) (mod k(k − 1)), and

(2.2.2) implies v − w ≡ 0 (mod k − 1), we can therefore equivalently write (2.2.1) as

v(v − 1)− w(w − 1) ≡ 0 (mod k). As with pairwise balanced designs, we say values

for v, w, k are admissible if they satisfy the necessary conditions. For an incomplete

pairwise balanced design to exist, however, there is also a necessary inequality that

must be satisfied, as shown in the following proposition.
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Proposition 2.2.3. If an IPBD((v;w), k) exists, then v ≥ (k − 1)w + 1.

Proof. The replication number of a point in the hole is v−w
k−1

. Since two points in the

hole cannot be in the same block, there must be at least (v−w)w
k−1

blocks. As the total

number of blocks is v(v−1)−w(w−1)
k(k−1)

, we have

v(v − 1)− w(w − 1)

k(k − 1)
≥ (v − w)w

k − 1
,

which, after some algebra, reduces to

v ≥ (k − 1)w + 1.

Notice that if equality holds, every block contains a point in the hole.

Analogously to the connection between incomplete mutually orthogonal Latin

squares and mutually orthogonal Latin squares with aligned subsquares, we have

a connection between incomplete pairwise balanced designs and pairwise balanced

designs containing a subdesign. If a PBD(v, k) contains the subdesign PBD(w, k),

the subdesign can be removed to form an IPBD((v;w), k). Conversely, if both an

IPBD((v;w), k) and a PBD(w, k) exist, the hole of the incomplete design can be

filled to form a PBD(v, k). Hence, the existence of a PBD(v, k) implies the existence

of an IPBD((v, k), k), since a PBD(k, k) trivially exists.

Like pairwise balanced designs, the necessary conditions for incomplete pairwise

balanced designs are not sufficient. Dukes, Lamken, and Ling [30] determined the

following two results approaching a result of asymptotic sufficiency.

Theorem 2.2.4. [30] Given w ≡ 1 (mod k − 1), there exist IPBD((v;w), k) for all

sufficiently large v satisfying (2.2.1) and (2.2.2).

Theorem 2.2.5. [30] For any real ε > 0, there exist IPBD((v;w), k) for all suffi-
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ciently large v, w satisfying (2.2.1), (2.2.2), and v > (k − 1 + ε)w.

As with pairwise balanced designs, we can have multiple block sizes in incomplete

pairwise balanced designs. Hence, an IPBD((v;w), K), where K ⊆ Z≥2, is a triple

(V,W,B) such that V is a set of v points, W is a subset of V containing w points

called the hole, and B is a collection of subsets of V called blocks such that the size

of each block is in K, no block contains two points in W , and every pair of points

not both in W appears in exactly one block. A small example is given below.

Example 2.2.6. The blocks of an IPBD((11; 2), {3, 4}) with point set V = {1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11} and hole set W = {10, 11} are

{1, 2, 3, 10}, {4, 5, 6, 10}, {7, 8, 9, 10}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9},

{1, 5, 9, 11}, {2, 6, 7, 11}, {3, 4, 8, 11}, {1, 6, 8}, {2, 4, 9}, {3, 5, 7}.

Analogous necessary conditions are obtained as given below. As with pairwise

balanced designs, the modulus in (2.2.3) can be replaced with γ(K).

Proposition 2.2.7. If an IPBD((v;w), K) exists, then

v(v − 1)− w(w − 1) ≡ 0 (mod β(K)), and (2.2.3)

v − 1 ≡ w − 1 ≡ 0 (mod α(K)). (2.2.4)

Proposition 2.2.8. If an IPBD((v;w), K) exists, then v ≥ (minK − 1)w + 1.

Proof. A point outside the hole must appear in at least w blocks, as no two points

in the hole can be in the same block, and at most v−1
minK−1

blocks. Hence v−1
minK−1

≥ w

and the result follows.

As with the case of a single block size, if a PBD(v,K) contains the subdesign

PBD(w,K), the subdesign can be removed to form an IPBD((v;w), K). Conversely,
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if both an IPBD((v;w), K) and a PBD(w,K) exist, the hole of the incomplete design

can be filled to form a PBD(v,K). More generally, if both an IPBD((v;w), K) and

an IPBD((w;x), K) exist, the hole of the larger incomplete pairwise balanced design

can be filled with the smaller to form an IPBD((v;x), K). On the other hand, if we

have an IPBD((v;w), K) and for each k ∈ K, there exists a PBD(k, L), then we

can break up the blocks of the incomplete pairwise balanced design with the smaller

pairwise balanced designs to form an IPBD((v;w), L) on a new block set.

The hole of an incomplete pairwise balanced design is often considered in the

literature as a distinguished block, so an IPBD((v;w), K) is also denoted as a

PBD(v,K ∪ {w∗}), where the star indicates there is at least one block of size w

if w ∈ K, or there is exactly one block of size w if w /∈ K. We will discuss exis-

tence results for particular block sets in Section 5.3, but as there are no results for

incomplete pairwise balanced designs with multiple block sizes in general, proving

analogues of Theorems 2.2.4 and 2.2.5 will be our main focus in the next few chap-

ters, as they are necessary to prove our main result on incomplete mutually orthogonal

Latin squares.
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Chapter 3

Constructions

3.1 Group Divisible Designs

Our first set of incomplete pairwise balanced designs will be constructed using group

divisible designs. A group divisible design of type T with block size k, denoted

GDD(T, k), is a triple (V,Π,B) such that:

• V is a set of v points;

• Π = {V1, V2, . . . , Vu} is a partition of V into groups such that T = [|V1|, |V2|, . . . ,

|Vu|];

• B is a collection of k-subsets of V , called blocks, meeting each group in at most

one point; and

• every pair of points from different groups appears in exactly one block.

Typically, T is expressed in exponential notation, where the term gu represents u

groups of size g. A transversal design is a group divisible design in which the number

of groups is k, and each group contains the same number of elements, i.e. a TD(k, n)
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is equivalent to a GDD(nk, k). At the other extreme, a PBD(v, k) is equivalent to a

GDD(1v, k). An example of a group divisible design is given below.

Example 3.1.1. A GDD(614123, 3) with point set V = {a1, a2, a3, a4, a5, a6, b1, b2, b3,

b4, c1, c2, d1, d2, e1, e2} and partition Π = {{a1, a2, a3, a4, a5, }, {b1, b2, b3, b4}, {c1, c2},

{d1, d2}, {e1, e2}} consists of the following blocks:

{a1, b1, c1}, {a2, b1, d1}, {a3, b1, e1}, {a4, b1, c2}, {a5, b1, d2}, {a6, b1, e2},

{a1, b2, d1}, {a2, b2, e1}, {a3, b2, c1}, {a4, b2, d2}, {a5, b2, e2}, {a6, b2, c1},

{a1, b3, e1}, {a2, b3, c2}, {a3, b3, d2}, {a4, b3, e2}, {a5, b3, c1}, {a6, b3, d1},

{a1, b4, c2}, {a2, b4, d2}, {a3, b4, e2}, {a4, b4, c1}, {a5, b4, d1}, {a6, b4, e1},

{a1, d2, e2}, {a2, e2, c1}, {a3, c1, d1}, {a4, d1, e1}, {a5, e1, c2}, {a6, c2, d2},

{c1, d2, e1}, {c2, d1, e2}.

Our primary focus will be uniform group divisible designs, which have type T =

gu. An example is given below.

Example 3.1.2. A GDD(27, 4) with point set V = Z7 × Z2 and partition Π =

{{i}×Z2 : i ∈ Z7} consists of block set B = {{(0, 0), (1, 1), (4, 0), (6, 0)}}+ (Z7×Z2),

where we start with a base block and develop it additively over the group Z7 × Z2.

Compared to the general case, the calculation of the number of blocks and the

replication number for uniform group divisible designs is straightforward. The number

of pairs of points that need to be covered by the blocks is g2u(u−1)
2

and the number of

pairs covered by each block is
(
k
2

)
, so the number of blocks required is g2u(u−1)

k(k−1)
. Also,

each point is paired with g(u− 1) other points, and is paired with k− 1 other points

in each block, so the replication number is g(u−1)
k−1

. Since both of these values must

be integers, we obtain the following necessary conditions on uniform group divisible

designs. As usual, we can replace the modulus in the first condition with k.
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Proposition 3.1.3. If a GDD(gu, k) exists, then

g2u(u− 1) ≡ 0 (mod k(k − 1)), and

g(u− 1) ≡ 0 (mod k − 1).

As the following proposition shows, there is a connection between incomplete

pairwise balanced designs and group divisible designs.

Proposition 3.1.4. The following are equivalent:

• IPBD((v;w), k),

• GDD(1v−ww1, k), and

• GDD((k − 1)
v−w
k−1 (w − 1)1, k).

Proof. The equivalence between the first and second designs easily follows from their

definitions. Going from the first to the third design, delete a point in the hole and

all its incident blocks, which become groups, as does the remainder of the hole.

Conversely, add a point and form new blocks from each group but the last together

with the new point.

As a result of this equivalence, the necessary conditions for uniform group divisible

designs are not sufficient (even if we include the simple observation that u ≥ k). To

generalize this type of design, we can have multiple block sizes. Hence, a GDD(T,K),

where K ⊆ Z≥2, is a triple (V,Π,B) such that:

• V is a set of v points;

• Π = {V1, V2, . . . , Vu} is a partition of V into groups such that T = [|V1|, |V2|, . . . ,

|Vu|];
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• B ⊆
⋃
k∈K

(
V
k

)
is a collection of blocks, meeting each group in at most one point;

and

• every pair of points from different groups appears in exactly one block.

The following necessary conditions are obtained in the uniform case; the first condition

can also be written with the modulus γ(K).

Proposition 3.1.5. If a GDD(gu, K) exists, then

g2u(u− 1) ≡ 0 (mod β(K)), and (3.1.1)

g(u− 1) ≡ 0 (mod α(K)). (3.1.2)

The proof of the asymptotic sufficiency of these conditions was found indepen-

dently by Draganova [27] and Liu [43].

Theorem 3.1.6. [27, 43] Given g and K ⊆ Z≥2, there exist GDD(gu, K) for all

sufficiently large u satisfying (3.1.1) and (3.1.2).

The following two constructions show the connections between group divisible

designs and incomplete pairwise balanced designs in this more general case. They

are relatively straightforward extensions of Proposition 3.1.4. The first construction

follows by deleting a point in the hole and letting each block that contained the point

be a group, as well as the remaining point in the hole. The second construction follows

by filling all but one group with an incomplete pairwise balanced design, identifying

each hole and adding the points of the final group to it.

Construction 3.1.7. Suppose (V,W,B) is an IPBD((v;w), K). Choose a point

x ∈ W and let the blocks containing x have sizes g1, g2, . . . , gr, where r is the number

of blocks containing x. Then there exists a GDD(T,K) with T = [g1−1, g2−1, . . . , gr−

1, w − 1].



23

Construction 3.1.8. Suppose there exists a GDD(T,K) on v points and for some

group size y in T , there exists an IPBD((g+h;h), K) for each group size g in T \ [y].

Then there exists an IPBD((v + h; y + h), K).

Larger group divisible designs can also be constructed from smaller group divisible

designs, as shown by Wilson’s Fundamental Construction [60]. The output group

divisible design is referred to as the ‘resultant’, and the smaller input designs are

referred to as the ‘master’ and ‘ingredients’.

Construction 3.1.9 (Wilson’s Fundamental Construction [60]). Suppose there ex-

ists a GDD (V,Π,B), where Π = {V1, V2, . . . , Vu}. Let ω : V → Z≥0, assigning

nonnegative weights to each point in such a way that for every B ∈ B, there exists a

GDD([ω(x) : x ∈ B], K). Then there exists a GDD(T,K), where

T =

[∑
x∈V1

ω(x),
∑
x∈V2

ω(x), . . . ,
∑
x∈Vu

ω(x)

]
.

We now determine the existence of a certain type of non-uniform group divisible

design, in which one group has a different size from the rest. We will use this design in

the construction of our first set of incomplete pairwise balanced designs. Let u0(g,K)

be such that there exist GDD(gu, K) for all admissible u ≥ u0(g,K); such a value

exists by Theorem 3.1.6.

Lemma 3.1.10. For any m ≥ u0(α(K), K) with m ≡ 0 (mod γ(K)), there exists

a GDD(smt1, K) for all sufficiently large integers s and any integer t satisfying s ≡

t ≡ 0 (mod α(K)).

Proof. We have m(m − 1) ≡ (m + 1)m ≡ 0 (mod γ(K)), so m and m + 1 are both

admissible for uniform group divisible designs with group size α(K) and block sizes

in K. Hence, there exist GDD((α(K))m, K) and GDD((α(K))m+1, K) by Theo-

rem 3.1.6. By Theorem 1.1.3, there exist TD(m + 1, s
α(K)

) for all sufficiently large s
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such that s ≡ 0 (mod α(K)). Let t be such that 0 ≤ t ≤ s and t ≡ 0 (mod α(K)).

If we remove points from one of the groups of the transversal design so the group has

size t
α(K)

, the result is a GDD(( s
α(K)

)m( t
α(K)

)1, {m,m+ 1}). If ω assigns every point

weight α(K), then as the group divisible designs have block sizes m and m + 1, we

require a GDD((α(K))m, K) and a GDD((α(K))m+1, K) whose existence has been

previously shown. Hence, applying Wilson’s Fundamental Construction results in a

GDD(smt1, K) as required.

Applying this result, we now construct incomplete pairwise balanced designs with

v and w in the same congruence class modulo some multiple of β(K). We let M :=

mβ(K) be this value, where m retains its value from the previous lemma. The

small group will be used as the hole and the other groups will be filled with pairwise

balanced designs.

Proposition 3.1.11. For any w ≡ 1 (mod α(K)), there exist IPBD((v;w), K) for

all sufficiently large v ≡ w (mod M).

Proof. Let v − w = aM = amβ(K). We assume a is large enough such that there

exists both aGDD((aβ(K))m(w−1)1, K) by Lemma 3.1.10 and a PBD(aβ(K)+1, K)

by Theorem 2.1.7. By Construction 3.1.8, there exists an IPBD((v;w), K). As a

can be incremented, the result follows.

3.2 Resolvable Designs

We construct our next set of incomplete pairwise balanced designs using resolvable

pairwise balanced designs. A design is said to be resolvable if the blocks of B can

be partitioned into parallel classes in such a way that each point is contained in

exactly one block in each parallel class. An example of resolvable pairwise balanced

designs is the solution to Kirkman’s schoolgirl problem [39], which states that fifteen
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schoolgirls leave the schoolhouse in rows of three for each of seven days and it is

required to arrange them throughout the week so that no two girls are in the same

row on multiple days. The problem is solved by a resolvable PBD(15, 3), where the

blocks are the rows and the parallel classes represent the days. Thus, a solution to

the problem is given by Figure 3.1.

{A, B, C} {A, D, G} {A, E, N} {A, I, M} {A, H, J} {A, F, L} {A, K, O}
{D, E, F} {B, E, J} {B, D, O} {B, G, L} {B, K, M} {B, I, N} {B, F, H}
{G, H, I} {C, F, M} {C, H, L} {C, D, K} {C, E, I} {C, J, O} {C, G, N}
{J, K, L} {H, K, N} {F, I, K} {E, H, O} {D, L, N} {D, H, M} {D, I, J}
{M, N, O} {I, L, O} {G, J, M} {F, J, N} {F, G, O} {E, G, K} {E, L, M}

Figure 3.1: Solution to Kirkman’s Schoolgirl Problem

Since a particular point is contained in exactly one block in each parallel class, it

follows that the number of parallel classes is equal to the replication number, which

is v−1
k−1

. Furthermore, each parallel class consists of v points divided among blocks

of size k, so the number of blocks in each parallel class is v
k
. Since these two values

must be integers, the resulting two congruences on v can be combined to obtain the

following necessary condition.

Proposition 3.2.1. If a resolvable PBD(v, k) exists, then

v ≡ k (mod k(k − 1)). (3.2.1)

Consequently, resolvable pairwise balanced designs with block size 2 exist only if

v is even. This condition is also sufficient in this case, and a resolvable PBD(v, 2)

is equivalent to a proper edge coloring of Kv, the complete graph on v vertices, with

v − 1 colors. The vertices represent the points, the edges represent the blocks, and

the color classes represent the parallel classes. An example for v = 6 is given in

Figure 3.2.
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1

1

22

2

3
3 3

44

4

5

5

5 {A, B} {C, F} {D, E}
{A, C} {B, D} {E, F}
{A. D} {B, F} {C, E}
{A, E} {B, C} {D, F}
{A, F} {B, E} {C, D}

Figure 3.2: Resolvable PBD(6, 2)

The question of asymptotic existence of resolvable pairwise balanced designs was

settled by Ray Chaudhuri and Wilson [45].

Theorem 3.2.2. [45] Given any integer k ≥ 2, there exists resolvable PBD(v, k) for

all sufficiently large v satisfying (3.2.1).

The following proposition demonstrates the equivalence between resolvable pair-

wise balanced designs and incomplete pairwise balanced designs with maximal holes,

that is, designs with v = (k − 1)w + 1.

Proposition 3.2.3. If v = (k− 1)w+ 1, then there exists an IPBD((v;w), k) if and

only if there exists a resolvable PBD(v − w, k − 1).

Proof. Let (V,W,B) be an IPBD((v;w), k) with v = (k− 1)w+ 1. Since this design

achieves equality in Proposition 2.2.3, then every block must contain a point in W .

Removing these points results in blocks of size k−1, which resolve into parallel classes

based on which point in W was in the block. Conversely, for each of the v−w−1
k−2

= w

parallel classes of a resolvable PBD(v − w, k − 1), add a new point to each of the

blocks to obtain an IPBD((v;w), k).
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We now construct a second class of incomplete pairwise balanced designs. In this

class, the parameters are such that v ≡ 1−w (mod γ(K)). Our approach is to start

with an appropriate resolvable pairwise balanced design using a single block size, and

then fill each of the blocks using block sizes in K.

Proposition 3.2.4. Given K, a positive modulus M = mβ(K), and an admissible

congruence class w0 (mod M) for incomplete pairwise balanced designs with block

sizes in K, there exists an IPBD((v;w1), K) with w1 ≡ w0 (mod M) and v ≡ 1−w1

(mod γ(K)).

Proof. Choose an integer q � 0 such that gcd(q,M) = 1, qα(K)+1 ≡ 0 (mod γ(K)),

and there exists a PBD(qα(K) + 1, K), whose existence follows from Theorem 2.1.7.

Since q and M are coprime, qα(K) and M have only the common factor α(K), and

hence it follows from the Chinese remainder theorem that we can choose a w1 � 0 (i.e.

a sufficiently large value w1) such that w1 ≡ w0 (mod M) and w1 ≡ 1 (mod qα(K))

and such that there exists a resolvable PBD(w1(qα(K) − 1) + 1, qα(K)) by Theo-

rem 3.2.2. By Proposition 3.2.3, there exists an IPBD((w1qα(K) + 1;w1), qα(K) +

1). Breaking up the blocks results in an IPBD((w1qα(K) + 1;w1), K) with v =

w1qα(K) + 1 ≡ 1− w1 (mod γ(K)) as required.
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Chapter 4

Incomplete Group Divisible

Designs

4.1 Definition and Necessary Conditions

With examples of incomplete pairwise balanced designs in two distinct classes, we

turn to incomplete group divisible designs to construct the remaining classes. An

incomplete group divisible design of type T with block size k, denoted IGDD(T, k),

is a quadruple (V,Π,Ξ,B) such that:

• V is a set of v points;

• Π = {V1, V2, . . . , Vu} is a partition of V into groups and Ξ = {W1,W2, . . . ,Wu}

is a set of holes with Wi a subset of Vi for each i and such that T = [(|V1|; |W1|),

(|V2|; |W2|), . . . , (|Vu|; |Wu|)];

• B is a collection of k-subsets of V , called blocks, meeting each group in at most

one point and containing at most one point from the hole; and

• every pair of points from different groups not both in a hole appears in exactly
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one block.

As with group divisible designs, T is typically expressed in exponential notation,

where the term (g;h)u represents u groups of size g, each with a hole of size h. An

incomplete transversal design is an incomplete group divisible design in which the

number of groups is k and each group contains the same number of points and the

same size hole, i.e. a TD(k, v)− TD(k, n) is equivalent to an IGDD((v;n)k, k). An

example of an incomplete group divisible design is given below.

Example 4.1.1. An IGDD((3; 1)1(2; 1)2(2; 0)1, 3) with point set V = {a1, a2, a3, a4,

b1, b2, c1, c2, d1, d2}, partition Π = {{a1, a2, a3, a4}, {b1, b2}, {c1, c2}, {d1, d2}}, and hole

set Ξ = {{a1}, {b1}, {c1}, {}} consists of the following blocks:

{a1, b2, d1}, {a1, c2, d2}, {a2, b1, c2}, {a2, b2, d2}, {a2, c1, d1}, {a3, b1, d1},

{a3, b2, c2}, {a3, c1, d2}, {a4, b1, d2}, {a4, b2, c1}, {a4, c2, d1}.

Our focus will be on uniform incomplete group divisible designs, which have type

T = (g;h)u. An example is given below.

Example 4.1.2. An IGDD((4; 2)4, 3) with point set V = {a1, a2, a3, a4, b1, b2, b3, b4,

c1, c2, c3, c4, d1, d2, d3, d4}, partition Π = {{a1, a2, a3, a4}, {b1, b2, b3, b4}, {c1, c2, c3, c4},

{d1, d2, d3, d4}} and hole set Ξ = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} consists of the

following blocks:

{a1, b3, c4}, {a1, c3, d4}, {a1, d3, b4}, {a2, b3, d4}, {a2, c3, b4}, {a2, d3, c4},

{b1, c3, d3}, {b1, a3, c4}, {b1, a4, d4}, {b2, a3, d3}, {b2, c3, a4}, {b2, c4, d4},

{c1, b3, d3}, {c1, a3, d4}, {c1, a4, b4}, {c2, a3, b3}, {c2, d3, a4}, {c2, b4, d4},

{d1, b3, c3}, {d1, a3, b4}, {d1, a4, c4}, {d2, a3, c3}, {d2, b3, a4}, {d2, b4, c4}.
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In the uniform case, the calculation of the number of blocks is not difficult. The

number of pairs of points that need to be covered by the blocks is (g2−h2)u(u−1)
2

and

the number of pairs covered by each block is
(
k
2

)
, so the number of blocks required

is (g2−h2)u(u−1)
k(k−1)

. As with the case of incomplete pairwise balanced designs, replication

numbers need to be calculated separately for points in the hole and points outside the

hole. Each point outside the hole is paired with g(u− 1) other points, and is paired

with k−1 other points in each block, so its replication number is g(u−1)
k−1

. Each point in

the hole is paired with (g−h)(u−1) other points, and is paired with k−1 other points

in each block, so its replication number is (g−h)(u−1)
k−1

. Since each of these values must

be integers, and the difference between the two replication numbers h(u−1)
k−1

must also

be an integer, we obtain the following necessary conditions on uniform incomplete

group divisible designs.

Proposition 4.1.3. If an IGDD((g;h)u, k) exists, then

(g2 − h2)u(u− 1) ≡ 0 (mod k(k − 1)), and (4.1.1)

g(u− 1) ≡ h(u− 1) ≡ 0 (mod k − 1). (4.1.2)

Additionally, there is a necessary inequality that must be satisfied in order for a

uniform incomplete group divisible design to exist.

Proposition 4.1.4. If an IGDD((g;h)u, k) exists, then g ≥ (k − 1)h.

Proof. The replication number of a point in the hole is (g−h)(u−1)
k−1

. Since two points

in the hole cannot be in the same block, there must be at least (g−h)(u−1)hu
k−1

blocks.

Since the total number of blocks is (g2−h2)u(u−1)
k(k−1)

, we have

(g2 − h2)u(u− 1)

k(k − 1)
≥ (g − h)(u− 1)hu

k − 1
,
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or equivalently,

g ≥ (k − 1)h.

As with our previous types of incomplete designs, there is a connection between

incomplete group divisible designs and group divisible designs containing a subde-

sign. If a GDD(T, k), where T = [g1, g2, . . . , gu], contains the subdesign GDD(U, k),

where U = [h1, h2, . . . , hu], the subdesign can be removed to form an IGDD(S, k),

where S = [(g1;h1), (g2;h2), . . . , (gu;hu)]. Conversely, if both an IGDD(S, k) and a

GDD(U, k) exist, the hole of the incomplete design can be filled to form a GDD(T, k).

There is also a connection between incomplete group divisible designs and incomplete

pairwise balanced designs as described in the following proposition.

Proposition 4.1.5. There exists an IPBD((v;w), k) if and only if there exists an

IGDD((k − 1; 1)w(k − 1; 0)
v−1
k−1
−w, k).

Proof. Starting from the IPBD, delete a point outside the hole and all its incident

blocks, which become groups. The points in the hole becomes the holes of the IGDD.

Conversely, add a point and form new blocks from each group together with the new

point; the holes form the hole of the resulting IPBD.

Unsurprisingly, the necessary conditions for uniform incomplete group divisible

designs are not sufficient. Dukes, Lamken, and Ling [30] sketched a proof of the

following asymptotic existence result.

Theorem 4.1.6. [30] Given integers g, h, k with k ≥ 2 and g ≥ (k− 1)h, there exists

an IGDD((g;h)u, k) whenever u is sufficiently large satisfying (4.1.1) and (4.1.2).

As usual, we can have multiple block sizes in incomplete group divisible designs.

Hence, an IGDD(T,K), where K ⊆ Z≥2, is a quadruple (V,Π,Ξ,B) such that:

• V is a set of v points;
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• Π = {V1, V2, . . . , Vu} is a partition of V into groups and Ξ = {W1,W2, . . . ,Wu}

is a set of holes with Wi a subset of Vi for each i and such that T = [(|V1|; |W1|),

(|V2|; |W2|), . . . , (|Vu|; |Wu|)];

• B ⊆
⋃
k∈K is a collection of blocks, meeting each group in at most one point

and containing at most one point from the hole; and

• every pair of points from different groups not both in a hole appears in exactly

one block.

The following corresponding necessary conditions are obtained.

Proposition 4.1.7. If an IGDD((g;h)u, K) exists, then

(g2 − h2)u(u− 1) ≡ 0 (mod β(K)), and (4.1.3)

g(u− 1) ≡ h(u− 1) ≡ 0 (mod α(K)). (4.1.4)

Proposition 4.1.8. If an IGDD((g;h)u, K) exists, then g ≥ (minK − 1)h.

Proof. A point outside the holes must appear in at least h(u − 1) blocks, as no two

points in the holes can be in the same block, and at most g(u−1)
minK−1

blocks. Hence,

g(u−1)
minK−1

≥ h(u− 1) and the result follows.

As with the case of a single block size, if a GDD(T,K), where T = [g1, g2, . . . , gu],

contains the subdesign GDD(U,K), where U = [h1, h2, . . . , hu], the subdesign can

be removed to form an IGDD(S,K), where S = [(g1;h1), (g2;h2), . . . , (gu;hu)]. Con-

versely, if both an IGDD(S,K) and a GDD(U,K) exist, the holes of the incomplete

design can be filled to form a GDD(T,K). The following two constructions show

the connections between incomplete pairwise balanced designs and incomplete group

divisible designs and are relatively straightforward extensions of Proposition 4.1.5.
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The first construction follows by deleting a point outside the hole, letting each block

that contained the point be a group, and each point in the hole be a hole of its group.

The second construction follows by filling each group with an incomplete pairwise

balanced design, identifying the extra points in each hole, and merging each of the

holes.

Construction 4.1.9. Suppose (V,W,B) is an IPBD((v;w), K). Choose a point

x ∈ V \W and let the blocks containing x have sizes g1, g2, . . . , gw, gw+1, . . . , gr, where

r is the replication number of x and the first w blocks contain a point in the hole.

Then there exists an IGDD(T,K) with T = [(g1; 1), (g2; 1), . . . , (gw; 1), (gw+1; 0), . . . ,

(gr; 0)].

Construction 4.1.10. Suppose there exists an IGDD(T,K) on v points with w

points in the holes, and for each (g;h) ∈ T , there exists an IPBD((g+m;h+m), K).

Then there exists an IPBD((v +m;w +m), K).

In Section 4.4, we give a detailed proof of the asymptotic existence of uniform

incomplete group divisible designs with multiple block sizes. The main tool of this

proof is the Lamken-Wilson Theorem, which we examine in Section 4.3. However,

we must consider the case of maximal holes separately; frames are introduced in the

next section to prove existence in this case.

4.2 Frames

Motivated by the equivalence of resolvable pairwise balanced designs and incomplete

pairwise balanced designs with maximal holes, we are led to consider an analogous

object in the case of group divisible designs. A GDD(T, k) with point set V and

partition Π = {V1, V2, . . . , Vu} is said to be a frame if the blocks of B can be partitioned
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into partial parallel classes such that each class misses exactly one group, that is, it

is a partition of V \Vi for some i = 1, 2, . . . , u. An example of a frame is given below.

Example 4.2.1. A frame GDD(24, 3) with point set {a1, a2, b1, b2, c1, c2, d1, d2} and

partition Π = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} consists of the following blocks:

{a1, b1, c1}, {a1, b2, d1}, {a1, c2, d2}, {b1, c2, d1},

{a2, b2, c2}, {a2, b1, d2}, {a2, c1, d1}, {b2, c1, d2}.

In addition to the necessary conditions for uniform group divisible designs, it must

also be possible to form the partial parallel classes. The number of points in a partial

parallel class is g(u − 1), and these points must be divided among blocks of size k,

so the number of blocks in each parallel class is g(u−1)
k

, which must be an integer.

Additionally, the total number of blocks is g2u(u−1)
k(k−1)

, so the number of partial parallel

classes is gu
k−1

. Since the design is uniform, each group must be missed by the same

number of partial parallel classes, so the number of partial parallel classes missing a

particular group is g
k−1

, which must also be an integer. Hence, the following necessary

conditions are obtained.

Proposition 4.2.2. If a frame GDD(gu, k) exists, then

g(u− 1) ≡ 0 (mod k), and (4.2.1)

g ≡ 0 (mod k − 1). (4.2.2)

The asymptotic existence of frames was established by Liu [43].

Theorem 4.2.3. [43] Given g ≥ 1 and k ≥ 2, there exists u0 such that there exists a

frame GDD(gu, k) for all u ≥ u0 satisfying (4.2.1) and (4.2.2).

The equivalence of a certain type of frame to certain incomplete transversal designs

was shown by Stinson [53] with the following theorem.
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Theorem 4.2.4. [53] The existence of a TD(k + 1, kw)− TD(k + 1, w) implies the

existence of a frame GDD(((k− 1)w)k+1, k), and conversely, the existence of a frame

GDD(tk+1, k) implies the existence of a TD(k + 1, tk
k−1

)− TD(k + 1, t
k−1

).

The following result extends the previous theorems to incomplete group divisible

designs. A more general form was given by by Furino et al. [32]. We include a proof

for completeness.

Proposition 4.2.5. [32] If g = (k − 1)h, then there exists an IGDD((g;h)u, k) if

and only if there exists a frame GDD((g − h)u, k − 1).

Proof. Let (V,Π,Ξ,B) be an IGDD((g;h)u, k), with Π = {V1, V2, . . . , Vu} and Ξ =

{W1,W2, . . . ,Wu}. Let Wi = {wij : j = 1, 2, . . . , h}, i = 1, 2, . . . , u, and let Xi =

Vi \ Wi, i = 1, 2, . . . , u. Since g = (k − 1)h, it follows that there is no block that

does not intersect the hole, that is, for every B ∈ B, |B ∩
⋃u
i=1Wi| = 1. For every

point wij, define the partial parallel class Rij = {B \ {wij} : wij ∈ B ∈ B}. Thus,

if V ′ =
⋃u
i=1Xi, Π′ = {X1, X2, . . . , Xu}, and B′ = {B \

⋃u
i=1Wi : B ∈ B}, then

(V ′,Π′,B′) is a frame GDD((g − h)u, k − 1) with partial parallel classes Rij.

Conversely, let (V,Π,B) be a frame GDD((g−h)u, k−1) with Π = {V1, V2, . . . , Vu}

and partial parallel classes Rij, i = 1, 2, . . . , u and j = 1, 2, . . . , h, as the number of

partial parallel classes missing a particular group is g−h
k−2

= h. For each partial parallel

class, add a point wij, and let Wi = {wij : j = 1, 2, . . . , h}, i = 1, 2, . . . , u and

Xi = Vi ∪Wi, i = 1, 2, . . . , u. Thus, if V ′ =
⋃u
i=1Xi, Π′ = {X1, X2, . . . , Xu}, Ξ′ =

{W1,W2, . . . ,Wu}, and B′ = {B ∪ {wij} : B ∈ Rij, i = 1, 2, . . . , u, j = 1, 2, . . . , h},

then (V ′,Π′,Ξ′,B′) is an IGDD((g;h)u, k).

We verify that the preceding proposition implies the asymptotic existence of uni-

form incomplete group divisible designs with maximal holes.
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Theorem 4.2.6. Given h and a set K ⊆ Z≥2, there exists an IGDD((g;h)u, K) with

g = (minK − 1)h whenever u is sufficiently large satisfying (4.1.3) and (4.1.4).

Proof. As g = (minK−1)h, a point outside the hole must appear in exactly h(u−1)

blocks (Proposition 4.1.8). Since the number of points that must appear in a block

together with a given point outside the hole is g(u − 1), the average size of a block

containing this point is g(u−1)
h(u−1)

+ 1 = minK. Since minK is the smallest block size

permissible, every block containing this point must have size minK, and since the

design is uniform, the same can be said for every point outside the hole, so every

block has size minK. Hence, an IGDD((g;h)u, K) with g = (minK − 1)h exists if

and only if there exists an IGDD((g;h)u,minK), which, by Proposition 4.2.5, exists

if and only if there exists a frame GDD((g − h)u,minK − 1). As (g − h)(u− 1) ≡ 0

(mod α(K)) and α(K) | minK − 1, then (g − h)(u− 1) ≡ 0 (mod minK − 1), and

as g − h = (minK − 2)h, g − h ≡ 0 (mod minK − 2), so by Theorem 4.2.3, there

exists a frame GDD((g − h)u,minK − 1) for all sufficiently large u, and the result

follows.

4.3 The Lamken-Wilson Theorem

The Lamken-Wilson Theorem proves the asymptotic existence of decompositions of

edge-colored complete (di)graphs. A graph is a pair (V,E) such that V is a set of

points and E is a set of unordered pairs of V called edges. A complete graph on v

vertices, denoted Kv, is a graph containing every possible edge. A graph decomposition

on v points into copies of a graph G, denoted GrD(v,G), is a pair (V,A) such that

V is a set of v points and A is a collection of copies (blocks) of G on points of V ,

such that every pair of points is an edge in exactly one copy. An example is given in

Figure 4.1; note that P3 is a path on three vertices.
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Figure 4.1: GrD(4, P3)

A GrD(v,G) can also be thought of as a decomposition of the complete graph

Kv into copies of G. This concept can be generalized to allow decompositions of a

general graph F . Hence, a graph decomposition of F into copies of graph G, denoted

GrD(F,G) or F  G, is a pair (V (F ),A) such that V (F ) is the vertex set of F and

A is a collection of copies (blocks) of G on vertices of V (F ), such that every edge in

F is an edge in exactly one copy. This generalization allows us to formulate each of

the designs seen previously as a graph decomposition, as given by Table 4.1.

Table 4.1: Designs and their Equivalent Graph Decompositions

Design Notation Graph Decomposition

Latin Square LS(v) 3 ·Kv  K3

MOLS t−MOLS(v) (t+ 2) ·Kv  Kt+2

IMOLS t−IMOLS(v;n) (t+ 2) ·Kv − (t+ 2) ·Kn  Kt+2

PBDs PBD(v, k) Kv  Kk

Uniform GDDs GDD(gu, k) u ·Kg  Kk

IPBDs IPBD((v;w), k) Kv −Kw  Kk

Uniform IGGDs IGDD((g;h)u, k) u ·Kg − u ·Kh  Kk

We can similarly determine necessary conditions for graph divisible designs based

on the number of blocks and the replication number. We first consider the decom-

positions of v points. The number of edges that need to be covered by the blocks is
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(
v
2

)
, and the number of edges covered by each block is m := |E(G)|, so the number

of blocks required is v(v−1)
2m

, which must be an integer. If the graph G is not regular,

that is, different points are incident with different numbers of edges, then computing

the replication number of a point in advance is not the simple matter that it was with

pairwise balanced designs, as a point may be incident with different numbers of edges

in different copies of G. However, the v − 1 edges required must be expressible as a

(nonnegative) integer linear combination of the vertex degrees of G. To this end, let

d = gcd{degG(x) : x ∈ V (G)}, where degG(x) denotes the degree of vertex x in graph

G, the number of edges incident with x. Then the following necessary conditions are

obtained.

Proposition 4.3.1. If a GrD(v,G) exists, then

v(v − 1) ≡ 0 (mod 2m), and (4.3.1)

v − 1 ≡ 0 (mod d). (4.3.2)

The necessary conditions are similarly stated for the more general case of decom-

posing a graph F .

Proposition 4.3.2. If a GrD(F,G) exists, then

|E(F )| ≡ 0 (mod m), and (4.3.3)

degF (x) ≡ 0 (mod d) for all x ∈ V (F ). (4.3.4)

Further, we can consider decompositions into families of graphs. Hence, a graph

decomposition of F into G = {G1, G2, . . . , Gn}, denoted GrD(F,G), is a pair (V (F ),

A) such that V (F ) is the vertex set of F and A is a collection of blocks, each a copy

of a graph in G on the vertices of F , such that every edge in F is an edge in exactly
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one block. The necessary conditions are similarly derived; let β(G) = gcd{|E(G)| :

G ∈ G} and α(G) = gcd{degG(x) : x ∈ G,G ∈ G}.

Proposition 4.3.3. If a GrD(F,G) exists, then

|E(F )| ≡ 0 (mod β(G)), and (4.3.5)

degF (x) ≡ 0 (mod α(G)) for all x ∈ V (F ). (4.3.6)

We now consider decompositions of edge-r-colored complete digraphs. A digraph

is a pair (V,A) such that V is a set of points and A is a set of ordered pairs of

V called arcs. A complete digraph on n vertices, denoted
↔
Kn, is a graph containing

every possible arc. An edge-r-colored complete digraph on n vertices, denoted K
(r)
n ,

is a graph containing every possible arc r times, once in each of the r colors, or

equivalently, is r copies of Kn defined on the same vertex set and each colored a

different color. A decomposition of K
(r)
n into Φ, or a Φ-decomposition of K

(r)
n , where

Φ is a set of edge-colored digraphs, is a pair (V,F), such that V is the set of n vertices

of K
(r)
n and F is a collection of blocks, each a copy of a graph in Φ, such that every

colored arc of K
(r)
n is an arc of exactly one block.

To determine the necessary conditions for such a decomposition, we must first

consider whether the graphs in Φ can be used. For each G ∈ Φ, let µ(G) =

(m1,m2, . . . ,mr), where mi is the number of edges of color i in G, be the edge vector of

G, and for each x ∈ G, let τ(x) = (deg−1 (x), deg+
1 (x), deg−2 (x), deg+

2 (x), . . . , deg−r (x),

deg+
r (x)), where deg−i is the number of arcs of color i entering x and deg+

i (x) is the

number of arcs of color i leaving x, be the degree vector of x. A graph G0 ∈ Φ is said

to be useless when it cannot occur in any Φ decomposition of K
(r)
n , or equivalently,

every nonnegative solution to the equation 1 =
∑

G∈Φ cGµ(G) has cG0 = 0. We then

say that Φ is admissible if no graph in Φ is useless, or equivalently, there exists a
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positive solution to the equation 1 =
∑

G∈Φ cGµ(G). Let β(Φ) be the least positive

integer m such that m1 is an integral linear combination of the vectors µ(G), and let

α(Φ) be the least positive integer t such that t1 is an integral linear combination of

the vectors τ(x). Then the Lamken-Wilson Theorem, stated below, establishes the

asymptotic existence of decompositions of edge-r-colored complete digraphs.

Theorem 4.3.4 (Lamken-Wilson [42]). Let Φ be an admissible family of simple

edge-r-colored digraphs. Then there exists a constant n0 = n0(Φ) such that Φ-

decompositions of K
(r)
n exist for all n ≥ n0 satisfying the congruences

n(n− 1) ≡ 0 (mod β(Φ)), and (4.3.7)

n− 1 ≡ 0 (mod α(Φ)). (4.3.8)

We are now ready to prove the asymptotic existence of uniform incomplete group

divisible designs.

4.4 Asymptotic Existence

Before implementing the Lamken-Wilson Theorem, we first state the following lemma

useful for proving the desired result.

Lemma 4.4.1. [48] Let M be a rational s by t matrix and c a rational column vector

of length s. The equation Mx = c has an integral solution x, a column vector of

length t, if and only if yc is an integer for each rational row vector y such that the

row vector yM is a vector of integers.

We now state and prove the asymptotic existence of uniform incomplete group

divisible designs.
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Theorem 4.4.2. Given integers g, h, a set K ⊆ Z≥2, and g ≥ (minK − 1)h, there

exists an IGDD((g;h)u, K) whenever u is sufficiently large satisfying (4.1.3) and

(4.1.4).

Proof. By Theorem 4.2.6, we have the existence of uniform incomplete group divisible

designs with g = (minK − 1)h. Hence, we can assume g > (minK − 1)h. In order

to apply the Lamken-Wilson Theorem, we first establish that the existence of an

IGDD((g;h)u, K) is implied by the existence of some decomposition of an edge-

colored complete digraph.

To that end, we will decompose the graph K
(g2−h2)
u using the set of colors [g]2−[h]2

into the set of colored digraphs Φ defined as follows. For each k ∈ K, let Fk be the

set of all possible functions fk such that fk : [k] → [g] and at most one element in

the range belongs to [h]. Every function fk induces an edge coloring G(fk) of the

complete digraph
↔
Kk using colors in [g]2 − [h]2 where the arc (x, y), x, y ∈ [k], is

assigned the color (fk(x), fk(y)). Notice that if arc (x, y) is assigned color (a, b), then

arc (y, x) must be assigned color (b, a), and further, every arc leaving x has a color of

the form (fk(x), c) and every arc entering x has a color of the form (c, fk(x)). Then

Φ = {G(fk) : fk ∈ Fk, k ∈ K}.

If a Φ-decomposition (V ′,F) of K
(g2−h2)
u exists, we obtain the IGDD((g;h)u, k)

(V,Π,Ξ,B) as follows. Let V = V ′×[g], Π = {{x}×[g] : x ∈ V ′}, and Ξ = {{x}×[h] :

x ∈ V ′}. Each block ζ ∈ F induces a block Bζ ∈ B as follows. Assign each vertex x of

ζ the color cζ(x) so that every arc (x, y) has color (cζ(x), cζ(y)). Such an assignment

exists since ζ is induced by some function fk in such a way that this property holds.

Then Bζ = {(x, cζ(x)) : x ∈ V (ζ)}. As defined, the size of each B ∈ B is in K as

it is induced by the vertices of a coloring of
↔
Kk for some k ∈ K, no block contains

two points in the same group as the groups are defined by the vertices of K
(g2−h2)
u or

two points in the same hole as every fk maps at most one vertex to the hole, and the
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block containing an arbitrary pair {(x, i), (y, j)}, x 6= y, {i, j} * [h], corresponds to

the graph block in which arc (x, y) is colored (i, j) (and hence arc (y, x) is colored

(j, i)).

We must now show that the set Φ is admissible. Hence, we must find a positive

solution to the equation 1 =
∑

G∈Φ cGµ(G). Consider the average of µ(G(fk)) over

all fk ∈ Fk and k ∈ K. As there is no distinction between any two colors outside

the hole or between any two colors inside the hole, this average u has coordinates uij

such that for some constants A and B, uij = A if (i, j) ∈ [g]2 − [h]2 and uij = B

otherwise. If A = B, we are done. If A < B, consider the average of µ(G(fminK))

over all fminK ∈ FminK with no elements in the range belonging to [h]. Then this

average t has coordinates tij such that for some positive constant C, tij = C if

(i, j) ∈ [g]2 − [h]2 and tij = 0 otherwise. Hence, some positive combination of u

and t equals 1. If instead A > B, consider the average of µ(G(fminK)) over all

fminK ∈ FminK with exactly one element in the range belonging to [h]. Then this

average s has coordinates

sij =


(minK−1)(minK−2)

(g−h)2
if (i, j) ∈ [g]2 − [h]2,

minK−1
h(g−h)

otherwise.

As we assumed g > (minK − 1)h, we have (minK−1)(minK−2)
(g−h)2

< minK−1
h(g−h)

, so some

positive combination of u and s equals 1. Therefore, Φ is admissible.

Finally, we must verify that the corresponding Φ-decomposition of K
(g2−h2)
u is

admissible for each required value of u. To verify (4.3.7), it is sufficient to show that

u(u − 1)1 is an integral linear combination of the vectors µ(G(fk)), G(fk) ∈ Φ. By

Lemma 4.4.1, an integral linear combination exists if and only if for all rational vectors

x, x · u(u − 1)1 is an integer if x · µ(G(fk)) is an integer for every fk ∈ Fk, k ∈ K.
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Now, consider the structure of the vector µ(G(fk)). There exists an arc with color

(i, j) for every pair of vertices (x, y) such that fk(x) = i and fk(y) = j. Hence, if ti

counts the number of vertices mapped to i, then µ(G(fk))ii = ti(ti−1) for i ∈ [g]− [h]

and µ(G(fk))ij = titj for i 6= j and (i, j) ∈ [g]2 − [h]2. Thus, for any g2 − h2 rational

numbers xij, (i, j) ∈ [g]2 − [h]2, we must show that for all fk ∈ Fk, k ∈ K,

∑
(i,j)∈[g]2−[h]2

i 6=j

titjxij +
∑

i∈[g]−[h]

ti(ti − 1)xii ≡ 0 (4.4.1)

implies

u(u− 1)
∑

(i,j)∈[g]2−[h]2

xij ≡ 0,

where a ≡ b denotes that a− b ∈ Z.

Assume (4.4.1) holds. We first consider functions that have no element in their

range belonging to [h]. For each k ∈ K and each (i, j) ∈ ([g] − [h])2, i 6= j, we

establish a relation between xij, xji and xii, xjj. Consider the following three functions

fk: (1) ti = k; (2) ti = k − 1, tj = 1; and (3) ti = k − 2, tj = 2. By (4.4.1) we have

(1) k(k − 1)xii ≡ 0

(2) (k − 1)(k − 2)xii + (k − 1)(xij + xji) ≡ 0

(3) (k − 2)(k − 3)xii + 2(k − 2)(xij + xji) + 2xjj ≡ 0. (4.4.2)

Computing (1)− 2 · (2) + (3) of (4.4.2) gives

2(xij + xji) ≡ 2xii + 2xjj (4.4.3)

which implies

u(u− 1)(xij + xji) ≡ u(u− 1)xii + u(u− 1)xjj
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and hence

u(u− 1)
∑

i,j∈[g]−[h]

xij ≡ u(u− 1)(g − h)
∑

i∈[g]−[h]

xii. (4.4.4)

Now, for each k ∈ K and each i, j ∈ [g] − [h], i 6= j, we find a relation between

xii and xjj. Computing (1)− (2) of (4.4.2) gives

2(k − 1)xii ≡ (k − 1)(xij + xji) (4.4.5)

and since this holds when we interchange i and j, we have

2(k − 1)xii ≡ 2(k − 1)xjj (4.4.6)

and as α(K) = gcd{k − 1 : k ∈ K}, we obtain

2α(K)xii ≡ 2α(K)xjj.

If α(K) is odd, then as (g − h)(u − 1) ≡ 0 (mod α(K)) by (4.1.4), it follows that

(g − h)u(u− 1) ≡ 0 (mod 2α(K)). Therefore,

(g − h)u(u− 1)xii ≡ (g − h)u(u− 1)xjj. (4.4.7)

If, however, α(K) is even, then each k ∈ K must be odd, so we can multiply, for each

k ∈ K, (4.4.3) by k−1
2

, which together with (4.4.5) gives

2(k − 1)xii ≡ (k − 1)xii + (k − 1)xjj

which simplifies to (k− 1)xii ≡ (k− 1)xjj. Hence, α(K)xii ≡ α(K)xjj, and therefore

(4.4.7) is again obtained.
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We now consider functions that have exactly one element in their range belonging

to [h]. For each l ∈ [h] and each i, j ∈ [g]− [h], i 6= j, we establish a relation between

xli, xil, xii and xlj, xjl, xjj. For each k ∈ K, consider the following two functions fk:

(1) tl = 1, ti = k − 1; and (2) tl = 1, ti = k − 2, tj = 1. By (4.4.1) we have

(1) (k − 1)(xli + xil) + (k − 1)(k − 2)xii ≡ 0

(2) (k − 2)(xli + xil) + (k − 2)(k − 3)xii + (xlj + xjl) + (k − 2)(xij + xji). (4.4.8)

Computing (1)− (2) of (4.4.8) gives

xli + xil + 2(k − 2)xii ≡ xlj + xjl + (k − 2)(xij + xji)

which also holds when we interchange i and j. Combining these two forms gives

2(xli + xil) + 2(k − 2)xii ≡ 2(xlj + xjl) + 2(k − 2)xjj

which implies

u(u− 1)(xli + xil) + u(u− 1)(k − 2)xii ≡ u(u− 1)(xlj + xjl) + u(u− 1)(k − 2)xjj
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and hence

u(u− 1)
∑
l∈[h]

i∈[g]−[h]

(xli + xil)

≡ u(u− 1)
∑
l∈[h]

i∈[g]−[h]

(xli + xil + (k − 2)xii)− hu(u− 1)
∑

i∈[g]−[h]

(k − 2)xii

≡ (g − h)u(u− 1)
∑
l∈[h]

(xl1 + x1l + (k − 2)x11)− (g − 2)hu(u− 1)(k − 2)x11

≡ (g − h)u(u− 1)
∑
l∈[h]

(xl1 + x1l). (4.4.9)

Now, for each k ∈ K and (l, i) ∈ [h]× ([g]− [h]), we find a relation between xli, xil

and xii. Computing (4.4.2)(1)− (4.4.8)(1) gives

(k − 1)(xli + xil) ≡ 2(k − 1)xii

and as α(K) = gcd{k − 1 : k ∈ K}, we obtain

α(K)(xli + xil) ≡ 2α(K)xii.

As (g − h)(u − 1) ≡ 0 (mod α(K)) by (4.1.4), it follows that (g − h)u(u − 1) ≡ 0

(mod α(K)). Therefore,

(g − h)u(u− 1)(xli + xil) ≡ 2(g − h)u(u− 1)xii. (4.4.10)

Finally, as β(K) = gcd{k(k−1) : k ∈ K}, it follows from (4.4.2)(1) that β(K)xii ≡

0, and as (g2−h2)u(u−1) ≡ 0 (mod β(K)) by (4.1.3), we obtain (g2−h2)u(u−1)xii ≡
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0. Hence, together with (4.4.4), (4.4.7), (4.4.9), and (4.4.10), it follows that

u(u− 1)
∑

(i,j)∈[g]2−[h]2

xij ≡ u(u− 1)
∑

i,j∈[g]−[h]

xij + u(u− 1)
∑
l∈[h]

i∈[g]−[h]

(xli + xil)

≡ (g − h)u(u− 1)
∑

i∈[g]−[h]

xii + (g − h)u(u− 1)
∑
l∈[h]

(xl1 + x1l)

≡ (g − h)2u(u− 1)x11 + 2(g − h)u(u− 1)x11

≡ (g2 − h2)u(u− 1)x11 ≡ 0.

Hence, u(u− 1) ≡ 0 (mod β(Φ)).

To verify (4.3.8), it is sufficient to show that (u− 1)1 is an integral linear combi-

nation of the vectors τ(v), v ∈ V (G(fk)), G(fk) ∈ Φ. By Lemma 4.4.1, an integral

linear combination exists if and only if for all rational vectors y, y · (u − 1)1 is an

integer if y · τ(v) is an integer for every v ∈ V (G(fk)), fk ∈ Fk, k ∈ K. Now, consider

the structure of the vector τ(v). If fk(v) = q, then there exists an arc entering v

with color (i, q) and an arc leaving v with color (q, i) for every vertex w ∈ V (G(fk)),

w 6= v such that fk(w) = i. Hence, if ti counts the number of vertices mapped to i,

then τ(v)−qq = τ(v)+
qq = tq − 1 for q ∈ [g] − [h] and τ(v)−iq = τ(v)+

qi = ti for i 6= q and

(i, q) ∈ [g]2 − [h]2. Thus, for any 2(g2 − h2) rational numbers y∗ij, (i, j) ∈ [g]2 − [h]2,

∗ ∈ {−,+}, we must show that for all v ∈ V (G(fk)), fk ∈ Fk, k ∈ K,


(tq − 1)(y−qq + y+

qq) +
∑
i∈[g]
i 6=q

ti(y
−
iq + y+

qi) ≡ 0 if q ∈ [g]− [h]

∑
i∈[g]−[h]

ti(y
−
iq + y+

qi) ≡ 0 if q ∈ [h]

(4.4.11)

implies

(u− 1)
∑

(i,j)∈[g]2−[h]2

(y−ij + y+
ij) ≡ 0.
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Assume (4.4.11) holds. We first consider vertices not mapped to [h]. For each

k ∈ K, q ∈ [g] − [h], and i ∈ [g], i 6= q, we establish a relation between y−iq, y
+
iq and

y−qq, y
+
qq. Consider the following two functions fk: (1) tq = k; and (2) tq = k−1, ti = 1.

By (4.4.11) we have

(1) (k − 1)(y−qq + y+
qq) ≡ 0

(2) (k − 2)(y−qq + y+
qq) + (y−iq + y+

qi) ≡ 0. (4.4.12)

Computing (1)− (2) of (4.4.12) gives

y−iq + y+
qi ≡ y−qq + y+

qq. (4.4.13)

We now consider vertices mapped to [h]. For each k ∈ K, q ∈ [h], and i, j ∈

[g] − [h], i 6= j, we establish a relation between y−iq, y
+
qi and y−jq, y

+
qj. Consider the

following two functions fk: (1) tq = 1, ti = k − 1; and (2) tq = 1, ti = k − 2, tj = 1.

By (4.4.11) we have

(1) (k − 1)(y−iq + y+
qi) ≡ 0

(2) (k − 2)(y−iq + y+
qi) + (y−jq + y+

qj) ≡ 0. (4.4.14)

Computing (1)− (2) of (4.4.14) gives

y−iq + y+
qi ≡ y−jq + y+

qj. (4.4.15)

Finally, as α(K) = gcd{k−1 : k ∈ K}, it follows from (4.4.12)(1) that α(K)(y−qq+

y+
qq) ≡ 0 for q ∈ [g] − [h] and from (4.4.14)(1) that α(K)(y−iq + y+

qi) ≡ 0 for q ∈ [h],

i ∈ [g] − [h]. As g(u − 1) ≡ 0 (mod α(K)) and (g − h)(u − 1) ≡ 0 (mod α(K)) by
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(4.1.4), we obtain g(u−1)(y−qq+y
+
qq) ≡ 0 for q ∈ [g]−[h] and (g−h)(u−1)(y−iq+y

+
qi) ≡ 0

for q ∈ [h], i ∈ [g]− [h]. Hence, together with (4.4.13) and (4.4.15), it follows that

(u− 1)
∑

(i,j)∈[g]2−[h]2

(y−ij + y+
ij)

≡ (u− 1)
∑

q∈[g]−[h]
i∈[g]

(y−iq + y+
qi) + (u− 1)

∑
q∈[h]

i∈[g]−[h]

(y−iq + y+
qi)

≡ g(u− 1)
∑

q∈[g]−[h]

(y−qq + y+
qq) + (g − h)(u− 1)

∑
q∈[h]

(y−1q + y+
q1) ≡ 0

Hence, u − 1 ≡ 0 (mod α(Φ)), and the existence of an IGDD((g;h)u, K) whenever

u is sufficiently large follows from the Lamken-Wilson Theorem.

We are now ready to prove our results on incomplete pairwise balanced designs

with multiple block sizes.
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Chapter 5

Incomplete Pairwise Balanced

Designs with Multiple Block Sizes

5.1 Fixed Hole Size

Having proved the asymptotic existence of uniform incomplete group divisible de-

signs, we can now apply Construction 4.1.10 to find an example incomplete pairwise

balanced design for each congruence class of v and w.

Proposition 5.1.1. Given K, a positive modulus M = mβ(K), and admissible con-

gruence classes v0, w0 (mod M) for incomplete pairwise balanced designs with block

sizes in K, there exists an IPBD((v2;w2), K) for some v2 ≡ v0 and w2 ≡ w0

(mod M).

Proof. The incomplete pairwise balanced designs constructed in Proposition 3.2.4 can

be used as ingredients in Construction 4.1.10 to produce the remaining examples out-

side the two classes previously considered, however, we will therefore require certain

conditions on v and w. In particular, if q retains its value from Proposition 3.2.4,

where it is chosen independently of w0, then we must have v ≡ w ≡ 1 (mod q).
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Hence, we must select classes v1 and w1 (mod Mq) such that v1 ≡ v0 (mod M),

v1 ≡ 1 (mod q), w1 ≡ w0 (mod M), and w1 ≡ 1 (mod q), which can be found by the

Chinese remainder theorem as gcd(q,M) = 1.

Hence, let the incomplete pairwise balanced designs found in Proposition 3.2.4 be

denoted as IPBD((x; y), K), where x = yqα(K)+1. If we use the uniform incomplete

group divisible design IGDD((g;h)u, K), with g−h = x−y and y ≥ h, then applying

Construction 4.1.10 results in an IPBD((g(u−1)+x;h(u−1)+y), K). We determine

an identity relating u and h to the known parameters.

v2 − w2 = (g − h)(u− 1) + x− y

v2 − w2 = (x− y)u

v2 − w2 = (yqα(K) + 1− y)u

v2 − w2 = y(qα(K)− 1)u+ u

v2 − w2 = (w2 − h(u− 1))(qα(K)− 1)u+ u

Hence, we obtain

u(u− 1)(qα(K)− 1)h = w2(u(qα(K)− 1)) + w2 + u− v2. (5.1.1)

Now, we wish to determine u and h such that v2 ≡ v1 and w2 ≡ w1 (mod Mq).

Hence, it is sufficient to determine the required congruence classes for u and h. Thus,

we consider the congruence

u(u− 1)(qα(K)− 1)h ≡ w1u(qα(K)− 1) + w1 + u− v1 (mod pt)

for each prime power pt such that pt ‖Mq. For convenience, we choose a congruence
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class for u that produces a relation independent of w1. Hence, we choose

u ≡


−(qα(K)− 1)−1 if gcd(p, qα(K)− 1) = 1

(v1 − w1)(w1(qα(K)− 1) + 1)−1 otherwise.

Since p cannot divide two consecutive values, it follows that both inverses exist when

required. Then, if gcd(p, qα(K)− 1) = 1, we obtain (u− 1)h ≡ v1 − u, and hence

h ≡ (qα(K)− 1)v1 + 1

−qα(K)

which is well defined since v1 − 1 ≡ 0 (mod α(K)) as v1 is admissible, v1 − 1 ≡

0 (mod q) as a result of Proposition 3.2.4, and gcd(α(K), q) = 1 as α(K) | M .

Otherwise, p | qα(K)− 1, so we obtain u(u− 1)(qα(K)− 1)h ≡ 0, and hence h ≡ 0.

Thus, we obtain a solution for u and h by the Chinese remainder theorem. We

summarize our choice of parameters in Table 5.1.

Table 5.1: Choice of Parameters to Obtain a Desired Congruence Class

gcd(p, qα(K)− 1) = 1 p | qα(K)− 1
u ≡ −(qα(K)− 1)−1 (v1 − w1)((qα(K)− 1)w1 + 1)−1

h ≡ ((qα(K)− 1)v1 + 1)/− qα(K) 0

y = w1 − h(u− 1)

x = yqα(K) + 1

g = h+ x− y

We now verify that the required incomplete group divisible design exists by The-



53

orem 4.4.2. Checking (4.1.3), we obtain

(g2 − h2)u(u− 1) ≡ (g − h)u(g + h)(u− 1)

≡ (x− y)u[g(u− 1) + h(u− 1)]

≡ (v1 − w1)(v1 − x+ w1 − y)

≡ (v1 − w1)(v1 + w1 − y(qα(K) + 1)− 1)

≡ (v1 − w1)(v1 + w1 − 1) (mod γ(K))

which is equivalent to (2.2.3). Checking (4.1.4), we calculate

u− 1 ≡ −(qα(K)− 1)−1 − 1 ≡ −1− qα(K) + 1

qαK − 1
≡ qα(K)

qα(K)− 1
≡ 0 (mod pt)

for any pt ‖ α(K), so u− 1 ≡ 0 (mod α(K)). Hence, the required IGDD((g;h)u, K)

exists provided u is sufficiently large. Therefore, Construction 4.1.10 results in an

IPBD((v2;w2), K) hitting the desired congruence classes.

We can now prove the asymptotic existence result on incomplete pairwise balanced

designs for fixed hole sizes.

Theorem 5.1.2. Given w ≡ 1 (mod α(K)), there exist IPBD((v;w), K) for all

sufficiently large v satisfying (2.2.3) and (2.2.4).

Proof. Let v be sufficiently large satisfying (2.2.3) and (2.2.4). By Proposition 5.1.1,

there exists an IPBD((v2;w2), K) such that v2 ≡ v and w2 ≡ w (mod M). We

can assume v � v2 and w2 � w so that there exist both an IPBD((v; v2), K) and

an IPBD((w2;w), K) by Proposition 3.1.11. Then an IPBD((v;w), K) exists as a

result of filling the holes of the large design with the two smaller designs.

Using this result, we will go on to prove the existence of incomplete pairwise
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balanced designs for all sufficiently large v and w, but satisfying a weaker inequality

than the necessary conditions suggest.

5.2 Large Hole Size

This section is devoted to extending Theorem 2.2.5 to the general case of multiple

block sizes. We will first state results for two ingredient designs used by Dukes,

Lamken, and Ling [30] to prove Theorem 2.2.5.

Lemma 5.2.1. [30] For sufficiently large m with m ≡ −1 (mod k) and m ≡ 1

(mod k− 2), there exist both GDD((k− 1)mr1, k) and GDD((k− 1)m+1r1, k), where

r = (k − 1)(m− 1)/(k − 2).

Lemma 5.2.2. [30] Let s be an integer with s ≡ 0 (mod k−1) and s ≡ −1 (mod k).

There exist both GDD((k − 1)ms1, k) and GDD((k − 1)m+1s1, k) for all sufficiently

large m ≡ −1 (mod k).

Our approach for proving an existence result on incomplete pairwise balanced

designs with multiple block sizes will follow the approach used by Dukes, Lamken,

and Ling [30] for a single block size. To obtain a particular congruence class, we will

use the construction multiple times, with a different block size at each step. We first

show the modifications required at a single step; we give a full proof for completeness.

Lemma 5.2.3. For any real ε > 0 and a given k ∈ K, there exist IPBD((v;w), K)

for all sufficiently large v, w satisfying (2.2.3), (2.2.4), v > (k−1+ε)w, and v−w ≡ 0

(mod k − 1).

Proof. Let m be sufficiently large such that for each x ∈ R := {k − 1, k2 − 1, r},

there exist both GDD((k − 1)mx1, k) and GDD((k − 1)m+1x1, k). As r retains its

value of (k − 1)(m− 1)/(k − 2) from Lemma 5.2.1, m is restricted as stated, and as
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k−1 ≡ k2−1 ≡ 0 (mod k−1) and k−1 ≡ k2−1 ≡ −1 (mod k), m is also restricted

by the existence of these two sets of group divisible designs by Lemma 5.2.2. We also

choose m so it is of the order 1/ε.

Let z = w mod k. By Theorem 5.1.2, there exist IPBD((u(k − 1) + z; z), K)

for all admissible u ≥ u0(z,K). As z has only k possible congruence classes, we can

define u0(k) := max{u0(z,K)} to be independent of z. Let y = w − z; then y ≡ 0

(mod k(k − 1)).

We construct the incomplete pairwise balanced designs starting from a transversal

design. By Theorem 1.1.3, there exist TD(m + 2, n) for all n ≥ n0(m). Then,

for v − w sufficiently large, we can express v − w = (k − 1)(mn + p) such that

k | n, n ≥ n0(m), and both n, p ≥ u0(K). We delete all but p points of one of the

groups of the transversal design to obtain a GDD(nmp1n1, {m + 1,m + 2}), where

the last group of n is separated for notational convenience. We now assign weights

to the points of the group divisible design. Each point in the first m + 1 groups

receives a weight of k − 1 and each point in the final group receives a weight in R.

Hence, our ingredient group divisible designs are of form GDD((k − 1)mx1, k) and

GDD((k − 1)m+1x1, k), whose existence was shown above, so the result of applying

Wilson’s Fundamental Construction is a GDD(((k − 1)n)m((k − 1)p)1t1, k), where

t ∈ n ∗ R, the set of n-fold sums of integers taken from R. Finally, since there exists

an IPBD(((k− 1)n+ z; z), K) and an IPBD(((k− 1)p+ z; z), K), then there exists

an IPBD(((k − 1)(nm+ p) + t+ z; t+ z), K) by Construction 3.1.8.

Hence, it remains to consider the values of n ∗ R. We need each possible hole

size, so we wish to find an arithmetic progression having difference k(k − 1), which

is precisely the difference between the two smaller terms of R. If instead moving to

the next value in the arithmetic progression requires introducing an additional r term

compared to the previous sum, than some number, say c, terms of k2 − 1 must be
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removed, and c− 1 terms of k − 1 must also be introduced. We calculate c below.

k(k − 1) =
(k − 1)(m− 1)

k − 2
+ (c− 1)(k − 1)− c(k2 − 1)

c(k2 − k) =
(k − 1)(m− 1)

k − 2
− (k + 1)(k − 1)

c =
m− 1

k(k − 2)
− k + 1

k
<
n(k − 2)

m− 1
, for all sufficiently large n.

If we let tmax be the largest value of the arithmetic progression, then we must have

tmax = (n− (c− 1))
(k − 1)(m− 1)

k − 2
+ (c− 1)(k2 − 1)

≥ (n− c)(k − 1)(m− 1)

k − 2

≥ (k − 1)n

(
m− 1

k − 2
− (m− 1)c

(k − 2)n

)
.

≥ (k − 1)n

(
m− 1

k − 2
− 1

)
.

It follows that we achieve v
w

ratios as small as

v

w
<

(k − 1)n(m+ 1)

tmax

+ 1 < (1 +O(1/m))(k − 2) + 1 < k − 1 + ε

as required.

We will eventually combine the individual steps to obtain our existence result, but

we first must prove the following technical lemma.

Lemma 5.2.4. Given K and admissible parameters (v;w) for incomplete pairwise

balanced designs with block sizes in K, then for all sufficiently large v, we can write

v−w =
∑

k∈K0
ck(k− 1), for nonnegative integers ck and K0 ⊆ K such that α(K0) =

α(K), in such a way that if K0 = {k1, k2, . . . , kn}, and we let vi =
∑i

j=1 ckj(kj−1)+w,

i = 1, 2, . . . , n and v0 = w, then (vi; vi−1) is also admissible for each i = 1, 2, . . . , n.
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Proof. Let Km = {k1, k2, . . . , km}, m = 1, 2, . . . , n, and let am = gcd{ki − 1 : i =

1, 2, . . . ,m}. We assume by induction onm that if (c+w;w) are admissible parameters

for incomplete pairwise balanced designs with block sizes in K and c ≡ 0 (mod am),

then for all sufficiently large c, we can write c =
∑m

i=1 cki(ki − 1) in such a way that

(vi; vi−1) is also admissible for each i = 1, 2, . . . ,m.

The case m = 1 is trivial as a1 = k1 − 1 | c, so c = ( c
k1−1

)(k1 − 1) and (v1; v0) =

(c + w;w) is admissible by assumption. Now, assume the result holds for all m <

M . We show the result also holds for m = M . Let b = kM − 1. Since aM =

gcd(aM−1, b) and c ≡ 0 (mod aM) by assumption, then c = aM−1x + by has integer

solutions in x and y. If x0, y0 is a particular solution, then every solution is of the

form (x, y) = (x0 + nb, y0 − naM−1) for n ∈ Z. It remains to find a solution x, y

such that (aM−1x + w;w) is admissible, that is, that aM−1x(aM−1x + 2w − 1) ≡ 0

(mod β(K)). If aM−1 and β(K) have a common factor, it can be divided out. Further,

if β′ = β(K)
gcd(aM−1,β(K))

, then gcd(aM−1, β
′) = 1. To verify this claim, we proceed by

contradiction, and assume there exists a prime p such that p | aM−1 and p | β′.

Suppose pe ‖ aM−1. Then it must be the case that pe+1 | β(K). As p | aM−1,

p | ki − 1 for each i = 1, 2, . . . ,M − 1, so gcd(p, ki) = 1. Hence, as pe+1 | β(K),

pe+1 | ki − 1 for each i = 1, 2, . . . , n − 1, so pe+1 | aM−1, which is the contradiction

proving the claim. Hence, as gcd(aM−1, β
′) = 1, it remains to find a solution such

that aM−1x(aM−1x+ 2w − 1) ≡ 0 (mod β′). As aM−1x = c− by, we have

aM−1x(aM−1x+ 2w − 1) ≡ (c− by)(c+ 2w − by − 1)

≡ (c)(c+ 2w − 1)− by(2c+ 2w − 1− by)

≡ −by(2c+ 2w − 1− (b+ 1)y + y)

≡ b(b+ 1)y2 − by(2c+ 2w − 1 + y)

≡ −by(2c+ 2w − 1 + y) (mod β′)
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and as gcd(aM−1, β
′) = 1, aM−1 is a generator of Zβ′ , so there exists a solution y

in each congruence class mod β′. Therefore, choosing y ≡ 1 − 2c − 2w (mod β′)

ensures (vM−1; v0) = (aM−1x+w;w) is admissible. Then by the induction hypothesis,

we can write aM−1 =
∑M−1

i=1 cki(ki− 1) in such a way that (vi; vi−1) is also admissible

for each i = 1, 2, . . . ,M − 1, and the result follows.

Our asymptotic result on incomplete pairwise balanced designs with multiple block

sizes now easily follows from the previous two results.

Theorem 5.2.5. For any real ε > 0, there exist IPBD((v;w), K) for all sufficiently

large v, w satisfying (2.2.3), (2.2.4), and v > (
∏

k∈K0
(k − 1 + ε))w, where K0 ⊆ K

such that α(K0) = α(K).

Proof. For v − w sufficiently large, we can express v − w =
∑

k∈K0
ck(k − 1) in a

manner that satisfies the conditions of Lemma 5.2.4 and also that each (vi; vi−1) is

sufficiently large such that, by Lemma 5.2.3, there exists an IPBD((
∑i

j=1 ckj(kj −

1) + w;
∑i−1

j=1 ckj(kj − 1) + w), K) for i = 1, 2, . . . , n. By the required inequality of

Lemma 5.2.3, we must have vi ≥ (ki− 1 + ε)vi−1 for i = 1, 2, . . . , n. Combining these

required inequalities gives vn ≥ (
∏n

i=1(ki − 1 + ε))v0, i.e. v ≥ (
∏

k∈K0
(k − 1 + ε))w.

The required design exists by filling.

For certain block sets that are highly structured, the inequality required can be

improved significantly; we examine such sets in the next section.

5.3 Particular Block Sets

Based on the previous theorem, the best inequality will be obtained when K0 =

{minK}. Hence, the block set K must have the property that α(K) = minK−1. The

following result identifies one such example; let K1(m) := {x : x ≡ 1 (mod m), x 6= 1}.
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Corollary 5.3.1. For any real ε > 0, there exist IPBD((v;w), K1(m)) for all suffi-

ciently large v, w satisfying (2.2.3), (2.2.4), and v > (m+ ε)w.

Proof. If K0 = {m + 1}, then α(K0) = m = α(K1(m)), so the result follows from

Theorem 5.2.5.

In fact, we obtain the same result for any subset of K1(m) that includes m+1. More

explicit results have previously been shown for block sets K1(m) for small values of m.

Colburn, Haddad, and Linek [20] showed that the necessary conditions are sufficient

for m = 2, Wang and Shen [57] showed the necessary conditions are sufficient with a

single exception for m = 3, and Ge et al. [33] described existence results for m = 4.

Theorem 5.3.2. [20] Let v, w be odd positive integers, and v ≥ 2w + 1. Then there

exists an IPBD((v;w), K1(2)).

Theorem 5.3.3. [57] There exists an IPBD((v;w), K1(3)) if and only if v, w ≡ 1

(mod 3), v ≥ 3w + 1, and (v, w) 6= (19, 4).

Theorem 5.3.4. [33] An IPBD((v;w), K1(4)) with v ≥ 4w + 1 and v ≡ w ≡ 1

(mod 4) exists in the following cases:

• w > 1033;

• v ≥ 5w if w ≥ 61;

• w > 41 if w ≡ 1 (mod 20);

• w > 45 if w ≡ 5 (mod 20);

• w > 489 if w ≡ 9 (mod 20);

• w > 717 if w ≡ 17 (mod 20).
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Considering the other extreme, we can construct a block set in which every element

is required to be a member ofK0. For a fixed integer n, let Π = p1p2 · · · pn, the product

of the first n prime numbers, and let K = {Π
pi

+ 1 : i = 1, 2, . . . , n}. Then α(K) = 1.

Let K1 = K \ { Π
p1

+ 1} and consider α(K1). As each element in K1 is congruent to 1

(mod p1), p1 | α(K1). Since this is true for all pi, K0 must be equal to K.

Another type of block set for incomplete pairwise balanced designs that has been

analyzed is Z≥k, the set of integers at least as large as k. Applying Theorem 5.2.5,

we obtain the following.

Corollary 5.3.5. For any real ε > 0, there exist IPBD((v;w),Z≥k) for all suffi-

ciently large v, w satisfying (2.2.3), (2.2.4), and v ≥ (k − 1 + ε)(k + ε)w.

Proof. If K0 = {k, k + 1}, then α(K0) = 1 = α(Z≥k), so the result follows from

Theorem 5.2.5.

Previously, the block set Z≥3 was considered by Hartman and Heinrich [35], and

their result contained possible exceptions which were later shown to exist by Heath-

cote [36] and Chee et al. [12], to obtain the following.

Theorem 5.3.6. [12] An IPBD((v;w),Z≥3) exists if and only if v ≥ 2w + 1 except

when

1. v = 2w + 1 and w ≡ 0 (mod 2);

2. v = 2w + 2 and w 6≡ 4 (mod 6), w > 1;

3. v = 2w + 3 and w ≡ 0 (mod 2), w > 6;

4. (v, w) ∈ {(7, 2), (8, 2), (9, 2), (10, 2), (11, 4), (12, 2), (13, 2), (17, 6)}.

Ge et al. [33] determined the following results for the block sets Z≥5.
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Theorem 5.3.7. [33] Let 5 ≤ w ≤ 8. Then an IPBD((v;w),Z≥5) exists for v ≥

4w + 1, with the following definite exceptions:

• w = 5 and v ∈ {22, 23, 24, 27, 28, 29, 31, 32, 33, 34};

• w = 6 and v ∈ {25, 27, 28, 29, 32, 33, 34, 35};

• w = 7 and v ∈ {29, 30, 31, 32, 33, 34};

• w = 8 and v ∈ {33, 34, 35, 37}.

Theorem 5.3.8. [33] Let 5 ≤ w. Then an IPBD((v;w),Z≥5) exists for v ≥

5w, with the definite exceptions of v ∈ {27, 28, 29, 31, 32, 33, 34} when w = 5, v ∈

{32, 33, 34, 35} when w = 6, and the possible exception of v ∈ {77, 78, 79} when

w = 15.

Turning to the nonexistence of incomplete pairwise balanced designs, Ge et al. [33]

demonstrated the following result for all block sets of the form Z≥k that demonstrates

that the necessary conditions cannot even be asymptotically sufficient in most cases.

Theorem 5.3.9. [33] Let w = (k − 1)t + 1 + a and v = (k − 1)w + 1 + b with

0 ≤ b < a ≤ k − 1. Then no IPBD((v;w),Z≥k) exists, unless b = 0 and a = k − 1,

when the IPBD exists if and only if a resolvable PBD(v − w, k − 1) exists.

Notice that if there exists an IPBD((v;w), K) for a general block set K, then

there also exists an IPBD((v;w),Z≥minK). Hence, the above result can be extended

to general block sets. For the block sets K1(m), however, we obtain no additional

information, as there are no admissible values in the given range.
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Chapter 6

Incomplete Mutually Orthogonal

Latin Squares

6.1 Asymptotic Existence

With our asymptotic existence result for incomplete pairwise balanced designs (with

multiple block sizes), we can prove our main result for incomplete mutually orthogonal

Latin squares. We first need to introduce the concept of partitions in incomplete

Latin squares. A partitioned incomplete Latin square of order v and type L, denoted

PILS(L), is a v by v array of cells and a partition P = {S1, S2, . . . , Sm} of [v] with

L = [|S1|, |S2|, . . . , |Sm|] such that a cell is empty if the ordered pair indexing the cell

is in some Si×Si for i = 1, 2, . . . ,m, each nonempty cell contains an integer between

1 and v such that every row and every column contains each integer at most once,

and if a row (respectively column) contains an empty cell in column (row) i, then

that row (column) does not contain the integer i. Figure 6.1 depicts a partitioned

incomplete Latin square of order 8 and type 312113.

A set of t partitioned incomplete Latin squares of order v and type L is said
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6 7 8 4 5
7 8 5 6 4
8 6 4 5 7

6 7 8 1 2 3
7 8 6 3 1 2
4 5 7 3 2 8 1
8 4 5 1 3 2 6
5 6 4 2 1 7 3

Figure 6.1: PILS(312113)

to be mutually orthogonal, and is denoted t−OPILS(L), if every pair of partitioned

incomplete Latin squares in the set is orthogonal, that is, each ordered pair of integers

not in some Si×Si for Si ∈ P occurs exactly once in a common cell. These objects are

also referred to as holey mutually orthogonal Latin squares, and denoted HMOLS(L).

Figure 6.2 shows two orthogonal partitioned incomplete Latin squares of order 13 and

type 4119.

Observe that a set of t orthogonal partitioned incomplete Latin squares of type

1v is equivalent to a set of idempotent mutually orthogonal Latin squares of order

v. A set of mutually orthogonal Latin squares is said to be idempotent if the main

diagonal of each square in the set contains each of the symbols in ascending order.

That is, cell (i, i) contains the symbol i. The following proposition shows the rela-

tion between these orthogonal partitioned incomplete Latin squares and incomplete

mutually orthogonal Latin squares.

Proposition 6.1.1. If there exist (t+1)−MOLS(v), then there exist t−OPILS(1v).

Proof. Consider one of the squares in the set of t + 1 mutually orthogonal Latin

squares. As each cell containing a 1 is in a distinct row and a distinct column, the

rows can be permuted in such a way so that each cell containing a 1 is on the main

diagonal. The rows of the other Latin squares in the set must be permuted in the
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6 7 5 9 10 8 12 13 11
8 9 10 11 13 12 5 7 6
9 10 8 13 12 11 6 5 7
10 8 9 12 11 13 7 6 5

7 11 12 13 1 6 2 3 4 8 9 10
5 13 11 12 7 1 4 2 3 10 8 9
6 12 13 11 1 5 3 4 2 9 10 8
10 5 7 6 11 12 13 1 9 2 4 3
8 6 5 7 12 13 11 10 1 4 3 2
9 7 6 5 13 11 12 1 8 3 2 4
13 8 10 9 2 3 4 5 7 6 1 12
11 10 9 8 3 4 2 6 5 7 13 1
12 9 8 10 4 2 3 7 6 5 1 11

7 5 6 10 8 9 13 11 12
11 13 12 5 6 7 8 10 9
12 11 13 7 5 6 10 9 8
13 12 11 6 7 5 9 8 10

6 8 9 10 7 1 11 12 13 2 3 4
7 9 10 8 1 5 12 13 11 3 4 2
5 10 8 9 6 1 13 11 12 4 2 3
9 11 13 12 2 4 3 10 1 5 6 7
10 13 12 11 3 2 4 1 8 7 5 6
8 12 11 13 4 3 2 9 1 6 7 5
12 5 6 7 8 10 9 2 4 3 13 1
13 7 5 6 9 8 10 4 3 2 1 11
11 6 7 5 10 9 8 3 2 4 12 1

Figure 6.2: 2−OPILS(4119)
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same way to preserve orthogonality. Then, in each other square, the entries on the

main diagonal must be unique. In each of these squares, permute the symbols so the

entries on the main diagonal are in ascending order; such a permutation preserves

orthogonality. Then, delete the entries on each of the main diagonals, and the result

is a set of t−OPILS(1v).

To prove our main result, we make use of the following construction of Colbourn

and Dinitz [19], which produced incomplete transversal designs from incomplete pair-

wise balanced designs and partitioned incomplete transversal designs. For our pur-

poses, we restate the result in terms of Latin squares.

Construction 6.1.2. [19] Suppose there exists an IPBD((v;n), K) and that for each

k ∈ K, there exist t−OPILS(1k). Then there exist t−IMOLS(v, n) and in fact there

exist t−OPILS(n11v−n).

Our main theorem then follows from the previous construction and our results on

incomplete pairwise balanced designs.

Theorem 6.1.3. There exist t−IMOLS(v, n) for all sufficiently large v, n such that

v ≥ 8(t+ 1)2n. More precisely, if T is the smallest power of 2 greater than t+ 1, then

there exist t−IMOLS(v, n) for all sufficiently large v, n such that v ≥ 2T 2n.

Proof. Appealing to the previous construction, we must find a setK such that α(K) =

1, β(K) = 2, and for each k ∈ K, there exist t−OPILS(1k). By Proposition 6.1.1,

t−OPILS(1k) exist if (t + 1)−MOLS(k) exist, whose existence can be verified for

specific values of k by Theorem 1.1.2. Now, as α(K) = 1, K must contain an even

number, which by Theorem 1.1.2 means we want a power of 2 exceeding t + 1; let

T be the smallest such value. In order to apply Construction 6.1.2 with as small a

ratio as possible, we seek a second value U such that T − 1 and U − 1 are coprime.

Choosing U = 2T , it is clear that T − 1 and 2T − 1 = 2(T − 1) + 1 are coprime.
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Finally, we must complete K so that β(K) = 2, and as K0 = {T, U}, any additional

value will not affect the bound resulting from Theorem 5.2.5. We desire a value S ≡ 3

(mod 4); a convenient choice is the smallest odd power of 3 larger than t+ 1. Hence,

K = {T, 2T, S}, and by Theorem 5.2.5, there exist IPBD((v;n), K) for all sufficiently

large v, n satisfying v > (T−1+ε)(2T−1+ε)n, or more concisely, v ≥ 2T 2n. As each

required orthogonal partitioned incomplete Latin square exists by Theorem 1.1.2, the

result follows from Construction 6.1.2 and the fact 2(t+ 1) ≥ T .

6.2 Improving the Required Inequality

Consider the inequality required in our main theorem. While it is necessary that K

and K0 contain a power of 2, our second value U in K0 was chosen as a power of 2

for convenience. If instead, we choose a different value such that U is a prime power

and T − 1 and U − 1 are coprime, we will be able to improve the required inequality.

We show this improvement for small values of t in Table 6.1, dropping the ε terms

for simplicity.

Table 6.1: Improving the Required Inequality for t−IMOLS(v, n)

t 1 2 3 4-5 6 7 8-14
2T 2 32 32 128 128 128 512 512
{T, U} 3,4 4,5 5,8 7,8 8,9 9,16 16,17

New Ratio 6 12 28 42 56 120 240

t 15-17 18-21 22-23 24-25 26-27 28-29 30
2T 2 2048 2048 2048 2048 2048 2048 2048
{T, U} 19,32 23,32 25,32 27,32 29,32 31,32 32,37

New Ratio 558 682 744 806 868 930 1116

Previous results have established better required inequalities for the existence

of t−IMOLS(v, n) for 1 ≤ t ≤ 6. For the case t = 1, we can always fill the
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empty subsquare with any Latin square of order n, so the problem is equivalent to

determining when a partially filled Latin square can be completed. Hence, we consider

the following result of Ryser [47] concerning the completion of Latin rectangles. A

Latin rectangle of order r by s is an r by s array of positive integers such that the

integers in each row and each column are distinct.

Theorem 6.2.1. [47] Let L be an r by s Latin rectangle based upon the integers

1, 2, . . . , n. Let N(i) denote the number of times that the integer i occurs in L. A

necessary and sufficient condition in order that L may be extended to an n by n Latin

square is that for each i = 1, 2, . . . , n,

N(i) ≥ r + s− n.

The previous result is used to verify that the necessary condition of v ≥ 2n is also

sufficient.

Corollary 6.2.2. A 1−IMOLS(v, n) (i.e. an incomplete Latin square) exists if and

only if v ≥ 2n.

Proof. Let L be an n by n Latin square. Then L is an n by n Latin rectangle based

upon the integers 1, 2, . . . , v. Hence, L can be extended to a v by v Latin square

if and only if N(i) ≥ 2n − v for each i = 1, 2, . . . , v. Since v > n, it follows that

N(v) = 0. Hence, L can be extended to a v by v Latin square if and only if v ≥ 2n.

We can then remove L from the resulting Latin square and the result follows.

For the case t = 2, Heinrich and Zhu [37] completed the proof that the necessary

condition is sufficient with a single exception.

Theorem 6.2.3. [37] There exist 2−IMOLS(v, n) if and only if v ≥ 3n and (v, n) 6=

(6, 1).



68

For the case t = 3, Du [29] showed the the necessary condition is sufficient except

for possibly a list of 109 exceptions. Constructions for almost all of these exceptions

were provided by Abel and Todorov [4]; Colbourn [15, 16, 17]; Abel, Colbourn, Yin,

and Zhang [2]; and Abel and Du [3], which led to the following.

Theorem 6.2.4. [3] There exist 3−IMOLS(v, n) if and only if v ≥ 4n and (v, n) 6=

(6, 1), except possibly (v, n) = (10, 1).

For t = 4, 5, Zhu [63] determined results for the small hole sizes of 7, 8, and 9.

Drake and Lenz [28] determined the following result for five IMOLS by considering

aligned subsquares.

Theorem 6.2.5. [28] Assume that N(n) ≥ 7 and n ≥ 93. Then if v ≥ 7n+ 7, there

exist 5−IMOLS(v, n).

With the improved value of v7 given by Theorem 1.1.4, the following result is

obtained.

Corollary 6.2.6. There exist 5−IMOLS(v, n) if v ≥ 7n+ 7 and n ≥ 571.

For the case t = 6, the following bounds on v were obtained by Colbourn and

Zhu [21] with different conditions on n.

Theorem 6.2.7. [21] There exist 6−IMOLS(v, n) if v ≥ 8n+ 139 and n ≥ 98.

Theorem 6.2.8. [21] For n ≥ 781, there exist 6−IMOLS(v, n) if and only if v ≥ 7n.

Theorem 6.2.9. [21] For n ≥ 23 and n a prime power, there exist 6−IMOLS(v, n)

if and only if v ≥ 7n.

This work also led to an improved result for t = 4.

Theorem 6.2.10. [21] There exist 4−IMOLS(v, n) exist if v ≥ 7n and n ≥ 98.
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Considering the problem from a different perspective, Chee et al. [13], determined

the following result when the size of the hole was close to the number of squares.

Theorem 6.2.11. [13] Let t be a positive integer and let 0 ≤ n ≤ t+ 2. Then for all

sufficiently large v, there exist t−IMOLS(v, n).

Finally, Table III.4.14 in the Handbook of Combinatorial Designs [18] gives a lower

bound on the number of IMOLS(v, n) for 1 ≤ v ≤ 1000 and 0 ≤ n ≤ 50.

On the other hand, we can also improve the required inequality if we restrict our

consideration to certain congruence classes for v and n. The best required inequal-

ity for incomplete pairwise balanced designs resulted from the block sets K1(m), or

more generally, for any subset of K1(m) which includes m + 1. Using this idea, we

demonstrate the following result.

Theorem 6.2.12. If N(m) ≥ t + 1, then there exist t−IMOLS(v, n) for all suffi-

ciently large v, n such that v ≡ n ≡ 1 (mod m) and v ≥ (m+ 1)n.

Proof. To use Construction 6.1.2, we need to find a set K such that m+ 1 ∈ K and

K0 = {m+ 1}, and hence α(K) = m+ 1 and

β(K) =


m if m is even,

2m if m is odd.

To achieve these parameters, we can choose a value k such that k ≡ 1 (mod m) and

k ≡ −1 (mod m+ 1). By the Chinese remainder theorem, such a value is of the form

cm(m + 1) + 2m + 1, where c is a positive integer. By Dirichlet’s Theorem, there

exists a prime in this arithmetic progression as gcd(m(m+ 1), 2m+ 1) = 1. For such

a prime k, N(k) = k−1 > t+1, so by Proposition 6.1.1, there exist t−OPILS(1m+1)

and t−OPILS(1k). Hence, K = {m + 1, k} ⊂ K1(m), and by Theorem 5.2.5, there
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exist IPBD((v;n), K) for all sufficiently large v, n such that v ≡ n ≡ 1 (mod m)

and v ≥ (m+ 1)n, so the result follows from Construction 6.1.2.

Alternatively, we can make use of product constructions to construct mutually

orthogonal Latin squares with aligned subsquares, and hence incomplete mutually

orthogonal Latin squares, where the order is a prescribed multiple of the size of the

hole. We make use of the following construction.

Construction 6.2.13. Suppose that there exist t−MOLS(m) and t−MOLS(n).

Then there exist t−IMOLS(mn, n).

The subsequent construction due to Brouwer and van Rees [11] allows the ad-

ditional flexibility to shift as well as multiply. It is a variation of Wilson’s MOLS

Construction [59], which is as follows.

Theorem 6.2.14 (Wilson’s MOLS Construction [59]). Suppose t ≥ 1 and there

exist t−MOLS(m), t−MOLS(m+ 1), t−MOLS(s), and (t+ 1)−MOLS(r), where

1 ≤ s ≤ r. Then there exist t−MOLS(mr + s).

Construction 6.2.15. [11] Suppose there exist (t + 1)−MOLS(r), t−MOLS(m),

and t−MOLS(m+1), and that 0 ≤ s ≤ r. Then there exist t−IMOLS(mr+s, s). If

there also exist t−MOLS(s), then there exist t−IMOLS(mr+s, r), t−IMOLS(mr+

s,m) if s 6= r, and t−IMOLS(mr + s,m+ 1) if s 6= 0.

Implementing the above construction would require t−MOLS(u), where u is ap-

proximately v
n
. It is unclear whether this construction could be modified to produce

the required examples close to the lower bound. A version of this construction is used

by Colbourn and Zhu [21] to prove results on six incomplete mutually orthogonal

Latin squares; we examine adapting this approach in the next section.
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6.3 An Alternate Approach

In this section, we examine the approach used by Colbourn and Zhu [21] to prove

existence results for six incomplete mutually orthogonal Latin squares. We generalize

the portion of the argument that proves Theorem 6.2.7 to determine the resulting

inequality for general t and conclude with a comparison of the inequalities achieved

by the two methods. The remaining work to reduce the bound to obtain the result of

Theorem 6.2.8 is largely an analysis by cases; we do not explore reducing the bound

in this manner.

We begin with the following lemma, stated without proof, which is a straight-

forward modification of a construction used by Colbourn and Zhu [21], taken as a

variant of the working corollaries of Brouwer and van Rees [11]. First we introduce

the following generalization of incomplete mutually orthogonal Latin squares allowing

multiple holes. A set of t incomplete mutually orthogonal Latin squares of order v

and hole sizes n1, n2, . . . , nm, denoted t−IMOLS(v;n1, n2, . . . , nm) is a set of v by v

arrays with hole set H = {N1, N2, . . . , Nm}, where each Nk ⊆ [v], k = 1, 2, . . . ,m,

such that cell (i, j) is empty if {i, j} ⊆ Nk for some k = 1, 2, . . . ,m and contains an

integer between 1 and v otherwise, every row and every column contains each symbol

at most once, symbols in Nk, k = 1, 2, . . . ,m are not contained in a row or column

indexed by Nk, and each ordered pair in [v]2 \ ∪mk=1N
2
k occurs.

Lemma 6.3.1. Suppose there exist (t + 2)−IMOLS(r) and t−IMOLS(m + yi +

zj; s, yi, zj) for 1 ≤ i ≤ r and 1 ≤ j ≤ r. Then there exist t−IMOLS(mr + u +

v; sr, u, v), where y =
∑r

i=1 yi and z =
∑r

j=1 zj. Moreover, (1) if s = 0 and there

exist t−MOLS(u), then there exist t−IMOLS(mr+ y + z, z); (2) if there exist both

t−MOLS(y) and t−MOLS(z), then there exist t−IMOLS(mr + y + z, sr).

Motivated by this construction, we establish a useful upper bound on a value of mt
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such that each of t−IMOLS(mt, 0) (equivalent to t−MOLS(mt)), t−IMOLS(mt +

1, 1) (equivalent to t−MOLS(mt + 1)) and t−IMOLS(mt + 2; 1, 1) (implied by the

existence of t−OPILS(1mt+2)). The following upper bounds are established from the

MOLS table of the Handbook of Combinatorial Designs [18].

Table 6.2: Upper Bounds on mt

t 2 3 4 5 6 7 8 9 10
mt 3 7 7 7 7 23 47 79 208

We now prove a fundamental result regarding the density of numbers with no

small prime divisors.

Proposition 6.3.2. For any integer t, there exists a smallest integer dt such that for

any integer n, at least one of the integers n, n+ 1, n+ 2, . . . , n+ dt− 1 is not divisible

by any prime at most t.

Proof. It suffices to find an upper bound on dt. Let Π be the product of all primes

at most t. Then in any set of Π consecutive integers, there is a value x such that

x ≡ 1 (mod Π). Since each prime at most t divides Π, it cannot also divide x. Hence,

dt ≤ Π.

The following table gives dt for some small values of t.

Table 6.3: Values of dt

t 2 3 5 7 11 13
dt 2 4 6 10 16 18

Using the previous results, we find a series of such integers satisfying certain

additional conditions to use as ingredient orders of mutually orthogonal Latin squares.
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Lemma 6.3.3. For any integer t, there exists a series of integers {qti}i=1,2,... such

that N(qti) ≥ t+ 2, 0 < qt(i+1) − qti ≤ dt+2, and mtqt(i+1) + vt − 1 ≤ (mt + 1)qti.

Proof. By Proposition 6.3.2, any dt+2 consecutive integers contain at least one number

z such that N(z) ≥ t+ 2 (by Theorem 1.1.2). So, there is an infinite series qt1, qt2, . . .

with qt1 ≥ mtdt+2 + vt − 1 and such that for any i ≥ 1, N(qti) ≥ t + 2 and 0 <

qt(i+1) − qti ≤ dt+2. Finally, since mtdt+2 + vt − 1 ≤ qti, mtdt+2 ≤ qti − vt + 1 and

then qt(i+1) ≤ qti + dt+2 ≤ (mt+1)qti−vt+1
mt

. Hence, mtqt(i+1) + vt − 1 ≤ (mt + 1)qti as

required.

We now construct examples of incomplete mutually orthogonal Latin squares with

small holes.

Lemma 6.3.4. For any integer t and any integer v ≥ mtqt1 +vt+n and 0 ≤ n ≤ qt1,

there exist t−IMOLS(v, n).

Proof. Apply Lemma 6.3.1 (1) with r = qti, m = mt, and yi, zj = 0 or 1. Since

t−IMOLS(mt + yi + zj; yi, zj) all exist by definition of mt and (t+ 2)−IMOLS(qti)

exist by Lemma 6.3.3, we obtain t−IMOLS(mtqti + y + z; y, z) [y =
∑r

i=1 yi and

z =
∑r

j=1 zj]. Let y ≥ vt, z = n, and v = mtqti + y + z. Since t−MOLS(y) exist (by

definition of vt), we have t−IMOLS(v, n) for n ∈ [mtqti + vt + n, (mt + 1)qti + n],

i = 1, 2, . . .. Finally, since mtqti + vt ≤ (mt + 1)qti + 1 by Lemma 6.3.3, we obtain

t−IMOLS(v, n) for v ≥ mtqti + vt + n.

We can now establish the main result for this section.

Theorem 6.3.5. For any integer t and any integer n > qt1, then whenever v ≥

(mt + 1)n+mt(dt+2 − 1) + vt, there exist t−IMOLS(v, n).

Proof. For any integer n ≥ qt1 + 1, let j = min{i : qti ≥ n} and n∗ = qtj. For

any i ≥ j, we have t−IMOLS(v, n) where v = mtqti + k + n, vt ≤ k ≤ qti, by
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applying Lemma 6.3.1 (1) with r = qti, m = mt, yi, zj = 0 or 1, y = k, and z = n.

This gives an interval [mtqti + vt + n, (mt + 1)qti + n]. Lemma 6.3.3 guarantees

that there is no gap between consecutive intervals [mtqti + vt + n, (mt + 1)qti + n]

and [mtqt(i+1) + vt + n, (mt + 1)qt(i+1) + n]. Hence, t−IMOLS(v, n) exist for any

v ≥ mtqtj + vt + n = mtn
∗ + vt + n. If v ≥ (mt + 1)n + mt(dt+2 − 1) + vt, then

v ≥ mt(n + dt+2 − 1) + vt + n ≥ mtn
∗ + vt + n, and therefore t−IMOLS(v, n) exist

by Lemma 6.3.4.

Table 6.4 compares the bounds due to Theorem 6.1.3, its improvement discussed

in Section 6.2, and Theorem 6.3.5, giving the coefficient on the n terms. The constant

term obtained from Theorem 6.3.5 is also given for the first set of entries. The best

ratio is highlighted in bold. We see that the bound given by Theorem 6.3.5 is best

in the case of t ≤ 10 as well as for a couple of values near powers of two (t = 15, 30),

but there is no improvement on Section 6.2 in the majority of cases. However, we

are limited by the knowledge of the maximum number of mutually orthogonal Latin

squares for most orders, and new updated entries in the MOLS table would contribute

to improving the bound due to Theorem 6.3.5.
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Table 6.4: Comparing the Required Inequalities for t−IMOLS(v, n)

t 2 3 4 5 6 7 8 9 10
T 4 8 8 8 8 16 16 16 16
U 5 5 7 7 9 9 17 17 17

2T 2 32 128 128 128 128 512 512 512 512
§ 6.2 12 28 42 42 56 120 240 240 240
§ 6.3 4 8 8 8 8 24 48 80 209

Constant 16 46 58 124 138 778 3190 4864 8925

t 11 12 13 14 15 16 17 18-21 22-23
T 16 16 16 16 32 32 32 32 32
U 17 17 17 17 19 19 19 23 25

2T 2 512 512 512 512 2048 2048 2048 2048 2048
§ 6.2 240 240 240 240 558 558 558 682 744
§ 6.3 272 272 272 272 272 607 838 838 838

t 24-25 26-27 28 29 30 31 32-39 40 41-45
T 32 32 32 32 32 64 64 64 64
U 27 29 31 31 37 41 41 47 47

2T 2 2048 2048 2048 2048 2048 8192 8192 8192 8192
§ 6.2 806 868 930 930 1116 2520 2520 2898 2898
§ 6.3 838 991 991 992 992 2592 5208 5502 6270

t 46 47-51 52-57 58-62 63 64-65 66 67-69 70
T 64 64 64 64 128 128 128 128 128
U 53 53 59 81 67 67 71 71 73

2T 2 8192 8192 8192 8192 32768 32768 32768 32768 32768
§ 6.2 3276 3276 3654 5040 8382 8382 8890 8890 9144
§ 6.3 6270 6732 9152 9152 9152 9337 9337 9342 9342
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Chapter 7

Discussion

7.1 Incomplete Pairwise Balanced Designs from

Resolvable Designs

In the case of incomplete pairwise balanced designs with a single block size, the

existence of designs with v = (k−1)(w+ t)+1 points has been shown for t = 0, 1 and

large t using resolvable designs. We have previously shown this existence for t = 0

in Proposition 3.2.3. Dukes, Lamken, and Ling [30] used resolvable group divisible

designs to show the existence for the other values of t. In dealing with multiple block

sizes, however, resolvable designs do not easily extend to show existence in these cases.

In fact, while the replication number for each point in a resolvable design with multiple

block sizes must be the same, there are cases where multiple resolvable pairwise

balanced designs can be found having different replication numbers; an example is as

follows.

Example 7.1.1. Three possible block sets of a resolvable PBD(8, {2, 3, 4}) on the

point set V = {1, 2, 3, 4, 5, 6, 7, 8} are
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1. {1, 2, 3}, {4, 7, 8}, {5, 6},

{1, 4, 5}, {2, 6, 8}, {3, 7},

{1, 6, 7}, {3, 5, 8}, {2, 4},

{2, 5, 7}, {3, 4, 6}, {1, 8}.

2. {1, 2, 3, 4}, {5, 6, 7, 8},

{1, 5}, {2, 6}, {3, 7}, {4, 8},

{1, 6}, {2, 7}, {3, 8}, {4, 5},

{1, 7}, {2, 8}, {3, 5}, {4, 6},

{1, 8}, {2, 5}, {3, 6}, {4, 7}.

3. {1, 2}, {3, 8}, {4, 7}, {5, 6},

{1, 3}, {2, 4}, {5, 8}, {6, 7},

{1, 4}, {3, 5}, {2, 6}, {7, 8},

{1, 5}, {4, 6}, {3, 7}, {2, 8},

{1, 6}, {5, 7}, {4, 8}, {2, 3},

{1, 7}, {6, 8}, {2, 5}, {3, 4},

{1, 8}, {2, 7}, {3, 6}, {4, 5}.

The first block set has replication number 4, the second block set has repli-

cation number 5, and the third block set has replication number 7. If we add a

point to the block set of each parallel class, we obtain an IPBD((12; 4), {3, 4, 5}),

an IPBD((13; 5), {3, 4, 5}), and an IPBD((15; 7), {3, 4, 5}) respectively. Working

from the other direction, an IPBD((v;n), K) can be obtained from a resolvable

PBD(v − n,K − 1) with n resolution classes, where K − 1 = {k − 1 : k ∈ K}.

Hence, unlike the case of resolvable pairwise balanced designs with a single block

size, in which the number of resolution classes is uniquely determined by the number

of points and the block size, we need to ensure a resolvable pairwise balanced design

has the proper number of resolution classes to form the incomplete pairwise balanced

design required.

While resolvable pairwise balanced designs with multiple block sizes have unfortu-

nately been given little consideration in general, certain structured types of resolvable

pairwise balanced designs have been considered in more detail. A uniformly resolv-

able pairwise balanced design on v points with replication number r and block set

K, denoted URD(v, r,K), is a PBD(v,K) resolved into r parallel classes such that
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within each parallel class, each block is the same size. Block set 2 in Example 7.1.1

is an example of a URD(8, 5, {2, 3, 4}). Rees [46] completed the following result for

the block set {2, 3}.

Theorem 7.1.2. [46] There exists a URD(v, r, {2, 3}) if and only if either

(i) v ≡ 3 (mod 6) and r = (v − 1)/2, or

(ii) v ≡ 0 (mod 2) and r = v − 1, or

(iii) v ≡ 0 (mod 6) and v/2 ≤ r ≤ v − 1,

with the exceptions (v, r) = (6, 3) and (12, 6).

Uniformly resolvable pairwise balanced designs have also been studied for the block

set {3, 4} by Schuster and Ge, see [49, 50, 51]. For the block set {2, 4}, maximum

uniformly resolvable pairwise balanced designs have been studied, in which the goal

is the maximum number of resolution classes with blocks of size 4, see [26, 34].

A different restriction results in class-uniformly resolvable pairwise balanced de-

signs on v points with replication number r and block set K, denoted CURD(v, r,K),

which is a PBD(v,K) resolved into r parallel classes such that each parallel class

contains the same number of blocks of each size. Block set 1 in Example 7.1.1 is

an example of a CURD(8, 4, {2, 3}). Existence results for class-uniformly resolvable

pairwise balanced designs with block set {2, 3} were explored by Lamken, Rees, and

Vanstone [41], Danziger and Stevens [22], and Dinitz and Ling [25]. Finally, Danziger

and Stevens [23, 24] considered both class-uniformly resolvable group divisible designs

and class-uniformly resolvable frames, in which each parallel class of these objects

contains the same number of blocks of each size.

Using either type of uniformly resolvable pairwise balanced design, we can con-

struct incomplete pairwise balanced designs as follows.
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Construction 7.1.3. If there exists a URD(v−w,w,K−1) or a CURD(v−w,w,K−

1), then there exists an IPBD((v;w), K).

Proof. For each parallel class of the URD(v−w,w,K−1) or CURD(v−w,w,K−1),

add a new point to each of the blocks. The result is an IPBD((v;w), K).

With a general result on uniformly resolvable designs or class-uniformly resolvable

designs, we would likely be able to improve the required inequality for incomplete

pairwise balanced designs, instead of resorting to working with one block size at a

time.

7.2 Further Directions

In addition to the consideration of resolvable designs discussed in the previous section,

there are several avenues that can be pursued in this area. The first is to attempt

to improve the required inequality for incomplete pairwise balanced designs. While

more examples of incomplete pairwise balanced designs of the form v = (k − 1)(w +

t) + 1 could be used in Lemma 5.2.3 and improve the largest term of the arithmetic

progression in n ∗ R, we are limited to a maximum of n(k−1)(m−1)
k−2

. As the groups are

filled with incomplete pairwise balanced designs from Theorem 5.1.2, we are unable

to achieve the maximum ratio between v and w. Hence, a different construction is

necessary to improve the required inequality, which, due to Theorem 5.3.9, maybe

only be possible in specific cases.

Recalling the equivalence between incomplete pairwise balanced designs and group

divisible designs, we may also consider the asymptotic existence for GDD(guw1, K)

for fixed g. Considering blocks and replication numbers, we have the following nec-

essary conditions.
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Proposition 7.2.1. If a GDD(guw1, K) exists, then

gu(g(u− 1) + 2w) ≡ 0 (mod β(K)), and (7.2.1)

gu ≡ w − g ≡ 0 (mod α(K)). (7.2.2)

Considering the hole, we obtain the following necessary inequality.

Proposition 7.2.2. If a GDD(guw1, K) exists, then g(u− 1) ≥ (minK − 2)w.

The major challenge with this problem appears to be constructing examples with

w < g.

The final direction for future consideration are incomplete mutually orthogonal

Latin squares containing multiple holes, as introduced in Section 6.1. Lamken [40]

considered the case of three orthogonal partitioned incomplete Latin squares, and

proved a result for orthogonal partitioned incomplete Latin squares with equal sized

holes with a number of possible exceptions. Some exceptions were eliminated by

Stinson and Zhu [55], Abel, Zhang, and Zhang [6], Zhang and Zhang [62], Bennett

and Zhu [8], Bennett, Colbourn, and Zhu [7], and Abel and Zhang [5] to produce the

following result with eight possible exceptions remaining.

Theorem 7.2.3. [5] If n ≥ 5, then there exist 3−OPILS(hn), except for (h, n) =

(6, 1) and possibly for (h, n) ∈ {(1, 10), (3, 6), (3, 18), (3, 28), (3, 34), (6, 18), (6, 19),

(6, 23)}.

Bennett, Colbourn, and Zhu [7] and Abel and Zhang [5] also considered the case

of one hole of size three and the rest of size two and obtained the following result.

Theorem 7.2.4. [5] For any n ≥ 6, there exist 3−OPILS(2n31) except possibly for

n ∈ {6, 9, 10, 12, 14, 15, 17, 21, 24, 26, 27}.
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A more general result for the case of exactly one hole not of size two was given by

Xu [61].

Theorem 7.2.5. [61] Suppose that u ≥ 4 is an integer. There exist 3−OPILS(2nu1)

if n ≥ 54 and n ≥ 7
4
u+ 7.

Finally, Abel, Bennett, and Ge [1] investigated four orthogonal partitioned incom-

plete Latin squares with equal sized holes and determined the following result.

Theorem 7.2.6. [1] Suppose h, n are integers satisfying h ≥ 2 and n ≥ 6. Then

there exist 4−OPILS(hn) except possibly in the following cases:

1. h = 2 and n ∈ {28, 30, 32, 33, 34, 35, 38, 39, 40, 45}.

2. h = 3 and n ∈ {6, 12, 18, 24, 28, 46, 54, 62}.

3. h = 4 and n ∈ {20, 22, 24, 28, 30, 32, 33, 34, 35, 38, 39, 40}.

4. h = 5 and n ∈ {18, 22, 26, 30}.

5. h = 6 and n ∈ {18, 22, 24, 26}.

6. h = 9 and n ∈ {10, 18, 22}.

7. h = 10 and n ∈ {32, 33, 35, 38}.

8. h = 11 and n ∈ {10, 15}.

9. h = 14 and n ∈ {34}.

10. h = 17 and n ∈ {10, 18, 22}.

11. h = 22 and n ∈ {33, 34, 35, 39, 40}.

12. n = 6 and h is not of the form m × b where 4−MOLS(m) exist, 2 ≤ b ≤ 13,

and b 6= 3.
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13. n = 15 and h is not of the form m× b where 4−MOLS(m) exist, 2 ≤ b ≤ 12,

and b 6= 11.

To adapt our approach for the study of orthogonal partitioned incomplete Latin

squares, we would likely require a more general type of incomplete pairwise bal-

anced design which itself contains multiple holes. One such example, introduced by

Stinson [54], are ♦-incomplete pairwise balanced designs. A ♦-incomplete pairwise

balanced design on v points with hole sizes w1, w2, intersection w3, and block set K,

denoted ♦−IPBD((v;w1, w2;w3), K), is a quadruple (V,W1,W2,B) such that V is a

set of v points, W1 and W2 are subsets of V containing w1 and w2 points respectively

called holes which intersect in w3 points, and B is a collection of subsets of V called

blocks such that the size of each block is in K, no block contains two points in the

same hole, and every pair of points not both in the same hole appears in exactly one

block. An example is given below.

Example 7.2.7. [54] The blocks of a ♦−IPBD((15; 7, 7; 3), {3}) on the point set

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} and hole sets {5, 6, 7, 8, 13, 14, 15} and {9,

10, 11, 12, 13, 14, 15} are

{1, 5, 9}, {1, 6, 10}, {1, 7, 11}, {1, 8, 12}, {2, 5, 10}, {2, 6, 11}, {2, 7, 12}, {2, 8, 9},

{3, 5, 11}, {3, 6, 12}, {3, 7, 9}, {3, 8, 10}, {4, 5, 12}, {4, 6, 9}, {4, 7, 10}, {4, 8, 11},

{1, 2, 13}, {3, 4, 13}, {1, 3, 14}, {2, 4, 14}, {1, 4, 15}, {2, 3, 15}.

In general, however, more than two holes will be needed for dealing with orthog-

onal partitioned incomplete Latin squares.
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