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Chapter  1  Introduction 

1.1 Background 

Rainfall plays a critical role in terrestrial and atmospheric mass and energy balances over a 

wide range of spatiotemporal scales. Therefore, accurate quantitative estimation of rainfall is 

extremely important to numerous applications in Earth, environmental, agricultural and other 

science and engineering disciplines (Seo, et al., 2010). Rainfall is also a critical input for 

engineering design applications where Precipitation Frequency Estimates (PFE) are highly 

sought. The purpose of a precipitation frequency analysis is to determine the frequency at 

which certain rates or depths of precipitation are expected to occur. The PFE information can 

also be used to define the rainfall depth that corresponds to a certain probability of 

occurrence. For example, the daily rainfall depth that has a 1% probability of occurrence is 

referred to as the 24-hour, 100-year rainfall depth. An example of a spatial map for the 24-

hour, 100-year rainfall depth for the United States is presented in Figure 1. Probabilistic 

modeling and statistical analysis techniques for extreme rainfall are used to provide PFE 

information and characterize the relationships between three important variables of rainfall: 

depth, duration, and frequency (Pecho, et al., 2009). These relationships are usually referred 

to as Intensity-Duration-Frequency (IDF) curves, or Depth-Duration-Frequency (DDF) 

curves (see Figure 2 and Figure 3 for typical examples of IDF and DDF curves). 

Statistics derived from IDF or DDF curves are typically used to develop “design storms”, 

which are then used as an input for a variety of engineering designs such as: dam design and 

operation, levee design, design of urban sewer systems, determination of required discharge 

capacity of channels, and pump sizing. The selection of a specific return period or a 
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frequency of occurrence (e.g., 100-year or 1%) depends on the design criterion and the 

importance of the structure under development.  

Figure 4 shows ranges for hydrologic design scales of different types of structures depending 

on their economic and societal importance. For major structures, it is practical to use an 

Estimated Limiting Value (ELV) to define the largest possible magnitude of a hydrologic 

event based on available information (for more details on hydrologic design criteria, see 

Chow, et al., (1988)). A proper design of these water resources systems will prevent 

flooding, reduce loss of life and property, and reduce pollution of surface waters (Overeem, 

et al., 2008). 

 

Figure 1 The 100-year 24-hour rainfall depth in the United States (Source: Hershfield, 

(1961)).    

The PFE estimates are typically obtained from analysis of long records of rain gauges. 

However, due to the sparsity of rain gauges in many regions in the US and other world 
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countries, an interpolation technique is typically applied to produce a spatial map for the 

estimated frequencies (see Figure 1). However, the low spatial density of rain gauges 

significantly affects the reliability of the PFE estimates. Furthermore, the PFEs and the 

DDF/IDF curves derived from rain gauge observations are typically considered as point 

estimates, and as such, only applicable for relatively small areas (<4km2) (Srikanthan, 1995). 

These point estimates become inadequate for design applications that involve large areas 

such as river catchments or drainage basins. 

 

Figure 2 Intensity-Duration-Frequecny (IDF) curves for a station in Lafayette, Louisiana 

(Latitude:30.2050,Longitude:-91.9875) (Source: NOAA ATLAS 14, Precipitation Frequency 

Data Server). 

 

Figure 3 Depth-Duration-Frequecny (IDF) curves for a rain gauge in Lafayette, Louisiana 

(Latitude:30.2050,Longitude:-91.9875) (Source: NOAA ATLAS 14, Precipitation Frequency 

Data Server). 
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Weather radar technologies provide a viable resource for improving the current knowledge 

and estimation practices on precipitation frequency analysis. In the late 1980’s, the US 

National Weather Service (NWS) installed the Next-Generation Weather Radar (NEXRAD) 

system at weather forecast offices across the country. The NEXRAD system consists of a 

network of Weather Surveillance Radar-1988 Doppler (WSR-88D) radars. The deployment 

of these radars in the United States has made spatially and temporally distributed rainfall data 

available in an operational environment. Reflectivity observations from each WSR-88D are 

used to generate radar-based Quantitative Precipitation Estimates (QPE) that can be used in a 

wide array of hydrologic and engineering applications (Young, et al., 2000).  

Unlike rain gauges, radar-based Quantitative Precipitation Estimates (QPE) have an 

important advantage over sparse rain gauges since they provide high temporal and spatial 

resolutions with large spatial coverage. A single weather radar station typically samples an 

area with a radius in the order 100-200 km, with a spatial resolution of approximately1-4 km 

and a temporal resolution as fine as 5 minutes. Notwithstanding the inherent uncertainties in 

weather radars as a remote-sensing and indirect technique, a typical coverage of a radar 

station can potentially provide an equivalent of a super-dense network of rain gauges. This 

potential advantage of weather radars raises the attention of the hydrologic and engineering 

communities to use their high-resolution rainfall estimates in the derivation of IDF and DDF 

curves. More importantly, rainfall design depths and design storms that are more 

representative of large areas can now be derived. Radar-rainfall estimates can also be utilized 

to construct Areal Reduction Factors (ARF), which have been traditionally used as a simple 

tool for converting point-based design depths into area-representative estimates (see Figure 5 

for an example of ARF curve). 
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Figure 5 Depth-Area curves for reducing point rainfall to obtain areal average values 

(Source: Chow, et al., (1988)). 

1.2 Objectives 

Despite the recent advances in the field of radar-rainfall monitoring and estimation, the 

utilization of radar QPE products for extreme precipitation analysis and the derivation of 

design frequency estimates are not yet capitalized on. The main limitation for the use of radar 

datasets for precipitation frequency estimation is their limited span of historically available 

data. However, with the increasing availability of radar datasets that have long archival 

records (>10 years), the use of radar-based information for PFE analysis is becoming more 

feasible. The overall objective of the current study evaluates the utility of radar-rainfall 

products for the derivation of precipitation frequency estimates (PFE).  

The current study uses a radar-rainfall product provided by the National Weather Service 

(NWS) and examines two versions of such product, a real-time version (known as Stage IV), 
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and post-real time version with better quality control (known as RFC-MPE). The study starts 

by an evaluation of these two versions and selects one of them for further PFE analysis. The 

Following is a list of research questions addressed throughout the chapters of this thesis 

study:  

1. What are the data quality issues associated with the use of a real-time multisensor 

radar-based quantitative precipitation product? 

2. What are the impacts of data artifacts in radar-rainfall product on the derivation of 

extreme precipitation amounts? 

3. How can radar-based information be used for estimating precipitation frequencies? 

What statistical distributions and parameter estimation methods that can be applied? 

What are the uncertainties associated with the estimates obtained from each method?  

4. How close are radar-based PFE results to those obtained from gauge-based analysis? 

5. Does a regional estimation approach, as opposed to an at-site approach, result in 

improved precipitation frequency estimates? 
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1.3 Research Plan 

This study follows a systematic research plan to derive the precipitation frequencies using 

radar-based QPE. The procedures carried out in this study are listed as follows: 

1. Assessment of the real-time Stage IV and longer-latency RFC-MPE products and 

choosing the appropriate product to conduct the statistical analysis required for 

frequency estimation.  

2. Extracting extreme series representing heavy events from the radar datasets. 

3. Choosing a suitable distribution for extreme rainfall analysis and estimating the 

parameters of this distribution using probability weighted moment approach. 

4. Estimation of confidence intervals (uncertainty bounds) for the precipitation 

frequencies using two different bootstrap techniques. 

5. Comparing the radar-based frequency estimates against those obtained from rainfall 

gauges. 
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1.4 Thesis Outline 

The structure of the thesis is designed to include 7 chapters. Chapter 1 introduced the overall 

motivation, background, objectives, and research questions, with a brief outline of the 

research methodology. Chapter 2 provides an overview of rainfall monitoring and estimation 

techniques using weather radar and the different types of multi-sensor quantitative 

precipitation algorithms. Chapter 3 reviews previous studies on precipitation frequency 

estimates using gauge and radar-based datasets. Chapter 4 provides the assessment results of 

the real-time and the longer-latency radar products utilized in the current study. Chapter 5 

explains the frequency analysis methodology used for deriving the precipitation frequencies. 

The characteristics of the extreme rainfall climatology and the results of the frequency 

estimates with different approaches are presented in Chapter 6. Finally, Chapter 7 

summarizes the thesis, discusses its conclusions and contributions, and suggests some 

directions for future research that can provide next steps towards the enhancement of the 

radar-based QPE applications for precipitation frequency estimation.   



 

 

Chapter  2  Overview of Weather Radar-Rainfall Monitoring and Estimation 

2.1 Weather Radar 

Weather Radars are very effective tools in detecting the precipitation and they have been 

used since the 1940’s by the forecasters to examine the storms with more precisions. An ideal 

radar meteorologist should be an electrical engineer, a mathematician, a computer scientist, a 

meteorologist, a cloud physicist, and hopefully a hydrologist in one person to make best use 

of the radar system and to know the principles in order to be aware of limitations and to 

locate errors and uncertainties. The basic idea behind weather radars is very simple; 

electromagnetic waves are transmitted into the atmosphere, and after hitting any object in the 

atmosphere such as precipitation particles, hail stones, cloud droplets, birds, insects, or even 

the ground, the back scattered-waves are received by the radar as echo powers. The returned 

energy can be then recorded and analyzed through computers to display different products. 

The basic components of the weather radar are shown in Figure 6 as described by  

Meischner, (2004). The modern weather radar consists mainly of five main subsystems: 

transmitter, receiver, antenna control, signal processor, control, and communication 

processor. First the transmitter generates microwave pulses, which are guided to the 

duplexer. The duplexer is a nonlinear microwave circuit which routes the signal to the 

antenna and the backscattered received signals to the receiver, which amplifies them and 

removes the microwave carrier frequency. The output signal then is digitized and processed 

by the signal processor, which also controls the timing of the transmitter, the transmitted 

pulse width, and the pulse repetition frequency (PRF). The output data are then sent to the 

radar product generator to convert these data into operational products.
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There are no fundamental bounds on radar frequency. Any device that detects and locates a 

target by radiating electromagnetic energy and utilizes the echo scattered from a target can be 

classed as radar, no matter what its frequency. Radars have been operated at frequencies from 

a few megahertz to the ultraviolet region of the spectrum as shown in Table 1. The basic 

principles are the same at any frequency, but the practical implementation is widely different. 

In practice, most radars operate at microwave frequencies, but there are notable exceptions 

(Skolnik, 1970). Radar engineers use letter designations to denote the general frequency band 

at which radar operates. The letter bands listed in Table 1 are universally used in radar. They 

have been officially accepted as a standard by the Institute of Electrical and Electronics 

Engineers (IEEE) and have been recognized by the U.S. Department of Defense. 
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Figure 6 Basic Components of a Doppler Radar System (Source: Meischner, (2004)).  
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Table 1 Standard radar-frequency letter-band nomenclature. 
 

Band Designation Nominal Frequency Range 

HF 3 MHz 30 MHz 

VHF 30 MHz 300 MHz 

UHF 300 MHz 1000 MHz 

L 1000 MHz 2000 MHz 

S 2000 MHz 4000 MHz 

C 4000 MHz 8000 MHz 

X 8000 MHz 12000 MHz 

Ku 12 GHz 18 GHz 

K 18 GHz 27 GHz 

Ka 27 GHz 40 GHz 

V 40 GHz 75 GHz 

W 75 GHz 110 GHz 

mm 110 GHz 300 GHz 
 

A Doppler radar is specialized radar that makes use of the Doppler Effect to control and 

measure the phases of the transmitted and received signals. The Doppler Effect or Doppler 

Shift is the apparent change in frequency or pitch of a wave when a sound source moves 

either toward or away from the listener, or when the listener moves either toward or away 

from the sound source. This principle, discovered by the German physicist Christian 

Doppler, applies to all wave motion. The measured phase shift of the received backscattered 

signal in the Doppler Radars, compared to the phase of the transmitted signal, allows the 

estimation of the mean radial or the Doppler velocity of the particles (Chen, et al., 2006; 

Ausherman, et al., 1984).  

All Doppler radars rotate horizontally as they transmit energy. Not only do radars rotate 

horizontally, but they also can tilt vertically. In fact, depending on the volume coverage 

pattern (VCP), a radar may scan horizontally 360° at anywhere from four to fourteen 

different vertical angles. The standard elevation angle is 0.5° above the horizontal, which is 

referred to as a base angle. This elevation gives the name “base X” to many radar products, 
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where X is one of many products, such as reflectivity or velocity. When radar finishes 

scanning in 360 degrees at one elevation angle, it tilts up to the next elevation angle and 

scans 360 degrees at that angle, too. It does this until it has scanned at all elevation angles.  

One of the radar products is the base reflectivity, which describes the amount of power 

returned back to the radar after reflecting off particles in the atmosphere. The meteorological 

radar equation as given by Doviak & Zrnić, (1993) is  

 Pr(r) =
π3PTG

2GRθ
2cτ|K|2Z

210ln⁡(2)λ2r2Latm
2 LMF

 (1.2) 

where PT is the transmitted peak power at the antenna, G denotes the total antenna gain, GR is 

the total  receiver gain, considering also path losses between antena and electronics, θ 

denotes the antenna 3 decibel (dB) beam width, c is the speed of light, τ is the pulse length,  

|K|2 is a constant factor that depends on type of precipitation and it is equal to 0.93 for rain 

and 0.2 for ice and snow, Z is the reflectivity, λ measures the wavelength of transmitted 

radiation, Latm is the atmospheric attenuation between antenna and target in one way, and LMF 

is the matched filter losses. This equation is valid under the assumption that the beam formed 

by the antenna has a circularly symmetric shape and the resolution volume is completely 

filled with precipitation. 

Since c = λf, where f is frequency, equation 2.1 can be rearranged to calculate the reflectivity 

Z, with terms grouped according to the different radar subsystems: 

 Z =
210ln⁡(2)c

π3|K|2
.

1

f2PTτ
.

1

G2θ2
LMF

GR
. r2. Latm

2 . PR (2.2) 
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For a stable and a well calibrated radar system, all the above constant terms can be combined 

into one constant term CR  and and the reflectivity measured can be written as: 

 Z = CR. r
2. Latm

2 . PR (3.2) 

It is worth noting that the Z equation assumes Rayleigh scattering, which occurs with targets 

whose diameter is much smaller than the wavelength of the transmitted electromagnetic 

radiation (Battan, 1973). The WSR-88D uses a wavelength of approximately 10.7 cm, and 

almost all raindrops have diameters of 7 mm or less. 

The reflectivity is measured in mm
6
/m

3
 to indicate the scattering cross section of all 

hydrometeors within one cubic meter (Meischner, 2004). Since the mm
6
/m

3 
units result in 

large dynamic range of observed reflectivities, it is more reasonable to use the logarithmic 

units (Decibels dBZ) 

 dBZ = 10log⁡[Z/(mm6/m3)] (4.2) 

The reflectivity and the rainfall rate are both related to the raindrop diameter (D), the 

reflectivity (Z) is defined as the 6
th

 moment of the diameter of the raindrop: 

 Z = ∫ N(D)D6dD

∞

0

 (5.2) 

where N(D) denotes the raindrop size distribution (DSD) in a unit volume (m
3
)and measured 

in (mm
-1

m
-3

), while (D) is the raindrop diameter in (mm). The rainfall intensity (mm/hr) is 

approximately propotional to the 3.67
th

 moment of the raindrop size and it is given by the 

following relation: 
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   R = 6π10−3∫ N(D)D3νt(D)dD

∞

0

 (6.2) 

where νt(D) is the terminal velocity of a raindrop of diameter D, which is expressed as a 

power law in the form of  

 νt(D) = 3.80D0.67 (7.2) 

It is obvious from the above equations (2.5 & 2.6) that both reflectivity (Z) and rain rate (R), 

are dependent on the raindrop diameter and hence; the drop size distribution (DSD) plays an 

important rule in estimating the rainfall uisng the radar refelctivity (Seo, et al., 2010). 

According to (Battan, 1973), there exist an empirical evidence that the Z-R relationship 

follows a power form Z=aR
b
, where a and b are empirical coefficients that depend on the 

season, location and type of precipitation. Based on these factors, different results were 

obtained by the scientists for the parameters of the Z-R relations. The different equations are 

summarized by Battan, (1973) in tables (pp.90-92) according to the geograpgical locations 

and the type of rainfall.  

The linearity between the logarithmic (Z-R) relation was also observed between the 

attenuataion (A), i.e., the weakening of a radar beam as it moves downstream due to some of 

the energy being lost to scattering and absorption of the radar waves, and rainrate (R) by  

Atlas & Ulbrich, (1977) who studied the linear relationship between microwave attenuation 

(A) and rainfall rate (R) and they derived regression eqautions in the power form A=aR
b
 for 

different radar wavelengths. Unlike the Z-R relations that are dependent on the DSD, they 

concluded that the linearity for (A-R) relation is independent on DSD. This less sensitivity to 

the DSD motivated Ryzhkov, et al., (2014) to utilize the specific attenuation for deriving 
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rainfall estimates and they obtained X- and S- band estimates of rainfall in acceptable 

agreement with the gauges. Watson, et al., (1999) investigated the capability of linking the 

rainfall rate (R) with both; reflectivity (Z) and attenuation (A), in the form of R=aZ
b
A

c
 and 

they also showed that this relation is relatively insensitive to the drop size distribution (DSD) 

and temperature over a wide range of rain rates. 

2.2 Uncertainty in Radar Estimation 

Quantitative precipitation estimates often have significant uncertainty. The error in radar 

measurements can be classified into three main sources of errors: 

1. Measurement errors of the weather radar including all the data processing. 

2. Errors inherent in the measurement method such as the scan strategy. 

3. Errors caused by different meteorological conditions such as drop size distributions, 

attenuation, ground clutter, enhanced reflectivity in the melting (bright band), 

anomalous propagation, and incomplete beam filling.  

These errors have to be well understood and quantified for the proper calibration and 

adjustment required for the use of precipitation estimates in hydrological and weather 

prediction models. The various sources of uncertainty have been widely explained in 

literature (e.g., Anagnostou, et al., (1999),  Borga, (2002),  Seo, et al., (2010), Villarini, et al., 

(2010a, 2010b), Bodine, et al., (2011)). Three sources of errors; ground clutter, vertical 

profile reflectivity, and bright band effect, are briefly explained in this section.  
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One of sources of contaminating the radar estimates is the ground clutter, which indicates 

those received signals which hit a fixed targets like mountains, buildings, or just ground. The 

main physical difference between ground clutter targets and meteorological objects is that 

they do not move and that they exist independently of any weather event (Meischner, 2004). 

To avoid the ground clutter and the beam blockage by natural or man- made obstructions, the 

lowest-elevation angle in the scanning strategy of a ground-based radar on a flat terrain is 

usually set above zero (approximately 0.5- for the Weather Surveillance Radar - 1988 

Doppler (WSR-88D) version in the United States). Attenuation is the weakening in the 

microwave radiation when propagating through a medium like the atmosphere. The 

attenuation is mainly affected by the radar frequency and the gases in the atmosphere, mainly 

caused by oxygen and water vapor. Bright band takes place in the mid and higher latitudes 

where most of the formation of the precipitation occurs through the ice phase. One example 

of influence of ground clutter contamination on radar reflectivity is presented in Figure 7 in 

the study performed by Hubbert, et al., (2009). Figure 7 shows the scan of reflectivity from 

the Denver Next Generation Weather Radar (NEXRAD) at the Denver, Colorado, Front 

Range Airport (KFTG) at 0.5˚ plan position indicator (PPI) clear-air surveillance. These 

experimental data were gathered at 2123 UTC 13 October 2006 and the large reflectivities on 

the left are caused by the Rocky Mountains. 
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Figure 7 A KFTG clear-air PPI surveillance reflectivity scan showing ground clutter. The 

data were gathered at 2123 UTC 13 Oct 2006. The large reflectivities seen on the left are 

from the Rocky Mountains (Source: Hubbert, et al., (2009). 

The precipitation formation process, mainly coalescence and coagulation of liquid and frozen 

cloud particles and the fall of existing precipitation particles down through cloud regions, 

cause a significant increase of precipitation intensity from aloft down to earth. Because, with 

increasing distance from the radar, the measurements are taken at increased altitudes, this 

may cause errors in precipitation estimates at ground that significantly exceed the 

instrumental measurement errors of a well-calibrated radar system. This increase in the 

reflectivity due to the difference in the altitude is known as the vertical profile of reflectivity 

(VPR).  

Another source of error in the radar estimates is introduced by the melting layer of 

precipitation on the radar observations or what is known as bright band effect which causes 

significant enhancement in the radar reflectivity (Fabry & Zawadzki, 1995). The primary 
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reason behind the bright band effect is the rapid increase in the dielectric constant of the 

hydrometeors at the top of the melting layer followed by an increase of the fall velocities of 

melting snowflakes toward the end of the melting process (Battan, 1973). Above the freezing 

level in stratiform clouds, the radar observes ice particles, which have much smaller effective 

backscattering cross section than raindrops of comparable size. As the ice particles fall past 

the freezing level, they begin to melt and, just below the freezing level before the ice melts 

completely, the radar observes water-coated ice particles, which produce significantly larger 

reflectivity than the resulting raindrops. The vertical extent of this layer of enhanced 

reflectivity, or the bright band, is quite small, typically less than 500 m (Seo, et al., 2010). 

Figure 8 shows a schematic diagram for the VPR with illustration of the bright band layer 

that lies between two heights; the bottom height (hb) and the top height (ha), with maximum 

reflectivity due to bright band effect at height (hm’).  

 

Figure 8 A schematic illustration of the conceptual model of the brightband layer in a 

Vertical Profile of Reflectivity (VPR) (Source: Zhang, et al., (2008)).   
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2.3 Weather Surveillance Radar, 1988 Doppler (WSR-88D) 

NEXRAD (Next-Generation Radar) is a network of about 160 high-resolution S-band 

Doppler weather radars operated by the National Weather Service (NWS), an agency of the 

National Oceanic and Atmospheric Administration (NOAA) within the United States 

Department of Commerce, the Federal Aviation Administration (FAA) within the 

Department of Transportation, and the U.S. Air Force within the Department of Defense. Its 

technical name is WSR-88D, which stands for Weather Surveillance Radar, 1988, Doppler.  

Figure 9 shows the distribution of the radars sites over the continental United States with the 

coverage range of each radar. The NEXRAD system of WSR-88D radars provides high-

quality, high-resolution precipitation data for the United States that meet a wide range of 

hydro-meteorological applications (Smith, et al., 1996). The radars measure volumetric 

reflectivity of hydrometeors aloft rather than rainfall near the ground, hence, radar rainfall 

estimation is inherently subject to various sources of error (Seo, et al., 2010). NEXRAD 

WSR-88D systems generate three basic meteorological radar quantities: reflectivity, mean 

radial velocity, and spectrum width (a measure of the variability of radial velocities in the 

resolution volume). From these base data quantities, fully automated scientific algorithms are 

applied to generate numerous meteorological analysis products (Klazura & Imy, 1993). 

Figure 10 shows the use rainfall estimates from radar in different quantitative hydrologic 

applications by the Weather Forecast Office (WFOs), the River Forecast Centers (RFCs), and 

the National Centers for Environmental Prediction (NCEP).  
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The  NWS utilizes several different Z-R algorithms, depending on the rainfall characteristics, 

to estimate rainfall through the use of the network of NEXRAD radars (Marshall & Palmer, 

1948). The default Z-R relationship of Z = 300R
1.4

 was the primary algorithm used 

throughout the continental U.S. but the radar-based estimates of precipitation that used this 

formula suffered from over or under-estimation of rainfall. The NWS Radar Operational 

Center (ROC) currently adopted different Z-R relationships depending on the type of rain 

rates instead of using standard Z-R formula as listed in Table 2.  

Table 2 List of Z-R relationships adopted by NWS/ROC for different precipitation events. 
 

Z-R Relationship Recommended Use 2
nd

 Recommended Use 

lrahsrMM-rrMlaa  
Z=200R

1.6 
General stratiform 

precipitation 
 

East-Cool Stratiform 

Z=130R
2.0

 

Winter stratiform 

precipitation- east of 

continental divide 

Orographic Rain-East 

West-Cool Stratiform 

Z=75R
2.0

 

Winter stratiform 

precipitation- west of 

continental divide 

Orographic Rain-West 

WSR-88 Convective 

Z=300R
1.4

 
Summer deep convection Other non-tropical convection 

Rosenfeld Tropical 

Z=250R
1.2

 
Tropical convective systems  

 

All the NEXRAD precipitation products are available on a 4-km resolution polar-

stereographic grid (HRAP). The Hydrologic Rainfall Analysis Project (HRAP) grid, as 

defined by Greene & Hudlow, (1982), is used to define the location of each average 

precipitation value in a NEXRAD Stage III data set. The HRAP projection is a quasi-

rectangular grid whose cell size is nominally 4 km on a side but ranges from about 3.5 km in 

southern contiguous U.S. latitudes to about 4.5 km in northern contiguous U.S. latitudes. 

This HRAP grid covers the 48 conterminous states.  
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2.4 Multi-Sensor Quantitative Precipitation Estimates (MQPE) 

2.4.1 Remote Sensing Platforms for MQPE Analysis 

Quantitative Precipitation Estimates (QPEs) are approximations for the rainfall falling over a 

certain location using a single sensor or multi-sensors. Rain gauges and disdrometers are 

examples for sensors that provide direct in situ measurements of rainfall properties at 

relatively high temporal resolutions (Habib, et al., 2010). While rain gauges measure rainfall 

accumulations and intensities, disdrometers provide data on the drop size distribution that 

describes the rainfall microphysical structure. Although rain gauges are subjected to various 

sources of errors, e.g., wind effect and evaporation losses, gauge-based estimates of 

precipitation are considered to be the closest to ground truth, at the point-scale. However, 

owing to extremely large space-time variability of rainfall, point observations based on in 

situ sensors such as rain gauges may provide only very limited information about the 

spatiotemporal distribution of rainfall, depending on the spatiotemporal scale at which the 

analysis is desired.  

The evolution of weather Radars and the observation of atmosphere by satellite 

instrumentation have changed the above picture dramatically by providing spatially 

continuous estimates of rainfall at small temporal sampling intervals, thereby filling the 

observation gap of rain gauges in space and time. Radar does not measure surface rainfall but 

the backscattered power from the hydrometeors aloft and the received power is then 

converted into rainfall estimates with inherent errors. To improve the quality of radar-based 

rainfall estimates, it is therefore necessary to understand, assess, reduce, quantify, and 

account for these errors. Radar data are well suited to real-time flood forecasting 
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applications, but they have also been used for assessing water resources and providing a basis 

for engineering design. This is particularly true in remote areas where rain-gauges are sparse, 

and satellite techniques for estimating rainfall are too inaccurate (Meischner, 2004). 

Satellites infer the rate of precipitation from the characteristics of clouds in the infrared and 

visible satellite images. Satellites offer excellent coverage over mountainous areas where 

beam blockage restricts radar observations, and over ocean regions that are out of the range 

of land-based radar installations. Satellite remote sensing techniques take an important role in 

filling data gaps and understanding of rainfall properties and their variation. On the other 

hand, satellites do not observe rainfall; they only can observe the characteristics of the clouds 

that are producing it and therefore precipitation can only be inferred in a less physically 

direct fashion than in either the rain gauge or radar approaches, and this affects significantly 

the accuracy of the satellite-based approach (Kuligowski, 1997). One example of the satellite, 

designed to monitor and study tropical rainfall,  is the U.S.-Japan Tropical Rainfall 

Measuring Mission (TRMM), launched in November 1997, to provide rainfall measurements 

over vast under-sampled oceans and data sparse continents in the tropics and sub tropics 

(40˚N-40˚S) (Liu, 2015). Figure 11 shows one example for the utility of the TRMM satellite 

to estimate the seasonal variation in the precipitation estimates using the TRMM research-

grade product (3B42) over the entire domain of the dataset (50˚N-50˚S). Figure 12 displays 

the Multi-Satellite Precipitation Analysis (MPA) rainfall totals, measurements based on 

TRMM satellite and other satellites, tracking hurricane Katrina for the period August 23 to 

31, 2005.  
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Figure 11 Mean seasonal precipitation estimates averaged during summer (June-July-August) 

from 2002 to 2012 from TRMM (3B42) research-grade product (Source: Liu, (2015)). 

 

 

Figure 12 Multi-satellite Precipitation Analysis (MPA) rainfall totals due to the passage of 

Katrina for the period August 23 to 31, 2005 (Source: 

http://www.earthobservatory.nasa.gov). 
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Many studies have been conducted in order to quantitatively understand the utility of the 

satellite data sources and algorithms in estimating the precipitation amounts. Xie & Arkin, 

(1996) developed an algorithm to construct global gridded fields of monthly precipitation by 

merging estimates from five sources of information with different characteristics, including 

gauge-based monthly analyses from the Global Precipitation Climatology Centre, three types 

of satellite estimates and predictions produced by the operational forecast model of the 

European centre for Medium-Range Weather Forecasts. Scofield & Kuligowski, (2003) 

presented an overview of the satellite QPE algorithms with focus on algorithms suited for 

heavy precipitation required for the flash flood forecasting. Ebert, et al., (2007) compared the 

accuracy of the daily rainfall estimates from satellite observations with the numerical weather 

prediction models. Habib, et al., (2009) evaluated the 3-hourly 0.25˚x0.25˚ satellite-based 

rainfall estimates produced by the Tropical Rainfall Measuring Mission (TRMM) Multi-

satellite Precipitation Analysis (TMPA) during six tropical-related heavy rainfall events over 

Louisiana, USA, using rain gauges and radar observations as ground reference datasets. The 

TMPA estimates shows reasonable level of rainfall detection especially when light rainfall 

rates are excluded and significant improvement in the overall and conditional bias and in 

correlation coefficients with slight deterioration in the probability of detecting rainfall 

occurrences. 

Recently, the potential of using radio links from cellular communication networks to estimate 

rainfall was investigated. It has been proposed as a cost effective means for regional rainfall 

monitoring complementing existing monitoring systems such as rain gauges and weather 

radars. Telecommunication engineers have studied the physical relation between radio wave 

attenuation and rainfall intensity since the 1960s and the rain that is noise in 
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telecommunication engineering can be considered as signal in geophysical sciences. Messer, 

et al., (2006) demonstrated the feasibility of environmental monitoring with wireless 

communication networks by estimating the surface rainfall using standard data collected 

from cellular network and show its improved accuracy compared with radar-based estimates. 

Leijnse, et al., (2007) compared the rainfall intensity estimated from the signal attenuation 

from two cellular communication links in Netherlands with the rainfall intensities measured 

by a nearby rain gauge and a composite of two C band weather radars. Chwala, et al., (2012) 

analyzed four months of continuous received signal level data from five commercial 

backhaul links in the alpine and pre-alpine region of Southern Germany to derive the rainfall 

rate and compare the results with rain gauge as well as weather radars. The microwave links 

have the advantage of operating much closer to the ground (tens of meters) compared to the 

radar (hundreds of meters to kilometers); however, there still a great bias in the rainfall 

estimates by the microwave links due to the uncertainty in the reference signal level as can be 

deduced from Figure 13, in which the bottom map compares fairly with the maps obtained 

using radar and gauges, while the top one deviates significantly. 
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Figure 13 Daily Rainfall maps from cellular communication networks compared with merged 

radar-gauges estimates (Source: Overeem, et al., (2014)).  

Although rain gauges are subjected to various sources of errors, the gauge-based estimates of 

precipitation are considered to be the ground truth for hydrologic forecasting by which all 

other measurements are calibrated. The optimum combination of information from multiple 

sensors is known as Multi-sensor Quantitative Precipitation Estimates or (MQPEs), for 

example, Radar precipitation estimates can be grossly inaccurate, so radar-based precipitation 

values are calibrated with the routinely available hourly surface gages. The combined 
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product provides the spatial resolution of radar with the increased accuracy of surface gage 

networks. The merging of the available rainfall rates from gauges, radar, satellites or link 

measurements may provide the opportunity to obtain improved spatio-temporal distributions 

of rainfall for all kinds of hydrological analyses. It is worth noting that MPEs are still 

vulnerable to some inaccuracies due to different sources of uncertainties in each sensor that 

are not completely captured in the bias corrections and quality control processing algorithms.  

2.4.2 Algorithms for Radar-Based Quantitative Precipitation Estimates 

For improving the estimation of precipitation, the rain gauges observations are merged with 

radar estimates using precipitation estimation algorithms. These algorithms help reduce the 

uncertainties accompanied with the radar measurements and produce Multisensor 

Quantitative Precipitation Estimates (MQPEs) that can be used for operational purposes. 

MQPEs are created by the NWS River Forecast Centers (RFCs) at near–real time during 

river and flash flood forecasting operations. The primary bases of MQPEs are precipitation 

gauge reports and observations of WSR-88 Doppler radars (Seo, 1998). The NWS 

precipitation estimation algorithms can be divided into radar-only and multisensor 

components (the latter include a gauge-only component). Stage I radar only products are real 

time estimates of liquid only precipitation at ground level derived from radar reflectivities, 

while in the legacy multisensor algorithms, stage I estimates underwent bias correction to 

produce stage II estimates which were quality assured and mosaicked on a regional basis to 

come up with stage III product. These legacy multisensor algorithms were replaced by new 

multisensor precipitation estimator (MPE) algorithms in which stage II and III algorithms 

were updated to incorporate the new algorithms for mean-field and local bias correction in 
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the products as well as provisions for creating gauge-only and gauge-radar merged products 

(Zhang, et al., 2011).  

The NWS precipitation estimation algorithms can be divided into radar-only and multisensor 

components (the latter include a gauge-only component). Stage I radar only products are real 

time estimates of liquid only precipitation at ground level derived from radar reflectivities. 

The algorithm that produces rainfall estimates, called the Precipitation Processing System 

(PPS), is actually a set of subalgorithms that execute in series (Fulton, et al., 1998). The 

Precipitation Processing System (PPS) algorithm computes rainfall estimates from 

reflectivity measurements collected on a polar grid centered on the radar with a fixed spatial 

resolution of 2.0 km in range by 1.0 degree in azimuth. The PPS algorithm transforms the 

radar-centered polar grid onto a polar stereographic projection (HRAP) projection and 

produces an Hourly Digital Precipitation Array (called HDP or DPA) product which is a 

digital one-hour rainfall accumulation product (Fulton, 1998). A complete explanation for 

the derivation of how polar rainfall estimates are mapped to the HRAP grid within the PPS is 

discussed in (Fulton, 1998). In the legacy multisensor algorithms, stage I estimates 

underwent bias correction to produce stage II estimates which were quality assured and 

mosaicked on a regional basis to come up with stage III product. These legacy multisensor 

algorithms were replaced by new multisensor precipitation estimaor (MPE) algorithms in 

which stage II and III algorithms were updated to incorporate the new algorithms for mean-

field and local bias correction in the products as well as provisions for creating gauge-only 

and gauge-radar merged products (Zhang, et al., 2011). The MPE algorithm  improves the 

quality control of the radar-rainfall estimates to produce multi sensor precipitation estimates 
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in real time for forecasters in support of the National Weather Service’s warning and forcast 

missions. 

In late 2001 the National Centers for Environmental Prediction (NCEP) began to routinely 

generate national multi-sensor analysis, the NCEP Stage IV based on the MPE algorithm and 

mosaicked from the regional multi-sensor 1h and 6h analyses produced by the 12 CONUS 

RFCs (Lin & Mitchell , 2005). Stage IV MPE based product is the same as the product 

resulted from Stage III MPE algorithm but mosaicked into a national product at NCEP. Stage 

IV benefits from the manual quality control at the local RFCs and therefore it is better than 

the MPE-based Stage II, which has no manual quality control; however, Stage IV hourly 

real-time estimates do not catch the later manual corrections performed at each RFC.  

Each NCEP stage IV precipitation analysis is initiated 35 min after the end of each hourly 

collection period and may be updated over a period of several hours with new data coming 

from the 12 U.S. regional centers. A first inflow of automatically generated precipitation data 

is available within a few hours after the accumulation time, while a second inflow of updated 

manually quality-controlled data becomes available later (with a delay of up to 12 h) (Lopez, 

2011). Table 3 and Table 4 summarize the NWS precipitation estimation algorithms and the 

NWS/MPE algorithm radar-based multisensor precipitation products, respectively. 
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2.5 Hydrologic Applications of QPEs 

The NEXRAD systems provide highly sensitive fine-resolution measurements of reflectivity, 

mean radial velocity and spectrum width data and generate up to 39 categories of analysis 

products derived from the base data every volume scan. NEXRAD (QPEs) have been used 

for a long time in different applications including weather prediction models, flash floods 

prediction and monitoring systems and it is expected that the use of radar will spread more 

widely and play an even more important role in quantitative rainfall estimation and related 

applications (Seo, et al., 2010). Numerous studies have been performed to make use of the 

NEXRAD QPE in hydrological modeling and flash flood prediction systems (e.g. Bedient, et 

al., (2000), Neary, et al., (2004), Zhang, et al., (2004), Krajewsk, et al., (2007) and Seo, et 

al., (2011)).  

Bedient, et al., (2000) used NEXRAD to estimate the areal and spatial distribution of rainfall 

for three storms over the Brays Bayou watershed in Houston for hydrologic modeling 

purposes. Neary, et al., (2004) used Stage III radar-derived precipitation data to investigate 

possible improvement of spatially lumped continuous hydrologic modeling in two subbasins 

of the Cumberland River basin in Middle Tennessee. Zhang, et al., (2004) investigated how 

to effectively use the high spatial and temporal resolution provided by NEXRAD data to 

enhance river-forecasting capabilities using six years of continuously simulated hydrographs 

from an eight-subbasin model and compared to those from a single-basin (or lumped) model, 

both applied to the Blue River basin in Oklahoma. Fang, et al., (2008) used 5-min NEXRAD 

rainfall data as input to hydrologic models to develop a flood warning system in the Brays 

Bayou Watershed of southwest Houston. Recently, NEXRAD radar rainfall products have 

been involved into Hydro-NEXRAD project, which allows ordering customized radar-
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rainfall maps (products) for hydrologic studies based on NEXRAD data (for more details see 

Krajewsk, et al., (2007) and Seo, et al., (2011) ).  

The NCEP Stage IV merged Weather Surveillance Radar-1988 Doppler (WSR-88D) radar 

and surface rain gauge dataset is often considered to be the best long-term gridded dataset of 

precipitation observations covering the contiguous United States (Smalley, et al., 2014). 

NCEP Stage IV QPE data have been involoved in many hydrological and mteorological 

applications. Lopez & Bauer, (2007) studied the potential impact of assimilating NCEP 

stage-IV analyses of hourly accumulated surface precipitation over the U.S. mainland using 

the one- plus four-dimensional variational data assimilation (1D+4DVAR) method currently 

run in operations at ECMWF with rain-affected radiances from the Special Sensor 

Microwave Imager. Kursinski & Mullen, (2008) examined the spatiotemporal variability of  

precipitation events from hourly stage IV analyses for the eastern United States during the 

cool [December–February (DJF)] and the warm [June–August (JJA)] seasons for the four 

years of 2002–2005 and they estimated anisotropic statistics that should provide useful 

guidance for diagnosing and improving the spatiotemporal variance characteristics of 

precipitation for downscaling algorithms and numerical models of hydrometeorological 

prediction systems. Zhang, et al., (2011) presented different methodologies for mitigating 

temporally inconsistent biases in National Weather Service (NWS) real-time (MQPEs) 

through rain gauge–based readjustments, and examines their effects on streamflow 

simulations. Hou, et al., (2012) introduced a methodology  to generate a new precipitation 

dataset by adjusting the Stage IV 6-hour accumulations based on available joint samples with 

the Climate Prediction Center (CPC) Unified Global Daily Gauge Analysis to take advantage 

of both datasets. They applied a simple linear regression model to the archived historical 



38 

 

Stage IV and the CPC datasets after the former is aggregated to the CPC grid and daily 

accumulation. Zagrodnik & Jiang, (2013) compared rainfall estimates from versions 6 (V6) 

and 7 (V7) of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) 

2A25 and Microwave Imager (TMI) 2A12 algorithms with the NEXRAD MQPEs stage-IV 

hourly rainfall product, they performed a detailed statistical analysis for the rainfall estimates 

and Stage IV estimates are used as reference for comparison between V6 and V7 estimates at 

low and high rainfall rates. Smalley, et al., (2014) compared hourly Stage IV observations of 

precipitation occurrence to collocated observations from the 94-GHz CloudSat Cloud 

Profiling Radar, which provides excellent sensitivity to light and frozen precipitation and 

statistics from 4 yr of comparisons show that the skill of Stage IV for precipitation detection 

is found to decline rapidly when the near-surface air temperature falls below 0°C. As a result, 

agreement between Stage IV and CloudSat tends to be best in the southeast, where radar 

coverage is good and moderate-to-heavy liquid precipitation dominates. 

Many studies have evaluated NEXRAD products and the issues associated with the estimates 

resulted from these produtcs. Johnson, et al., (1999) compares the Mean areal precipitation 

values derived from NEXRAD stage III data with mean areal precipitation (MAP) values 

derived from a precipitation gauge network. Young, et al., (2000) used the NEXRAD 

products to examine the issues involved in these products through an assessment of a 5.5-yr 

record of multisensor estimates from the Arkansas–Red Basin RFC and recommendations are 

made to help to facilitate routine verification of NEXRAD products. Jayakrishnan, et al., 

(2004) performed an accuracy assessment of Stage III precipitation data from the WSR-88 

network over the Texas-Gulf Basin for the period from 1995 to 1999 using 24-hr 

accumalations from 545 raingages. They observed significant variation in radar performance 
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over the years, however, a general improvement in the radar performance was detected which 

is consistent with the on-going developments in the WSR-88D data processing algorithms. 

They also recommended to evaluate the quality of WSR-88D precipitation data and make 

appropriate corrections to the Stage III data before their application in hydrologic studies. 

Young & Brunsell, (2008) presented an evaluation of NEXRAD Stage III and MPE 

precipitation estimates for the Missouri River Basin River Forecast Center (MBRFC) using 

daily gauge data from the National Weather Service cooperative network. NCEP Stage IV 

precipitation estimates are evaluated with Stage II estimates by Boyles, et al., (2006) over the 

Carolinas for accuracy at several time scales using NWS Cooperative observer gages, which 

are not included in the MPE estimation process to verify the NCEP gridded radar estimates 

and to investigate the accuracy of NCEP precipitation estimates over areas with diverse 

topographic regimes. They concluded, according to several comparative statistics, that Stage 

II and Stage IV products compare well with the gages observations. 

Boyles, et al., (2006) used their conclusions, that Stage II and Stage IV products compare 

well with the gages observations, to apply the gage-corrected radar estimates to develop a 

heavy precipitation mapping and alert system for storm water quality management at the 

State Climate Office of North Carolina and to to investigate mesoscale precipitation patterns 

in coastal, central and mountainous regions of North Carolina.  

As mentioned above, many authors have used Stage IV in different precipitation analysis 

applications; however, few studies have been directed towards the assessment the Stage IV 

when used with the heavy precipitation as extreme events. Although Stage IV benefits from 

the automated quality control performed at each RFC, the precipitation estimates do not 

currently incorporate the manual quality control procedures performed later , not in real-time, 
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by the RFC. This limitation in Stage IV real time product is one of the restrictions that should 

be considered when dealing with Stage IV product.  

 

  



 

 

Chapter  3  Literature Review on Precipitation Frequency Analysis 

In the hydrological applications, it is of particular interest to study the heavy precipitation 

events accompanied with radar rainfall estimates for the hydrologic analysis and design 

purposes like the design of flood protection structures and the development of roadway 

drainage systems. Moreover, the statistics of extremes as heavy precipitation have played an 

important role in engineering practice for water resources design and management (Katz, et 

al., 2002). The extreme rainfall rate setting also raises special challenges for development of 

radar-rainfall estimation algorithms, validation of rainfall algorithms and design of radar-

rainfall estimation experiments (Krajewski & Smith, 2002).  

The purpose of the frequency analysis of the precipitation is to find the frequency at which 

excessive rates of precipitation which are fundamental for the adequate and economical 

design farm terrace system, farm drainage system, highway and railway culverts, municipal 

storm sewer systems, small and large dams with the spillways provided to control the flow 

and other engineering works that must care for storm run-off (Yarnell, 1935). The 

precipitation frequency analysis requires dealing with the statistics of the extreme events. 

Buishand, (1989) and Katz, et al., (2002) explained the use of extreme value theory 

procedures and applications in the field of climatology and hydrology. 

The radar QPE estimates have an important advantage, which is the high temporal and spatial 

resolution compared with the sparse coverage of the rain gauges network. The weather radars 

provide spatially continuous estimates of rainfall while rain gauges measure rainfall in-situ at 

the surface but only at the points where the gauges are located (Seo, et al., 2010). This 

advantage raises the attention to the hydrologists to use these high resolution estimates in the
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derivation of the Intensity-Duration-Frequency (IDF) curves or the Depth-Duration-

Frequency (DDF) curves. Moreover, the radar estimates are applied in the calculation of 

areal reduction factor (ARF) to obtain spatial information about the precipitation distribution 

in the area of interest. Although the evolution of the radar estimates and their contributions in 

different applications, the utilization of the QPE in the extreme precipitation statistical 

analysis and the derivation of the frequencies estimates is not widely employed.  

3.1 Gauge-Based Studies 

Many studies have been conducted to estimate the precipitation frequencies based on the 

gauge observations and most of them relate the frequency with both the duration and 

intensity, or depth to develop the IDF, or DDF, curves. The availability of NEXRAD QPE in 

a high temporal and spatial resolution covering the United States is currently stimulating the 

researchers to study the applicability of the radar-based QPE in deriving the precipitation 

frequencies. However, all the current available studies released officially by the NWS for the 

frequency analysis of the precipitation are based on rain gauges. This subsection focuses only 

on the official studies of the NWS and outlines the historical development of the publications 

released by the NWS for the precipitation frequency analysis and the estimation methods 

applied in these studies.  

The first study for the rainfall extremes in the United States was undertaken by Yarnell, 

(1935) who provided isohyetal charts for the maximum rainfall depth in periods of 5 minutes 

to 24 hours that may be expected to occur with average frequencies of 2 to 100 years. He 

studied only the storms with high rainfall intensity and short duration, which are usually the 
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most destructive, using the records of excessive short-time precipitations at the Weather 

Bureau stations in continental United States.  

In 1953, the Weather Bureau published a technical paper 24 (TP24) (Bureau, 1953; Bureau, 

1954) including the rainfall intensities and frequencies required for design criteria in 

estimating required capacities of drainage systems for various types of military installations. 

The study was prepared in two parts; the first part is for the portion of the United States that 

lying west of the 115
th

 meridian, while the second part is for the portion lying between 105˚ 

W and 115˚ W. The two parts estimated the rainfall depths for the durations of 5 minutes to 

240 minutes and 2, 5, and 10 year return period. The frequency analysis of the rainfall rates 

in this study was simply performed using the plotting position formula to compute the return 

period of each rainfall amount by dividing the period of record by the serial number of the 

rainfall amounts arranged in decreasing order.  

The Weather Bureau published a new Technical Paper 25 (TP) (Bureau, 1955) in 1955 that 

contained IDF curves for 203 locations in the United States, Alaska, Hawaii, and Puerto Rico 

for different durations from 5 minutes to 24 hours and for 2 to 100 year return periods. The 

IDF curves developed in his study by fitting the annual maximum precipitation to extreme 

distribution type I (Gumbel). TP25 appears to be the first publication to model the extreme 

precipitation using extreme value distribution. In 1956, the U. S. Weather Bureau expanded 

the two parts of TP24 to Technical Paper 28 (TP28) that encompassed longer durations and 

wider range of return periods, prepared for the Soil Conservation Service (SCS), by 

extending the durations to 24 hours and using return periods from 1 to 100 years. While in 

TP 24, only the partial duration series were used for the frequency analysis, in TP28, both 

partial duration series and annual maximum series are considered in this paper.  
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TP 28 was followed by a series of five parts of Technical Paper 29 (TP29) (Bureau, 1957; 

Bureau, 1958; Bureau, 1958; Bureau, 1959; Bureau, 1960) covering eastern portion on the 

United States. In these series, the area-depth relations were first studied and the areal/point 

ratios were calculated to generate areal reduction curves that permit point rainfall values 

represented by IDF curves to be converted to spatially averaged values.  

The US Weather Bureau published Technical Paper (TP40) in 1961 as a convenient summary 

of empirical relationships, working guides, and maps, useful in practical problems requiring 

rainfall frequency data by applying the at-site frequency analysis for the extreme series 

extracted from the rainfall data available in the stations across the United States (Hershfield, 

1961). TP 40 presents isohyetal maps and seasonal variation diagrams for rainfall durations 

from 30 min to 24 h and for return periods from 1 to 100 years (Figure 14). Several studies 

were conducted after TP 40 that made use of more number of gauges and longer records and 

extended longer durations (e.g. TP49 (Bureau, 1964)).  

By the middle to late 1970s, the growing environmental awareness had increased the demand 

for hydrologic planning and design for small area drainages having very short times of 

concentration. It was also observed that for storm durations of less than 1 h, ratios of sub-

hourly to hourly rainfall values that had been published in TP 40 were in need of revision as 

they had a discernible geographic pattern. These issues led to the publication of the NOAA 

Technical Memorandum NWS HYDRO-35 in June 1977 (Frederick, et al., 1977a) for 

estimation of 5- to 60- minute precipitation frequency for the eastern and central United 

States (see for example Figure 15 ). HYDRO-35 utilized the Gumbel frequency distribution 

for modeling the extreme precipitation series and estimated the parameters using the method 

of moments.  
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Figure 15 The 100-year 5-minute rainfall depth for the eastern and central United States 

(Source: Frederick, et al., (1977a)). 

Since the previous studies had considered the topography in only a general sense and due to 

the orographic effects caused by the high mountain ranges in the western United States, the 

National Weather Service (NWS) published the NOAA Atlas 2 (Miller, et al., 1973) in 11 

volumes, with each volume being applicable to one of the western states. This Atlas studied 

the relation between the precipitation frequency values and the topography both objectively 

and subjectively. The relation was studied objectively through the use of the multiple 

regression screening techniques which develop equations used to assist in interpolating 

values between stations in regions of sparse data.  
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The National Weather Service is currently conducting rainfall frequency studies on a regional 

basis to update TP 40, HYDRO-35, and the NOAA Atlas 2 and is publishing the results of 

the new studies as the NOAA Atlas 14  (Durrans, 2010). For example, the NOAA Atlas 14 

Volume 9  (Perica, et al., 2013) provides precipitation frequency estimates for durations of 

5-minutes through 60-days at average recurrence intervals of 1-year through 1,000-year for 

six southeastern states: Alabama, Arkansas, Florida, Georgia, Louisiana, and Mississippi. 

The estimates and associated bounds of 90% confidence intervals are provided at 30-arc 

seconds resolution (Figure 16). The Atlas also includes information on temporal distributions 

for heavy precipitation amounts for selected durations and seasonal information for annual 

maxima data used in the frequency analysis. In addition, the potential effects of climate 

change as trends in historic annual maximum series were examined. The information in 

NOAA Atlas 14 Volume 9 supersedes precipitation frequency estimates for of Alabama, 

Arkansas, Georgia, Florida, Louisiana, and Mississippi contained in Hershfield, (1961), 

Bureau, (1964), and Frederick, et al., (1977a). Precipitation frequency estimates, in NOAA 

Atlas 14 have been computed for a range of frequencies and durations using a regional 

frequency analysis approach based on L-moment statistics calculated from annual maximum 

series.  

The Hydrometeorological Design Studies Center (HDSC) is providing a complete list of all 

studies performed by the National Weather Service (or its predecessor, the Weather Bureau) 

and the publications, e.g., technical and hydrometeorological reports, technical papers, 

technical memoranda, and atlases, released for the precipitation frequency analysis; The 

studies are organized by state and duration and some of the publications are digitized and 

available for downloading from the HDSC website. 
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Figure 16 The 10-Year 60-minute rainfall depth over the domain covered by NOAA Atlas 14 

Volume 9 (Source: NOAA ATLAS 14, Precipitation Frequency Data Server). 

3.2 Radar-Based Studies 

Frederick, et al., (1977b) used the converted digitized radar data into precipitation to derive 

depth-area reduction curves by averaging precipitation thus estimated over discrete area 

sizes. The prototype ARF curves were developed for watershed areas up to 1500 km
2
 and 

accumulation periods ≤ 1 h. Durrans, et al., (2002) evaluated the potential of NEXRAD 

radar-rainfall data for development of geographically fixed depth-area relationships and to 

identify potential obstacles that might hinder use of such data. The data analyzed for this 

study are those recorded for the Arkansas-Red Basin River Forecast Center (ABRFC) and 

span the period of time from May 1993, to September 2000. They concluded that data 

heterogeneities and shortness of data records are major factors limiting development of 

depth-area relationships on the basis of radar-rainfall data. Allen & DeGaetano, (2005) 
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explored the feasibility of radar-based extreme precipitation climatologies in the 

development of prototype radar areal reduction factor (ARF) curves and their comparison to 

those based on traditional rain gauge networks. Lombardo, et al., (2006) studied the areal 

reduction factor using radar reflectivity maps and the results obtained are compared with the 

most important relations of the ARF reported in the literature. Olivera, et al., (2008) 

calculated the average precipitation areal reduction factors (ARFs) for the 685,000 km
2
 of 

Texas using NEXRAD rainfall estimates of years 2003 and 2004 and by studying 18,531 

storms of different durations that took place in different seasons and regions of Texas.  

Overeem, et al., (2009) applied the extreme value theory to estimate the depth-duration-

frequency curves using weather radar data covering the entire land surface of the Netherlands 

for the period from 1998 to 2008. They derived the extreme rainfall statistics and their 

uncertainties by applying regional frequency analysis approach.  Overeem, et al., (2010) used 

the same 11 year high‐quality radar rainfall data set to derive Radar‐based areal reduction 

factors (ARFs) and these ARFs were shown to be comparable to those based on high‐density 

rain gauge networks and it is concluded that radar data, after careful quality control, are 

suitable to estimate extreme areal rainfall depths. Villarini, et al., (2010b) used rainfall 

estimates from two WSR-88 weather radars, located 150 km from the urban core of Charlotte 

in the analysis of the 23
 
July 1997 storm and flood occurred in this basin. This study 

provided an assessment for the accuracy of radar rainfall estimates for extreme, flood-

producing rainfall and it showed that bias-corrected radar rainfall estimates for the 23 July 

1997 storm are quite accurate and provide the capability for resolving the fundamental 

rainfall forcing associated with regional variation in extreme flood response in urban 

landscapes. Wright, et al., (2013) presented an alternate framework for rainfall frequency 
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analysis that couples stochastic storm transposition (SST) with storm catalogs developed 

from a ten-year high-resolution (15-min, 1-km
2
) radar rainfall dataset for the region 

surrounding Charlotte, North Carolina, USA. The SST procedure involves spatial and 

temporal resampling from these storm catalogs to reconstruct the regional climatology of 

extreme rainfall. SST-based intensity–duration– frequency (IDF) estimates are driven by the 

spatial and temporal rainfall variability from weather radar observations and they are 

compared to curves computed using conventional (rain gage-based) methods.  

3.3 Frequency Analysis Approaches 

Two main approaches for the frequency analysis of the rainfall have been discussed in the 

literature; one is the at-site estimation of frequencies which simply uses the data at each 

station for the statistical analysis, while the second method is a regional estimation approach 

that makes use of observations from gauges that share a homogenous region with similar 

climatological and physical characteristics.  

Svensson & Jones, (2010) reviewed the estimation methods in the rainfall frequency analysis 

in nine different countries and each country’s method is different, but most use some form of 

regionalization to transfer information from surrounding sites to the target point. Several of 

the methods are variations of a regionalization method that combines a local estimate of an 

index variable (typically the mean or median annual maximum rainfall) with a regionally-

derived growth curve to obtain a design rainfall estimate. Although radar QPE provides 

estimates at each pixel with a high spatial resolution, these regionalization techniques might 

be very advantageous to reduce the variability in the radar PFEs resulted from the short 

record of samples. Naghavi & Yu, (1995) applied a regional frequency analysis approach to 
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precipitation data in Louisiana using AMS extracted from 25 synthesized stations with long 

periods of record. The climatologically homogeneous regions in Louisiana are identified 

using the mean annual precipitation, geographical locations, and the synoptic generating 

mechanisms. The results showed that the regional procedure can substantially reduce the 

Relative root-mean-square error (RRMSE) and relative bias (RBIAS) in quantile prediction. 

Sveinsson, et al., (2002) analyzed short duration annual maximum precipitation (AMP) for 

Northeastern Colorado and developed regional frequency curves that may be useful for that 

part of Colorado. Fowler & Kilsby , (2003) used regional pooling of 1-, 2-, 5- and 10-day 

annual maxima for 1961 to 2000 from 204 sites across the UK and they produce generalized 

extreme value growth curves for long return-period rainfall events for nine defined 

climatological regions. Trefry, et al., (2005) applied a regional approach based on L-

moments on the Annual Maximum Series (AMS) and Partial Duration Series extreme 

precipitation extracted from 76 hourly recording stations and 152 daily recording stations in 

order to update rainfall IDF estimates in the state of Michigan. They considered the entire 

state as one homogenous region and applied two regional index flood models: a generalized 

Pareto distribution fit to PDS data (PDS/GPA model), and a generalized extreme value 

distribution fit to AMS data (AMS/GEV model). Lin, et al., (2006) provided an overview of 

NOAA Atlas 14, the updates of the rainfall frequency atlases and technical papers published 

by the National Oceanic and Atmospheric Administration's National Weather Service for the 

Semiarid Southwest United States and the Ohio River Basin and surrounding states. They 

discussed an L-moments based regional rainfall frequency approach with focusing on 

technical/statistical aspects during the application of this approach.  
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3.4 Addressing Statistical Uncertainty 

The statistical estimates are associated with sampling variability, i.e., the sample statistics 

like the mean and quantiles differ in samples derived from same population, since these 

samples do not include the whole population. Quantifying this variability in the estimates is 

very crucial in any statistical studies because only the estimates may lead to inexact 

conclusions. Therefore, addressing the uncertainty in the precipitation frequencies simply 

refers to draw an inference about the confidence limits with which any estimate can be 

accepted as representing the true result of the precipitation. These confidence limits give an 

indication of the range of values in which quantiles can be expected to lie because in the 

absence of an infinitely long rainfall record consistent with the current climate to represent 

the population, the true quantiles estimates are unknown. There are many methods in the 

literature to account the sampling uncertainty, for example, the bootstrap resampling 

different techniques and the Monte Carlo simulations.    

The Bootstrap methods, first introduced by Efron, (1979), enable the derivation of 

confidence limits and the use of significance tests in situations where the underlying 

statistical population is unknown or where an analytical solution is impractical. 

Bootstrapping is based on the generation of many resamples, which are selected from the 

original sample. This original sample is used as the distribution from which the resamples are 

chosen randomly with replacement, i.e. with each value being returned to the original sample 

after it has been chosen, so that it may be chosen again (Faulkner & Jones, 1999). It is a 

computer-based method, which substitutes considerable amounts of computation in place of 

theoretical analysis (Efron & Tibshirani, 1986; Efron & Tibshirani, 1994). Efron’s insight 

was that we can simulate replication. After all, we have already fitted a model to the data, 
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which is a guess at the mechanism which generated the data. Running that mechanism 

generates simulated data which, by hypothesis, have the same distribution as the real data. 

Hence, Bootstrapping is simply the estimation of the population distribution by using the 

information based on a number of resamples from the sample. The bootstrap can be used as a 

nonparametric time series model by simply resampling, with replacement, from the historical 

record. The challenge is to resample the records, in such a way as to assure that the temporal 

and spatial covariance structure of the original time series is preserved (Vogel & Shallcross, 

1996).  

In precipitation frequency analysis, there are many approaches suggested for using the 

bootstrapping methods. Athreya, et al., (1999) studied the asymptotic properties of bootstrap 

methods for the maximum of a stationary process and they concluded that the Efron’s 

bootstrap provides a valid approximation to the distribution of the maximum for a class of 

stationary processes, but it does not in general, while the moving block bootstrap provides a 

valid approximation in a wider class of stationary processes. Lall & Sharma, (1996) proposed 

a nearest neighbor bootstrap scheme for resampling hydrologic time series, in which the 

dependence structure of the time series is preserved while bootstrapping. Vogel & Shallcross, 

(1996) applied the moving blocks bootstrap resampling algorithm to estimate the storage 

capacity of a surface water reservoir and compared this approach with the use a parametric 

time series model. They concluded that using the bootstrap techniques is very advantageous 

and always produces estimates with lower root-mean-square-error than the parametric 

alternative. Sharma & Tiwari , (2009) combined neural networks analysis with the bootstrap 

techniques, named Bootstrap based artificial neural network (BANN) analysis, for the 

prediction of monthly run-off in Upper Damodar Valley Catchment in India. Ebtehaj, et al., 
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(2010) introduced an approach to improve the robustness of hydrologic parameter estimation 

by the use of moving block bootstrap resampling. Hailegeorgis, et al., (2013) used the 

balanced bootstrap resampling, suggested by Davison, et al., (1986) for more efficient 

bootstrapping, to estimate the confidence intervals for the sampling uncertainty in the 

estimation of quantiles using the regional frequency analysis techniques. The confidence 

limits are provided in NOAA Atlas 14, for the first time in the NWS precipitation frequency 

atlases, to quantify the uncertainty in the estimates (Lin, et al., 2006). Monte Carlo 

Simulation was used to generate samples from the parameters estimated at each site using the 

statistical distribution fitted to the site sample. The confidence limits of the estimates can be 

then estimated either by assuming normal distribution of the estimates or by sorting the 

estimates and use any appropriate plotting positions formula.    

 

 



 

 

Chapter  4  Assessment of Heavy Precipitation Real-time Stage IV  Product over 

CONUS Domain 

Radar-based quantitative precipitation estimates (QPE) have been widely used in many 

hydrological and meteorological applications; however, these estimates are inherently 

imperfect which could introduce significant uncertainties to their applications. As mentioned 

earlier, many authors have used Stage IV in different precipitation analysis applications; 

however, few studies have been directed towards the assessment the Stage IV when used 

with the heavy precipitation as extreme events. Although Stage IV benefits from the 

automated quality control performed at each RFC, the precipitation estimates do not 

currently incorporate the manual quality control procedures performed later , not in real-time, 

by the RFC. This limitation in Stage IV real time product is one of the restrictions that should 

be considered when dealing with Stage IV product. This chapter explores quality issues in 

the real-time Stage IV QPE product and examines their impacts on the analysis of hourly 

heavy precipitation amounts over the period from January 2002 to June 2013. To discern the 

causes of the quality issues, the real-time, i.e., Stage IV, and longer-latency radar 

multisensory QPEs, i.e. MPE products, are compared for the largest precipitation amounts 

derived from the Stage IV data. Stage IV QPE data were provided by National Center for 

Atmospheric Research/Earth Observing Laboratory (NCAR/EOL) under sponsorship of the 

National Science Foundation (http://data.eol.ucar.edu)  

4.1 Artifacts in Stage IV Product 

The national NCEP Stage IV (QPE) is mosaicked from individual RFC's multi-sensor 

precipitation analyses and it covers the domain over the Continental United States (CONUS).

http://data.eol.ucar.edu/
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The Stage IV QPE is available from 2002 to real-time data and in this study, the 1-hourly 

precipitation estimates are used from January 2002 to June 2013 (note that: we do not 

consider some hourly data that have problems, either missing or corrupted. For more details, 

see log of problem hours on http://www.emc.ncep.noaa.gov). The extreme precipitation is 

represented by fields of the maximum precipitation estimate for each pixel sorted in 

descending order, for instance, the first field is the highest precipitation estimate for each 

pixel for the period of study. The extraction of the maximum precipitation in this manner has 

been widely used in the frequency analysis of precipitation and it is known as Partial 

Duration Series or PDS as discussed in the next chapter. 

The hourly extreme precipitation amounts extracted from real-time Stage IV data show a 

number of artifacts in precipitation estimates (upper panel in Figure 17). The artifacts are 

mostly dominant in the form of circular patterns, or rings, formed around some pixels. Most 

of these rings show suspicious, very high rainfall rates that are surrounded with lower values. 

While these artifacts are spread throughout the entire CONUS domain, they are more 

dominant in the western southeastern, northeastern and northern regions. These artifacts in 

the southeastern regions seem to be associated with the largest values in the PDS series and 

diminish gradually beyond the first few largest fields. They are mostly absent in the fifth 

largest PDS field (Figure 17, lower panel). Unlike the case in southeastern US, artifacts in the 

western regions are more persistent through most of the PDS series (Figure 17). In the central 

and northeastern regions, occurrences of such ring-like feature are also evident; however, a 

close examination of the fifth largest PDS field shows a northeast-southwest strip of 

suppressed extreme rainfall values that is somewhat aligned with the Central Appalachians.  
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The suppressed extremes feature in the PDS spatial fields is not necessarily a data processing 

artifact, but is probably due to radar estimation problems in regions of complex terrains. To 

further inspect any possible regionally specific patterns in the PDS artifacts and suspicious 

features, and to examine whether they are associated with specific dates or hours of the day, 

the year and hour of occurrence of each of these cases were extracted for the first PDS field 

and plotted for the southeastern (Figure 18), western (Figure 19), and northeastern (Figure 

20) regions.  

 

Figure 18 Upper Panel: Artifacts detected in the first field of PDS in the Southeastern coast. 

Middle Panel: The year of occurrence of each extreme estimate in the first field of PDS. 

Lower Panel: The hour of occurrence of each extreme estimate in the first field of PDS. 
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It is obvious form Figure 18 that most of the ring-like artifacts in the southeastern US 

occurred in 2006 and in the time between 00:00 UTC and 00:06 UTC. Further examination 

of these occurrences did not show that they were associated with any certain days in the year. 

Another feature in Figure 18 is a polygon with a constant value of very large hourly 

precipitation value (> 300 mm/h) observed in 2002 in the Tennessee, Mississippi and 

Alabama border area. This polygon is often drawn by a forecaster to remove anomalous 

propagation from the radar by setting all the grids in the polygon to zero. However, it appears 

here that the grids in this polygon were accidentally set to a very large value instead of zero 

and thus caused the artifact to appear.  

In the western US, the ring-like features are more noticeable (Figure 19) and dominate the 

entire region in central and northern California. These are not associated with specific years 

or times of the day as they occurred in different years and at different hours of the day. 

Radar-rainfall estimation problems in the western US are well-known to the operational 

community due to significant terrain blockage, shallow precipitation, and low freezing levels. 

For these reasons, only one-fourth to one-third of the land surface in the region has sufficient 

radar coverage for precipitation estimation. Although improvements to the WSR-88D PPS 

algorithm have undoubtedly improved radar-derived quantitative estimates near the radar 

site, the extensive blocking and bright band effects in the western coast will continue to 

considerably limit the extent and usefulness of radar-based precipitation measurements in the 

region. As such, rain gauges will continue to be the principal instrument for determining the 

extent and quantity of precipitation throughout a significant portion of the western US, 

particularly over mountainous regions (Westrick, et al., 1999). The heavy use of rain gauges 
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in this region is the main reason for such artifacts that can dominate the identification of 

heavy rainfall.  

 

 

Figure 19 Upper Panel: Artifacts detected in the first field of PDS in the Western Coast. 

Middle Panel: The year of occurrence of each extreme estimate in the first field of PDS. 

Lower Panel: The hour of occurrence of each extreme estimate in the first field of PDS.  
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The northeastern states (e.g. Maine, New Hampshire, and Vermont) show some peculiar non-

ring, polygon-like features in their PDS fields (Figure 20) that do not necessarily have pre-set 

fixed values. These features are associated with the year 2008 and in the hours between 00:00 

UTC and 06:00 UTC (Figure 20). Other apparent artifacts in the region are more scattered 

spatially and temporally. The most northeastern part of the region shows some linear features 

in the PDS fields that are associated with hours 12-18 UTC and the earlier years of the Stage 

IV record (2002-2003). Other pockets of lower PDS are noticed in some parts of the states of 

Maine and New York. 
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Figure 20 Upper Panel: Artifacts detected in the first field of PDS in the Northeastern coast. 

Middle Panel: The year of occurrence of each extreme estimate in the first field of PDS. 

Lower Panel: The hour of occurrence of each extreme estimate in the first field of the PDS. 
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4.2 Inter-comparison of Stage IV and MPE Products 

In this section we will inspect the MPE products developed by the NWS RFC’s for the same 

artifacts that we observed in the Stage IV product. The reader is reminded that while the 

Stage IV product is basically a national mosaic of the final regional product (XMRG) 

produced at each RFC, it doesn’t take advantage of the forecaster’s manual interventions and 

quality control measures that are performed post real-time. For space limitations, we will 

perform and present such analysis for one of the RFC’s only, namely the Lower Mississippi 

River Forecast Center (LMRFC). The hourly PDS series was developed for LMRFC XMRG 

product in a similar manner to the Stage IV analysis but for the period from January 2002 to 

December 2012 (the data for 2013 were not available while performing this study). The first 

(largest) PDS field for the LMRFC XMRG product is shown in Figure 21 and, as expected, 

the problematic artifacts that were evident in the Stage IV are now absent.  

 

Figure 21 First field of maximum precipitation over the LMRFC Domain extracted for each 

pixel during the period of study January 2002- December 2012. 
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To track the possible sources of the Stage IV artifacts, we analyzed each of the six 

intermediate RFC products (summarized earlier in Table 4) from which the XMRG was 

eventually selected. For each of these products, the PDS fields were extracted in a similar 

manner to the Stage IV analysis. To get a closer look at some of the problematic ring-like 

features, we used three representative examples, which we refer to as R1, R2 and R3 (Figure 

22).  

 

Figure 22 The location of three  rings detected in Stage IV and used in the comparative study 

with the LMRFC products. 

For each of these three cases, we identified the specific date and hour on which the case was 

reported and plotted the actual hourly precipitation field (i.e., not the PDS field) for the RFC 

suite of products (Figure 23, Figure 24, and Figure 25). We also show the corresponding 

fields from the Stage IV 1-hourly and 6-hourly products. As expected, it is clear that the 

XMRG field does not show any of the Stage IV artifacts. However, it is noted that the 

GAGEONLY field shows ring features similar to those in the Stage IV hourly field, at least 
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for the two cases of R1 and R2, indicating that the sources of such artifacts are 

malfunctioning gauges. These bad gauges were apparently identified during later quality 

control procedures at the river forecast center and therefore the final product (XMRG) does 

not show the same artifacts. In the case of ring (R3), the GAGEONLY field does not show 

the Stage IV problematic artifacts, and neither does the final product, XMRG. We still 

believe that the source of the R3 case in Stage IV is due to a malfunctioning gauge. The 

reason behind this is that the RFC forecasters sometimes, when quality controlling the data, 

use a polygon and set all grids in the XMRG field to zero to remove bad data and therefore 

the underlying gage-only field would not benefit and would still show the bad gauge as in the 

case of (R1) and (R2). In other instances, forecasters might set a bad gauge to missing and re-

run the fields to remove their effects, thus benefiting all of the other fields, such as the case in 

R3. The NCEP also produces a 6-hourly product, which apparently does not show the same 

artifacts in the 1-hourly product indicating that this product captures the quality control done 

later by the forecasters in the RFC. It is noted here that the 6-hourly NCEP analyses are not 

simple summations of the hourly fields. The RFCs send NCEP both hourly and 6-hourly 

analyses for their respective local domains, and typically, the RFC 6-hourlies have better 

quality control (QC). Some of the hourlies received by the NCEP are only the automated runs 

(no manual QC), while the 6-hourlies almost always receive the manual QC adjustments. 

Actually, one of the RFC’s (Northwest River forecast center, NWRFC) does not produce an 

hourly analysis, and produces only a 6-h product. In addition, NCEP may not always receive 

an hourly analysis for an RFC (in that case the analysis from a neighboring RFC will 

contribute to the Stage IV values in the missing RFC domain), which is another factor 

contributing to the differences in quality of 1-h and 6-h products (NCEP/EMC/NOAA, 2013). 
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The Stage IV 24-hour product was also analyzed (not shown) and similar conclusions were 

made since this product is summed from the four 6-hourly Stage IV analyses.  

 

Figure 23 Comparing precipitation estimates from StageIV (R1) with LMRFC different 

products in 8
th

 of October 2006 at 06 UTC.  
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Figure 24 Comparing precipitation estimates from StageIV (R2) with LMRFC different 

products in 19
th

 of April 2006 at 05 UTC.  
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Figure 25 Comparing precipitation estimates from StageIV (R3) with LMRFC different 

products in 23
rd

  of July 2006 at 06 UTC.  
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4.3 Application of an Outlier Detection Test 

Grubbs-Beck (GB) outlier detection test is used to evaluate whether the artifacts in Stage IV 

product could be removed statistically by considering them as outliers or not and thus, the 

Stage IV product can be used for the purpose of frequency analysis of extreme precipitation. 

Outliers are data points which depart significantly from the trend of the remaining data and 

the purpose of a statistical study of outliers is to assess whether our subjective declaration of 

outliers in a sample has important objective implications for an analysis of the sample 

(Barnett, 1978). The identification of the outliers requires judgment involves both 

mathematical and hydrological consideration (USGS, 1982).  

There are different methods suggested for the outlier detection in the statistical literature, 

(e.g. Z-scores, Box Plot, Generalized Extreme Studentized Deviate (ESD) test, Sample 

Kurtosis, The Shapiro-Wilk W Test, Dixon Tests, Moving Window Filtering Algorithm and 

Grubbs-Beck Test). Iglewicz & Hoaglin, (1993), Barnett & Lewis, (1994) and  Garcia, 

(2012) provide an extensive discussion of the outlier tests mentioned above (as well as other 

tests not mentioned). 

The GB test (explained by Grubbs, (1950),  Grubbs, (1969) and  Grubbs & Beck, (1972)) is 

used to detect a single outlier in a univariate data set that follows an approximately normal 

distribution. GB test follows the same procedures suggested by Pearson & Sekar, (1936) for 

testing the significance of the largest observation, hence, it is sometimes referred to as the 

maximum normed residual test or extreme studentized deviate (ESD) test when used to test 

for up to a specified number of outliers. Procedures described by Grubbs & Beck, (1972) 

given for determining statistically whether the highest observation, the lowest observation, 
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the highest and lowest observations, the two highest observations, the two lowest 

observations, or more of the observations in the sample are statistical outliers. 

GB test is defined for the hypothesis: 

H0 (Null Hypothesis): There are no outliers in the data set. 

H1 (Alternative Hypothesis): There is exactly one outlier in the data set. 

The GB test procedures can be summarized as follows: first, the observations are arranged in 

an ascending order   x1 ≤ x2 ≤ x3 ≤ x4 ≤ ………..≤ xn. Second, Grubbs' test statistic is 

estimated depending on the observation required to be tested and the ratio of the deviation of 

this observation to the sample standard deviation. The test statistic (T) is defined, for testing 

whether the largest observation (xn) is too large, as: 

 Tn =
(xn − x̅)

S
 (1.4) 

where x̅  and S are the sample mean and standard deviation respectively.  

The sample standard deviation is estimated using: 

 S = [∑
(xi − x̅)2

(n − 1)
]

1
2

 (2.4) 

Third the value of the test statistic (T) is compared with critical values given in tables by 

Grubbs & Beck, (1972) to decide whether observation (xn) is significantly large and can be 

treated as an outlier or not. In case of testing the significance of the two largest observations 
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(xn & xn-1), a S(n−1,n)
2 /So

2 criterion is computed and compared with the critical values given in 

tables by Grubbs & Beck, (1972), where: 

 So
2 = ∑(xi − x̅)2

n

i=1

 (3.4) 

and 

 S(n−1,n)
2 = ∑(xi − x̅(n−1,n))

2

n−2

i=1

 (4.4) 

and 

 x̅(n−1,n) = ∑
xi

n − 2

n−2

i=1

 (5.4) 

Similar procedures can be followed to test for the lowest value as well as the lowest two 

observations by simply substituting (xn) by (xo) and (Sn-1,n) by (S1,2). Grubbs & Beck, (1972) 

provided tables of percentage points for significance tests concerning the highest or the 

lowest observation in normal samples, or the two highest or the two lowest observations in 

normal samples. The critical values given these tables are based on the results obtained by 

Thompson, (1935) which indicate that the expression 
T√n−2

√n−1−T2
 follows a Student’s t-

distribution with degrees of freedom (f) = n – 2. Considering this result and other 

comprehensive studies done by  Pearson & Sekar, (1936) on this expression, Grubbs was 

able to estimate the critical values of (T) using the following formula for two sided test at a 

given significance level α : 
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 Tcritical =
n − 1

√n
√

tα/2n,n−2
2

n − 2 +⁡tα/2n,n−2
2  (6.4) 

with tα/(2n),n−2 denoting the upper critical value of the t-distribution with n − 2 degrees of 

freedom and a significance level of α/(2n). For the one-sided tests, α/(2n) is replaced with 

α/n.  

Although the normality assumption for the GB test, it has been widely used in the field of 

precipitation frequency estimates and flood frequency analysis. The GB test is recommended 

by the federal guidelines for detection of low outliers in flood flow frequency computation in 

the United States. Cohn, et al., (2013) presented a generalized Grubbs-Beck test statistics for 

normal data that can provide a consistent standard for identifying multiple potentially 

influential low flows. In addition, The GB test is used in NOAA Atlas 14 for AMS screening 

and removing of annual maxima which depart significantly from the trend of the 

corresponding remaining maxima (Perica, et al., 2013). Lee & Maeng, (2003) used the GB 

test for the identifying of the outlier data on annual maximum daily rainfall in 38 Korean 

rainfall stations.  

In this study, the GB test is applied to the Stage IV extreme series fields (PDS) in each pixel 

with various sample sizes by using different r-largest events for constructing PDS. For 

instance, the GB test was applied for PDS resulted from r=11, 20, 50 largest events. The 

rationale of using different sample sizes is avoiding removing some precipitation estimates 

that are not artifacts but can be considered as statistical outliers with respect to other events 

in case of small sample sizes. The GB test successfully removes most of the circular ring-like 

patterns (Figure 26) when increasing PDS sample at each pixel, for instance, the GB results 
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from PDS of sample size of 50 extreme events are shown in (Figure 26). Moreover, the test 

effectively removes the polygon with constant value drawn by the forecaster in 2002 in the 

Tennessee, Mississippi and Alabama border area. In general, the GB test can statistically 

remove the overestimated precipitation estimates which form the ring patterns and consider 

them as outlier observation compared with the rest of the sample; however a predefined 

threshold should be established to set the value of (r) required to construct PDS sample. This 

threshold is important to avoid removing some actual extreme events that might be flagged 

by the test as outliers For example the window in South Louisiana in Figure 26 shows the GB 

test removed artifacts detected in PDS; though some of the actual extremes in the 

surrounding pixels were also indicated as outliers and removed. 

 

Figure 26 Upper Panel: The first field in PDS in the Southeastern Coast. Lower Panel: The 

first field in PDS after removing the artifacts using the Grubbs-Beck statistical test.  



 

 

Chapter  5  Methodology for Precipitation Frequency Analysis 

In this chapter, the methodology for deriving Precipitation Frequency Estimates (PFE) for 

different return periods based on the hourly radar QPE dataset is presented. The precipitation 

quantiles are estimated using two different frequency analysis approaches; pixel-based and 

region-based approaches. Section (‎5.1) briefly describes the dataset and the study area 

selected to apply the frequency analysis procedures. Section (‎5.2) defines the statistical series 

that are used to best describe the extreme events. The statistical distribution used to model 

the extreme events and the estimation of the distribution parameters are explained in section 

(‎5.3) and section (‎5.4) respectively. Finally, Section (‎5.5) presents the two approaches used 

for estimating the precipitation frequencies.   

5.1 Datasets and Study Area 

Based on the assessment of the NWS real-time Stage IV product explained in the previous 

chapter, the Stage IV product can’t be used directly for the frequency analysis until manual 

quality control performed. Therefore, for the purpose of frequency estimates, the longer-

latency MPE/XMRG product which received the manual quality control at the LMRFC is 

employed. The MPE/XMRG, radar data used in this study, is not a new product in itself, but 

represents what the RFC forecaster decided to choose in real time among the different MPE 

products after introducing various additional corrections (Habib, et al., 2013). Only the 1-

hourly MPE/XMRG is utilized for the period from January 2002 to December 2012. 
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Figure 27 The 180x140 HRAP domain covering Lousiana. 

 
 

 

Figure 28 Numbering of Pixels in the study area. 
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Figure 29 Radars covering the study area in Louisiana.  

 

 

Figure 30 Area Scanned by radars in Lousiana (LA) (Source: NOAA/NWS Radar Operations 

Center (ROC) http://www.roc.noaa.gov).  

  

http://www.roc.noaa.gov/
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Although  the complete dataset for the whole LMRFC domain is available (419 x 419 pixels), 

we are focusing only on the pixels covering Louisiana (180x140) to reduce the computational 

effort required for the frequency analysis (Figure 27). The pixels are numbered using 

transformed HRAP, i.e., local grids, by considering the lower left corner pixel as first pixel 

with transformed HRAP (1, 1) and the pixel at the upper right corner as the last pixel with 

transformed HRAP (180,140) (Figure 28). There are four radars deployed in Louisiana 

(Figure 29), three of these radars are operated by the National Weather Service, Department 

of Commerce (NWS/DoC), while the radar in Fort Polk is operated by Air Force Weather 

Agency, Department of Defense (AFWA/DoD) (see Table 5 for more identification 

information about the four radars). The area scanned by the radars in Louisiana at different 

elevations above site level is shown in (Figure 30).  

5.2 Extreme Precipitation Series 

Extreme precipitation events are rare events that are infrequent to occur and they are either 

heavy precipitation that causes floods or prolonged shortage in precipitation that may lead to 

drought. Studying these extremes and their statistics is very important in hydrological studies 

to describe the magnitude and probability of occurrence of such events. The rarity of 

precipitation events or climatological events in general, can be described in different ways 

and there is no one unique criterion to define an extreme event. For instance, in hydrological 

frequency analysis, series, which is a convenient sequence of data, hourly, seasonal, or 

annual observations of hydrological variables, is used to construct the statistical sample 

representing the heavy precipitation.  
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The extreme precipitation series are used in this study as a way to represent heavy 

precipitation. The two most common approaches to extract extreme for modeling series in 

hydrological applications are using the annual maximum or minimum series (AMS) and the 

partial duration series (PDS). The latter is also known as peaks over threshold (POT) 

approach. The AMS is a special case of the block maxima or minima model, which selects 

the largest or smallest events within each time block, e.g., each year. The PDS approach 

studies exceedances over an upper limit or predefined threshold as compared to maxima over 

fixed time periods in the AMS (Chow, et al., 1988). A third and less common alternative, 

which partly combines the classical AMS and the PDS approach, is to select the r-largest 

events in each time interval of equal size (block) and it is possible to consider the whole time 

series as one block and extract r events from the total series. If r equals the number of 

observation years, it is referred to as annual exceedance series (AES) (Tallaksen & van 

Lanen, 2004). The AES is a special case of the PDS where the threshold is selected such that 

the number of values in the series (r) is equal to the number of years of the record. Figure 31 

explains the difference between extracting annual exceedances and annual maxima for a 20-

year record of hydrologic data. In this figure, only 16 of the 20 annual maxima appear in the 

annual exceedance series; the second largest value in several years outranks some annual 

maxima in magnitude. However, in the annual maximum series, these second largest values 

are excluded, resulting in the neglect of their effect in the analysis. 
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Figure 31 Hydrologic data series arranged by time of occurrence (Source: Chow, et al., 

(1988)). 

Various studies have been conducted to compare the use of AMS and PDS in modeling 

extreme hydrologic and the statistical distribution associated with each approach (e.g. 

Martins & Stedinger, (2001), Madsen, et al., (1997), Wilks, (1993)). The AMS and PDS 

models have been widely used in modeling of extreme flow series and flood frequency 

analysis (e.g. Bhunya, et al., (2012), Cunnane, (1973),  Franchini, et al.,(2005)). In general, 

as the return period of the event being considered becomes large, the results from the two 
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approaches become very similar because the chance that two such events will occur within 

any year is very small (Chow, et al., 1988).    

In this study, the annual maximum series (AMS) is extracted for each pixel to construct a 

sample of 11 observations representing the maximum precipitation estimate in each year 

from 2002 to 2012. The use of AMS is chosen as it is very common in probabilistic analysis 

because of the availability of the data and the theoratical basis for extrapolating beyond the 

range of the observations (El Adlouni & Ouarda, 2010). On the other hand, the PDS model 

lacks the independence of consecutive events required for applying the classical extreme 

value theory and a criteria must be set to identify only independent peaks without considering 

multiple peaks that may belong to the same event. In general, the PDS model is considered 

more complicated to be applied in frequency analysis as opposed to the AMS model  

(Stedinger, et al., 1993).  

The hourly radar-rainfall observations used in this study are the clock-hour data, i.e., the 

observation once every hour at fixed time (this is also known as constrained observations). It 

is expected that the extracted (constrained) annual maxima will be lower than the 

unconstrained maxima. A factor to adjust statistical clock-hour data to 60-min values was 

determined empirically by NWS several years ago (Bureau, 1953; Bureau, 1954). It was 

found that, on the average, the N-yr 60-min value derived from the series of annual 

maximum 60-min events is 1.13 as great as the N-yr clock-hour value estimated from the 

series of annual maximum clock-hour values. This does not mean that a clock-hour annual 

maximum multiplied by 1.13 will give the maximum annual 60-min event in a particular 

case. This adjustment applies only to the results of a statistical analysis of a series of events. 

This factor was reduced in the NOAA Atlas 14 Volume 9 for the Southeastern States to 1.09 
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(Perica, et al., 2013). Since this factor is very small and it may not affect the conclusions 

drawn from the statistical analysis of the precipitation data, we focus throughout this study 

on the results of the constrained AMS.  

Although the results in this study are based only on AMS, conversion factors can be used to 

find the PDS estimates corresponding to the same return period. For instance, NOAA Atlas 

14 frequency analysis is based on the AMS, and the PDS results are obtained using 

conversion factors that convert AMS estimates to PDS estimates. Chow, et al., (1988) 

derived a mathematical formula to relate the return period in terms of both AMS and PDS: 

 T𝑃𝐷𝑆 = [ln⁡(
T𝐴𝑀𝑆

T𝐴𝑀𝑆 − 1
)] (1.5) 

5.3 Probability Distribution of Precipitation Annual Maximum Series (AMS) 

The classical probabilistic extreme value theory deals with the stochastic behavior of the 

maximum and the minimum of independent and identically distributed (i.i.d) random 

variables. The distributional properties of extremes (maximum and minimum), extreme and 

intermediate order statistics, and exceedances over (below) high (low) thresholds are 

determined by the upper and lower tails of the underlying distribution (Kotz & Nadarajah, 

2000). In climate applications and estimation of precipitation frequencies, many distributions 

have been suggested for modeling the extreme events, including the Generalized Extreme 

Value distribution (GEV), Generalized Pareto distribution (GP), gamma distribution, 

lognormal distribution and others. The GEV distribution was recommended for flood 

frequency analysis in the U.K. Flood Studies Report (Madsen, et al., 1997). Moreover, 

according to the gauge-based Precipitation-Frequency Atlas of the United States, NOAA 



83 

 

Atlas 14, Volume 9 (Perica, et al., 2013), the GEV distribution provided an acceptable fit to 

data more frequently than any other distribution and was chosen to model the annual 

maximum series of all the stations covering the US southeastern states (Alabama, Arkansas, 

Florida, Georgia, Louisiana and Mississippi). These conclusions were obtained using a 

goodness-of-fit test based on L-moment statistics for 3-parameter distributions along with the 

results of χ2 and Kolmogorov-Smirnov tests and visual inspection of probability plots. The 

reader is referred to Hosking & Wallis, (1997); Chowdhury, et al., (1991) for more details on 

goodness of fit tests for different distributions (Generalized Logistic; Generalized Normal; 

Generalized Pareto; Pearson Type III; Kappa; Wakeby and Generalized Extreme Value 

distributions). Naghavi & Yu, (1995) studied extreme precipitation in Louisiana for regional 

frequency analysis purposes, and they conducted procedures suggested by  Hosking, (1990) 

to identify the statistical distribution that best fits the data. They examined six different 

distributions: (1) normal; (2) Generalized Pareto; (3) Extreme Value type (I) (Gumbel); (4) 

Logistic; (5) Generalized Logistic; (6) Generalized Extreme Value (GEV), using L-moment 

ratio curves, i.e., L-Skewness and L-Kurtosis. They concluded that GEV distribution 

outperforms other distributions. For the current study, and based on prior results and 

recommendations, we will proceed with using the generalized extreme value distribution 

(GEV) to represent the annual maximum series (AMS).  

The GEV distribution is a three parameter distribution developed within the extreme value 

theory to combine three different models. These models are Gumbel, Frechet and Weibull 

distributions, which are often referred to as Types (I), (II) and (III) distributions respectively. 

The probability density function of the GEV distribution, in terms of the three parameters: 

Location parameter (α), Scale Parameter (β), and Shape Parameter (κ ≠ 0), is given by: 
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 fX(x) =
1

β
[1 −

κ

β
(x − α)](1/κ−1)FX(x) (2.5) 

where FX(x) is the cumulative distribution function (CDF) and given by: 

 FX(x) = exp⁡{−[1 −
κ

β
(x − α)]1/κ}    κ ≠ 0 (3.5) 

The parameters space for the GEV distribution is -∞ < α (Location) < ∞, β (Scale) > 0 and -∞ 

< κ (Shape) < ∞. It is worth noting that for κ < 0, then α+β/κ ≤ x < ∞ and the GEV 

distribution corresponds to the Type (II) Frechet distribution whose tails decrease at such a 

slow (i.e. power law) rate (heavy-tailed), such as Student's t and its moments are infinite for 

all orders greater than 1/ κ (e.g., the variance is infinite if κ > 0.5; the mean is infinite if κ > 

1). While for κ >0, x is bounded by ∞ ≤ x < α+β/κ and the distribution in this case 

corresponds to the Type (III) Weibull distribution whose tails have a finite upper bound at x 

= α+β/κ (bounded tail), such as the beta. For κ = 0, the GEV distribution is reduced to the 

Gumbel distribution in which tails decrease at a relatively rapid (i.e., exponential) rate (light-

tailed), such as the normal (Katz, et al., 2005). The Type (I) extreme value distribution is also 

known as “double exponential” distribution due to the structure of the distribution function 

where there are two exponential functions (presence of right and left tails) (Pal, et al., 2006).  

Figure 32 shows how the probability density function changes with the variation in the 

distribution parameters. The upper left panel displays the three different types of extreme 

value distribution and how the tails look like for each type. The three distributions are 

constructed for the same location and scale parameters (β=1 & α=0), while the shape 

parameter varies according to the distribution type, i.e., κ=0 for Gumbel distribution, κ=-1 

for Frechet distribution and κ=1 for Weibull distribution. The upper right panel shows the 
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change in the distribution function with changing the shape parameter and keeping the other 

two parameters constant. The shape parameter affects the range of the random variable x and 

identifies how the tail of the distribution is decaying. The change in location parameter is 

simply shifting the distribution by a value proportional to the value of the location parameter 

as shown in the lower left panel. In the lower right panel the scale parameter is stretching or 

shrinking the distribution to describe its dispersion. 

 

Figure 32 The three GEV distributions and the effect of changing parameter values on the 

distribution shape. 

 

The quantiles of the samples modeled using the GEV distribution are estimated using the 

inverse of the CDF equation: 

 ξ(q) = α +
β

κ
[1 − (− ln q)κ] (4.5) 
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where ξ(q) is the quantile estimator and q is the cumulative probability F(x) that can be 

described in terms of the return period (T) by the Annual Exceedance Probability (AEP): 

 AEP =
1

T
 (5.5) 

 F(x) = 1 −
1

T
 (6.5) 

5.4 Parameter Estimation 

The use of probability-weighted moments (PWM) has gained popularity in hydrologic 

frequency analysis since the late 1970 (Sveinsson, et al., 2001). In this study, the method of 

linear moments (LMOM) is used for the estimation of the GEV distribution parameters. 

There are many advantages of using the method of L-moments over using the conventional 

method of moments. For example, L-moments are able to provide more information about 

the shape of the distribution even with using small samples as opposed to the method of 

moments that sometimes fails to describe the distribution shape. L-moments are more robust 

to the presence of outliers in the data and the parameter estimates obtained are sometimes 

more accurate in small samples than even the maximum likelihood estimates (Hosking, 

1990). The performance of maximum likelihood can be extremely erratic for small samples 

(n≤25) in the estimation of extreme quantiles of the GEV distribution. This is mainly 

attributed to the theoretical basis of ML method in which the primary justification for ML 

arises from its asymptotic properties (i.e., for large samples) (Katz, et al., 2002). Using 

Monte-Carlo simulations, Martins & Stedinger, (2000) compared the performance of 

different estimation methods, including the method of moments, method of maximum 
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likelihood and the method of L-moments, for the quantile estimators for the GEV distribution 

for small samples. They concluded that the ML estimations for the GEV distribution can 

result in unreasonable shape parameter (κ) estimates in small samples and poor performance 

for quantile estimators. For instance, they generated a small sample of 15 observations from a 

GEV distribution with κ=-0.2 and the true value for the 0.999 quantile is 14.9; however, the 

ML estimators are -2.48 and order of 6 x 10
6 

for the shape parameter and the 0.999 quantile 

respectively (Figure 33). This biased estimators led to the use of Bayesian prior distributions 

to restrict estimated values to a statistically/physically reasonable range in a generalized 

maximum likelihood (GML) estimators. Although the GML quantile estimators should be 

preferred for at-site analysis, L-moments are still useful to compute unbiased estimators of κ 

for use in regionalization (provided that κ is not too negative), to describe characteristics of 

data, and to provide a good basis for goodness-of-fit tests (Martins & Stedinger, 2000). 

 

Figure 33 True (κ=-0.2) and estimated (𝜅̂=-2.48) distribution for a small sample (N=15) 

(Source: Martins & Stedinger, (2000)) 
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The probability-weighted moments of a random variable X with distribution function F(x) = 

P(X < x) are: 

 Mp,r,s = E[Xp{F(X)}r{1 − F(X)}s] (7.5) 

where p, r, and s are real numbers (Greenwood, et al., 1979). Probability- weighted moments 

are likely to be most useful when the inverse distribution function x(F) can be written in a 

closed form: 

 Mp,r,s = ∫ {x(F)}pFr(1 − F)sdF
1

0

 (8.5) 

When r and s are integers, F
r
(1 - F)

s
 may be expressed as a linear combination of either 

powers of F or powers of (1 - F). As such, it is possible to summarize a distribution either by 

the moments Ml,r,0 (r = 0, 1, 2, ...), or by Ml,0,s (s= 0, 1, 2, ...) (Hosking, et al., 1985). 

Considering the moments βr = Ml,r,0 = E[X{F(X)}
r
] (r = 0, 1, 2, ...) and given a random 

sample of size n from the distribution F, estimation of βr is most conveniently based on the 

ordered sample xl < x2 <……..< xn. An unbiased estimate of βr, when r is a non-negative 

integer, is given by 

 β̂r =
1

n
(n−1

r
)
−1

∑ (j−1
r
)xj

n
j=r+1               r=0, 1, 2,.......... (9.5) 

where the xj, j = 1, ... , n, have been ordered from xj,  the smallest, to xj, the largest 

(Landwehr, et al., 1979). These PWMs can be expressed as linear combinations of L-

moments, so procedures based on PWMs and on L-moments are equivalent. L-moments are 

more convenient, however, because they are more directly interpretable as measures of the 

scale and shape of probability distribution (Hosking, 1990).  
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In terms of probability weighted moments, L-moments are defined by 

 λ1 = α0 = β0 (10.5) 

 λ2 = α0 − 2α1 = 2β1 − β0 (11.5) 

 λ3 = α0 − 6α1 + 6α2 = 6β2 − 6β1 + β0 (12.5) 

 λ4 = α0 − 12α1 + 30α2 − 20α3 = 20β3 − 30β2 + 12β1 − β0 (13.5) 

In general, the (r + 1)
th

 L moment, λr+1, is defined as  

 λr+1 =∑(−1)r−k (
r

k
) (

r + k

k
) βk

r

k=0

 (14.5) 

For example, λ1 is the mean of the distribution, and λ2 is a measure of the scale or dispersion 

of the random variable. L-moment ratios are standardized (dimensionless) L moments that 

measure the shape of a distribution independently of its scale ad they are defined by: 

 τ2 =
λ2
λ1

 (15.5) 

 τr =
λr

λ2
     r=3, 4........ (16.5) 

where τ2 (L CV), τ3 (L skewness), and τ4 (L kurtosis) are alternative measures of coefficient 

of variation, skewness, and kurtosis, respectively. The L-moment estimators for the GEV 

distribution parameters are given as follows: 

 κ̂ = 7.8590c + 2.9554c2 (17.5) 
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 c =
2

(3 + τ̂3)
−
log(2)

log(3)
 (18.5) 

 α̂ = λ̂1 −
β̂

κ̂
[1 − Γ(1 + κ̂)] (19.5) 

 β̂ =
λ̂2κ̂

(1 − 2−κ̂)Γ(1 + κ̂)
 (20.5) 

5.5 At-site and Regional Precipitation Frequency Estimation 

Frequency analysis is the estimation of how often a specified event will occur. It is of 

particular importance to study the frequency of extreme events because there are numerous 

sources of uncertainty about the physical processes that give rise to these events (Hosking & 

Wallis, 1997). Estimated quantiles corresponding to various return periods or frequencies and 

for different durations are usually summarized in the form of IDF curves from which design 

storm hyetographs can be derived. This information is then useful for the design and 

management of urban drainage infrastructure, bridges, spillways, and risk analysis for 

landslide hazards, among many other applications (Hailegeorgis, et al., 2013).  

In this section, two approaches for the frequency analysis of extreme precipitation are 

described; pixel-based and region-based estimation methods. The uncertainties in the 

estimates due to sampling effect will be assessed using bootstrap techniques and quantified in 

terms of confidence bounds. The results of each method will be for the different quantiles 

will be compared to the corresponding gauge-based estimates that are reported in the NOAA 

Atlas 14 Precipitation Frequency Estimates (Perica, et al., 2013). 
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5.5.1 Pixel-Based Frequency Analysis  

This approach is mainly analogous to at-site frequency analysis of extreme precipitation 

extracted from rain gauge observations at a certain station. For the entire domain, each 4-km 

x 4-km HRAP radar pixel is treated as a single station. This is equivalent to considering the 

domain of study as a dense network of “stations” that are located 4 km apart from each other. 

At each pixel, the Annual Maximum Series (AMS) is extracted from the 11-year radar 

dataset to yield an AMS sample with a size N=11. The AMS at each pixel is fitted to the 

GEV model and the parameters of the distribution are estimated at each pixel using the L-

moment method as described in section (‎5.4). The quantiles corresponding to different return 

periods (1, 2, 5, 10, 20, 25, 50, 100, 500, & 1000 years) are estimated at each pixel using the 

parameters estimated for each AMS sample. This approach was applied in the technical 

reports published earlier by the National Weather Service (NWS), formerly Weather Bureau, 

to establish the rainfall frequency isohyetal maps for the United States (See section ‎3.1for 

NWS studies).  

The confidence limits for the parameters and quantiles estimates are constructed using 

bootstrap techniques. The classical scalar bootstrap procedure suggested by Efron, (1979) is 

usually employed in single-site analysis (i.e., at-site estimation). The bootstrap procedures 

can be used to make inference on the estimates without making assumption on its 

distribution. The basic idea behind the non-parametric bootstrap is to replicate the original 

sample many times, sampling it with replacement, and to analyze the behavior of the statistic 

of interest calculated on these replicates. Many aspects of the behavior of the selected 

statistic can be measured with bootstrap, for example its confidence intervals. This bootstrap 
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procedure is used to generate a large number of samples (500 in our case) for each individual 

pixel. 

5.5.2 Region-Based Frequency Analysis 

For sites with sufficient record length with respect to the return period of the extreme 

precipitation quantile of interest, at-site frequency analysis can be considered as an adequate 

approach. However, for some sites data may not be available at all (i.e., un-gauged sites), or 

the historical records may not be long enough to be able to make reliable prediction of 

extreme quantiles especially for larger return periods. Hence, data augmentation may be 

performed by using extreme precipitation records from other sites within a representative 

region (Hailegeorgis, et al., 2013). For example, a regional frequency analysis approach was 

adopted by the NOAA Atlas 14 (Perica, et al., 2013). Cunnane, (1988) explained twelve 

different regional frequency approaches used in the literature and discussed the 

accompanying choice of distribution. These regional analysis techniques have been shown to 

offer the ability to reduce the uncertainties in quantile estimation of extreme events relative 

to the conventional at-site analysis (Pilona, et al., 1991).  

A Spatial Bootstrap Technique for Regional-Based Estimation:  

In this study, a probability weighted regional sample approach is employed to estimate the 

precipitation frequencies. This method was recently proposed by Uboldi, et al., (2014) as a 

resampling approach for estimation of parameters of rainfall annual maximum series 

statistical distribution. It can also be used to construct uncertainty bounds for the parameters 

estimated and for the rainfall depths at assigned return periods. This technique incorporates 

the generation of a regional sample at any desired location by taking into account all data 
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observed at surrounding stations with decreasing importance when distance increases. As 

such, the probability of contribution of a certain station decreases as it goes far away from 

the station at the desired location. The probability of sampling also takes into consideration 

the length of the time series at each station, and as such, the possibility of over sampling can 

be avoided and the use of short time series is enabled. This method is basically a spatial 

bootstrap technique in which a regional sample is generated repeatedly from the surrounding 

locations (pixels) based on the randomness produced from the probability of data extracting. 

The procedures of this approach involves formation of a homogenous region, construction of 

regional sample, estimation of statistical distribution parameters, repeating of the regional 

sampling and parameter estimation several times as in any bootstrap technique, and finally 

obtain a distribution of estimates for each parameter. The mean of such distribution is finally 

used as the actual estimate, while the standard deviation measures its associated uncertainty, 

due to sample variability.  

The regional synthetic sample of size (N) is constructed by extracting (N) observations 

randomly from all of the available data (M) in a homogenous region. The probability of 

extraction of each observation is assumed to be proportional to a prescribed Gaussian 

function (γm) of the distance between the station at the desired location (X) and any other 

station (Km). Therefore, for each pixel at a desired location X, and by prescribing distance-

dependent extraction probabilities, observations from nearby pixels are selected more often 

than observations from stations located far away. The probability of extraction of the m
th

 

observation located at a pixel (Km) is given by the following relation: 
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 γm = exp {−
1

2
[
dh(X, km)

Dh
]

2

} . exp {−
1

2
[
dv(X, km)

Dv
]

2

} (21.5) 

where dh(X,Km) and dv(X,Km) are the horizontal and vertical distance between pixel Km and 

the pixel at the desired location (X). The Dh and Dv are scale parameters that are selected to 

impose some degree of smoothing and were chosen in this study to be close to the standard 

deviation of the available distances between (X) and (Km).  

The probability of extraction of each observation is then normalized by the sum of 

probabilities of all the observations (M): 

 Γ = ∑ γm

M

m=1

 (22.5) 

Therefore, the probability of extraction of each observation from N set of available 

observations becomes: 

 γ̅m =
γm
Γ

 (23.5) 

By sorting the (M) observations in a descending order according to their probability of 

extraction γm̅̅ ̅̅  and assigning each observation a number (m) from 1 to M, a series of 

sequential ordered dataset is obtained. The cumulative normalized probability of extraction 

Γm̅̅̅̅  of each observation γm̅̅ ̅̅  ranges between [0,1] and the probability of extraction of this 

cumulative probability Γn̅ is assumed to be uniformly distributed, i.e. Γm̅̅̅̅ ⁡~ U (0,1). A 

continuous random variable (ρ) can be used to implement a random number generator for a 

discrete random variable (m) with any prescribed (non-uniform) probability distribution on 

positive integers up to a generic M. By generating a random number (ρ), the corresponding 
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cumulative probability Γm̅̅̅̅  is equal to the generated random number (ρ) and realization 

number (m) is equal to the first observation that has cumulative probability greater than or 

equal to the generated probability (ρ). 

Selection of Homogeneous Regions:  

The spatial bootstrap region-based approach requires the formation of a homogenous region 

surrounding each pixel, from which a regional sample can be constructed. The identification 

of homogenous regions is usually the most difficult stage in the regional frequency analysis 

and it requires the greatest amount of subjective judgement (Hosking & Wallis, 1997). The 

term homogeneity is predominantly used in statistics to describe the connection between 

samples from different populations which may, or may not, exhibit identical behavior or 

display similar characteristics  (Heiser & Meulman, 1992).  

Homogenous region is the area including a group of sites, or pixels as in the case of radar 

fields, that share similar site physical characteristics and at-site statistics. Regionalization, in 

the context of flood frequency analysis, refers to identification of homogeneous regions and 

selection of appropriate frequency distributions for the identified regions. The advantages of 

working with a homogeneous region is that the historical data available within the region can 

be pooled to get an efficient estimate of parameters of a chosen distribution and hence a more 

robust quantile estimate (Kachroo , et al., 2000). (Hosking & Wallis, 1997) strongly prefered 

to base the formation of homogenous regions on site characteristics (e.g. geographical 

delineation, cluster analysis, principle components analysis) and to use the at-site statistics 

only in subsequent testing of the homogeneity of the proposed set of regions. Moreover, the 

convenetional regionalization techniques identify a fixed set of sites to form a contiguous 
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region and hence, fixed boundary regions will be constructed without smooth transition 

across these boundaries. Burn, (1990a, 1990b) presented Region of Influence (ROI) approach 

for defining homogenous region, in which every site can have a potentially unique set of 

gauging statations for use in the estimation of at-site extremes.The ROI technique is 

recommended as it avoids the transition problems across fixed boundaries by introducing 

smooth change in the estimates across the boundaries of the regions. The selection of the 

radius of influence is a trade-off problem, in which larger radius R values will increase the 

number of sites included in the ROI, but the homogeneity of a set of sites can be expected to 

decrease. Conversely, a smaller radius R will result in an increase in the homogeneity of the 

sites included, but the information transfer will be decreased due to the smaller number of 

pixels. 

The questions involoved in identifying the homogenous regions when using radar estimates 

with uniform gridded pixels can be summarized as follows: 

1. Define a region with similar climatic and physical characteristics. 

2. Define a region with similar at-site statistics. 

3. Specify a radius of influence that encompass the similar pixels to allow smooth 

transition. 

4. Looking for a unique radius of influence that is appropriate for all the pixels in order 

to reduce the computationl effort required. 

Although Durrans, et al., (2002) estimated the precipitation frequencies using radar-based 

QPEs, the conventional regionalization approaches were not utilized in this study. They 
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applied a smoothing algorithm to the estimates of the sample L-moments to reduce the 

effects of sampling variations caused by the short time series and this smoothness technique 

implements a form of regionalization to the estimates.  

In this study, the region of influence (ROI) approach is applied by assuming same number of 

pixels (Radius of influence R) surrounding the pixel of interest from all directions. The 

region bounding each pixel forms a square window of area (2R+1)
2
 as shown in Figure 34. 

The window is moving on each pixel to construct the regional sample from the pixels lying 

inside this window (Figure 35). The window crosses each pixel is expected to form a 

homogenous region surrounding this target pixel (central pixel).  

 

Figure 34 The Radius of Influence approach applied on radar pixels. 

 

Figure 35 The moving widow forming homogenous region for each pixel. 



98 

 

As mentioned above, the choice of a homogenous region, or the window size, has to be based 

on climatic and physical characteritics. The U.S. Climate Divisions are used in this study to 

give an indication for the reasonable range of the radius of influence (R) that can be applied. 

Each of the 48 contiguous U.S. states has been subdivided into as many as 10 climate 

divisions, depending upon the size of the state (see for example Figure 36). The divisional 

boundaries are structured such that they often coincide with county boundaries and always 

cover the total area of the state (Guttman & Quayle, 1996).  

 

Figure 36 Louisiana Climate Divisions (Source: NWS/Climate Prediction Center). 

While climate divisions might not be the best representation for depicting regional climate 

anomalies, especially for extreme precipitation, it can be used to give some insight into the 

range of radius of influence (R) that can be applied. Louisiana parishes are clustered into nine 

Climate Divisions and the average surface area of each climate division is approximately 

covering a window with side length of about 31 pixels, which corresponds to R=15 pixels. 

Therefore, based on these preliminary results, R=15 is chosen as a threshold for homgenous 

climatic region. Hosking & Wallis, (1997) presented statistical procedures to estimate 
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homogenity measures based on the variations in the L-moment ratios ,i.e., L-CV and L-

Skewness. These measures can be used to identify one radius of influence and forms 

homogenous region around each pixel. This approach can be highly inefficient 

compuationally due to the large number of pixels within the domain of interest. In this study, 

instead of using homogenity statistics, two different square windows (R=5, 10) will be tested 

to study the effect of the region size on the uncertainty of the estimates. As shown in Figure 

37, using radius of 5 pixels will result in a window of 11x11 pixels with the potential to 

extract observations from 121 different pixels, each with record length of 11 years (M=11 

observations x 121pixels). Increasing the window size to 21x21, by using radius of 

influence=10 pixels, will allow for many more pixels (441 pixels and M=11observations x 

441 pixels) to be included in the region of each target pixel. The scale parameters in equation 

(5.21), i.e., Dh and Dv, are chosen equal to approximately the standard deviation of of each 

radius of influence (for R=5, Dh=Dv=1pixel and for R=10, Dh=Dv=3pixels). The regional 

sample size is chosen to be the same as the actual number of years available in the radar 

dataset, i.e., N=11.  

In order to reduce the likelihood of extracting annual maxima that might be come from the 

same event, a constarint is added to the observation when extracted. This constraint implies 

that the gap in the time stamp of any two annual maxima must be greater than 6 hours. This 

criteria is evaluated using the Julian Date (continuous count of days and fractions of day 

since the beginning of the Julian Period used primarily by astronomers) in which the 6 hours 

represent 0.25 day. For instance, if one annual maxima extracted occurs with a certain Julian 

Date (JD), then any new annual maxima must be checked that it occurs with new Julian Date 

greater than (JD+0.25) or smaller than (JD-0.25). This restriction to the extraction of annual 
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maxima might not be very useful in case of gauges since the gauges are scattered without any 

uniform distribution and usually with relatively large distances in between and therefore it is 

less probable to have annual series in two gauges that share exactly the same events 

magnitude. On the other hand, the application of this conditioned extracted annual maxima is 

very critical to the radar-based annual maxima, since they are provided on a uniform grid 

with very high spatial resolution of 4x4 km.  

 

Figure 37 The moving window with radius of influence R=5 pixels. 

Some remarks on the spatial bootstrap technique are stated as follows: 

1. The distance-dependent function given above could encompass other factors that 

might affect the probability of extraction, for instance (Uboldi, et al., 2014) used the 

elevations above mean sea level as one more aspect to calculate the probability of 

extraction (γm). In addition to considering site characteristics such as location and 

elevation, this technique can be developed by introducing some physical properties 

associated with each site like the mean annual precipitation (MAP) that has been 

widely involved in cluster analysis procedures for formation of homogenous regions.  
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2. Distance-dependent probabilities (γm) are assigned to individual observations, rather 

than to stations, to avoid oversampling from “short” time series located near the target 

point (X). 

3. Oversampling from nearby stations with only few data is effectively avoided by 

assigning distance-dependent probabilities to individual observations, rather than to 

stations, and normalizing with the sum of probabilities of all observed values, 

therefore, all observations from the same station still have the same probability, but 

the probability of extracting from a particular station depends both on distance and on 

the size of its observation set, i.e. the length of its time series. 

4. This technique uses the stationarity hypothesis, where the actual order in time of the 

sampled observations is not important, and as such the time coordinate is not used in 

the parameter estimation. On the contrary, if stationarity is an issue, sampling could 

be performed by prescribing extraction probabilities that effectively ensure 

uniformity in time (for example, by extracting one observation, or a fixed number of 

them, for each year). In that case nonstationary extreme value analysis should be 

applied by using time coordinate in the estimation (see for example Sugahara, et al., 

(2009), Hanel, et al., (2009) & Gregersen, et al., (2013)) to consider assumed time 

dependent patterns for some of the distribution parameters. 

 



 

 

Chapter  6  Results on Precipitation Frequency Estimates 

6.1 Characteristics of Annual Maxima 

The Radar precipitation estimates provide new possibilities to investigate the climatology of 

extreme rainfall at high spatial resolutions and over large areas (Overeem, et al., 2009). 

Lousiana is considered the wettest of the contiguous 48 states with extreme events that are 

generated by several rainfall mechnaisms. The extreme events in the Southeastern United 

States are typically generated from different synoptic weather patterns, for example, tropical 

storms, fronts, and convective airmass thunderstorms. Faiers, et al., (1994) analyzed the 

differences in the different synoptic weather type frequencies of the three-hour extreme 

events in four different locations in Louisiana (Shreveport, Lake Charles, Baton Rouge and 

New Orleans) for the period from 1948 to 1991. They concluded that there are no significant 

differences in synoptic weather type frequencies between the different locations, mainly due 

to the dominance of the frontal events. Moreover, the Gulf Tropical Disturbance (GTD) and 

airmass events are very frequent in New Orleans which is a good evidence for the occurrence 

of tropical storms and hurricanes in this area. All of these conclusions are consistent with the 

proximity of Louisiana to the Gulf of Mexico.  

Figure 38 shows the maximum annual hourly rainfall depth for each pixel in the domain of 

the study area. Most of the pixels maxima are in the range between 20 mm and 100 mm with 

a significant increase in the annual maxima towards the gulf coastal zone. The Mean Annual 

Maxima (MAM) displayed in Figure 38 shows a gradual increase moving from areas in 

northern Louisiana towards the southern part of the state close to the Gulf Coast.
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Maddox, et al., (1979) examined the meteorological conditions associated with more than 

150 intensive convective precipitation events that cause flash floods over the conterminous 

United States (CONUS) excluding the heavy tropical events. They reported that the monthly 

distribution of extreme events reveals the predominance of July where 25 % of the sample 

was located, simply due to the convective nature of the studied events. These results agree 

with Figure 39 which depicts the spatial distribution of average month of occurrence for 

annual maximum rainfall and shows dominance of the summer season (June – July – August) 

throughout most of the state. This is also shown from the histogram in Figure 40 of the 

percentage of occurrence of AMS in each month. The highest frequency of AMS is reported 

in the warm season (April-September), which again indicates that most of these extreme 

events are of convective nature.  
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Figure 38 The annual maximum rainfall estimate for each pixel extracted for the years from 

2002 to 2012.The last panel shows the mean annual maximum (MAM) for each pixel. 
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Figure 39 The average month of occurrence for the AMS in each pixel during the period of 

study (2002-2012). 

 

 

Figure 40 Frequency of occurrence (histogram) of the AMS in each month of the year during 

the period of study (2002-2012). 
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The diurnal distribution of the annual maxima is explained through the studying the average 

6-hour of annual maxima occurrence (Figure 41 and Figure 42). The two figures show the 

spatial distribution and the frequency of occurrence of AMS for each hour of the day during 

the period of study. The results indicate that most of the annual maxima occured between 

18:00 UTC and 00:00 UTC, fewer number of events ocuured in the two intervals (00:00 UTC 

– 06:00 UTC) and (12:00 UTC- 18:00 UTC), while nearly no events occured in the hours 

between 06:00 UTC and 12:00 UTC. The histogram in Figure 42 shows that the maximum 

extreme events occcurs more frequently at hour 21:00 UTC. A similar conclusion was 

reported by Schumacher & Johnson, (2006) who studied the characteristics of a large number 

of extreme rain events over the eastern two-thirds of the United States and found that the 

diurnal distribution has an average peak time at 21:00 UTC.  

 

 

Figure 41  The average 6-hour of occurrence for the AMS in each pixel during the period of 

study (2002-2012). 
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Figure 42 Frequency of occurrence (histogram) of the AMS in each hour of the day during 

the period of study (2002-2012). 

The average occurrence of the extreme events during the 11 years of the study period is 

studied in each decade of the month, i.e. every ten days of the month, and for each day of the 

month. The variation in the average occurrence of the extreme events is given in the spatial 

map shown in Figure 43 and the frequency of AMS in the 36 decades of the year is given in 

Figure 44. As expected, these results don’t show the dominance of a certain day or decade of 

the month.  

 



128 

 

 

Figure 43 The average dates of occurrence for the AMS in each pixel during the period of 

study (2002-2012). 

 

 

Figure 44 The frequency of the annual maxima corresponding to the decade of the month 

during the year. 
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6.2 Pixel-Based Precipitation Frequency Estimates (PFEs) 

The pixel-based estimation procedure described in Section (‎5.5.1) was applied to the radar 

dataset to estimate the GEV distributional parameters and the corresponding quantiles (PFE) 

at different return periods ranging from 2 to 100 years. The bootstrap technique was also 

applied at each pixel to construct the confidence intervals for the estimated parameters and 

quantiles. The parameters and the precipitation frequency estimates for each pixel are 

represented using the mean of the 500 runs of bootstraps. The lower 5% and upper 95% 

quantiles of the bootstrap samples are used to assess the uncertainty in the estimates. The 

upper and lower quantiles can be calculated in different ways, some are parametric that 

assume normal distribution for the estimates obtained from bootstrap runs, while others are 

non-parametric methods which don’t pre-assume any kind of distribution (Langford , 2006). 

The method used in this study is a non-parametric method, in which a probability is initially 

assigned to the sorted values of the sample ((0.5/n), (1.5/n), ..., ([n – 0.5]/n)), where n is the 

sample size, i.e.,  n=500 runs. The quantiles are then computed as the probability equal to the 

confidence limit required, e.g. 0.95, 0.90, 0.05, or 0.1. Quantiles for intermediate values are 

calculated using linear interpolation. The first and last value in the bootstrap sample are 

assigned to the quantiles for probabilities less than (0.5/n) and greater than ([n – 0.5]/n), 

respectively.  

Figure 45 shows the GEV parameters estimated at each pixel for the domain of study 

(180x140 pixels) covering Louisiana. The mean shape parameter, estimated from the average 

of 500 bootstrap runs, varies between positive and negative values mostly between [-0.5, 

0.5]. The 5% and 95% confidence of the shape parameter can have values below -0.5 and 

above 1 due to the sampling variability. Compared to the width of the confidence interval, it 
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appears that the mean of the shape parameter does not deviate from the value of zero, which 

corresponds to the case of Gumbel distribution (see Section ‎5.3), suggesting that it the shape 

parameter may not be statistically different from zero. The mean scale parameter, in most 

pixels, falls in the range of [5, 20], with some subtle spatial gradients. The location parameter 

has noticeable spatial gradients similar to those of the mean annual maxima (MAM) (Figure 

38) where the parameter increases from north to the south and as we get closer to the Gulf 

boundary. The sampling effect on both parameters is evident in the 5% and 95% confidence 

limits. 

The corresponding Precipitation Frequency Estimates (PFE) are displayed for six 

representative return periods of 2, 5, 10, 25, 50 and 100 years (Figure 46 and Figure 47). The 

maps of these PFE’s show significant variability in space with clear gradients from north to 

south. The uncertainty associated with these estimates as reflected in the confidence bounds 

is fairly large especially for large return periods (e.g., 50 and 100 years). The spatial maps 

also show clear signs of graininess and noise in the spatial variability of the estimated 

quantiles, which are most noticed for large return periods.  

 



111 

 

 

F
ig

u
re

 4
5
 T

h
e 

G
E

V
 d

is
tr

ib
u
ti

o
n
 p

ar
am

et
er

s 
fr

o
m

 P
ix

el
-B

as
ed

 A
p
p

ro
ac

h
; 

(a
) 

M
ea

n
 o

f 
5
0
0
 b

o
o
ts

tr
ap

 r
u
n
s,

 (
b
) 

5
%

 C
o
n
fi

d
en

ce
 

L
im

it
, 

an
d
 (

c)
 9

5
%

 C
o
n
fi

d
en

ce
 L

im
it

. 
 

(
b) 

(c) 

(r) 



112 

 

                 

F
ig

u
re

 4
6
 T

h
e 

ra
in

fa
ll

 d
ep

th
 c

o
rr

es
p
o
n
d
in

g
 t

o
 2

, 
5

, 
an

d
 1

0
 y

ea
r 

re
tu

rn
 p

er
io

d
s 

fr
o
m

 P
ix

el
-B

as
ed

 A
p
p

ro
ac

h
; 

(a
) 

M
ea

n
 o

f 

5
0
0
 b

o
o
ts

tr
ap

 r
u
n
s,

 (
b
) 

5
%

 C
o
n
fi

d
en

ce
 L

im
it

, 
an

d
 (

c)
 9

5
%

 C
o
n

fi
d

en
ce

 L
im

it
.

 
 

(
b) 

(c) 

(r) 



113 

 

                 

F
ig

u
re

 4
7
 T

h
e 

ra
in

fa
ll

 d
ep

th
 c

o
rr

es
p
o
n
d
in

g
 t

o
 2

5
, 

5
0
, 
an

d
 1

0
0
 y

ea
r 

re
tu

rn
 p

er
io

d
s 

fr
o

m
 P

ix
el

-B
as

ed
 A

p
p
ro

ac
h
; 

(a
) 

M
ea

n
 

o
f 

5
0
0
 b

o
o
ts

tr
ap

 r
u
n
s,

 (
b
) 

5
%

 C
o
n
fi

d
en

ce
 L

im
it

, 
an

d
 (

c)
 9

5
%

 C
o
n
fi

d
en

ce
 L

im
it

.
 

 

(
b) 

(c) 

(r) 



114 

 

6.3 Region-Based Precipitation Frequency Estimates (PFEs) 

This section presents that PFE results obtained using the region-based spatial bootstrap 

method that was described in Section ‎5.5.2. The mean estimated GEV distribution 

parameters and their upper and lower confidence bounds are shown in Figure 48 and Figure 

49 for the region-based approach with two different moving windows; 11x11 pixels and 

21x21 pixels. The confidence limits are estimated using the spatial bootstrap technique for 

500 runs. Compared to the pixel-based approach, the results suggest that the region-based 

approach results in a reduction of the estimated parameters and in lower confidence limits. 

For instance, the mean shape parameters, in most of the pixels, went down to the range [-0.2, 

0.2] with narrower uncertainty bounds.  

The reduction in the dispersion of the estimated parameters is attributed to the gain from the 

repeated sampling from the surrounding pixels, which is the advantage of the regional 

approach as opposed to using only information available in each pixel. Sampling from a 

homogenous region resulted in smoother fields of the GEV parameters with less sampling 

variability. Because of the short record available in each pixel, only 11 years, the pixel-based 

estimation varies considerably from one pixel to another, which was circumvented when 

using the region-based estimation with the moving window at each pixel. Increasing the size 

of the moving window to (21x21) pixels results in lower variability and more smoothness for 

the estimates transition between the pixels (Figure 49).  

Figure 50,Figure 51,Figure 52, and Figure 53 display the precipitation frequencies estimated 

using the GEV distribution parameters. Improvements in the uncertainty of the different 

quantiles can obviously be seen when using the regional approach over the pixel-based 
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approach where each pixel is treated in isolation from its surrounding region. The use of a 

region of influence approach with a moving widow allows for the smoother spatial transition 

as opposed to the pixel-based approach. Since the pixel size is only (4x4 km) and no 

significant climatic changes are expected to occur over the pre-set region of influence, it is 

more realistic to expect such smoother spatial fields for the rainfall frequency estimates. 

Further increases in the size of the moving window would result in more spatial smoothing 

and slight reduction in the uncertainty bounds obtained, nevertheless, increasing the window 

size is restricted by the formation of homogenous region. The smoothness in the rainfall 

estimates patterns by the spatial bootstrap resembles to great extent the smoothing algorithm 

performed by Durrans, et al., (2002). They use simple distance-weighted averaging 

procedures to spatially smooth the estimates of sample L-moments. This smoothing 

algorithm reduced the effects of sampling variations caused by the short time series used, 

only 8 years in their study.  

 



116 

 

                    

F
ig

u
re

 4
8
 T

h
e 

G
E

V
 d

is
tr

ib
u

ti
o
n
 p

ar
am

et
er

s 
fr

o
m

 S
p
at

ia
l 

B
o
o
ts

tr
ap

 T
ec

h
n
iq

u
e 

u
si

n
g
 m

o
v
in

g
 w

id
o
w

 (
1
1
x

1
1
 P

ix
el

s)
;

 

(a
) 

M
ea

n
 o

f 
5
0
0
 b

o
o
ts

tr
ap

 r
u
n
s,

 (
b
) 

5
%

 C
o
n
fi

d
en

ce
 L

im
it

, 
an

d
 (

c)
 9

5
%

 C
o
n

fi
d
en

ce
 L

im
it

.
 

 

(
b) 

(c) 

(r) 



117 

 

  

 

F
ig

u
re

 4
9
 T

h
e 

G
E

V
 d

is
tr

ib
u
ti

o
n
 p

ar
am

et
er

s 
fr

o
m

 S
p
at

ia
l 

B
o
o
ts

tr
ap

 T
ec

h
n
iq

u
e 

u
si

n
g
 m

o
v
in

g
 w

id
o
w

 (
2
1
x

2
1
 P

ix
el

s)
; 

(a
) 

M
ea

n
 o

f 
5
0
0
 b

o
o
ts

tr
ap

 r
u
n
s,

 (
b
) 

5
%

 C
o
n
fi

d
en

ce
 L

im
it

, 
an

d
 (

c)
 9

5
%

 C
o
n

fi
d
en

ce
 L

im
it

. 
 

(
b) 

(c) 

(r) 



118 

 

  

F
ig

u
re

 5
0
 T

h
e 

ra
in

fa
ll

 d
ep

th
 c

o
rr

es
p
o
n
d
in

g
 t

o
 2

, 
5

, 
an

d
 1

0
 y

ea
r 

re
tu

rn
 p

er
io

d
s 

fr
o
m

 S
p
at

ia
l 

B
o
o
ts

tr
ap

 T
ec

h
n
iq

u
e 

u
si

n
g
 m

o
v
in

g
 

w
id

o
w

 (
1
1
x

1
1
 P

ix
el

s)
; 

(a
) 

M
ea

n
 o

f 
5
0

0
 b

o
o
ts

tr
ap

 r
u
n

s,
 (

b
) 

5
%

 C
o
n

fi
d

en
ce

 L
im

it
, 

an
d
 (

c)
 9

5
%

 C
o
n

fi
d
en

ce
 L

im
it.

 

(
b) 

(c) 

(r) 



119 

 

                    

F
ig

u
re

 5
1
 T

h
e 

ra
in

fa
ll

 d
ep

th
 c

o
rr

es
p
o
n
d
in

g
 t

o
 2

, 
5

, 
an

d
 1

0
 y

ea
r 

re
tu

rn
 p

er
io

d
s 

fr
o
m

 S
p
at

ia
l 

B
o
o
ts

tr
ap

 T
ec

h
n
iq

u
e 

u
si

n
g
 m

o
v
in

g
 

w
id

o
w

 (
2
1
x

2
1
 P

ix
el

s)
; 

(a
) 

M
ea

n
 o

f 
5
0
0
 b

o
o
ts

tr
ap

 r
u
n
s,

 (
b
) 

5
%

 C
o
n
fi

d
en

ce
 L

im
it

, 
an

d
 (

c)
 9

5
%

 C
o
n
fi

d
en

ce
 L

im
it

. 

(
b) 

(c) 

(r) 



122 

 

  

F
ig

u
re

 5
2
 T

h
e 

ra
in

fa
ll

 d
ep

th
 c

o
rr

es
p
o
n
d
in

g
 t

o
 2

5
, 

5
0
, 
an

d
 1

0
0
 y

ea
r 

re
tu

rn
 p

er
io

d
s 

fr
o
m

 S
p
at

ia
l 

B
o
o
ts

tr
ap

 T
ec

h
n
iq

u
e 

u
si

n
g
 

m
o
v
in

g
 w

id
o
w

 (
1
1
x

1
1
 P

ix
el

s)
; 

(a
) 

M
ea

n
 o

f 
5
0
0
 b

o
o
ts

tr
ap

 r
u
n
s,

 (
b
) 

5
%

 C
o
n
fi

d
en

ce
 L

im
it

, 
an

d
 (

c)
 9

5
%

 C
o
n
fi

d
en

ce
 L

im
it

. 

(
b) 

(c) 

(r) 



121 

 

                    

F
ig

u
re

 5
3
 T

h
e 

ra
in

fa
ll

 d
ep

th
 c

o
rr

es
p
o
n
d
in

g
 t

o
 2

5
, 

5
0
, 

an
d
 1

0
0
 y

ea
r 

re
tu

rn
 p

er
io

d
s 

fr
o
m

 S
p

at
ia

l 
B

o
o

ts
tr

ap
 T

ec
h

n
iq

u
e 

u
si

n
g
 

m
o
v
in

g
 w

id
o
w

 (
2
1
x

2
1
 P

ix
el

s)
; 

(a
) 

M
ea

n
 o

f 
5
0
0
 b

o
o
ts

tr
ap

 r
u
n
s,

 (
b
) 

5
%

 C
o
n
fi

d
en

ce
 L

im
it

, 
an

d
 (

c)
 9

5
%

 C
o
n
fi

d
en

ce
 L

im
it

. 

(
b) 

(c) 

(r) 



122 

 

6.4 Comparison of Radar versus Gauge PFE’s  

The Hydrometeorological Design Studies Center (HDSC) provides the annual maximum 

series used in the NOAA Atlas 14 and the corresponding PFEs with 90% confidence 

intervals. A network of 33 hourly gauges in Louisiana, operated by the National Climatic 

Data Center (NCDC), is used in the current study (Figure 54) to identify differences in the 

AMS extracted from the radar QPE versus those from the gauges. Moreover, the NOAA 

Atlas 14 gauge-based PFEs and their 90% confidence intervals are contrasted against the 

corresponding frequencies estimated in the current study using the two approaches described 

earlier, pixel-based and regional. 

 

Figure 54 A network of 33 hourly gauges in Lousiana (The cicled symbols indicate gauges 

used in the current study for comparison with radar-based PFE estimates).  
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The NOAA Atlas 14 applied a regional frequency analysis approach that is different from the 

region-based technique used in the current study. The main difference is in how the 

homogenous region is formed initially for each station. In the Atlas 14 method, a 

homogeneous region is defined for each gauge for by grouping the closest 10 stations and 

then stations are added to or removed from regions based on examination of their distance 

from a target station, elevation difference, difference in MAMs at various durations, and 

inspection of their locations with respect to mountain ridges, etc. (Perica, et al., 2013). The 

PFEs from the NOAA Atlas 14 are used as a reference for examining the radar-based PFEs. 

However, it is important to note that this comparison doesn’t imply that gauges are the true 

estimates, simply because they also have some uncertainties caused by sampling variability 

and the estimation process itself. Nevertheless, the comparison will provide some insight into 

the performance of the radar-based estimates and their uncertainties.  

Table 6 Location of gauges and pixels used for comparing PFEs. 

Gauge Number Latitude Longitude HRAP X* HRAP Y* 

1 30.1247 -93.2283 51 30 

3 29.9933 -90.2511 124 44 

8 29.2339 -89.9961 136 24 

26 32.4219 -93.6381 28 93 

30 30.265 -89.7697 134 54 

* HRAP X and HRAP Y are the transformed Grids, i.e., Local HRAP. 

Five representative gauges are selected for the comparison analysis. The location of these 

gauges and the corresponding radar pixels are listed in Table 6. Figure 55(a) shows plots of 

the annual maximum series available for gauge (1) and for the coincident HRAP pixel (51, 

30). The gauge AMS is available for 49 years from 1962 to 2010 which is a long record 
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compared with the 11-year radar QPE data available from 2002 to 2012. It is noted that the 

2003 annual maximum from the radar QPE is very high compared to that of the 

corresponding gauge, and suggests that this particular value might be an outlier. The mean 

and standard deviation of annual maximum series for this pixel are 58 mm and 37 mm 

respectively, while the standard deviation for the sample excluding this observation is only 

14 mm, which indicates the high variability that might results from this individual value. 

Moreover, the Grubbs-Beck (GB) outlier detection test, explained in section (‎4.3), removes 

this observation and considers it as an outlier at a 5% level of significance. This high radar 

estimate in 2003 affects the PFE in the pixel-based approach as shown in (Figure 57), while 

the spatial bootstrap is less influenced by this estimate. The reduced effect of possible 

outliers is one of the benefits of the spatial bootstrap technique since the combined use of 

multiple pixels enables reducing the impact of such very rare events (Uboldi, et al., 2014).  

The annual maximum series for the other three gauges, i.e., gauge (8), (26), and (30), and the 

corresponding pixels are shown in Figure 55 (b) and Figure 56(a) and Figure 56(b). The three 

gauges show different patterns for the available maximum series; however, unlike gauge (1), 

the precipitation frequencies estimated by the NOAA Atlas 14 approach for the three gauges 

are quite larger than those estimated by the radar QPE dataset when using the pixel-based 

estimation. For instance, Figure 58 shows lower mean estimates for the quantiles and very 

narrow confidence intervals in the pixel-based estimation compared with Atlas 14 regional 

estimation and the spatial bootstrap technique used in this study. The lower quantiles 

estimates can be inferred from the annual maximum series shown in Figure 55 (b) in which 

most of the radar-based annual maximum estimates are lower than those estimated by gauge, 

while the less variability is due to the small standard deviation, about 11.7 mm, of the AMS. 
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This narrow confidence bounds discloses one of the limitations of using the conventional 

bootstrap resampling with small sample size. Since the conventional bootstrap will never 

generate an observation either larger or smaller than the maximum or minimum historical 

observation, this bootstrap needs sample size n greater than the planning horizon N for an 

effective examination of the probability distribution of the largest or smallest observation 

(Vogel & Shallcross, 1996).  

Although the spatial bootstrap technique results in lower estimates compared to the NOAA 

Atlas 14 estimates, it again outperforms the pixel-based approach by introducing 

observations from surrounding pixels. The addition of observations other than those included 

in the pixel sample introduced more variability to the quantile estimates in a way that makes 

them much closer to those derived by the gauge-based regional frequency analysis approach 

used in NOAA Atlas 14. Unlike the expected reduced variability in most of the pixels, 

variability increases with opening the moving window to larger size to take advantage from 

more observations for pixels with AMS having similar statistical characteristics to pixel (99, 

53).  

The rest of gauges share the same low mean and confidence estimates as the three gauges (8), 

(26) and (30). Trying to quantify this estimation problem, we used gauge (3), which has the 

largest annual maximum series (63 observations) and it extends from 1948 to 2011, and use a 

sample of 10 annual maxima from 2002 to 2011 to estimate the quantiles using the at-site 

estimation procedures. The same procedures are performed for the corresponding pixel by 

using the annual maximum observations from 2002 to 2011. Having two samples, one from 

gauge and one from radar, with the same sample size and using annual maxima for same 

years, we concluded that radar estimates underestimates the annual maxima compared with 
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those extracted from the gauges observations (Figure 61). This underestimation affects 

significantly the estimation of the quantiles as shown in Figure 62. The confidence intervals 

are constructed using the conventional bootstrap resampling and as explained, the uncertainty 

bound obtained with the bootstrap resampling from small sample size is very sensitive to the 

magnitude of the observations in the sample, thereby, the high values of gauge annual 

maxima resulted in higher variability compared with the radar-based annual series. The 

fluctuations in the radar estimates, between underestimation and overestimation of the gauges 

annual maxima, was attributed to the fact that the algorithms, used to blend the gauge and 

radar estimates to produce the MPEs, account only for the overall bias, while a considerable 

conditional bias dependent on the radar rainfall values still remains. This conditional bias is a 

conditional statistics that provide detailed insight into how the product performs at different 

ranges of the rainfall amount (for more details on the uncertainty models for the radar 

estimation errors (see for example Ciach, et al., (2000); Habib, et al., (2004); Ciach, et al., 

(2007); Villarini, et al., (2009); Habib, et al., (2013) and Habib & Qin, (2013)). These 

studies show that the conditional bias can be characterized to have a complete uncertainty 

model for the radar rainfall estimates.  
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Chapter  7  Summary, Conclusions and Future Work 

7.1 Summary 

Accurate and regionally specific information on Precipitation Frequency Estimates (PFE) are 

critically needed for various water resources engineering planning and design purposes. 

Traditionally, PFE information is based on near-point observations of sparsely distributed 

rain gauges. The limited spatial availability of rain gauge stations and their lack of areal 

representation, calls for exploring the utility of weather radar techniques for PFE analysis 

This study examined the applicability of radar-based Quantitative Precipitation Estimates 

(QPE) to derive precipitation frequencies that are critically needed for engineering and 

environmental design purposes. Developing a quantitative assessment of radar products and 

their data quality is crucial for proper application of such products in design frequency 

analyses. The study focused first on examining the data quality of two main radar products, 

the near real-time Stage IV QPE product, and the post real-time RFC/MPE product. The two 

products are widely used in research and operational applications, with little knowledge 

about their quality from the perspective of heavy precipitation and frequency analysis. The 

procedures conducted for the assessment of the Stage IV product include constructing fields 

of maximum precipitation (known as Partial Duration Series) over the Contiguous U.S. 

domain. The Stage IV product was compared against the longer-latency MPE product. The 

Grubbs-Beck (GB) outlier detection test was used to identify and remove some of the 

artifacts detected in Stage IV product in an effort to improve the quality of this product and 

make it more applicable for extreme precipitation analysis.  
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Based on the inter-comparison analysis of the two products, Stage IV and RFC/MPE, the 

latter was selected for the frequency analysis carried out throughout the study. The study 

domain was selected to cover a region over Louisiana for the period 2002-2012 when the 

radar dataset was fully available. The methodology used in derivation of precipitation 

frequency estimates using the radar QPE dataset was composed of the following: 

1. Extracting the hourly Annual Maximum Series (AMS) for each pixel for the period 

2002-2012 to represent extreme precipitation.  

2. The Generalized Extreme Value (GEV) distribution is selected to fit the AMS 

samples. 

3. The method of L-moments (or probability weighted moments) is used for estimating 

the parameters of GEV distribution. 

4. The precipitation frequencies and their 90% confidence intervals were estimated 

using two different approaches: 

 Pixel-based estimation, in which GEV distribution was fitted for the AMS sample 

at each pixel. As such, the distribution parameters and the PFE quantiles are 

estimated for each individual pixel. Confidence limits were established using the 

conventional bootstrap resampling technique. 

 Region-based estimation, in which a spatial bootstrap technique was applied at 

each pixel to construct AMS samples by sampling from a pre-fixed region of 

influence. The selected observations from the surrounding pixels were based on a 
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probability of extraction that depends on the horizontal and vertical distances from 

pixel of interest. 

5. The NOAA Atlas 14 precipitation frequency estimates (PFE) are used as a reference to 

evaluate the capability of the radar-based QPE to estimate precipitation frequencies and 

to evaluate the performance of the two frequency estimation approaches. 

7.2 Conclusions 

Assessment of the Stage IV real-time product showed some alarming data artifacts that 

contaminate the identification of rainfall maxima. Such artifacts are usually undetected when 

dealing with average rainfall amounts as opposed to extremes. The artifacts are more 

dominant in the western and southeastern US, but are not uncommon in the northeastern and 

northern regions. The artifacts are mostly in the form of circular patterns, or rings, with very 

high rainfall rates surrounded by lower values. A close examination of these artifacts was 

performed by comparison against the corresponding precipitation estimates from the longer-

latency RFC radar MPE product. Most of the very high rainfall rates were found to be due to 

erroneous rain gauge observations, which are used to bias-adjust the radar-only estimates 

within the MPE algorithm. These artifacts and erroneous data points were mostly absent in 

the longer latency MPE product that undergoes manual quality control by the forecasters at 

the NWS River Forecasting Centers. Unlike the RFC/MPE product, the real-time hourly 

Stage IV QPE doesn’t capture any of these manual quality performed either to the MPE 

product or the erroneous gauges.  

The Grubb’s Beck outlier detection test was applied to the maximum precipitation fields to 

identify these artifacts statistically. Although the GB test successfully removed most of these 
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artifacts, it is recommended to use this test with a predetermined threshold for outlier 

detection to avoid removing some of actual extremes.  

The presence of problematic estimates and outliers in radar-rainfall products are attributed to 

different factors such as delays in data transmission, insufficient time for comprehensive 

quality control of the ingredient data, or insufficient computational power to use better 

algorithms within real-time operations. Therefore it is recommended to use a Multisensor 

Precipitation Reanalysis (MPR) approach to produce higher quality precipitation estimates 

that can take full advantage of additional rain gauge data that may not have been available in 

real time (Seo, et al., 2010). An MPR approach can introduce much-needed enhancements to 

the near real-time operation products such as: systematic quality control of input data, 

correction of systematic biases in radar precipitation data, and optimization of algorithm 

parameters. An MPR pilot study has been recently applied for a regional domain over the 

Carolinas and produced more accurate precipitation estimates compared with real-time 

estimates (Nelson, et al., 2009). Expansion of such MPR efforts to other US domains will 

bring major enhancements in the quality of radar QPE’s and their utility for PFE analysis. 

Since the RFC/MPE product provided more reliable extreme estimates compared to the Stage 

IV, it was selected for frequency analysis in this study. Two different frequency analysis 

approaches were applied; the first is pixel-based and uses the short available record of 11 

years at each pixel, while in the second approach, a region-based method, tries to overcome 

the short record availability by sampling from a homogenous region surrounding the pixel of 

interest. The latter approach has the advantage of gaining more information from a 

climatologically homogenous region and is expected to enhance the estimation process. The 

formation of homogenous regions is usually the most difficult task in regional frequency 
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analysis and it requires more qualitative than quantitative decisions. The region of influence 

(ROI) approach is used to specify a radius of influence that bounds each pixel with a 

homogenous region. The ROI technique provides a smooth transition between the estimates 

as opposed to using fixed boundary regions. The radius of influence is chosen to be lower 

than an upper bound defined based on the climate division classification in Louisiana. The 

regional PFE approach showed more smoothness in the estimation of the distribution 

parameters and the associated quantiles compared to the pixel-based approach. The 

smoothness of the estimates in this high-resolution grid, 4-km x 4-km, is more realistic, since 

high variations between neighboring pixels are not expected.  

The radar-based PFE results were assessed versus those from the NOAA Atlas 14 that were 

developed using a gauge-based regional frequency analysis approach. The comparison results 

indicated that pixel-based approach is highly sensitive to observational and sampling 

variability, and can result much higher or lower PFE estimates compared to the gauge-based 

PFE. The region-based spatial bootstrap approach is less sensitive to sampling effects and 

short records of radar data due to its regional sampling mechanism. The spatial bootstrap 

technique applied in the region-based approach avoids misleading PFE estimates and 

provides more realistic representation of the PFE confidence intervals and thus can be 

considered more reliable when compared with the NOAA Atlas 14 frequency estimates.  

The overall results of the current study indicate the potential power of radar-based QPE’s for 

delivering frequency estimates with high spatial resolutions. However, a main limitation 

stems from the relatively short record radar-rainfall datasets (typically 10-20 years), as 

opposed to the much longer records of rain gauge datasets. A viable approach is to combine 

both sources of information, radar products, and rain gauge observations, and capitalize on 
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their respective strengths to improve the PFE estimation process and their subsequent 

hydrologic design applications.  

7.3 Future Work 

Based on the results of the current study, a number of follow-up research questions can be 

proposed for future investigations: 

1. In this study, hourly radar-based QPEs were used in the frequency analysis, and it is 

of interest to perform the same analysis with different durations, e.g., 6 hours and 24 

hours. The results from different durations can be used to derive Depth-Duration-

Frequency (DDF) or Intensity-Duration-Frequency (IDF) curves required for design 

purposes. 

2. In the current analysis, the annual maximum series approach was adopted; however, 

alternative approaches such as partial duration series or peak over threshold series 

modeled with Generalized Pareto (GP) distribution should be examined and evaluated 

against the results reported in this study. 

3. Although the use of L-moment estimation is commonly applied in the precipitation 

frequency analysis, other estimation methods such as the maximum likelihood (ML) 

method and method of moments (MOM) should also be evaluated for radar-based 

PFE analysis. 

4. The selection of homogenous regions is a critical aspect of any regional-based PFE 

analysis. Therefore, a procedure for identification an optimum region size, as opposed 

to pre-set region size, should be explored. 
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5. The spatial bootstrap technique is thought to be not sensitive to outliers, and as such, 

should be applied to test its robustness to data artifacts and possible outliers in real-

time radar products such as the Stage IV product.  

6. In the current study, the spatial bootstrap technique was used as regional PFE 

estimation approach; the use of other regional frequency analysis approaches, e.g., the 

index-flood method, should be explored.  

7. Applying the extreme value theory implies that the maximum series are all 

independent and identically distributed; however, precipitation cannot be considered 

as independent in space. Therefore, it is of interest to study how to model the spatial 

dependence of extreme events and examine the consequences on frequency 

estimation. 

8. The GEV model used in this study assumed stationary parameters; however, due to 

possible changes in extreme events through time, using non-stationary modeling of 

extreme precipitation might be more reasonable.  

9. Radar-based QPE products are known to be subject to various sources of sampling 

and estimation uncertainties. The effect of such uncertainties on the PFE estimates 

should be assessed and quantified.  

10. A preliminary analysis was performed to examine the sources of difference between 

radar and gauge-based PFE results. A comparison of gauge and radar-based AMS 

series was done for a common period (2002 to 2011). The comparison confirms the 

fact that the radar-based QPEs have conditional bias, i.e., bias relative to the 
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magnitude of the rainfall. The effect of such conditional biases on the estimation of 

PFE yet remains to be investigated.  

11. The change in characteristics of extreme rainfall to known sources of climate 

variability such as El Niño Southern Oscillations (ENSO) is another area of research 

that can be pursued using procedures similar to those adopted in the current study.
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ABSTRACT 

The Radar-based Quantitative Precipitation Estimates (QPE) is one of the NEXRAD 

products that are available in a high temporal and spatial resolution compared with gauges. 

Radar-based QPEs have been widely used in many hydrological and meteorological 

applications; however, a few studies have focused on using radar QPE products in deriving 

of Precipitation Frequency Estimates (PFE). Accurate and regionally specific information on 

PFE is critically needed for various water resources engineering planning and design 

purposes. This study focused first on examining the data quality of two main radar products, 

the near real-time Stage IV QPE product, and the post real-time RFC/MPE product. 

Assessment of the Stage IV product showed some alarming data artifacts that contaminate 

the identification of rainfall maxima. Based on the inter-comparison analysis of the two 

products, Stage IV and RFC/MPE, the latter was selected for the frequency analysis carried 

out throughout the study. The precipitation frequency analysis approach used in this study is 

based on fitting Generalized Extreme Value (GEV) distribution as a statistical model for the 

hydrologic extreme rainfall data that based on Annual Maximum Series (AMS) extracted 

from 11 years (2002-2012) over a domain covering Louisiana. The parameters of the GEV 

model are estimated using method of linear moments (L-moments). Two different 

approaches are suggested for estimating the precipitation frequencies; Pixel-Based approach, 

in which PFEs are estimated at each individual pixel and Region-Based approach in which a
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synthetic sample is generated at each pixel by using observations from surrounding pixels. 

The region-based technique outperforms the pixel based estimation when compared with 

results obtained by NOAA Atlas 14; however, the availability of only short record of 

observations and the underestimation of radar QPE for some extremes causes considerable 

reduction in precipitation frequencies in pixel-based and region-based approaches.
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