
Anonymous Location Based Messaging

The Yakkit Approach

by

Przemyslaw Lach

B.S.Eng., University of Victoria, 2015

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

c© Przemyslaw Lach, 2015

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Anonymous Location Based Messaging

The Yakkit Approach

by

Przemyslaw Lach

B.S.Eng., University of Victoria, 2015

Supervisory Committee

Dr. Hausi A. Müller, Supervisor

(Department of Computer Science)

Dr. Alex Thomo, Departmental Member

(Department of Computer Science)

iii

Supervisory Committee

Dr. Hausi A. Müller, Supervisor

(Department of Computer Science)

Dr. Alex Thomo, Departmental Member

(Department of Computer Science)

ABSTRACT

The proliferation of mobile devices has resulted in the creation of an unprecedented

amount of context about their users. Furthermore, the era of the Internet of Things

(IoT) has begun and it will bring with it even more context and the ability for users

to effect their environment through digital means. Applications that exist in the IoT

ecosystem must treat context as a first class citizen and use it to simplify what would

otherwise be an unmanageable amount of information. This thesis proposes the use

of context to build a new class of applications that are focused on enhancing normal

human behaviour and moving complexity away from the user. We present Yakkit—a

location based messaging application that allows users to communicate with others

nearby. The use of context allows Yakkit to be used without the creation of a login

or a profile and enhances the normal way one would interact in public. To make

Yakkit work we explore different ways of modelling location context and application

deployment through experimentation. We model location in an attempt to predict

a user’s final destination based on their current position and the trajectories of past

users. Finally, we experiment deploying the Yakkit service on different servers to

observe the effect of distance on the message transit time of Yakkit messages.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures viii

Acknowledgements xi

Dedication xii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Approach . 4

1.4 Contributions . 5

1.5 Thesis Overview . 5

2 Background 6

2.1 Sensors and Mobile Devices . 6

2.2 The Internet of Things and Self Adaptive Systems 14

2.3 Cloud Intrastructure . 18

2.3.1 Challenges in the Cloud . 19

2.3.2 Smart Applications on Virtual Infrastructure 19

2.3.3 Measuring Latency . 20

2.4 Software Complexity . 21

2.5 Human Communication . 22

v

2.6 Prediction Using Location . 23

2.6.1 GeoLife . 23

2.6.2 GeoLife Research . 24

2.7 Summary . 25

3 Location Based Social Networking 26

3.1 A New Twist on an Old Idea . 26

3.2 Yakkit . 27

3.3 Yakkit 2.0 . 31

3.4 Yakkit Challenges and Approaches 34

3.5 Summary . 35

4 Data Mining User Trajectories 36

4.1 When Location Is Not Enough . 36

4.2 Experiment Setup . 37

4.2.1 Data Preparation . 37

4.2.2 What Is a Trajectory? . 44

4.2.3 Modelling and Classification 51

4.2.4 The Experiment . 54

4.3 Experimental Results . 56

4.4 Discussion . 59

4.5 Threats to Validity . 60

4.6 Summary . 61

5 Yakkit Service Deployment and Latency 62

5.1 As Fast as Possible . 62

5.2 Experiment Setup . 63

5.3 Experimental Results . 65

5.4 Discussion . 67

5.5 Threats to Validity . 70

5.6 Summary . 71

6 Conclusions 72

6.1 Summary . 72

6.2 Contributions . 73

6.3 Future Work . 73

vi

6.3.1 Sentiment Analysis . 73

6.3.2 Modelling Locations . 74

6.3.3 Deployment . 74

Bibliography 75

A Source Code 81

A.1 Bot Source Code . 81

A.2 Time Delta Kernel Density Source . 90

A.3 Trajectory Distance Kernel Density Source 91

A.4 Trajectory Generation Source . 92

A.5 Experiment Source . 103

vii

List of Tables

Table 2.1 iPhone 6 Plus Sample Specification 12

Table 4.1 Sector 1,175 Model . 54

Table 4.2 Delta in Prediction Success Between Symmetric Original and

Shifted Experiments . 59

Table 4.3 Delta in Prediction Success Between Asymmetric Original and

Shifted Experiments . 60

Table 5.1 Experimental Result Summary 67

viii

List of Figures

Figure 2.1 Dr. Martin Cooper, the inventor of the cell phone, with Dy-

naTAC prototype from 1973 in 2007. (Courtesy of Know Your

Mobile) . 7

Figure 2.2 The MicrTAC released in 1989. Worlds first flip-phone that fit

your pocket. (Courtesy of WonderHowTo) 7

Figure 2.3 The IBM Simon released in 1993. The World’s first smart-

phone. (Courtesy of WonderHowTo) 8

Figure 2.4 Clockwise: Nokia 3210 (1999), GeoSentric (1999), Kyocera’s

Visual Phone (1999), Nokia 9000 Communicator (1997), and

Motorola StarTAC (1996). (Courtesy of WonderHowTo) . . . 9

Figure 2.5 Clockwise: Motorola Razor (2004), Microsoft Pocket PC Phone

Edition (2002), and Blackberry 5810 (2002). (Courtesy of Won-

derHowTo) . 10

Figure 2.6 iPhone Standard Apps . 13

Figure 2.7 Global Device Penetration Per Capita. (Courtesy of Business

Insider) . 13

Figure 2.8 Internet of Things (Courtesy of Wilgengebroed on Flickr) . . . 15

Figure 2.9 Autonomic Manager (AM) [KC03] [IBM06] 17

Figure 2.10 Autonomic Computing Reference Architecture (ACRA) [IBM06] 18

Figure 3.1 CB Radio Base Station . 27

Figure 3.2 Original Yakkit Architecture 28

Figure 3.3 Autonomic Manager for Yakkit Service 29

Figure 3.4 Yakkit iPhone App Interfaces 30

(a) Chat View . 30

(b) Billboard View . 30

(c) Map View . 30

Figure 3.5 Advertising Portal . 31

ix

Figure 3.6 Yakkit App . 32

(a) Ad Creation . 32

(b) Ad Scheduling . 32

(a) Chat . 32

(b) Ad Presentation . 32

Figure 3.7 Yakkit Version 2.0 . 33

Figure 4.1 GeoLife Data Structure . 38

(a) Directory Structure . 38

(b) File Structure . 38

(c) File Contents . 38

Figure 4.2 Imported Dataset Schema . 39

Figure 4.3 All GeoLife Points (Scale 1:64,000,000) 40

Figure 4.4 Downtown Beijing (Scale 1:200,095) 41

Figure 4.5 Downtown Beijing with Original Dataset (Scale 1:200,095) . . 42

Figure 4.6 Downtown Beijing with Boundary (Scale 1:200,095) 42

Figure 4.7 Downtown Beijing with Original Dataset and Boundary (Scale

1:200,095) . 43

Figure 4.8 Downtown Beijing with Boundary and Filtered Dataset (Scale

1:200,095) . 43

Figure 4.9 Updated Schema to Include Boundary and Filtered Points . . 44

Figure 4.10 Relative Kernel Densities of Time Deltas Between Points 99th

Percentile . 46

Figure 4.11 UTM Zones (Courtesy Wikimedia Commons) 47

Figure 4.12 Updated Schema to Include Trajectory and Sample 48

Figure 4.13 Downtown Beijing Trajectories 49

Figure 4.14 Kernel Density of Trajectory Distances 99th Percentile 50

Figure 4.15 Downtown Beijing Trajectories with Length Less Than 15 km

(Scale 1:200,095) . 50

Figure 4.16 Downtown Beijing with 6,000 m Sectors (Scale 1:200,095) . . . 51

Figure 4.17 Source Sector 1,175 With 1,000 m Sectors In Background (Scale

1:65,000) . 52

Figure 4.18 Source Sector 1,175 Trajectories With 1,000 m Sectors In Back-

ground (Scale 1:65,000) . 53

x

Figure 4.19 Source Sector 1,175 Destination Sectors With 1,000 m Sectors

In Background (Scale 1:65,000) 53

Figure 4.20 Final Schema . 55

Figure 4.21 Symmetric Original and Shifted Experiment Results - Side by

side comparison of original and shifted experiments showing the

effect of sector boundaries on classification. 56

Figure 4.22 Asymmetric Original and Shifted Experiment Results - Side by

side comparison of original and shifted experiments showing the

effect of sector boundaries on classification. 57

Figure 4.23 Kernel Density of Number of Sectors Error as a Fraction of

Symmetric Sector Size for False Predictions (Original and Shifted) 58

Figure 4.24 Kernel Density of Number of Sectors Error as a Fraction of

Asymmetric Sector Size for False Predictions (Original and

Shifted) . 58

Figure 5.1 Server Locations Latency Experiment 64

Figure 5.2 Message Routing Best Case 66

Figure 5.3 Message Routing Worst Case 66

Figure 5.4 Closest Proximity Experiment Results 68

(a) Oregon to Victoria Ping and Message Transit Results 68

(b) Virginia to Carleton Ping and Message Transit Results 68

Figure 5.5 Farthest Proximity Experiment Results 69

(a) Oregon to Carleton Ping and Message Transit Results 69

(b) Virginia to Victoria Ping and Message Transit Results 69

xi

ACKNOWLEDGEMENTS

If not for the persistence of my supervisor, Dr. Hausi A. Müller, I would have

never made the decision to attend grad school. Attending grad school was one of the

best decisions I made and Dr. Müller’s continued support allowed me to grow on an

intellectual and personal level. For that I am forever grateful.

To all those in Rigi Group, in particular Ron Desmarais, I thank you for your

friendship and for the time we spent working together. A large part of my academic

success is the result of the constructive criticism and thoughtfulness that I have been

shown. My work is that much better for it.

xii

DEDICATION

I dedicate this work to my wife Cindy Matthew. Her support at a critical juncture

during my undergraduate days paved the way for me to have this opportunity. You

can only connect the dots looking back and looking back I am certain I would not

have made it this far without her.

Chapter 1

Introduction

“The most profound technologies are those that disappear. They weave themselves

into the fabric of everyday life until they are indistinguishable from it.”

—Mark Weiser in The Computer for the 21st Century

Within the last ten years we have seen the emergence of the social network. In

the latter part of this decade this has been complemented by the proliferation of

mobile devices. This new interaction paradigm affords the opportunity to connect

users in ways that are socially familiar and spontaneous. Yet despite this social and

technological renaissance people are not necessarily happier nor better off. Mobile

devices provide a constant stream of distractions and our social networks require

our constant attention. This chapter provides a brief overview of the problem, the

motivation, and the solutions proposed in this thesis.

1.1 Motivation

Historically speaking we are living in exceptional times. Mobile devices connect us

24-7 and provide unprecedented computational power in a small form factor. Yet

despite this technological marvel, these devices are highly under-utilized. We still

predominantly build applications for mobile devices as extensions of their desktop

counterparts and as such we limit ourselves to the paradigms of desktop computing.

One incarnation of the mobile device is the smartphone. A smartphone is a

combination of hardware and software that serves as both a mobile computing and

communication device. The idea behind the smartphone was first introduced by IBMs

Simon way back in 1993, but it was not until 2007, with the release of the first iPhone,

2

that the post-PC era began to take shape [IBM93]. Recent studies have shown large

growth in the mobile device market. Cisco predicts that by 2018 mobile device sales

will hit the ten billion mark with approximately 1.4 mobile devices per capita.1 This

means that one seventh of the human population will have at least one smartphone

in their pocket.

Each smartphone generation features more sensors and richer APIs that provide

developers with greater tools to develop rich applications. Current modern smart-

phones boast hardware spaces such as: 2G, 3G, and 4G antennas, 128GB of storage

space, 1920x1080 resolution displays, 8MP cameras, gyroscopes, microphones, GPS,

accelerometers, compass, proximity/ambient light sensors, barometers, and 2.26GHz

processors. In addition to hardware that was simply not available on a desktop, such

as GPS and ambient light sensors, modern day smartphones provide computational

power that was only available on a desktop PC just a few years earlier. This trend

in hardware will continue as future smartphones will have even more storage, more

computational power, and faster network access speeds (i.e., 5G).

In parallel to the evolution of the smartphone, and mobile devices in general, we

have seen the evolution of the Internet and the services that run on it. Some services,

such as Twitter,2 owe much of their success to the proliferation of these mobile devices

while others, like Facebook,3 owe much of their ongoing success to it. In either case,

these types of services have a mobile counterpart that is used to either provide its

users with an optimal mobile experience or take advantage of the rich contextual

information that these devices offer.

Sensors, storage capacity, and computational power have resulted in a constant

stream of user information, or context, to be generated very quickly. Users’ history,

such as where they have been, what they have bought, and what they are currently

doing is being monitored and recorded by many of these Internet services. These

services mine this information for context and use it to personalize the user experience

in one form or another. For example, Google reads through your e-mail in order to

provide targeted advertising that is based on the keywords in your e-mails.

Although these types of personalization services are still in their infancy and

are still unable to offer, what we would consider, a truly personalized experience,

they have begun to shape user expectations. Users are increasingly expecting to

1http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-
vni/vni-forecast-qa.html

2http://www.twitter.com
3http://www.facebook.com

3

have their experience or content personalized. In addition, the emergence of cloud

computing has made it possible for users to access their data anywhere resulting

in mobile applications whose architectures span the mobile device and the cloud.

Applications that span multiple devices, especially over the Internet, are susceptible

to lag which may degrade the experience. As such, additional care must be taken

to measure and minimize the latencies in these applications. The context provided

by smartphones, the user data stored in the cloud, and the effects of latency on

deployment present technical as well as social challenges.

1.2 Problem Statement

Most people who have used a smartphone would agree that they can be very dis-

ruptive and that the applications that run on those devices, particularly social ap-

plications, can be a big time sink. To some extent this problem is hard wired in us

as humans. Research in psychology claims that we spend as much as 30-40% of our

speech for the sole purpose of informing others of what we feel and what we have

accomplished [TM12]. This innate desire for self disclosure coupled with the ease

with which we are now able to do so is part of the problem.

To add to these distractions we live in a world where we have a plethora of choices.

If you want to buy a bagel you have a dozen flavours to choose from. If you want to

buy a pair of jeans you have to decide which type of cut you want. If you go into the

average American supermarket you get to choose from 285 varieties of cookies. Just

because some choice is good does not mean that lots of choice is better. Too much

choice leads us to have to manage trade-offs and management of trade-offs makes us

miserable [Sch09].

The intersection of mobile devices, the cloud, and the shift in user expectations

present an opportunity to re-think how we build and deploy applications. In this thesis

we aim to answer the following research questions as they relate to this opportunity:

1. What kind of applications can we build when we shift complexity away from

the user with the intention of nurturing normal human communication?

2. How can we model anonymous user GPS location context to predict meaningful

destinations without direct user intervention?

4

3. Does deploying location based chat services closer to a user have a positive or

negative effect on message latency?

1.3 Approach

The pervasiveness of computers may lead one to think that they have become ubiq-

uitous; however, if we reflect on the quote at the start of this chapter we realize that

technology is far from invisible. Ubiquitous technologies are supposed to disappear

but current technologies have the opposite effect; they distract. In his paper titled

“The Computer for the 21st Century” Mark Weiser, the father of ubiquitous comput-

ing, identified three characteristics necessary for a technology to become ubiquitous:

(1) inexpensive and low power, (2) ubiquitous software applications and (3) a fast

network to connect them all together [Wei95].

Since the publication of Weiser’s paper we have made progress in lowering the cost

of computing, improving mobility and power consumption, and networking them all

via the Internet and the cloud. Although this progress is still far from this ultimate

vision of ubiquitous computing, it is a step in the right direction as far as hardware and

networking technologies are concerned. The third piece of the puzzle, the ubiquitous

software applications, is lagging behind. The intention of this thesis is not tackle

challenges in the ubiquitous community per se but given the effect software has on

people’s lives it is high time we as software engineers think more deeply about how

our software impacts users.

With that responsibility in mind as well as Weiser’s principles for a ubiquitous

computing vision we aim to tackle our research questions in the following manner:

1. Develop a context aware and feedback enabled application that uses user loca-

tion to automatically create social connections with other nearby users.

2. Model the relationship between users’ trajectory start and stop positions and

see if the model can be used to predict a new users final destination with the

goal of personalizing their experience.

3. Deploy a location based chat application on geographically separated servers

and determine what effect distance has on message latency.

5

1.4 Contributions

The contributions of this thesis align with our three research questions and are as

follows:

1. A login-less, profile-less, location based messaging framework and application

that instantly connects you to those around you.

2. Experimental results that show the accuracy of our location prediction model

when trying to predict a user’s intended destinations.

3. Experimental results from an emulation that show the effect of distance on

message latency.

1.5 Thesis Overview

Chapter 2 presents the necessary background both for motivating our work and for

giving the reader a general understanding of the thesis subject domain. In Chapter 3

we present Yakkit as our first contribution and solution to our first research question.

Furthermore, we use Yakkit as a platform for our next two contributions in Chapters

4 and 5 where we run experiments and discuss their results with the goal of answering

our last two research questions.

6

Chapter 2

Background

2.1 Sensors and Mobile Devices

Over 40 years ago, in 1973, a Motorola engineer by the name of Martin Cooper

made the very first mobile phone call. The number he dialed was that of Motorola’s

competitor, Bell Labs, and the purpose was to let them know that Motorola had

managed to create a mobile phone. Ten years later in 1983 Motorola launched the

first commercial version of the mobile phone, dubbed the Motorola DyanTAC 8000X,

for a modest price of $3,995. Clearly, this phone was not targeted at the masses and

its 30 minute battery life made the four thousand dollar price tag even harder to

swallow.

7

Figure 2.1: Dr. Martin Cooper, the inventor of the cell phone,
with DynaTAC prototype from 1973 in 2007.

(Courtesy of Know Your Mobile)

The same decade also saw the release of two other mobile phones: the Mobira

Talkman (1984) and Motorola’s MicroTAC (1989). The Mobira allowed for several

hours of talk time but its battery was the size of a lunchbox and required a handle for

carrying it around. At the end of the decade Motorola’s iteration on the DyanTAC

produced the MicroTAC. This was considered the world first flip-phone as well as the

world’s first pocket phone.

Figure 2.2: The MicrTAC released in 1989.
Worlds first flip-phone that fit your pocket.

(Courtesy of WonderHowTo)

8

The 1990’s was the decade that saw the evolution of the mobile phone and the

entrance of new players into the mobile phone market. In 1993 IBM released what

would become the worlds first smartphone: the IBM Simon. Simon functioned as

a pager, fax machine, and personal digital assistant (PDA). Using Simon and its

interactive touchscreen you could add appointments to your calendar, search through

your address book, and send e-mail. Simon was truly innovative in the sense that

back in 1993 it already had several of the features that we find in smartphones today.

Figure 2.3: The IBM Simon released in 1993.
The World’s first smartphone.
(Courtesy of WonderHowTo)

During the 90’s the mobile phone continued to morph more into a mobile computer

rather than just a better mobile phone. Motorola continued to innovate by delivering

the first clam-shell phone that used the new 2G network. Nokia entered into the

smartphone market as well with their Nokia 9000 Communicator which had the first

QWERTY keyboard. Nokia also released their 3000 series of phones which became

legendary for their indestructibility. This legendary series included the Nokia 3210

which emerged as one of the most popular phones in history. Nokia was also the first

to offer access to a text based version of the Internet via the 7110 phone using the

Wireless Applications Protocol (WAP). GeoSentric introduced the first phone that

had built in GPS and Kyocera’s Visual Phone was the first phone with a built-in

camera. By the end of the 90’s mobile phones were capable of more than just making

phone calls.

9

Figure 2.4: Clockwise: Nokia 3210 (1999), GeoSentric (1999), Kyocera’s Visual
Phone (1999), Nokia 9000 Communicator (1997), and Motorola StarTAC (1996).

(Courtesy of WonderHowTo)

In the early to mid 2000’s manufacturers were still making phones, such as Sanyo’s

5300 and the Motorola Razor, but the biggest innovations and technological momen-

tum was behind smartphones. Smartphones allowed users to have access to applica-

tions that they would normally only find on a PC. Blackberry’s 5810 gave professionals

quick and easy access to their e-mails and schedules. Microsoft entered the smart-

phone arena as well with their Pocket PC Phone Edition which ran on many PDA’s

including the HP Jornada 928.

10

Figure 2.5: Clockwise: Motorola Razor (2004), Microsoft Pocket PC Phone Edition
(2002), and Blackberry 5810 (2002). (Courtesy of WonderHowTo)

Although significant progress had been made since the clunky and expensive mo-

bile phones of the 1980’s, the mobile devices of the early and mid 2000’s were still

difficult to use. The screens were small, the input methods were limited, and the

PC inspired user interfaces created a less than ideal experience. In addition, the

applications that ran on the phones were mostly proprietary and not updated often

or sometimes not at all. Then in 2007-2008, Apple released the iPhone and with it

the App Store. However, Apple was a player in the PDA market–in particular the

Newton–but when it decided to go after that market it did so by creating a revolu-

tionary user interface as well as creating a healthy ecosystem for developers to build

apps.

The success of the iPhone set a new standard for smartphones: large touchscreen,

excellent battery life, high end build quality, lightweight, camera, and GPS. Each

new generation of the iPhone raised the bar further both in terms of aesthetics and

hardware: higher resolution screens, longer battery life, faster processor, more mem-

ory, more and higher resolution cameras, noise cancelling microphones, more accurate

GPS, wider range of network antennas, and larger storage. The combination of high

end hardware, multiple sensors, and an excellent development platform gave devel-

opers access to more personal information and user context.

Table 2.1 summarizes some of the characteristics of the newest iPhone, the iPhone

11

6 Plus. From looking at this table one would think that this is a shopping list for three

separate devices but this is not the case. This specification is typical of what one

would expect to find in a modern smartphone. Complimentary to the hardware is an

array of built in applications that came with each smartphone. A typical assortment

is shown in Figure 2.6.

12

Table 2.1: iPhone 6 Plus Sample Specification

Chips A8 chip with 64-bit architecture & M8 mo-

tion coprocessor

Cellular & Wireless UMTS/HSPA+/DC-HSDPA;

GSM/EDGE; LTE

802.11a/b/g/n Wi-Fi (802.11n 2.4GHz and

5GHz)

Bluetooth 4.0 wireless technology

Location Assisted GPS and GLONASS

Digital compass

Wi-Fi

Cellular

Touch ID Fingerprint identity sensor built into the

Home button

Display 5.5-inch (diagonal) widescreen Multi-Touch

display

1920-by-1080-pixel resolution at 401 ppi

iSight Camera 8 megapixels with 1.5 pixels

Hybrid IR filter

Face detection

Photo geotagging

Slo-mo video @ 120fps

Video Recording 1080p HD video recording @ 30fps or 60fps

Video geotagging

FaceTime Camera 1.2MP photos (1280 by 960)

720p HD video recording

Intelligent Assistant Siri

Power and Battery Talk time: Up to 10 hours on 3G

Standby time: Up to 250 hours

Internet use: Up to 10 hours on LTE

Sensors Three-axis gyro

Accelerometer

Proximity sensor

Ambient light sensor

Fingerprint identity sensor

Barometer

13

Figure 2.6: iPhone Standard Apps

Unsurprisingly, as the price of smartphones decreased and the number of features and

quality increased these devices have proliferated. Figure 2.7 shows the per capita penetra-

tion of PCs, Smartphones and Tablets. In 2013 there were more smartphones in people’s

hands than PCs. Given the PCs successful history this is a remarkable feat. What this

means is that in the near future people will be able to partake in more personalized expe-

riences as their smartphones allow them to interact with their instrumented world.

Figure 2.7: Global Device Penetration Per Capita.
(Courtesy of Business Insider)

14

2.2 The Internet of Things and Self Adaptive Sys-

tems

The pervasiveness of smartphones, and mobile devices in general, is a consequence of the

lower cost and the miniaturization of all the components from which smartphones are built:

CPUs, memory, antenna’s, and battery. These economics have also played a role in ushering

a new era in computing where every aspect of our physical world is instrumented and

interconnected. The backbone for all these instrumented and interconnect things is the

Internet and this new computing era is known as the Internet of Things (IoT).

Although the possibilities of what can be done when the environment is fully instru-

mented and interconnected are endless the current state of the art is driven by four main

industries: 1) energy, 2) healthcare, 3) manufacturing, 4) transportation, and 5) the public

sector.1 These are the industries as identified by the Industrial Internet Consortium whose

members including IBM, Intel, General Electric and 145 other members.2 The term Indus-

trial Internet was first coined by General Electric [EA12] and the work being conducted in

this area falls under the general umbrella term of IoT.

Energy systems are very large and may be composed of old and new technologies such

as coal plants or wind farms. The scale and hybrid nature of these types of systems makes

them difficult, if not impossible, to manage by humans in terms of physically accessing the

infrastructure and also in terms of maintaining an accurate and comprehensive model of

the system at any given time. The solution that IoT proposes is to provide a framework

that instruments and interconnects the energy infrastructure so that some control and

maintenance can be performed automatically by computers while other aspects of the system

can be monitored and controlled remotely by humans.

In the US it is estimated that 400,000 people die every year as a result of healthcare

errors [Jam13]. These errors range from incorrect administering of prescription drugs to

misdiagnosis. One aspect of these errors is that doctors and nurses are overworked and make

mistakes. Another aspect is that healthcare is highly complex and it is challenging to create

and maintain procedures that ensure patient care. An instrumented and interconnected

healthcare system can relieve the burden on doctors and nurses by providing more accurate

information on a patient’s condition which in turn will lead to fewer mistakes as well as

highlight possible procedural shortcomings [NHC09] [RMMCL13].

Manufacturing has a history of automation and automation can be considered one aspect

of IoT. Despite the head start, manufacturing can still be improved by exploiting the IoT

paradigm. Expansion and integration of the supply chain outside the factory to include

1http://www.iiconsortium.org/vertical-markets.htm
2http://www.iiconsortium.org/members.htm

15

more automatic integration with third party suppliers and eventually the customer herself

will close the feedback loop between consumer and producer and allow the producer to

provide higher quality products to the customer [DT08] [KMRF09].

As our cities become more populated and the price of energy continues to climb, new

solutions around transportation will have to be implemented. Regardless of whether the

transportation mechanisms are implemented as private, public, or a hybrid of both, the

main driver will be efficiency. Efficiency not just in terms of making engines more efficient

but in terms of traffic management. Traffic management requires real-time information and

the ability to redirect the flow of traffic using different paths. These types of analytics and

control require the kind of instrumentation and interconnection that IoT aims to provide.

The public sector affects energy, healthcare, manufacturing, and transportation. It

does this either indirectly through laws and policies or directly by having a primary stake

such as in the case of energy. In addition it also is responsible for local governance and

the management of certain infrastructure such as water and sewage. As other industries

migrate towards IoT and as funding to public programs is cut the public sector will be

forced to adopt the IoT paradigm. This approach will create a public sector that reacts

faster to suite the needs of its citizens such as in the cases of emergency response, crime

prevention, or economic variability.

Figure 2.8: Internet of Things (Courtesy of Wilgengebroed on Flickr)

16

At the heart of IoT, and ubiquitous computing in general, lies context and feedback

loops. In order for computing to do intelligent work and to fade into the background it has

to be able to make run-time decisions without requiring human input. To accomplish this

computing systems need to be able to gather context from the environment via sensors,

process that context using models, and if necessary affect the environment in some way

using actuators.

The basic notion of using context for human-computer interaction has been around since

the early nineties. Schilit et al., 1994 were the first to identify the need for context aware-

ness as a trait that should characterize the dynamic needs of software systems [SAW94].

Although the technology at the time was primitive by today’s standards, IBM’s Simon be-

ing released only a year earlier, most of the scenarios in Schilit’s paper are still relevant and

unsolved today: device selection by proximity, bandwidth requirements, device screen size,

auto-installation of modules and drivers, and proximity triggers.

Contextual awareness on its own is not useful unless you have models and tools in place

capable of analyzing and reacting to the information. One of the first examples of how

the lack of such tools was hampering software projects was the difficulty IT professionals

had with meeting emergent organizational goals. IT professional were given the difficult

task of maintaining an expanding and increasingly complex IT infrastructure that was not

manageable by human beings. This led to system and deployment failures, the creation of

incomplete systems, and in lots of cases cancelled multi-million dollar projects [NFG+06].

IBM and several other industry leaders, such as HP and Microsoft, decided to take on

this challenge. Although each company had their own solution that more or less addressed

this problem it was IBM’s Autonomic Computing initiative that lead the way. In their

2001-2003 white papers IBM clearly articulated the need for automated systems as well as

an architectural shift in how software systems should be developed and maintained [IBM06].

The hypothesis of this new approach took the opposite view of what up to that point

had been the traditional way of building software. Traditionally software systems were

built under the assumption that all requirements would be known ahead of time and that

once the system was built it was not bound to change much. These assumptions could

not be further from reality. In sharp contrast, the proposed approach was to assume that

there would never be a final or finished version of a software system since in an emergent

organization there is no such thing as a final requirement: the target is always moving since

business goals change [NFG+06].

This lead to the development of an architecture that allowed software engineers to con-

trol systems at a much higher level of abstraction using policies. Now when a new business

rule was to be implemented it did not necessarily require the creation or modification of

code. In addition to management via policy this new architecture presented a way to add

17

autonomic behaviour. Autonomic behaviour allows a software system to react to changes

in its operating environment without human intervention. It constantly evaluates all the

data about its state, the state of its environment, the applied polices and configures and

optimizes itself to heal or to prevent scenarios that are contrary to policy.

At the heart of this architecture is the Autonomic Manager (AM) as depicted in Fig-

ure 2.9. The AM consists of a feedback loop know as MAPE-K loop which has four main

parts: monitoring, analyzing, planning, and execution. Each part in the loop is used to

determine if the software system, known as an endpoint, needs to be modified in some way

in order to fulfill its policy. The endpoints are the most important part of this architecture

since they provide access to the device or piece of software that is being controlled. It is at

the endpoints that one usually finds the sensors, actuators, and users.

Figure 2.9: Autonomic Manager (AM)
[KC03] [IBM06]

Each AM is stackable and re-usable meaning that it can be used to create a hierarchy

of AMs each responsible for a higher level of abstraction. Figure 2.10 shows the Autonomic

Computing Reference Architecture (ACRA). At the lowest level, the managed resource, is

the resource being managed. This could be as simple as a room heating-cooling system

or as complex as a datacenter. On top of the managed resource there is an interface or

touchpoint, that allows the AMs to connect to the managed resource. At the AM level

several AMs can run in parallel. The AMs at this level are responsible for implementing

the defining properties of what makes a system autonomic: self-configuring, self-healing,

self-optimizing, and self-protecting; or known as self* properties [IBM06].

18

Figure 2.10: Autonomic Computing Reference Architecture (ACRA)
[IBM06]

At the orchestration level and above you the AMs introduce higher levels of abstraction.

The manual manager at the top level is where the actual user interaction takes place. The

height of ACRA is not limited to just these levels and varies with the level of system com-

plexity; however, fundamentally an autonomic system has one or more AMs that consume

policies and manage self* properties for a system.

Although the original white paper does not use the word ‘context’ and ‘feedback’ explic-

itly to identify the flow of information, contextual feedback is exactly what needs to happen

inside an effective autonomic system. Müller et al. have argued that feedback loops are the

most critical part of an autonomic system and that Software Engineering as a field ought to

employ Control Theory tools developed by other engineering disciplines for implementing

autonomic systems [MKS09] [MPS08].

2.3 Cloud Intrastructure

Designing an application that is contextually aware is challenging enough but equally chal-

lenging is building the infrastructure on which such an application can run. The most

recent momentum has been to deploy applications in the cloud. The cloud is composed of

servers and network infrastructure connected to the Internet. On top of the physical infras-

tructure there exists an operating system that abstracts the complexity of the underlying

hardware. Application developers can request multiple hardware resources and, using the

virtualization that these cloud operating systems provide, deploy their applications.

19

2.3.1 Challenges in the Cloud

One of the drawbacks of current cloud solutions is that cloud infrastructure provides little

context. Some of these drawbacks come from the way the network stack has been designed

with each layer being responsible for a specific task and with no vertical integration between

them [FS11]. This is problematic because if an application needs contextual information

about its underlying network infrastructure to make a self* decision it has limited context

to make informed decisions.

Another drawback is that if an application needs to run on a different cloud provider

the deployment procedure and the performance of the application may vary [IYE11]. Al-

though most cloud providers use the same cloud operating system, some of the custom APIs

and nuances of their particular platform make it such that developers have to spend extra

time making sure their applications run on different clouds. In addition to deployment

and performance other risks and challenges exist, including legal compliance, economic sus-

tainability, and environmental efficiency targets. All these complexities are difficult, if not

impossible, to manage by humans. One approach is to use autonomic toolkits that devel-

opers can leverage to deploy their applications on heterogenous clouds without requiring

complete knowledge of each cloud [FHT+12].

2.3.2 Smart Applications on Virtual Infrastructure

The Smart Applications on Virtual Infrastructure (SAVI) project is a partnership between

Canadian industry, academia, and research and education networks aiming to address some

of the current drawbacks of cloud infrastructure and explore Future Internet applications.

The basic premise of the SAVI infrastructure is to provide applications access to infras-

tructure context and also give applications the option of running on smaller nodes that are

potentially in closer proximity to the user.

The vertical integration and resource granularity that the SAVI testbed provides has

allowed researchers in different fields to investigate different approaches including: software

defined infrastructure (SDI) that abstract heterogeneous physical resources for the applica-

tion developer [KLBLG14]; software defined networks (SDN) which allow interconnection of

heterogenous resources such as FPGAs and GPUs in a data center [LKBLG14]; and exten-

sions of virtualization for abstracting wireless hardware [WTLN13]. In one form or another,

all this research is aimed at improving performance which can translate to improving the

user experience or optimizing applications in the case of green computing.

20

2.3.3 Measuring Latency

Statements about performance are usually expressed in terms of latency and throughput:

the time between input/output and the rate of input/output, respectively. In the case of a

typical productivity application, such as Microsoft Word, the performance depends on the

latency between the user’s keyboard and the visible reaction on the screen. In reality when

talking about latency it is important to distinguish the different parts of the latency. For

example, the latency of the keyboard, the latency to process the keypress, and the latency

to draw the result on the screen. Breaking down the latency into smaller parts provides

a sense of proportion about the latency and enables the identification of bottlenecks for

different applications.

Cloud infrastructure provides general computer resources which can support different

types of applications. Each application type has different requirements when it comes to

performance; consequently, the factors that affect latency and throughput are going to be

different and yield different answers when managing tradeoffs. For example, in a study that

looked at running high performance computing applications on Amazon’s EC2 platform

found that the latencies resulting from the variety in CPU architectures and the speed of

the internal network were six to twenty times slower than their existing clusters [JRM+10].

Other studies that looked at deploying video game processing to the cloud found that the

latency introduced by the external network, rather than the internal network and the CPU,

played a larger role in the overall latency [CWSR12] [CCT+11]. Even though the results

from these two very different application domains led to the same conclusion, that EC2 is

not a good alternative for either application, the latency types that lead to these conclusions

are different.

Knowing which latency to measure is one part of the problem. The other part is deter-

mining the best method for doing so. Jackson et al. used a variety of tools and approaches

since the latency questions they are trying to answer are complex [JRM+10]. To measure

the network latency they used the ping-pong approach which simply measures the round

trip time for a given task. For their other tests they used high performance computing

benchmarks such as DGEMM, STREAM, and PTRANS3 to determine the performance of

floating point execution, sustainable memory bandwidth, and transfer rate of large arrays

from multi-core arrays, respectively.

Similarly, Choy et al. used the ping-pong approach by measuring the round trip time for

a TCP handshake to measure network latency for their experiments [CWSR12]. Use of the

ping command is a valid way of measuring network latency; however, due to the network

and server setup for their experiments they were not able to guarantee that devices on the

3http://icl.cs.utk.edu/hpcc/

21

network would not filter the ping commands. Conversely, other researchers investigating

the impact of virtualization on network performance were able to use the ping command as

their main method for measuring latency [WN10].

2.4 Software Complexity

Looking at application design from a broad perspective, building great applications is not

just about algorithms, frameworks, and features. It is about making the user experience

simpler—in the sense that the user has to deal with fewer choices. It may seem counter-

productive, that removing choice will make the user happier, but it has been shown that

this is indeed the case [Sch09]. In fact, it has been shown that too much choice has the

opposite effect; it makes users less happy. For example, walking into a bakery that has

three varieties of bagels may be a good amount of choice since one of the three bagels you

probably hate and then you only have two bagels to choose from; however, if you walk into

a bakery with 18 varieties of bagels the choice becomes much more difficult and when you

finally make your decision you are actually less happy because you keep thinking about all

the other bagels you could have chosen instead.

It takes mental effort to manage the trade-offs between different bagels and it is this

uncertainty that makes humans so miserable when faced with too much choice. So the

obvious solution is less choice, right?! The key is to create a perception of less choice but

nut without removing options. When you limit choice without limiting overall options then

what you are doing is shifting the complexity around.

When you create a product, such as a car or a piece of software, it is very easy to

get carried away with features. The source of features can either be your imagination or

at the request of the user. A large number of features can have negative effects on users

even if users initially think that having all those features is a good thing. Features mean

that users have to make choices. Choices require management of trade-offs and that leads

to anxiety [THR05]. Marketing research suggests that the best way to deal with a deluge

of features is to continue offering a large variety of products but then customizing them

for individual users; as in the bagel example. Maintaining features while minimizing the

features exposed to users requires a shift in complexity from the user to the back end.

Software design suffers from the same feature creep issues but with the added prob-

lem that as software developers we impose, sometimes unnecessarily, the architectures or

constructs inherent to computing systems. This has been going on for so long and is so

prevalent that we sometimes think of these constructs as features in themselves. Although

some of these constructs existed due to hardware limitations and/or the nature of the ap-

plication itself, the time has come where hardware and social expectations have allowed us

22

to move beyond some of those features. For example, the use of logins, or filling out pages

of profile information, or having to manually filter out geographically sensitive information

that is not near your location. Logins, profiles, and geography are nice features to have but

if you are trying to simplify your application these are the sort of features and complexities

that can be moved to the back end, away from the user.

2.5 Human Communication

Our ability to communicate has grown in parallel with technology. At the dawn of human

history communication was primarily composed of a set of simple gestures to the person

next to you. As language developed and roads were built we were able to communicate with

those in the next village or maybe as far as the next valley. In 1867 Alexander Graham Bell

made the first voice transmission over wire. This was a game changer in communication

since distance now played less of a role in the act of communicating—talking to someone

dozens of kilometres away took seconds as opposed to days. 34 years later Guglielmo

Marconi made the first wireless transmission over the Atlantic making physical geography

even less of a barrier to human communication.

Since 1901 we have seen improvements in communication technologies that have resulted

in higher quality at a lower cost to the point where we take for granted what was not even

possible 150 years ago. If you live in an urban center in North America, and in most parts

of the world, you have the ability to make a wireless call to anyone. With geography playing

less of a role in communications it certainly appears that the world has shrunk but some

evidence suggests that we still want to only communicate with those in our village.

There is this notion that we are all connected to everyone else in the world by six degrees

of separation [Mil67]. That is, you are six people away from knowing the Pope. Recent

work on online social networks investigates this theory as well as the role of geography.

In one case the researchers looked at the relationships on the popular blogging website

LiveJournal—an online community where members are encouraged to interact with each

other via their personal blogs. They discovered that although geography was a common

factor between those who were friends on the site, geography alone was a poor predictor of

who would actually be friends [LNNK+05].

Other work done by researchers at the largest social network, Facebook, investigated

what social and communication insights could be gained by looking at the Facebook social

graph [UKBM11]. They found that the Facebook social graph is nearly fully connected and

most users have 4.7 degrees separation to everyone else. When looking at the community

structure in the graph they found that it closely followed the geographies of countries and

cities so even though people are only 4.7 friends from everyone else and communication is

23

nearly instantaneous it would seem that people are still socializing along familiar geographic,

language, or social boundaries. In other words, it appears like your online social network

mirrors your offline social network.

Although it may sound comforting to know that you are six, or 4.7, people away from

the Pope that in and of itself is not necessarily useful from a communications perspective.

You may have 100 people in your Facebook, LinkedIn, or Twitter network but it does

not mean that you communicate with them on a regular basis and therefore do not have

the necessary rapport to be able to make the six person jump. Intuitively this makes

sense; you only have so much time in a day and cognitive energy to manage a finite set of

communication channels. Our social signature, that is the people we interact with, changes

as we move from one place or another or change jobs or transition from one stage of life

to another [SLL+14]. Your digital signature is a finite queue that as new people are added

others are removed; this shuffling is highly dependent on your situation: your context.

2.6 Prediction Using Location

The access of location information from both mobile devices and non-mobile hardware, such

as routers and servers, has given software developers a unique opportunity to complete the

spatial picture of all their users and infrastructure. This granularity of location information

was not available ten years ago and the sudden abundance of this kind of information has

resulted in a myriad of interesting research directions, including the Microsoft Research

GeoLife project.

2.6.1 GeoLife

GeoLife is a location based social networking service. This service has been used by re-

searchers at Microsoft to investigate different ways to model and use GPS data. At its core

GeoLife uses GPS data accumulated by 107 users between May 2007 and December 2008.

The user base comprised 49 women and 58 men. These users were given several different

GPS devices, some of which were pure GPS receivers while others were smartphones, and

were asked to log their outdoor movements. Users were motivated by a financial incentive

to collect as much data as possible: the more GPS data a user collected the more money

they received. In the end approximately 24,876,978 GPS points were collected. Most of

the data is from Beijing China, but data was also collected from several other cities within

China, USA, Japan, and South Korea [ZZXM09b].

24

2.6.2 GeoLife Research

In one of the first papers published using this data, Zheng et al. looked at ways to model

this data with the goal of inferring the importance or popularity of a geographic loca-

tion [ZZXM09b]. The importance of a location depends on the number of people visiting

it as well as the travel experience of each person in that region. For example, a native

of Beijing knows the city better than a tourist from Victoria and as such their experience

should carry a higher weight on the relationship between person and location (i.e., if two

locations have an equal number of people going to it but one of these locations has expe-

rienced people from Beijing while the other has inexperienced people from Victoria then

the former location should be considered more important since that location has a high

proportion of experienced people).

To model this relationship Zheng et al. used the Hyperlink-Induced Topic Search (HITS)

model originally developed during the early stages of the world wide web (WWW) as a way

of indexing and searching web pages. HITS uses the concept of hubs and authorities where

hubs are webpages that are large indexes that point to webpages containing the actual

information known as authorities [Kle99]. In web page terms a good hub points to many

good authorities and in turn a good authority is pointed to by many good hubs. HITS

is applied to modelling location importance by treating users as hubs and locations as

authorities. For a given region a user will have a hub score which is used to gauge their

experience in a specific region.

To test their approach Zheng et al. compiled a team of 29 people, 14 females and

15 males, who had been in Beijing for more than six years. These people represented

individuals who would be considered region experts and as such should be able to identify

interesting locations. Each individual was given a list of ten popular locations as determined

by Zheng’s model. For a baseline the rank-by-count and rank-by-frequency algorithms were

also used to generate ten important locations. For each set of results users were asked

to rate how representative the results were of a given region, whether the results offered a

comprehensive view of that region, and whether they were novel. In all cases Zheng’s model

outperformed the traditional approaches of rank-by-count and rank-by-frequency.

Subsequent research on this work explored ways to predict relationships between popular

locations by not only looking at popularity, or rank, but also by looking at how related

locations were to one another [ZZXM09a]. For example, assume that a user has given

ratings for locations A and B how can we predict the rating this user would give for C? One

approach is to use proximities of A, B, and C to predict the rating of C.

One common approach for making rank based predictions is using Slope One algo-

rithms [LM05]. Slope One algorithms are simple but very effective at predicting ratings

based on previous users’ ratings. Zheng et al. argued that, in addition to a rank assigned

25

to a location, the semantic meaning encoded in the geography between locations is also

important when making location based recommendations. Their approach outperformed

the Slope One algorithms when predicting consecutive locations in the GeoLife dataset.

Using proximity to predict future locations is a powerful tool that Zheng et al. continue

to investigate. In more recent works they applied the lessons from previous research to

publish work on generating smart itineraries [YZXW10]. Smart itineraries are automatically

generated by using regional travel experts to build models which are then used to generate

an itinerary for specific start and stop locations. A combination of simulation and user study

was used to validate their approach by comparing it to two baseline algorithms: rank-by-

time which recommends itineraries that match closely in duration with the user’s query

duration; and, rank-by-interest which suggests itineraries based on the aggregate interest of

travel experts. The results showed that their algorithm produced better recommendations

for itineraries with longer durations and worked equally well as rank-by-time and rank-by-

interest for shorter durations.

2.7 Summary

This chapter introduced sensors, mobile devices, the Internet of Things, and self adaptive

systems as the underlying motivations for this thesis. In Section 2.1 the evolution of mobile

devices was used to show how sensors made their way into our environment. These sensors

have given rise to a new era in computing known as the Internet of Things (IoT). The IoT

era and its impact on industry is explained in Section 2.2 along with its relationship to

self adaptive systems. With IoT comes a new set of challenges in the areas of application

deployment and context management. We address these challenges as part of our research

questions.

26

Chapter 3

Location Based Social Networking

One of the contributions of this thesis comes in the form of a location based messaging

application called Yakkit—a combination of an iPhone application and a set of supporting

web services. The goal of this implementation is to help answer our first research question:

what kinds of applications can we build when we shift complexity away from the user with

the intention of nurturing normal human communication?

3.1 A New Twist on an Old Idea

Research into social networks suggest that geography plays a significant role when looking

at existing groups of friends but it plays a lesser role inside those social networks for creating

new relationships. Perhaps, this is the result of the way that online social networks have

been built and not that geography is not a critical aspect of relationship forming. If we

think about our own experience when meeting new people our location plays a significant

role in that exchange.

Thinking about this observation more broadly we considered examples of technologies

that have amplified the way in which humans naturally communicate while at the same time

did not affect communication due to the nature of the technology itself (e.g., a website needs

a login so you need to create a special name just to talk to someone). Truck drivers have

used the Citizens Band (CB) radio system for decades to socialize and broadcast important

information such as police presence on the road: “Bear Taking Pictures” indicating a speed

trap.

CB radio was first introduced in the Unites States in 1948 with the goal of providing

citizens with basic personal communications. CB radio is still in use today by truckers,

cab drivers, and hobbyists. To use this communication system you need a radio, such as

the one depicted in Figure 3.1, be tuned into the same channel as the person you want to

27

talk to, and be physically close enough for the radio waves to reach them. In this sense,

CB radio is a natural extension of human communication as it simply allows your voice to

carry further. Conceptually this is simple to understand for most people and the concept of

geography, more specifically proximity, gives people a familiar perspective (i.e., your voice

carries as far as your yelling can be heard).

Figure 3.1: CB Radio Base Station

With the CB notion in mind we endeavoured to design an application that enhanced

normal human communication without burdening the user of having to worry about in-

trinsic qualities of the technology itself such as creating logins, filling out profiles, and

managing relationships—create a new tool without forcing the tool’s complexities upon the

user [LM13].

3.2 Yakkit

To demonstrate our approach we created, and iterated upon, the Yakkit iPhone application

and its supporting web services. At its core Yakkit works like a CB radio—it allows you

to communicate with those around you. There is no login, no profile, and no requirement

to add friends or wait for someone to add you. You start the app and you are able to

communicate with those around you immediately—just like CB radio. We extended this

basic concept to also allow the pinning of messages to virtual billboards; in this way you

could leave a message for someone else. These two concepts of instant communication and

message pinning are analogous to the way you would go up to someone on the street and

28

strike up a conversation or post a message on a community billboard. In this way, Yakkit

replicates normal human communication in the virtual world.

The original Yakkit iPhone application was supported by one monolithic web service

running on top of a cloud distribution service called iCon Overlay [DLM11]. Figure 3.2 shows

a high level overview of the early system. The application monitored the user’s location as

well as provided the user with a user interface for interacting with the application. Messages

were routed through the Yakkit Service and during this routing the Yakkit Service would

use its current GPS model of all the users in the system to determine where to forward

messages.

Figure 3.2: Original Yakkit Architecture

Although the design did not explicitly include an autonomic manager (AM) nor follow

an ACRA architecture, the core ideas of using context and feedback loops for the purpose

of making run-time decisions heavily influenced Yakkit’s early design. Figure 3.3 depicts

how this early implementation was related to the phases that exist inside an AM. At the

center of the Yakkit Service is the knowledge base which consists of a k-d tree data structure

which holds the current location of all users. The Yakkit Service monitors all its connected

users for location updates and adjusts the knowledge base if need be. When a new message

arrives the Yakkit Service analyzes the locations of all the users to determine which users

the messages should be forwarded to. Once the list of users is computed the messages are

sent to each user by indexing the appropriate connections [Des13].

29

Figure 3.3: Autonomic Manager for Yakkit Service

Figure 3.4(a) shows the UI for this early implementation that encapsulates the chat and

billboard concepts. At first glance this interface appears to be similar to Google Hangout

or Skype, but what is different is the way in which it immediately connects you to nearby

users. In the simple scenario depicted in Figure 3.4(a) a user is trying to find a place to

eat. This is a location based activity and should not force you to login or fill out a profile;

however, an option should still exist that allows a user to configure the application manually

if they feel they want to divulge that kind of information. In the example in Figure 3.4(a)

the users have decided to use nicknames to help refer to each other.

Chat is in part useful because it is spontaneous and non-persistent; however, there are

situations where you may want to persist a message for someone to view at a later time.

For that scenario we added an interface to the Yakkit iPhone application for supporting

the concept of billboards. Figure 3.4(b) shows the UI for this part of the application.

Again, the goal here was to create something that replicates normal human interaction

without imposing technological constraints. Billboard, as its name implies, is a virtual

billboard where users can anonymously create billboards tied to a geographic location and

post messages. Each billboard has a broadcast area that affects when a user will see a

billboard. Figure 3.4(c) shows a birds-eye view of a user (blue dot), the user’s broadcast area

(green square), and any nearby billboards (red pins). Although in this case the broadcast

area is a square there is no technical limitation to the type of shape that this area can be.

30

(a) Chat View (b) Billboard View (c) Map View

Figure 3.4: Yakkit iPhone App Interfaces

31

3.3 Yakkit 2.0

After completing the first version of Yakkit we designed new services to support different

types of clients in addition to the iPhone. The monolithic web service we created made

it difficult to implement such changes and we decided to re-design the application com-

pletely [Lim14]. As part of our continued effort to make Yakkit context aware, we added

the ability to create ads and to inject them into a conversation at an appropriate time. Our

premise on ads is that if you send advertisements to potential clients who are nearby and

actually need your product you are more likely to make a sale.

Figure 3.5 shows the user interface for the advertising portal. Ad creation is a two step

process: creation and scheduling. Figure 3.5(a) shows the interface for creating ads. Here

the user would enter the message they want their clients to see as well as any promotion or

discount codes. The portal automatically creates a QR code which the client can take to a

store to claim the offer. Figure 3.5(b) shows the interface for scheduling the advertisement.

Here the user enters the times of the week during which the advertisement is to be available

as well as the area in which it should be broadcast. Using this portal a company such as

Starbucks can schedule the broadcasting of coffee discounts to nearby customers in the hope

of improving sales during non peak hours.

(a) Ad Creation (b) Ad Scheduling

Figure 3.5: Advertising Portal

Figure 3.6 shows the new browser interface for Yakkit Chat. In this example two users

are talking about finding a good place for ice cream. As before, this interaction is possible by

these two users being close to one another but now in addition to analyzing their locations,

32

(a) Chat (b) Ad Presentation

Figure 3.6: Yakkit App

their conversations are also being analyzed to see if the content of that conversation can

be supported by an ad. In the 4th message from the bottom in Figure 3.6(a), one of the

users talks about ice cream in a positive way “Ya. We really like ice cream”. A positive

sentiment is inferred from this statement and the subsequent message is an advertisement

that includes a discount code for ice cream. When the user clicks on the message they are

presented with a QR tag as depicted in Figure 3.6(b) which they can then use to claim in

the store.

To support these new features and alleviate the issues surrounding our monolithic Yakkit

Service we implemented a new architecture as depicted in Figure 3.7. The Yakkit Service

has been decomposed into four services: Locality Service, Web Service, Semantic Service,

and Chat Service. Together, these services interact with one another by messaging each

other directly or indirectly via the two data stores: Location Data and Ad Data. Each

service is designed to be as decoupled as possible (i.e., it is unaware of the application that

it is part of). For example, the Locality Service maintains a list of users and computes their

proximity to one another, it does not care if it is doing so to support the chat, billboard,

or some other future application or service.

33

Figure 3.7: Yakkit Version 2.0

Not all services inside of the Yakkit framework are created equal since some have features

that are common across different applications while others are not. Services such as the

Location Service are not tied to a specific application. Similarly, the Web Service provides

merchants with the ability to manage ads as depicted in Figure 3.5, but it does not care

how those ads are used. On the other hand, the Semantic Service is an example of a more

tightly coupled service as it relies on the Ad Data data store which in turn is managed

by the Web Service. Finally, the Chat Service has the highest coupling since in addition

to routing messages it uses the Location Service and Semantic Service to do so. Notably,

billboard is missing from the new version. The decision to leave billboard out was one of

time constraints and not because it is no longer useful. Given this new architecture adding

billboard is easier than with the original architecture.

Figure 3.7 shows how the services inside the Yakkit framework support the two new

applications namely Yakkit Chat and the Yakkit Media Portal. As new application ideas

emerge or if new services need to be added to the framework to make an existing application

smarter we believe that this framework with its decoupled approach will make the imple-

mentation of such services easier. The logical decoupling of services is further supported

by using communication protocols between the services that allow the services to run on

different machines on the network. Using this approach we can deploy each service on hard-

ware that is optimized for that specific service to try to optimize the service for a specific

user experience (e.g., minimizing latency for Yakkit Chat). The underlying theme of the

34

Yakkit implementation is moving complexity away from the user. The only way to simplify

the user experience while at the same time preserving features is by moving, rather than

removing, complexity. In the IT world context and feedback loops were used to simplify

the interaction, or user experience, of IT professionals. In the case of IT professionals the

need arose because humans were no longer able to react fast enough to the changes in the

environment in which their applications were deployed. In the case of Yakkit, and social

networking in general, we postulate that complexity should be removed not only in cases

where it becomes impossible to manage but in all cases where users have to use software

to achieve a goal. To realize this goal, context and feedback loops are treated as first class

citizens when making Yakkit design decisions [MKS09].

3.4 Yakkit Challenges and Approaches

During the initial and subsequent implementations of Yakkit we came across two main

challenge areas that we decided to explore using experimentation: context analysis and

deployment. Context analysis can be challenging because it requires users to first identify

what context is relevant and secondly how the context variables affect one another. We

chose to investigate geography as our sole context since location is the most interesting

from a social networking perspective; it is also the the most pervasive measure.

The Yakkit implementation uses location to figure out who is nearby but location is

not enough to create a managed experience since areas with high user density would make

Yakkit unusable. To address this problem we set out to model existing user trajectories to

see if we could use past user behaviour to help predict what chat messages or billboards

current users may be interested in. This approach is also motivated by the aforementioned

research into the structure of social networks: if users’ online social structure is driven by

their offline social structure which in turn is highly dependent on location then perhaps it

is worth exploring location context as a first class entity for an online social network.

The current Yakkit framework implementation runs on one server. Yakkit clients con-

necting from anywhere in the world connect to the Yakkit Chat Service and Yakkit Billboard

Service located at the University of Victoria. This is not ideal since users in Europe or Asia

will have a worse experience than users in North America. To address this problem we

introduced the concept of a Registrar that routes new users to a server nearest to them to

see what effect geography has on message latency.

35

3.5 Summary

This chapter introduced Yakkit—a location based messaging application. Using Yakkit

people can instantly communicate with those around them just like they would by going

up to someone on the street or shouting in a crowd. Yakkit enhances this normal human

communication by using context to extend the range of the communication without the

need for the user to have to deal with the complexities of the application. Our first research

question was: what kinds of applications can we build when we shift complexity away from

the user with the intention of nurturing normal human communications? Yakkit is one such

application. In addition, the Yakkit implementation poses further challenges in the areas

of deployment and context analysis which are used as motivations for the remaining two

contributions of this thesis.

36

Chapter 4

Data Mining User Trajectories

In Section 2.6.2 we discussed how raw GPS data can be used to find popular locations,

identify a relationship between popular locations, and generate itineraries based on those

popular locations [ZZXM09b] [ZZXM09a] [YZXW10]. Zheng et al.’s approaches improved

on existing algorithms, such as HITS and Slope One, and showed that the GeoLife dataset

is useful for predicting where people may want to travel [ZZXM09b].

To build on this work we take a step back and try prediction from a different perspective.

We explore whether geographic boundaries, both virtual and real, can be used to make useful

predictions using the GeoLife dataset. The second contribution of this thesis comes in the

form of experimental results that show whether the anonymous GeoLife dataset is useful for

modelling and predicting user destinations. The goal of this experiment is to help answer

our second research question: how can we model anonymous user GPS location context to

predict meaningful destinations without direct intervention by the user?

4.1 When Location Is Not Enough

In the latest version of Yakkit we used location and a simple semantic service to automati-

cally connect people with one another and personalize ads based on their conversations. In

areas with low population densities location may be all that is required for connecting peo-

ple and creating meaningful manageable conversations. In densely populated areas, such as

New York, solely relying on location for inferring connections would result in an experience

that is not manageable due to the large number of messages that show up on the screen.

This situation is analogous to what would happen to our original inspiration for Yakkit—

the CB radio. If there are too many people nearby on the same channel it would be nearly

impossible to talk. People would be cutting each other off and you would never be able to

understand what anyone is saying let alone get your own word in. CB radio addresses this

37

problem by having multiple channels that separate users. In addition, users of the CB radio

system follow a voice protocol that helps in preventing them from talking over one another.

Since Yakkit exists in the virtual world we are not bound to the same physics as CB radio

but we can, yet again, take inspiration from how CB radio designates its channels.

Although the specifics of channel designation vary between countries the basic idea is

that specific channels are designated for specific uses (e.g., channels 1-3 are for amateur

radio while 9 is reserved for emergencies). A user would choose a specific channel based on

their personal goal which could either be to chat with a bunch of other amateur CB radio

users or get in touch with the authorities during an emergency. In the case of Yakkit we want

to be able to create these channels automatically using context from the environment. To

help realize this vision we want to see if we can leverage more location context by modelling

the locations that people have visited and using those models to predict where a new user

may potential end up. By knowing where we think a user may end up will allow us to filter

conversations that are relevant to that user’s goal.

4.2 Experiment Setup

To model our location data we decided to look at the relationship between where trajectories

begin and where they end. The hypothesis is that there is a relationship between the start

and end points and that we can use this relationship to predict where someone will end up

if we know their starting position. To test this approach we used the GeoLife dataset. The

dataset contains anonymized GPS points stored in a comma separated values (CSV) text

format. Before we could model the dataset, we had to clean and transform it into a format

that was easier to work with.

4.2.1 Data Preparation

As with any real world data there is always noise and it is important to understand where to

draw line between the signal and the noise [Sil12]. The GeoLife dataset is available through

a Microsoft website1 and contains a series of directories and files as depicted in Figure 4.1.

The root folder contains a numbered directory for each user and in turn each user has

a Trajectory folder as seen in Figure 4.1(a). Although the data is anonymous, users were

given a unique identifier to help group the location data. Inside the Trajectory folder is

a list of files, Figure 4.1(b), which contain the actual GPS data. The contents of these

files, Figure 4.1(c), follows a CSV format for describing a GPS position and includes the

following fields of interest to us: latitude, longitude, elevation, date, and timestamp.

1http://research.microsoft.com/en-us/projects/geolife/

38

(a) Directory Structure (b) File Structure

(c) File Contents

Figure 4.1: GeoLife Data Structure

39

The text based format of this dataset is not a format that is easy to work with, nor is

it scalable for processing. To alleviate this problem we imported the dataset into a Post-

greSQL database which had the PostGIS spatial extender installed. Each GPS coordinate,

or point, is now stored using a geometry data type and projected using the 4326 Spatial

Reference Identifier (SRID). An SRID is a unique value used to identify a projecting or local

coordinate system in mapping applications. We also simplified the structure of the dataset

by aggregating all the points for a single user. Analysis of the dataset and the literature did

not reveal any reason why a set of coordinates was broken up into different files. Figure 4.2

shows the schema that was use to store the dataset.

Figure 4.2: Imported
Dataset Schema

One benefit of storing the location in a GIS enabled database is that we are able to

leverage existing GIS visualization tools, such as qGIS, to examine the data. Figure 4.3

shows the output generated by qGIS with all the individual GPS points. At this scale the

points appear as lines even though they are points. As first explained in Section 2.6.1 the

data was collected all over the world in countries like China, USA, Japan, and South Korea,

with the vast majority concentrated in Beijing. Using this visualization we confirmed that

this was indeed the case. We were also able to identify areas that, due to their low point

density, would not be appropriate for modelling and would simply be considered noisy data.

40

Figure 4.3: All GeoLife Points (Scale 1:64,000,000)

To help narrow down our dataset we used two criteria: point density and area. The

point density had to be high in order to be able to claim statistical relevancy for our results.

The area had to be on a human scale (i.e., an area that a normal person can reasonably

be expected to walk or go for a short drive). These requirement are motivated by Yakkit’s

proximity concept: connect you with users that are nearby as you will never care about

something that is 200 km away. With density and area in mind we looked for natural

boundaries around Beijing that would create a relatively small area but also contain most

of the dataset.

Figure 4.4 shows the street view of downtown Beijing. From the center of the city there

are seven highways that radiate out from the center. We chose the outer highway loop as a

natural boundary for our dataset. The area enclosed by this boundary is less than 50 km2

with a perimeter of 187 km and contains 75% of the original dataset.

41

Figure 4.4: Downtown Beijing (Scale 1:200,095)

Next, we created a polygon geometry that described our highway boundary. We then

computed the intersection of the boundary with all of our data points to remove any points

outside of this boundary. The following four figures show the progress of our approach

to cleaning the dataset: Figure 4.5 shows the original point data; Figure 4.6 shows the

boundary; Figure 4.7 shows the original point data and the boundary; and, Figure 4.8

shows the filtered data based on the boundary.

42

Figure 4.5: Downtown Beijing with Original Dataset (Scale 1:200,095)

Figure 4.6: Downtown Beijing with Boundary (Scale 1:200,095)

43

Figure 4.7: Downtown Beijing with Original Dataset and Boundary (Scale
1:200,095)

Figure 4.8: Downtown Beijing with Boundary and Filtered Dataset (Scale 1:200,095)

The boundary and the filtered dataset were all stored in the PostgreSQL database in

separate tables. Figure 4.9 shows the updated schema. The boundary and boundary point

tables were created so that, if required, we would be able to create new boundaries with

44

their own respective points while maintaining data from pervious experiments. Although no

new boundaries were necessary for our experiments, the current schema certainly supports

this capability. Figures 4.5-4.8 were generated by retrieving data from this schema and

demonstrated that our dataset import and filter were working well.

Figure 4.9: Updated Schema to Include
Boundary and Filtered Points

4.2.2 What Is a Trajectory?

In the context of our experiments we define a trajectory as follows:

Definition 1. A trajectory is a set of points whose beginning and end map to a user

goal: a user goal being something the person is intending on doing such as watching a

movie. The first point in a trajectory defines their current position and the last point de-

fines the last position and the attainment of some kind of goal.

As a concrete example of our definition, suppose you just finished watching a movie and

you want to find a place to eat. In GPS terms, your current position represents you walking

out of the theatre and your final position represents you arriving at a restaurant.

In the GeoLife dataset there is no other context other than the GPS points that tell us

directly what a user was doing; however, we can try to infer this by looking at the time

deltas between points. It is reasonable to assume that one of the reasons why there is a

large delta between points is that person arrived at their intended destination such as the

movie theatre or restaurant. Once inside the recording of GPS points stops and does not

45

start again until they have completed that activity and begun moving again. It is these

transitions that we want to identify by looking for large time deltas in our dataset.

The next obvious question is: what to choose for this maximum time delta? Here we

applied a bit of intuition and statistical analysis. For our experiment we decided to use

30 minutes since anything that takes longer than 30 minutes to complete is probably what

we would consider a goal such as watching a movie or eating at a restaurant. Statistically

speaking, when looking at the density of all time deltas our maximum time delta should fall

in the region of lower density. The reason for this is that the number of time deltas that we

would consider to be transition points is going to be much lower than the density of points

while a person is moving. If our maximum time delta does not fall into that region then we

may be creating separate trajectories, identifying separate goals, when in fact that is not

the case.

To confirm that our maximum time delta falls into the right density region we applied

the Kernel Density function to the time deltas for all of our points [Sil86]. A Kernel Density

function is useful because it helps us visualize the distribution of one variable; in this case

time delta. A common alternative to the Kernel Density is to use a histogram; however, the

selection of the bin size can have a dramatic effect on the shape of the plot and we therefore

chose not to use it.

Figure 4.10 shows the Kernel Density function for the 99th percentile of our dataset.

From this plot it is clear that most of the density exists at two seconds followed by one and

five seconds. Values higher than five can be considered as outliers and good candidates for

creating separate trajectories. These results validate choosing 1800 seconds as a reasonable

maximum time delta. The R source code for computing these Kernel Densities can be found

in Appendix A.2.

46

Figure 4.10: Relative Kernel Densities of Time Deltas Between Points 99th
Percentile

Using 30 minutes as our maximum time delta we computed the trajectories for each

user. Appendix A.4 contains the Python source code used for computing our trajectories.

The TrajectoryBuilder class has three functions: build user (lines 17-159), build (lines

161-263), and crop (lines 268-282). The work for computing trajectories for each user is an

independent task therefore we started a new process for each user in order to take advantage

of as many cores as possible and speed up our computation.

The build function is responsible for managing all currently running computations and

maximizing the load on the system. Lines 228-243 show how this is implemented. This code

scales up to a machine running 182 CPUs since there are 182 users for which trajectories

need to be computed. The build user function is what actually does the trajectory

computation. The core logic for deciding whether a point is part of a current trajectory or

a new trajectory is controlled by lines 52, 54, and 56.

Once the end of a trajectory is reached it is saved to the database (lines 70-85). Similar

to the GPS points, the trajectories were stored using a geometry data type but instead using

a projection with SRID 32650. Geographic coordinate systems and projections are in and of

47

themselves models for drawing a point on a map and as such some projections/models are

better than others under different situations. SRID 4326 was a good choice for storing the

projecting of our original GPS points because 4326 uses latitude and longitude to describe

a position; and, that was the position description in the original dataset. One drawback to

4326 is that it can sometimes distort data at small scales and it also makes it more difficult

to work with when you try to, for example, calculate the distance between two points and

you get a result in degrees.

The Universal Transverse Mercator (UTM) coordinate systems slices the globe into 60

longitudinal strips, projection zones, with each zone being projected onto its own plane as

depicted in Figure 4.11. The result of this approach is that scale distortion is minimized

within each zone. In addition, position is measured in meters using Easting and Northing

relative to the UTM zone. Luckily Beijing fits perfectly into UTM zone 50 so to take

advantage of the higher precision of this coordinates system we stored all trajectories, as

well as the boundary, in UTM zone 50 using the SRID 32650.

Figure 4.11: UTM Zones (Courtesy Wikimedia Commons)

To accommodate the trajectory data as well as the ability to modify the maximum

time delta threshold for different experiments we extended our existing schema as seen in

Figure 4.12.

48

Figure 4.12: Updated Schema to Include Trajectory and Sample

Once we created the trajectories we used qGIS to visually verify our trajectories. The

results are depicted in Figure 4.13. To our surprise there appeared to be several very long

trajectories that zig zagged across the map. Given that the boundary area is approximately

50 km2 we did not expect to see trajectories cutting across the entire map let alone ones

that were straight lines. What we did expect to see was trajectories that roughly followed

the shapes of the road which as can be seen in the figure was the case most of the time.

49

Figure 4.13: Downtown Beijing Trajectories

To cleanup this data we decided to ignore trajectories that were longer than 15 km.

We arrived at this number again using a combination of intuition and statistical analysis.

The target application for this kind of modelling is Yakkit and since Yakkit is all about

providing you with information that is nearby we only care about modelling data that

describes entities that are within walking distance or a short drive away. To ensure that

this 15 km limit was not removing a large number of our trajectories, and possibly rendering

our results statistically invalid, we computed the Kernel Density for all the data as well as

the 99th percentile. The crop function in Appendix A.4 was applied to flag trajectories that

were longer than the 15 km limit (lines 278 and 284).

Figure 4.14 show the Kernel Density results. We also computed a local maxima to

identify highest distance density of 2 km (i.e., the most frequent trajectory distance). This

distance confirms that our choice of our maximum time delta was reasonable since it pro-

duced most trajectories in the 2 km range which is a reasonable distance for our application

scenario. These distributions also confirmed that our choice of 15 km was a reasonable

cutoff that would not remove a large part of our dataset. In absolute terms a 15 km cutoff

kept 18,107 out of the 23,707 total trajectories or 76.4%. Figure 4.15 shows the resulting

trajectories after removing trajectories longer than 15 km. The R source code for computing

these Kernel Densities can be found in Appendix A.3.

50

Figure 4.14: Kernel Density of Trajectory Distances 99th Percentile

Figure 4.15: Downtown Beijing Trajectories with Length Less Than 15 km (Scale
1:200,095)

51

4.2.3 Modelling and Classification

The basic idea behind our approach was to divide the entire boundary area into a grid of

sectors. For each sector we computed a probability distribution, or model, that identified

destination sectors based on the trajectories that started in each sector. Several different

sector sizes were used ranging from 1,000 m to 4,000 m. Figure 4.16 shows an example of

what the grid looks like using a 6,000 m sector size. Different sector sizes were used to see

what effect changing the sector size had on the outcome of the classification. The steps for

modelling each sector were as follows:

1. Fetch all trajectories whose start point exists inside the current sector: source sector.

2. For each trajectory in the source sector determine the destination sector.

3. For each destination sector count the number of terminating trajectories.

4. Once all destination sector counts have been computed store the probabilities as a

model for the source sector

Figure 4.16: Downtown Beijing with 6,000 m Sectors (Scale 1:200,095)

To help illustrate the modelling process consider the scenario below where we model one

specific sector for a 1,000 m sector size. In this work sector size refers to the length of one side

of a sector. Figure 4.17 shows our starting sector 1,175 highlighted in blue. The remaining

sectors for this sector size are shown in transparent blue with the map showing underneath.

52

Next we fetch all the trajectories, red lines, whose start points intersect with sector 1,175

as shown in Figure 4.18. We then determine the destination sectors, orange squares, for

all these trajectories as shown in Figure 4.19. Finally, we compute the probability for

each destination sector and store the results as a model for sector 1,175. Table 4.1 shows

the model for this specific sector. During classification when we are trying to predict a

destination for a user that started in sector 1,175 we would choose the destination sector

with the highest probability: 23.3% which in this case happens to also be the starting sector.

This entire process is repeated for each sector in the entire grid.

Figure 4.17: Source Sector 1,175 With 1,000 m Sectors In Background (Scale
1:65,000)

53

Figure 4.18: Source Sector 1,175 Trajectories With 1,000 m Sectors In Background
(Scale 1:65,000)

Figure 4.19: Source Sector 1,175 Destination Sectors With 1,000 m Sectors In
Background (Scale 1:65,000)

54

Table 4.1: Sector 1,175 Model

Source Sector Destination Sector Probability (%)

1175 1175 23.3

1175 1174 21.9

1175 1232 8.15

1175 1176 7.65

1175 788 5.06

1175 1230 4.84

1175 1182 3.26

1175 1287 3.26

1175 1065 2.81

1175 1121 2.75

4.2.4 The Experiment

We conducted 26 different experiments using different sector sizes as well as different com-

binations of sector sizes. The sector size affects what we are able to say in terms of user

behaviour. For example, if we use source and destination sector sizes of 100 m then we can

possibly say something about the block or store level: users that start on street A have a

33% chance of ending on street B. If we use source and destination sector sizes of 1,500 m

then we can possibly say something at the city or district level: users that start in Beijing

Botanical Gardens have a 33% chance of ending up in the business district. Finally using

a combination of source and destination sector sizes, 1,500 m and 100 m respectively, we

could say something like users that start in China town have a 43% probability of ending

on street B.

For each combination of sector sizes we used 10-fold cross validation for testing our

classifier. At the beginning of a run all the trajectories were shuffled using the Fisher Yates

algorithm and split into 10 buckets: lines 18 to 55 in Appendix A.5. Each experiment was

run 10 times. Each time 9
10 of the buckets were used for creating the model (lines 129-196)

while the remaining bucket was used for prediction (lines 303-392). Figure 4.20 shows our

final schema including tables for storing grid sectors, probabilities, and our experimental

results.

55

Figure 4.20: Final Schema

56

4.3 Experimental Results

Four different categories of experiments were run: Symmetric-Original, Symmetric-Shifted,

Asymmetric-Original, and Asymmetric-Shifted. The symmetric experiments used source

and destination sectors of equal size. The asymmetric experiments locked the source sector

at 1,000 m and varied the destination sector size between 1,500 m and 4,000 m. The shifted

versions of the symmetric and asymmetric experiments shifted each sector by a factor of 1
2

of its size relative to its origin. The purpose of the shifted experiments was to evaluate the

effect of sector boundaries on classification.

Figure 4.21 shows a summary view for the Symmetric-Original and Symmetric-Shifted

experiments. The horizontal red line in each graph indicates the minimum success that must

be achieved by the classifier. For sector sizes 1,000 m, 1,500 m, and the Symmetric-Original

version of 2,000 m the classifier failed to achieve this minimum standard. We achieved

best results using the 3,500 m sector size during the Symmetric-Original experiment which

correctly predicted destinations 85.6% of the time. We achieved worst results using the

1,500 m sector size during the Symmetric-Original experiment which correctly predicted

destinations 36.5% of the time.

Figure 4.21: Symmetric Original and Shifted Experiment Results - Side by side
comparison of original and shifted experiments showing the effect of sector

boundaries on classification.

57

Figure 4.22 shows a summary view for the Asymmetric-Original and Asymmetric-Shifted

experiments. As before, the horizontal red line in each graph indicates the minimum success

that must be achieved by the classifier. The horizontal blue line indicates the success rate

that was achieved for the 1,000 m symmetric experiments and helps illustrate the relative

change in success rates using the symmetric and asymmetric versions of these experiments.

We achieved best results using the 3,500 m sector size using the original version of the

destination sector which correctly predicted destinations 77.5% of the time. We achieved

worst results using the 1,500 m sector size using the shifted version of the destination sector

which correctly predicated destinations 32.1% of the time.

Figure 4.22: Asymmetric Original and Shifted Experiment Results - Side by side
comparison of original and shifted experiments showing the effect of sector

boundaries on classification.

Figure 4.23 shows the Kernel Density of the distance error for incorrectly predicted

destination sectors as a fraction of sector size. This data includes results for all 14 symmetric

experiments for original as well as shifted values. By inspection, most of the false predictions

were off by one sector size. Figure 4.24 shows the same graph but this time using the results

from the 12 asymmetric experiments. Similarly to the symmetric set of experiments the

incorrectly predicted sectors were only off by one sector.

58

Figure 4.23: Kernel Density of Number of Sectors Error as a Fraction of Symmetric
Sector Size for False Predictions (Original and Shifted)

Figure 4.24: Kernel Density of Number of Sectors Error as a Fraction of
Asymmetric Sector Size for False Predictions (Original and Shifted)

59

4.4 Discussion

The general trend in almost all the experiments was an increase in prediction success with

an increase in sector size. Intuitively this make sense: you tend to catch more fish when you

cast a wider net. In the Symmetric-Original and Symmetric-Shifted experiments we did not

attain usable results until the sector size was increased to 2,000 m. The effect of shifting

sector boundaries had an effect on outcome especially when you consider how close some

experiments came to hitting the 60% threshold. Table 4.2 shows the relative difference, as

a percentage, between the original and shifted versions of the experiment for each sector

size.

Table 4.2: Delta in Prediction Success Between Symmetric Original and Shifted
Experiments

Sector Size (m) Success Prediction Delta (%)

1000 5.9

1500 -16.5

2000 16.8

2500 12.9

3000 -18.1

3500 -17.3

4000 4.3

In part, it was these results that prompted us to run the asymmetric experiments.

During the asymmetric experiments we held the source sector size constant at 1,000 m

and varied the destination. 1,000 m was chosen since it was the smallest sector size we

used and we wanted to see if we could hit the 60% target. In 9
12 of the experiments this

approach outperformed the symmetric version and in 5
12 of the experiments the 60% mark

was attained. Of course, this performance improvement came at a cost since in order to

get it we had to increase the size of the destination sector and this in turn limits us to

what we can say about this model: users that start on street A have a 43% chance of

ending in China town. As with the symmetric experiments we also computed the results

for the shifted versions. Table 4.3 shows the relative difference, as a percentage, between

the original and shifted versions of the experiment for each destination sector size.

60

Table 4.3: Delta in Prediction Success Between Asymmetric Original and Shifted
Experiments

Destination Sector Size (m) Success Prediction Delta (%)

1500 -11.0

2000 13.9

2500 24.2

3000 -13.5

3500 -20.7

4000 8.0

Although our classifier and model present useful results they did not yield good enough

results for the kind of resolution that we were hoping for. In the case of Yakkit we were

hoping to find this approach useful at a sector size of 50 or 100 m; however, performance

was already below the 60% threshold at a sector size of 1,000 m. Since we did not attain

meaningful results until the 2,000 m sector size this classifier and model on their own are

not enough to filter information at the level we are hoping to.

As mentioned earlier, the results are still useful. Using the classifier at a sector size of

2,000 m and above we could claim to be able to filter chat messages and advertising at a

district level. For example, we would be able to classify a user heading to Central Park in

New York and we could use that information to filter chat and advertisements only from

that area. The effect of varying the sector boundaries and the fact that we were only off

by one sector in most cases leaves us hopeful that with more work the resolution of this

approach can be increased.

4.5 Threats to Validity

The decision to use the outermost highway around Beijing as a boundary may have removed

valid trajectories and created an unreasonable expectation for what a boundary should be.

In a real world scenario this would be a justifiable problem since we would arguably have

more data and the decision for what a boundary is would be much more difficult. In our

case we happen to be lucky in that the most dense part of the GeoLife dataset falls within

our boundary. We consider the investigation into boundary sizes outside of the scope of

this thesis and part of future work.

The choice of maximum time delta and maximum trajectory distance for creating and

cropping trajectories directly affects our models and results. Changing this value can in-

crease or decrease the number of resulting trajectories as well as affect our ability to claim

that a trajectory represents a user goal. Similarly, cropping trajectories based on length

61

affects the results and indicates, perhaps incorrectly, that goals supported by long trajec-

tories are not relevant. To mitigate the potential effects of choosing these values poorly we

computed Kernel Density functions to ensure that the values we chose did not accidentally

remove large portions of our dataset.

The approach of looking only at start and stop positions of a trajectory may be overly

simplistic: “It is good to have an end to journey toward; but it is the journey that matters,

in the end” – Ernest Hemingway. Although this is true, our results indicate our approach

is useful when trying to make predictions at a larger scale: city or district. This means

our approach can be integrated into Yakkit for basic message filtering or applied to totally

different applications such as city traffic management.

As first mentioned in Section 4.4, the boundaries created by the sectors affect our ability

to correctly classify destinations. When applied to different datasets for different regions

the resulting boundaries may generate worse results. Although we do not present a solution

to this problem we ran shifted versions of our experiments to show how big of an effect these

boundaries had on our results. In addition, the fact that in cases where our classifier was

wrong it was only wrong by one sector size provides even more evidence that more work is

required for deciding how to lay out the sectors.

4.6 Summary

This chapter described our approach and presented experimental results for a model and

classifier based on geography and trajectories. Instead building models directly using points

and trajectories, as in previous works [ZZXM09b] [ZZXM09a] [YZXW10], we first segmented

our region of interest into different sized sectors. Using these sectors we built a model for

each sector that described the probability of ending up in a destination sector given the

current sector. We tested our approach using different sector sizes and found that are results

are not ideal for predictions on a scale required for the Yakkit application. Nevertheless,

our results are still useful as they can be used for predicting movements on a larger scale

such as user movements between different districts of a city.

62

Chapter 5

Yakkit Service Deployment and

Latency

In Section 2.3.3 we discussed latency as a measure of performance. Latency can always

be broken down into smaller parts and each latency part determines the tools that can be

used to measure it as well as what solutions can be applied to minimizing it [JRM+10]

[CWSR12] [CCT+11] [WN10]. In the case of Yakkit Chat, latency is the time difference a

user sending a message and all the nearby users receiving that message. In this scenario

there are two factors that contribute to the total latency experienced by the user: network

latency and processing latency.

Since we are measuring and comparing the round trip times of messages on a computer

network we used the ping-pong approach to collect our data [WN10]. The final contribution

of this thesis comes in the form of experimental results obtained through emulation that

show the effect of distance on application latency. The goal of this experiment is to help

answer our third and final research question: does deploying location based chat services

closer to a user have a positive or negative effect on message latency?

5.1 As Fast as Possible

In a CB radio system, or any radio system for that matter, geography and distance play a

central role in the user experience. In cases where the radio system uses line of sight, as

in the case of most CB systems, a geographical obstruction like a mountain may prevent

communication. In other situations, when communication happens over long distances the

quality of the transmission may degrade resulting in dropped connections or long delays.

Yakkit Chat is susceptible to the same kind of interference although for different technical

reasons. Since servers are used to route messages between users, the location of the server

63

can play a role in the quality of the experience. Just as using radio over long distances may

degrade the experience so too can the quality of Yakkit Chat if the supporting servers are

far away from the users.

One of the goals of the Yakkit Chat Service is to provide an experience as close to

reality as possible. What this means is that when sending messages using the Yakkit

iPhone application via the Yakkit Chat Service, users should feel as if they were standing

right in front of someone and talking to them directly. In addition, as a consequence of

Yakkit’s geographical nature, users in a particular location will only ever interact with other

users in that same location. As such, the Yakkit Chat Service can be deployed at multiple

locations at once without the need for any kind of synchronization. In theory, services that

are deployed closer to the user should result in lower latencies and a better user experience.

Although the goal of this experiment was to observe the effect of distance on latency

and not hit a particular latency target, it is important to have a sense of proportion when

discussing latency from an application point of view. For a user to perceive a system reacting

“instantaneously” the latency needs to be at most 0.1 seconds. If a system reacts between

0.1 and 1.0 seconds the user will perceive the experience as uninterrupted although they

will notice a delay. Finally, if a system reacts anywhere between 1.0 and 10 seconds the user

will certainly notice an interruption and needs to be presented with some kind of progress

bar or status indicator [Mil68]. In the case of Yakkit the goal is to achieve latencies on the

order of 0.1 to 1.0 seconds.

5.2 Experiment Setup

To observe the effects of distance on latency we set up an experiment spanning the North

American continent using SAVI and Amazon infrastructures. In total, five services were

deployed at four different locations running three different types of services. Figure 5.1

shows a map with the four locations of the servers. The Yakkit Chat Service was deployed

on the Victoria and Carleton servers. In addition, the Victoria server also contains the

Registrar Service. The Amazon EC2 Oregon and Amazon EC2 Virginia servers ran bots

that simulated Yakkit Chat usage and collected data. Each experiment was run five times

for a duration of 150 seconds with a 20 second ramp up time.

64

Figure 5.1: Server Locations Latency Experiment

The purpose of the Registrar Service was to listen for incoming connections from new

bots posing as Yakkit Chat clients as well as for incoming connections from servers running

Yakkit Chat Services. When a new client connected to the Registrar Service would look at

its list of currently running Yakkit Chat Service servers and determine the closest Yakkit

Chat Service using Euclidean Distance as shown in Equation 5.1. Additionally the Registrar

Service notifies clients of any changes to the available Yakkit Chat Services. In this way

the clients are always connected to the closest possible instance of the Yakkit Chat Service

as new instances are booted or taken offline to simulate node failure.

d =
√

(x1 − x2)2 + (y1 − y2)2 (5.1)

The purpose of the Yakkit Chat Service was to route messages based on the list of

currently connected clients for that service instance. The service maintained a k-d tree data

structure with the current positions of all its clients as well as a list of open connections to

those clients. When a new message arrived the service would do a lookup in the k-d tree to

find other nearby clients, if any, and forward the message using their respective connections.

This service was duplicated on both the Victoria and Carleton servers.

To help with testing we created and deployed a Bot Service at two locations. The pur-

pose of the Bot Service is to emulate users connecting and sending messages from a similar

location. The Bot Service is composed of five classes which can be found in Appendix A.1.

The BotManager (lines 242-276) is responsible for starting and stopping bots during the

experiment.

Since we did not want to introduce potential latencies due to system load, we ran the

65

emulation using 10 users, emulated by bots, initiated from the exact same location. Each

Bot (lines 186-239) was started by the BotManager as a separate process. Each bot used the

asynchronous YakkitClient class (lines 43-140) to send and receive messages. In addition,

each Bot started a separate process using the Ping class (lines 143-183) which recorded ping

times during the experiment.

The purpose of collecting ping data was to help further clarify whether latency was

coming from the network or if it was inherent in the system. Use of separate process and

asynchronous libraries for the bots was a design decision to help minimize the chance of

causing any latency from the experiment itself.

We implemented message passing, and all communications, using WebSockets in order

to minimize protocol level latencies that may exist such as in the case of HTTP where a

handshake needs to occur each time a request is made. Messages were randomly selected

from a list of 15 at a random interval between 0 and 20 seconds (lines 199-214 and 232).

Message length was between 26 and 77 characters. These message lengths represent a

reasonable length for what one might see in a text chat conversation.

When a message is sent out a creation timestamp is attached (line 236). When a

message arrives at the receiving end the transit time is calculated (line 87) based on the

delta between creation and arrival times. This data is then saved in a database for offline

analysis (lines 92-94). The ping process used the Python subprocess model to run the ping

command and pipe the output back into the application (lines 167-175). This output is

then parsed and saved in a database for offline analysis (lines 178-181).

5.3 Experimental Results

To observe the effects of distance on latency we varied the servers to which users are con-

nected. Figure 5.2 depicts the scenario where we varied users connected to the geograph-

ically closest server. Figure 5.3 depicts the scenario where users are connected to the

geographically furthest server. In the closest case, users in Oregon were routed through

Victoria and users in Virginia were routed through Carleton. In the furthest case users in

Oregon were routed through Carleton and users in Virginia were routed through Victoria.

66

Figure 5.2: Message Routing Best Case

Figure 5.3: Message Routing Worst Case

For each scenario we ran five experiments using the 10 aforementioned bots at the

Oregon and Virginia servers. Figure 5.4 shows the results for the closest scenario where the

bots connected to the closest Yakkit Chat Service instance. Figure 5.4(a) shows the results

for the Oregon to Victoria test. The average message transit time was 0.2178 seconds with

a standard deviation of 0.1141 seconds. The average ping time was 0.0158 seconds with

a standard deviation of 0.0133 seconds. Figure 5.4(b) shows the results for the Virginia

to Carleton test. The average message transit time was 0.1843 seconds with a standard

deviation of 0.0930 seconds. The average ping time was 0.0299 seconds with a standard

67

deviation of 0.0009 seconds.

Figure 5.5 shows the results for the furthest scenario where the bots connected to the

furthest Yakkit Chat Service instance. Figure 5.5(a) shows the results for the Oregon

to Carleton test. The average message transit time was 0.2410 seconds with a standard

deviation of 0.1068 seconds. The average ping time was 0.0907 seconds with a standard

deviation of 0.0015 seconds. Figure 5.5(b) shows the results for the Virginia to Victoria

test. The average message transit time was 0.2590 seconds with a standard deviation of

0.0893 seconds. The average ping time was 0.0715 seconds with a standard deviation of

0.0011 seconds.

5.4 Discussion

Table 5.1 summarizes the results of the experiment and Figures 5.4 and 5.5 show the details

for each experiment. The difference in the average message transit time for bots running in

Oregon and connecting to either Victoria or Carleton was 0.0232 seconds. When comparing

this difference to the total message transit times for each location we get 10.65% for Oregon

to Victoria and 9.623% for Oregon to Carleton. This results in a 1.025% difference between

using the closer Victoria service vs. the further Carleton service. Similarly, the difference

in the average message transit time for bots running in Virginia and connecting to either

Victoria or Carleton was 0.0747 seconds. When comparing this difference to the total

message transit time for each location we get 40.53% for Virginia to Carleton and 28.84%

for Virginia to Victoria. This results in a 11.69% difference between using the close Carleton

service vs. the further Victoria service.

Table 5.1: Experimental Result Summary

Bot Location Delta Between Services (s) Delta Between Services (%)

Oregon 0.0232 1.025

Virginia 0.0747 11.69

Although the closer services performed better as expected, the difference, especially in

the Oregon case, was much smaller than anticipated. Figure 5.4(a) is a concrete example of

why we chose to record ping times in addition to the message transit times. At 70 seconds

there is a noticeable spike in the ping time which then seems to affect the message transit

time. At 150 seconds there is a noticeable spike in the message transit time but without any

corresponding spike in the ping time. In the former case we can argue that the network is a

major factor in that latency whereas in the latter case the internal latency of our application

is a major factor. If we wanted to implement an autonomic manager (AM) to manage the

68

(a) Oregon to Victoria Ping and Message Transit Results

(b) Virginia to Carleton Ping and Message Transit Results

Figure 5.4: Closest Proximity Experiment Results

69

(a) Oregon to Carleton Ping and Message Transit Results

(b) Virginia to Victoria Ping and Message Transit Results

Figure 5.5: Farthest Proximity Experiment Results

70

overall latency of the system, this characterization of latency sources would be a critical

piece of information for the AM to adapt accordingly.

The stability of the remaining ping times for the duration of the experiment validates

our ability to compare message transit times. With a small number of users, in our case 10

on each coast, it may not be advantageous to deal with the overhead of implementing geo-

graphically based deployments; however, the Yakkit Chat Service may not scale linearly and

as the number of users grows the advantages of geographic services may become attractive.

5.5 Threats to Validity

In the experiments we simulated users by running processes on the same machine and

sending messages at random intervals between 0-20 seconds. In reality, users can be in an

area that is several kilometres across and send messages that have a greater variety than our

message pool. We feel that the scale of our experiments helps in mitigating these concerns.

If our experiments tried to compare latencies between Victoria and Vancouver then these

concerns may indeed be valid; however, since we are comparing Victoria to Carleton, which

are approximately 3,500 km apart, any local changes are small.

We ran all experiments during regular business hours and over public networks. Since

network traffic is something that cannot be controlled the results of the experiment of

different days may yield different results. In addition, we have no control over the actual

path that messages take. Figures 4.2 and 4.3 present “as the crow flies” simplifications

of what is actually going on. It may be the case that some links are slower because they

are either poorly configured or busy rather than due to Euclidean distance. In one sense

our results are still valid in this scenario because they can be used to comment on which

server provides a lower latency, and better user experience, however we would not be able

to claim that geographic distribution is a key indicator of latency. Further experiments

during different parts of the day and using different servers is part of future work.

We used system time to timestamp messages for both departure and arrival. Although

all systems were synchronized using NTP timeservers at Amazon, the way in which NTP

performs synchronization is dependent on the underlying network and as such susceptible to

network congestion. Although this is a valid concern it is not applicable in our case since all

messages originated from and arrived at the same server. In future experiments, if messages

are timestamped by any other server other than the one that originates the message the

precision of the system clock synchronization via NTP will have to be investigated.

During all experiments the messages were encoded and sent using JSON format. Differ-

ent segments of an underlying network treat different types of traffic using different qualities

of service. Our JSON messages may be treated differently then say if we were to send a

71

jpeg image or a video stream. The results here are only applicable to messages composed of

text and this data should not be used to extrapolate to other types of traffic as that traffic

may be treated differently resulting in different delivery times.

5.6 Summary

This chapter presented an experiment to determine if deploying the Yakkit Chat service

closer and farther away from the user has an affect on message delivery times. Using two

Yakkit Chat services, one deployed on the East Coast and the other one the West Coast, we

simulated users sending messages. Our results indicate that for text message traffic there

is no perceivable difference when using a closer vs. farther away Yakkit Chat service.

72

Chapter 6

Conclusions

6.1 Summary

This thesis investigated the challenges and opportunities that modern mobile applications

face as a result of mobile devices and the context that they provide. In Chapter 2 we argued

how the evolution of mobile devices has brought us a step closer to the ubiquitous computing

vision proposed by Mark Weiser [Wei95]. Yet despite this progress, the applications that

run on mobile devices are holding us back from this ubiquitous vision. This is, in part,

due to the fact that mobile applications are being designed as extensions of their desktop

counterparts rather than as an extension of their natural environment.

In Chapter 3 we presented an application implementation called Yakkit—a location

based messaging application. Yakkit extends our natural ability to communicate with one

another in much the same way as citizens band (CB) radio does. With CB radio you can

instantly communicate with those around you without having to create a login, profile, or

list of friends. Using location context Yakkit immediately allows you to chat with other

nearby users and also post messages on nearby billboards. The geographic nature of the

Yakkit applications makes it more like an extension of the natural environment rather than

an alternate reality in a virtual world.

Developing ubiquitous applications, like Yakkit, requires a shift in complexity. The tasks

that users had performed, such as maintaining a list of friends, has to now be managed by

the application using real-time context. This presents many challenges such as knowing how

to model context correctly and executing logic in a timely manner. In Chapters 4 and 5 we

explored two such challenges and experimented with possible solutions. In Chapter 4 we

used GPS data to try to model user behaviour to predict user destinations. In Chapter 5

we looked at the effects of application deployment, particularly in the form of latency, on

the user experience in the Yakkit application.

73

6.2 Contributions

The main contributions of this thesis are as follows:

• Chapter 3 — taking inspiration from citizen band (CB) radio we developed the Yakkit

application which allows users to instantly communicate with those around them.

The implementation consisted of several iterations of the back-end service, the de-

velopment of an iPhone client application, the development of a web-based client

application, and a web portal for creating advertisements.

• Chapter 4 — introduces the idea of using anonymous GPS data to create trajectories

for the purpose of modelling possible user destinations. A model and algorithm are

proposed and tested on the GeoLife dataset using ten-fold cross validation. The

experimental results indicate that our approach is viable for scenarios where the

granularity of the predicted region is on the scale of 4,000 m2 or higher.

• Chapter 5 — proposes a duplication of the Yakkit service at two geographically

independent regions in order to determine whether the proximity of the underlying

service affects the user experience. Through experimentation we observed that for our

text based Yakkit Chat client the proximity of the Yakkit service made no statistically

relevant difference despite being located on the opposite coasts of North America.

6.3 Future Work

The era of the Internet of Things (IoT) has only just begun and it is important to explore

the development of contextual applications with the goal of simplifying the user experience

rather than adding more options that will lead to an impending usability crisis.

6.3.1 Sentiment Analysis

Since the original publication of Yakkit in 2011, most of the research has revolved around

geographic context and application deployment. Although these two areas require further

research, it would be worthwhile to investigate whether inferring the semantic meaning of

conversations can be as useful as the location itself? Perhaps the combination of a simple

location service and a simple semantic service would yield better results than simply building

more complicated location services? Semantic analysis is a growing field both inside and

outside of computer science [Liu12]. Any further research in this direction would have a

large pool of previous research to draw on from different perspectives.

74

6.3.2 Modelling Locations

Location will continue to be one of the most critical pieces of context for Yakkit. Modelling

location is the next step in Yakkit’s evolution towards the goal of ubiquity; however, more

research is needed in modelling location in order for it to be truly useful for Yakkit. The

application of sectors to location modelling is still a viable option but needs more analysis.

One approach that requires further investigation is to base the sector sizes and initial

starting positions on the density and location of trajectory starting positions. Perhaps

generating these sectors based on the underlying trajectory data will yield better results at

smaller sector sizes.

The infrastructure created for the work in this thesis presents an opportunity to retry the

experiment in Chapter 4 using different combinations of boundaries, trajectory definitions,

and sector sizes. Although we carefully designed the experiment using the most reasonable

definitions of a boundary, trajectory, and sector, it would be interesting to see the effect of

varying each one of those variables and observing the effect on classification.

6.3.3 Deployment

For our latency experiment we considered servers in North America and text messages;

however, network quality can vary greatly in different parts of the world and network traffic

may be treated differently by internet service providers (ISPs) depending on its type. In

our experiment we conclude that in North America the proximity of the Yakkit services

did not affect the user experience. Trying this experiment again using servers in Europe

or Asia and using messages that contain text and video may yield different results. Since

Yakkit will eventually support text and video and is accessible globally, this kind of test is

necessary moving forward.

75

Bibliography

[Bar05] E. Bardram. The Trouble with Login: On Usability and Computer Security in

Ubiquitous Computing. Personal and Ubiquitous Computing, 9(6):357–367,

2005.

[Bar09] J. E. Bardram. Activity-Based Computing for Medical Work in Hospi-

tals. ACM Transactions on Computer-Human Interaction (TOCHI), 16(2):10,

2009.

[BSM10] L. Backstrom, E. Sun, and C. Marlow. Find Me If You Can: Improving

Geographical Prediction with Social and Spatial Proximity. In Proceedings

of the 19th International Conference on World Wide Web (WWW), pages

61–70. ACM, 2010.

[CCT+11] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and C.-L. Lei. Measur-

ing the Latency of Cloud Gaming Systems. In Proceedings of the 19th ACM

International Conference on Multimedia (ACMMM), pages 1269–1272. ACM,

2011.

[CJZ+09] Y. Chen, K. Jiang, Y. Zheng, C. Li, and N. Yu. Trajectory Simplification

Method for Location-Based Social Networking Services. In Proceedings of the

2009 International Workshop on Location Based Social Networks (LBSN),

pages 33–40. ACM, 2009.

[CWSR12] S. Choy, B. Wong, G. Simon, and C. Rosenberg. The Brewing Storm in

Cloud Gaming: A Measurement Study on Cloud to End-User Latency. In

Proceedings of the 11th Annual Workshop on Network and Systems Support

for Games (NetGames), pages 1–6. IEEE, 2012.

[Des13] R. J. Desmarais. Adaptive Solutions to Resource Provisioning and Task Allo-

cation Problems for Cloud Computing. PhD thesis, Department of Computer

Science University of Victoria, 2013.

76

[DLM11] R. J. Desmarais, P. Lach, and H. A. Müller. YaKit: A Locality Based Mes-

saging System Using iCon Overlay. In Proceedings of the 2011 Conference of

the Center for Advanced Studies on Collaborative Research (CASCON), pages

148–159. ACM, IBM, 2011.

[DT08] A. Dada and F. Thiesse. Sensor Applications in the Supply Chain: The

Example of Quality-Based Issuing of Perishables. In The Internet of Things,

pages 140–154. Springer, 2008.

[E+07] N. B. Ellison et al. Social Network Sites: Definition, History, and Scholarship.

Journal of Computer-Mediated Communication, 13(1):210–230, 2007.

[EA12] P. C. Evans and M. Annunziata. Industrial Internet: Pushing The Boundaries

of Minds and Machines. Technical report, General Electric White Paper, 2012.

[FHT+12] A. J. Ferrer, F. HernáNdez, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri,

R. Sirvent, J. Guitart, R. M. Badia, K. Djemame, et al. OPTIMIS: A Holis-

tic Approach to Cloud Service Provisioning. Future Generation Computer

Systems, 28(1):66–77, 2012.

[FS11] K. R. Fall and W. R. Stevens. TCP/IP Illustrated, Volume 1: The protocols.

Addison-Wesley, 2011.

[Gar12] R. Garner. Search and Social: The Definitive Guide to Real-Time Content

Marketing. John Wiley & Sons, 2012.

[HO04] N. Hristova and G. M. O’Hare. Ad-Me: Wireless Advertising Adapted to

the User Location, Device and Emotions. In Proceedings of the 37th Annual

Hawaii International Conference on System Sciences (HICSS), pages 10–pp.

IEEE, 2004.

[IBM93] IBM Corporation. IBM/BellSouth Joint Effort Produces Simon. Computer

Dealer News, 9(26):41, 1993.

[IBM06] IBM Corporation. An Architectural Blueprint for Autonomic Computing.

IBM White Paper, 2006.

[IYE11] A. Iosup, N. Yigitbasi, and D. Epema. On the Performance Variability of

Production Cloud Services. In 11th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid), pages 104–113. IEEE, 2011.

[Jam13] J. T. James. A New, Evidence-Based Estimate of Patient Harms Associated

with Hospital Care. Journal of Patient Safety, 9(3):122–128, 2013.

77

[JRM+10] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf,

H. J. Wasserman, and N. J. Wright. Performance Analysis of High Perfor-

mance Computing Applications on the Amazon Web Services Cloud. In Sec-

ond International Conference on Cloud Computing Technology and Science

(CloudCom), pages 159–168. IEEE, 2010.

[KC03] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. IEEE

Computer, 36(1):41–50, 2003.

[KLBLG14] J.-M. Kang, T. Lin, H. Bannazadeh, and A. Leon-Garcia. Software-Defined

Infrastructure and the SAVI Testbed. In Testbeds and Research Infrastructure:

Development of Networks and Communities, pages 3–13. Springer, 2014.

[Kle99] J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. Jour-

nal of the ACM (JACM), 46(5):604–632, 1999.

[KMRF09] S. Karpischek, F. Michahelles, F. Resatsch, and E. Fleisch. Mobile Sales

Assistant an NFC-Based Product Information System for Retailers. In First

International Workshop on Near Field Communication (NFC), pages 20–23.

IEEE, 2009.

[Lim14] T. Lima. Websocket-Based Chat Service Requirements and Development.

Technical report, 2014.

[Liu12] B. Liu. Sentiment Analysis And Opinion Mining. Synthesis Lectures on Hu-

man Language Technologies, 5(1):1–167, 2012.

[LKBLG14] T. Lin, J.-M. Kang, H. Bannazadeh, and A. Leon-Garcia. Enabling SDN

Applications on Software-Defined Infrastructure. In IEEE Network Operations

and Management Symposium (NOMS), pages 1–7, 2014.

[LM05] D. Lemire and A. Maclachlan. Slope One Predictors for Online Rating-Based

Collaborative Filtering. In Proceedings of SIAM Data Mining (SDM), vol-

ume 5, pages 1–5. SIAM, 2005.

[LM13] P. Lach and H. Müller. Towards Smarter Task Applications. In 9th World

Congress on Services (SERVICES), pages 141–146. IEEE, 2013.

[LNNK+05] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, and A. Tomkins. Geo-

graphic Routing in Social Networks. National Academy of Sciences, 2005.

[MAB+10] M. L. Mazurek, J. Arsenault, J. Bresee, N. Gupta, I. Ion, C. Johns, D. Lee,

Y. Liang, J. Olsen, B. Salmon, et al. Access Control for Home Data Sharing:

78

Attitudes, Needs and Practices. In Proceedings of the Conference on Human

Factors in Computing Systems (SIGCHI), pages 645–654. ACM, 2010.

[Mil67] S. Milgram. The Small World Problem. Psychology Today, 2(1):60–67, 1967.

[Mil68] R. B. Miller. Response Time in Man-Computer Conversational Transactions.

In Proceedings Fall Joint Computer Conference, Part I, pages 267–277. ACM,

1968.

[MKG+08] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhattachar-

jee. Growth Of The Flickr Social Network. In Proceedings of the 1st Workshop

on Online Social Networks (WOSN), pages 25–30. ACM, 2008.

[MKS09] H. Müller, H. Kienle, and U. Stege. Autonomic Computing Now You See It,

Now You Don’t. In Software Engineering, volume 5413 of Lecture Notes in

Computer Science, pages 32–54. Springer, 2009.

[MLC+13] M. Madden, A. Lenhart, S. Cortesi, U. Gasser, M. Duggan, A. Smith, and

M. Beaton. Teens, Social Media, and Privacy. Pew Research Center, 2013.

[MPS08] H. Müller, M. Pezzè, and M. Shaw. Visibility of Control in Adaptive Sys-

tems. In Proceedings of the 2nd International Workshop on Ultra-Large-Scale

Software-Intensive Systems (ULSSIS), pages 23–26. ACM, 2008.

[NFG+06] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger, T. Longstaff,

R. Kazman, M. Klein, D. Schmidt, K. Sullivan, et al. Ultra-Large-Scale Sys-

tems: The Software Challenge of the Future. 2006.

[NHC09] D. Niyato, E. Hossain, and S. Camorlinga. Remote Patient Monitoring Service

Using Heterogeneous Wireless Access Networks: Architecture and Optimiza-

tion. IEEE Journal on Selected Areas in Communications, 27(4):412–423,

2009.

[Nor02] D. A. Norman. The Design of Everyday Things. Basic Books, 2002.

[RMMCL13] J. Rodŕıguez-Molina, J.-F. Mart́ınez, P. Castillejo, and L. López. Combining

Wireless Sensor Networks and Semantic Middleware for an Internet of Things-

Based Sportsman/Woman Monitoring Application. Sensors, 13(2):1787–1835,

2013.

[SAW94] B. Schilit, N. Adams, and R. Want. Context-aware Computing Applications.

In Proceedings of the Workshop on Mobile Computing Systems and Applica-

tions (HotMobile), pages 85–90, 1994.

79

[Sch09] B. Schwartz. The Paradox of Choice. HarperCollins, 2009.

[Sil86] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chap-

man and Hall/CRC, 1986.

[Sil12] N. Silver. The Signal and the Noise: Why so Many Predictions Fail-But Some

Don’t. Penguin Press, 2012.

[SLL+14] J. Saramäki, E. Leicht, E. López, S. G. Roberts, F. Reed-Tsochas, and R. I.

Dunbar. The Persistence of Social Signatures in Human Communication.

Proceedings of the National Academy of Sciences, 111(3):942–947, 2014.

[SNLM11] S. Scellato, A. Noulas, R. Lambiotte, and C. Mascolo. Socio-Spatial Properties

of Online Location-Based Social Networks. Proceedings of the Fifth Interna-

tional Conference on Weblogs and Social Media (ICWSM), 11:329–336, 2011.

[TBK99] D. P. Truex, R. Baskerville, and H. Klein. Growing Systems in Emergent

Organizations. Communications of the ACM, 42(8):117–123, 1999.

[THR05] D. V. Thompson, R. W. Hamilton, and R. T. Rust. Feature Fatigue: When

Product Capabilities Become Too Much of a Good Thing. Journal of Mar-

keting Research, 42(4):431–442, 2005.

[TM12] D. I. Tamir and J. P. Mitchell. Disclosing Information about the Self is

Intrinsically Rewarding. Proceedings of the National Academy of Sciences of

the United States of America, 109(21):8038–8043, 2012.

[UKBM11] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The Anatomy of the

Facebook Social Graph. Computing Research Repository (CoRR), 2011.

[VM10] N. M. Villegas and H. A. Müller. Managing Dynamic Context to Optimize

Smart Interactions and Services. In The Smart Internet, pages 289–318.

Springer, 2010.

[Wei95] M. Weiser. The Computer for the 21st Century. Scientific American,

272(3):78–89, 1995.

[WN10] G. Wang and T. S. E. Ng. The Impact of Virtualization on Network Perfor-

mance of Amazon EC2 Data Center. In Proceedings of the 29th Conference on

Information Communications (INFOCOM), pages 1163–1171. IEEE, 2010.

[WTLN13] H. Wen, P. Tiwary, and T. Le-Ngoc. Current Trends and Perspectives in

Wireless Virtualization. In 2013 International Conference on Selected Topics

in Mobile and Wireless Networking (MoWNeT), pages 62–67, 2013.

80

[YZXW10] H. Yoon, Y. Zheng, X. Xie, and W. Woo. Smart Itinerary Recommendation

Based on User-Generated GPS Trajectories. In Ubiquitous Intelligence and

Computing, pages 19–34. Springer, 2010.

[ZCL+10] Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma. Understanding Transporta-

tion Modes Based on GPS Data for Web Applications. ACM Transactions on

the Web (TWEB), 4(1):1, 2010.

[ZZM+11] Y. Zheng, L. Zhang, Z. Ma, X. Xie, and W.-Y. Ma. Recommending Friends

and Locations Based on Individual Location History. ACM Transactions on

the Web (TWEB), 5(1):5, 2011.

[ZZXM09a] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining Correlation Between

Locations Using Human Location History. In International Conference on

Advances in Geographic Information Systems (SIGSPATIAL), pages 472–475.

ACM, 2009.

[ZZXM09b] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining Interesting Locations

and Travel Sequences from GPS Trajectories. In International Conference on

World Wide Web (WWW), pages 791–800. ACM, 2009.

81

Appendix A

Source Code

A.1 Bot Source Code

This section contains the Python source code for the bots that were run on the Virginia and

Oregon servers. The main class, BotManager, starts a number of bot processes which then

start their own ping process. Messages are sent and received using each bots respective web

socket client. Messages are chose from a predefined list (lines 200-214) and the experiment

results are all recorded in a PostgreSQL database.

82

1 from mul t i p ro c e s s i ng import Process , Queue

2

3 import time

4 from random import randint

5 from subproces s import Popen , PIPE

6 import psycopg2

7 import j son

8 from ws4py . c l i e n t . t h r e a d e d c l i e n t import WebSocketClient

9 import l ogg ing as l g

10

11

12 c l a s s WebSocketClient (WebSocketClient) :

13 c l i e n t = None

14 i s o p e n = False

15

16 de f opened (s e l f) :

17 s e l f . i s o p e n = True

18 s e l f . c l i e n t . opened ()

19

20 de f r e ce ived message (s e l f , raw message) :

21 msg = json . l oads (raw message . s t r ())

22 event = msg [’EVENT’]

23 content = msg [’CONTENT’]

24

25 pr in t ’ Received : ’ + event + ’ : ’ + content

26

27 i f event == ’ update vm ’ :

28 u r l = ”ws://% s :%s /” % (content [’ADDRESS ’] , content [’PORT’])

29

30 s e l f . c l i e n t . update websocket (u r l)

31 s e l f . c l i e n t . r e g i s t e r (s e l f . c l i e n t . l o c a t i o n [0] , s e l f . c l i e n t .

l o c a t i o n [1])

32 de l s e l f

33 e l i f event == ’ message ’ :

34 s e l f . c l i e n t . r e ce ived message (content)

35 e l s e :

36 l g . e r r o r (” ! ! I n v a l i d event ”)

37

38 de f c l o s e d (s e l f , code , reason=None) :

39 i s o p e n = False

40 s e l f . c l i e n t . c l o s e d (code , reason)

41

83

42

43 c l a s s Yakki tCl i ent :

44 l o c a t i o n = (0 , 0)

45

46 de f i n i t (s e l f , ur l , bot number , conn s t r ing , run number ,

s t a r t t ime , ramp time , p i n g i p) :

47 s e l f . update websocket (u r l)

48 s e l f . bot number = bot number

49 s e l f . c o n n s t r i n g = c o n n s t r i n g

50 s e l f . run number = run number

51 s e l f . s t a r t t i m e = s t a r t t i m e

52 s e l f . ramp time = ramp time

53 s e l f . b o t s t a r t t i m e = time . time ()

54 s e l f . i s o p e n = False

55 s e l f . p i n g i p = p i n g i p

56 s e l f . r e g i s t e r e d = False ;

57

58 s e l f . db connect ion = psycopg2 . connect (c o n n s t r i n g)

59 s e l f . db cur so r = s e l f . db connect ion . cu r so r ()

60

61 # Sends coo rd ina t e s to s e r v e r f o r r e g i s t r a t i o n

62 de f r e g i s t e r (s e l f , l a t , l g t) :

63 # pr in t ’ Bot ’ + s t r (s e l f . bot number) + ’ r e g i s t e r e d . ’

64 s e l f . l o c a t i o n = (la t , l g t)

65 message = j son . dumps({ ”EVENT” : ” r e g i s t e r ” ,

66 ”CONTENT” : {”LAT” : la t ,

67 ”LGT” : l g t }})

68 pr in t ’ Bot r e g i s t e r i n g . ’

69 s e l f . websocket . send (message)

70 s e l f . r e g i s t e r e d = True

71

72 # Bui lds a JSON and sends to the s e r v e r

73 de f send message (s e l f , content) :

74

75 message = j son . dumps({ ’EVENT’ : ’ message ’ , ’CONTENT’ : content })

76

77 whi le not s e l f . r e g i s t e r e d :

78 pass

79

80 s e l f . websocket . send (message)

81

84

82 # Cal led when a message i s r e c e i v e d . Overr ide i t to manipulate the

data .

83 de f r e ce ived message (s e l f , message) :

84 message decoded = json . l oads (message . data . decode (’ ut f−8 ’))

85

86 i f ’ timestamp ’ in message decoded :

87 t r a n s i t t i m e = time . time () − message decoded [’ timestamp ’]

88 cur r ent t ime = time . time ()

89

90 i f time . time () > (s e l f . b o t s t a r t t i m e + s e l f . ramp time) :

91 s e l f . db cur so r . execute (

92 ’INSERT INTO t r a n s i t (run id , durat ion , bot number ,

run time , t ime c r ea t ed) VAlUES (%s , %s , %s , %s , %s) ; ’ ,

93 [s e l f . run number , t r a n s i t t i m e , s e l f . bot number ,

(cu r r ent t ime − s e l f . s t a r t t i m e) , cu r r ent t ime])

94 s e l f . db connect ion . commit ()

95

96 de f upda t e l o ca t i on (s e l f , l a t , l g t) :

97 s e l f . l o c a t i o n = (la t , l g t)

98 message = j son . dumps({ ”EVENT” : ”update” ,

99 ”CONTENT” : {”LAT” : la t ,

100 ”LGT” : l g t }})

101 s e l f . websocket . send (message)

102

103 de f update websocket (s e l f , u r l) :

104 s e l f . r e g i s t e r e d = False

105 s e l f . websocket = WebSocketClient (ur l , p r o t o c o l s =[’ http−only ’ , ’

chat ’])

106 s e l f . websocket . c l i e n t = s e l f

107 pr in t ’ Connecting to ’ + u r l

108

109 s e l f . websocket . connect ()

110 pr in t ’ ok ’

111

112 i f not ’ /ws ’ in u r l :

113 ip = u r l [5 : −6]

114 s e l f . p i n g i p . put (ip)

115

116 i f ip != ’ 142 . 104 . 17 . 133 ’ :

117 i f ip == ’ 134 . 117 . 57 . 145 ’ :

118 pr in t ’ Bot ’ + s t r (s e l f . bot number) + ’ connected

to Car leton . ’

85

119 e l i f ip == ’ 142 . 104 . 17 . 132 ’ :

120 pr in t ’ Bot ’ + s t r (s e l f . bot number) + ’ connected

to V i c t o r i a . ’

121 e l s e :

122 pr in t ’ Bot ’ + s t r (s e l f . bot number) + ’ connected

to Unknown . ’

123

124 i f time . time () > (s e l f . b o t s t a r t t i m e + s e l f . ramp time

) :

125 s e l f . db cur so r . execute (’INSERT INTO vm switch (

new vm , run id , t ime c r ea t ed) VALUES(%s , %s , %s) ; ’ ,

126 [ip , s e l f . run number , (

time . time () − s e l f . s t a r t t i m e)])

127 s e l f . db connect ion . commit ()

128

129 de f opened (s e l f) :

130 pr in t ’ Socket opened . ’

131 s e l f . i s o p e n = True

132

133 de f c l o s e d (s e l f , code , reason=None) :

134 pr in t ’WS Closed : ’ + s t r (code) + ’ : ’ + reason

135 s e l f . i s o p e n = False

136

137 de f c l o s e (s e l f) :

138 s e l f . websocket . terminate ()

139 s e l f . db connect ion . c l o s e ()

140 de l s e l f

141

142

143 c l a s s Ping (Process) :

144 de f i n i t (s e l f , p o i s o n p i l l , conn s t r ing , run number , s t a r t t ime

, ramp time , p i n g i p) :

145 s e l f . db connect ion = psycopg2 . connect (c o n n s t r i n g)

146 s e l f . db cur so r = s e l f . db connect ion . cu r so r ()

147 s e l f . s t a r t t i m e = s t a r t t i m e

148 s e l f . ramp time = ramp time

149 s e l f . run number = run number

150 s e l f . p i n g i p = p i n g i p

151 s e l f . p o i s o n p i l l = p o i s o n p i l l

152

153 Process . i n i t (s e l f)

154

86

155 de f run (s e l f) :

156 whi le s e l f . p i n g i p . empty () :

157 pass

158

159 ip = s e l f . p i n g i p . get ()

160 p = Popen ([’ ping ’ , ip] , s tdout=PIPE)

161 p i n g s t a r t t i m e = time . time ()

162

163 whi le s e l f . p o i s o n p i l l . empty () :

164

165 i f not s e l f . p i n g i p . empty () :

166 ip = s e l f . p i n g i p . get ()

167 p = Popen ([’ ping ’ , ip] , s tdout=PIPE)

168 l i n e = p . stdout . r e a d l i n e ()

169 i f not l i n e :

170 break

171

172 t ry :

173 p ing dura t i on = f l o a t (l i n e [l i n e . index (’ time ’) : −4] . s p l i t

(’= ’) [1]) / 1000

174 cur r ent t ime = time . time ()

175 exper iment t ime = cur r ent t ime − s e l f . s t a r t t i m e

176

177 i f time . time () > (p i n g s t a r t t i m e + s e l f . ramp time) :

178 s e l f . db cur so r . execute (

179 ’INSERT INTO ping (run id , durat ion ,

exper iement t ime , t ime c r ea t ed) VAlUES (%s , %s , %s , %s) ; ’ ,

180 [s e l f . run number , p ing durat ion ,

exper iment t ime , cu r r en t t ime])

181 s e l f . db connect ion . commit ()

182 except ValueError :

183 cont inue

184

185

186 c l a s s Bot (Process) :

187 de f i n i t (s e l f , p o i s o n p i l l , bot number , conn s t r ing , run number

, s t a r t t ime , ramp time , bo t l a t , bot l ong) :

188 s e l f . c o n n s t r i n g = c o n n s t r i n g

189 s e l f . run number = run number

190 s e l f . s t a r t t i m e = s t a r t t i m e

191 s e l f . ramp time = ramp time

192 s e l f . bot number = bot number

87

193 s e l f . b o t l a t = b o t l a t

194 s e l f . bo t l ong = bot long

195 s e l f . p ing = None

196 s e l f . p o i s o n p i l l = p o i s o n p i l l

197 s e l f . n e w t a r g e t i p = Queue ()

198

199 s e l f . quote s = l i s t ()

200 s e l f . quote s . append (’ After a l l i s s a id and done , more i s s a id

than done . ’)

201 s e l f . quote s . append (’When I was born , I was so s u r p r i s e d I didn

\ ’ t t a l k f o r a year and a h a l f . ’)

202 s e l f . quote s . append (’ I \ ’m not a f r a i d to d i e . I j u s t don \ ’ t

want to be the re when i t happens . ’)

203 s e l f . quote s . append (’The s e c r e t o f l i f e i s not to do what you

l i k e , but to l i k e what you do . ’)

204 s e l f . quote s . append (’ Love i s not about who you l i v e with . I t \ ’ s

about who you can \ ’ t l i v e without . ’)

205 s e l f . quote s . append (’A r e a l f r i e n d i s someone who walks in when

the r e s t o f the world walks out ’)

206 s e l f . quote s . append (’ Opportunity may knock only once , but

temptation l e an s on the d o o r b e l l . ’)

207 s e l f . quote s . append (’Good s u p e r v i s i o n i s the ar t o f g e t t i n g

average people to do s u p e r i o r work . ’)

208 s e l f . quote s . append (’Wit i s educated i n s o l e n c e . ’)

209 s e l f . quote s . append (’ Education i s the best p r o v i s i o n f o r the

journey to o ld age . ’)

210 s e l f . quote s . append (’One swallow does not make the spr ing . ’)

211 s e l f . quote s . append (’ P leasure in the job puts p e r f e c t i o n in the

work . ’)

212 s e l f . quote s . append (’We are what we repea t ed ly do . ’)

213 s e l f . quote s . append (’ Wishing to be f r i e n d s i s quick work , but

f r i e n d s h i p i s a slow r ip en ing f r u i t . ’)

214 s e l f . quote s . append (’ There i s s a f e t y in numbers . ’)

215

216 Process . i n i t (s e l f)

217

218 de f run (s e l f) :

219 u r l = ’ws : / / 1 4 2 . 1 0 4 . 1 7 . 1 3 3 : 8 0 0 0 ’

220

221 p i n g p o i s o n p i l l = Queue ()

222 p i n g i p = Queue ()

223

88

224 ping = Ping (p i n g p o i s o n p i l l , s e l f . c onn s t r i ng , s e l f .

run number , s e l f . s t a r t t i m e , s e l f . ramp time , p i n g i p)

225 ping . s t a r t ()

226

227 chat = Yakki tCl i ent (ur l , s e l f . bot number , s e l f . c onn s t r i ng ,

s e l f . run number , s e l f . s t a r t t i m e ,

228 s e l f . ramp time , p i n g i p)

229 chat . r e g i s t e r (s e l f . bo t l a t , s e l f . bo t l ong)

230

231 whi le s e l f . p o i s o n p i l l . empty () :

232 d u r a t i o n s l e e p = randint (0 , 20)

233 time . s l e e p (d u r a t i o n s l e e p)

234

235 quote = s e l f . quote s [rand int (0 , l en (s e l f . quote s) − 1)]

236 chat . send message (j son . dumps({ ’ t ex t ’ : quote , ’ timestamp ’ :

time . time () }))

237

238 p i n g p o i s o n p i l l . put (’Time to d i e ! ’)

239 ping . j o i n ()

240

241

242 c l a s s BotManager :

243 de f i n i t (s e l f , number of bots , conn s t r ing , run number , bo t l a t

, bo t l ong) :

244 s e l f . number o f bots = number of bots

245 s e l f . c o n n s t r i n g = c o n n s t r i n g

246 s e l f . run number = run number

247 s e l f . bo t s = []

248 s e l f . p o i s o n p i l l s = []

249 s e l f . b o t l a t = b o t l a t

250 s e l f . b o t l o n g = bot long

251

252 de f s t a r t b o t s (s e l f) :

253 pr in t ’ Bot manager s t a r t i n g bots . ’

254 s t a r t t i m e = time . time ()

255 ramp time = 10 .0

256

257 whi le l en (s e l f . bo t s) < s e l f . number o f bots :

258 p o i s o n p i l l = Queue ()

259 bot = Bot (p o i s o n p i l l , l en (s e l f . bo t s) , s e l f . c onn s t r i ng ,

s e l f . run number , s t a r t t ime , ramp time ,

260 s e l f . b o t l a t , s e l f . b o t l o n g)

89

261

262 bot . s t a r t ()

263

264 s e l f . p o i s o n p i l l s . append (p o i s o n p i l l)

265 s e l f . bo t s . append (bot)

266

267 de f s t op bo t s (s e l f) :

268 pr in t ’ Bot manager stopping bots . ’ ,

269 f o r p i l l in s e l f . p o i s o n p i l l s :

270 p i l l . put (’Time to d i e ! ’)

271

272 f o r bot in s e l f . bo t s :

273 bot . j o i n ()

274

275 pr in t ’ ’ . l j u s t (35) + ’ [OK] ’

90

A.2 Time Delta Kernel Density Source

This section contains the R source code for generation the Kernel Density graphs for the

time deltas. A SQL query is executed to extract the time deltas between all the points that

fall within our experimental boundary (line 9). Line 17 computes the 99th percentile for

this data and line 19 computes the actual kernel density using R’s built in kernel density

function. The remainder of the function draws the graph.

91

A.3 Trajectory Distance Kernel Density Source

This section contains the R source code for generation the Kernel Density graphs for the

trajectory distances. A SQL query is executed to extract all the distances of the trajectories

for our experiment. Line 13 computes the 99th percentile for this data and line 14 computes

the actual kernel density using R’s built in kernel density function. The remainder of the

function draws the graph.

92

A.4 Trajectory Generation Source

This section contains the Python source code for generating trajectories. To maximize the

number of cores on the executing system the computing is parallelized for each person. In

theory, this source code scales up to 182 CPU’s since there are 182 persons in our dataset.

For each person, only the points that fall within the boundary are selected (lines 23-35).

Using these points, trajectories are created and saved back to the database (lines 42-154).

93

1 a u t h o r = ’ Przemek ’

2

3 import psycopg2

4 import ca l endar

5 import time

6 from mul t i p ro c e s s i ng import Process , cpu count , Value , Lock

7 import datet ime

8

9 DB CONNECTION STRING = ’dbname=loca t i on−data user=przemeklach password=

JLYacUJ8ez99Ws ’

10

11

12 c l a s s Tra j e c to ryBu i lde r () :

13 de f i n i t (s e l f , po int max t ime de l ta , min numb points) :

14 s e l f . po int max t ime de l ta = po int max t ime de l ta

15 s e l f . min numb points = min numb points

16

17 de f b u i l d u s e r (s e l f , person , sample id , current numb of proces s

, cnp lock) :

18 db connect ion = psycopg2 . connect (DB CONNECTION STRING)

19 db cursor = db connect ion . cu r so r ()

20

21 # Use inner j o i n s t a r t i n g with boundary po in t s to re turn only

the po in t s i n s i d e the boundary

22 # f o r a g iven user . This should speed th ing s up I hope .

23 db cursor . execute (’ ’ ’

24 SELECT

25 po int . da t e r e co rded de l t a ,

26 po int . id ,

27 boundary point . id ,

28 po int . da te r eco rded

29 FROM boundary point

30 INNER JOIN point ON boundary point .

p o i n t i d = point . id

31 INNER JOIN person ON point . p e r son id =

person . id

32 WHERE

33 person . id = (%s)

34 ORDER BY point . date r eco rded ;

35 ’ ’ ’ , [person [0]])

36

37 person boundary po ints = db cursor . f e t c h a l l ()

94

38 c u r r e n t t r a j e c t o r y p o i n t s = l i s t ()

39 c u r r e n t t r a j e c t o r y b o u n d a r y p o i n t i d s = l i s t ()

40 c u r r e n t t r a j e c t o r y p o i n t s d a t e r e c o r d e d = l i s t ()

41

42 f o r i , boundary point in enumerate (person boundary po ints) :

43 d a t e r e c o r d e d d e l t a = boundary point [0]

44 c u r r e n t p o i n t i d = boundary point [1]

45 c u r r e n t t r a j e c t o r y b o u n d a r y p o i n t i d s . append (boundary point

[2])

46 c u r r e n t t r a j e c t o r y p o i n t s d a t e r e c o r d e d . append (

boundary point [3])

47

48 # I f the re are no po in t s in the t r a j e c t o r y j u s t add the

cur rent po int . Once there i s one or more po in t s

49 # check to make sure the de l t a i s below thre sho ld . I f i t ’ s

below j u s t keep adding po in t s . I f i t ’ s above

50 # save the t r a j e c t o r y , s t a r t a new t r a j e c t o r y , and add the

cur rent po int as the f i r s t po int in that

51 # t r a j e c t o r y .

52 i f l en (c u r r e n t t r a j e c t o r y p o i n t s) == 0 :

53 c u r r e n t t r a j e c t o r y p o i n t s . append (c u r r e n t p o i n t i d)

54 e l i f d a t e r e c o r d e d d e l t a <= s e l f . po int max t ime de l ta :

55 c u r r e n t t r a j e c t o r y p o i n t s . append (c u r r e n t p o i n t i d)

56 e l i f d a t e r e c o r d e d d e l t a > s e l f . po int max t ime de l ta :

57 # I f we have enough po in t s then save i t . Otherwise

s t a r t new .

58 i f l en (c u r r e n t t r a j e c t o r y p o i n t s) > s e l f .

min numb points :

59 # Create a t r a j e c t o r y entry .

60 c u r r e n t t r a j e c t o r y d a t e r e c o r d e d = max(

c u r r e n t t r a j e c t o r y p o i n t s d a t e r e c o r d e d)

61

62 db cursor . execute (’INSERT INTO t r a j e c t o r y (

sample id , t ra j e c to ry geomet ry , d i s tance , date recorded ,

da t e c r ea t ed) VALUES (%s , %s , %s , %s , %s) RETURNING id ; ’ , [

sample id , None , None , c u r r e n t t r a j e c t o r y d a t e r e c o r d e d , ca l endar .

timegm (time . gmtime ())])

63 t r a j e c t o r y i d = db cursor . f e t chone () [0]

64

65 # Add e n t r i e s f o r l i n k between t r a j e c t o r y and

boundary po in t s .

95

66 f o r boundary po int id in

c u r r e n t t r a j e c t o r y b o u n d a r y p o i n t i d s :

67 db cursor . execute (’INSERT INTO

tra j e c t o ry boundary po in t (t r a j e c t o r y i d , boundary point id ,

da t e c r ea t ed) VALUES (%s , %s , %s) ’ , [t r a j e c t o r y i d ,

boundary point id , ca l endar . timegm (time . gmtime ())])

68

69 # Create l i n e geometry .

70 db cursor . execute (’ ’ ’

71 UPDATE t r a j e c t o r y

72 SET tra j e c t o ry geomet ry = l i n e .

new l ine

73 FROM

74 (SELECT

75 s t s e t s r i d (s t make l ine (

t r a j e c t o r y p o i n t s . boundary point geometry) , 32650) AS new l ine

76 FROM

77 (SELECT

78 boundary point .

boundary point geometry

79 FROM boundary point

80 INNER JOIN point ON

boundary point . p o i n t i d = point . id

81 WHERE p o i n t i d IN %s

82 ORDER BY date reco rded)

AS t r a j e c t o r y p o i n t s) AS l i n e

83 WHERE

84 t r a j e c t o r y . id = (%s) ;

85 ’ ’ ’ , [tup l e (

c u r r e n t t r a j e c t o r y p o i n t s) , t r a j e c t o r y i d])

86

87 # Compute d i s t anc e .

88 db cursor . execute (’ ’ ’

89 UPDATE t r a j e c t o r y

90 SET d i s t anc e = s t l e n g t h (l i n e .

t r a j e c to ry geomet ry)

91 FROM

92 (SELECT

93 t r a j e c to ry geomet ry

94 FROM t r a j e c t o r y

95 WHERE id = (%s)) AS l i n e

96 WHERE id = (%s) ;

96

97 ’ ’ ’ , [t r a j e c t o r y i d ,

t r a j e c t o r y i d])

98

99 c u r r e n t t r a j e c t o r y p o i n t s = l i s t ()

100 c u r r e n t t r a j e c t o r y b o u n d a r y p o i n t i d s = l i s t ()

101 c u r r e n t t r a j e c t o r y b o u n d a r y p o i n t i d s . append (

boundary point [2])

102 c u r r e n t t r a j e c t o r y p o i n t s . append (c u r r e n t p o i n t i d)

103 c u r r e n t t r a j e c t o r y p o i n t s d a t e r e c o r d e d = l i s t ()

104 e l i f i == len (person boundary po ints) − 1 :

105 # I f we are on the very l a s t po int f o r a person then we

check i f the po int should

106 # be added based on the time d e l t a and whether the

t r a j e c t o r y has enough po in t s and

107 # then we save . This code i s almost exac t l y the same as

the above f o r sav ing t r a j e c t o r i e s

108 # except in the way we re−s e t our v a r i a b l e s .

109 i f d a t e r e c o r d e d d e l t a > s e l f . po int max t ime de l ta :

110 # I f we have enough po in t s then save i t . Otherwise

s t a r t new .

111 i f l en (c u r r e n t t r a j e c t o r y p o i n t s) > s e l f .

min numb points :

112 # Create a t r a j e c t o r y entry .

113 c u r r e n t t r a j e c t o r y d a t e r e c o r d e d = max(

c u r r e n t t r a j e c t o r y p o i n t s d a t e r e c o r d e d)

114

115 db cursor . execute (’INSERT INTO t r a j e c t o r y (

sample id , t ra j e c to ry geomet ry , d i s tance , date recorded ,

da t e c r ea t ed) VALUES (%s , %s , %s , %s , %s) RETURNING id ; ’ , [

sample id , None , None , c u r r e n t t r a j e c t o r y d a t e r e c o r d e d , ca l endar .

timegm (time . gmtime ())])

116 t r a j e c t o r y i d = db cursor . f e t chone () [0]

117

118 # Add entry f o r l i n k between t r a j e c t o r y and

boundary po in t s .

119 db cursor . execute (’INSERT INTO

tra j e c t o ry boundary po in t (t r a j e c t o r y i d , boundary point id ,

da t e c ra e t ed) VALUES (%s , %s , %s) ’ , [t r a j e c t o r y i d ,

c u r r e n t p o i n t i d , ca l endar . timegm (time . gmtime ())])

120

121 # Create l i n e geometry .

122 db cursor . execute (’ ’ ’

97

123 UPDATE t r a j e c t o r y

124 SET tra j e c t o ry geomet ry =

l i n e . new l ine

125 FROM

126 (SELECT

127 s t s e t s r i d (

s t make l ine (t r a j e c t o r y p o i n t s . boundary point geometry) , 32650) AS

new l ine

128 FROM

129 (SELECT

130 boundary point .

boundary point geometry

131 FROM boundary point

132 INNER JOIN point

ON boundary point . p o i n t i d = point . id

133 WHERE p o i n t i d IN %s

134 ORDER BY

date reco rded) AS t r a j e c t o r y p o i n t s) AS l i n e

135 WHERE

136 t r a j e c t o r y . id = (%s) ;

137 ’ ’ ’ , [tup l e (

c u r r e n t t r a j e c t o r y p o i n t s) , t r a j e c t o r y i d])

138

139 # Compute d i s t anc e .

140 db cursor . execute (’ ’ ’

141 UPDATE t r a j e c t o r y

142 SET d i s t ance = s t l e n g t h (

l i n e . t r a j e c to ry geomet ry)

143 FROM

144 (SELECT

145 t r a j e c to ry geomet ry

146 FROM t r a j e c t o r y

147 WHERE id = (%s)) AS l i n e

148 WHERE id = (%s) ;

149 ’ ’ ’ , [t r a j e c t o r y i d ,

t r a j e c t o r y i d])

150 c u r r e n t t r a j e c t o r y p o i n t s = l i s t ()

151 c u r r e n t t r a j e c t o r y p o i n t s d a t e r e c o r d e d = l i s t ()

152

153 db connect ion . commit ()

154 db connect ion . c l o s e ()

155

98

156 with cnp lock :

157 cur rent numb o f proce s s . va lue −= 1

158

159 pr in t (’ User ’ + s t r (person [0]) + ’ [DONE] ’)

160

161 de f bu i ld (s e l f) :

162 db connect ion = psycopg2 . connect (DB CONNECTION STRING)

163 db cursor = db connect ion . cu r so r ()

164 s t a r t t i m e = time . time ()

165

166 # Create t a b l e s i f they don ’ t e x i s t yet .

167 db cursor . execute (’CREATE TABLE IF NOT EXISTS sample (id SERIAL

PRIMARY KEY, po int max t ime de l ta INTEGER, min numb points INTEGER

, d i s t a n c e t h r e s h o l d FLOAT, da t e c r ea t ed INTEGER) ; ’)

168 db cursor . execute (’CREATE TABLE IF NOT EXISTS t r a j e c t o r y (id

SERIAL PRIMARY KEY, sample id INTEGER, d i s t ance Float ,

date r eco rded INTEGER, too l ong BOOLEAN, da t e c r ea t ed INTEGER,

FOREIGN KEY(sample id) REFERENCES sample (id) ON DELETE CASCADE) ; ’)

169 db connect ion . commit ()

170

171 db cursor . execute (’SELECT addgeometrycolumn (\ ’ t r a j e c t o r y \ ’ , \ ’

t r a j e c to ry geomet ry \ ’ , 32650 , \ ’LINESTRINGZ\ ’ , 3) ; ’)

172 db connect ion . commit ()

173

174 db cursor . execute (’CREATE TABLE IF NOT EXISTS

t ra j e c t o ry boundary po in t (id SERIAL PRIMARY KEY, t r a j e c t o r y i d

INTEGER, boundary po int id INTEGER, da t e c r ea t ed INTEGER, FOREIGN

KEY(t r a j e c t o r y i d) REFERENCES t r a j e c t o r y (id) ON DELETE CASCADE,

FOREIGN KEY(boundary po int id) REFERENCES boundary point (id)) ; ’)

175 db connect ion . commit ()

176

177 # Drop indexes i f they e x i s t . This w i l l speedup i n s e r t s .

178 db cursor . execute (’DROP INDEX IF EXISTS idx samp l e id ; ’)

179 db cursor . execute (’DROP INDEX IF EXISTS i d x t r a j e c t o r y i d ; ’)

180 db cursor . execute (’DROP INDEX IF EXISTS idx boundary po in t id ; ’

)

181 db connect ion . commit ()

182

183 # Check to see i f s c e n a r i o with t h r e s h o l d s a l r eady e x i s t s .

184 t ry :

185 db cursor . execute (’SELECT id FROM sample WHERE

po int max t ime de l ta = (%s) AND min numb points = (%s) ; ’ , [s e l f .

99

po int max t ime de l ta , s e l f . min numb points])

186 e x i s t i n g s a m p l e = db cursor . f e t chone ()

187

188 i f e x i s t i n g s a m p l e i s not None :

189 re sponse = raw input (” T r a j e c t o r i e s with t h r e s h o l d s

a l r eady e x i s t . Overwrite (Yes/No) ? ”)

190

191 i f r e sponse == ’ Yes ’ :

192 e x i s t i n g s a m p l e i d = e x i s t i n g s a m p l e [0]

193

194 pr in t ’ De l e t ing sample and a s s o c i a t e d t r a j e c t o r i e s

. . . ’ . l j u s t (50) ,

195 db cursor . execute (’DELETE FROM sample WHERE id = (%

s) ; ’ , [e x i s t i n g s a m p l e i d])

196 db connect ion . commit ()

197 pr in t ’ [OK] ’

198

199 e l i f r e sponse == ’No ’ :

200 pr in t ’ Goodbye ! ’

201 e x i t ()

202 e l s e :

203 pr in t ’ Unrecognized cho i c e . Goodbye ! ’

204 e x i t ()

205

206 pr in t ’ Bui ld ing new t r a j e c t o r i e s . . . ’ . l j u s t (50)

207

208 except psycopg2 . ProgrammingError :

209 db connect ion . r o l l b a c k ()

210

211 # I f we get t h i s f a r then c r e a t e new thre sho ld

212 # and generate t r a j e c t o r i e s us ing th r e sho ld .

213 db cursor . execute (’INSERT INTO sample (po int max t ime de l ta ,

min numb points , d i s t a n c e t h r e s h o l d , da t e c r ea t ed) VALUES (%s , %s ,

%s , %s) RETURNING id ; ’ , [s e l f . po int max t ime de l ta , s e l f .

min numb points , None , ca l endar . timegm (time . gmtime ())])

214 sample id = db cursor . f e t chone () [0]

215 db connect ion . commit ()

216

217 db cursor . execute (’SELECT ∗ FROM person ’)

218 persons = db cursor . f e t c h a l l ()

219

220 p r o c e s s e s = []

100

221 cur r ent numb o f proce s s = Value (’ i ’ , 0)

222 cnp lock = Lock ()

223

224 # Temporari ly d i s a b l e vacuum to speed th ing s up .

225 db cursor . execute (’ALTER TABLE t r a j e c t o r y SET (

autovacuum enabled = f a l s e , t oa s t . autovacuum enabled = f a l s e) ; ’)

226 db connect ion . commit ()

227

228 f o r person in persons :

229 p = Process (t a r g e t=s e l f . b u i l d u s e r , a rgs=(person ,

sample id , cur rent numb of proces s , cnp lock))

230

231 # I f we reached max co r e s j u s t wait f o r a proce s s

232 # to f i n i s h be f o r e s t a r t i n g next user .

233 whi le cur r ent numb o f proce s s . va lue >= cpu count () :

234 pass

235

236 with cnp lock :

237 cur r ent numb o f proce s s . va lue += 1

238

239 p r o c e s s e s . append (p)

240 p . s t a r t ()

241

242 f o r p in p r o c e s s e s :

243 p . j o i n ()

244

245 # Remove a l l the t r a j e c t o r i e s that c r o s s ou t s id e the cur rent

boundary .

246 db cursor . execute (’DELETE FROM t r a j e c t o r y WHERE NOT s t c o n t a i n s

((SELECT boundary geometry from boundary WHERE id = (%s)) ,

t r a j e c t o r y . t r a j e c to ry geomet ry) ; ’ , [sample id])

247 db connect ion . commit ()

248

249 db cursor . execute (’ALTER TABLE t r a j e c t o r y SET (

autovacuum enabled = true , t oa s t . autovacuum enabled = true) ; ’)

250 db connect ion . commit ()

251

252 # Create indexes .

253 pr in t ’ Creat ing indexes . . . ’ . l j u s t (35) ,

254 db cursor . execute (’CREATE INDEX idx samp l e id ON t r a j e c t o r y (

sample id) ; ’)

101

255 db cursor . execute (’CREATE INDEX i d x t r a j e c t o r y i d ON

tra j e c t o ry boundary po in t (t r a j e c t o r y i d) ; ’)

256 db cursor . execute (’CREATE INDEX idx boundary po in t id ON

tra j e c t o ry boundary po in t (boundary po int id) ; ’)

257 db connect ion . commit ()

258 pr in t ’ [DONE] ’

259

260 end time = time . time ()

261

262 pr in t ’ \nSUMMARY’

263 pr in t (’ Duration : ’ . l j u s t (35) + s t r (s t r (datet ime . t imede l ta (

seconds=(end time − s t a r t t i m e)))))

264

265 # Set the too l ong f l a g f o r each t r a j e c t o r y based on

266 # maximum d i s t anc e . You f i g u r e out the max value v ia us ing the

267 # kerne l dens i ty func t i on in R. Although the schema supports

268 # mul t ip l e samples t h i s func t i on i s c u r r e n t l y only implemented

269 # assuming only one sample and w i l l need to be update .

270 de f crop (s e l f , d istance max) :

271 db connect ion = psycopg2 . connect (DB CONNECTION STRING)

272 db cursor = db connect ion . cu r so r ()

273

274 db cursor . execute (’SELECT id FROM sample WHERE

po int max t ime de l ta = (%s) AND min numb points = (%s) ; ’ , [s e l f .

po int max t ime de l ta , s e l f . min numb points])

275 sample id = db cursor . f e t chone () [0]

276

277 i f sample id :

278 db cursor . execute (’ ’ ’

279 UPDATE t r a j e c t o r y

280 SET too l ong = TRUE

281 WHERE d i s t anc e > (%s) AND sample id =

(%s) ;

282 ’ ’ ’ , [distance max , sample id])

283

284 db cursor . execute (’ ’ ’

285 UPDATE t r a j e c t o r y

286 SET too l ong = FALSE

287 WHERE d i s t anc e <= (%s) AND sample id =

(%s) ;

288 ’ ’ ’ , [distance max , sample id])

289

102

290 db cursor . execute (’UPDATE sample SET d i s t a n c e t h r e s h o l d =

(%s) WHERE id = (%s) ; ’ , [distance max , sample id])

291 db connect ion . commit ()

292 e l s e :

293 pr in t ’ Sample does not e x i s t . Goodbye ! ’

294

295 db connect ion . c l o s e ()

296

297

298 data = Tra j e c to ryBu i lde r (po int max t ime de l ta =1800 , min numb points=20)

1800 = 30 min , 900 = 15 min

299 data . bu i ld ()

300 data . crop (15000)

103

A.5 Experiment Source

This section contains the Python source code for the experiments. Each experiment consists

of a source and destination sector size as defined by source parameter and destination

parameter, respectively. Each experiment is run 10 times (line 426). Each run represents

one part of the ten fold cross validation and consists of a model generation part (line 441)

and a classification part (line 445). To maximize the number of cores the generation of a

model for each sector as well as the classification are parallelized. The final classification

results as well as the intermediate models for each part of the experiment are stored in the

database.

104

1 import psycopg2

2 import random

3 import numpy

4 import ca l endar

5 from mul t i p ro c e s s i ng import Process , cpu count , Value , Lock

6 from c o l l e c t i o n s import d e f a u l t d i c t

7 import datet ime

8 import time

9

10 DB CONNECTION STRING = ’dbname=loca t i on−data user=przemeklach password=

JLYacUJ8ez99Ws ’

11

12

13 c l a s s Setup :

14 de f i n i t (s e l f) :

15 s e l f . db connect ion = psycopg2 . connect (DB CONNECTION STRING)

16 s e l f . db cursor = s e l f . db connect ion . cu r so r ()

17

18 de f gene ra t e bucke t s (s e l f) :

19 # Create t a b l e f o r s t o r i n g t r a j e c t o r i e s and t h e i r

20 # r e s p e c t i v e buckets .

21 s e l f . db cursor . execute (’ ’ ’

22 CREATE TABLE IF NOT EXISTS

t r a j e c t o r y b u c k e t (

23 id SERIAL PRIMARY KEY,

24 t r a j e c t o r y i d INTEGER,

25 bucket id INTEGER,

26 FOREIGN KEY (t r a j e c t o r y i d)

REFERENCES t r a j e c t o r y (id) ,

27 dat e c r ea t ed INTEGER

28) ;

29 ’ ’ ’)

30 s e l f . db connect ion . commit ()

31

32 # Get a l l the t r a j e c t o r i e s that e x i s t in boundary and are

33 # of the r i g h t l ength .

34 s e l f . db cursor . execute (’SELECT id FROM t r a j e c t o r y WHERE

too l ong = FALSE; ’)

35 t r a j e c t o r y i d s t u p l e s = s e l f . db cursor . f e t c h a l l ()

36 t r a j e c t o r y i d s = numpy . array ([i [0] f o r i in

t r a j e c t o r y i d s t u p l e s])

37

105

38 # S h u f f l e t r a j e c t o r y i d s us ing Fi sher Yates

39 random . s h u f f l e (t r a j e c t o r y i d s)

40

41 # S p l i t t r a j e c t o r i e s i n to 10 buckets .

42 buckets = numpy . a r r a y s p l i t (t r a j e c t o r y i d s , 10)

43

44 # pr in t l en (t r a j e c t o r y i d s)

45

46 # Save buckets to db .

47 f o r bucket numb , bucket in enumerate (buckets) :

48 f o r t r a j e c t o r y i d in bucket :

49 s e l f . db cursor . execute (’INSERT INTO t r a j e c t o r y b u c k e t (

t r a j e c t o r y i d , bucket id , da t e c r ea t ed) VALUES (%s , %s , %s) ; ’ , [

t r a j e c t o r y i d , bucket numb , ca l endar . timegm (time . gmtime ())])

50

51 s e l f . db connect ion . commit ()

52

53 # Create index on t r a j e c t o r y fk

54 s e l f . db cursor . execute (’CREATE INDEX

i d x t r a j e c t o r y b u c k e t t r a j e c t o r y i d ON t r a j e c t o r y b u c k e t (

t r a j e c t o r y i d) ; ’)

55 s e l f . db connect ion . commit ()

56

57

58 c l a s s Experiment :

59 de f i n i t (s e l f) :

60 s e l f . db connect ion = psycopg2 . connect (DB CONNECTION STRING)

61 s e l f . db cursor = s e l f . db connect ion . cu r so r ()

62

63 @staticmethod

64 de f c o m p u t e m o d e l f o r s e c t o r (s e c t o r i d , t r a j e c t o r y i d s , run id ,

d e s t i n a t i o n s e c t o r s i d s , cur rent numb of proces s , cnp lock) :

65 proce s s db connec t i on = psycopg2 . connect (DB CONNECTION STRING)

66 p r o c e s s d b c u r s o r = proce s s db connec t i on . cu r so r ()

67

68 # Find a l l the t r a j e c t o r i e s in our model l ing buckets that s t a r t

in cur rent s e c t o r .

69 p r o c e s s d b c u r s o r . execute (’ ’ ’

70 WITH t r a j e c t o r i e s i n b u c k e t s AS (

71 SELECT

72 s t s t a r t p o i n t (

t r a j e c to ry geomet ry) AS s t a r t p o i n t ,

106

73 t r a j e c t o r y . id

AS t r a j e c t o r y i d

74 FROM t r a j e c t o r y

75 WHERE t r a j e c t o r y . id IN %s AND

too l ong = FALSE

76)

77

78 SELECT t r a j e c t o r i e s i n b u c k e t s .

t r a j e c t o r y i d

79 FROM t r a j e c t o r i e s i n b u c k e t s

80 WHERE s t i n t e r s e c t s (

81 (SELECT sector geometry

82 FROM s e c t o r

83 WHERE id = (%s)) ,

t r a j e c t o r i e s i n b u c k e t s . s t a r t p o i n t

84) ;

85 ’ ’ ’ , (tup l e (t r a j e c t o r y i d s) , s e c t o r i d ,))

86

87 t r a j e c t o r y i d s s t a r t i n g i n s e c t o r t u p l e = p r o c e s s d b c u r s o r .

f e t c h a l l ()

88 t r a j e c t o r y i d s s t a r t i n g i n s e c t o r = [i [0] f o r i in

t r a j e c t o r y i d s s t a r t i n g i n s e c t o r t u p l e]

89

90 d e s t i n a t i o n c o u n t e r = d e f a u l t d i c t (i n t)

91

92 # For every t r a j e c t o r y that s t a r t s in the cur rent s e c t o r

93 # f i g u r e out which s e c t o r i t ends in and count i t .

94 f o r t r a j e c t o r y i d s t a r t i n g i n s e c t o r in

t r a j e c t o r y i d s s t a r t i n g i n s e c t o r :

95 p r o c e s s d b c u r s o r . execute (’ ’ ’

96 WITH d e s t i n a t i o n s e c t o r s AS (

97 SELECT sector geometry , id

98 FROM s e c t o r

99 WHERE id IN %s)

100 SELECT id

101 FROM d e s t i n a t i o n s e c t o r s

102 WHERE s t i n t e r s e c t s (

d e s t i n a t i o n s e c t o r s . sector geometry , (SELECT st endpo in t (

t r a j e c to ry geomet ry)

103

FROM t r a j e c t o r y

107

104

WHERE id = (%s) AND too l ong = FALSE)) ;

105 ’ ’ ’ , (tup l e (d e s t i n a t i o n s e c t o r s i d s) ,

t r a j e c t o r y i d s t a r t i n g i n s e c t o r ,))

106

107 d e s t i n a t i o n g r i d i d t u p l e = p r o c e s s d b c u r s o r . f e t chone ()

108 d e s t i n a t i o n g r i d i d = d e s t i n a t i o n g r i d i d t u p l e [0]

109 d e s t i n a t i o n c o u n t e r [d e s t i n a t i o n g r i d i d] += 1

110

111 t o t a l n u m b e r o f d e s t i n a t i o n s = sum(d e s t i n a t i o n c o u n t e r . va lue s ()

)

112

113 i f t o t a l n u m b e r o f d e s t i n a t i o n s > 0 :

114 # Store r e s u l t s in model .

115 p r o c e s s d b c u r s o r . execute (’INSERT INTO model (run id ,

s o u r c e s e c t o r i d , da t e c r ea t ed) VALUES (%s , %s , %s) RETURNING id ; ’ ,

[run id , s e c t o r i d , ca l endar . timegm (time . gmtime ())])

116 model id = p r o c e s s d b c u r s o r . f e t chone () [0]

117 proce s s db connec t i on . commit ()

118

119 f o r d e s t i n a t i o n s e c t o r , count in d e s t i n a t i o n c o u n t e r .

i t e r i t e m s () :

120 p r o c e s s d b c u r s o r . execute (’INSERT INTO p r o b a b i l i t y (

model id , d e s t i n a t i o n s e c t o r i d , number of endpoints ,

d e s t i n a t i o n p r o b a b i l i t y , da t e c r ea t ed) VALUES (%s , %s , %s , %s , %s) ;

’ , [model id , d e s t i n a t i o n s e c t o r , count , count / f l o a t (

t o t a l n u m b e r o f d e s t i n a t i o n s) , ca l endar . timegm (time . gmtime ())])

121

122 proce s s db connec t i on . commit ()

123

124 proce s s db connec t i on . c l o s e ()

125

126 with cnp lock :

127 cur rent numb o f proce s s . va lue −= 1

128

129 de f compute model (s e l f , mode l ing bucket s id s , run id ,

source parameter , de s t inat ion paramete r , s h i f t e d) :

130 # Get a l i s t o f a l l the source and d e s t i n a t i o n s e c t o r s

131 s e l f . db cursor . execute (’ ’ ’

132 SELECT s e c t o r . id

133 FROM s e c t o r

134 WHERE g r i d i d = (SELECT id

108

135 FROM gr id

136 WHERE gr id .

parameter = (%s) AND gr id . s h i f t e d = (%s)) ;

137

138 ’ ’ ’ , [source parameter , s h i f t e d])

139

140 s o u r c e s e c t o r s i d s t u p l e = s e l f . db cursor . f e t c h a l l ()

141 s o u r c e s e c t o r s i d s = None

142

143 i f l en (s o u r c e s e c t o r s i d s t u p l e) > 1 :

144 s o u r c e s e c t o r s i d s = [i [0] f o r i in

s o u r c e s e c t o r s i d s t u p l e]

145 e l s e :

146 s o u r c e s e c t o r s i d s = s o u r c e s e c t o r s i d s t u p l e [0]

147

148 d e s t i n a t i o n s e c t o r s i d s = None

149

150 # I f the source and d e s t i n a t i o n are the same then j u s t copy .

151 i f d e s t ina t i on paramete r == source parameter :

152 d e s t i n a t i o n s e c t o r s i d s = l i s t (s o u r c e s e c t o r s i d s)

153 e l s e :

154 s e l f . db cursor . execute (’ ’ ’

155 SELECT s e c t o r . id

156 FROM s e c t o r

157 WHERE g r i d i d = (SELECT id

158 FROM gr id

159 WHERE gr id

. parameter = (%s) AND gr id . s h i f t e d = (%s)) ;

160

161 ’ ’ ’ , [de s t inat ion paramete r , s h i f t e d])

162

163 d e s t i n a t i o n s e c t o r s i d s t u p l e = s e l f . db cursor . f e t c h a l l ()

164 i f l en (d e s t i n a t i o n s e c t o r s i d s t u p l e) > 1 :

165 d e s t i n a t i o n s e c t o r s i d s = [i [0] f o r i in

d e s t i n a t i o n s e c t o r s i d s t u p l e]

166 e l s e :

167 d e s t i n a t i o n s e c t o r s i d s = d e s t i n a t i o n s e c t o r s i d s t u p l e

[0]

168

169 # Get a l l the t r a j e c t o r i e s that are found in our model l ing

buckets .

109

170 s e l f . db cursor . execute (’SELECT t r a j e c t o r y i d from

t r a j e c t o r y b u c k e t WHERE bucket id IN %s ’ , (tup l e (

mode l ing bucke t s id s) ,))

171 t r a j e c t o r y i d s f o r m o d e l l i n g t u p l e s = s e l f . db cursor . f e t c h a l l ()

172 t r a j e c t o r y i d s f o r m o d e l l i n g = [i [0] f o r i in

t r a j e c t o r y i d s f o r m o d e l l i n g t u p l e s]

173

174 p r o c e s s e s = []

175 cur r ent numb o f proce s s = Value (’ i ’ , 0)

176 cnp lock = Lock ()

177

178 # For each s e c t o r compute the p r o b a b i l i t i e s .

179 f o r count , s e c t o r i d in enumerate (s o u r c e s e c t o r s i d s) :

180 p = Process (t a r g e t=s e l f . c o m p u t e m o d e l f o r s e c t o r , a rgs

=(s e c t o r i d , t r a j e c t o r y i d s f o r m o d e l l i n g , run id ,

d e s t i n a t i o n s e c t o r s i d s , cur rent numb of proces s , cnp lock))

181 p r o c e s s e s . append (p)

182 p . s t a r t ()

183

184 with cnp lock :

185 cur r ent numb o f proce s s . va lue += 1

186

187 # I f we reached max co r e s j u s t wait f o r a proce s s

188 # to f i n i s h be f o r e s t a r t i n g next user .

189 whi le cur r ent numb o f proce s s . va lue >= cpu count () :

190 pass

191

192 f o r p in p r o c e s s e s :

193 p . j o i n ()

194

195 s e l f . db connect ion . commit ()

196 s e l f . r u n c l e a n u p a n d r e i n d e x ()

197

198 de f c r e a t e t a b l e s (s e l f) :

199 # Create t a b l e s f o r exper iments and runs .

200 s e l f . db cursor . execute (’ ’ ’

201 CREATE TABLE IF NOT EXISTS experiment (

202 id SERIAL PRIMARY

KEY,

203 durat ion INTEGER,

204 source parameter INTEGER,

205 des t ina t i on paramete r INTEGER,

110

206 s h i f t e d BOOL,

207 dat e c r ea t ed INTEGER

208) ;

209 ’ ’ ’)

210 s e l f . db connect ion . commit ()

211

212 s e l f . db cursor . execute (’ ’ ’

213 CREATE TABLE IF NOT EXISTS run (

214 id SERIAL PRIMARY KEY,

215 exper iment id INTEGER,

216 dat e c r ea t ed INTEGER,

217 FOREIGN KEY (exper iment id)

REFERENCES experiment (id) ON DELETE CASCADE

218) ;

219 ’ ’ ’)

220 s e l f . db cursor . execute (’CREATE INDEX idx run expe r iment id ON

run (exper iment id) ; ’)

221 s e l f . db connect ion . commit ()

222

223 # Create the model and p r o b a b i l i t y t a b l e s f o r s t o r i n g the

models f o r each s e c t o r .

224 s e l f . db cursor . execute (’ ’ ’

225 CREATE TABLE IF NOT EXISTS model (

226 id SERIAL PRIMARY KEY,

227 run id INTEGER,

228 s o u r c e s e c t o r i d INTEGER,

229 dat e c r ea t ed INTEGER,

230 FOREIGN KEY (s o u r c e s e c t o r i d)

REFERENCES s e c t o r (id) ,

231 FOREIGN KEY (run id) REFERENCES run (

id) ON DELETE CASCADE

232) ;

233 ’ ’ ’)

234 s e l f . db cursor . execute (’CREATE INDEX i d x m o d e l s o u r c e s e c t o r i d

ON model (s o u r c e s e c t o r i d) ; ’)

235 s e l f . db cursor . execute (’CREATE INDEX idx mode l run id ON model (

run id) ; ’)

236 s e l f . db connect ion . commit ()

237

238 s e l f . db cursor . execute (’ ’ ’

239 CREATE TABLE IF NOT EXISTS p r o b a b i l i t y

(

111

240 id SERIAL

PRIMARY KEY,

241 model id INTEGER,

242 d e s t i n a t i o n s e c t o r i d INTEGER,

243 number of endpoints INTEGER,

244 d e s t i n a t i o n p r o b a b i l i t y FLOAT,

245 t i m e r a n g e s t a r t TIME,

246 t ime range s top TIME,

247 dat e c r ea t ed INTEGER,

248 FOREIGN KEY (model id) REFERENCES

model (id) ON DELETE CASCADE,

249 FOREIGN KEY (d e s t i n a t i o n s e c t o r i d)

REFERENCES s e c t o r (id)

250) ;

251 ’ ’ ’)

252 s e l f . db cursor . execute (’CREATE INDEX i d x p r o b a b i l i t y m o d e l i d

ON p r o b a b i l i t y (model id) ; ’)

253 s e l f . db cursor . execute (’CREATE INDEX

i d x p r o b a b i l i t y d e s t i n a t i o n s e c t o r i d ON p r o b a b i l i t y (

d e s t i n a t i o n s e c t o r i d) ; ’)

254 s e l f . db connect ion . commit ()

255

256 # Create t ab l e to s t o r e t e s t i n g r e s u l t s .

257 s e l f . db cursor . execute (’ ’ ’

258 CREATE TABLE IF NOT EXISTS r e s u l t (

259 id

SERIAL PRIMARY KEY,

260 run id

INTEGER,

261 s e c t o r i d

INTEGER,

262 a c t u a l d e s t i n a t i o n s e c t o r i d

INTEGER,

263 d i s t a n c e d e l t a p r e d i c t e d a c t u a l

INTEGER,

264 p r e d i c a t e d d e s t i n a t i o n s e c t o r i d

INTEGER,

265 i s P r e d i c t i o n C o r r e c t

BOOL,

266 dat e c r ea t ed

INTEGER,

112

267 FOREIGN KEY (run id) REFERENCES run (

id) ON DELETE CASCADE

268) ;

269 ’ ’ ’)

270 s e l f . db cursor . execute (’CREATE INDEX i d x r e s u l t r u n i d ON

r e s u l t (run id) ; ’)

271 s e l f . db connect ion . commit ()

272

273 de f d e l e t e t a b l e s (s e l f) :

274 s e l f . db connect ion = psycopg2 . connect (DB CONNECTION STRING)

275 s e l f . db cursor = s e l f . db connect ion . cu r so r ()

276

277 s e l f . db cursor . execute (’DROP TABLE IF EXISTS r e s u l t ; ’)

278 s e l f . db cursor . execute (’DROP TABLE IF EXISTS p r o b a b i l i t y ; ’)

279 s e l f . db cursor . execute (’DROP TABLE IF EXISTS model ; ’)

280 s e l f . db cursor . execute (’DROP TABLE IF EXISTS run ; ’)

281 s e l f . db cursor . execute (’DROP TABLE IF EXISTS experiment ; ’)

282

283 s e l f . db connect ion . commit ()

284

285 de f c l e a r t a b l e s (s e l f) :

286 s e l f . db cursor . execute (’DELETE FROM experiment ; ’)

287 s e l f . db connect ion . commit ()

288

289 s e l f . r u n c l e a n u p a n d r e i n d e x ()

290

291 de f r u n c l e a n u p a n d r e i n d e x (s e l f) :

292 o l d i s o l a t i o n l e v e l = s e l f . db connect ion . i s o l a t i o n l e v e l

293 s e l f . db connect ion . s e t i s o l a t i o n l e v e l (0)

294 s e l f . db cursor . execute (’VACUUM ANALYZE r e s u l t ; ’)

295 s e l f . db cursor . execute (’VACUUM ANALYZE p r o b a b i l i t y ; ’)

296 s e l f . db cursor . execute (’VACUUM ANALYZE model ; ’)

297 s e l f . db cursor . execute (’VACUUM ANALYZE run ; ’)

298 s e l f . db cursor . execute (’VACUUM ANALYZE experiment ; ’)

299 s e l f . db connect ion . s e t i s o l a t i o n l e v e l (o l d i s o l a t i o n l e v e l)

300

301 s e l f . db connect ion . commit ()

302

303 @staticmethod

304 de f r u n t e s t (t e s t i n g t r a j e c t o r y i d s , source parameter ,

de s t inat i on paramete r , run id , s h i f t e d) :

305 proce s s db connec t i on = psycopg2 . connect (DB CONNECTION STRING)

113

306 p r o c e s s d b c u r s o r = proce s s db connec t i on . cu r so r ()

307

308 f o r t r a j e c t o r y i d in t e s t i n g t r a j e c t o r y i d s :

309 # For a given g r id parameter , f i n d the s e c t o r where

t h i s t r a j e c t o r y s t a r t s .

310 p r o c e s s d b c u r s o r . execute (’ ’ ’

311 WITH sec to r s w i th pa ramete r

AS (SELECT

312 s e c t o r .

sector geometry ,

313 s e c t o r . id

314 FROM s e c t o r

315 WHERE g r i d i d =

(SELECT id

316

FROM gr id

317

WHERE gr id . parameter = (%s) AND gr id . s h i f t e d = (%s)))

318 SELECT

sec to r s w i th pa ramete r . id

319 FROM sec to r s w i th pa ramete r

320 WHERE s t i n t e r s e c t s (

321 (SELECT st endpo in t (

t r a j e c to ry geomet ry)

322 FROM t r a j e c t o r y

323 WHERE id = (%s) AND

too l ong = FALSE) , s e c to r s w i th pa ramete r . s e c to r geometry) ;

324 ’ ’ ’ , [source parameter , s h i f t e d , t r a j e c t o r y i d])

325

326 s t a r t s e c t o r i d = p r o c e s s d b c u r s o r . f e t chone () [0]

327

328 # For a given g r id parameter , f i n d the s e c t o r where

t h i s t r a j e c t o r y ends .

329 p r o c e s s d b c u r s o r . execute (’ ’ ’

330 WITH sec to r s w i th pa ramete r

AS (SELECT

331 s e c t o r .

sector geometry ,

332 s e c t o r . id

333 FROM s e c t o r

334 WHERE g r i d i d =

(SELECT id

114

335

FROM gr id

336

WHERE gr id . parameter = (%s) AND gr id . s h i f t e d = (%s)))

337 SELECT

sec to r s w i th pa ramete r . id

338 FROM sec to r s w i th pa ramete r

339 WHERE s t i n t e r s e c t s (

340 (SELECT st endpo in t (

t r a j e c to ry geomet ry)

341 FROM t r a j e c t o r y

342 WHERE id = (%s) AND

too l ong = FALSE) , s e c to r s w i th pa ramete r . s e c to r geometry) ;

343 ’ ’ ’ , [de s t inat ion paramete r , s h i f t e d , t r a j e c t o r y i d])

344

345 a c t u a l e n d s e c t o r i d = p r o c e s s d b c u r s o r . f e t chone () [0]

346

347 # See i f the model p r e d i c t s the same ending s e c t o r .

348 p r o c e s s d b c u r s o r . execute (’ ’ ’

349 SELECT

d e s t i n a t i o n s e c t o r i d

350 FROM p r o b a b i l i t y

351 WHERE model id = (

352 SELECT id

353 FROM model

354 WHERE s o u r c e s e c t o r i d =

(%s) AND run id = (%s))

355 ORDER BY

d e s t i n a t i o n p r o b a b i l i t y DESC

356 LIMIT 1 ;

357 ’ ’ ’ , [s t a r t s e c t o r i d , run id])

358

359 p r e d i c t e d e n d s e c t o r i d t u p l e = p r o c e s s d b c u r s o r .

f e t chone ()

360

361 # Some s e c t o r s may not have a model i . e . : no data f o r

that s e c t o r .

362 # I f that i s the case then we make no p r e d i c t i o n and

don ’ t i n c lude

363 # i t in r e s u l t s . I f the p r e d i c t i o n i s i n c o r r e c t we

compute the d i s t anc e

364 # between the s e c t o r s to determine how f a r o f f we are .

115

365 i f p r e d i c t e d e n d s e c t o r i d t u p l e :

366 p r e d i c t e d e n d s e c t o r i d =

p r e d i c t e d e n d s e c t o r i d t u p l e [0]

367

368 i f a c t u a l e n d s e c t o r i d == p r e d i c t e d e n d s e c t o r i d :

369 i s p r e d i c t i o n c o r r e c t = True

370 d i s t a n c e d e l t a p r e d i c t e d a c t u a l = 0 .0

371 e l s e :

372 i s p r e d i c t i o n c o r r e c t = False

373 p r o c e s s d b c u r s o r . execute (’ ’ ’

374 WITH

a c t u a l e n d s e c t o r AS (

375 SELECT

s t c e n t r o i d (sec to r geometry) AS geom

376 FROM s e c t o r

377 WHERE id = (%s)

378) ,

p r e d i c t e d e n d s e c t o r AS (

379 SELECT

s t c e n t r o i d (sec to r geometry) AS geom

380 FROM s e c t o r

381 WHERE id = (%s)

382)

383 SELECT s t d i s t a n c e (

a c t u a l e n d s e c t o r . geom , p r e d i c t e d e n d s e c t o r . geom)

384 FROM

a c t u a l e n d s e c t o r , p r e d i c t e d e n d s e c t o r ;

385 ’ ’ ’ , [a c t u a l e n d s e c t o r i d ,

p r e d i c t e d e n d s e c t o r i d])

386 d i s t a n c e d e l t a p r e d i c t e d a c t u a l =

p r o c e s s d b c u r s o r . f e t chone () [0]

387

388 p r o c e s s d b c u r s o r . execute (’ ’ ’

389 INSERT INTO r e s u l t (

run id , s e c t o r i d , a c t u a l d e s t i n a t i o n s e c t o r i d ,

d i s t a n c e d e l t a p r e d i c t e d a c t u a l , p r e d i c a t e d d e s t i n a t i o n s e c t o r i d ,

i s p r e d i c t i o n c o r r e c t , da t e c r ea t ed)

390 VALUES (%s , %s , %s , %s ,

%s , %s , %s) ;

391 ’ ’ ’ , [run id , s t a r t s e c t o r i d , a c t u a l e n d s e c t o r i d

, d i s t a n c e d e l t a p r e d i c t e d a c t u a l , p r e d i c t e d e n d s e c t o r i d ,

i s p r e d i c t i o n c o r r e c t , ca l endar . timegm (time . gmtime ())])

116

392

393 proce s s db connec t i on . commit ()

394

395 de f execute (s e l f , source parameter , de s t inat ion paramete r , s h i f t e d)

:

396 s t a r t t i m e = time . time ()

397

398 # Check to see i f experiment with same source and d e s t i n a t i o n

parameters

399 # has a l r eady been run . I f so , inform the user .

400 s e l f . db cursor . execute (’SELECT ∗ FROM experiment WHERE

source parameter = (%s) AND des t ina t i on paramete r=(%s) AND s h i f t e d

=(%s) ; ’ , [source parameter , de s t inat i on paramete r , s h i f t e d])

401 e x i s t i n g e x p e r i m e n t = s e l f . db cursor . f e t chone ()

402

403 i f e x i s t i n g e x p e r i m e n t i s not None :

404 re sponse = raw input (”Experiment with parameters a l r eady

e x i s t s . Re−run experiment ? [Yes/No] : ”)

405

406 i f r e sponse == ’No ’ :

407 pr in t ’ Goodbye ! ’

408 e x i t ()

409 e l i f r e sponse == ’ Yes ’ :

410 s e l f . db cursor . execute (’DELETE FROM experiment WHERE

source parameter = (%s) AND des t ina t i on paramete r=(%s) ; ’ , [

source parameter , de s t ina t i on paramete r])

411 s e l f . db connect ion . commit ()

412 s e l f . r u n c l e a n u p a n d r e i n d e x ()

413 e l s e :

414 pr in t ’ Unrecognized command . Goodbye ! ’

415 e x i t ()

416

417 # Get a l l the bucket i d s

418 s e l f . db cursor . execute (’SELECT DISTINCT (bucket id) FROM

t r a j e c t o r y b u c k e t ; ’)

419 b u c k e t i d s t u p l e s = s e l f . db cursor . f e t c h a l l ()

420 bucke t id s = [i [0] f o r i in b u c k e t i d s t u p l e s]

421

422 s e l f . db cursor . execute (’INSERT INTO experiment (source parameter

, de s t inat ion paramete r , s h i f t e d , da t e c r ea t ed) VALUES (%s , %s , %s ,

%s) RETURNING id ; ’ , [source parameter , de s t inat i on paramete r ,

s h i f t e d , ca l endar . timegm (time . gmtime ())])

117

423 exper iment id = s e l f . db cursor . f e t chone () [0]

424 s e l f . db connect ion . commit ()

425

426 # Execute 10 runs . Each run with a d i f f e r e n t bucket as the

t e s t i n g s e t .

427 f o r run in range (0 , 10) :

428 pr in t (’Run ’ + s t r (run))

429 s e l f . db cursor . execute (’INSERT INTO run (exper iment id ,

da t e c r ea t ed) VALUES (%s , %s) RETURNING id ; ’ , [exper iment id ,

ca l endar . timegm (time . gmtime ())])

430 run id = s e l f . db cursor . f e t chone () [0]

431 s e l f . db connect ion . commit ()

432

433 t e s t i n g b u c k e t i d = bucke t id s [run]

434 mode l ing bucke t s id s = l i s t ()

435

436 f o r bucket id in bucke t id s :

437 i f bucke t id != t e s t i n g b u c k e t i d :

438 mode l ing bucke t s id s . append (bucket id)

439

440 # Compute model f o r t h i s run .

441 pr in t (’ Computing model f o r run ’ + s t r (run) + ’ . . . ’) . l j u s t

(35) ,

442 s e l f . compute model (mode l ing bucke t s id s=

mode l ing bucket s id s , run id=run id , source parameter=

source parameter , de s t ina t i on paramete r=des t inat i on paramete r ,

s h i f t e d=s h i f t e d)

443 pr in t ’ [DONE] ’

444

445 # Compute recommendations based on model .

446 s e l f . db cursor . execute (’SELECT t r a j e c t o r y i d FROM

t r a j e c t o r y b u c k e t WHERE bucket id = (%s) ; ’ , [t e s t i n g b u c k e t i d])

447 t e s t i n g t r a j e c t o r y i d s t u p l e s = s e l f . db cursor . f e t c h a l l ()

448 t e s t i n g t r a j e c t o r y i d s = numpy . array ([i [0] f o r i in

t e s t i n g t r a j e c t o r y i d s t u p l e s])

449

450 # S p l i t the t e s t i n to as many buckets as the re are cpu ’ s .

451 t e s t i n g t r a j e c t o r y i d s b u c k e t s = numpy . a r r a y s p l i t (

t e s t i n g t r a j e c t o r y i d s , cpu count ())

452

453 pr in t (’ Computing p r e d i c t i o n s f o r run ’ + s t r (run) + ’ . . . ’)

. l j u s t (35) ,

118

454 p r o c e s s e s = []

455 f o r t e s t i n g b u c k e t in t e s t i n g t r a j e c t o r y i d s b u c k e t s :

456 p = Process (t a r g e t=s e l f . r u n t e s t , a rgs=(

t e s t i ng bucke t , source parameter , de s t inat i on paramete r , run id ,

s h i f t e d))

457 p r o c e s s e s . append (p)

458 p . s t a r t ()

459

460 f o r p in p r o c e s s e s :

461 p . j o i n ()

462

463 pr in t ’ [DONE] ’

464

465 end time = time . time ()

466 durat ion = end time − s t a r t t i m e

467

468 s e l f . db cursor . execute (’ ’ ’

469 UPDATE experiment

470 SET durat ion = (%s)

471 WHERE id = (%s) ;

472 ’ ’ ’ , [durat ion , exper iment id])

473

474 s e l f . db connect ion . commit ()

475 s e l f . db connect ion . c l o s e ()

476

477 pr in t ’ \nSUMMARY’

478 pr in t (’ Duration : ’ . l j u s t (35) + s t r (s t r (datet ime . t imede l ta (

seconds=durat ion))))

479

480 i f name == ’ ma in ’ :

481 #setup = Setup ()

482 #setup . gene ra t e bucke t s ()

483

484 #experiment = Experiment ()

485 #experiment . d e l e t e t a b l e s ()

486 #experiment . c r e a t e t a b l e s ()

487 #experiment . execute (source parameter =55000 , de s t ina t i on paramete r

=55000)

488

489 # experiment = Experiment ()

490 # experiment . execute (source parameter =4000 , de s t ina t i on paramete r

=4000 , s h i f t e d=False)

119

491

492 # experiment = Experiment ()

493 # experiment . execute (source parameter =4000 , de s t ina t i on paramete r

=4000 , s h i f t e d=True)

494 # experiment . execute (source parameter =2500 , de s t ina t i on paramete r

=2500 , s h i f t e d=True)

495

496 #source parameter s = range (9000 , 11000 , 500)

497 de s t i na t i on pa ramete r s = range (1500 , 4500 , 500)

498

499 f o r de s t ina t i on paramete r in de s t i na t i on pa ramete r s :

500 pr in t ’RUNNING: ’ + s t r (1000) + ’ : ’ + s t r (de s t ina t i on paramete r

)

501

502 experiment = Experiment ()

503 experiment . execute (source parameter =1000 , de s t ina t i on paramete r

=des t inat ion paramete r , s h i f t e d=False)

504

505 experiment = Experiment ()

506 experiment . execute (source parameter =1000 , de s t ina t i on paramete r

=des t inat ion paramete r , s h i f t e d=True)

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Motivation
	Problem Statement
	Approach
	Contributions
	Thesis Overview

	Background
	Sensors and Mobile Devices
	The Internet of Things and Self Adaptive Systems
	Cloud Intrastructure
	Challenges in the Cloud
	Smart Applications on Virtual Infrastructure
	Measuring Latency

	Software Complexity
	Human Communication
	Prediction Using Location
	GeoLife
	GeoLife Research

	Summary

	Location Based Social Networking
	A New Twist on an Old Idea
	Yakkit
	Yakkit 2.0
	Yakkit Challenges and Approaches
	Summary

	Data Mining User Trajectories
	When Location Is Not Enough
	Experiment Setup
	Data Preparation
	What Is a Trajectory?
	Modelling and Classification
	The Experiment

	Experimental Results
	Discussion
	Threats to Validity
	Summary

	Yakkit Service Deployment and Latency
	As Fast as Possible
	Experiment Setup
	Experimental Results
	Discussion
	Threats to Validity
	Summary

	Conclusions
	Summary
	Contributions
	Future Work
	Sentiment Analysis
	Modelling Locations
	Deployment

	Bibliography
	Source Code
	Bot Source Code
	Time Delta Kernel Density Source
	Trajectory Distance Kernel Density Source
	Trajectory Generation Source
	Experiment Source

