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ABSTRACT

The Multiplicative Ergodic Theorem is a powerful tool for studying certain types

of dynamical systems, involving real matrix cocycles. It gives a block diagonalization

of these cocycles, according to the Lyapunov exponents. We ask if it is always possible

to refine the diagonalization to a block upper-triangularization, and if not over the

real numbers, then over the complex numbers. After building up to the posing of

the question, we prove that there are counterexamples to this statement, and give

concrete examples of matrix cocycles which cannot be block upper-triangularized.
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Chapter 1

Introduction

For as long as humanity has looked up to the sky and wondered about the underlying

mechanisms of the cosmos, we have really just studied dynamical systems, if in a very

applied sense. Of course, given the development of mathematics, the way in which

we study dynamical systems has changed drastically. Questions such as “How fast is

this thing expanding?” and “Does this system have an equilibrium?”, are now more

rigorously formulated as the concepts of growth rates, stability, and chaos. To study

these concepts, we look at the Lyapunov exponents for the system, which determine

rates of expansion or contraction for elements of the system, and by find subspaces

of the system which grow asymptotically according to those rates.

As a simple example, consider a differentiable system, such as a system of ordinary

differential equations. Around an equilibrium point of the system, the dynamics are

governed by a single matrix: the derivative. The Lyapunov exponents can be found

by considering the eigenvalues of the matrix, and the subspaces corresponding to each

growth rate are the eigenspaces. This information is very easily obtained when the

matrix is in Jordan Normal form, which is upper-triangular.

If we wish to obtain information for the system away from equilibrium points,

then we must consider how the derivative changes over time. This is modelled by a
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matrix cocycle, which is a product of matrices changing over time. The Multiplicative

Ergodic Theorem (abbreviated as MET), originally proved by Oseledets in 1968 [16],

asserts the existence of Lyapunov exponents and corresponding subspaces for these

cocycles, which can be seen as a block diagonalization of the cocycle. This theorem

was incredibly influential in the study of dynamical systems, and it spawned an

entirely new branch of research in the area.

The original proof of the MET involves considering a matrix cocycle, and con-

structing an equivalent cocycle comprised solely of upper-triangular matrices, over a

carefully chosen auxiliary space. It is natural and important to ask if we may upper-

triangularize over the original space instead. Moreover, given a single real matrix,

while it may not be triangularizable over the real numbers, it is always triangulariz-

able over the complex numbers. Given this, it is reasonable to ask this question: is

every matrix cocycle upper-triangularizable? If not over the real numbers, then over

the complex numbers?

In this thesis, we develop the background to rigorously talk about matrix cocycles

and upper-triangularization, and then work towards answering the question posed

above. In Chapter 2, we state some measure-theoretic preliminaries, and work with

some important recurring examples, before providing a development of basic dynam-

ical systems theory, and introducing ergodicity. We specify two particular types of

systems, the induced transformation and the skew product, which will be extremely

useful. Following that, the MET is stated, and accompanied by examples and his-

torical discussion. In Chapter 3, we formalize the question we wish to ask, and find

its context in the mathematical literature. The question is then answered, via ab-

stract theorem, and illustrated by three distinct examples. We conclude by briefly

examining possible avenues for further research in this direction. For convenience and

interest, proofs of some useful results may be found in the Appendix.
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Chapter 2

Preliminaries

The study of measurable cocycles is, in the grand scheme of mathematics, a fairly

recent development; however, the cocycle is a natural object to study, because it

models the concept of accumulating data along an orbit in a system. As a branch of

analysis, it builds on the foundations established in measure theory. We shall present

here a brief overview of the definitions necessary to present a coherent development of

measurable cocycles, the Multiplicative Ergodic Theorem, and equivariant triangular-

ization of matrix cocycles. Interspersed with the definitions are important examples

which will be both useful for placing the definitions into context and for saving com-

putational work later on, and some results which build upon the definitions and lay

the solid foundation for the remainder of the thesis.

2.1 Measure theory and

background analysis and geometry

In this thesis, we will assume a standard amount of measure theory and general anal-

ysis, as seen in a solid pure mathematics undergraduate degree. That is to say, basic

definitions such as measure spaces and standard theorems such as Carathéodory’s
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Extension Theorem will be assumed. However, we will provide a refresher on some of

the specific results which find use in the work, so as to keep the thesis as self-contained

as possible. See [12] or similar measure theory reference for a much more detailed

presentation.

We will be dealing solely with positive measure spaces, so ‘measure space’ is im-

plicitly a positive measure space. In general, N = {0, 1, 2, . . . }, and N+ = {1, 2, . . . }.

Definition 2.1. Let X be a set. A π-system is a collection P of subset of X such

that for any A,B ∈ P , we have A ∩B ∈ P .

Definition 2.2. Let X be a set. A semi-algebra is a collection P of subsets of X

such that:

1. If A,B ∈ P , then A ∩B ∈ P .

2. If A ∈ P , then there are n pairwise disjoint Ci, . . . , Cn ∈ P such that X \ A =

C1 ∪ · · · ∪ Cn.

Definition 2.3. Let X be a set. An algebra is a collection A of subsets of X such

that:

1. X ∈ A.

2. If A ∈ A, then X \ A ∈ A.

3. If A,B ∈ A, then A ∪B ∈ A.

A σ-algebra is an algebra which is also closed under countable unions: if Ai ∈ B for

all i ≥ 1, then ⋃
i≥1

Ai ∈ B

.
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Lemma 2.4. Let X be a set, and let S be a collection of subsets of X. Then there

is a σ-algebra which contains S and which is smallest out of all such σ-algebras; we

call this the σ-algebra generated by S, and we denote this σ(S).

Lemma 2.5. Let P be a semi-algebra of subsets of X. The algebra generated by P,

denoted A(P), is

A(P) = {A : A = C1 ∪ · · · ∪ Cn, Ci ∈ P , i = 1 . . . n, Ci ∩ Cj = ∅∀i 6= j} .

Theorem 2.6 (Monotone Class Theorem). Let X be a set, and A be an algebra of

subsets of X. Let M(A) be the monotone class generated by A; that is, M(A) is the

smallest monotone class (ie. is closed under unions of increasing sequences of sets

and under intersections of decreasing sequences of sets) containing A. Then M(A)

is a σ-algebra, and is precisely equal to σ(A).

Example 2.7. If X and Y are sets with semi-algebras P and Q respectively, then

the collection of measurable rectangles

R = {A×B : A ∈ P , B ∈ Q}

is a semi-algebra of subsets of X × Y . For A,C ∈ P and B,D ∈ Q:

1. (A × B) ∩ (C ×D) = (A ∩ C) × (B ∩D), and A ∩ C ∈ P , B ∩D ∈ Q Hence

we have (A×B) ∩ (C ×D) ∈ R.

2. First, write

X \ A =
n⋃
i=1

Ci, Y \B =
n⋃
i=1

Di,
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for Ci ∈ P , Dj ∈ Q, all pairwise disjoint. Then we obtain:

(X × Y ) \ (A×B) = {(x, y) : x ∈ X \ A or y ∈ Y \B}

= ((X \ A)×B) ∪ (A× (Y \B)) ∪ ((X × A)× (Y \B))

=

(
n⋃
i=1

C1 ×B

)
∪

(
m⋃
j=1

A×Dj

)
∪

(
n⋃
i=1

m⋃
j=1

Ci ×Dj

)
,

which is a disjoint union of things in R.

Hence R is a semi-algebra. Just looking at part (1) of that computation, the same

statement would be true if instead of semi-algebras, P and Q were π-systems. This

will be useful later on.

If A = σ(P) and B = σ(Q, then the product σ-algebra is the σ-algebra generated

by R, which we denote by A⊗B; this is true for π-systems or for semi-algebras. As is

reasonably clear, it is not the Cartesian product of A and B. If we have measures on

A and B, then the product measure can be defined on A⊗B, utilizing the Monotone

Class Theorem and Carathéodory’s Extension Theorem.

In more generality, if we have a family of measurable spaces (Xi,Bi)i∈Z, we may

define the product σ-algebra as the σ-algebra generated by the semi-algebra R, given

by:

R =

{∏
i∈Z

Bi : Bi = Xi for all but finitely many i

}
.

This is equivalent to finding the smallest σ-algebra such that all of the projection

maps πi :
∏
i∈Z
→ Xi are measurable. We denote the product σ-algebra by

⊗
i∈Z
Bi.

Of course, in the previous lemma, our semi-algebras could be the full σ-algebras

on each space.

Theorem 2.8 (Fubini’s Theorem). Let (X,A, µ) and (Y,B, ν) be σ-finite measure

spaces, and let (X×Y,A⊗B, µ× ν) be the product measure space. If f : X×Y → R
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is either integrable or both measurable and non-negative, then we have that the sections

x 7→
∫
Y

f(x, y) dν(y), y 7→
∫
X

f(x, y) dµ(x),

are measurable functions of X and Y , respectively, and

∫
X×Y

f dµ× ν =

∫
X

∫
Y

f(x, y) dν(y)dµ(x) =

∫
Y

∫
X

f(x, y) dµ(x)dν(y).

Definition 2.9. Let (X,A, µ) and (Y,B, ν) be measure spaces, and let φ : X → Y

be measurable. We may define a set function on B, φ∗µ, by setting

φ∗µ(B) = µ(φ−1(B)),

for B ∈ B. This is well-defined, as φ is measurable, and because pullbacks under any

function distribute over unions and preserve disjointness of sets, we may see that φ∗µ

is a measure on (Y,B):

1. φ∗µ(∅) = µ(φ−1(∅)) = µ(∅) = 0;

2. φ∗µ(A) = µ(φ−1(A)) ≥ 0;

3. If {Ai}∞i=1 are disjoint sets, then

φ∗µ

(
∞⋃
i=1

Ai

)
= µ

(
φ−1

(
∞⋃
i=1

Ai

))
= µ

(
∞⋃
i=1

φ−1(Ai)

)
=
∞∑
i=1

µ(φ−1(Ai))

=
∞∑
i=1

φ∗µ(Ai).

We call φ∗µ the pushforward measure of µ by φ. If φ∗µ = ν, then we say that φ is

measure-preserving.
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Theorem 2.10 (A specific case of the Kolmogorov Extension theorem). For each

i ∈ Z, let (Xi,Bi, µi) be a probability space, and let

X =
∞∏

i=−∞

Xi, B =
∞⊗

i=−∞

Bi.

Then there exists a unique probability measure µ on B such that for any finite set

F ⊂ Z with associated measurable projection map

πF : X →
∏
i∈F

Xi, πF (x) = (xi)i∈F ,

we have

(µF )∗µ =
∏
i∈F

µi.

Example 2.11 (Bernoulli Shift). Let A be a countable set, called the alphabet. Let

B = P(A), and for each a ∈ A, assign a weight pa to a, such that

∑
a∈A

pa = 1.

It is easy to check that the set function ν : B → R defined by

ν(B) =
∑
b∈B

pb

is a probability measure on (A,P(A)).

For each n ∈ Z, let (Xn,An, µn) = (A,B, ν). Then we may apply the case of

the Kolmogorov Extension Theorem (Theorem 2.10) to obtain a probability space

(X,A, µ) with

X =
∏
n∈Z

A, A =
∏
n∈Z

P(A), µ =
∏
n∈Z

ν.
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This is called the bilateral shift space over the alphabet A. Elements of X are se-

quences x = (. . . x−1 · x0x1 . . . ), and a generating semi-algebra for A is the collection

C =

{
π−1
F

(∏
i∈F

Bi

)
: F ⊂ Z finite, Bi ⊂ A

}
.

We shall call these sets cylinder sets. By the projection property of this measure, if

F1, F2 ⊂ Z are disjoint, the measure of the intersection of sets C1, C2 ∈ C fixing those

components is given by:

µ(C1 ∩ C2) = νF1,F2(πF1,F2(C1 ∩ C2)) = νF1(πF1(C1))νF2(πF2(C2)) = µ(C1)µ(C2).

In particular, we will deal with sets of the form

C =
⋂
i∈F

π−1
i {bi}

where bi ∈ A and F ⊂ Z is finite, so that some finite number of symbols are fixed.

The measure of such a set is

µ(C) =
∏
i∈F

pi.

At times, we will denote

n⋂
i=j

π−1
i {ai} = C(xj . . . xn = aj . . . an).

We shall call these contiguous string cylinder sets.

We may find a generating π-system for A, which contains only contiguous string

cylinder sets. This will allow us to significantly simplify later proofs.

Lemma 2.12. If (X,A) is the bilateral shift space over a countable alphabet A with

σ-algebra generated by the cylinder sets as above, then the set of contiguous string
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cylinder sets which span the 0 index,

D = {C(x−t . . . xr−1 = a−t . . . ar−1) : t ≥ 0, r ≥ 1, ai ∈ A, i = −t, . . . r − 1} ,

is a generating π-system for A.

Proof. To see that D generates A, first note that D ⊂ C, so that σ(D) ⊂ σ(C) = A.

Then note that if C ∈ C, then we have, for some finite F ⊂ Z and Bi ⊂ A for each

i ∈ F :

C =
⋂
i∈F

π−1
i (Bi) =

⋂
i∈F

⋃
a∈Bi

π−1
i {a} =

⋃
(ai)i∈F∈

∏
i∈F Bi

(⋂
j∈F

π−1
i {ai}

)
.

Let f1 = min({f ∈ F}∪{0}, f2 = max({f ∈ F}∪{1}, and denote E = {f1, f2−1}\F .

We may then observe that:

C =
⋃

(ai)i∈E∈
∏
i∈E A

⋃
(ai)i∈F∈

∏
i∈F Bi

C(xf1 . . . xf2−1 = af1 . . . af2−1),

where this is a countable disjoint union. Hence, we see that C ⊂ σ(D), and so

A = σ(C) ⊂ σ(D), which shows that A = σ(D). Therefore D generates A. To show

that D is a π-system, let

C1 = C(x−t1 . . . xr1−1 = a−t1 . . . ar1−1), D2 = C(x−t2 . . . xr2−1 = b−t2 . . . br2−1),

where t1, t2 ≥ 0, and r1, r2 ≥ 1. Denote

t∗ = max{t1, t2}, t∗ = min{t1, t2}, r∗ = max{r1, r2}, r∗ = min{r1, r2}.
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If ai 6= bi for some i ∈ {−t∗, . . . , r∗ − 1}, then C1 ∩ C2 = ∅. Otherwise, we have

C1 ∩ C2 = C(x−t∗ . . . xr∗−1 = a−t∗ . . . ar∗−1br∗ . . . br∗−1).

Hence C1 ∩ C2 ∈ D, so that D is a π-system, which concludes the proof.

Definition 2.13. Let (G, τ) be a locally compact Hausdorff topological group, with B

the resulting Borel σ-algebra. The σ-finite left-translation-invariant regular measure

m on (G,B) which is unique up to a positive scaling is called the Haar measure. If

G is compact, we may choose the constant so that m is a probability measure.

Example 2.14. Let T = R/Z, with τ being the quotient topology on T. Then (T, τ)

is a compact Hausdorff topological group, under addition; this is by the quotient

group and quotient topology constructions. Let B be the Borel σ-algebra on T; the

normalized Haar measure on (T,B) is the Lebesgue measure λ on the half-open unit

interval [0, 1); it is easy to see that λ is normalized, regular, and translation-invariant.

Example 2.15. Let Zn = Z/nZ, with τ = B = P(Zn). Then (Zn,B) is a compact

Hausdorff topological group, again under addition. Define the measure c on B by

c{k} = 1
n
; this is the counting measure on Zn. We can see that c is normalized and

regular; since each point in Zn has the same measure and translation is a bijection, c

is seen to be translation-invariant, so that c is the normalized Haar measure.

We have need to talk about the situation where two measure spaces are ‘the same’,

in some fundamental way. The strongest concept is that of ‘isomorphism of measure

spaces’, which we now define. There are other related concepts, such as ‘conjugacy of

measure algebras’, which are useful, but not relevant to the current work. For more

on these ideas, see [31].

Definition 2.16. We say that measure spaces (X,A, µ) and (Y,B, ν) are isomorphic

(in the measure-theoretic sense) when there exists X1 ⊂ X, Y1 ⊂ Y with µ(X \X1) =
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ν(Y \ Y1) = 0, and a bijective measure-preserving transformation φ : X1 → Y1 whose

inverse φ−1 is also measure-preserving. We call φ an isomorphism of measure spaces

or sometimes a measure-theoretic isomorphism.

Definition 2.17. Let k, n ∈ N, with 1 ≤ k < n, and let F be a field. We denote

the set of the k-dimensional subspaces of Fn by Grk(Fn); this is the Grassmannian

of dimension k subspaces of Fn. When F is either R or C, the Grassmannian is a

compact metric space, with distance defined by, for k-d subspaces V1 and V2 of Fn,

d(V1, V2) = dH(V1 ∩B, V2 ∩B),

where B is the closed unit ball in Fn and dH is the Hausdorff distance.

The following proposition allows us to describe Gr1(C2) in terms of a more well-

known object. A proof for this may be found in the appendix, in section A.1.

Proposition 2.18. If {v1, v2} are given by

v1 =

1

i

 , v2 =

 1

−i

 ,
then any subspace of Gr1(C2) may be written as either spanC{v1 + zv2}, for some

z ∈ C, or as spanC{v2}, so that the map ψ : Gr1(C2)→ C̄ given by

ψ(spanC{v1 + zv2}) = z, ψ(spanC{v2}) =∞,

is a bijection between Gr1(C2) and C̄. Moreover, ψ is continuous with continuous

inverse, and hence measurable with measurable inverse.

Of course, our particular choice of basis is not unique; we could have picked any
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basis. However, this particular basis is a very appropriate choice later on, when we

deal with real orthogonal matrices.

2.2 Ergodic theory and dynamical systems

This thesis is primarily concerned with a theorem stated in the setting of discrete-

time dynamical systems. Dynamical systems usually involve an action of a group

or semi-group (for example, R,R+,Z,N) on a topological space or a measure space.

When the action is over R or R+, we typically call it a flow ; these tend to be actions

on manifolds or other such constructs. In this work, we shall be focusing entirely on

iterations of measurable and measure-preserving maps, which are actions of Z or N

on a space.

Definition 2.19. Let (X,B) be a measurable space, and let T : X → X be measur-

able. There is a natural Z-action on X, given by (n, x) 7→ T n(x). The tuple (X,B, T )

is called a discrete-time measurable dynamical system, or just dynamical system.

We may be more specific about which spaces we will consider; in particular, adding

a measure to the space allows for a rich theory of dynamical systems on measure

spaces.

Definition 2.20. Let (X,B, µ, T ) be a measure space with a measurable map T :

X → X. When T is measure-preserving as in Definition 2.9 (that is, when T∗µ = µ),

we say that T preserves µ and that µ is T -invariant, and we call the tuple (X,B, µ, T )

a measure-preserving system.

It is important to know if the underlying measure space for a measure-preserving

system is finite or infinite; finiteness of the measure yields a much more manageable

situation for the dynamics. Of course, because a finite measure may be normalized
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by dividing by the measure of the space, the study of dynamics preserving finite

measures reduces to the study of dynamics preserving probability measures. Where

possible, we will still attempt to state results for both finite and infinite measures.

Showing that a map is measure-preserving would be challenging if not for the

following result for finite measure spaces [31, p. 20].

Proposition 2.21. Let (X,B, µ, T ) be a measure-preserving system with µ(X) <∞,

and let P be a semi-algebra which generates B. If T preserves the measure of every

set in P, then T preserves µ.

Proof. We shall show that

M =
{
B ∈ B : µ(T−1(B)) = µ(B)

}
= B.

First, let A(P) denote the algebra generated by P . Since P is a semi-algebra, we have

a very particular structure for A(P); we have that any set in A(P) can be written as

a finite disjoint union of sets in P (see Lemma 2.5). So for E ∈ A(P), we have:

µ(T−1(E)) = µ(T−1(C1 ∪ · · · ∪ Cn)) = µ(T−1(C1) . . . T−1(Cn))

=
n∑
i=1

µ(T−1(Ci)) =
n∑
i=1

µ(Ci) = µ(E),

since T preserves disjointness of unions, hence A(P) ⊂ M. Finally, let {Mi}∞i=1 be

an increasing sequence of sets inside M. Then we have:

µ

(
T−1

(
∞⋃
i=1

Mi

))
= µ

(
∞⋃
i=1

T−1(Mi)

)
= lim

i→∞
µ(T−1(Mi))

= lim
i→∞

µ(Mi) = µ

(
∞⋃
i=1

Mi

)
,
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because pulling back under T preserves order by inclusion. So we obtain
∞⋃
i=1

Mi ∈M.

Similarly, if {Mi}∞i=1 is a decreasing sequence of sets inside of M, then since each of

the sets has finite measure, we have:

µ

(
T−1

(
∞⋂
i=1

Mi

))
= µ

(
∞⋂
i=1

T−1(Mi)

)
= lim

i→∞
µ(T−1(Mi))

= lim
i→∞

µ(Mi) = µ

(
∞⋂
i=1

Mi

)
,

again by continuity along chains of the measure, so we get
∞⋂
i=1

Mi ∈M. Thus,M is a

monotone class. Then the monotone class generated by A(P), denotedM(A(P)), is

contained by M, since A(P) ⊂M. But by the Monotone Class Theorem (Theorem

2.6), we have that M(A(P)) = σ(A(P)) = B, and so B ⊂ M ⊂ B, forcing B =M,

as desired.

Let us look at some examples which will arise later.

Example 2.22. Let X = T = R/Z, B be the Borel sets, and λ be normalized

Lebesgue measure. Let η ∈ T, and let T (x) = x + η mod 1. T is typically called a

rotation, as applying T is rotating the unit interval like a circle. We may show that

T is measure-preserving by showing that any T preserves the measure of any interval,

because the set of intervals form a semi-algebra which generates B. Note that on the

circle, λ may be described for intervals as

λ(a, b) =


b− a b > a

1− (a− b) b < a

.
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Then we have:

λ(T−1(a, b)) = λ(a− η, b− η)

=


b− η − (a− η) b− η > a− η

1− (a− η − (b− η)) b− η < a− η

=


b− a b > a

1− (a− b) b < a

= λ(a, b).

Thus T is measure-preserving by Proposition 2.21, and so (T,B, λ, T ) is a measure-

preserving system.

Whether η is rational or irrational determines many other properties of the system.

We shall only have need for the case that η is irrational. We do, however, require a

slight generalization of this system.

Example 2.23. Consider the same measure space as the previous example, but this

time define the map F (x) = −x (or 1− x, depending on how explicit we wish to be).
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This is clearly measurable; if (a, b) is an interval in T, we have:

λ(F−1(a, b)) = λ(−b,−a)

=


−a− (−b) −a > −b

1− (−b− (−a)) −a < −b

=


b− a b > a

1− (a− b) b < a

= λ(a, b).

Hence F preserves Lebesgue measure on T. This in itself is not useful, but given a

rotation T (x) = x + η on T, it allows us to say that the map T ◦ F : T → T, given

explicitly by T (F (x)) = η − x, is measure-preserving (it is trivial to see that the

composition of transformations preserving a single measure on a space still preserves

that measure).

The example of a rotation on the unit interval is a specific example of the following

more general result which applies to compact groups.

Example 2.24. Let G be a compact topological group, with B the Borel σ-algebra,

m the normalized Haar measure, and let g ∈ G. Since m is invariant under left-

translation, the map Rg(x) = gx preserves m, and therefore the system (G,B,m,Rg)

is measure-preserving.

A more exotic example is the following.

Example 2.25 (Bernoulli Shift). Consider the space (X,A, µ) defined in Example

2.11. We define the map L : X → X, by

L(x) = L(. . . x−1 · x0x1 . . . ) = (. . . x0 · x1x2 . . . ),
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so that L(x)n = xn+1. L is the left shift on X. L is clearly invertible on X, with

inverse L−1 = R, where R is the analogously defined right shift, with R(x)n = xn−1.

To show that (X,A, µ, L) is a measure-preserving system, we must show that L

is measurable and preserves µ; it suffices to prove both facts for cylinder sets. Let

F ⊂ Z, Bi ⊂ A for each i ∈ F , and let

C =
⋂
i∈F

π−1
i (Bi).

For m ∈ Z, denote F +m = {n ∈ Z : n = f +m, f ∈ F}. Then we have:

L−1(C) = {x ∈ X : L(x) ∈ C} = {x ∈ X : L(x)i ∈ Bi, i ∈ F}

= {x ∈ X : xi+1 ∈ Bi, i ∈ F} = {x ∈ X : xj ∈ Bj−1, j ∈ F + 1}

=
⋂

j∈F+1

π−1
j (Bj−1),

which shows that L is measurable. To show that it preserves measure, we see that:

µ(L−1(C)) = µ

( ⋂
j∈F+1

π−1
j (Bj−1)

)
=
∏

j∈F+1

ν(Bj−1)

=
∏

j∈F+1

ν(Bj−1) =
∏
i∈F

ν(Bi) = µ(C).

Hence L preserves µ.

Finally, we can prove that given two measure-preserving systems, the product of

the two maps over the product measure space is again a measure-preserving system

(it’s actually a product in the category of measure-preserving systems, even, but we

will not discuss this in detail in this thesis).

Example 2.26 (Product Measure-Preserving System). Consider measure-preserving

systems (X,A, µ, S) and (Y,B, ν, T ), and let S×T be defined on the product measure
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space (X × Y,A⊗ B, µ× ν). Let A ∈ A, B ∈ B, and observe that:

(S × T )−1(A×B) = {(x, y) : S(x) ∈ A, T (y) ∈ B}

=
{

(x, y) : x ∈ S−1(A), y ∈ T−1(B)
}

= S−1(A)× T−1(B),

since the components are independent. Then we have:

µ× ν((S × T )−1(A×B)) = µ× ν(S−1(A)× T−1(B)) = µ(S−1(A))ν(T−1(B))

= µ(A)ν(B) = µ× ν(A×B).

Since measurable rectangles are a generating semi-algebra for A ⊗ B, we have that

S × T preserves µ× ν, so that (X × Y,A⊗ B, µ× ν, S × T ) is a measure-preserving

system.

We may build upon our notion of measure-theoretic isomorphism to obtain a

notion of when two measure-preserving systems are ‘the same’. This notion will

allow us to make so-called ‘coordinate’ changes later on, and help us to understand

more complicated maps.

Definition 2.27. We say that the two measure-preserving systems (X,A, µ, S) and

(Y,B, ν, T ) are isomorphic if there exists a measure-theoretic isomorphism h from

X to Y such that h satisfies h ◦ S = T ◦ h (and such that the sets X1 and Y1 in

Definition 2.16 are S- and T -invariant, respectively). h is then called an isomorphism

of measure-preserving systems or a measure-theoretic dynamical isomorphism.

Example 2.28. Let β ∈ T be irrational, and consider the irrational rotation systems

(T,B, λ, Tβ) and (T,B, λ, T1−β), where T1−β is the rotation by 1− β. These measure-

preserving systems are essentially the same:
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Lemma 2.29. The map F (x) = 1 − x is a measure-theoretic isomorphism between

the systems (T,B, λ, Tβ) and (T,B, λ, T1−β).

Proof. Since F−1 = F , we simply compute F ◦ Tβ ◦ F :

F ◦ Tβ ◦ F (x) = F ◦ Tβ(1− x)

=


F (1− x+ β) 1− x < 1− β

F (β − x) 1− x ≥ 1− β

=


1− (1− x+ β) x > β

1− (β − x) x ≤ β

=


(x− β) + 1 x > β

x+ 1− β x ≤ β

= x+ 1− β = T1−β(x).

It is easy to see that F is an measure-preserving transformation on (T, λ), so as it is

invertible, it is a measure isomorphism on (T, λ). Thus we are done.

We also can talk about mapping one dynamical system to another, in a way which

commutes with the respective dynamics, but isn’t necessarily an isomorphism.

Definition 2.30. Let (X,A, S) be a dynamical system. We say that (Y,B, T ) is a

factor of (X,A, µ, S) when there exists a measurable map h : X → Y (not necessarily

invertible) such that h ◦ T = S ◦ h. In the case of two measure-preserving systems on

probability spaces, we may also require h to be measure-preserving, so that h∗µ = ν.

The following important definitions allows us to delve much further into the study

of dynamical systems.
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Definition 2.31. Let (X,B, T ) be a dynamical system. We say that A ∈ B is a

T -invariant set if T−1(A) = A.

Definition 2.32. Let (X,B, µ, T ) be a measure-preserving system, and let A be

a measurable set, with µ(A) > 0. Recall that the collection of subsets BA =

{B ∩ A : B ∈ B} is a σ-algebra on A. We may define a set function µA : BA → R

by setting µA(B ∩ A) = µ(B ∩ A). It is easy to see that µA is a measure on BA; we

call it the restriction of µ to A. If µ(A) < ∞, then we may normalize µA to get

µA(B ∩ A) =
µ(B ∩ A)

µ(A)
, which is a probability measure. Note that if B ⊂ A then

µA(B) = µA(B ∩ A), so we will abuse notation and use the former on occasion.

Moreover, if A is T -invariant, we see that for B ∩ A ∈ BA:

µA(T−1(B ∩ A)) = µ(T−1(B ∩ A) ∩ A) = µ(T−1(B) ∩ T−1(A) ∩ T−1(A))

= µ(T−1(B ∩ A) = µ(B ∩ A) = µA(B ∩ A).

Thus T preserves µA, and (A,BA, µA, T ) is a measure-preserving system (the normal-

ized version is immediately seen to be preserved also).

Definition 2.33. Let (X,B, µ, T ) be a measure-preserving system. The measure

and map pair (µ, T ) is ergodic if for any T -invariant set A ∈ B, either µ(A) = 0 or

µ(X \ A) = 0.

Given a measure-preserving system and an invariant set A for the dynamics, note

that the complement of A, X \ A, is also T -invariant:

T−1(X \ A) = T−1(X) \ T−1(A) = X \ A.

If the measure of A is neither zero nor full, then neither is the measure of X \ A,

and we obtain two separate measure-preserving systems which sit inside of X, as in
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Definition 2.32. The dynamics on X may then be studied simply by studying the

separate dynamics on A and X \ A; in particular, if X is a probability space, then

for any measurable set B of X, we have

µ(B) = µ(B ∩ A) + µ(B ∩ (X \ A)) = µ(A)µA(B ∩ A) + µ(X \ A)µX\A(B ∩ A),

so that µ decomposes as a convex combination of µA and µX\A.

The statement that this cannot happen is exactly that T is ergodic with respect

to µ, and is a natural next step up from measure-preserving systems. That said,

ergodicity is the weakest formulation of ‘mixing’ for measure-preserving transforma-

tions [11]; we will see a much stronger formulation later. As an interesting aside, it

should be noted that given a fixed map T on a ‘nice enough’ space, one may develop

an ‘ergodic decomposition’ for T , which represents any preserved measure µ for T as

an ‘weighted average’ of the ergodic measures for T (of course, this average may be

an integral, in the case when there are uncountably many ergodic measures), because

ergodic measures are extreme points of the convex set of T -invariant measures (see

[18]).

Among the first major results in ergodic theory are the so-called ‘Ergodic The-

orems’ proved by Birkhoff and von Neumann in the 1930s [4, 30]. We will state

Birkhoff’s theorem here, as it is used to prove a characterization of ergodicity soon to

be presented, and some of the ideas of the theorem arise later in a somewhat different

context, which provides a useful analogy.

Theorem 2.34 (Birkhoff). Let (X,B, µ, T ) be a measure-preserving system on a σ-

finite measure space, and let f be an integrable function. Then

lim
n→∞

1

n

n−1∑
k=0

f(T k(x))
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converges for almost every x ∈ X, and the resulting function f̃ is in L1, with f̃ ◦T = f̃

almost everywhere and ‖f̃‖1 ≤ ‖f‖1. If µ(X) <∞, then

∫
X

f̃ dµ =

∫
X

f dµ.

Corollary 2.35. If (X,B, µ, T ) is ergodic, then f̃ as obtained above is almost every-

where constant, and if µ(X) <∞, then

f̃ =
1

µ(X)

∫
X

f dµ.

The resulting function f̃ is the asymptotic time average of the function f on orbits

starting at the point x. The corollary states that for ergodic maps on finite measure

spaces, the time average equals the space average almost everywhere. In general, it

can be shown that f̃ is the conditional expectation of f with respect to the σ-algebra

of T -invariant measurable subsets of X, which is constant for ergodic systems (as any

T -invariant sets are either null sets or are the whole space).

We would like to know when a system is ergodic; there are many characterisations

of ergodicity, some applying only in certain situations, and the ones which we shall

use here are as follows. We leave the proof to the appendix. We do need to state

another definition, first.

Definition 2.36. Let (X,B, µ, T ) be a measure-preserving system, A ∈ B is almost-

T -invariant if µ(T−1(A)∆A) = 0.

Theorem 2.37. Let (X,B, µ, T ) be a measure-preserving system, with possibly infi-

nite measure. The following are equivalent:

1. (µ, T ) is ergodic.

2. If A is almost T -invariant, then µ(A) = 0 or µ(X \ A) = 0.
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3. If f ∈ L∞, and f ◦ T = f almost everywhere, then f is constant almost every-

where.

If moreover µ(X) = 1, then the above are also equivalent to the following:

4. If f ∈ L2(X), and f ◦ T = f almost everywhere, then f is constant almost

everywhere.

5. If A,B ∈ P, where P is a π-system which generates the σ-algebra B, then

lim
n→∞

1

n

n−1∑
k=0

µ(T−k(A) ∩B) = µ(A)µ(B).

It is worthwhile to have an intuitive grasp of these equivalent conditions. Condi-

tion (1) is the definition, while condition (2) states that ergodicity is really a modulo

0 concept, in that we can safely ignore sets of zero measure. Condition (3) is a func-

tional definition of ergodicity, which is useful when it is more convenient to consider

functions on the space rather than the space itself. Condition (3) may be modified,

to require f to simply be measurable.

Condition (4) says that when X has finite measure, we may restrict ourselves to

L2 functions, which works very well when there exists an orthonormal basis for L2

which behaves nicely with the map on the space. Condition (5) is a useful theoretical

characterization for doing abstract computations, but which can be used in a concrete

setting as well, as shall be shown.

A stronger formulation of the idea of ‘mixing’ is the following:

Definition 2.38. Let (X,B, µ, T ) be a measure-preserving system on a probability

space. We say that T is strongly mixing with respect to µ if for any A,B ∈ B, we

have that

µ(T−k(A) ∩B) −→
k→∞

µ(A)µ(B).
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There is an obvious strengthening of this definition, in that the defining property

may be shown only on a π-system generating the σ-algebra, analogous to the one for

ergodicity.

Proposition 2.39. Let (X,B, µ, T ) be a measure-preserving system, and let P be a

generating π-system for B. T is strongly mixing with respect to µ if and only if for

every A,B ∈ P, we have

µ(T−k(A) ∩B) −→
k→∞

µ(A)µ(B).

The proof is similar, and may be found in the appendix (in A.2). One may

compare this to condition (5) above; we can say that T is ergodic if two sets mix on

the average. For concreteness, we may show the following proposition:

Proposition 2.40. Let (X,B, µ, T ) be a measure-preserving system on a probability

space. If T is strongly mixing with respect to µ, then T is also ergodic.

Proof. The idea for this proof comes from [25]. Let E be a T -invariant measurable

set, so E = T−1(E). Iterating we obtain E = T−k(E), and so we obtain:

µ(E) = µ(E ∩ E) = µ(E ∩ T−k(E)) −→
k→∞

µ(E)µ(E) = µ(E)2,

using the mixing property, and so µ(E) ∈ {0, 1}, thereby proving that T is ergodic.

This shows that ergodicity is a potentially weaker property than strong mixing.

However, ergodicity is still sufficient for many applications, as we will see. It must

also be noted that ergodicity and strong mixing are invariants of measure-theoretic

dynamical isomorphisms:
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Lemma 2.41. Let (X,A, µ, S) and (Y,B, ν, T ) be isomorphic measure-preserving

systems. If (X,B, µ, T ) is ergodic, so is (Y,A, ν, S). If µ(X), ν(Y ) < ∞, then if

(X,A, µ, S) is strongly mixing, so is (Y,B, ν, T ).

Proof. For the first claim, suppose that (µ, S) is ergodic, and let B ∈ B be T -invariant.

After dropping down to sets of full measure, let h : X → Y be the dynamical

isomorphism. Observe that h−1(B) is S-invariant:

T−1(h−1(B) = (h ◦ T )−1(B) = (S ◦ h)−1(B) = h−1(S−1(B)) = h−1(B).

Thus either

ν(B) = µ(h−1(B)) = 0

or

ν(Y \B) = µ(h−1(Y \B)) = µ(X \ h−1(B)) = 0,

so that (ν, T ) is ergodic, as desired.

For the second claim, suppose that (µ, S) is strongly mixing, and let B,D ∈ B.

Note that h−1(T−k(B)) = S−k(h−1(B)), by induction. Then we have:

ν(T−k(B) ∩D) = µ(h−1(T−k(B) ∩D)) = µ(h−1(T−k(B)) ∩ h−1(D))

= µ(S−k(h−1(B)) ∩ h−1(D)) −→
k→∞

µ(h−1(B))µ(h−1(D)) = ν(B)ν(D).

Hence (ν, T ) is strongly mixing, as desired.

We now give some concrete examples of ergodicity and strong mixing.

Example 2.42. We will show that the irrational rotation on the circle by η ∈ Qc,

as introduced in Example 2.22, is an ergodic system, but not strongly mixing. To

show that (T, µ) is ergodic, we will use characterization (4) above. Let f : T→ C be



27

T -invariant. Using the Fourier series for f , we obtain, for almost every x ∈ T:

∑
n∈Z

cne
2πinx = f(x) = f(T (x)) =

∑
n∈Z

cne
2πinT (x) =

∑
n∈Z

cne
2πinηe2πinx.

Hence we obtain a relation in the coefficients, cn = cne
2πinη, n ∈ Z. This forces cn = 0

for n 6= 0, as η is not rational, thus e2πinη cannot be equal to 1. Thus f is constant

almost everywhere, and we see that T is ergodic.

To show that (T, µ) is not strongly mixing, let A be the interval (0, 1
3
), so its

length is 1
3
. We will show that there are infinitely many positive integers n such that

T−n(A) ∩ A is empty. Observe that

T−k(A) = (−kη, 1

3
− kη),

and note that {−kη : k ∈ N} is dense in the unit interval when taken modulo 1.

Then −kη ∈ [1
3
, 2

3
) infinitely often, in which case T−k(A) ⊂ [1

3
, 1), which implies that

T−k(A) ∩ A = ∅.

Then we obtain

lim inf
k→∞

µ(T−k(A) ∩ A) = 0,

which implies that

lim
k→∞

µ(T−k(A) ∩ A) 6= µ(A)2 =
1

9
,

if the limit even exists, and so (T, µ) is not strongly mixing.

For certain groups equipped with Haar measure, we have a sufficient condition for

the ergodicity of a rotation. (See Appendix A.3 for a brief recap of character groups.)

Proposition 2.43. Let (G,B,m) be a compact topological Abelian group (written

multiplicatively) equipped with normalized Haar measure, with character group Ĝ. Let

a ∈ G, and define the measure-preserving transformation Ra on G by Ra(x) = ax.
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If for every non-trivial character γ ∈ Ĝ we have γ(a) 6= 1, then Ra is ergodic with

respect to m.

Proof. For any character γ and x ∈ G, we have

γ(Ra(x)) = γ(ax) = γ(a)γ(x).

We know that Ĝ is an orthonormal basis for L2(m); we will do a Fourier series

computation to obtain our result. Let f ∈ L2(m) be Ra-invariant, so that f ◦Ra = f .

Then we obtain:

∑
γ∈Ĝ

bγγ(a)γ(x) =
∑
γ∈Ĝ

bγγ(ax) = f ◦Ra(x) = f(x) =
∑
γ∈Ĝ

bγγ(x).

Since the characters are orthonormal, we obtain bγγ(a) = bγ for all γ ∈ Ĝ. This is

equivalent to bγ(γ(a)− 1) = 0; by hypothesis, for all non-trivial γ, we have γ(a) 6= 1.

This implies bγ = 0 for all non-trivial γ, and so f must be constant. Applying

condition (4) from Theorem 2.37, we get that Ra is ergodic.

Example 2.44. Let (X,B, µ, L) be the invertible left shift on a shift space with a

countable alphabet A. We will show that this is a strongly mixing system. Recall

from the end of Example 2.11 that a π-system generating B is the collection D of

contiguous string cylinder sets spanning the 0 index. If we can show that the mixing

property in Definition 2.38 holds for two of those sets, we are finished.

Let t1, t2 ≥ 0 and r1, r2 ≥ 1, and define

B = C(x−t1 . . . xr1−1 = a−t1 . . . ar1−1), D = C(x−t2 . . . xr2−1 = b−t2 . . . br2−1).
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For any k ∈ Z, we have:

L−k(B) = C(Lk(x)−t1 . . . L
k(x)r1−1 = a−t1 . . . ar1−1)

= C(x−t1+k . . . xr1−1+k = a−t1 . . . ar1−1).

So for k ≥ r2 + t1, we have −t1 + k ≥ r2 > r2 − 1, and so

{−t2, . . . , r2 − 1} ∩ {−t1 + k, . . . , r1 − 1 + k} = ∅.

By the projection property of µ as in Example 2.11, we obtain:

lim
k→∞

µ(L−k(B) ∩D) = lim
k→∞

µ(L−k(B))µ(D) = lim
k→∞

µ(B)µ(D) = µ(B)µ(D),

and L is strongly mixing.

The above argument will return in a slightly different form, later on in the work,

thanks to the usefulness of the π-system D.

There are a number of important constructions in ergodic theory. We shall deal

with two of them, in particular: the induced transformation, and the skew product.

These will prove to be useful for both conceptual and computational purposes. See

[5] for a related treatment of each of these constructions.

First, we build towards the induced transformation. A result by Poincaré tells us

about how often orbits of points starting in a set of positive measure return to that

set, in a measure-preserving system on a probability space.

Theorem 2.45 (Poincaré Recurrence). Let (X,B, µ, T ) be a measure-preserving sys-

tem with µ(X) = 1, and let A ∈ B with µ(A) > 0. Then for µ−a.e. x ∈ A, x returns

infinitely often to A during its orbit under T .
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Proof. Let

B = {x ∈ A : x never returns to A}

=
{
x ∈ A : T k(x) /∈ A, ∀k ≥ 1

}
= A ∩

∞⋂
k=1

T−k(X \ A).

Consider pre-images of B under T i; these are the points in X which return to at A in

i steps (or fewer) and then never return to A after that. If x ∈ T−i(B)∩T−j(B) with

0 ≤ i < j, then T i(x) ∈ B and T j(x) = T j−i(T i(x)) ∈ A, which means that T i(x) is

simultaneously in B and not in B. Hence the pre-images of B are disjoint, and so we

have:

1 ≥ µ

(
∞⋃
i=0

T−i(B)

)
=
∞∑
i=0

µ(T−i(B)) =
∞∑
i=0

µ(B),

which forces µ(B) = 0. Finally, the set of all points in A which return only finitely

many times to A is

A ∩
∞⋃
i=0

T−i(B) =
∞⋃
i=0

A ∩ T−i(B),

and we have

µ

(
∞⋃
i=0

A ∩ T−i(B)

)
≤

∞∑
i=0

µ(A ∩ T−i(B)) ≤
∞∑
i=0

µ(T−i(B)) =
∞∑
i=0

µ(B) = 0,

proving the claim.

If T is not just measure-preserving with respect to µ, but also ergodic, then we see

that almost every point in X reaches a set of non-zero measure in finite time, under

iteration by T .

Lemma 2.46. Let (T, µ) be an ergodic map and measure on a probability space, and
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let µ(A) > 0. Then

µ

(
∞⋃
n=0

T−n(A)

)
= 1.

Proof. Let

B =
∞⋃
n=0

T−n(A)

be the set of points which map to A in finite time. Note that

T−1(B) = T−1

(
∞⋃
n=0

T−n(A)

)
=
∞⋃
n=0

T−(n+1)(A) =
∞⋃
n=1

T−n(A) ⊂ B.

Then we have

µ(T−1(B)∆B) = µ(T−1(B) \B) + µ(B \ T−1(B))

= µ(∅) + µ(B)− µ(T−1(B)) = 0,

since T preserves µ. Hence B is almost-T -invariant; by condition (2) of Theorem

2.37, we see that B has either full or zero measure, but A ⊂ B, so µ(B) ≥ µ(A) > 0,

and so µ(B) = 1, as desired.

Recall that by Definition 2.32, if A is a measurable subset of X with 0 < µ(A) <

∞, then we may form a probability space (A,A, µA) together with the restricted σ-

algebra A on A and the restricted measure µA, where for B ∈ A, µA(B) =
µ(B)

µ(A)
,

forms a probability space (A,A, µA). If A is not T -invariant, then points in A may

leave A by iteration of T .

Definition 2.47. For a subset A of a measure-preserving system (X,B, µ, T ), define

the first return time nA,T : A→ N+ ∪ {∞} to be:

nA,T (x) = min {n ≥ 1 : T n(x) ∈ A} ,
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which may be infinite if x never returns to A. The Poincaré Recurrence Theorem

(Theorem 2.45) shows that nA,T is finite almost everywhere on A, and moreover that

the set of points where nA,T is infinite is T -invariant. So after removing this invariant

null set from A (without changing the notation), we may define the induced map of

T on A by

TA : A→ A, TA(x) = T nA,T (x)(x).

In the simple case when A is T -invariant, then nA,T is identically 1, so that TA = T

and the restricted system is still measure-preserving, as in Definition 2.32. We can

prove that this holds in general.

Proposition 2.48. If (X,B, µ, T ) is a measure-preserving space with µ(X) = 1 and

A is a measurable set with 0 < µ(A) <∞, then (A,A, µA, TA) is a measure-preserving

system on a probability space.

Proof. First, we show that nA,T is measurable, from (A,A) to (N+,P(N+)). We have,

for k ≥ 1,

n−1
A,T{k} =

{
x ∈ A : T k(x) ∈ A, T i(x) /∈ A ∀i = 1, . . . , k − 1

}
= A ∩ T−k(A) \

k−1⋃
i=1

T−i(A),

and T is measurable, so nA,T is measurable. For any B ∈ A, we have:

T−1
A (B) =

{
x ∈ A : T nA,T (x)(x) ∈ B

}
=
∞⋃
k=1

(n−1
A,T{k} ∩ T

−k(B)),

so TA is measurable. To show that TA preserves the measure µA, we compute, for
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B ∈ A:

µ(B) = µ(T−1(B)) = µ(T−1(B) ∩ A) + µ(T−1(B) \ A)

= µ(T−1(B) ∩ A) + µ(T−2(B) \ T−1(A))

= µ(T−1(B) ∩ A) + µ((T−2(B) \ T−1(A)) ∩ A) + µ((T−2(B) \ T−1(A)) \ A)

= µ(T−1(B) ∩ A) + µ((T−2(B) \ T−1(A)) ∩ A) + µ(T−2(B) \ (T−1(A) ∪ A))

= . . .

=
n∑
k=1

µ

((
T−k(B) \

k−1⋃
i=1

T−i(A)

)
∩ A

)
+ µ

(
T−n(B) \

n−1⋃
i=0

T−i(A)

)
.

Now, letting Ā =
∞⋃
i=0

T−i(A), we see that T−n(B) ⊂ T−n(A) ⊂ Ā, so that:

0 ≤ lim sup
n→∞

µ

(
T−n(B) \

n−1⋃
i=0

T−i(A)

)
≤ lim sup

n→∞
µ

(
Ā \

n−1⋃
i=0

T−i(A)

)

= lim sup
n→∞

(
µ(Ā)− µ

(
n−1⋃
i=0

T−i(A)

))

= µ(Ā)− lim
n→∞

µ

(
n−1⋃
i=0

T−i(A)

)

= µ(Ā)− µ(Ā) = 0.

So we obtain

∞∑
k=1

µ

((
T−k(B) \

k−1⋃
i=1

T−i(A)

)
∩ A

)
= µ(B),
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which allows us to conclude:

µA(T−1
A (B)) =

1

µ(A)
µ

(
∞⋃
k=1

n−1
A,T{k} ∩ T

−k(B)

)

=
1

µ(A)

∞∑
k=1

µ

(
T−k(B) ∩ A ∩ T−k(A) \

k−1⋃
i=1

T−i(A)

)

=
1

µ(A)

∞∑
k=1

µ

(
A ∩

(
T−k(B) \

k−1⋃
i=1

T−i(A)

))

=
1

µ(A)
µ(B) = µA(B).

We shall be utilizing the following example and variations thereof in multiple

situations throughout the rest of the paper.

Example 2.49. Let η ∈ T be irrational, and let (T,B, λ, T ) be the irrational rotation

measure-preserving system, as in Example 2.22. Let A = [1−η, 1); we shall explicitly

compute the induced map TA. We first need to compute the first return time to A.

To do so, note that there exists k ≥ 1 such that kη < 1 < (k+1)η, since η is irrational

and in T. Let q = 2− (k + 1)η. Then for x ∈ [1− η, q), we see that

x+ kη ∈ [1− η + kη, q + kη) = [2− η + (kη − 1), 2− η),

x+ (k + 1)η ∈ [1− η + (k + 1)η, q + (k + 1)η) = [2− η + ((k + 1)η − 1), 2),

hence nA,T (x) = k + 1, since 1 ≤ 1 + (k − 1)η and 2− η = 1− η modulo 1. Similarly

for x ∈ [q, 1), we have:

x+ kη ∈ [q + kη, 1 + kη) = [2− η, 2 + (kη − 1)),

x+ (k + 1)η ∈ [q + (k + 1)η, 1 + (k + 1)η) = [2, 2 + ((k + 1)η − 1)),
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which gives us nA,T (x) = k, as 2 + (kη − 1) < 2. So we obtain:

TA(x) =


T k+1(x) x ∈ [1− η, q)

T k(x) x ∈ [q, 1)

=


x+ (k + 1)η − 1 x ∈ [1− η, q)

x+ kη − 1 x ∈ [q, 1).

We write the map with a ‘−1’ to indicate that this is exact, not just modulo 1. The

induced measure, λA, is simply Lebesgue measure on [1− η, 1) divided by η. As seen

in Proposition 2.48, λA is preserved by TA. Now, we could leave this system like this,

but we can rewrite it in a much more intuitive form, using a change of coordinates.

Let

φ : [1− η, 1)→ T, φ(x) =
1− x
η

;

φ is then a homeomorphism between [1− η, 1) and T, with inverse given by

φ−1 : T→ [1− η, 1), φ−1(x) = 1− ηx.

φ acts to switch the interval around and expand it, and φ−1 acts to switch the interval

around and compress it. Note then that the measure for the coordinate-changed

dynamics is φ∗λA. Since any interval (a, b) with a > b may be decomposed as

(a, b) = (a, 1) ∪ [0, b),

we may do all of our computations with intervals of the form a < b, by additivity of

the measure and distribution of preimages over disjoint unions. So for intervals (a, b)
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where a < b, we have:

φ∗λA(a, b) = λA(φ−1(a, b)) = λA(1− ηb, 1− ηa)

=
1− ηa− (1− ηb)

η

=
η

η
(b− a)

= λ(a, b).

Thus φ maps [1 − η, 1) onto T with normalized Lebesgue measure. Now, we may

compute the action of TA as a map on T, by calculating S = φ ◦TA ◦φ−1. Recall that

kη < 1 < (k + 1)η; this yields k <
1

η
< k + 1, and we find that the fractional part of

1

η
is {1

η
} =

1

η
− k, which we shall denote β. Note that

φ(q) =
1− (2− (k + 1)η)

η
= k + 1− 1

η
= 1− β.
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Then we have:

φ ◦ TA ◦ φ−1(x) = φ ◦ TA(1− ηx)

=


φ(1− ηx+ (k + 1)η − 1) φ−1(x) ∈ [1− η, q)

φ(1− ηx+ kη − 1) φ−1(x) ∈ [q, 1)

=


1− (k + 1− x)η

η
x ∈ φ[1− η, q) = [1− β, 1)

1− (k − x)η

η
x ∈ φ[q, 1) = [0, 1− β)

=


x+

1

η
− k − 1 x ∈ φ[1− η, q) = [1− β, 1)

x+
1

η
− k x ∈ φ[q, 1) = [0, 1− β)

=


x+ β − 1 x ∈ [1− β, 1)

x+ β x ∈ [0, 1− β)

Computing this modulo 1, we see that S(x) = x + β, where β =

{
1

η

}
is irrational.

Hence inducing an irrational rotation on an interval of length matching the rotation

yields another irrational rotation.

In general, an irrational rotation induces an interval exchange map on three in-

tervals; it is only in the special case where the rotation and the interval length are

the same that we obtain a rotation. See [20, 29] for a much more indepth look at this

type of system.

Example 2.50. Let (X,A, µ, L) be the invertible left shift on the shift space over

the two symbol alphabet {0, 1}. Let

A = C(x0 = 1) = π−1
0 {1},
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and let us compute the induced map LA. First, we must compute the first-return

time, nA,L. We are interested in starting in A (so x0 = 1), then counting how many

steps it takes to return back to A. This is easily interpreted by saying that n(x) = k

when x1, . . . , xk−1 = 0 and xk = 1, or if k = 1, then simply x1 = 1. So nA,L(x) = k

when x ∈ C(x0x1 . . . xk−1xk = 1 0 . . . 0︸ ︷︷ ︸
k−1

1), and nA,L(x) =∞ when xk = 0 for all k > 0.

Similar considerations hold for the right shift R = L−1 and nA,R. Let B+ be the set

of points in A which have finitely many 1’s in the positive direction, and B− be the

set of points in A which have finite many 1’s in the negative direction; then we have:

B+ =
∞⋃
i=0

L−i(n−1
A,L{∞}), B− =

∞⋃
i=0

R−i(n−1
A,R{∞}).

By subadditivity of the measure µ and the Poincaré Recurrence Theorem, both B+

and B− have measure 0, and it is clear that B+∪B− is L-invariant (and R-invariant).

Hence we may remove B+ ∪B− from A to obtain Ã, which we shall still call A.

We now compute LA. We have:

LA(x) = LnA,L(x)

=

{
Lk(x), x ∈ C(x0x1 . . . xk−1xk = 1 0 . . . 0︸ ︷︷ ︸

k−1

1)

=

{
(. . . 1 0 . . . 0︸ ︷︷ ︸

k−1

·1xk+1xk+2 . . . ), x ∈ C(x0x1 . . . xk−1xk = 1 0 . . . 0︸ ︷︷ ︸
k−1

1)

Essentially, we are skipping the next string of zeroes, and returning the string centered

at the next one. This yields a measure-preserving system (A,MA,mA, LA), where

MA is the restriction of M to A.

Here, we make a clever change of coordinates. Let (Z,M, ν, S) be the invertible

left Bernoulli shift space over the alphabet N, where the weights on the symbols are

pk =
1

2k+1
, corresponding to the symbol k ≥ 0 (as in Example 2.11). Define the map
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φ : A→ Z, by the following. Note that elements x of A can be written as

(. . . 1 0 . . . 0︸ ︷︷ ︸
k−1

·1 0 . . . 0︸ ︷︷ ︸
k0

1 0 . . . 0︸ ︷︷ ︸
k1

. . . ),

where ki ≥ 0, so we define

φ(x) = (. . . k−1 · k0k1 . . . ) ∈ Z.

To show that φ is measurable, let B ⊂ N, and compute:

φ−1(π−1
n (B)) = φ−1({z ∈ Z : zn ∈ B})

=
{
x ∈ A : (n+ 1)th string of zeroes is length j, j ∈ B

}
=
⋃
j∈B

⋃
k0,...,kn−1∈N

C(x0 . . . xn+
∑
i ki+j+1 = 1 0 . . . 0︸ ︷︷ ︸

k0

1 . . . 1 0 . . . 0︸ ︷︷ ︸
kn−1

1 0 . . . 0︸ ︷︷ ︸
j

1),

which lies in B, since the unions are both countable, and general cylinder sets are

pulled back to intersections of these sets. φ is thus measurable, by definition ofMA.

Hence we may push mA forward with φ, to obtain a measure φ∗mA on Z. We now

show that φ∗mA = ν, by showing that φ∗mA pushes forward to the product measure

νF on any finite product ZF . So let F ⊂ Z be finite, and consider the product measure

νF on the product ZF . We compute, for (ki)i∈F ∈ ZF :

(πF )∗φ∗mA({(ki)i∈F}) = mA(φ−1(π−1
F ({(ki)i∈F})))

= mA(
{
x ∈ A : bth string of zeroes is of length kb, b ∈ F

}
)

=
∏
b∈F

1

2kb+1
(by independence of the {0, 1} shift)

= νF ({(k1, . . . , k|F |)}).
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Any (measurable) set C ⊂ ZF is a disjoint union of points (ki)i∈F , so the above com-

putation holds for C due to countable additivity. Hence φ∗mA = ν, by uniqueness of

the Kolmogorov extension measure. Therefore φ is a measure-theoretic isomorphism

between (A,A,mA) and (Z,M, ν). From the definitions of φ and LA, it is easy to

observe that φ ◦ LA ◦ φ−1 acts as the left shift S on Z. Hence, φ gives a dynamical

isomorphism between (A,MA,mA, LA) and (Z,M, ν, S).

The following proposition describes the relationship between ergodicity of the

original map T and the induced map TA.

Proposition 2.51. Let (X,B, µ, T ) be a measure-preserving system with µ(X) = 1,

and let A ⊂ X with µ(A) > 0. Let TA be the induced map of T on A, as above. Then

we have the following:

1. If T is ergodic, then TA is ergodic.

2. If TA is ergodic, and

µ

(
∞⋃
n=0

T−n(A)

)
= 1,

then T is ergodic.

Proof. For the first statement, assume that (T, µ) is ergodic. Let B ⊂ A be mea-

surable and TA-invariant, and suppose that µA(B) =
µ(B)

µ(A)
> 0, so µ(B) > 0 also.

Let

B̄ =
∞⋃
i=0

T−i(B);

then by Lemma 2.46, B̄ has measure 1 in X. We shall now show that B = B̄ ∩ A.

First, note that

B̄ ∩ A =
∞⋃
i=0

T−i(B) ∩ A =
{
x ∈ A : ∃ i ≥ 0 such that T i(x) ∈ B

}
;
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the inclusion of B in B̄ ∩A is trivial, since the first term of the union is B ∩A = B.

To show the reverse inclusion, note that if x ∈ B̄ ∩ A, then there exists i ≥ 0 such

that T i(x) ∈ B ⊂ A. If i = 0, then we are done, so we assume that i > 0. If x

makes k ≥ 0 returns to A prior to the ith iteration of T in the orbit, then we have

that T i(x) = T k+1
A (x). By the TA-invariance of B, we know that B = T

−(k+1)
A (B); we

therefore see that

x ∈ T−(k+1)
A (B) = B,

and so B̄ ∩ A ⊂ B. Hence B = B̄ ∩ A, so since µ(B̄) = 1, we have

µA(B) =
µ(B̄ ∩ A ∩ A)

µ(A)
=
µ(A)

µ(A)
= 1,

and therefore (TA, µA) is ergodic.

For the second statement, assume that (TA, µA) is ergodic, and let B be a mea-

surable T -invariant subset of X, with µ(B) > 0. We have also assumed that

Ā =
∞⋃
i=0

T−i(A)

has full measure in X, which means that ∃i ≥ 0 such that

µ(B ∩ A) = µ(T−i(B ∩ A)) = µ(T−i(B) ∩ T−i(A)) = µ(B ∩ T−i(A)) > 0.

Now, B ∩A has positive measure in A; we shall also show that it is TA-invariant. We

have:

T−1
A (B ∩ A) =

∞⋃
k=1

n−1
A,T{k} ∩ T

−k(B) ∩ T−k(A) =
∞⋃
k=1

n−1
A,T{k} ∩ T

−k(A) ∩B

= B ∩
∞⋃
k=1

n−1
A,T{k} ∩ T

−k(A) = B ∩ T−1
A (A) = B ∩ A.
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Hence by ergodicity of TA, µA(B ∩ A) = 1, so µ(B ∩ A) = µ(A), so B ∩ A = A \N ,

where µ(N) = 0. We then have:

µ(B) = µ(B ∩ Ā) = µ

(
B ∩

∞⋃
i=0

T−i(A)

)
= µ

(
∞⋃
i=0

T−i(B ∩ A)

)

= µ

(
∞⋃
i=0

T−i(A \N)

)
≥ µ

((
∞⋃
i=0

T−i(A)

)
\
∞⋃
i=0

T−i(N)

)

= µ

(
∞⋃
i=0

T−i(A)

)
= 1.

Hence (T, µ) is ergodic, and we are done.

In particular, we shall use statement (2) quite effectively, as it can happen that the

induced map can give rise to a much simpler system, or at least one more well-known.

The second of our two important transformations, the skew product, will be the

main type of map we consider in the work.

Definition 2.52. Let (X,A, µ, T ) be a measure-preserving system on a probabil-

ity space, and let (Y,B, Sx)x∈X be a family of measurable spaces equipped with

measurable maps on Y , such that S : X × Y → Y defined by S(x, y) = Sx(y)

is measurable with respect to A ⊗ B. Define the map R : X × Y → X × Y ,

R(x, y) = (T (x), Sx(y)) = (T (x), S(x, y)). Then we call R a skew product on X × Y .

Observe that R is indeed measurable. To see this, let T1 = T ◦ πX , so that T1

and S are measurable from X × Y to X and Y , respectively. For any measurable

rectangle A×B, we have:

T−1
1 (A) = {(x, y) : T1(x, y) = T (x) ∈ A} = T−1(A)× Y,

S−1(B) = {(x, y) : Sx(y) ∈ B} ,
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so that we obtain

R−1(A×B) = {(x, y) : T (x) ∈ A, Sx(y) ∈ B}

=
{

(x, y) : x ∈ T−1(A), (x, y) ∈ S−1(B)
}

= T−1
1 (A) ∩ S−1(B) ∈ A⊗ B.

Moreover, for computational purposes, we have:

S−1(B) =
⋃
x∈X

{(x, y) : Sx(y) ∈ B} =
⋃
x∈X

{x} × S−1
x (B),

R−1(A×B) = T−1(A)× Y ∩
⋃
x∈X

{x} × S−1
x (B) =

⋃
x∈T−1(A)

{x} × S−1
x (B).

In general, R may not preserve any measure on the product X × Y . Given some

conditions on a family of measures νx and a measure M on X × Y , it is possible to

give abstract necessary and sufficient conditions for when the measure is preserved

by R, using disintegration of the measure (see [1]). For our purposes, we shall only

consider the case where νx = ν for all x ∈ X, and where (Sx)∗ν = ν. That is, when

each of the fibre maps preserves the fixed measure ν, where ν may be σ-finite. We

have the following lemma.

Lemma 2.53. In the above situation, R preserves the product measure M = µ× ν.

Proof. The collection of measurable rectangles in X × Y form a semi-algebra which

generates A ⊗ B, so it suffices to show that R preserves the measure of measurable
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rectangles in A⊗ B. Hence, let A ∈ A, B ∈ B, and compute:

M(R−1(A×B)) =

∫
X×Y

1R−1(A×B)(x, y) dM(x, y)

=

∫
X

∫
Y

1T−1
1 (A)(x)1S−1

x (B)(y) dν(y)dµ(x)

=

∫
X

1T−1
1 (A)(x)

(∫
Y

1S−1
x (B)(y) dν(y)

)
dµ(x)

=

∫
X

1T−1
1 (A)(x)ν(S−1

x (B)) dµ(x)

=

∫
X

1T−1
1 (A)(x)ν(B) dµ(x)

= ν(B)

∫
X

1T−1
1 (A)(x) dµ(x)

= ν(B)µ(T−1(A)) = ν(B)µ(A) = M(A×B).

Hence we are done.

Skew products can have an interpretation as a random dynamical system. The

base dynamics (X,µ, T ) may be considered a random or probabilistic process, which

decides a particular map to be applied to (Y, ν, S). In this way, the dynamics on Y

can be considered random. A treatment of this very broad topic can be found in [1].

We now discuss a specific example of a skew product, which we shall study for

the remainder of the thesis.

Definition 2.54. Let (X,A, T ) be a dynamical system, let (Z,M) be the integers

with the discrete σ-algebra, and let M be a topological monoid (that is, a topological

space equipped with a continuous binary operation and an identity element e). A

map f : N×X →M satisfying

1. ∀n,m ∈ N, x ∈ X, f(n+m,x) = f(n, Tm(x))f(m,x), and

2. f(0, x) = e,
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is called a cocycle for or over T . If M is given the Borel σ-algebra and f is measurable,

then f is a measurable cocycle. If T is invertible and f takes values in a topological

group, then we insist that f must satisfy f(−n, x) = f(n, T−n(x))−1, which makes

condition (1) above hold for all n,m ∈ Z.

Note that because

f(n, x) = f(1, T n−1(x))f(1, T n−2(x)) . . . f(1, T (x))f(1, x),

any cocycle is generated by the function f(1, ·) : X →M . Moreover, if we have some

measurable function g : X →M , we may construct a cocycle G over T by specifying

G(1, x) = g(x) and requiring G to respect the cocycle properties. In general, we shall

abuse notation and refer to either the cocycle f or the function f(1, ·) on X as f .

One interpretation of cocycles is that they form some sort of ‘running statistic’

along orbits in a dynamical system. That is, if we wish to study the cumulative

value of some observable quantity of a system (X,T ) along an orbit, the cocycle is

the natural object to use, because for a fixed n and x, the cocycle’s value at (n, x)

depends in a cumulative way on the points along the orbit of x for n time steps.

An important way to study cocycles is to create a skew product of a measure-

preserving system and a topological group. Given a measure-preserving system

(X,B, µ, T ), a topological group (G,A,m) with Borel σ-algebra A and Haar mea-

sure m, and a cocycle f : Z ×X → G, we may construct a skew product on X × G

by defining R : X ×G→ X ×G, with R(x, g) = (T (x), f(x)g). Note that g 7→ f(x)g

is a rotation on a group, and group rotations preserve Haar measure. Hence, by

Lemma 2.53, R preserves the product measure on X ×G, so we obtain a skew prod-

uct measure-preserving system. This type of system will be utilized in the remainder

of this work; here, we shall give a slightly involved example for illustration of an
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atypical method of showing ergodicity of a system.

Example 2.55. Recall the irrational rotation system (T,B, λ, σ), where σ(x) = x+η,

with η an irrational. Let f : Z×T→ T be a cocycle generated by f(1, x) = x. Define

the skew product R on T2 by T (x, y) = (σ(x), f(1, x)+y) = (x+η, y+x), and denote

the product measure by λ× λ. We have the following theorem, considered (in more

generality) by Furstenberg in [9].

Theorem 2.56. T is an ergodic map, with respect to the product Lebesgue measure.

Here, we shall give a geometric proof, using a particular characterization of er-

godicity (condition (5) in Theorem 2.37), rather than the usual Fourier series com-

putation, similar to the computation in Example 2.42.

Proof. Recall that by condition (5) of Theorem 2.37, T is ergodic if and only if for

any A,B in a generating π-system for B, we have

1

n

n−1∑
k=0

λ× λ(T−k(A) ∩B) −→
n→∞

λ(A)λ(B).

Note that T is invertible; its inverse is given by T−1(x, y) = (x− η, y − x+ η), as we

can see:

T (T−1(x, y)) = T (x− η, y − x+ η) = (x− η + η, y − x+ η + x− η) = (x, y)

T−1(T (x, y)) = T−1(x+ η, y + x) = (x+ η − η, y + x− (x+ η) + η) = (x, y).

Both T and T−1 are measure-preserving. Then, recall that T is ergodic if and only if

T−1 is ergodic; to see this, note that

(T−1)−1(A) = T (A) = A ⇐⇒ T−1(T (A)) = A = T−1(A),
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and so our claim is easily verified. Thus the characterization of ergodicity of T is

equivalent to saying that for all A,B in a generating semi-algebra for B:

1

n

n−1∑
k=0

λ× λ(T k(A) ∩B) −→
n→∞

λ(A)λ(B).

We shall show that this holds for any half-open rectangles

A = [a, b)× [c, d), B = [e, f)× [g, h),

since we know that the half-open rectangles generate the Borel σ-algebra on T and

form a π-system, hence by work in Example 2.7, the products form a generating

π-system for the Borel σ-algebra on T2. Assume that

0 ≤ a < b ≤ 1, 0 ≤ c < d ≤ 1, 0 ≤ e < f ≤ 1, 0 ≤ g < h ≤ 1,

since any other rectangle can be formed as a finite disjoint union of these rectangles.

Our job, then, is to estimate what λ× λ(T k(A) ∩B) is.

First, we determine what T k(A) looks like. We compute T k essentially by inspec-

tion, though we could do an induction argument:

T k(x, y) =

(
x+ kη, y + kx+

(k − 1)k

2
η

)
.

This seems mildly daunting, but it is less so if we consider it first as a map on R2.

We’ll look at T (A) to start. A is the rectangle bounded by the vertical line segments

L1 = {(a, y) : y ∈ (c, d)} , L2 = {(b, y) : y ∈ (c, d)} ,
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and the horizontal line segments

L3 = {(x, c) : x ∈ (a, b)} , L4 = {(x, d) : x ∈ (a, b)} .

Applying T to these lines gives:

T (a, y) = (a+ η, y + a), T (b, y) = (b+ η, y + b),

T (x, c) = (x+ η, c+ x), T (x, d) = (x+ η, d+ x).

In particular, T shifts the rectangle to the right by η, and then shears the rectangle

into a parallelogram, by raising the right edge of the rectangle b − a more than the

left edge. As the second line of computation shows, the horizontal line segments are

mapped to line segments of slope 1, with appropriate endpoints. Similarly, we obtain

that:

T k(a, y) =

(
a+ kη, y + ka+

(k − 1)k

2
η

)
,

T k(b, y) =

(
b+ kη, y + kb+

(k − 1)k

2
η

)
,

T k(x, c) =

(
x+ kη, c+ kx+

(k − 1)k

2
η

)
,

T k(x, d) =

(
x+ kη, d+ kx+

(k − 1)k

2
η

)
.

So after k iterations, the rectangle is mapped to a heavily vertically-sheared parallel-

ogram, where the base and top of the parallelogram have slope k. This means that

while it takes up the same width in the x-axis, it stretches over more of the y-axis.

The exact value of that stretch is the height of the vertical sides plus the height
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attributable to the shear:

Hk = (d− c) + y + kb+
(k − 1)k

2
η −

(
y + ka+

(k − 1)k

2
η

)
= (d− c) + k(b− a).

We also wish to know how wide the parallelogram is (that is, the width of the

horizontal segment of the resulting set), parallel to the x-axis, while it is sloping

upwards. We can figure this out by some trigonometry; observe that the width Wk

lies on a right-angled triangle opposite the angle θ, where the hypotenuse has slope

k and the other edge of the triangle is of length d− c. That yields

Wk

d− c
= tan(θ) = tan

(
arctan

(
1

k

))
=

1

k
,

which tells us that Wk = d−c
k

.

This describes the parallelogram, ignoring the wrap-around that actually occurs

while on the torus. Taking this into account, we see that the (not-necessarily-integer-

valued) number of times T k(A) wraps completely around the vertical direction of the

torus is given by Hk. Note that we ignore the vertical shifting, because it is negligible

for our purposes, considering the extreme wraparound.

We would like to estimate the intersection of T k(A) and B. The former is a

collection of stripes, of width Wk. Any full intersection of a stripe with B is of height

h − g. We estimate the number of stripes by considering the intersection of σk(a, b)

and (e, f), where σ(x) = x + η. The distance between left end-points of stripes is

exactly 1
k
, because the parallelograms have slope k, and the torus has vertical height

1. Then the number of stripes in the intersection is approximated by:

λ(σk(a, b) ∩ (e, f))
1
k

,
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with error O(1), because we may be missing part of a stripe depending on vertical

location of T k(a, b). Then we may approximate the area of intersection of T k(A) and

B by:

(h− g)
(d− c)
k

λ(σk(a, b) ∩ (e, f))
1
k

= (h− g)(d− c)λ(σk(a, b) ∩ (e, f)),

with error O( 1
k
), because the leftover area from the extra partial stripe would be

at most (h − g)
(d− c)
k

. The ergodic average of λ(σk(a, b) ∩ (e, f)) converges to

(b− a)(f − e), since σ−1 is ergodic (by condition (5) of Theorem 2.37); this allows to

conclude:

lim
n→∞

1

n

n−1∑
k=0

λ(T k(A) ∩B) = lim
n→∞

1

n

n−1∑
k=0

(
(h− g)(d− c)λ(σk(a, b) ∩ (e, f)) +O

(
1

k

))

= (h− g)(d− c) lim
n→∞

1

n

n−1∑
k=0

λ(σk(a, b) ∩ (e, f)) + lim
n→∞

1

n

n−1∑
k=0

O
(

1

k

)
= (h− g)(d− c)(b− a)(f − e) + lim

n→∞

1

n
O(log(n))

= (b− a)(d− c)(f − e)(h− g).

Therefore T is ergodic.

It should be noted that proving ergodicity of a concrete, hands-on system is in

general a non-trivial task. If one cannot utilize equivalent characterizations to reduce

the problem to some sort of algebraic or analytic trickery, such as an easy Fourier series

computation, or if one cannot prove something stronger which implies ergodicity,

then it ends up being very difficult. Indeed, for certain systems, it is surprisingly

troublesome to prove ergodicity, as we shall see later. We do have the following

proposition, which is useful for product systems:
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Lemma 2.57. Let (X,A, µ, S) be a measure-preserving system where S is strongly

mixing and µ(X) = 1, and let (Y,B, ν, T ) be a measure-preserving system where T is

ergodic and ν(Y ) = 1. Then the product map S × T on X × Y is ergodic with respect

to µ× ν.

Proof. We will show that condition (5) in Theorem 2.37 is satisfied by S × T . The

set of measurable rectangles A×B is a semi-algebra generating A⊗ B, so it suffices

to consider the condition applied to such sets. So let A,C ∈ A and B,D ∈ B. For

k ∈ N, we have

(S × T )−k(A×B) =
{

(x, y) : Sk(x) ∈ A, T k(y) ∈ B
}

=
{

(x, y) : x ∈ S−k(A), y ∈ T−k(B)
}

= S−k(A)× T−k(B),

so that we obtain:

µ× ν((S × T )−k(A×B) ∩ (C ×D)) = µ× ν((S−k(A)× T−k(B)) ∩ (C ×D))

= µ× ν((S−k(A) ∩ C)× (T−k(B) ∩D))

= µ(S−k(A) ∩ C)ν(T−k(B) ∩D).

Let ε > 0. Because S is strongly mixing with respect to µ, we may find K ∈ N such

that for all k ≥ K, ∣∣µ(S−k(A) ∩ C)− µ(A)µ(C)
∣∣ < ε

3
.

Because T is ergodic with respect to ν, we have that

lim
n→∞

1

n

n−1∑
k=0

ν(T−k(B) ∩D) = ν(B)ν(D).
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We may pick N1 ∈ N such that for all n ≥ N1, the absolute value of the difference

of the two above quantities is less than
ε

3
. Moreover, if we neglect a finite number of

initial terms, the result is still true; we have:

lim
n→∞

1

n

n−1∑
k=K

ν(T−k(B) ∩D) = lim
n→∞

(
1

n

n−1∑
k=0

ν(T−k(B) ∩D)− 1

n

K−1∑
k=0

ν(T−k(B) ∩D)

)

= lim
n→∞

1

n

n−1∑
k=K

ν(T−k(B) ∩D)− lim
n→∞

1

n

K−1∑
k=0

ν(T−k(B) ∩D)

= ν(B)ν(D)− 0 = ν(B)ν(D).

We may pick N2 such that the finite number of terms over n is less than
ε

3
for all
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n ≥ N2. Hence, we have, for n ≥ max{N1, N2}:

∣∣∣∣∣ 1n
n−1∑
k=0

µ× ν((S × T )−k(A×B) ∩ (C ×D))− µ× ν(A×B)µ× ν(C ×D)

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n−1∑
k=0

µ(S−k(A) ∩ C)ν(T−k(B) ∩D)− µ(A)ν(B)µ(C)ν(D)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n−1∑
k=0

µ(S−k(A) ∩ C)ν(T−k(B) ∩D)− 1

n

n−1∑
k=K

µ(S−k(A) ∩ C)ν(T−k(B) ∩D)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n−1∑
k=K

µ(S−k(A) ∩ C)ν(T−k(B) ∩D)− 1

n

n−1∑
k=K

µ(A)µ(C)ν(T−k(B) ∩D)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n−1∑
k=K

µ(A)µ(C)ν(T−k(B) ∩D)− µ(A)ν(B)µ(C)ν(D)

∣∣∣∣∣
=

∣∣∣∣∣ 1n
K−1∑
k=0

µ(S−k(A) ∩ C)ν(T−k(B) ∩D)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n−1∑
k=K

(
µ(S−k(A) ∩ C)− µ(A)µ(C)

)
ν(T−k(B) ∩D)

∣∣∣∣∣
+

∣∣∣∣∣µ(A)µ(C)

n

(
n−1∑
k=K

ν(T−k(B) ∩D)− ν(B)ν(B)

)∣∣∣∣∣
<
ε

3
+

1

n

n−1∑
k=K

ε

3
ν(T−k(B) ∩D) + µ(A)µ(C)

ε

3

<
ε

3
· 3 = ε.

Therefore condition (5) is satisfied, and S × T is ergodic.

Another method for proving ergodicity of certain types of skew products is to

induce the skew product on a set of positive measure, and then use Proposition 2.51;

this method will be utilized later in the thesis. To this end, we have the following

useful lemma.

Lemma 2.58. Let (X,A, µ, T ) be an ergodic measure-preserving system on a probabil-

ity space, let (Y,B, ν, Sx)x∈X be a family of measure-preserving systems on probability



54

spaces, and let R : X × Y → X × Y be the skew product of (Sx)x over T , so that

R(x, y) = (T (x), Sx(y)). Let C = A× Y , for A ∈ A with µ(A) > 0. Then we have:

µ× ν

(
∞⋃
i=0

R−i(C)

)
= 1.

Proof. First, we compute the inverse image of C under R:

R−1(C) = {(x, y) : T (x) ∈ A, Sx(y) ∈ Y }

=
{

(x, y) : x ∈ T−1(A), y ∈ Y
}

= T−1(A)× Y.

By iteration, we obtain R−i(C) = T−i(A)× Y . We then have:

∞⋃
i=0

R−i(C) =
∞⋃
i=0

T−i(A)× Y =

(
∞⋃
i=0

T−i(A)

)
× Y.

Then by Lemma 2.46, since the base measure-preserving system is ergodic on a prob-

ability space, we may conclude:

µ× ν

(
∞⋃
i=0

R−i(C)

)
= µ

(
∞⋃
i=0

T−i(A)

)
ν(Y ) = 1 · 1 = 1,

and so we are done.

There is a very important class of cocycles, which will become the foundation of

the forthcoming chapter.

Example 2.59. Consider a general dynamical system (X,A, T ), and let d ∈ N+. Let

A(1, ·) : X →Md(R) be measurable, and let A(1, ·) generate a matrix cocycle, where

the monoid operation is matrix multiplication on the left. This is the main object of

study for the remainder of the thesis, where we shall consider a slightly more specific

instance, where A takes values in GLd(R).
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A ‘real life’ example of one of these structures is the composition of derivative

matrices of dynamics on a smooth manifold. That is, let (MB, µ, σ) be a measure-

preserving system on a probability space where M has a real smooth manifold struc-

ture of dimension d, and σ be smooth. The derivative of σ at a point p is a linear

function Dσ(p) : Tp(M) → Tσ(p), which maps vectors in the tangent space at p to

vectors in the tangent space at σ(p). The Chain Rule applies to the iterates of σ:

Dσk(p) = Dσ(σk−1(p)) ◦ · · · ◦Dσ(σ(p)) ◦Dσ(p).

If we choose to represent Dσ(p) as acting on the standard basis in Rd, it becomes a

matrix, and the map D : N×M →Md(R) given by D(k, p) = Dσk(p) is a matrix cocy-

cle, where the cocycle property is verified by inspecting the Chain Rule computation

above.

2.3 The MET

The foundation of this work is the Multiplicative Ergodic Theorem (MET), for invert-

ible matrix cocycles over an invertible base measure-preserving system. This must

be specified, because there are many variations of this theorem, either for different

hypotheses on the matrices and the underlying dynamics [8], or for more general ob-

jects like operators on arbitrary Banach spaces [10]. The fact that there are so many

variations is indicative of the similar nature of these objects, and proving different

versions is of great importance, for usage in many physical problems [7].

We shall concern ourselves with perhaps the most specific version of the MET,

proven in 1968 by Oseledets [16], and examine how far we can push the theorem in a

particular direction. In doing so, we shall see that the MET is in some sense optimal.

Theorem 2.60 (Multiplicative Ergodic Theorem for Matrix Cocycles, Invertible Ver-
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sion). Let (X,B, µ, T ) be an invertible and ergodic measure-preserving system on a

probability space, and let A(1, ·) : X → GLd(R) be the generator of a measurable

matrix cocycle A. Suppose that A satisfies

∫
X

log(‖A(1, x)‖) dµ <∞,
∫
X

log(‖A(1, x)−1‖) dµ <∞.

Then there exists k ∈ N+, λ1 > λ2 > · · · > λk > −∞ called Lyapunov exponents,

positive integers m1,m2, . . . ,mk such that m1 + · · · + mk = d, a measurable decom-

position V1(x)⊕ · · · ⊕ Vk(x) with dimensions (m1, · · · ,mk), and a T -invariant set of

full measure, X̃ ⊂ X with the following properties:

1. Equivariance: For all x ∈ X̃, and i = 1, · · · , k, we have:

A(1, x)Vi(x) = Vi(T (x)).

2. Bilateral Growth: Given x ∈ X̃ and i ∈ {1, . . . , k}, for all v ∈ Vi(x) \ {0},

we have:

1

n
log(‖A(n, x)v‖) −→

n→∞
λi,

1

n
log(‖A(−n, x)v‖) −→

n→∞
−λi.

The growth condition in the conclusion informally says that for for v ∈ Vi,

‖A(n, x)v‖ ∼ enλi and ‖A(−n, x)v‖ ∼ e−nλi . That is, the λi describes the exponential

growth and decay rates of vectors in the ith subspace. The equivariance condition is

needed for this to make sense, because vectors in Vi(x) must move to Vi(T (x)) and

therefore their images will have the same growth rate.

Example 2.61. Let X = {1} be a one-element set, B = {∅, X} be the only σ-algebra

on X, µ a set function on X given by µ(X) = 1 and µ(∅) = 0, and T (1) = 1 be the
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identity map on X. This is a trivially ergodic and invertible measure-preserving

system. Let A ∈ GLd(R) be diagonalizable, and conflate the matrix A with the map

A : X → GLd(R). A then generates a cocycle over T , with A(n, 1) = An. Applying

the MET in this case gives us a subspace decomposition of Rd which has the properties

above. If µ is an eigenvalue of A with corresponding eigenvector w, then we have:

1

n
log ‖A(n, 1)w‖ =

1

n
log ‖Anw‖ =

1

n
log |(|µn ‖w‖)

= log |µ|+ 1

n
log ‖w‖ −→

n→∞
log |µ| .

So the Lyapunov exponent corresponding to the Vi containing w is the logarithm

of the absolute value of the eigenvalue. Since A is diagonalizable, there is a basis

of eigenvectors {wi}ni=1 with k eigenvalues {µ1, . . . , µk}. This gives us k distinct

eigenspaces V1, . . . , Vk corresponding to Lyapunov exponents λi = log |µi| . In this

way, we recover the diagonalization of A.

If A is not diagonalizable but has real eigenvalues, it still has a collection of

generalized eigenspaces corresponding to each eigenvalue, and the Jordan normal

form specifies basis vectors such that the asymptotic expansion rate is the same as

in the diagonalized case. The MET recovers the subspaces in the Jordan form for A,

via Lyapunov exponents; of course, it doesn’t necessarily reveal an obvious way to

arrange the vectors such that the matrix takes an upper-triangular form, like in the

Jordan form. It is only block diagonal.

Example 2.62. Let (X,B, µ, T ) be an invertible and ergodic measure-preserving

system, with µ(X) = 1. If d = 1, then real invertible matrices are simply non-zero

real numbers, which act on R by multiplication. Let A : Z×X → GL1(R) = R \ {0}

be a measurable cocycle satisfying the log-integrability conditions in both directions,
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and observe that for non-zero v ∈ R, we have:

1

n
log ‖A(n, x)v‖ =

1

n
log
( ∣∣A(1, T n−1(x))

∣∣ . . . |A(1, x)| |v|
)

=
1

n

n−1∑
i=0

log
∣∣A(a, T i(x))

∣∣+
1

n
|v| −→

n→∞

∫
X

log |A(1, x)| dµ(x),

by Birkhoff’s theorem (Theorem 2.34), since the log-integrability conditions mean

exactly that log |A(1, x)| is an L1 function. Hence in this case, the one Lyapunov

exponent for the system is given by the time average of log |A(1, ·)| (which equals the

space average).

For an integrable function f : X → R, we note that log
∣∣ef(x)

∣∣ = log(ef(x)) = f(x)

is integrable, so letting A(1, x) = ef(x) we obtain both a ‘matrix’ cocycle, generated

by A(1, x), and an Abelian group cocycle, generated by f(x). Letting v = 1, the

MET then gives the almost-everywhere convergence of the time averages of f , which

is exactly the statement of Birkhoff’s theorem. Hence the MET generalizes Birkhoff’s

theorem. This makes some intuitive sense, as the theorems have a very similar flavour,

when unpacked.

In the case of non-invertible T and matrices A(1, x), the MET yields a weaker

statement. Instead of a subspace decomposition, there exists a measurable filtration

of subspaces on which the Lyapunov exponents increase; see Raghunathan, [19]. If at

least the map T is invertible, then there is an in-between result, which restores the

subspace decomposition in a slightly weaker form [8].

There are also Multiplicative Ergodic Theorems proven for more exotic spaces. In

1982, Ruelle proved an MET for bounded operators on a Hilbert space, which was the

first extension of these ideas into infinite dimensional space [24]. Shortly thereafter,

in 1983 Mañé proved a version of the MET for compact operators on Banach spaces

[15], and there have been other METs proven in cases of bounded linear operators on
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Banach spaces with certain conditions (for instance, see Lian and Lu [14], González-

Tokman and Quas [10]).

Along with the many variations of the MET, there are many proofs thereof, and

different proofs can give us intuition and insight towards these objects. The proof

by Raghunathan in [19], in the case where both the base dynamics and the matrix

cocycle are not assumed to be invertible, works hard to construct the subspaces while

making sure that they are measurable. The proof by Walters in [32] utilizes a result

concerning maps which take the form of skew products over the the product of the

base dynamics space and a compact metric space, which can be applied to the product

of the base space and a Grassmannian. The proof given by Barreira and Pesin in [3]

follows the lines that Oseledets used in the original paper in the area, [16]. The

main idea is that it is much easier to prove the result for triangular cocycles; given a

matrix cocycle on a particular space X, they extend the space by a copy of SOd(R)

and construct a new matrix cocycle over the new space, and show that there exists

a measurable decomposition for the cocycle on X if and only if there is one for the

cocycle over the extended space. This new cocycle is triangular, so the proof becomes

simpler.

The usefulness of this triangular cocycle over an extended space leads us consider

the idea of upper triangularizing the original cocycle, similar to how upper triangu-

larizing matrices can be very informative and computationally beneficial. We saw in

Example 2.61 that the MET yields subspaces, but we don’t necessarily obtain finer

structure. We shall make precise the mathematics and examine this concept in the

next chapter.
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Chapter 3

Equivariant triangularization

3.1 Setup

Consider again the invertible version of the MET. We may consider this equivariant

decomposition of Rd into subspaces as a block diagonalization of the matrix cocycle

A, in the following formulation:

Theorem 3.1 (Equivalent Formulation of MET for Invertible Matrix Cocycles). Let

(X,B, µ, T ) be an invertible and ergodic measure-preserving system on a probability

space, and A : X × Z→ GLd(R) be a measurable cocycle. Suppose that A satisfies

∫
X

log+(‖A(1, x)‖) dµ <∞,
∫
X

log+(
∥∥A(1, x)−1

∥∥) dµ <∞.

Then there exists k ∈ N+, λ1 > λ2 > · · · > λk ≥ −∞, positive integers m1,m2, . . . ,mk

such that m1 + · · · + mk = d, a measurable function C : X → GLd(R), and a T -

invariant set of full measure, X̃ ⊂ X with the following properties:

1. Equivariance: For all x ∈ X̃, we have that

C(T (x))−1A(1, x)C(x)
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is block diagonal with block sizes (m1, · · · ,mk);

2. Bilateral Growth: Given x ∈ X̃ and i ∈ {1, . . . , k}, for all non-zero v in the

columnspace of the ith block, we have:

1

n
log(‖A(n, x)v‖) −→

n→∞
λi,

1

n
log(‖A(−n, x)v‖) −→

n→∞
−λi.

Given the subspaces Vi(x), i = 1, . . . , k in the classical MET, one may measurably

choose basis vectors for each of them, which Walters showed in [32]; call them vji ,

for j = 1, . . . ,mi. Then construct the matrix C(x) whose columns are the vji , in

order; we see that the matrix C(T (x))A(1, x)C(x)−1 is block diagonal. Conversely,

given the matrices C(x), we may measurably construct the equivariant subspaces

by taking Vi(x) = spanR{C(x)eMi+1, . . . , C(x)eMi+mi}, where i = 1, . . . , k and Mi =

m1 + · · ·+mi−1, with M1 = 0.

We see that this restatement of the MET is a result about block diagonalizing

matrices in a well-behaved way. However, aside from the overall structure for each

block, we learn nothing about the internal structure of the blocks. Is it possible

that there may always be finer structure to the blocks, which is unspecified by the

theorem? Namely, may we always upper triangularize these blocks? If not over R,

over C?

Some authors have investigated this topic. Thieullen, in 1997, investigated the

case of 2-by-2 real invertible matrices, and showed that there were four distinct cases

for real normal forms [28]. His approach involved complex conformal mapping theory,

which foreshadows work later in this thesis, and he proves the results for determinant

one cocycles before extending the result to all invertible matrix cocycles.

In 1999, Arnold, Nguyen, and Oseledets proved a so-called Jordan normal form

for matrix cocycles, without assuming a log-integrability condition [2]; they obtain
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an upper-triangular form for the whole matrix, with blocks on the diagonal. In

particular, this form does not necessarily have triangular blocks; it has blocks along

the diagonal, with zeroes below, but nothing specific above. If the hypotheses of the

MET are also satisfied, their results allow for a block triangular form, which is not

necessarily any more refined than the blocks already obtained.

Both of these results deal with the situation of matrices over the real numbers,

however. In Example 2.61 we analyzed a cocycle which was simply powers of a single

matrix A. It is well-known that if we allow for conjugation by complex matrices

(that is, letting our change of basis matrix be complex-valued), we may always find

a basis (corresponding to a matrix U) in which A is upper triangular. First, we may

apply the MET in the real situation to obtain a block-diagonal form for A. Then for

each block, we may conjugate by a complex matrix Ui to obtain a complex upper-

triangular block, yielding a a block-upper-triangular form for the matrix (and hence,

the cocycle).

This example leads us to the following definition and question:

Definition 3.2. Let (X,B, µ, T ) be a measure-preserving system and let A be a

cocycle over T of real n-by-n matrices, which together satisfy the hypotheses of the

MET; then A may be block-diagonalized over R, with block sizes m1, . . . ,mk. We

say that A is block upper-triangularizable over F if there is a measurable cocycle

C : X → GLn(F) such that

C(T (x))−1A(1, x)C(x)

is block upper-triangular, with entries in F and block sizes m1, . . . ,mk.

Question. Given a cocycle A satisfying the MET (Theorem 3.1), can we necessarily

always block upper-triangularize A, possibly over C?
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Answer. We answer this question in the negative. We shall state and prove a suf-

ficient condition to ensure that a matrix cocycle cannot be block upper-triangularized

over R or over C. We shall then present three different explicit matrix cocycles,

showing how the condition may (or may not) be satisfied.

3.2 General framework

Let us introduce some notation, after which we will state the aforementioned condi-

tion. Denote the complex unit circle
{
z ∈ C̄ : |z| = 1

}
by S, and denote the real

orthogonal group of 2-by-2 matrices by O2(R). Proposition 2.18 says that there

is a homeomorphism ψ from Gr1(C2) to C̄. Define maps ι : C̄ \ S → Z2 and

τ : C̄ \ {0,∞} → T by:

ι(z) =


0 |z| < 1

1 |z| > 1 or z =∞
, τ(z) =

1

2π
arg(z).

It is easy to see that these are measurable.

Let (X,B, µ, T ) be an invertible and ergodic measure-preserving system on a prob-

ability space, and let A : Z × X → O2(R) be a measurable matrix cocycle over

T . For each x ∈ X, A(1, x) is an orthogonal, hence invertible, matrix, and it de-

fines a map on Gr1(C2), as in Section 3.1. Using the map ψ, we obtain a measur-

able map M(x) = ψ ◦ A(1, x) ◦ ψ−1 which acts on C̄, and we get a skew product

N : X × C̄→ X × C̄ with N(x, z) = (T (x),M(x)z).

Since A(1, x) ∈ O2(R), each map either rotates by some angle αx, or flips in the

line with angle βx; let Xr ⊂ X be where A(1, x) is a rotation, and let Xf ⊂ X be
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where A(1, x) is a flip. Define the maps fx : T→ T and gx : Z2 → Z2 by:

fx(y) =


y +

αx
π

x ∈ Xr,

2βx
π
− y x ∈ Xf ,

gx(a) =


a x ∈ Xr,

a+ 1 x ∈ Xf .

From these maps, define skew products R : X × Z2 → X × Z2 given by R(x, a) =

(T (x), gx(a)), and S : X × T → X × T given by S(x, y) = (T (x), fx(y)). The maps

R and S will be shown to be factors of N , restricted appropriately. The theorem can

now be stated.

Theorem 3.3. Let (X,B, µ, T ) be an invertible and ergodic measure-preserving sys-

tem on a probability space, and let A : Z×X → O2(R) be a measurable cocycle of or-

thogonal 2-by-2 real matrices over T . Let R : X×Z2 → X×Z2 and S : X×T→ X×T

be as described above. If S is ergodic, then the cocycle A cannot be block upper-

triangularized over R. If both R and S are ergodic on their respective spaces, then the

cocycle A cannot be block upper-triangularized over C.

The proof will proceed in roughly four steps:

1. Make rigorous and prove the statements in the above discussion and setup.

2. Assume, for contradiction, the existence of an upper-triangularization for A,

and obtain an equivariant family of 1-D complex subspaces.

3. Translate the equivariant subspaces into an invariant graph on C under a skew

product involving M , and then translate into invariant graphs for each of the

factor maps f and g above.

4. Utilize ergodicity of R and S to show that the existence of invariant graphs is

a contradiction.
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Step 1: First, we must understand the action of A(x) on Gr1(C2), to obtain the

action of A(x) on C̄. We recall that O2(R) is composed of rigid symmetries of the

unit circle in R2, which are rotations and reflections. So for each x ∈ X, A(1, x) is

either a rotation by some angle αx ∈ [0, 2π) (so A(1, x) = rotαx) or is a reflection over

the line with angle βx ∈ [0, π) (so A(1, x) = reflβx). Let Xr and Xf be the sets on

which A(1, x) is a rotation and a flip, respectively. We prove the following lemma:

Lemma 3.4. The map M(x) = ψ ◦ A(1, x) ◦ ψ−1 is measurable and invertible, and

has the following form. For x ∈ Xr with A(1, x) = rotαx, we have

M(x)z =


e2iαxz z 6=∞,

∞ z =∞.

For x ∈ Xf with A(1, x) = A(1, x) = reflβx, we have

M(x)z =



e4iβx

z
z /∈ {0,∞},

∞ z = 0,

0 z =∞.

Proof. The measurability of M(x) is clear, as all three of the maps in the composition

are continuous, hence measurable. In order to describe the action of A(1, x) on

Gr1(C2), we use Proposition 2.18. As there, let

v1 =

1

i

 , v2 =

 1

−i

 ;

we may write every subspace in Gr1(C2) as either spanC{v1 + zv2} for some z ∈ C,

or spanC{v2}. We can compute the action of A(1, x) on Gr1(C2) by applying them to
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v1 + zv2, from above, and then taking the span.

If x ∈ Xr, then A(1, x) = rotαx . We have:

A(1, x)(v1 + zv2) =

cos(αx) − sin(αx)

sin(αx) cos(αx)



1

i

+ z

 1

−i




=

cos(αx)− i sin(αx)

sin(αx) + i cos(αx)

+ z

cos(αx) + i sin(αx)

sin(αx)− i cos(αx)


=

 e−iαx
e−iαxi

+ z

 eiαx

−eiαxi


= e−iαx(v1 + e2iαxzv2).

Therefore, we see that

A(1, x) spanC{v1 + zv2} = spanC{v1 + e2iαxzv2},

when A(1, x) is a rotation. We also have:

A(1, x)v2 =

cos(αx) − sin(αx)

sin(αx) cos(αx)


 1

−i

 = eiαx

 1

−i

 ,
which yields

A(1, x) spanC{v2} = spanC{v2}.
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Similarly, if x ∈ Xf , then A(1, x) = reflβx . We have, for z ∈ C \ {0}:

A(1, x)(v1 + zv2) =

cos(2βx) sin(2βx)

sin(2βx) − cos(2βx)



1

i

+ z

 1

−i




=

cos(2βx) + i sin(2βx)

sin(2βx)− i cos(2βx)

+ z

cos(2βx)− i sin(2βx)

sin(2βx) + i cos(2βx)


=

 e2iβx

e2iβx(−i)

+ z

 e−2iβx

e−2iβx(i)


= e2iβxv2 + e−2iβxzv1

= e−2iβxz

(
v1 +

e4iβx

z
v2

)
.

Therefore, we see that

A(1, x) spanC{v1 + zv2} = spanC

{
v1 +

e4iβx

z
v2

}
,

when A(1, x) is a reflection. We also have:

A(1, x)v1 =

cos(2βx) sin(2βx)

sin(2βx) − cos(2βx)


1

i

 = e2iβx

 1

−i

 ,
A(1, x)v2 =

cos(2βx) sin(2βx)

sin(2βx) − cos(2βx)


 1

−i

 = e−2iβx

1

i

 ,
which implies that

A(1, x) spanC{v1} = spanC{v2},

A(1, x) spanC{v2} = spanC{v1}.
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We have fully described the action of A(1, x) on Gr1(C2). Proposition 2.18 also

tells us that Gr1(C2) is homeomorphic to C̄, where the homeomorphism is given by

ψ : Gr1(C2)→ C̄, defined by

ψ(spanC{v1 + zv2}) = z, ψ(spanC{v2}) =∞.

From this, we may easily read off the family of maps M(x) = ψ◦A(1, x)◦ψ−1 : C̄→ C̄

to be the desired maps. The invertibility of M(x) is straightforward to see.

We now define the skew product N : X × C̄ → X × C̄, given by N(x, z) =

(T (x),M(x)z). This represents the action of A on the Grassmannian Gr1(C2) as a

cocycle over the base dynamics T . We shall elaborate on some properties of N , and

then construct the factor maps as mentioned above.

Lemma 3.5. Let N be as defined above. Denote PC = {z : |z| = C}∪
{
z : |z| = 1

C

}
for C ∈ [0,∞] (where we define P0 = P∞ = {0,∞}). Then sets of the form X × PC

are N-invariant; in particular, X × S and X × {0,∞} (and their complements) are

N-invariant.

Proof. Observe that N is invertible; the map N−1(x, z) = (T−1(x),M(T−1(x))−1(z))
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is its inverse, which we can check:

N−1(N(x, z)) = N−1(T (x),M(x)z)

= (T−1(T (x)),M(T−1(T (x)))−1M(x)z)

= (x,M(x)−1M(x)z)

= (x, z),

N(N−1(x, z)) = N(T−1(x),M(T−1(x))−1z)

= (T (T−1(x)),M(T−1(x))M(T−1(x))−1z)

= (x, z).

It then suffices to show that if (x, z) ∈ X × PC , then N(x, z) = (T (x),M(x)z) ∈

X × PC . Clearly T (x) ∈ X, so consider that |z| ∈ {C, 1
C
}. Then

|M(x)z| ∈
{
|z| , 1

|z|

}
=

{
C,

1

C

}
,

so that M(x)z ∈ PC and so N(x, z) ∈ X × PC . Thus X × PC is N -invariant, for any

C ∈ [0,∞]. In particular, since P1 = S, and P0 = {0,∞}, these sets are N -invariant,

as are their complements.

Note how P1 is actually just S, and is not a union of two disjoint circles. If we

were to merely project onto S, we would not be able to isolate the flipping action of

M(x). We will get around this by obtaining two factors of N , when N is restricted

to either of the N -invariant sets X × (C̄ \ {0,∞}) or X × (C̄ \ S).

Lemma 3.6. For each x ∈ X, define the maps fx : T → T and gx : Z2 → Z2, given
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by:

fx(y) =


y +

αx
π

x ∈ Xr,

2βx
π
− y x ∈ Xf ,

gx(a) =


a x ∈ Xr,

a+ 1 x ∈ Xf .

Define skew products S : X × T→ X × T and R : X × Z2 → X × Z2 by:

S(x, y) = (T (x), fx(y)), R(x, a) = (T (x), gx(a)).

Then S is a factor of N
∣∣
X×(C̄\{0,∞}), by id×τ , and R is a factor of N

∣∣
X×(C̄\S)

, by

id×ι.

Proof. Clearly all of the maps are measurable. First, we deal with S; recall that the

argument function arg satisfies arg(z1z2) = arg(z1) + arg(z2) for non-zero z1, z2 ∈ C.

For x ∈ X and z ∈ C̄ \ {0,∞}, we have:

(id×τ) ◦N(x, z) =


(T (x), τ(e2iαxz)) x ∈ Xr(
T (x), τ

(
e4iβx

z

))
x ∈ Xf

=


(
T (x), τ(z) +

αx
π

)
x ∈ Xr(

T (x),
2βx
π
− τ(z)

)
x ∈ Xf

= (T (x), fx(τ(z))) = S ◦ (id×τ)(x, z).

Hence S is a factor of N restricted to X × (C̄ \ {0,∞}). Next, we deal with R; let
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z ∈ C̄ \ S. We then have:

(id×ι) ◦N(x, z) =


(T (x), ι(e2iαxz)) x ∈ Xr(
T (x), ι

(
e4iβx

z

))
x ∈ Xf

=


(T (x), ι(z)) x ∈ Xr

(T (x), ι(z) + 1) x ∈ Xf

= (T (x), gx(ι(z))) = R ◦ (id×ι)(x, z),

where we implicitly deal with the cases where z = 0 or z =∞, since the computation

is identical. Hence R is a factor of N restricted to X × (C̄ \ S).

It is easy to see that both S and R are invertible. A very important thing to note,

now, is that there are measures which are preserved by S or by R. On X × T, we

have the product measure µ × λ, where λ is the normalized Lebesgue measure, and

on X × Z, we have the product measure µ × c, where c is the normalized counting

measure on Z2 (which assigns weight
1

2
to each set {0} and {1}, and happens to be

the normalized Haar measure on Z2). When x ∈ Xr, fx is measure-preserving by

Example 2.22 (or, of course, 2.24), and gx is the identity map and hence obviously

measure-preserving. When x ∈ Xf , fx is measure-preserving by Example 2.23, and

gx is measure-preserving by Example 2.24. By Lemma 2.53, S preserves µ×λ and R

preserves µ× c. We are now in position to begin the main argument in the proof.

Step 2: For contradiction, we assume that there is an upper-triangularization for

A. So we can find C : X → GL2(C) such that C(T (x))−1A(1, x)C(x) is upper-

triangular. The following lemma is true in more general settings than the one we

currently have.
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Lemma 3.7. Let (X,B, T ) be a dynamical system, and let A : Z × X → GLd(R)

be a measurable matrix cocycle over T . Suppose there is a complex block upper-

triangularization for A, by C : X → GLd(C), so that C(T (x))−1A(1, x)C(x) is block

upper-triangular over C. Then we may find a measurable equivariant family V (x) of

1-D complex subspaces of Cd for the cocycle A.

Proof. Let δx be the top-left entry of C(T (x))−1A(1, x)C(x). δx is non-zero for all x,

since all three of these matrices are invertible. Let

e1 =



1

0

...

0


∈ Cd

and let V (x) be the family of 1-D subspaces given by

V (x) = spanC{C(x)e1} = C(x) spanC{e1}.

We apply A(1, x) to V (x):

A(1, x)C(x)e1 = C(T (x))C(T (x))−1A(1, x)C(x)e1 = δxC(T (x))e1.

So A(1, x)V (x) = V (T (x)), ie. V is equivariant.

For the measurability of V (x), we note that x 7→ C(x) is assumed to be mea-

surable. C(x) is continuous as a map on Cd, and the induced action of C(x) on the

Grassmannian Gr1(Cd) is continuous because of that, hence measurable. Hence

x 7→ V (x) = C(x) spanC{e1}
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is measurable, and the lemma is proved.

We apply Lemma 3.7 in the case of our invertible and ergodic base dynamics

(X,B, µ, T ) and orthogonal 2-by-2 real matrix cocycle A. We may compose the map

V : X → Gr1(C2) with ψ, the homeomorphism from the Grassmannian to C̄, so we

obtain w : X → C̄, w(x) = ψ ◦ V (x). The equivariance property of V with respect to

A carries over, in that we have:

M(x)(w(x)) = M(x) ◦ ψ ◦ V (x) = ψ ◦ A(1, x)V (x) = ψ(V (T (x))) = w(T (x)). (∗)

Hence w is equivariant with respect to M . We shall almost exclusively work with w

and M instead of V and A.

Step 3: Recall that equivariance is only an almost-everywhere statement, with

respect to the measure µ on X. Let

B = {x ∈ X : M(x)w(x) 6= w(T (x))} ;

by the definition of equivariance, we have µ(T−k(B)) = 0, for any k ∈ Z, so that

C =
⋃
k∈Z

T−k(B) = {x ∈ X : equivariance of w under M fails during the orbit of x}

has measure zero and is T -invariant. We remove this set from X, so that our equiv-

ariance condition is now satisfied by every point in X \ C, which we shall call X for

ease of notation. Also recall that N(x, z) = (T (x),M(x)z) is the skew product of M

over T . This leads us to an important lemma, regarding the graph of w (the lemma

holds more generally, for any skew product of an equivariant map over invertible base

dynamics).



74

Lemma 3.8. Let w and N be given as above. The graph of w, denoted

Γw = {(x,w(x)) : x ∈ X} ,

is N-invariant.

Proof. We have already shown that N is invertible. It then suffices to show that for

any x ∈ X, N(x,w(x)) ∈ Γw, because T is invertible on X. We compute:

N(x,w(x)) = (T (x),M(x)w(x)) = (T (x), w(T (x))) ∈ Γw,

by (∗) (that is, the equivariance of w with respect to M). Thus Γw is N -invariant.

We see that equivariance of w has yielded invariance of its graph under related

skew product dynamics. It turns out that N has many invariant sets. Namely, by

Lemma 3.5, any set of the form X × PC is invariant for N . In particular, the graph

of w must be contained in one such pair:

Lemma 3.9. Consider the above situation, with (X,B, µ, T ), N , and w. There exists

C ∈ [0,∞] such that for almost every x ∈ X, w(x) ∈ PC.

Proof. Define k : X → R by

k(x) = min

{
|w(x)| , 1

|w(x)|

}
,

where we say that 1
0

=∞ and vice versa, and observe that k is a T -invariant map on
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X:

k(T (x)) = min

{
|w(T (x))| , 1

|w(T (x))|

}
= min

{
|M(x)w(x)| , 1

|M(x)w(x)|

}
= min

{
|w(x)| , 1

|w(x)|

}
since M(x) either fixes |z| or flips it

= k(x).

Since T is ergodic, k must be constant almost everywhere, with constant C ≥ 0.

Then for almost every x ∈ X, we have |w(x)| = C or |w(x)| = 1
C

, so that w(x) ∈ PC ,

as desired.

Let D ⊂ X be the set of points for which w(x) /∈ PC , which has measure zero and

is T -invariant. Remove this set from X, hence leaving X \ D, (which we shall still

call X). Then Γw (when restricted to this new set of full measure) sits inside of PC .

We have shown that the image of w sits inside of either a pair of distinct circles

(including the pair of degenerate circles, {0,∞}) lying outside the unit circle, one

outside and one inside, or sits inside the unit circle itself (ie, when C = 1 in the lemma

above, so P1 = {z : |z| = 1} = S). In each case, we push the set forward by either ι

or τ , depending on which function contains the set in its domain. We may then make

a statement about the graphs of τ ◦ w and ι ◦ w. Recall that S(x, y) = (T (x), fx(y))

and R(x, a) = (T (x), gx(a)) are skew products on X × T and X × Z2, respectively,

and that the graphs of τ ◦ w and ι ◦ w sit inside of those sets.

Lemma 3.10. In the above situation, the set id×τ(Γw) = Γτ◦w is S-invariant, and

the set id×ι(Γw) = Γι◦w is R-invariant.
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Proof. The equality of sets above is by observing that

id×τ(x,w(x)) = (x, τ(w(x))), id×ι(x,w(x)) = (x, ι(w(x))).

To show invariance, in the first case we apply S:

S(x, τ(w(x))) = (T (x), fx(τ(w(x)))) = (T (x), τ(M(x)w(x))) = (T (x), τ(w(T (x)))),

by (∗), so that S(Γτ◦w) = Γτ◦w. In the second case, we apply R:

R(x, ι(w(x))) = (T (x), gx(ι(w(x)))) = (T (x), ι(M(x)w(x))) = (T (x), ι(w(T (x)))),

also by (∗), so that R(Γι◦w) = Γι◦w.

These invariant sets lie in measure-preserving systems, not just arbitrary mea-

surable dynamical systems, so we may attempt to use classical ergodic theory. We

could have tried to work with the map N on X × C̄, but N had a huge number of

invariant sets, and there is no obviously useful measure for our purposes (ie. to derive

a contradiction via the existence of w); chances are, N would not be ergodic unless

the measure was pathological. However, we are now working in much nicer spaces,

so we have much less trouble with which to deal, in this regard.

Step 4: From these invariant graphs, we obtain obstructions to the ergodicity of

the dynamics R and S.

Lemma 3.11. Again considering the above situation, R and S cannot be ergodic,

assuming the existence of the invariant graphs from Lemma 3.10.

Proof. Due to the fact that the two transformations are on different spaces, we will

deal with each case separately.
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First, consider the two-disjoint-circles case, where (X×Z2, µ×c, R) is the measure-

preserving system being studied. We know that Γι◦w is an R-invariant set. We may

compute the measure of this set, using Fubini’s theorem. The key point to notice is

that ι ◦ w takes exactly one of two values in Z2, for every point in X. Hence, we

obtain:

µ× c(Γι◦w) =

∫
X×Z2

1Γι◦w(x, a) dµ× c =

∫
X

(
1

2
1Γι◦w(x, 0) +

1

2
1Γι◦w(x, 1)

)
dµ

=

∫
X

1

2
dµ =

1

2
.

Hence Γι◦w is an R-invariant set of non-full positive measure, which means that R

cannot be ergodic.

We now deal with the circle case. We know that Γτ◦w, as above, is an S-invariant

set; however, it is clear that the previous argument does not immediately work,

because this set has measure zero. Instead, we’ll find a non-constant S-invariant

function.

To do this, first rewrite S using the explicit formula for fx. Denoting α̃x =
αx
π

and β̃x =
2β

π
, we obtain:

S(x, y) =


(T (x), y + α̃x) x ∈ Xr,

(T (x), β̃x − y) x ∈ Xf .

Next, denote |·, ·|c : T × T → R as the wrap-around distance on the unit interval,

defined by

|x, y|c = min{|x− y| , 1− |x− y|};

so |.5, .7|c = .2 but |.1, .9| = .2, not .8. Finally, define h(x, y) = |y − τ ◦ w(x)|c. Note

the distance |·, ·|c is continuous, hence measurable, and id×τ ◦ w is measurable, so



78

h = |·, ·|c ◦ (id×τ ◦ c) is also measurable. Then we observe that:

h(S(x, y)) =


|y + α̃x − τ ◦ w(T (x))|c x ∈ Xr,∣∣∣β̃x − y − τ ◦ w(T (x))

∣∣∣
c

x ∈ Xf ;

=


|y + α̃x − τ ◦M(x)w(x)|c x ∈ Xr,∣∣∣β̃x − y − τ ◦M(x)w(x)

∣∣∣
c

x ∈ Xf ;

=


|y + α̃x − (τ ◦ w(x) + α̃x)|c x ∈ Xr,∣∣∣β̃x − y − (β̃x − τ ◦ w(x))

∣∣∣
c

x ∈ Xf ;

=


|y − τ ◦ w(x)|c x ∈ Xr,

|τ ◦ w(x)− y|c x ∈ Xf ;

= h(x, y).

Hence h is S-invariant. However, h is certainly not constant on X × T, because it is

exactly the vertical distance of a point in X ×T away from the graph of V . Hence S

cannot be ergodic, by Theorem 2.37, since h is measurable.

Proof of Theorem 3.3. We have assumed that R is ergodic with respect to µ × λ,

and that S is ergodic with respect to µ × λ. Assume, for contradiction, that the

cocycle A is block-upper-triangular. Then by Lemma 3.7, there is an equivariant

family of 1-dimensional subspaces, which by Lemma 3.8 yields an invariant graph on

C̄, which lies either on the unit circle or on two disjoint circles related by inversion,

by Lemma 3.9. By Lemma 3.10, we know that the projection of the graph down to

either X × Z2 or X × T is invariant under the dynamics, and Lemma 3.11 says that

because of this, R and S cannot be ergodic. This is a contradiction, which means

that the assumption about the existence of an upper-triangularization of A, which is
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the only other assumption we have made, must be incorrect, and therefore A cannot

be upper-triangularized over C.

We list two remarks about the proof, the latter addressing the fact that the state-

ment regarding block upper-triangularization over R was not explicitly proven.

1. An alternate proof for showing that the ergodicity of S leads to a contradiction

involves computing the measure of the set h−1[0,
1

4
]. This set is the set of all

points in X × T which are at most distance
1

4
in the vertical direction from

the graph of τ ◦ w. Utilizing Fubini’s theorem essentially returns the same

integration as in the two circles case. This argument is (lovingly) called the

‘invariant ponytail’ argument, as h−1[0,
1

4
] looks like a fattened version of Γτ◦w,

which looks like a ponytail if the graph is drawn smoothly enough.

2. It should be noted that if one merely wished to determine if a real cocycle of

2-by-2 matrices, satisfying all of the same hypotheses as above, was measurably

equivariantly block upper-triangularizable over the real numbers, one would

note that Gr1(R2) is homeomorphic to the interval [0, π) by considering the

angle from an axis (usually the horizontal axis in the plane), and thus to T.

The dynamics arising from this construction are exactly the dynamics derived

in the one circle case. Thus this is exactly what we could do to show that A

is not equivariantly upper-triangularizable over the real numbers. It must be

noted that this occurred due to the particular structure of the action of M on

C̄; the graph of w remained away from 0 and ∞.

Now that we have a sufficient condition for a matrix cocycle A to not be block

upper-triangularizable, we will explore three examples. The first example will be a

cocycle which is not block upper-triangularizable over the real numbers, but may be

diagonalized over the complex numbers. The example is a good illustration of how
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both conditions are explicitly needed. The second and third examples are cocycles

which are not block upper-triangularizable over R or C; they differ in that they

are over different base dynamics spaces, and that the technical details of proving

ergodicity are considerably different.

3.3 Example 1: rotation cocycle over a rotation

Let (T,B, λ, T ) be the irrational rotation by η over the unit interval with normalized

Lebesgue measure, and consider the matrix cocycle A generated by

A(1, x) =

cos(πx) − sin(πx)

sin(πx) cos(πx)

 = rotπx.

Theorem 3.12. The cocycle A is block upper-triangularizable over C, but not over

R.

Proof. The matrix A(1, x) is a rotation for all x ∈ T, with rotation angle αx = πx,

and Xr = T, using the notation in 3.4. Then considering M(x) = ψ ◦ A(1, x) ◦ ψ−1,

we see that M(x) acts on C̄ by

M(x)z = e2πixz,

for all x ∈ T. From here, we construct the restricted map M◦(x), and the factor

map fx : T → T; we see that fx(y) = x + y for all x ∈ T. Then the skew product

S : T× T→ T× T is given by

S(x, y) = (T (x), fx(y)) = (x+ η, x+ y).

This map was shown to be ergodic in Example 2.55, and so we see that by Theorem
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3.3, A cannot be block upper-triangularized over the real numbers.

However, observe that each rotation matrix A(1, x) is diagonalized by the same

matrix

C(x) = C = [v1 v2] =

1 1

i −i

 ,
where the notation for v1 and v2 comes from Lemma 3.4. In particular, we have

C(T (x))−1A(1, x)C(x) = C−1A(1, x)C

=
−1

2i

−i −1

−i 1


cos(πx) − sin(πx)

sin(πx) cos(πx)


1 1

i −i


=
−1

2i

−i −1

−i 1


 e−πix eπix

ie−πix −ieπix


=
−1

2i

−2ie−πix 0

0 −2ieπix


=

e−πix 0

0 eπix

 .
Hence we see that C(T (x))−1A(1, x)C(x) is diagonal in C, and so upper-triangular.

There are two equivariant subspaces, here, which are independent of x:

V1(x) = spanC{Ce1} = spanC{v1}, V2(x) = spanC{Ce2} = spanC{v2}.

In the dynamical picture, these are the points 0 and ∞ in C̄, and we have seen that

rotations leave these points fixed. This gives rise to R-invariant sets in T×Z2 which

have positive measure, and there is nothing to prevent this, as the map R is given by
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R(x, a) = (T (x), a). Indeed, T×{0} and T×{1} are R-invariant sets of positive (but

less than full) measure.

3.4 Example 2: rotation and flip cocycle

over a rotation

Let the base dynamics space be the same as the previous example: (T,B, λ, T ),

where T is rotation on the unit interval by an irrational η, with normalized Lebesgue

measure. This time, we define a matrix cocycle A over T , with

A(1, x) =



cos(πα) − sin(πα)

sin(πα) cos(πα)

 x ∈ [0, 1− η),

1 0

0 −1

 x ∈ [1− η, 1).

Theorem 3.13. The cocycle A over (T,B, λ, T ) as defined above is not block upper-

triangularizable over C.

To do the proof, we fit the situation into the general framework. A(1, x) is a

rotation by πα for x ∈ [0, 1 − η), and a reflection in the horizontal axis for x ∈

[1− η, 1). In the notation, Xr = [0, 1− η), with a fixed rotation angle αx = πα, and

Xf = [1− η, 1), with fixed reflection axis βx = 0. Computing M(x) yields

M(x)z =


e2πiαz x ∈ [0, 1− η),

1

z
x ∈ [1− η, 1).

We compute both the two-point and the circle extensions of T, beginning with S.
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The map fx : T→ T is given by:

fx(y) =


y + α x ∈ [0, 1− η),

1− y x ∈ [1− η, 1),

where we may write ‘1 − y’ in place of ‘−y’ to emphasize the modulo 1 aspect of T

(we ignore doing this in the rotation case for notational simplicity, for the moment).

The resulting skew product S : T× T→ T× T is:

S(x, y) =


(x+ η, y + α) x ∈ [0, 1− η),

(x+ η, 1− y) x ∈ [1− η, 1).

The measure-preserving system here is (T×T, λ×λ, S). Next, the map gx : Z2 → Z2

is given by:

gx(a) =


a x ∈ [0, 1− η),

a+ 1 x ∈ [1− η, 1),

which gives us the skew product R : T× Z2 → T× Z2, with

R(x, a) =


(x+ η, a) x ∈ [0, 1− η),

(x+ η, a+ 1) x ∈ [1− η, 1).

The measure-preserving system is (T×Z2, λ×c, R). We will now show that both R and

S are ergodic, which by Theorem 3.3 will show that A cannot be upper-triangularized

(over R or over C).

Proposition 3.14. R, in the above situation, is ergodic with respect to λ× c.

The flip makes this non-trivial, because as the map iterates, we do not know

exactly when the Z2 component is flipped. We can attempt to get rid of the problem
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with the flip by inducing the map R on B = Xf × Z2 = [1 − η) × Z2, to get the

induced map RB; this can be motivated by recalling Proposition 2.51.

Lemma 3.15. For B as defined above, the induced map RB on (B, (λ × c)B) is

measure-theoretically isomorphic to the map R̃B : T×Z2 → T×Z2 on (T×Z2, λ×c),

given by

R̃B(x, a) = (x+ β, a+ 1),

where β =

{
1

η

}
.

Proof. Intuitively, this map acts on points (x, a) in B by applying R once in the flip

case, because the T component x is in [1− η, 1), and then applying R in the rotation

case until x returns to [1−η, 1); this means that in the Z2 component, the cumulative

action is to flip a to a + 1. More explicitly, we may compute RB. The return time

is dependent only on the T component (since B is the product of Xf and all of Z2),

so we have nR,B = nT,Xf , and by our work in Example 2.49, letting k be the unique

positive integer such that kη < 1(k + 1)η and letting q = 2− (k + 1)η, we compute:

RB(x, a) = RnR,B(x,a)(x, a) = RnT,Xf (x)(x, a)

=


Rk+1(x, a) x ∈ [1− η, q)

Rk(x, a) x ∈ [q, 1)

=


(x+ (k + 1)η, a+ 1) x ∈ [1− η, q)

(x+ kη, a+ 1) x ∈ [1− η, q)
.

As well, we may make the same coordinate change as in Example 2.49, which maps

[1 − η, 1) to T via φ(x) =
1− x
η

. Then φ × id is a coordinate change mapping B to

T×Z2, and is a measure-theoretic isomorphism between the two spaces by our work
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in Example 2.49. We have

R̃B(x, a) = (x+ β, a+ 1) = (x, a) + (β, 1),

and we are done proving the lemma.

Lemma 3.16. The map R̃B as defined above is ergodic, with respect to λ × c on

T× Z2.

Proof. We observe that R̃B is a rotation by (β, 1) on the compact Abelian group

T×Z2; this puts us in the situation to use Proposition 2.43, which says that R̃B will

be ergodic if the only character satisfying γ(β, 1) = 1 is the trivial character γ ≡ 1.

By Lemma A.5, the characters on T×Z2 have the form (x, a) 7→ e2πinx(−1)ab, where

n ∈ Z and b ∈ Z2. Let γn,b be the character corresponding to n and b; we apply γn,b

to (β, 1) and set it equal to 1:

γn,b(β, 1) = e2πinβ(−1)1·b = (e2πiβ)n(−1)b = 1.

Since β is irrational, e2πiβ is never a root of unity and hence never a root of 1 or of

−1; this shows that n = 0, which implies that b = 0. Therefore the only character

which satisfies that equation is γ0,0 ≡ 1, so R̃B is ergodic.

Proof of Proposition 3.14. We apply the lemmas in reverse order to prove Proposition

3.14. R̃B is ergodic by Lemma 3.16, and so RB is ergodic because those two maps are

isomorphic by Lemma 3.15. Then Proposition 2.51 applies, thanks to Lemma 2.58,

and so R is ergodic.

We now tackle the circle extension case. This case requires slightly more work

than the two-point extension.

Proposition 3.17. S, as defined before, is ergodic with respect to λ× λ.
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As in the two-point extension case, the flip makes proving ergodicity non-trivial.

The same strategy we tried before will serve us well, however, alongside a tweak or

two. Let B = Xf×T; we shall compute the induced map. We keep the same notation

from the previous case when speaking about the base map Tη, so that k is still the

unique positive integer such that kη < 1 < (k+ 1)η, q = 2− (k+ 1)η, and β =

{
1

η

}
.

Note that

1− q
η

=
1− (2− (k + 1)η)

η
= k + 1− 1

η
= 1− β,

which also came up in Example 2.49.

Lemma 3.18. For B as above, the induced map SB is measure-theoretically isomor-

phic to S̃B acting on T× T, given by

S̃B(x, y) =


(x+ β, kα− y) x ∈ [1− β, 1),

(x+ β, (k − 1)α− y) x ∈ [0, 1− β).

Proof. As before, the return time for S to B is only dependent on the return time

for T to Xf , ie. nS,B = nT,Xf . Applying SB is then the same as applying S in the

flip case exactly once, then applying S in the rotation case until returning to B. We

have:

SB(x, y) = SnS,B(x,y)(x, y) = SnT,Xf (x)(x, y)

=


(x+ (k + 1)η, kη − y) x ∈ [1− β, 1),

(x+ kη, (k − 1)η − y) x ∈ [0, 1− β).

We then apply the map φ× id and obtain a map on T×T isomorphic in the measure-

theoretic sense to SB, again by our work in Example 2.49. This map, S̃B, is given
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by

S̃B(x, y) =


(x+ β, kη − y) x ∈ [1− β, 1),

(x+ β, (k − 1)η − y) x ∈ [0, 1− β).

Hence we are done.

Here, we note that if we were to square S̃B, we would eliminate the flip in the

variable y, and be left with something only involving rotations, which would possibly

be much less awkward. This strategy is justified by the following abstract lemma.

Lemma 3.19. Let (X,B, µ, T ) be a measure-preserving system. If T 2 is ergodic, then

so is T .

Proof. Let A ⊂ X be a T -invariant set, so that T−1(A) = A. Then we have:

(T 2)−1(A) = T−2(A) = T−1(T−1(A)) = T−1(A) = A,

that is, A is T 2-invariant, and since T 2 is ergodic, A has either zero or full measure.

This holds for all T -invariant sets, and so T is ergodic.

Denote P = (S̃B)2, and let Tβ be rotation by β. To compute P , we need to

consider how the base moves with respect to the partition {[0, 1 − β), [1 − β, 1)}, so

that the second application of the map may be determined. This is because there

are many possible scenarios, depending on where x ∈ T starts. As well, since we

have two applications of Tβ, we care about how big 2β is. If β > 1
2
, then 2β > 1; by

Lemmas 2.29 and 2.41, without loss of generality we assume that β < 1
2
, for notational

convenience.
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Lemma 3.20. Let S̃B be as above. If β < 1
2
, then the map P = (S̃B)2 is given by:

P (x, y) ==


(x+ 2β, y) x ∈ [0, 1− 2β)

(x+ 2β, y + α) x ∈ [1− 2β, 1− β)

(x+ 2β, y − α) x ∈ [1− β, 1)

.

Proof. For β < 1
2
, we have β < 1− β. Then we get:

Tβ[0, 1− β) = [β, 1) = [β, 1− β) ∪ [1− β, 1),

Tβ[1− β, 1) = [0, β).

We see that we know how to correctly choose branches of S̃B depending in which set

Tβ(x) ends up: one of [0, β), [β, 1−β), or [1−β, 1). We may then take inverse images

of those sets by Tβ:

T−1
β [0, β) = [1− β, 1),

T−1
β [β, 1− β) = [0, 1− 2β),

T−1
β [1− β, 1) = [1− 2β, 1− β).

We also have 0 < 1− 2β < 1− β < 1, so that

{
[0, 1− 2β), [1− 2β, 1− β), [1− β, 1)

}
is a partition of T. Each of these sets lies strictly inside one of {[0, 1− β), [1− β, 1)},

and their images lies strictly inside of one of those sets, also.
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We may now compute P = (S̃B)2 directly:

P (x, y) =


S̃B(x+ β, (k − 1)α− y) x ∈ [0, 1− 2β) (x+ β ∈ [β, 1− β))

S̃B(x+ β, (k − 1)α− y) x ∈ [1− 2β, 1− β) (x+ β ∈ [1− β, 1))

S̃B(x+ β, kα− y) x ∈ [1− β, 1) (x+ β ∈ [0, β))

=


(x+ 2β, (k − 1)α− ((k − 1)α− y)) x ∈ [0, 1− 2β)

(x+ 2β, kα− ((k − 1)α− y)) x ∈ [1− 2β, 1− β)

(x+ 2β, (k − 1)α− (kα− y)) x ∈ [1− β, 1)

=


(x+ 2β, y) x ∈ [0, 1− 2β)

(x+ 2β, y + α) x ∈ [1− 2β, 1− β)

(x+ 2β, y − α) x ∈ [1− β, 1)

.

This seems no better than before, especially since there are now three branches to

consider. However, the base rotation is 2β, and the interval [1− 2β, 1) has the same

length as the rotation, and removing the portion of the space where y doesn’t change

will simplify things. Moreover, for B = [1−2β, 1)×T, Lemma 2.58 says that we have

λ× λ

(
∞⋃
i=0

P−i(B)

)
= 1.

Thus we consider the induced map PB. We are exactly in the same situation as

Example 2.49, so we may also make the same coordinate change to get back to a map

on T × T. Hence, we let ζ =

{
1

2β

}
and use the coordinate change ξ(x) = 1−x

2β
to
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obtain a map Q which is measure-theoretically isomorphic to PB. We have

ξ(1− β) =
1− (1− β)

2β
=

1

2
,

and so Q is given by:

Q(x, y) =


(x+ ζ, y − α) x ∈ [0, 1

2
)

(x+ ζ, y + α) x ∈ [1
2
, 1).

We would like to prove that Q is ergodic. To do this, we may use the following

two results:

Proposition 3.21. Suppose σ : T→ T is measure-preserving and ergodic with respect

to Lebesgue measure, and let f : T→ R be a measurable function, with range f(T) ⊂

αZ, where α is irrational. Let T2 have the usual Lebesgue product measure and Borel

sets, and let Tf : T2 → T2 be the skew product extension of σ and f to T2, so that:

Tf (x, y) = (σ(x), y + f(x)).

Let T̃f : T× αZ→ T× αZ be the skew product extension of σ and f to T× αZ with

the product measure λ× c (Lebesgue and counting, with the discrete σ-algebra for the

counting measure), so that:

T̃f (x, nα) = (σ(x), nα + f(x)).

Then if T̃f is ergodic, so is Tf .

Proof. Let h : T2 → R be a bounded measurable function invariant under Tf , so

h ◦ Tf = h. We shall show that h must be a.e. constant; this implies that Tf is
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ergodic, by condition (3) of Theorem 2.37. For y ∈ T, define the measurable function

πy : T× αZ→ T2, πy(x, nα) = (x, y + nα).

Then we see that Tf ◦ πy = πy ◦ T̃f . In addition, define h̃y = h ◦ πy, so that h̃y

is measurable. Since πy intertwines the dynamics on the two spaces, we get the

following:

h̃y ◦ T̃y = h ◦ πy ◦ T̃f = h ◦ Tf ◦ πy = h ◦ πy = h̃y.

Thus h̃y is invariant under T̃f , and so is constant a.e. with respect to the product

measure λ× c, since T̃f is ergodic.

We wish to use the fact that h̃y is a.e. constant for each y ∈ T to show that h is

constant a.e. To do this, we make an intermediate step. Define

I : T→ R, I(y) =

∫ 1

0

h(x, y) dx =

∫ 1

0

h̃y(x, 0) dx.

Because h is bounded, I is not infinite, hence well-defined, and by Fubini’s theorem,

I is measurable. Moreover, we have the following, since h̃y is a.e. constant on T×αZ:

I(y + α) =

∫ 1

0

h(x, y + α) dx =

∫ 1

0

h̃y(x, α) dx =

∫ 1

0

h̃y(x, 0) dx

=

∫ 1

0

h(x, y) dx = I(y).

y 7→ y + α is an ergodic map on T, thus we see that I is a.e. constant on T; write

I(y) = C for a.e. y ∈ T. Note that for all y, h̃y is a.e. constant on T × αZ, so we

see that for a.e. x ∈ T, h̃y(x, 0) = I(y). Denote YG = {y ∈ T : I(y) = C}; this set

has full measure in T. If y ∈ YG, then for a.e. x, h(x, y) = h̃y(x, 0) = C. Computing

the measure of the set of points where h 6= C via Fubini’s Theorem yields the final
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statement: h = C almost everywhere. Hence Tf is ergodic.

Proposition 3.22 (Schmidt, [26]). Consider the space T × αZ as defined in the

previous proposition. Define the map Q̃ on T× αZ by

Q̃(x, nα) =


(x+ ζ, (n+ 1)α) x ∈ [0, 1

2
),

(x+ ζ, (n− 1)α) x ∈ [1
2
, 1).

Then Q̃ is an ergodic measure-preserving transformation.

Proof. The result follows from Theorem 3.9, Corollary 5.4, and Theorem 12.8 of [26],

upon the relabelling of Z to αZ.

Lemma 3.23. The map Q as defined above is ergodic, with respect to λ× λ.

Proof. The map Q̃ in Proposition 3.22 is related to the map Q in exactly the way

outlined in Proposition 3.21, so since Q̃ is ergodic, Q must be ergodic also.

Proof of Proposition 3.17. To conclude the proof that the original map S is ergodic,

Q is ergodic by Lemma 3.23. Thus, so are PB, P , and S̃A, by the isomorphism,

Proposition 2.51 (with Lemma 2.58) and Lemma 3.19, therefore S is ergodic, again

by Proposition 2.51 and Lemma 2.58. Hence we are done.

Proof of Theorem 3.13. By Propositions 3.14 and 3.17, R and S are ergodic, which

by Theorem 3.3 allows us to conclude that the original matrix cocycle A is not block

upper-triangular over C.

It should be noted that the proof that Q̃ is ergodic, as done by Schmidt in [26]

and for a specific case in [27], relies on an object associated to a measure-preserving

transformation involving a cocycle on Z called the set of essential values of the trans-

formation. The mechanisms behind this object are rather technical and somewhat
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elaborate, and out of the scope of this thesis. In lieu of going through an extensive

proof of this material, we shall state another example, which uses more well-known

mathematical techniques and avoids using a black-box theorem.

3.5 Example 3: rotation and flip cocycle

over a Bernoulli shift

Let the base dynamics space be the left Bernoulli shift on two symbols each with

weight 1
2
, denoted (X,B, µ, T ), which was studied in Example 2.25. Let A be a

matrix cocycle over T , generated by the map A(1, ·) : X → O2(R), given by:

A(1, x) =



cos(πα) − sin(πα)

sin(πα) cos(πα)

 x0 = 0,

1 0

0 −1

 x0 = 1.

Theorem 3.24. The cocycle A over (X,B, µ, T ) as defined above is not block upper-

triangularizable over C.

As in the previous example, we shall fit this system into the general framework,

and then work towards proving that the resulting maps are ergodic. Recall that we

use the notation π−1
0 {a} = C(x0 = a), where π0 is the projection of X onto the 0th

coordinate, so that this set is the collection of x ∈ X with x0 = a. We see that A(1, x)

is a rotation by πα for x ∈ C(x0 = 0), so Xr = C(x0 = 0) with αx = πα, and A(1, x)

is a reflection in the horizontal axis for x ∈ C(x0 = 1), so Xf = C(x0 = 1) with

βx = 0. The cocycle is, in flavour, identical to the cocycle in the previous example,

except that the underlying space is different.
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The next step is to compute the action of A(1, x) on C̄, which was denoted M(x).

We have:

M(x)z =


e2πiαz x ∈ C(x0 = 0),

1

z
x ∈ C(x0 = 1).

We can then compute the circle extension and the two-point extension dynamics.

First, in the circle extension case, we have

fx(y) =


y + α x ∈ C(x0 = 0),

1− y x ∈ C(x0 = 1),

so that the map S : X × T→ X × T is given by

S(x, y) =


(T (x), y + α) x ∈ C(x0 = 0)

(T (x), 1− y) x ∈ C(x0 = 1).

Then, in the two-point extension case, we have gx : Z2 → Z2, given by

gx(a) =


a x ∈ C(x0 = 0)

a+ 1 x ∈ C(x0 = 1),

so that we obtain the map R : X × Z2 → Z × Z2, with formula

R(x, a) =


(T (x), a) x ∈ C(x0 = 0)

(T (x), a+ 1) x ∈ C(x0 = 1).

We shall now prove that R and S are ergodic maps on their respective spaces,

starting with R.
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Proposition 3.25. R as above is ergodic on X × Z2, with respect to µ× c.

We utilize the same strategy as before: namely, we shall induce upon B = Xf ×

Z2 = C(x0 = 1) × Z2 and show that the resulting map is ergodic, via Proposition

2.51.

Lemma 3.26. Let (Z, ν, L) be the left Bernoulli shift on the bilateral shift space over

the alphabet N, where each symbol k ∈ N is given the weight
1

2k+1
(as seen in Example

2.50). The induced map RB on (B, (µ × c)B) is measure-theoretically isomorphic to

the map R̃B on (Z × Z2, ν × c), with

R̃B(z, a) = (L(z), a+ 1).

Proof. As in Example 2.50, let B+ be the set of points in A which have finitely many

1’s in the positive direction, and B− be the set of points in A which have finite many

1’s in the negative direction; then B+ ∪ B− has measure 0 in A and is T -invariant.

We remove B+ ∪B− from A and continue to write A \ (B+ ∪B−) as A. Then define

the map φ : A→ Z, by

φ(x) = (. . . k−1 · k0k1 . . . ) ∈ Z,

since elements x of A can be written as

(. . . 1 0 . . . 0︸ ︷︷ ︸
k−1

·1 0 . . . 0︸ ︷︷ ︸
k0

1 0 . . . 0︸ ︷︷ ︸
k1

. . . ).

This defines a measure isomorphism of the two spaces.

Also in Example 2.50, the induced map TXf was computed to be the map which
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shifted the sequence left until the next 1 was encountered. In symbols, it is:

TXf (x) = T nXf ,T (x)

=

{
T k(x), x ∈ C(x0x1 . . . xk−1xk = 1 0 . . . 0︸ ︷︷ ︸

k−1

1)

=

{
(. . . 1 0 . . . 0︸ ︷︷ ︸

k−1

·1xk+1xk+2 . . . ), x ∈ C(x0x1 . . . xk−1xk = 1 0 . . . 0︸ ︷︷ ︸
k−1

1)

It is immediately clear that φ intertwines the dynamics, so that it is also a dynamical

isomorphism. Then φ× id is a dynamical isomorphism between RB and R̃B, since the

translation by 1 in the Z2 component happens only when x0 = 1 in A, which happens

exactly once per symbol in Z.

Lemma 3.27. R̃B as above is ergodic, with respect to ν × c.

Proof. Observe that R̃B is the product of the left shift L on Z and the translation

by 1 on Z2. By Example 2.44, we see that L is strongly mixing. For the translation,

it is easily seen that ∅ and Z2 are invariant sets, whereas {1} and {0} are not; this is

a complete listing of all the subsets of Z2, so we clearly see that translation by 1 is

ergodic. Applying Proposition 2.57 allows us to conclude that R̃B is ergodic.

Proof of Proposition 3.25. Since R̃B is ergodic by Lemma 3.27, RB must also be

ergodic, because they are isomorphic by Lemma 3.26. Hence by Lemma 2.58 and

Proposition 2.51, R is ergodic, so we are done.

This handles one of the cases, as in the previous example. We now deal with the

circle extension.

Proposition 3.28. S as defined above is ergodic, with respect to µ× λ.

The proof will follow along the same lines as the proof for Proposition 3.17. We
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shall induce, calculate an isomorphic map, square it, and find another isomorphic

map which will be easier to prove to be ergodic.

Lemma 3.29. The induced map SB is measure-theoretically isomorphic to S̃B acting

on Z × T, given by

S̃B(z, y) =

{
(L(z), kα− y) z ∈ C(z0 = k).

Proof. The map φ× id : B × T→ Z × T is still a dynamical isomorphism, similarly

to 3.26; the T-component of the action arises from the flip given by the 1 in the base,

followed by k rotations by α, one for each 0 encountered.

The flip in the T component is still getting in the way, so we square the map

to eliminate the flip. Let P = (S̃B)2. Unlike in the rotation case, this is much less

cumbersome to describe:

P (z, y) =

{
S̃B(L(z), kα− y) z ∈ C(z0 = k),

=

{
(L2(z), jα− (kα− y)) z ∈ C(z0z1 = kj),

=

{
(L2(z), y + (j − k)α) z ∈ C(z0z1 = kj).

So P acts by applying the left shift twice in the Z component, and then rotating

around the circle by a multiple of α which depends on both of the symbols z0, z1. We

change coordinates again, using the next lemma.

Lemma 3.30. Let (Z, ν, L) be the left Bernoulli shift over a countable alphabet A

with weights pa for a ∈ A, and let (W, ρ,N) be the left Bernoulli shift over the

alphabet A× A, meaning that each symbol is a pair (a1a2) := (a1, a2) ∈ A× A, with

weights given to each symbol equal to pa1a2 = pa1pa2. Then (Z, ν, L2) is dynamically

isomorphic to the space (W, ρ,N).
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Proof. Define the map ψ : Z → W by

ψ(. . . z−2z−1 · z0z1 . . . ) = (. . . (z−2z−1) · (z0z1) . . . );

it is clear that ψ is invertible, with ψ−1 reversing the process. Moreover, ψ is mea-

surable, since we have

ψ−1(C(wi = kj)) = {z ∈ Z : z2iz2i+1 = kj} = C(z2iz2i+1 = kj)

and every cylinder set in W is a finite intersection of these; ψ is also measure-

preserving, because

ν(ψ−1(C(wi = kj))) = ν(C(z2iz2i+1 = kj)) = pkpj = ρ(C(wi = kj)).

We must also check if ψ−1 is measurable and measure-preserving. We have:

(ψ−1)−1(C(zi = k)) = ψ(C(zi = k))

=


{
w ∈ w : wb i

2
c = kj, j ∈ A

}
i is even{

w ∈ w : wb i
2
c = jk, j ∈ A

}
i is odd

=


⋃
j∈AC(wb i

2
c = kj) i is even⋃

j∈AC(wb i
2
c = jk) i is odd

,
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so that ψ−1 is measurable, and we have:

ρ((ψ−1)−1(C(zi = k))) =


ρ
(⋃

j∈AC(wb i
2
c = kj)

)
i is even

ρ
(⋃

j∈AC(wb i
2
c = jk)

)
i is odd

=
∑
j∈A

pkpj = pk = ν(C(zi = k)),

since the sum of the weights of elements in A is equal to 1 and each of those sets are

disjoint. Hence ψ is a measure space isomorphism. Finally, we may compute:

ψ ◦ L2(z) = ψ ◦ L2(. . . z−2z−1 · z0z1 . . . )

= ψ(. . . z0z1 · z2z3 . . . )

= (. . . (z0z1) · (z2z3) . . . )

= N(. . . (z−2z−1) · (z0z1) . . . )

= N ◦ ψ(z).

Therefore ψ ◦ L2 = N ◦ ψ and ψ is a dynamical isomorphism of the two spaces.

From here, we have that ψ× id is a dynamical isomorphism between P acting on

(Z × T, ν × λ) and Q = (ψ × id) ◦ P ◦ (ψ−1 × id) acting on (W × T, ρ× λ). Denote

Y : W → T as the function

Y (w) = Y (w0) =

{
(j − k)α w0 = kj;

it is easy to see that Y is measurable. Then we may write

Q(w, y) = (N(w), y + Y (w)).
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Lemma 3.31. The map Q as obtained above is strongly mixing with respect to ρ×λ.

As a corollary of this lemma, a result of Rudolph, in [23], shows that the map Q is

actually more than strongly mixing; it is Bernoulli, that is, isomorphic to a Bernoulli

shift over some alphabet.

To prove the lemma, it suffices to show that the mixing property holds for mea-

surable rectangles in W × T which are products of contiguous string cylinder sets

A,B ⊂ W with intervals [a, b], [c, d] ⊂ T (we may use closed intervals because closed

intervals also generate the Borel σ-algebra on T), since this collection of sets forms a

generating π-system for the product σ-algebra. Namely, we are done if we show, for

such sets,

lim
n→∞

ρ× λ(Q−n(A× [a, b]) ∩ (B × [c, d])) = ρ(A)ρ(B)(b− a)(d− c).

After some preliminary lemmas, the proof will then proceed as follows: we shall

rewrite the measure of the intersection as something fixed multiplied by an expecta-

tion of a T-valued function with respect to a particular measure, and then show that

the expectation converges to what we need.

Lemma 3.32. For m ∈ Z, we have qm = ρ(Y −1{mα}) =
1

3 · 2|m|
.

Proof. We have, for m ≥ 0:

qm = ρ(Y −1{mα}) = ρ({w : w0 = kj, j − k = m})

= ρ({w : w0 = kj, j = m+ k})

= ρ({w : w0 = k(m+ k)})

=
∞∑
k=0

1

2m+2k+2
=

1

2m+2

∞∑
k=0

1

4k

=
1

4 · 2m
1

1− 3
4

=
1

4 · 2m
4

4− 1
=

1

3 · 2m
.
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When m < 0, we have:

qm = ρ(Y −1{mα}) = ρ({w : w0 = kj, j − k = m})

= ρ({w : w0 = kj, j − k = − |m|})

= ρ({w : w0 = kj, k − j = |m|})

= q|m| =
1

3 · 2|m|
,

by the symmetry of the symbol space.

In particular, all of the sets Y −1{mα} are disjoint, and depend solely on w0. We

may thus partition the space using this coarser structure; note that each length one

cylinder set C(wi = kj) lies inside (Y ◦ N i)−1{(j − k)α}. In particular, since these

sets are disjoint, we may write (Y ◦N i)−1{mα} as a countable disjoint union of length

one cylinder sets. The lemma also says that:

1 = µ(X) = µ

(⋃
k∈Z

Y −1{kα}

)
=
∑
k∈Z

µ(Y −1{kα}) =
∑
k∈Z

qk,

which will be used later.

It turns out that Y is more important than just being a shorthand for the cocycle

value. It will prove useful to know the distribution of Y , as well as a sum of multiple

copies of Y (which we could see as arising from iterating the map Q). The distribution

of Y is given by the measure η on T, defined by

η({mα}) = ρ(Y −1{mα}) = qm,

so that

η =
∑
m∈Z

qmδ{mα}.



102

We know that the distribution of a finite sum of n independent copies of Y is the

n-fold convolution of η, which we denote by η⊗n (see [21]).

We will use the following lemma, which has roots in Fourier analysis on groups

(again, see [21]):

Lemma 3.33. η⊗n −→
n→∞

λ in the weak sense.

Proof. The Fourier transform of η is η̂, given by

η̂(m) =

∫
T
e2πimx dη(x) =

∑
k∈Z

qke
2πimkα.

We know that the Fourier transform of a convolution becomes the product of Fourier

transforms, so that

η̂⊗n(m) =
n∏
j=1

η̂(m) =

(∑
k∈Z

qke
2πimkα

)n

.

Recalling that C is a strictly convex space (that is, any line through two points on

the unit circle intersects the unit circle only at those points), for any two points x 6= y

on the unit circle and λ ∈ (0, 1) we have that

|λx+ (1− λ)y| < λ |x|+ (1− λ) |y| ≤ λ+ 1− λ = 1.
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This implies that, when m 6= 0:

∣∣∣∣∣∑
k∈Z

qke
2πimkα

∣∣∣∣∣ =

∣∣∣∣∣ 1

3 · 2
e2πimα +

1

3 · 2
e−2πimα +

∑
k 6=±1

qke
2πimkα

∣∣∣∣∣
≤ 1

3

∣∣∣∣12e2πimα +
1

2
e−2πimα

∣∣∣∣+

∣∣∣∣∣∑
k 6=±1

qke
2πimkα

∣∣∣∣∣
<

1

3
· 1 +

∑
k 6=±1

qk · 1

=
1

3
+ 1− 1

3 · 2
− 1

3 · 2
= 1.

Thus we see that

η̂⊗n(m) −→
n→∞

0

for m 6= 0, and

η̂⊗n(0) =

(∑
k∈Z

qk

)n

= (1)n = 1 −→
n→∞

1.

The Fourier transform of the Lebesgue measure is, using periodicity and symmetry

of x 7→ e2πimx,

λ̂(m) =


1 m = 0,

0 m 6= 0.

Thus η̂⊗n −→
n→∞

λ̂ pointwise; uniqueness of the Fourier transform forces η⊗n −→
n→∞

λ

weakly, as desired (see [13, Theorem I.7.2]).

In particular, this lemma means that for any continuous function f on T, we have

∫
T
f dη⊗n −→

n→∞

∫
T
f dλ.

This will be used to prove the next lemma, which is similar to the discussion in the

first chapter of [17].
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Lemma 3.34. For a < b in T,

∫
T
1[a,b] dη

⊗n −→
n→∞

∫
T
1[a,b] dλ = b− a.

If a > b, then the result is still true, by splitting the interval up into [0, b] and [a, 1].

Proof. Let ε > 0. Let f, g : T→ R be given by:

f(x) =



1 x ∈ [a, b]

3

ε
(x− a) + 1 x ∈

(
a− ε

3
, a
)

−3

ε

(
x− b− ε

3

)
x ∈

(
b, b+

ε

3

)
0 otherwise,

g(x) =



1 x ∈
[
a+

ε

3
, b− ε

3

]
3

ε

(
x− a− ε

3

)
+ 1 x ∈

(
a, a+

ε

3

)
−3

ε
(x− b) x ∈

(
b− ε

3
, b
)

0 otherwise.

Both f and g are continuous, and satisfy 0 ≤ g ≤ 1[a,b] ≤ f ≤ 1; observe further that

∫
T
f − 1[a,b] dλ =

∫
T
1[a,b] − g dλ = 2 · ε

6
=
ε

3
.

Finally, by Lemma 3.33, we have:

lim inf
n→∞

∫
T
g dη⊗n = lim

n→∞

∫
T
g dη⊗n =

∫
T
g dλ,

lim sup
n→∞

∫
T
f dη⊗n = lim

n→∞

∫
T
f dη⊗n =

∫
T
f dλ.
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For each n ∈ N+, denote

In =

∫
T
1[a,b] dη

⊗n −
∫
T
1[a,b] dλ.

Then we have, using the equalities and inequalities involving f ,g, and 1[a,b] above:

lim inf
n→∞

In ≥ lim inf
n→∞

(∫
T
g dη⊗n −

∫
T
1[a,b] dλ

)
=

∫
T
g − 1[a,b] dλ =

−ε
3
,

lim sup
n→∞

In ≤ lim sup
n→∞

(∫
T
f dη⊗n −

∫
T
1[a,b] dλ

)
=

∫
T
f − 1[a,b] dλ =

ε

3
.

Combining these inequalities, we get:

0 ≤ lim sup
n→∞

In − lim inf
n→∞

In ≤
ε

3
+
ε

3
< ε.

Since ε was arbitrary, we conclude that lim sup
n→∞

In = lim inf
n→∞

In, and so lim
n→∞

In exists.

To calculate the limit, observe that we also have:

−ε
3

=

∫
T
g − 1[a,b] dλ

≤ lim
n→∞

In

≤
∫
T
f − 1[a,b] dλ =

−ε
3
,

so that lim
n→∞

In = 0, since ε was arbitrary. Finally, we have:

lim
n→∞

∫
T
1[a,b] dη

⊗n = lim
n→∞

(∫
T
1[a,b] dη

⊗n −
∫
T
1[a,b] dλ+

∫
T
1[a,b] dλ

)
=
(

lim
n→∞

In

)
+

∫
T
1[a,b] dλ

= 0 +

∫
T
1[a,b] dλ = b− a,
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as desired.

For notational purposes, define Xn : W → T by

Xn(w) =
n−1∑
i=0

Y (N i(w)),

so that Qn(w, y) = (Nn(w), y + Xn(w)). In particular, the definition of Y says that

Xn depends on w0, . . . , wn−1, and that Xn is measurable. As well, we see that

X−1
n {mα} =

{
w : wj ∈ (Y ◦N j)−1{mjα}, j = 0 . . . n− 1, where

n−1∑
j=0

mj = m

}

=
⋃

∑n−1
j=0 mj=m

n−1⋂
j=0

(Y ◦N j)−1{mjα}.

Since each of the sets (Y ◦N j)−1{mjα} may be written as a countable disjoint union

of length one cylinder sets, each fixing a symbol, we see that a finite intersection of

n of them is a countable disjoint union of length n contiguous string cylinder sets, so

that the entire set is a countable disjoint union of such sets. In particular, we also

have:

X−1
n {mα} ∩ C(w0 . . . wn−1 = (k0j0) . . . (kn−1jn−1))

=


∅

∑n−1
l=0 (jl − kl) 6= m,

C(w0 . . . wn−1 = (k0j0) . . . (kn−1jn−1)) else.

We shall now directly work towards showing that Q is strongly mixing. By Lemma

2.12, part of Example 2.7, and Proposition 2.39, it suffices to show the mixing property

for Q for products of a contiguous string cylinder set and a closed interval. This will

be done in two steps; first we show that the measure of the given set is equal to an

expectation, and then we show that the expectation converges in the appropriate way.
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Lemma 3.35. Let t1, t2 ≥ 0 and r1, r2 ≥ 1. Let A be a contiguous string cylinder set

starting at the index −t1 and ending at the index r1 − 1, and let B be a contiguous

string cylinder set starting at the index −t2 and ending at the index r2 − 1. Let

a, b, c, d ∈ T, with a < b and c < d (otherwise, split the intervals up into ones where

this assumption holds). Then we have that, for k ≥ t1 + r2 = k∗:

ρ× λ(Q−k(A× [a, b]) ∩ (B ∩ [c, d]))

= ρ(A)ρ(B) Eη⊗k−k∗
[
λ

([
ã−

k−k∗−1∑
l=0

Y, b̃−
k−k∗−1∑
l=0

Y

]
∩ [c, d]

)]
,

where ã = a− C and b̃ = b− C are translates of a and b by the same fixed constant,

independent of k.

Proof. First, we shall compute the set Q−t1(A×[a, b]), using the computation with Xn

above. Observe that N−t1(A) is a contiguous string cylinder set from 0 to t1 + r1− 1,

and that for any m ∈ Z, X−1
t1 {mα} is a disjoint union of contiguous string cylinder

sets from 0 to t1− 1 < t1 + r1− 1. This means that Xt1 is constant on N−t1(A), with

value mAα. Thus we have:

N−t1(A) ∩X−1
t1
{mα} =


N−t1(A) m = mAα,

∅ otherwise.

We have:

Q−t1(A× [a, b]) =
⋃
m∈Z

(X−1
−t1{mα} ∩N

−t1(A))× [a−mα, b−mα]

= N−t1(A)× [a−mAα, b−mAα].

We wish to take further preimages of A × [a, b] under Q, and intersect them with
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B× [c, d]. Since B fixes symbols from −t2 to r2− 1, Xr2 is going to be constant, with

value mBα, by the same argument as before. Thus we have:

Q−r2(Q−t1(A× [a, b])) ∩ (B × [c, d])

= Q−r2(N−t1(A)× [a−mAα, b−mAα]) ∩ (B × [c, d])

=
⋃
m∈Z

(
(X−1
−r2{mα} ∩N

−t1−r2(A)

× [a− (mA +m)α, b− (mA +m)α]) ∩ (B × [c, d])
)

= (N−(t1+r2)(A) ∩B)× ([a− (mA +mB)α, b− (mA +mB)α] ∩ [c, d]).

Let C = (mA + mB)α and k∗ = t1 + r2. Then, for any k > k∗, Xk depends on the

symbols with indices 0, . . . , k− 1, but only the symbols with indices r2, . . . , k− t1− 1

are not fixed by either A or B. Hence, we obtain:

Q−k(A× [a, b]) ∩ (B × [c, d])

= Q−(k−t1)(N−t1(A)× [a−mAα, b−mAα]) ∩ (B × [c, d])

=
⋃

k−t1−1∑
l=r2

ml=m∈Z

((
k−t1−1⋂
l=r2

(Y ◦N l)−1{mlα} ∩N−k(A) ∩B

)

× [a− C −mα, b− C −mα] ∩ [c, d]

)
.

This is a disjoint union of measurable rectangles of W × T, and the W -component

of each rectangle is the intersection of three sets in W which fix symbols on disjoint

indices. This means we may certainly compute the measure of Q−k(A× [a, b])∩ (B×
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[c, d]). Let ã = a− C, b̃ = b− C; we then obtain:

ρ× λ(Q−k(A× [a, b]) ∩ (B × [c, d]))

=
∑

k−t1−1∑
l=r2

ml=m∈Z

(
ρ

(
k−t1−1⋂
l=r2

(Y ◦N l)−1{mlα} ∩N−k(A) ∩B

)

· λ
(
[ã−mα, b̃−mα] ∩ [c, d]

))

=
∑

k−t1−1∑
l=r2

ml=m∈Z

((
k−t1−1∏
l=r2

qml

)
ρ(N−k(A))ρ(B)λ

(
[ã−mα, b̃−mα] ∩ [c, d]

))

= ρ(A)ρ(B)
∑

k−t1−1∑
l=r2

ml=m∈Z

(
k−t1−1∏
l=r2

qml

)
λ
(
[ã−mα, b̃−mα] ∩ [c, d]

)

The last observation to make is that because (W, ρ,N) is a Bernoulli shift, when

symbols are not fixed, they are independent of each other. That means the choice of

the ml in the large sum is an independent choice. In particular, we know that the

values of Y ◦N i and Y ◦N j are independent, if there is no other knowledge. Then,

we note that

mα =

k−t1−1∑
l=r2

Y ◦N l(w), w ∈
k−t1−1⋂
l=r2

(Y ◦N l)−1{mlα},

and see that indeed, because none of the symbols between r2 and k− t1− 1 are fixed

by A or B,
k−t1−1∑
l=r2

Y ◦N l is a sum of independent random variables, each having the

same distribution as Y . There are k− t1− 1− r2 + 1 = k−k∗ copies of Y in the sum,

so that the sum of the k − k∗ copies of Y has distribution η⊗k−k
∗
, the (k − k∗)-fold



110

convolution of η. Hence we may write, finally:

ρ× λ(Q−k(A× [a, b]) ∩ (B × [c, d]))

= ρ(A)ρ(B)
∑

k−t1−1∑
l=r2

ml=m∈Z

(
k−t1−1∏
l=r2

qml

)
λ
(
[ã−mα, b̃−mα] ∩ [c, d]

)

= ρ(A)ρ(B) Eη⊗k−k∗
[
λ

([
ã−

k−k∗−1∑
l=0

Y, b̃−
k−k∗−1∑
l=0

Y

]
∩ [c, d]

)]
,

where we have reindexed the sum of copies of Y to start at l = 0. We are done with

the lemma.

The limit of the expectation as k goes to infinity is the same as the limit as k−k∗

goes to infinity, so we may compute the limit as k goes to infinity for notational

simplicity.

Lemma 3.36. Let a < b and c < d in T and let ã, b̃ be translations of a and b by the

same constant. Let Y be defined as above. Then we have:

lim
k→∞

Eη⊗k

[
λ

([
ã−

k−1∑
l=0

Y, b̃−
k−1∑
l=0

Y

]
∩ [c, d]

)]
= (b− a)(d− c).

Proof. First, we rewrite the expectation as an integral involving η⊗k:

Eη⊗k

[
λ

([
ã−

k−1∑
l=0

Y, b̃−
k−1∑
l=0

Y

]
∩ [c, d]

)]

=

∫
T
λ([ã− x, b̃− x] ∩ [c, d]) dη⊗k(x)

=

∫
T

∫
T
1[ã−x,b̃−x](y)1[c,d](y)dλ(y)dη⊗k(x)

(Fubini) =

∫
T
1[c,d](y)

∫
T
1[ã,b̃](y + x)dη⊗k(x)dλ(y)

=

∫
T
1[c,d](y)

∫
T
1[ã−y,b̃−y](x)dη⊗k(x)dλ(y).
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By Lemma 3.34, the inside integral converges, for any y ∈ T:

∫
T
1[ã−y,b̃−y](x)dη⊗k(x) −→

k→∞

∫
T
1[ã−y,b̃−y](x) dλ(x)

= b̃− y − (ã− y) = b̃− ã = b−mα− (a−mα) = b− a,

regardless of y. Each of the integrals is bounded above by 1 and is a measurable func-

tion of y (by Fubini), so we may use the Lebesgue Dominated Convergence Theorem

to conclude:

Eη⊗k

[
λ

([
ã−

k−1∑
l=0

Y, b̃−
k−1∑
l=0

Y

]
∩ [c, d]

)]

−→
n→∞

∫
T
1[c,d](y)(b− a)dλ(y) = (b− a)(d− c).

This proves the lemma.

Lemma 3.37. Let A × [a, b] and B × [c, d] be as in the hypotheses of Lemma 3.35.

Then the mixing property for Q holds for A and B.

Proof. Apply Lemmas 3.35 and 3.36.

Proof of Lemma 3.31. Thanks to Lemma 3.37, we see that Q is mixing for all sets in

a generating π-system for the shift on W . Hence by Proposition 2.39, we see that Q

is strongly mixing.

Proof of Proposition 3.28. SinceQ is strongly mixing, it is also ergodic by Proposition

2.40. This shows that P is ergodic, by the isomorphism, so that S̃B is ergodic by

Lemma 3.19. Hence S is ergodic by Proposition 2.51 using Lemma 2.58.

Proof of Theorem 3.24. Now that we know that R and S are ergodic on their respec-

tive spaces by Propositions 3.17 and 3.28, we see that A is not diagonalizable over C

by 3.3, as desired. Hence we are finished the proof.
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Chapter 4

Conclusion

We have seen that not every real matrix cocycle is block upper-triangularizable, even

over the complex numbers. To do this, we looked no further than cocycles of 2-

by-2 real orthogonal matrices, and found our counterexamples there; the particular

structure of orthogonal matrices in two dimensions allowed us to achieve concrete

criteria for existence of a counterexample. From here, there are a few directions in

which to proceed.

One option is to consider non-orthogonal matrices, even just in two dimensions.

Is there a theorem or a class of counterexamples lurking in this setting? We could

also increase the dimension of the matrices, while keeping them orthogonal, and see

what we can find, or jump straight to arbitrary invertible n-by-n matrices. Finally,

an option is to ask if is a generic property of matrix cocycles (if wanted, just 2-by-2

orthogonal matrices) to be non-block-upper-triangularizable, where we mean generic

in the technical sense: does the set of such cocycles contain a dense Gδ set in an

appropriate topology, so that ‘most’ cocycles have this property?

As per usual, finding the answer to one question opens the door to many other

questions. It is our responsibility as mathematicians to not only ask those questions,

but see where they take us.
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Chapter A

Appendix

A.1 The Grassmannian

We provide a proof of Proposition 2.18.

Proof. {v1, v2} is easily seen to be an orthogonal set with respect to the standard

complex inner product, hence is also linearly independent and therefore is a basis for

C2. If V is a 1-dimensional subspace of C2, then for some a, b ∈ C, we have

V = spanC{av1 + bv2} = spanC{v1 +
b

a
v2},

when a 6= 0, and if a = 0, then V = spanC{v2}. It is clear that if a 6= 0, then

spanC{av1 + bv2} 6= spanC{v2},

and if we have z, w ∈ C with

spanC{v1 + zv2} = spanC{v1 + wv2},
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then there is c ∈ C such that

v1 + zv2 = c(v1 + wv2) = cv1 + cwv2,

which forces c = 1 and z = w, since {v1, v2} is a basis. Hence, ψ is injective. If

z ∈ C̄\{∞}, then ψ(spanC{v1 +zv2}) = z, and ψ(spanC{v2}) =∞, so ψ is surjective.

Thus ψ is a bijection.

Let Vn −→
n→∞

V in Gr1(C2), where ψ(Vn) = zn and ψ(V ) = z ∈ C̄ \ {∞}. Then

unit vectors sitting inside Vn and V are

v1 + (zn)v2√
2(1 + |zn|2)

1
2

,
v1 + zv2√

2(1 + |z|2)
1
2

.

If the subspaces converge, then these vectors must get arbitrarily close also, by def-

inition of the metric on the Grassmannian (we may choose to fix angles so that the

coefficient of v1 is always real). But then we have

∣∣∣∣∣(1 + |zn|2)
1
2 zn

(1 + |zn|2)
1
2

− (1 + |z|2)
1
2 z

(1 + |z|2)
1
2

∣∣∣∣∣ = |zn − z| ,

and we know the former gets small. Hence indeed, zn converges to z.

To deal with the case that ψ(V ) =∞, we suppose that the vector

v1 + (zn)v2√
2(1 + |zn|2)

1
2

approaches the vector
v2√

2
. Then

1
√

2(1 + |zn|2)
1
2

→ 0,
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which can only happen if |zn| gets arbitrarily large. Thus zn −→
n→∞

∞, and we’ve shown

that ψ is continuous.

Finally, Gr1(C2) is compact and C̄ is Hausdorff, so since ψ is a continuous bijection,

we obtain the fact that φ−1 is continuous for free. We are done.

A.2 Ergodic equivalences

Here, we present the proof of Theorem 2.37. First we need a quick lemma.

Lemma A.1. Let (X,B, µ) be a measure space. Let A,B,C ∈ B. Then we have that

µ satisfies a ‘triangle inequality’ (see [11]):

µ(A∆B) ≤ µ(A∆C) + µ(C∆B).

Proof. Note that for any set C,

A∆B ⊂ (A∆C) ∪ (C∆B),

by inspecting an Euler diagram, so because µ is subadditive, we obtain

µ(A∆B) ≤ µ(A∆C) + µ(C∆B).

We also recall the definition of a λ-system, together with a useful theorem involving

it.

Definition A.2. Let X be a set. A collection of subsets L is a λ-system for X if we

have:
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1. X ∈ L,

2. If A ∈ L, then X \ A = Ac ∈ L,

3. If {Ai}∞i=1 ⊂ L with Ai ∩ Aj = ∅ for i 6= j, then

∞⋃
i=1

Ai ∈ L.

Theorem A.3. Let X be a set, let P be a π-system in X and let L be a λ-system in

X containing P. Then σ(P) ⊂ L, that is, the σ-algebra generated by P is contained

inside of L.

Proof of Theorem 2.37. (1 =⇒ 2): (due to Sarig: [25]) Let A be almost T -invariant.

We shall find a set B ∈ B such that B is strictly T -invariant and has the same measure

as A. Define the set B by:

B =
{
x ∈ X : T k(x) returns to A infinitely often

}
=
{
x ∈ X : ∀n ≥ 1,∃k ≥ n such that T k(x) ∈ A

}
=
∞⋂
n=1

∞⋃
k=n

T−k(A).

B is thus measurable, by the last equality. We also have:

T−1(B) =
{
x ∈ X : ∀n ≥ 1,∃k ≥ 1 such that T k(T (x)) = T k+1(x) ∈ A

}
= B,

so indeed B is T -invariant, and hence either µ(B) = 0 or µ(X \ B) = 0. To show

that B has the same measure as A, observe that if x ∈ B \ A, then there is k such

that x ∈ T−k(A) \ A, and if x ∈ A \ B, then x returns to A finitely many times and
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so there is k such that x ∈ A \ T−k(A), so we obtain:

A∆B ⊂
∞⋃
k=1

A∆T−k(A).

Using this and the symmetric difference triangle inequality, we get:

µ(A∆B) ≤ µ

(
∞⋃
k=1

A∆T−k(A)

)
≤

∞∑
k=1

µ(A∆T−k(A))

≤
∞∑
k=1

k∑
i=1

µ(T−i(A)∆T−(i−1)(A)) =
∞∑
k=1

k∑
i=1

µ(T−(i−1)((A)∆T−1(A)))

=
∞∑
k=1

k∑
i=1

µ(A∆T−1(A)) =
∞∑
k=1

kµ(A∆T−1(A)) =
∞∑
k=1

0 = 0,

utilizing the fact that A is almost T -invariant. Therefore µ(A∆B) = 0, which yields

µ(A \B) = µ(B \ A) = 0. Finally, we compute:

µ(A) = µ(A \B) + µ(A ∩B) = µ(A ∩B) = µ(B ∩ A) + µ(B \ A) = µ(B),

and so either µ(A) = 0 or µ(X \ A) = 0, as desired.

(2 =⇒ 1): Let A = T−1(A). Then

µ(A∆T−1(A)) = µ(A∆A) = µ(∅) = 0,

and so µ(A) = 0 or µ(X \ A) = 0. Hence (µ, T ) is ergodic.

(2 =⇒ 3): Let f be measurable, with f ◦ T = f almost everywhere. Then we

have, for any c ∈ R:

T−1f−1(−∞, c) = (f ◦ T )−1(−∞, c) = f−1(−∞, c),
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up to a set of measure zero. Then µ(f−1(−∞, c)) has either zero measure or full

measure, ie. either f(x) ≥ c or f(x) < c almost everywhere. Let

s = sup
{
c : µ(f−1(−∞, c)) = 0

}
. Almost everywhere, we have that for any c < s, f(x) ≥ c, and for any c > s,

f(x) < c. Letting an −→
n→∞

s monotonically from below and bn −→
n→∞

s monotonically

from above, we have that:

µ(X \ f−1{s}) = µ(f−1(R) \ f−1(
∞⋂
n=1

[an, bn)))

= µ(f−1(
∞⋃
n=1

(−∞, an) ∪ [bn,∞)))

≤
∞∑
n=1

(µ(f−1(−∞, an)) + µ(f−1[bn,∞))

=
∞∑
n=1

0 = 0.

Thus f−1{s} has full measure, so that f(x) = s almost everywhere.

(3 =⇒ 2): Let A be almost T -invariant. Then 1A(x) = 1T−1(A)(x) = 1A(T (x))

for almost every x, and characteristic functions of measurable sets are measurable

functions, thus 1A is constant almost everywhere. Hence µ(A) = 0 or µ(X \ A) = 0.

Note that we may interchange (3) with the following statement (3m): If f is

measurable, and f ◦ T = f almost everywhere, then f is constant almost everywhere.

(3m =⇒ 3): Since every L∞ function is measurable, the implication clearly

holds.

(3 =⇒ 3m): Let g : R→ R be given by g(x) = arctan(x); g is continuous hence

measurable. Then if f : R → R is measurable and f ◦ T = f almost everywhere,

g ◦ f is measurable and bounded, hence in L∞. We also have that g ◦ f ◦ T = g ◦ f
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almost everywhere, thus g ◦ f is constant almost everywhere. But g is a bijection

between R and (−π
2
, π

2
), with g−1(x) = tan(x), so applying g−1 to both sides, we see

that f ◦ T = f almost everywhere, as desired.

We now specify that µ(X) = 1. Note that for any A ∈ B, we have:

∫
X

12
A dµ =

∫
X

1A dµ = µ(A) ≤ µ(X) = 1 <∞,

so that 1A ∈ L2(X).

(4 =⇒ 1): Let A = T−1(A). Then we have 1A = 1A◦T as before, hence constant

almost everywhere, so µ(A) ∈ {0, 1}.

(3 =⇒ 4): Let f ∈ L2(X) be T -invariant. Define fn : X → R by the following:

fn(x) =


f(x) |f(x)| < n,

n f(x) ≥ n,

−n f(x) ≤ −n.

Then fn is bounded and measurable, hence in L∞. Finally, since

T−1f−1[−n, n] = (f ◦ T )−1[−n, n] = f−1[−n, n],

we easily see that fn(T (x)) = fn(x) for almost every x, so fn is almost everywhere

constant with constant Cn, for each n. We may compute the norm of each fn, to be

‖fn‖ = (

∫
X

f 2
n dµ)

1
2 = |Cn| .

Now, we see that |f1| ≤ |f2| ≤ · · · ≤ |f |, which implies ‖f1‖ ≤ ‖f2‖ ≤ · · · ≤ ‖f‖ <∞.

Then the sequence {|Cn|} is bounded above and monotonically increasing, hence it
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converges to a limit |C|; moreover, if |Cn| < |Cn+1|, then by definition of fn we must

have |Cn+1| = |Cn|+ 1, because if fn doesn’t take the values n or −n, fn+1 will equal

fn. Hence eventually, |Cn| = |Cn+1| = · · · = |C|, and because the sgn(fi) = sgn(fj)

for any i 6= j, we get fn = fn+1 = · · · = C almost everywhere. Then since f is the

pointwise limit of the sequence of fn, we get

f(x) = lim
n→∞

fn(x) = C,

almost everywhere, as desired.

(1 =⇒ 5): Let A,B ∈ P ⊂ B. Since µ(X) = 1, 1A and 1B are both integrable.

Since (µ, T ) is ergodic, we see that for almost every x ∈ X,

lim
n→∞

1

n

n−1∑
k=0

1A(T k(x)) =

∫
X

1A dµ = µ(A),

by the corollary to Birkhoff’s theorem (which we have not yet used in the proof,

so there is no circular argument). Then we are done, by the Lebesgue Dominated

Convergence Theorem (using the constant function 1 as an integrable majorant):

lim
n→∞

1

n

n−1∑
k=0

µ(T−1(A) ∩B) = lim
n→∞

1

n

n−1∑
k=0

∫
X

1T−k(A)∩B dµ

= lim
n→∞

∫
X

1B

(
1

n

n−1∑
k=0

1A(T k(x))

)
dµ

(LDCT) =

∫
X

1Bµ(A) dµ

= µ(A)µ(B).
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(5 =⇒ 1): For B ∈ P , let

MB =

{
A ∈ B : lim

n→∞

1

n

n−1∑
k=0

µ(T−k(A) ∩B) = µ(A)µ(B)

}
.

By hypothesis, we know that this contains P ; we shall show that this is a λ-system.

First, we assume that this is true. Then the π-λ Theorem tells us that B = σ(P) ⊂

MB ⊂ B, and thus thatMB = B. Note that we could have swapped A and B in the

definition of MB, and the argument would not have changed. Then, for any A ∈ B,

we know that MA is a λ-system containing P , hence by the π-λ Theorem again we

see that MA = B, and since this holds for any A ∈ B, we are done.

It thus remains to show that MB is a λ-system.

• We see that

lim
n→∞

1

n

n−1∑
k=0

µ(T−k(X) ∩B) = lim
n→∞

1

n

n−1∑
k=0

µ(X ∩B) =
n

n
µ(B) = µ(X)µ(B),

so indeed, X ∈MB.

• Let A ∈MB. Then we have µ(T−k(X \A)∩B) = µ((T−k(X)\T−k(A))∩B) =

µ(X ∩B)− µ(T−k(A) ∩B) = µ(B)− µ(T−k(A) ∩B), so that:

lim
n→∞

1

n

n−1∑
k=0

µ(T−k(X \ A) ∩B)

= lim
n→∞

1

n

n−1∑
k=0

(µ(B)− µ(T−k(A) ∩B))

= lim
n→∞

(
µ(B)− 1

n

n−1∑
k=0

µ(T−k(A) ∩B)

)

= µ(B)− µ(B)µ(A) = (1− µ(A))µ(B) = µ(X \ A)µ(B).

Therefore X \ A ∈MB.
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• Finally, let {Ai}∞i=1 ⊂MB, with Ai ∩Aj = ∅ when i 6= j, and A =
⋃∞
i=1Ai. Let

ε > 0. Since

µ(A) =
∞∑
i=1

µ(Ai) ≤ µ(X) = 1,

we may find N > 0 such that for

∞∑
i=N+1

µ(Ai) <
ε

3
.

For each i = 1, . . . , N , we can find ni large enough that for all n > ni,∣∣∣∣∣ 1n
n−1∑
k=0

µ(T−k(Ai) ∩B)− µ(Ai)µ(B)

∣∣∣∣∣ < ε

3N
;

let n∗ = maxni. Then for n > n∗, noting that

µ(T−k(Ai) ∩B) ≤ µ(T−k(Ai) = µ(Ai),

we obtain:

∣∣∣∣∣ 1n
n−1∑
k=0

µ(T−k(A) ∩B)− µ(A)µ(B)

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n−1∑
k=0

(
N∑
i=1

µ(T−k(Ai) ∩B) +
∞∑

i=N+1

µ(T−k(Ai) ∩B)

)

−µ(B)
N∑
i=1

µ(Ai)− µ(B)
∞∑

i=N+1

µ(Ai)

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
i=1

(
1

n

n−1∑
k=0

µ(T−k(Ai) ∩B)− µ(Ai)µ(B)

)∣∣∣∣∣
+

∣∣∣∣∣ 1n
n−1∑
k=0

∞∑
i=N+1

µ(T−k(Ai) ∩B)

∣∣∣∣∣+

∣∣∣∣∣µ(B)
∞∑

i=N+1

µ(Ai)

∣∣∣∣∣
< N · ε

3N
+

1

n
· nε

3
+ 1 · ε

3
= ε.
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Hence A ∈MB, and so MB is a λ-system, as desired.

We also present the proof of Proposition 2.39.

Proof. The forwards direction is immediate. For the backwards direction, we perform

a similar computation to that in the proof of Theorem 2.37 above, in the (5 =⇒ 1)

direction. For B ∈ P , let

MB =
{
A ∈ B : lim

n→∞
µ(T−n(A) ∩B) = µ(A)µ(B)

}
.

By hypothesis, we know that this contains P ; we shall show that this is a λ-system.

First, we assume that this is true. Then the π-λ Theorem tells us that B = σ(P) ⊂

MB ⊂ B, and thus thatMB = B. Note that we could have swapped A and B in the

definition of MB, and the argument would not have changed. Then, for any A ∈ B,

we know that MA is a λ-system containing P , hence by the π-λ Theorem again we

see that MA = B, and since this holds for any A ∈ B, we are done.

It thus remains to show that MB is a λ-system.

• We see that

lim
n→∞

µ(T−n(X) ∩B) = lim
n→∞

µ(X ∩B) = µ(B) = µ(X)µ(B),

so indeed, X ∈MB.

• Let A ∈MB. Then we have

µ(T−n(X \ A) ∩B) = µ((T−n(X) \ T−n(A)) ∩B)

= µ(X ∩B)− µ(T−n(A) ∩B) = µ(B)− µ(T−n(A) ∩B),
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so that:

lim
n→∞

µ(T−n(X \ A) ∩B) = lim
n→∞

(µ(B)− µ(T−n(A) ∩B))

= µ(B)− µ(B)µ(A) = (1− µ(A))µ(B) = µ(X \ A)µ(B).

Therefore X \ A ∈MB.

• Finally, let {Ai}∞i=1 ⊂MB, with Ai ∩Aj = ∅ when i 6= j, and A =
⋃∞
i=1 Ai. Let

ε > 0. Since

µ(A) =
∞∑
i=1

µ(Ai) ≤ µ(X) = 1,

we may find N > 0 such that for

∞∑
i=N+1

µ(Ai) <
ε

3
.

For each i = 1, . . . , N , we can find ni large enough that for all n > ni,

∣∣µ(T−n(Ai)) ∩B)− µ(Ai)µ(B)
∣∣ < ε

3N
;

let n∗ = maxni. Then for n > n∗, noting that

µ(T−k(Ai) ∩B) ≤ µ(T−k(Ai) = µ(Ai),



125

we obtain:

∣∣µ(T−n(A) ∩B)− µ(A)µ(B)
∣∣

=

∣∣∣∣∣
N∑
i=1

µ(T−n(Ai) ∩B) +
∞∑

i=N+1

µ(T−n(Ai) ∩B)

−µ(B)
N∑
i=1

µ(Ai)− µ(B)
∞∑

i=N+1

µ(Ai)

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
i=1

(
µ(T−n(Ai) ∩B)− µ(Ai)µ(B)

)∣∣∣∣∣
+

∣∣∣∣∣
∞∑

i=N+1

µ(T−n(Ai)) ∩B)

∣∣∣∣∣+

∣∣∣∣∣µ(B)
∞∑

i=N+1

µ(Ai)

∣∣∣∣∣
< N · ε

3N
+
ε

3
+ 1 · ε

3
= ε.

Hence A ∈MB, and so MB is a λ-system, as desired.

A.3 Character Theory

We present some results from character theory which are utilized in the thesis. See

[6] and [21] for more detailed treatments.

Definition A.4. Let G be a locally compact Abelian topological group, equipped

with Haar measure m on the Borel σ-algebra B. The character group of G, denoted

Ĝ, is the set of continuous group homomorphisms from G into the complex unit circle,

where the group operation is pointwise multiplication.

Lemma A.5. All characters of T × Z2 are of the form (x, b) 7→ e2πinx(−1)ab, where

n ∈ Z, and a ∈ Z2.
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Proof. For Abelian groups G,H with characters Ĝ, Ĥ, let γ be a character of G×H.

Observe that γG defined by γG(g) = γ(g, eH) is an element of Ĝ; similarly, γH , defined

by γH(h) = γ(eG, h), is an element of Ĥ. However, we have

γ(g, h) = γ((g, eh) · (eG, h)) = γ(g, eH)γ(eG, h) = γG(g)γH(h),

and so γ ∈ Ĝ × Ĥ. The reverse inclusion is trivial to prove, and so all characters of

G×H are products of a character of G and a character of H.

Next, we prove that the characters of Zn are functions k 7→ e

2πimk

n , for each

m ∈ Zn. Observe that if γ is a character of Zn, then

1 = γ(0) = γ(1 + · · ·+ 1︸ ︷︷ ︸
n

) = γ(1)n,

so that γ(1) is an nth root of unity, of which there are n distinct ones, each taking

the form e

2πim

n . The statement is proved by observing γ(k) = γ(1)k. In the case of

n = 2, the square roots of 1 are +1 and −1.

Finally, we determine the characters of T. Let γ ∈ T̂. Since γ is assumed to take

values on the unit circle and is continuous, we may find δ ∈ (0, 1) such that

∫ δ

0

γ(x) dx = C 6= 0.

Using the homomorphism property, multiply by γ(t) to obtain:

Cγ(t) =

∫ δ

0

γ(t)γ(x) dx =

∫ δ

0

γ(x+ t) dx =

∫ t+δ

t

γ(x) dx.

Since γ is continuous, we see that this expression is differentiable, hence γ is differ-

entiable. We differentiate the expression γ(x + t) = γ(x)γ(t) with respect to t to
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get

γ′(x+ t) = γ(x)γ′(t)

and set t = 0 to obtain:

γ′(x) = γ′(0)γ(x),

which is a first-order differential equation on the real line (with initial condition

γ(0) = 1), which has solution

γ(x) = e2πiγ′(0)x.

Indeed, γ is periodic, but we also require that γ(0) = γ(1) to fulfil continuity require-

ments, which forces γ′(0) = n ∈ Z. Hence γ = γn, with γn(x) = e2πinx.
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