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ABSTRACT 

Feedback, such as an inspection of a part, is a key step in the design and manufacture of complex 

products. It determines where a product or manufacturing process should be re-evaluated to conform to 

design specifications.  The inspection of a part is characteristically accomplished by comparing the CAD 

model to the measurements of a manufactured part.  This is simple for parts that contain a commonality: 

central axis, plane on a flat side, center of a sphere, etc.  When a part does not share a commonality—like 

free-form surfaces—the comparison analysis becomes complex.  

This complexity occurs when determining the process for correspondence of every point on a 

manufactured part to every point on a design model.  Whenever one coordinate system is shifted, the 

comparison can be lost and, then, has to be reevaluated, creating an iteration.   The demand for substantial 

iterations protracts the process and thwarts optimization.  It is, also, challenging to mathematically 

determine which points should be compared to another.  Is the selected point optimal for comparison? Is a 

higher resolution of points needed? This problem of how the coordinate systems of the CAD model and 

the measured part can be aligned is termed as localization and is extensively researched [1].  Currently, 

most algorithms use a line or surface fitting technique that minimizes the sum of the square of the errors, 

drawing upon Gunnarsson and Prinz’s original idea [2].  Such nonlinear approaches may result in local 

minima when minimized, resulting in false solutions.  Additionally, a solution achieved may not be 

optimal due to averaging of outliers in the data.   

This thesis proposes a methodology that automatically aligns the coordinate systems of free-form 

CAD models to collected manufactured measurements, with resiliency to outliers of the fit and false 

solutions given by local minima, by maximizing the shared extent depending on dimension. To perform 

this, data from the manufactured surface and design surface are polygonized and compared until 

geometrically similar.  Then, the overlapping or intersecting extent is calculated depending on the 

dimension and maximized using a heuristic approach, particle swarm optimization.  At the maximum 
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shared extent, two coordinate systems should be aligned in the optimal position. In this work, only two 

dimensional free-form curves are used to determine if the maximization of the shared extent results in an 

optimal solution, reducing complexity from three dimensions. Results obtained validated the approach 

and that the manufactured curve was aligned to the design, as measured by the sum of the squared errors. 

Also, the method was discovered to resist outliers, demonstrated by the tight alignment of consistent 

sloped areas while not necessarily aligned to peaks and valley features.  Error observed is mainly due to 

inaccurate polygon geometry between the curves rather than the maximization of shared area process. 
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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

The perpetual goal of manufacturing is the replication of a perfect product from raw materials.  

However, perfection is infeasible, which has created the acceptance of errors by specifying tolerances on 

part models produced by any manufacturing process.  Yet, with computer-aided design (CAD) models, 

the ideal part is now virtually captured and can be manipulated.   Naturally, this generates an ambition to 

compare the ideal part, the CAD model, to any actual part to gauge the quality of the manufacturing 

process. 

This initiates the question: how are two objects compared to each other?  It may seem simple.  

Determine shared features—shapes, axis, and planes— and then align or nest these features inside each 

other.  If performed correctly, differences between the two shapes become visible. And yet, this relies on 

the assumption that the two objects share obvious features or characteristics.   What if the two objects do 

not share any recognizable features?  How would the objects be compared?  Would the results be accurate 

and would those results be intuitive?  This is the case for free-form curves, and these questions are not 

simply answered. 

1.2 Free-Form Surfaces 

What are free-form surfaces and why can they not be compared through conventional means? 

Free-form surfaces are three-dimensional surfaces that do not have a constant geometrical shape or set 

pattern, are classified as either constrained or unconstrained, and are typically produced using 

sophisticated CAD programs [3].   They are widely used in the design and manufacturing of dies, molds, 

and products ranging from the plastics, biomedical, entertainment applications to automotive and 

aerospace industries [1]. To create a free-form surface, the CAD models are defined by piecewise 

parametric functions to create the shape of a part, using one of the three methods: Bezier, Spline or 

NURBS [4].  An example of a NURBS curve and surface are displayed in Figure 1. 
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Figure 1: An example of freeform curve creation via NURBS [5] 

From Figure 1, it is apparent that a CAD model surface data can be extracted via several methods: 

points along the surface, collecting control point positions, surface equation estimation, etc.   Regardless 

of the method used eventually, for comparison of the CAD surface to the manufacturing surface, specific 

positions or direct points will be needed along the CAD surface.  A similar dataset will need to be 

collected from the manufactured part.  Contact or non-contact measurement sensors along with computer-

controlled coordinate measurement machines (CMMs) are commonly used to achieve high-precision 

dimensional measurements of complex parts, such as a free-form surface [4].  Once both datasets are 

collected, how can the coordinate systems be aligned to compare the manufactured and CAD surfaces? 

1.3 Localization 

  Localization is the process in which two objects are compared and aligned when they do not share 

any recognizable features, shapes, axis, and planes, such as free-form curves [6]. In the scope of 

manufacturing, the alignment is concerned with the determination of the relationship between two 

coordinate reference frames: measurements from a part and surface points generated by a CAD model [7].  

Simply phrased, it is the process that provides the user with the appropriate translation and rotation values 
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to align CAD model coordinate system and the manufactured part coordinate system, which is shown in 

Figure 2. 

 
Figure 2: A summarization of the localization problem [8] 

Although a CAD surface is depicted in Figure 2, for this research, a collected set of data points from the 

surface is utilized.  

Again, the goal of localization is to align the manufacturing points onto the CAD surface [7].  

Once aligned properly, tolerance analysis on the surface can begin, which is demonstrated in Figure 3 [9]. 

 

  
 

 
Figure 3: Comparison of a design surface, tolerance boundaries, manufactured surface, and 

variation of the particular manufactured surface [9] 
 

In Figure 3, the design surface has a tolerance boundary that a manufactured surface can vary within, due 

to manufacturing defects  [9].  This manufactured surface is depicted by the closely dashed line, as well as 
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the variation of the part  [9].  From Figure 3, there is a possibility for arbitrary adjustments, meaning 

alignment or localization is not always intuitive. 

1.4 Need for Research 

Currently, computing technology is approaching the ability to solve difficult optimizations and 

manipulate enormous sets of data. This allows for new methods to localization that were deemed 

previously unattainable.  The potential solution to localization is key to industries such as consumer 

products (mobile phones, cameras, etc.), household appliances (water pumps, fans, etc.), aerospace 

(turbine blades, impellers, aerodynamic parts, etc.), and automotive (car bodies, 3D-cams, seals, gears, 

etc.)  [10].  Each of these have a desired tolerance range, shown in Figure 4, which has to be met for safe 

consumer usage or other benefit to the manufacturer.   

 
Figure 4: Tolerance vs. dimensions for typical free-form part industries [10] 

Without the proper alignment discussed in Figure 3, the tolerances, shown in Figure 4, may be 

unmet and not intuitively measured.  The feedback cycle in design phase is deficient.   Optimization of 

material use and feature placement is impracticable, creating more expensive, over-engineered parts.   

Failure analysis using real world comparisons is deficient as well, meaning the failure of a part may occur 
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repetitively. If localization could be performed rapidly, it would open the possibility for automated quality 

control on a manufacturing line, guaranteeing that a product met the given specification range, such as the 

requirements listed in Figure 4.  

1.5 Thesis Contribution 

This thesis proposes the methodology that could automatically compare and align measurements 

from a manufactured part to points generated from a CAD surface.  The approach is resilient to local 

minima and will not average outliers for the fit.   To achieve this, the algorithm focuses on creating a 

digital mesh of the design surface and the manufactured part.  Once a geometrically similar mesh is 

created for each, the overlapping volume or area of the meshes could be calculated.  Then by maximizing 

the shared volume or area, the CAD model and the manufactured part coordinates would be aligned in the 

optimal position.   

As the foundation of this work, only two dimensional free-form curves are used instead of 

surfaces to reduce complexity and to test the hypothesis that maximization of the shared extent, area in 

this case, results in an optimal solution.  Similar control polygons are generated for both the manufactured 

part curve and the CAD model curve.  The overlapping area is maximized creating a localization solution.  

Obtained results demonstrated an independent reduction of the sum of the squared errors between the two 

curves, validating this hypothesis. Also, the method was resistant to outliers, demonstrated by the tight 

alignment of consistent sloped areas while not necessarily aligned to peak and valley areas.  Error 

generated by this method is mainly due to inaccurate creation of polygon geometry rather than the 

maximization of shared area process.    

1.6  Layout of Thesis 

The remainder of this thesis will be arranged as follows.  First, the Problem Statement in Chapter 

2 will clearly state the scope, initial considerations, and the overall goal of this research.  In Chapter 3, the 

Literature Review section will cover the traditional approaches of localization, additional techniques, and 
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current research.  Subsequently, Chapter 4, the Shared Area Maximization Algorithm section, will explain 

step-by-step the proposed algorithm.  The analysis of the results from the algorithm will follow in Chapter 

5.  Chapter 6 will conclude inferences formed from the results and discuss the future direction for this 

research.  
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CHAPTER 2 PROBLEM STATEMENT 

2.1 Problem Statement 

The difficulties in developing a solution to localization originates from how points are compared 

to each other. Generally, every point on one surface is compared to every on the other surface via distance 

rays, as shown in Figure 8 and Figure 9 [2].  The sum of least squares is an often used direct approach, 

which is prone to local minima during optimization [11].  Another difficulty is trying to mathematically 

determining where or which point to compare a data point along a curve.  It may not always be the closest 

point.  Any curve estimation to determine where the point fits may introduce its own error into a solution 

through the averaging of points, giving outliers significant weight.  Without knowing which point on a 

surface to compare with another, the number of iterations are substantial, time to solutions are large, and 

significant computing power is needed.   

Thus, the direct approach of least squares or curve approximation is not always an optimal 

approach for localization.  Are there alternative possibilities to compare and align datasets?  Are there 

ways to be less influenced by outliers in the data and not add error of its own?  Would this direction 

create less iterations and be less likely to fall into local minima?   

2.2 Initial Consideration 

Instead of the sum of least squares approach, perhaps, localization could be considered akin to a 

basic calculus problem. The area or volume between the two curves or surfaces could be found by the 

integral between the curves or surfaces, shown in Figure 5.   
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Figure 5: Area between two curves [12] 

Once the area or volume was determined by Equation 1 [12], it could be minimized by an optimization 

technique. 

 [1 ] 

 
Since freeform curves do not have a constant geometrical shape or set pattern [3], a piecewise 

function would be used in Equation 1.  To implement this, an equation approximation of a curve or line is 

needed for each section of the CAD curve and between each point in the dataset for the manufactured part.  

These equations would be algorithmically intensive if determined automatically, especially when the data 

points are potentially unorganized.  Also this method, by using approximations, would create its own 

error and be skewed by outliers.  The end connection and any crossing of the curves would need to be 

determined and evaluated to guarantee the area between the functions is consistently positive.  If part of 

the area was negative, an optimization technique would not minimize the area between the curves 

properly.  This requirement is potentially problematic to automate within an algorithm, requiring 

significant iterations and sweeping of datasets searching for intersections.  Solution time and computing 

requirements would significantly increase due to this.  
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2.3 Goal of the Proposed Shared Area Maximization Algorithm 

The goal is to develop a method that does not add error by approximation of a curve or averaging 

outliers, reduces the number of iterations, and will be more resistant to falling in a local minima.  To 

determine if this is plausible, the scope of the analysis will focus only on two-dimensional free-form 

curves with the intention that the algorithm could be expanded to three dimensions.  This expansion from 

two-dimensional to three-dimensional is shown in Figure 6. 

 
Figure 6: Geometrical entities in two and three dimensions [13]  

To achieve this goal, the shared area maximization algorithm will compare data points of a 

manufactured part and CAD model by bounding each curve in a polygon, then confirm similarity of the 

polygons based on shape characteristics, and maximize the shared area of the two polygons by using 

particle swarm optimization (PSO).  This is the equivalent of creating a digital outline of the CAD curve 

and then searching for the most geometrically similar outline from the manufactured part’s data points by 

comparing shape morphology.  By maximizing the shared area between the two outlines, the two datasets 

should align the coordinates systems in the optimal position.  This method will reduce the number of 

iterations since a data point sweep is not necessary to determine relation between each point during 

optimization.  By using the area of the polygons, the method will be more resistant to outliers, and by not 

approximating, additional uncertainty is not added.  
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CHAPTER 3 LITERATURE REVIEW 

3.1 Localization for Plane Surface Parts 

Localization can be considered as a two-step process: first, determining the relationship between 

measurement and design surfaces and, second, solving the 3D rigid transformation between the two 

surfaces to align the coordinate systems [1].  Typically once the relationship between the two coordinate 

frames is created, the three dimensional transform is implied.  Creating the correct correlation with free-

form curves varies significantly throughout existing research, unlike a part with a datum or a flat surface.  

In a basic part, the 3-2-1 method is used [1]. Three points are measured from the first datum to establish a 

plane; two more are measured from the second datum to establish another plane perpendicular to the first; 

and the last point is measured from the datum perpendicular to the first two datum [1] [14] [15]. This is 

displayed in Figure 7. 

 
Figure 7: Example of 3-2-1 method [4] 

Unfortunately, this method does contain vulnerabilities to measurement and dimensional errors due to the 

selection of a datum from surface data, similar to the free-form case [1].  

3.2 Fundamental Localization Techniques for Free-Form Parts 

Starting in 1987, Gunnarsson and Prinz created a foundational solution to attempt matching CAD 

models to manufacturing data [2].  They created an algorithm that localized the data by minimizing the 

sum of the squared errors between the two surfaces; this process is visible in Figure 8 [2].  
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Figure 8: Two-dimensional example of Gunnarson and Prinz’s algorithm [2] 

From Gunnarson and Prinz’s work, Arun and Horn expanded on the mathematics of the algorithm to 

create a closed form solution of the localization problem [16] [17].  Horn, specifically, organized a 

rotation matrix using quaternions and solved for the best rotation using eigenvectors and eigenvalues [17].  

To expand upon this idea, Patrikalakis and Bardis formed a method to correlate the edges or vertices of 

the two surfaces before rotational optimization occurred [18].  Sahoo and Menq combined both of these 

ideas and generated a single objective function to minimize by using a transformation matrix, able to 

rotate and translate the coordinate systems at the same time [19].  A year later, in 1992, Menq, Yau and 

Lai were able to increase the efficiency of the previous method by approximately tenfold [4].   
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To increase the rate of convergence between the two surfaces, Besl and McKay used the Iterative 

Closest Point (ICP) scheme to minimize the smallest distance between the two surfaces within each 

iteration [20].  This process decrease the amount of iterations significantly, however each iteration was 

more computationally intense.  Instead of using the closest point singularly, Zhang developed Iterative 

Point Matching that found the closest point for the entire dataset and then minimized the sum of the 

square of the errors [21]. This method can be seen in Figure 9. 

 

Figure 9: An example of Zhang’s Iterative Point Matching technique [21] 

Huang also utilized a point matching algorithm throughout the dataset that was inside another algorithm 

driving the determination of a transformation matrix [6] [22].  Another extension of Besl and McKay’s 

ICP algorithm is Ahmed, Farag, and Yamany’s grid closest point (GCP) technique, which remembers the 

grid association of the data sets and manipulates one data set each iteration, instead of searching the 

dataset each iteration, decreasing the overall runtime while maintaining accuracy [23].  Gudla constructs 

from Ahmed’s grid technique by using generalized Hopfield networks on the both data sets before using 

the closest point minimization [24]. 

Eleven years after Gunnarson and Prinz’s work, research gravitated towards increasing reliability 

of the localization fit.  Che and Ni studied the effect of uncertainty when propagated through a 

transformation matrix [25].  This same year, Li, Gou and Chu explore various geometric algorithms for 

localization, breaking complicated parts into manageable pieces, shown in Figure 10 [26].  
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Figure 10: Symmetric features used in Li, Gou and Chu various algorithms [26] 

A year later, the six equations used in the transformation matrix is reduced by Qu and Sarma to 

four equations using eigenvalues [27].  Next alteration, explored by Li, Xu, Cen, and Ding, was changing 

the minimization of the least squares of residual errors to the least median, trying to reduce the effect of 

outliers on the fit [28].  Sharp integrated invariant features, such as curvature, second order moments, 

spherical harmonics, and global density, to Besl and McKay’s ICP algorithm, allowing for more efficient 

corresponding point matching in images [29]. 

By exploring invariant features or features of the surface, the trend of research shifts to evaluating 

surface qualities.  In 2002, Yamany and Farag constructed a method to reduce the complexity of 3D 

surfaces by capturing the surface curvature information from key points to a surface signature [30]. To 
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find the closest point for ICP, Aware also maps the surface features, by determining the surface signature 

of a triangulated Bezier surface by using k-d trees [31].  Instead of creating a surface skeleton, Ko, 

Maekawa, and Patrikalakis use the constant Gaussian and mean curvature lines to find corresponding 

surface features to optimize a transformation [32].  The Gaussian curvature was also employed by Orazi 

and Tani, who compared the normals of the segmented surfaces to find corresponding points, shown in 

Figure 11 [33].  

 

Figure 11: Segmented normals by Orazi and Tani’s method [33] 

Along with the Guassian curvature, Li and Gu continued with a series of internal and external 

properties of the surface to help facilitate ICP for rough alignment and GCP for smooth alignment [34]. 

This two-step process, rough and smooth alignment, was also used by Sije, who exploited Genetic 

Algorithms (GA) to determine the surface matching [35].  To aid in a possible GA, Narayanaswarmy 

created the idea of a search window to find the discrete design point set, which is closest to any particular 

measurement point and suggests using the u and v values of that point as a starting point for Newton’s 

method [36].  Also using Newton’s Method, Joshi designs a heuristic approach to determine to obtain an 

initial guess for minimizing distances and was able reduce the total number of iterations required to 

calculate the transformation parameters when compared to the traditional ICP approach [7].   
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3.3 Current Research in Localization 

This trend of examining surface features for localization has continued into current research.  

OuYang localized the design and measurement surfaces by comparing medial axis transforms, shown in 

Figure 12, formed by using Delauanay pole spheres (DPS) [37].  

 

Figure 12: Delaunay pole spheres and the medial axis transform [37] 

Mehrad, Xue, and Gu increased the robustness of rough localization by using the similarities of distances 

between the surfaces and the similarities of major and minor curvatures [38].  For fine localization, 

Mehrad optimized the coordinate system based on the surface features [38].  Also based on the surface 

features, Mehrad attempted to predict variance in data points and determine uncertainty ranges [38] [9].  

Lastly, Wen et al. utilized quasi particle swarm optimization to search the transformation parameters and 

surface subdivide method, reevaluating the closest point via the NURB data, to evaluate the surface 

profile error of free-form surfaces [39].   

This research draws upon Wen’s idea of using a heuristic optimization, like particle swarm 

optimization, to drive discovery of transformation parameters and combining it with Li’s thoughts of 

utilizing the internal and external properties of a surface for localization [34] [39]. 
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CHAPTER 4 SHARED AREA MAXIMIZATION ALGORITHM  

The shared area maximization algorithm will compare data points of a manufactured part and CAD 

model by bounding each curve in a polygon, then confirm similarity of the polygons based on shape 

characteristics, and maximize the shared area of the two polygons by using particle swarm optimization 

(PSO).  This chapter will explain this process in further detail. 

4.1 Overview of Algorithm Logic  

The shared area maximization algorithm is divided into four parts: curve creation, randomization, 

polygonization, and particle swarm optimization as shown in Figure 13.  

 

Figure 13: The shared extend localization algorithm overview 

The first two sections of Figure 13 are the initialization of the localization problem. The curve creation 

section creates a smooth cubic spline curve, simulating the CAD curve (CADC), and a rough curve 

imitating the data points measured from a manufactured part (MFGC).  Randomization translates, rotates, 

and reorders the MFGC, thus setting the problem of localization.   
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The concentration of this thesis is contained within the final two sections of Figure 13. The 

polygonization section creates two polygons out of each curve data structure. The first polygon consisting 

of the points from the CADC, and the second polygon using the MFGC points.  Then, the MFGC data 

polygon is rearranged until the most similar polygon to the CADC data is generated using shape 

morphology.  The shared area between the two polygons is determined, and particle swarm optimization 

maximizes the shared area by changing the rotation and translation variables of the MFGC polygon.  By 

maximizing the shared area, the algorithm is able to determine how the MFGC should be translated or 

rotated to achieve the best fit to the CADC, testing the hypothesis that the maximization of shared area 

results in localization. Each of these processes will be explained in further detail in the remainder of this 

chapter.  

4.2 Curve Creation 

To start, a smooth cubic spline curve simulating a CAD curve is created.  The control points are 

generated by evenly spacing an arbitrary amount of points on the x axis between -1 and 1.  For this thesis, 

five control points are selected to make a smooth surface, with some oscillation.   Large amount of control 

points will result in extreme variations in the curve, which should be avoided.   On the y axis, the control 

points are allowed to randomly locate between -1 and 1 as well.  This random placement can be seen in 

Figure 14. 

 

Figure 14: The random placement of control points 
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These control points are then used in a cubic spline interpolation, using the following Equation 2 [40]:   

 [2 ] 

 

The resolutions of the CADC is created using a hundredth deviation for , resulting in a hundred points.   

Whereas, the MFGC is created by using a step size of five hundredths, giving a resolution of twenty data 

points.  This gives the data points shown in Figure 15.  The open circles are the control points shown in 

Figure 14.  The x marks are the MFGC interpolation; the solid dots are equal to the CADC. 

 

Figure 15: The cubic spline interpolation of control points 

In Figure 15, the MFGC contains no error and does not simulate a real part.  Each of these points 

are independently given a random nudge in the x and y direction within a reasonable range.  This 

simulates how a manufactured part will have a flawed curve.  Then the MFGC points are randomly 

ordered as well.  This might seem unnecessary, since the data points would be collected in some order.  

Nonetheless, it was performed to prevent the algorithm from containing a bias towards the order of the 

points.  The result of these calculations is shown in Figure 16. 
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Figure 16: The result of curve creation section 

4.3 Randomization 

After the data points are achieved, as shown in Figure 16, the MFGC is still aligned to the 

original CADC.  In order to simulate the difficulty of localization, the data points from the MFGC are 

randomly rotated and then randomly translated in the x and y direction.  Clearly visible in Figure 17, the 

MFGC, solid dots, is no longer aligned to the CADC data. 

 

Figure 17: The random translation and rotation of MFGC  
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Thus the MFGC is properly simulating measurement from a part, setting the problem of localization for 

the rest of the algorithm.  Also, the random values for delta theta, delta x, and delta y are recorded for 

comparison to any results in later chapters. 

4.4 Polygonization  

The goal of this section is to create a unique polygon for each the MFGC and CADC.  This 

process is shown in the flowchart within Figure 18.   

 

Figure 18: Flowchart of polygonization 

Manufactured Curve Data Points CAD Curve Data Points 

Liaison Sequencing 

Manufactured Curve Concave Polygon CAD Curve Concave Polygon 
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CADC Shape Characteristics: 
• Perimeter 
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• Compactness 
• Convexity 
• Solidity 

MFGC Shape Characteristics: 
• Perimeter 
• Area 
• Compactness 
• Convexity 
• Solidity 

Shape Characteristic Error Calculation 

Min Error or Iterations>1000 

Manufactured Curve Concave Polygon CAD Curve Concave Polygon 

No 

No 

Yes 
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First step creates a concave hull around the data points of each curve; this logic is called liaison 

sequencing.   Liaison sequencing gives an ordered connection that forms a non-intersecting concave 

polygon.  The CADC liaison sequencing is maximized within a set amount of iterations for the maximum 

area, resulting in the best comparison to the MFGC polygon during optimization.  Several hundred 

iterations of liaison sequencing is applied to the MFGC, utilizing shape characteristics to find the most 

geometrically similar MFGC polygon to the CADC polygon. The two geometrically similar polygons 

move to the particle swarm optimization section of the algorithm. The liaison sequencing algorithm, the 

shape characteristic used, and the shape characteristic error calculation will be explained in further detail 

within the rest of this chapter. 

4.4.1 Liaison Sequencing 

This part of the algorithm is able to create a closed non-intersecting concave polygon around a 

dataset.  It is sensitive to the order that the dataset, meaning that a new polygon could exist for each 

unique reorder of the data.  Though this adds complexity, it was a way to compare different size curves or 

datasets, since using vectors or matrices is not an option.   

First, liaison sequencing selects the first three points and connects these together using a liaison.  

Once the next point is introduced, it searches for the nearest neighbor within the polygon without 

intersecting any liaisons and within an angle allowance.  This angle allowance eliminates most jagged 

connections that would be uncharacteristic for a spline curve.  The closest neighbor is selected, and the 

rest of the known points in the polygon are cycled to determine a shared connection to the selected 

neighbor.  This shortest, shared connection between the selected neighbor and a known point, without 

intersections, is selected and erased.  A new connection is made instead to the fourth point and the known 

point.  This process is repeated until the polygon is completed, and all points are connected by two 

liaisons.  This is demonstrated in Table 1 for an internal and external example. 
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Table 1: Steps within the liaison sequencing algorithm 

Step 1 Step 2 Step 3 Step 4 Step 5 

Connect first 3 
points together 

or 
Use data from 

Step 5 

Find neighbors 
without 

intersections 

Choose nearest 
neighbor within 
angle allowance 

Determine the  
closest shared 
point that both 

neighbor and the 
new point 
connect on 

Complete the 
polygon 

     

     

     

4.4.2 Shape Characteristics 

Once a set of MFGC and CADC polygons has been created by using liaison sequencing, the two 

polygons are compared to gauge geometric similarity.  To determine this, the shape of each has to be 

evaluated. Shape can roughly be defined as the description of an object without consideration to its 

position, orientation, and size; therefore, shape features or characteristics should be invariant to 

translation, rotation, and scale [41].  This means any characteristic used in the comparison of the MFGC 

and the CADC polygons cannot be skewed by rotation or translation.  Five shape characteristics conform 

to these restrictions with unique outcomes: perimeter, area, compactness, convexity, and solidity. 

4.4.2.1 Perimeter 

To find the perimeter of the MFGC and the CADC polygons for comparison, the sum of the 

lengths of the boundaries has to be determined.  An example of this is displayed in Figure 19.  
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Figure 19: Example of perimeter of a polygon 

This is achieved by finding the sum of the distance between the connections of each polygon, using 

Equation 3. 

 [3 ] 

 

Equation 3 also assumes that the data array contains the first and last data point information to complete 

the shape distance information.  

4.4.2.2 Area 

The next characteristic used for comparison is the area of a polygon, shown in Figure 20. 

 

Figure 20: Example of area of a polygon 
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The area of this polygon is determined by creating vectors out of the points in a set direction along 

polygon [42].  Half of the cross product is used to find the area between the vectors [42].  These are 

aggregated until the polygon has been completed [42].  This logic is shown in Figure 21 and Equation 4 

[42]. 

 

Figure 21: How to determine the area of a polygon 

 [4 ] 

In the algorithm, this process was expedited by using the polyarea function within MATLAB.  

Polybool is a similar function in MATLAB that finds the overlapping area of two polygons, by 

determining where the polygons intersect and then perform the same logic as above for only the 

overlapping polygon.  This function is utilized in the particle swarm maximization. 

4.4.2.3 Compactness 

The third characteristic used to compare the MFGC and the CADC polygons is compactness.  

Compactness is the ratio of the area of the image object to the area of a circle with the same perimeter, 

shown in Equation 5 [43].  

 

 [ 5 ] 
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In other words, this characteristic measures how close and object is to a solid circle, which would have 

the maximum value of 1.  This can be seen in Figure 22. 

 

 

Figure 22: Example of compactness of a polygon 

4.4.2.4 Convexity 

The next shape characteristic used is convexity or comparison of the MFGC or CADC polygon to 

the convex hull of the same polygon.  It is calculated from the ratio of the perimeter of the object's convex 

hull to the object's perimeter shown in Equation 6 [43].     

 [6 ] 

This is to determine how concave an object is or how jagged the boundary of a shape is.  This is seen at 

the top of the shape in Figure 23. 



 

38 
 

  

 

Figure 23: Example of convexity of a polygon 

4.4.2.5 Solidity 

The final characteristic used to compare the MFGC and the CADC polygons is solidity.  It is 

obtained as the ratio of the area of an image object and the area of the object's convex hull, which is 

demonstrated in Equation 7 [44]. 

 [7 ] 

This conceptually is the density of the polygon or how solid is it.  A polygon with several indentations or 

holes will have a small solidity value; this is shown in Figure 24. 

 

Figure 24: Example of solidity of a polygon 
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4.4.3 Shape Characteristic Error Calculation 

To calculate the error between the ideal CADC polygon and the created MFG polygon from 

liaison sequencing algorithm, Equation 8 is utilized. 

 [8 ] 

Equation 8 compares the properties, area, perimeter etc. of the MFGC and the CADC polygons, in five 

dimensional space.  The origin of this five dimensional space, or goal, is the properties of the CADC 

polygon. The error calculation is the Euclidean distance from the origin to the MFGC point in the five 

dimensional space.  Equation 8 is minimized by implementing different MFGC polygons via random 

reordering in liaison sequencing. The smallest error, calculated out of the possible liaison sequencing of 

MFGC, determines the most similar MFGC polygon to the CADC polygon. In this research, it was 

determined that weights given to certain characteristics had no benefit on the determination of the most 

similar MFGC polygon. 

4.5 Particle Swarm Optimization 

Once the liaisons of the MFGC and the CADC polygons have been determined, the last part of 

the algorithm rotates and translates the MFGC so as to maximize the shared area between the two 

polygons. An example of a step in the maximization of the shared area is shown in Figure 25. 

 

Figure 25: The shared area between the MFGC and CADC polygons 
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When the shared area is maximized, the curves should be in the optimal position for comparison.  To 

calculate the shared area, light gray in Figure 25, the same logic is used that was discussed in Section 

4.4.2.2. 

For the maximization of the shared area method, a mathematical optimization technique will be 

needed.  Due to factors, such as speed of algorithm, complexity of the objective function, and the sizable 

search of possible solutions, a heuristic technique is preferable, such as particle swarm optimization (PSO) 

[45].   PSO is a population-based stochastic algorithm for continuous optimization, inspired by the social 

interaction behavior of birds flocking and fish schooling [46] [47].  Developed by Kennedy and Eberhart 

in 1995, PSO creates a search space full of particles; each particle is determined to have a fitness value 

base on what is being evaluated; and the iterations continue, by giving particles a velocity based on the 

global best location, until a criteria is reached [46] [48]. This is explained further in the flowchart seen in 

Figure 26. 

 

Figure 26: Flowchart of Particle Swarm Optimization [49] 
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To initialize the parameters, each particle is assigned a value of delta x, delta y, and theta used to 

translate the MFGC polygon onto the CADC polygon.  The initial grid of particles are shown in Figure 27, 

ranging from -2 to 2 for both the delta x and delta y, -π to π for theta. 

 

Figure 27: Dispersion of swarm particles before optimization 

Each dot, in Figure 27, coordinates with a delta x, delta y, and theta value; each will calculate the shared 

area between the MFGC and the CADC, using the logic discussed in Figure 26.  One dot will be 

determined to be the local and potentially global best value.  This position will have the largest shared 

area between the MFGC and the CADC.   

Based on the local and global best value, a new velocity and position is determined by using 

Equation 9 and Equation 10 [49]. 

 [9 ] 
 

 [ 10] 
   

 

This velocity calculation draws other particles toward the local and global best by the 

convergence factor, while randomly misdirecting it by an inertia factor.  Again, the inertia factor deters 
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the algorithm from producing a local maxima or minima.  For the case of shared area maximization, the 

convergence factor is the same for the local and global convergence and is set to a gradient demonstrated 

in Table 2. 

Table 2: Gradient increase of the convergence factor  

Iteration Number  0 20 30 40 50 60 70 80 90 100 110 120 

Convergence Factor, C 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.75 1.00 2.00 3.00 5.00 

Inertia Factor, ω 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 
 

The gradient increase in the convergence factor is key due to the nature of the shared area maximization.  

The algorithm needs to vary significantly to explore the multitudes of possibilities in the theta direction 

and slowly increase towards a solution.  Another solution to this is to increase the number of particles 

along the theta direction.  This, however, leads to an increase in run time per iteration, slowing the 

algorithm.  

For shared area maximization, the termination criteria was two-fold.  The first criteria was a 

maximum iteration limit, preventing overwork on the computer hardware if a solution was not determined.   

The second criteria is that the median of the shared area over a user-defined amount of iterations, 

typically 30, was within a certain factor of the global best position.  This requires the algorithm to level 

out as the convergence factor increases.  A final result of the swarm convergence is displayed in part (a) 

of Figure 28. The largest generated shared area for each iteration is also recorded in a bar graph in part (b) 

of Figure 28, which demonstrates how this second criteria works.       
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(a) (b) 

Figure 28: Swarm particle results and maximization over iterations 

Overall, PSO searches a given window using particles to determine the location that maximizes 

the shared areas.   It is able to manipulate the position of the MFGC in part (a) in Figure 29 and form the 

localization solution given in part (b) of Figure 29.  

 
(a) (b) 

Figure 29: Example of a localized MFGC 

Once in the final localized position of part (b) in Figure 29, the delta theta, delta x, and delta y can be 

recorded from the particle swarm cloud, part (a) of Figure 28, completing the needed information for a 

transformation matrix.    
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CHAPTER 5 ANALYSIS OF RESULTS 

5.1 Methods of Analysis  

This chapter will examine the collected data of twenty-five localizations of the shared area 

maximization method, found in Appendix A, by exploring five metrics: visual observations, the standard 

of the sum of squared errors, shared area, error area, and the transformation values.  By examining each, it 

will be determined if shared area maximization is indeed a successful localization process.  

Two of the metrics are self-explanatory, observations and the transformation values.  The 

observation section is the visual inspection of the results and conclusions from this.  The transformation 

values section will compare of the rotation and translation values generated in randomization and the 

values from the particle swarm optimization.  However the rest of this section will describe the rest of the 

metrics.  

The sum of squared errors is calculated from the  Euclidean distance using each point on the 

MFGC to the closest point on the CADC as seen in part (a) of Figure 8 and is expressed in Equation 11.   

 

 [ 11 ] 

   
 

Equation 11 is applied in three instances: the first instance is before randomization in the initial position; 

the second instance is after randomization of the MFGC; and the third instance is the result after shared 

area maximization method.  For reference, the initial or original position is the result after curve creation, 

show in Figure 16.  The MFGC has been created with error but not rotated or translated.  By comparing 

the first and third instances, a determination can be made if the shared maximization method was able to 

meet or exceed what is needed to obtain the initial position. 
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The shared area between the MFGC and the CADC is demonstrated in Figure 30. Part (a) is the 

final result: the circles are MFGC before randomization, the dots are the MFGC result after the shared 

area method, and the xs are the CADC.  Part (b) is the shared area before any randomization, the circles 

and the xs.  Part (c) is after localization using the shared area method, the dots and the xs. 

 
(a) (b) (c) 

Figure 30: An example of shared area before and after localization 

From Figure 30, again, it is visible that the polygonization around part (b) and (c) did completely capture 

the same shape as before.  Therefore the shared area between the MFGC and the CADC will match the 

area in the initial position before randomization.  Although, geometrically similar polygonization 

sometimes does not occur, as in Figure 31.   

 
(a) (b) (c) 

Figure 31: A shared area comparison with different polygonizations 
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As displayed in Figure 31, the polygonization of the two datasets are not similar and will have different 

shared area values.  Therefore, the shared area becomes a significant indicator on how the algorithm 

performed and is used as one of the metrics.   If the shared area after localization is greater that the area 

before randomization, then the algorithm produced a more optimal fit than the original error, meaning that 

it indeed performed localization.   

The final metric, the error area, is shown in Figure 32. Again, part (a) is the final result; part (b) is 

the shared area before any randomization; part (c) is after localization using the shared area method. 

 
(a) (b) (c) 

Figure 32: An example of error area before and after localization 

In Figure 32, there is a decrease in error area from part (b) and (c).  In part (c), the MFGC polygon aligns 

to the CADC closer during areas of constant slope, seen between -0.5 to 0.5 on the x axis.  The significant 

decrease in error area after shared area maximization lends credibility to the method as a localization 

technique.  Therefore, the analysis of the error area can be another indicator of how the algorithm 

performed localization.   

5.2 Observations of the Results  

An example of the results from the shared area maximization is shown in Figure 33. 
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(a) (b) (c) (d) 

Figure 33: Result of localization via shared area maximization 

In Figure 33, part (a) is the result of curve creation, modeling the CADC and simulation of MFGC.  The 

outcome of randomization is shown in part (b), after being randomly translated and rotated.  Part (c) 

demonstrates the polygonization of the data in part (b).  The most similar MFGC polygon is generated 

from comparing characteristics from the CADC polygon.  PSO is used to maximize the area shared 

between the two polygons, observed in Part (d), and complete the localization process.  This completed 

product is shown in Figure 34, where the MFGC is aligned to the CADC. 

 
Figure 34: Final localization conclusion based on shared area maximization 
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Once more, the circle marks displayed in Figure 34 are generated data of the MFGC before 

randomization and the diamonds are the result of MFGC after localization process via shared area 

maximization.  The circle marks in this manner are a target for the localization process.  It is a gauge on 

how well the algorithm succeeded.  However, it is not a perfect benchmark to access success or failure.   

Clearly from Figure 34, the diamond marks are not aligned perfectly with the circle marks.  This method 

aligns the MFGC and the CADC based on global positioning and not individual points, meaning that 

outliers are less influential.  Visually this can be ascertained by Figure 34, the lack of fit occurs at the 

peaks and valley features of the curve. Meanwhile, data with a more consistent slope is tightly aligned, 

more so than the original position of the MFGC.  

However, this misalignment is not always the case, as shown in Figure 35.  

 
Figure 35: Shared area localization that aligns with initial MFGC 

Figure 35 demonstrates a typical result from the shared area maximization, aligned directly with the 

originally generated MFGC.   This result visually shows that constant slope areas, not the peaks and 

valleys features, that are aligned closer than the original MFGC generation.  Why did this example align 

to the original MFGC than in Figure 34?  To answer this, the results of each step in the shared extent 

algorithm needs to be examined in Figure 36. 



 

49 
 

  

 
(a) (b) (c) (d) 

Figure 36: Steps of the shared area localization that aligns with initial MFGC 

The difference between the two datasets alignments is visible in parts (c) and (d) in Figure 33 and Figure 

36.  The polygonization of the MFGC, in Figure 36, is a more accurate representation of the CADC than 

in Figure 33, mainly due to the top curve folding in on itself.  Without an accurate polygon geometry, the 

area will not able to be maximize fully and results will misalign.  By observation alone, it is clear that 

polygonization is key to an accurate localization using the shared area method.    

5.3 The Sum of Squared Errors Comparison 

Again, the sum of squared errors is applied in three instances: first in the initial position before 

randomization, for example part (a) of Figure 36; second in the random position of the MFGC, shown in 

part (c) of Figure 36; and third to the MFGC after shared area maximization method, part (d) of Figure 36.  

This is significant to determine if the sum of squared errors is minimized and is presented in Figure 37. 
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Figure 37: Sum of squared errors between the MFGC and CADC in initial position, before and 
after shared area maximization 

From Figure 37, a consistent minimization of the sum of distances is exhibited.  The percentage decrease 

of shared area maximization, as depicted in the second and third columns in Figure 37, was calculated to 

facilitate analysis and is displayed in Figure 38. 

 
Figure 38: Percentage decrease of the sum of squared errors   
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Figure 38 demonstrates the reduction of the sum of distances after the shared area maximization, 

an average reduction of 79.8 percent.  Thus, shared area maximization does localize, but how closely does 

it reduce to the original position?  To continue, the percentage decrease from the randomized position to 

the initial position was calculated, to simulate if the curve localized from the random position to the initial 

position.  This calculation, along with the data from Figure 38, is compared in Figure 39. 

 
Figure 39: Comparison of percentage decrease between the initial position and after shared area 

maximization 

Figure 39 exhibits that shared area maximization was able to obtain a similar percentage decrease of the 

sum of the squared error when compared to the percent decrease needed to position the randomized curve 

into the original position.  To quantify this further, the difference of the percentage decreases, columns 

represented in Figure 39, is calculated and demonstrated in Figure 40. 
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Figure 40: Difference between the percentage decreases needed to obtain initial position and to 

perform the shared area maximization 

In Figure 40, the positive results show that the shared area maximization method was not able to 

decrease the sum of the squared errors to the same amount needed to achieve the initial position.  The 

negative results occur when the shared area maximization was able to find a position with a smaller sum 

of the squared errors than the original position.  The significance, in Figure 40, is that the shared area 

maximization method was able to perform the localization task within 3 percent of the desired target of 

the initial position.  This verifies that shared area maximization does reduce the sum of squared errors 

without falling into local minima, proving it is a valid localization technique. 

5.4 Shared Area Analysis 

Again if the shared area after localization is greater that the area before randomization, then the 

algorithm produced a better fit than the original error, meaning that localization was indeed performed.  

The shared area before and after is visible in Figure 41. 
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Figure 41: Shared area initially and after shared area maximization 

To better demonstrate the change of the shared area after the algorithm, Figure 42 takes the difference 

between the two columns, shown in Figure 41, divided by the original shared area, creating a percentage 

increase or decrease.  A positive result displays the improvement of shared area after the algorithm and 

negative indicates that the original area was not achievable. 

 
Figure 42: Percentage difference of the shared area initially and after shared area maximization 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
R

EA
 V

A
LU

E

RUN NUMBER

Area Initial Area After SAM

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

PE
R

C
EN

TA
G

E 
D

IF
FE

R
EN

C
E 

IN
 S

H
A

R
ED

 
A

R
EA

RUN NUMBER



 

54 
 

  

From Figure 42, one result significantly fails to achieve the same shared area, Run One.  The rest 

were able to reach at least ninety-six percent of the original shared area or more. What occurred in this 

run to make it perform improperly?  The results of Run One is presented in Figure 43. Again, part (a) is 

the final result; part (b) is the shared area before any randomization; part (c) is after localization using the 

shared extent method. 

 
(a) (b) (c) 

Figure 43: Steps of the shared area result for Run One 

In parts (b) and (c) of Figure 43, the geometries of the MFGC and CADC polygons have some significant 

differences.  In part (c), the CADC polygon changed to allow for more area to aid in comparison.   

However the polygonization was not able to match to the new shape.  This could be due to an insufficient 

amount of points to perform the narrow necking seen between 0 and 0.5 on the x axis. Or the 

polygonization may need more iterations to perform correctly, since the number of possible connections 

is in the range of 1018 power.  The iterations was capped in order to expedite the algorithm, but possibly a 

heuristic could be added to guide the connection selected during polygonization.    

Overall, the MFGC polygon, in part (c) of Figure 43, appears to match the CADC polygon of part 

(b) rather that its own.  These inaccuracies in geometry between the MFGC and the CADC polygons 
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results in a shared area that is significantly smaller than the original shared area, explaining the error in 

Figure 42.  Regardless of the geometric differences, Run One was still able to roughly localize, shown in 

part (a) of Figure 43, proving that the idea of shared area maximization is indeed valid. But without 

geometric similarity of the MFGC and CADC polygons, fine attunement is impossible.  If the geometric 

properties were able to ascertain an enhanced polygonization, by either adding more data points in the 

MFGC or optimizing that section of the algorithm, the difference of shared area before and after 

localization could be an on-off control in future research to determine if localization occurred.  This 

would be key in establishing reliability in results and the method before moving to unknown fitting parts. 

5.5 Error Area Analysis 

Section 5.4 discussed the shared area before and after localization; this section will discuss the 

inverse or the area that is not shared before and after localization, error area.  The error area before and 

after localization for the twenty five runs is located in Figure 44.  

 
Figure 44: Error area before and after localization 
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Figure 45: Percentage difference of error area before and after localization 

From Figure 45, four of the twenty-five runs significantly increased the amount of error area after 

localization, Runs One, Three, Five, and Six. Otherwise, the error area from shared area maximization 

was able to achieve under a twenty percent increase of the error area before randomization.   In fact, in 

Figure 45, most runs are negative, concluding that the error area was reduced from the original conditions. 

This is consistent with Run One in Figure 43; the lack of geometric fit creates an excess in error area.  Is 

this the same for Run Three, displayed in Figure 46, with one of the highest error area?   

 
(a) (b) (c) 

Figure 46: Steps of the shared area result for Run Three 
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In Figure 46, polygonization seems to have performed, and the shared area maximization 

localized.  There is a small area that is not shared between -1 and -0.5 on the x axis in part (c).  This 

however could have been sacrificed for the closer alignment of the top edge between -0.5 to 1 on the x 

axis.  As part of the nature of shared area maximization, larger areas are going to supersede the alignment 

of small areas.  However Run Three, Figure 46, does not seem to have the geometric issues discussed in 

Run One, Figure 43, yet Run Three was deemed more significant than Run One.  This is due to the nature 

of percent difference.  The amount of error area is small in Run Three, therefore any slight difference in 

error area will register as more extreme than a curve that contains an inherently large error area due to 

noisy data. 

Stated before, the analysis of the shared area before and after localization could be an on-off 

control, in future research, to confirm if localization occurred. However, the error area analysis may be a 

more significant gauge on how the CADC and MFGC polygons fit together.  However, this gauge is 

extremely sensitive and may be unreliable at inherently small error areas or smooth MFGC data.   In 

future research and analysis, this error area could be minimized in a heuristic by changing the polygon 

geometries after initial localization to see if an improvement of the overall fit could occur, however this 

will create a longer runtime and increase complexity of the algorithm. 

5.6 Comparison of Swarm Transformation Results to Randomization Values  

The results of the transformation parameters—delta theta, delta x, and delta y values—from the 

swarm particles in Figure 28 were calculated and compared to the recorded random values used during 

randomization.  The collection of these parameters are shown in Table 3. 
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Table 3: Transformation parameters from the twenty five trials 

Run θ Actual θ SAM θ Diff X Actual X SAM X Diff Y Actual Y SAM Y Diff 
1 -40.000 -39.471 0.529 0.100 0.222 0.122 0.300 0.285 0.015 
2 14.000 11.724 2.276 -0.500 -0.508 0.008 0.000 0.086 0.086 
3 56.000 54.817 1.183 0.500 0.394 0.106 0.000 0.305 0.305 
4 29.000 26.672 2.328 0.200 0.269 0.069 -0.200 -0.118 0.082 
5 -91.000 -90.505 0.495 -0.350 -0.345 0.005 0.450 0.483 0.033 
6 81.000 79.780 1.221 -0.200 -0.258 0.058 0.200 0.228 0.028 
7 -10.000 -9.918 0.082 0.050 0.055 0.005 -0.100 -0.106 0.006 
8 98.000 100.461 2.461 -0.150 -0.232 0.082 -0.200 -0.105 0.095 
9 135.000 133.272 1.729 -0.300 -0.010 0.290 0.300 0.458 0.158 

10 -38.000 -35.333 2.667 -0.250 -0.298 0.048 0.200 0.104 0.096 
11 21.000 21.993 0.993 0.450 0.429 0.021 0.100 0.287 0.187 
12 -27.000 -22.591 4.409 -0.300 -0.230 0.070 0.100 0.230 0.130 
13 -95.000 -93.832 1.168 0.150 0.218 0.068 0.400 0.375 0.025 
14 -29.000 -28.217 0.783 0.350 0.254 0.096 -0.200 -0.367 0.167 
15 68.000 67.596 0.404 0.100 0.149 0.049 -0.100 -0.060 0.040 
16 -25.000 -26.503 1.503 -0.500 -0.624 0.124 -0.400 -0.110 0.290 
17 6.000 4.587 1.413 -0.300 -0.308 0.008 0.350 0.322 0.028 
18 143.000 141.384 1.617 0.050 0.034 0.016 -0.200 -0.228 0.028 
19 -37.000 -37.669 0.669 0.500 0.364 0.136 -0.100 -0.326 0.226 
20 12.000 14.911 2.911 -0.350 -0.156 0.194 -0.500 -0.579 0.079 
21 93.000 93.034 0.034 -0.350 -0.337 0.013 -0.300 -0.320 0.020 
22 63.000 62.659 0.341 0.050 0.242 0.192 0.450 0.369 0.081 
23 -30.000 -30.911 0.911 0.450 0.459 0.009 0.050 0.214 0.164 
24 58.000 59.010 1.010 -0.150 -0.139 0.011 -0.100 -0.016 0.084 
25 -76.000 -72.333 3.667 -0.250 -0.293 0.043 -0.250 -0.190 0.060 

 

To facilitate understanding of Table 3, calculated and actual values of each parameter are 

compared in bar graphs, exhibited in Figure 47, Figure 48, and Figure 49. 

 
Figure 47: The comparison of the actual and calculated theta values 
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Figure 48: The comparison of the actual and calculated delta x values 

 
Figure 49: The comparison of the actual and calculated delta y values 
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change in error and lower performance may be due to less swarm particles in those directions.  Theta 

requires a smaller deviation between particles to allow for rotation possibilities and ensure localization.  

The delta x and y deviations of the swarm are usually sacrificed for run time of an algorithm.  

Additionally, the shared area maximization parameters are being compared to the typically unknown 

transformation values from the noise data.   The noise data position was not optimized to begin with, ergo 

there may be a more optimal position for the noise data than the original position. This slight difference 

would affect the average delta x and delta y values, more than the overall angle of the curve. 
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CHAPTER 6 CONCLUSION 

6.1 Overview of Thesis 

Overall, this thesis proposed a methodology that automatically aligns the coordinate systems of 

free-form CAD models to collected manufactured measurements by maximizing the shared area in this 

two dimensional case.  Data from the manufactured surface and design surface were polygonized and 

compared until geometrically similar.  The overlapping or intersecting area was calculated and maximized 

using a heuristic approach, particle swarm optimization.  At the maximum shared area, the two coordinate 

systems were aligned. This section will explore the conclusions during the analysis of the result, the 

limitations to the method, and how the algorithm can be extrapolated to three dimensions. 

6.2 Deductions from Results 

From the results in Chapter 5, the following can be concluded.  The sum of squared errors were 

reduced and avoided local minima, as demonstrated in Figure 37 through Figure 40.   The shared area 

maximization method was able to reduce the sum of the errors within plus or minus three percent of the 

values given in the initial position, proving this method is a localization technique.  The method is 

resistant to outliers in the dataset of MFGC curve.  This is demonstrated by the tight alignment of 

consistent sloped areas while not necessarily to peaks and valley areas, displayed in Figure 34 and Figure 

35.  The theta transformation parameter determined by shared area maximization, when compared to the 

recorded value from randomization, was accurate, with an average error of 0.41.  The delta x and y values 

achieved an average error value of 6.56 and 9.46 percent.  While close to true delta x and y values, the 

error may be due to less swarm particles in the x and y directions, reduced to decrease run time of the 

algorithm.  This should be remedied by expanding the amount of swarm particles in these directions. 

Additionally, these calculated transformation parameters from shared area maximization are being 

compared to the transformation parameters to achieve the initial position of the MFGC, which was not 
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localized or fit onto the CADC. This could affect the error in the x and y directions, more than the angle 

of the curve. 

 The majority of the results localized.  However, four of the twenty-five runs significantly 

increased the amount of error area after localization.  The analysis of the error area before and after 

localization was determined to be a gauge of how similar the polygon geometry is between the CADC 

and the MFGC.  This could be utilized in future analysis to improve the overall localization.   The 

difference between the shared area of before and after localization was also determined to be an indicator 

of whether localization occur.  If the shared area is significantly smaller than before localization, it 

implies one of two malfunctions: the MFGC and the CADC polygons did not maximize correctly giving a 

false solution or that the MFGC and the CADC polygons are not geometrically similar.  In the twenty-

five test cases, the error was revealed to be due to the second reason.  This is mainly due to limited 

amount of shape parameters that do not skew during rotation and challenges of the geometry of the curves.  

This demonstrates that polygonization is the key to an accurate localization using the shared area method 

and is visible in parts (b) and (c) in Figure 31, Figure 36, and Figure 43.   

6.3 Possible Limitations of the Algorithm 

The following were assumed or determined within this research which may lead to unforeseen 

difficulties in the future. One reference frame needs to undergo rotation and translation, the 

manufacturing data points onto the CAD data points. No one point can become an axis or origin.  This 

origin point could contain error or be an outlier. Heuristics are favored, because a simple linear 

optimization is not possible. Local minima solutions can and will be given by heuristic methods.  

During algorithm development to examine shared area maximization, a few geometric challenges 

of free-form curves were discovered. Extreme shifts in slope in a small time step, drastic wiggling, will 

not localize correctly. Mirror images or uniform sloped curves are difficult to orient as well.  Both of 

these complications will be discussed further in the remainder of this section. 

Typically for extreme shifts in slope, the algorithm will perform as displayed in Figure 50. 
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Figure 50: Example of failure due to extreme shifts in slope  

As observed in Figure 50, localization does not occur. To determine how the algorithm fails, Figure 51 

shows the steps performed.  Like in Figure 33 and Figure 36, part (a) is the curve generation; part (b) is 

the randomization; part (c) is the polygonization; and part (d) is the shared area maximization. 

 
(a) (b) (c) (d) 

Figure 51: Steps of a failure example due to extreme shifts in slope 

In part (c) of Figure 51, it is clear to see that the polygonization did not determine a geometrically similar 

match between the MFGC and the CADC.  Due to this, the shared area maximization was not able to 
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localize the curves.  With an inadequate number of shape characteristics that do not skew, additional 

accuracy to the polygonization technique is limited.  

However, more data points can be added to help distinguish differences in the shape 

characteristics.  This will lead to longer run times as a concession.  With more data points, a successful 

localization is more prone to occur, as shown in Figure 52 and Figure 53. 

 

Figure 52: Example of a success concerning extreme shifts in slope  

 

 
(a) (b) (c) (d) 

Figure 53: Steps of a successful example when extreme shifts in slope occur 
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Part (c), in Figure 53, correspondingly demonstrates the lack of polygonal fit on the two datasets.  

However, the fit was a close enough approximation to allow for shared area maximization.  From this, it 

is clear more shape characteristics are needed that do not skew with rotation to develop the 

polygonization algorithm further.  

 The other conclusion discovered during programming of the algorithm is that mirrored curves 

may not localize.  This is presented in Figure 54 and Figure 55. 

 

Figure 54: Example of failure due to mirrored curve 

 

 
(a) (b) (c) (d) 

Figure 55: Steps of a failure example due to extreme shifts in slope 
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Figure 54 indicates that shared area maximization occurred; however the result needs to be rotated 180 

degrees.  To explain why this happened, part (c) of Figure 55 is significant.  The most geometrically 

similar polygons occurs backwards on the MFGC due to the limited amount of points and error add to 

simulated manufacturing.  For this case, more data points may increase likelihood of correct localization. 

Nevertheless, this type of curve is approaching the edge of the definition of freeform curves, and as such 

another method of localization may be more effective.  Also, if three dimensions were utilized, this 

circumstance may no longer transpire. 

6.4 Future Research  

As the foundation of this work, only two dimensional free-form curves were examined in this 

thesis, reducing complexity and concluding that maximization of the shared area may perform 

localization.   In future research, an additional third dimension will need to be accessed to study shared 

volume maximization and to render value to industry.  The remainder of this section will discuss how this 

could be done and some of difficulties that may arise.  

  In order to add the third dimension, moving from a curve to a free-form surface, several aspects 

of the algorithm will need to be changed, however the most of the logic diagrams in Figure 13, Figure 18, 

and Figure 26 would remain similar.  Curve creation and randomization, discussed in Figure 13, should 

be implemented with limited difficulty.  The first challenge arises in the current polygonization section, 

logic in Figure 18.  A triangular mesh of design surface and the manufactured part will need to be created 

and determined to be geometrically similar.  For the CAD surface, this would be the simple utilization of 

the .stl format or other similar modified formats.   However, for the manufactured part, the triangular 

mesh creation is a complex traveling salesman problem with three dimensional shape characteristics.  

Some of these three dimensional features can be extrapolated from the two dimensional versions, such as 

volume, surface area, sphericity, etc.  Further research into particle analysis of materials and other fields 

dealing with shape morphology may be needed. 
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Additionally, the overlapping or intersecting volume of the meshes would be need to be 

calculated rapidly.  This may be difficult to achieve with limited iterations or small run time.  This is 

needed as the driving function for optimization.  Particle swarm optimization could still be a valuable 

approach, displaying the delta x, y, and z values on one three dimensional graph and the degree rotations 

in another.  If the overlapping volume can be calculated rapidly, the maximum shared volume should 

align the two coordinate systems of the CAD surface and the manufactured part with the minimal addition 

of errors during analysis. 
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 Table of results from algorithm sequences 

Run 

Overlap 
Area 

Before 

Overlap 
Area 
After 

Error 
Area 

Before 

Error 
Area 
After 

Sum 
Least 

Squares 
Before 
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Squares 
After Plot 

1 0.6212 0.5929 0.1685 0.2353 35.5512 7.0974 
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After Plot 

2 0.4637 0.4761 0.1882 0.1547 25.6361 5.6791 
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3 1.2340 1.2080 0.0731 0.1100 33.9796 6.5898 
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After Plot 

4 0.7277 0.7403 0.1615 0.1239 32.2905 6.1410 
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5 0.5295 0.5149 0.1420 0.1850 74.1850 5.8830 
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6 1.1486 1.1159 0.1209 0.1667 45.5705 7.5562 
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7 0.7672 0.7587 0.0927 0.1117 11.2238 6.0768 
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8 1.8667 1.8726 0.1025 0.0971 49.4920 7.9337 
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9 1.3617 1.3763 0.0906 0.0718 66.1657 6.9655 
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10 0.4851 0.4754 0.1683 0.1982 29.4830 6.0082 
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11 0.4120 0.4280 0.2492 0.1948 22.5645 5.7304 
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12 1.8401 1.8636 0.1177 0.0976 23.1539 8.8981 
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13 0.5347 0.5701 0.2257 0.1298 71.7097 5.3687 
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14 0.8960 0.9028 0.1505 0.1339 21.5483 7.1203 
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15 0.5396 0.5260 0.1546 0.1744 43.6432 6.3697 
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16 2.3993 2.4196 0.0672 0.0501 33.9295 8.3808 
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17 0.9954 1.0181 0.0942 0.0558 29.1661 5.4166 
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18 1.1198 1.1510 0.1386 0.0930 53.0306 6.8193 
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19 1.2958 1.3215 0.0934 0.0585 25.9003 6.3708 
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20 0.8786 0.8882 0.1936 0.1740 35.4084 5.5314 
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21 0.4473 0.4363 0.2116 0.2456 36.2292 6.0999 
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22 1.2540 1.2594 0.0670 0.0605 45.1272 6.3785 
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23 0.3700 0.3811 0.2080 0.1594 25.4202 5.7347 
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24 0.5469 0.6080 0.2923 0.1486 48.6582 7.2060 
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25 0.3383 0.3604 0.3780 0.3110 41.0524 6.3961 
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