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Chapter 1: Introduction 

1.1 Background 

Annual average daily traffic, also known as AADT, or sometimes referred to as traffic count 

data, is defined as the total volume of vehicle traffic on a highway or road during a year 

divided by 365 days, and it is a measure used for transportation planning and transportation 

engineering purposes, which include: roadway geometric and pavement design (pavement 

thickness and width, horizontal curve radii, etc.), transportation forecasting (using current-

year AADT to compare to an expected AADT in a future year), travel model validation, 

roadway safety design and analysis (estimating the number of crashes on a segment of 

roadway, design of highway safety devices, etc.), and air quality compliance, among others. 

Some example types of applications that require AADT as a data input include SafetyAnalyst, 

Highway Safety Manual (HSM) model functions, and several types of pavement design 

software (e.g. MichPAVE, KENSLAB, KENLAYER) 

 

AADT data can be collected by either using automatic traffic recorders (ATRs) permanently 

located along a particular highway or road that give continuous traffic count data or portable 

temporary traffic recorders, which can be used for short-term traffic counts, generally for two 

to three days (1). Examples of each type of traffic counter are shown in Figure 1:
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Figure 1: Permanent (Left) and Portable Temporary (Right) Traffic Counting Devices 

Images Courtesy of: Flickr Profile Rob Klug (Left) and City of Knoxville, Tennessee 

Traffic Engineering Division (Right) 

 

While most State Departments of Transportation (DOTs) have collected and predicted 

AADT for the aforementioned transportation planning and engineering purposes (2), most 

non-state (municipal and county) agencies responsible for transportation planning and 

engineering do not have complete or even extensive AADT data, primarily due to budgetary 

constraints (high costs) for resources to collect AADT on non-state roads (3). The high cost 

of collecting AADT for every local road can be attributed to the large proportion of a 

roadway network that is non-state maintained, especially at the county level. Because of 

these limitations in obtaining adequate AADT data for local roads, methods for obtaining 

AADT data must be developed. These methods could include: regression models where 

several independent variables could be associated with AADT (e.g. demographic data), 

clustering and regression trees analyzing AADT for roadways with similar characteristics, 

neural networks, travel demand modeling at the tax parcel level, universal kriging, and vector 

regression with data-dependent parameters. Each method has particular advantages as well as 

disadvantages in estimating AADT for local roads, and some of these methods account for 

any potential changes in AADT (e.g. seasonally, weekly). Each research project and the 
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results from the studies are explained further in more detailed literature reviews in Chapter 2: 

Literature Review. 

 

Within the State of Louisiana, the Louisiana Department of Transportation and Development 

(DOTD) provides traffic count data for the 16,000-mile state-highway network on a 

relatively frequent basis (generally every three years), and most of the major cities in the 

state (e.g. New Orleans and Baton Rouge), as well as their respective Metropolitan Planning 

Organization (MPO), generally provide traffic count data for the locally maintained roads 

within a particular MPO study area. However, since most parishes and municipalities do not 

maintain traffic count data for roads within their jurisdiction due to the aforementioned costs 

associated with AADT collection, the DOTD has collected traffic count data on these roads 

in previous years. While more count stations are located on non-state roads than state-

maintained highways, AADT data for local roads is not as adequate as on the state highways, 

generally due to these reasons: the limited availability of this data, the infrequent updating of 

the data, if at all, and in some locales, traffic count data on a particular road having not been 

counted in over twenty years. This results in traffic count data that is inadequate for use in 

current transportation planning and engineering. Since approximately three-fourths of all 

road mileage in Louisiana is maintained by local governments (parishes and municipalities), 

estimating AADT on non-state roads is important. 

1.2 Objectives 

As mentioned, estimating AADT for local roads is important in transportation planning and 

engineering; therefore, proper methodology in determining a way to estimate AADT for non-

state roads in Louisiana is necessary since AADT data for these roads is not collected as 

frequently as for state highways. An emphasis is made in developing a methodology for rural 
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roads as these roads constitute the majority of the statewide roadway network, but AADT 

estimation in small urban areas (smaller municipalities not within an MPO) is to be 

considered since the smaller municipalities do not have resources to collect AADT like the 

majority of the Parishes in the State. The identification of all variables that could be related 

to AADT estimation, including demographic and roadway information, as well as the 

exploration of the relationship between these variables and AADT, is important in 

developing a methodology for estimating AADT on local roads. Once the variables that are 

related to AADT have been identified, a reliable and practical methodology is to be 

developed for the estimation of AADT. Different types of model equations (linear, Poisson, 

etc.) are to be developed to finalize the selection of model type and can be based on several 

conditions. A validation of the model through the comparison of the actual collected traffic 

counts with the estimated AADT can show how reliable and practical the developed model is 

in estimating AADT. Due to the differences in the demographic, roadway, and AADT data 

throughout Louisiana, more than one final model to estimate AADT for local roads in 

Louisiana is to be developed to account for these differences throughout Louisiana.



 

 

Chapter 2: Literature Review 

2.1 Background 

Previous studies to estimate AADT focused on two types of approaches: mathematical model 

development and machine learning algorithms. Commonly used in engineering disciplines, 

mathematical models are representations, in mathematical terms, of the behavior of real 

devices and objects (4). Mathematical models can be developed through the use of linear 

regression, parcel-level trip generation, and spatial grids with the latter two being more 

related to this study.  Although mathematical models are relatively simple to run, these 

models can only run at an aggregated level. Machine learning algorithms, which 

automatically learn programs from the available data, can figure how to perform important 

tasks by generalizing from example (5). Some types of machine learning algorithms include: 

clustering, support vector machines (SVR), fuzzy algorithms, and kriging methods. In 

addition, all of these studies mentioned the importance of AADT in transportation 

applications. 

2.2 Mathematical Model Development 

2.2.1 Regression  

F. Zhao and S. Chung (3) used GIS and regression to estimate the AADT in Broward 

County, Florida, a suburban county located along the East Coast of Florida, north of Miami 

and east of the Everglades. Their report was based on previous studies, including one where a 

regression model for estimating AADT on non-state-owned roads in Broward County, 

Florida that included predictors such as: functional classification, the number of lanes, area 

type, auto ownership, presence of nearby non-state roads, and service employment. Initial 

predictors included: roadway characteristics, socioeconomic characteristics, accessibility to 
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Expressways, and regional accessibility to employment. Roadway characteristics, which 

were obtained from the Broward County MPO, included: the number of lanes on a roadway 

(as of 1998), the area type (the land use type e.g. residential, commercial), and the functional 

classification. Socioeconomic characteristics include: employment size along a corridor near 

a group of count stations, employment, population, and total dwelling units around a count 

station, and the employment and population around a count station aggregated using buffer 

sizes based on functional classification. Accessibility to expressways incorporate the 

minimum distance to an expressway (Interstates and Florida’s Turnpike Enterprise Toll 

Roads (6)) access point from a count station, minimum travel time in minutes from a count 

station to an expressway access point based on minimum travel speeds for each type of road, 

the number of expressway access points within a four-mile radius from a count station, and a 

binary variable to account for roads connecting to an expressway. Regional accessibility to 

employment includes these variables: network distance to regional mean centers of 

employment and population, regional accessibility to population and employment centers, 

and regional accessibility to population and employment defined as the product of the 

regional accessibility measures. Based on the preliminary analyses, six independent variables 

were used to generate four regression models, and all four models showed a strong 

relationship between the independent variables and AADT as well as having no 

multicollinearity among the independent variables. The final results from this study showed 

that the more independent variables used, the better a model would perform, and the choice 

of a model would likely be based on the data processing cost, though this data is generally 

available and easy to process. However, this study did realize that the current models may 

not be adequate in meeting the need of engineering design or the calibration of travel demand 
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models, but the performances of the models have shown improvements. Future work for this 

study includes the examination of spatial patterns of errors resulting from the different 

models and the reasons the errors occur. 

2.2.2 Parcel-Level Trip Generation 

T. Wang, A. Gan, and P. Alluri (7) developed a method to estimate AADT on local roads in 

Florida using a travel demand modeling method with a major component involving a parcel-

level trip generation estimating the trips generated by each parcel. The interest of deploying 

SafetyAnalyst on all roads in Florida by the Florida Department of Transportation (FDOT) is 

a primary reason for this study since AADT is a required input for the program and FDOT 

does not have this data for local roads.  This study, which attempted to improve on regression 

models that were developed by Q. Xia et al., examined several existing methods for 

estimating AADT in Kentucky, Alabama, Minnesota, and Indiana. It also included Broward 

County’s regression models to estimate AADT. Other methods for estimating AADT were 

based on high-resolution satellite images and aerial photographs as well as machine learning 

algorithms. A study using travel demand modeling, although rare, was used in New 

Brunswick, Canada, and was included as a basis for this study. Parcel-level demand analysis 

incorporated four steps based on standard trip generation and trip assignment: network 

modeling defining the boundaries of the study area, parcel-level trip generation estimating 

the number of vehicle trips generated by each parcel, parcel-level trip distribution 

determining where each generated trip by each parcel will do, and parcel-level trip 

assignment predicting the routes the travelers will take to reach the traffic count sites on 

major roads which results in the estimated AADTs on local roads in the study area. Model 

development was performed by two development tools: ESRI’s ArcGIS, which preprocesses 
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the input data for the model, and Citilabs’ Cube, which builds the highway network from the 

roadway shape file. To evaluate the model, a sample of count sites was selected to compare 

the actual to estimated AADT values. The parcel level trip generation greatly improved the 

estimated AADT versus the overestimated AADT resulting from the regression 

methodology. The reason for the overestimated AADT was due to the regression method’s 

inability to recognize that the layout of local roads was meant for only minimal, if any, 

through traffic. 

2.2.3 Alternative Methods to Traditional Sampling 

W. Seaver, A. Chatterjee, and M. Seaver (8) developed a better understanding of traffic 

volumes on local roads in Georgia through the use of alternative methods for estimating 

AADT to the traditional sampling approach that is currently used for FHWA’s Highway 

Performance Monitoring System (HPMS). In traditional sampling approach, the entire 

roadway network is broken into discrete segments having uniform characteristics of physical 

features and anticipated traffic volumes, and the road segments are stratified according to 

functional class and volume groups. Due to the difficulties in obtaining complete inventory 

data for local roads for sampling purposes as well as the substantial use of resources in 

preparing for traditional sampling, innovative alternative methods for estimating traffic 

counts were considered to be more practical. These innovative methods include: spatial grids, 

the development of mathematical models to estimate local road volumes, and the 

combination of different approaches. Spatial grids can be set up in each county and a 

selection of a sample of grids could be done through the use of a randomized procedure. A 

sample of local road segments within the selected grids then can be identified by using the 

same randomized procedure again. Mathematical models, which have been a common 



9 

 

practice for transportation planning and can be used in estimating existing traffic volumes for 

reducing costs associated with a traffic volume count program, can be fairly simple and are 

based on “trend analysis.” In addition, since traffic volumes on rural local roads do not 

typically undergo drastic changes over time and are usually quite low, the amount of data 

required for model development and subsequent adjustment is not expected to be very large. 

The combination of different approaches can be practical as well as cost-effective due to the 

varying characteristics in the roadway conditions and location. Four road types (Non-Atlanta 

urban areas, small urban areas, and all rural roads-paved or otherwise) and their 

characteristics were analyzed within 80 of the 159 counties in Georgia. The initial models, 

with a total of 45 variables considered, were poor in predictability, but a stratification of 

counties based on their location within or outside a Metropolitan area was used to anticipate 

differences in the amount of rural traffic. The developed models can be used to estimate 

AADT in counties in Georgia that were not included in this study, thus reducing the need for 

resources to collect AADT on rural roads within the state. 

2.3 Machine Learning Approach 

2.3.1 Universal Kriging 

B. Selby and K. Kockelman (1) studied the use of Universal Kriging for Spatial prediction of 

AADT in unmeasured locations in Texas. A state department of transportation typically has a 

few hundred permanently located automatic traffic recorders (ATRs) in conjunction with tens 

of thousands of portable count stations for short-term count samples that can be spaced far 

apart due to limited resources. In addition, the FHWA requires counts on high volume roads 

to be collected every three years, while counts on other roads can be sampled every six years. 

An FHWA recommendation is that AADT estimates should be within ten percent of the 
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observed AADT values. Universal kriging is a geostatistical technique used to harness 

known local conditions influencing count and road network spatial information about 

measured locations; this technique involves spatial interpolation as well as making use of 

local information (lane count, population, etc.) and drawing on residuals in prediction from 

nearby sites. Universal kriging is just one of three types of kriging; the other types of kriging 

are simple kriging and ordinary kriging. In simple kriging, the value of interest at a location 

is predicted directly from nearby values based on semivariogram, which depicts the spatial 

autocorrelation of the measured sample points, and a known global mean. In ordinary 

kriging, a slightly more complicated method is used, requiring the process to estimate an 

unknown mean as well as the semivariogram. However, since the global-meal assumption 

cannot be used for this project, universal kriging was used. Previous studies for both future 

year (using current and past traffic data to estimate counts at the same location at future 

dates) and current year (estimating counts at a location whose traffic flow have not been 

measured and uses data from nearby locations during the same time period) prediction 

methods were studied for this project and include: Box-Jenkins, neural network, 

nonparametric regression, Gaussian maximum likelihood, “support vector regression with 

data-dependent parameters,” geographically weighted regression (weighted least squares), 

and restricted maximum likelihood (REML). In addition to universal kriging, Box-Cox 

transformation, a likelihood-maximizing power transform giving skewed data a more normal 

distribution, for all traffic counts was used. Weighted least squares (WLS) was chosen over 

REML due to the ease of implementation, comparable performance from J.K. Eom et el.’s 

(2006) work, and the fact that WLS does not require the assumption of the error term’s 

distribution. The estimation of the model parameters was done by using a randomly selected 



11 

 

collection of the data points from each regional sample analyzed. Although the model uses 

Box-Cox transformed AADT values, to work directly with AADT estimates, the reverse 

transformation was used. The models developed used data from the year 2005 in Texas, 

which includes both large metropolitan areas (Houston and Dallas-Fort Worth) as well as 

sparsely populated lands (primarily West Texas), and the sample counts, obtained from the 

Texas Department of Transportation (TxDOT) came from all types of roads in the state. The 

variables used include the speed limit, number of lanes, and functional class of the roadway 

segment obtained from TxDOT. A marginal preference for the exponential semivariogram 

was the result for the test on the subsets of data, and no strongly favored model was shown 

for the other regional data sets. The median percentage errors show an inconsistent bias 

hovering near zero on both sides, and the average absolute errors are very high for many of 

the subsets. Euclidean distance-based kriging fared about as well as network-based metrics, 

thus suggesting that the latter’s complexity is not warranted in these applications. 

2.3.2 Vector Regression 

A study in Tennessee by M. Castero-Neto, Y. Jeong, M. Jeong, and L. Han (2) used support 

vector regression with data-dependent parameters to predict AADT within the state of 

Tennessee. The objective of the research was to evaluate the performance of a modified 

version of the support vector machine for regression (SVR) technique for forecasting AADT 

one year into the future without use of any external, or predictor, variables. The attention of 

SVR has been increasing due to its remarkable characteristics, good generalization 

performance, absence of local minima, and sparse representation of solution; however, the 

computation of adequate SVR parameters is crucial to the quality of SVR models developed. 

The quality and performance of SVR models depend on the settings of these three 
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parameters: the type of kernel, the value of C, and the value of ε for the ε-insensitive loss 

function. For any particular type of kernel, the quality and performance of the SVR models is 

affected by the values of C and ε. In a previous study by D. Mattera and S. Haykin (1999), 

the proposed value of C being equal to the range of the output values (AADT) resulted in a 

non-robust approach to the outliers as later determined by V. Cherkassky and Y. Ma (2004), 

whose approach was based on training data that did not resort to resampling. An advantage of 

this approach was the possible robustness to possible outliers. For short-term forecasts, 

exponential smoothing (ES) methods (in this study, Holt-ES) can be very effective, but due 

to the forecast pattern being linear, these methods may not perform well for multiple-step 

ahead forecasts. For this study, Tennessee Department of Transportation (TDOT) data was 

used, and their database contains AADT data collected annually since 1985 for more than 

10,000 count stations strategically located throughout all counties within the state. The 

AADT data was aggregated based on the county and the type of road (rural and urban). A 

total of 25 counties in Tennessee were selected, resulting in 50 time series, in which three 

forecast methods applied: SVR-DP, Holt-ES, and OLS-regression. The mean absolute 

percent error (MAPE) and root-mean-square deviation (RMSD) represented the performance 

of the models over the five predictions (AADT from 2000 to 2004). Results from this study, 

which are detailed in Table 4, explain that the average MAPE and RMSE for the SVR-DP 

technique was the lowest of the three techniques, while the OLS technique had the highest 

model performance test values.  

2.3.3 Fuzzy Algorithm 

Because AADT can be affected by seasonal changes (e.g. more traffic in the summer than in 

the winter), M. Gastaldi, R. Rossi, G. Gecchele, and L. Lucia (9) proposed an approach to 
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estimating AADT for seasonal conditions. The Federal Highway Administration (FHWA) 

provides recommendations concerning traffic monitoring programs to transportation agencies 

based on portable and permanent count stations. The FHWA’s procedure could be affected 

by three sources of error: day-to-day variations in traffic volumes as traffic volumes fluctuate 

over time, grouping road segments into significant groups since ATR sites could belong to 

more than one road group, and assigning the road segments, along which Short Period Traffic 

Counts (SPTCs) and Permanent Traffic Counts (PTCs) were obtained to the right road group 

because large errors between estimated and observed AADT can be the result of incorrect 

assigning of a road section to a road group. Even with the errors that can result from 

FHWA’s current procedure, the proposed approach preserved the framework of the FHWA 

procedure and allowed analysts to deal with situations where road segments may appear to 

belong to more than one group and provide the degree of belonging to each group. The four 

step approach includes: the grouping of ATR sites with Fuzzy algorithm, assigning the road 

segment where the STCs are available, calculating the measures of uncertainty associated 

with assigning to road groups, and estimating AADT as a weighted average of STC volumes, 

adjusted by seasonal adjustment factors of the assigned road groups. This study used data 

obtained in the year 2005 at 50 ATR sites on the rural road network in the Province of 

Venice, Italy. To implement the model, three tasks were conducted: establishing road groups 

with the Fuzzy C-Means algorithm, developing artificial neural networks, and the calculation 

of AADT. Eight groups (five recreational and three commuter) were developed for the STCs, 

with AADT estimated for three timeframes: one complete week, the weekdays (Monday 

through Friday), and each day of the weekend (Saturday and Sunday). To analyze the 

accuracy of the resulting AADT estimates, MAPE and Standard Deviation of Absolute 
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Percent Error (SDAPE) were used. Some conclusions that can be made from this study 

include: AADT estimates based on weekdays are typically more accurate than those obtained 

on weekends, which can be explained through the noting that weekday traffic patterns are 

generally more stable than on the weekends, AADT estimated based on average daily 

volumes make a balance among estimates obtained from single day volumes and thus 

maximizing the information available from the STC, recreational roads have larger MAPE 

and SDAPE than commuter roads due to tourism along the Venice coast, and the Summer 

(July-August) and Winter (November-December) months have larger error values than the 

rest of year, particularly in the Spring (March-June). Future work for this report could 

include extending the work to consider the influence of the socioeconomic and land use 

characteristics of the environment of the particular road section in question. 

2.3.4 Forecasting Errors through Clustering 

M. Dixon of The National Institute for Advanced Transportation Technology (NIATT) at the 

University of Idaho (10) studied the effects of errors in AADT forecasting for highways in 

rural Idaho. Since funding for transportation projects is always an issue due to limited 

funding available for all transportation projects, making critical decisions in an informed 

manner is always important. In addition, forecasted AADT volumes are required for use in 

selecting transportation projects, but inaccurate traffic volume forecasts are responsible for 

additional costs associated with over and under design. The current practice for forecasting 

AADT in Idaho is based on annual growth rates representing the average percent increase in 

AADT volume per year, but the accuracy of the forecasts have come into question by 

transportation professionals. The methods for forecasting traffic counts evaluated in previous 

studies in this report include: time series forecasting methods, regression, neural networks, 
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and clustering. The first three methods are models to forecast AADT, and clustering is a 

method combining groups of traffic count stations based on data similarities. The variables, 

which were assumed to be independent of each other due to the low correlations among each 

other, used for clustering were: functional class of the roadway, county population and its 

annual growth rate, and AADT. To easily explain the results of clustering, a classification 

and regression tree (CART) method is readily implemented, and this method allows the 

addition of many variables to create subsets of data having similar characteristics while 

reducing the variability in the dependent variable (annual AADT growth rate). In addition, a 

sensitivity analysis was conducted to verify the suitability of the CART method, as this 

method has not been used previously to forecast AADT, and the process in the sensitivity 

analysis was repeated eight times to establish a confidence interval of the mean error. The 

final calibrated regression tree incorporated traffic count data at automatic count stations 

from 1980 and 1990, and rural portable count locations were used to complete a validation 

test of the final regression tree. As the importance of this project was to assess the impacts of 

AADT forecasting errors in applications for transportation planning and design, two 

applications were chosen: the overlay thickness, which requires the equivalent single axle 

load (ESAL), and level of service (LOS), the effects of the errors were compared for both 

applications. Although the existing Idaho Transportation Department (ITD) method of 

estimating AADT was more accurate, the CART method was considered to be more 

promising due to its ease, the small amount of data in the calibration data sets, and the 

potential to update the ITD growth factors more frequently.



 

 

Chapter 3: Methodology 

3.1 Data Collection 

3.1.1 Parish Selection 

The selection of the parishes for the development of the model was based on the varying 

characteristics of the parishes in Louisiana (demographic, number of counts, etc.). The 

following considerations were made in the selection of the parishes for model development: 

 Type of parish (Urban, Suburban, or Rural)  

o Population within the parish  

o Small urban area may be located within parish (e.g. Crowley) 

 The location of the parish within Louisiana (both North and South Louisiana) 

 Interstate accessibility (four parishes)  

 The number of count stations within the parish (the more counts the more likely the 

parish would be selected). 

No major urban or suburban parishes were used in the development of the model, as traffic 

counts are collected on a regular basis in the State’s urbanized areas from both the DOTD 

and Metropolitan Planning Organizations (MPO). The eight parishes considered in the model 

development are: 

 Interstate Parishes 

o Acadia  

o Avoyelles 

o Natchitoches 

o Webster 

 Non-Interstate Parishes 

o Claiborne  

o Franklin 

o Vermilion 

o Washington
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Of the four parishes selected that have Interstate access within the parish, Interstate 10 

traverses Acadia Parish, Interstate 20 traverses Webster Parish, and Interstate 49 crosses 

Avoyelles and Natchitoches Parishes. Washington Parish is the only parish selected that does 

not have direct access to either Interstates or United States Highways. Figure 2 shows the 

eight selected parishes as well as the location within Louisiana of each parish, and Table 1 

details the average population and the number of count stations of a particular parish. 

 

Figure 2: Location, Population, and Number of Count Stations in Louisiana 

Average Population (2010) 40,970 

Average Number of Count Stations 959 

DOTD Districts Selected and Number of 

Parishes within District 

Dist. 03: 2 (Acadia, Vermilion) 

Dist. 04: 2 (Claiborne, Webster) 

Dist. 08: 2 (Avoyelles, Natchitoches) 

Dist. 58: 1 (Franklin) 

Dist. 62: 1 (Washington) 

 

Table 1: Information on Selected Parishes 

 

As shown in Figure 2, no parishes were selected in the more populated and urban/suburban 

Southeastern Louisiana except for Washington Parish. The population (2010 Census) in 
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several of these parishes exceeds 100,000 (East Baton Rouge, Jefferson, Orleans, St. 

Tammany, Livingston, Ascension, and Terrebonne, in addition to Lafourche with a 

population just below 100,000), and the number of count stations in most of the parishes with 

smaller populations is considerably smaller than in most of the remainder of the State. The 

population documented in the 2010 Census and the number of count stations in all sixty-four 

parishes in Louisiana is detailed in Appendix A.  

3.1.2 Roadway Data 

3.1.2.1 AADT 

The DOTD collects traffic counts at 5,067 permanent or portable count locations on the state-

maintained highways and has provided 43,755 counts on non-state roads throughout 

Louisiana. On most state highways, counts have been collected within the last three years; 

however, no traffic counts have been collected on non-state roads since 2011, and few counts 

have been collected after 2006. Local AADT data is provided in a non-state dataset by the 

DOTD, and Appendix B describes the attributes of this table. Figure 3 details the locations 

of non-state counts within Acadia Parish. 

 

Figure 3: Locations of Counts within Acadia Parish 
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3.1.2.2 Roadway Network 

The Louisiana highway and road network consists of 61,093 miles, including state-

maintained highways, parish roads, and city streets, and the statewide network is shown in 

Figure 4.  

 

Figure 4: Louisiana Roadway Network 

In Figure 4, state-maintained highways are depicted in blue, parish-maintained roads are 

depicted in green, and municipal owned streets are depicted in purple. Local roads account 

for approximately seventy-three percent of all roadway mileage in Louisiana, totaling over 

44,000 miles. Appendix C details the attributes for the statewide roadway network dataset. A 

notable fact about Louisiana’s roadway network is that Louisiana ranks tenth in the nation in 

the proportion of highways and roads that are state-maintained, primarily due to several miles 

of state highways that only serve a local purpose; because of this, the DOTD has initiated a 

voluntary highway transfer program allowing parishes and municipalities to take ownership 

of a particular road with the State funding any construction-related costs on that particular 

road before transfer to the parish or municipality (11). 

Roadway Data on 

ArcGIS obtained 

from LADOTD 
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3.1.2.3 Interstates and Major Highways 

Two of the variables to be considered in the model determination are related to the shortest 

distance to Interstate and major state highways, and both of these types of highways have to 

be established before deriving a shortest distance from the count location to a particular 

highway. Figure 5 shows the Interstates within Louisiana. 

 

Figure 5: Interstates within Louisiana 

Image Courtesy of Louisiana DOTD 

 

Although six major Interstates and six Loop/Spur Interstates exist within Louisiana, only 

three Interstates were considered in the study, including: 

 Interstate 10, the east-west Interstate through South Louisiana from the Sabine River 

at the Texas State Line to the Pearl River, part of the State Line with Mississippi, 

passing through Lake Charles, Lafayette, Baton Rouge and New Orleans along its 

274 mile trek through Louisiana 
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 Interstate 20, the east-west Interstate through North Louisiana between Texas and 

Mississippi, passing through Shreveport/Bossier City and Monroe on its 190 mile 

journey in the State 

 Interstate 49, the State’s major north-south Interstate, with its southern terminus in 

Lafayette and passing through Alexandria and Shreveport before entering Arkansas.1

Although Interstates 12, 55, and 59 are also important in Louisiana, these Interstates are 

located in urban/suburban New Orleans and Baton Rouge, as well as most of the Loop and 

Spur Interstates with the exception of Interstates 210 (Lake Charles) and 220 

(Shreveport/Bossier City). Future Interstates within Louisiana include the North and South 

extensions of Interstate 49 and an all-new Interstate 69 in Northwestern Louisiana (12, 13, 

and 14). 

 

The second variable (distance to major highways) is required as not all areas in Louisiana are 

directly accessible by Interstates, as shown in Figure 5. Notable areas in Louisiana without 

Interstate access are Northeastern Louisiana (only east-west Interstate 20 crosses this part of 

Louisiana) and South-Central Louisiana (although Interstate 49 is planned to be extended 

through this area of the State). However, all parishes do have major highway access, and 

most areas within the State without nearby Interstate access have access to four-lane major 

highways, including: 

 United States Highway (Hwy.) 90 between Lafayette and New Orleans (future 

Interstate 49 South corridor), with portions of the highway now controlled-access, 

                                                 
1 Segments of Interstate 49 are under construction between Interstate 220 in Shreveport and the Arkansas State 

Line. The segment between Interstate 20 and Interstate 220, the “Inner City Connector”, is in the planning stage 

as of October 2014. (14 and 15).  



22 

 

including around New Iberia, western St. Mary Parish, and from Morgan City to 

Raceland bypassing Houma-Thibodaux 

 United States Hwy. 165 between Iowa and the Arkansas State Line; passing through 

Alexandria and Monroe 

 United States Hwy. 167 from Alexandria to the Arkansas State Line; passing through 

Ruston 

 United States Hwy. 171 from Lake Charles to Shreveport; passing through DeRidder, 

Leesville and Fort Polk 

 United States Hwy. 425 from the Mississippi State Line near Natchez, Mississippi to 

the Arkansas State Line. 

Most of these highways are north-south since Interstate 49 is the only Interstate that traverses 

north-south through most of Louisiana. Some of the other important United States and State 

highways considered in the study include: 

 United States Hwy. 71, the main north-south United States highway through Western 

Louisiana, passing through Alexandria and Shreveport 

 United States Hwy. 79 from Minden to the Arkansas State Line, passing through 

Homer 

 United States Hwy. 80, north Louisiana’s primary east-west United States highway 

 Louisiana Hwy. 1, the State’s longest highway of any classification (Interstate, United 

States, State), from Grand Isle to the Texas State Line in far Northwestern Louisiana 

 Louisiana Hwy. 2, North Louisiana’s primary east-west State highway 

 Louisiana Hwy. 9, from Natchitoches Parish to Homer in Claiborne Parish 
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 Louisiana Hwy. 14, from Lake Charles to New Iberia passing through eastern 

Calcasieu, Jefferson Davis, Cameron, Vermilion, and Iberia Parishes. 

The determination of a major highway for the shortest distance to major highway analysis 

within a particular parish is based on the following types of highways: 

 United States Highways (e.g. United States Hwy. 90), since these highways are the 

highest-order highways in Parishes without Interstate access 

 Trans-parish (i.e. parish line to parish line) State Highways that serve as a relatively 

direct connection to the neighboring parishes, which is considered especially in 

parishes without either Interstate or United States highway access 

 State Highways with a terminus (end point) within the study parish and serving as the 

main route to the Parish Seat of a neighboring parish. 

Most of the State Highways considered for analysis are one or two-digit highways (e.g. 

Louisiana Hwy. 1 or Louisiana Hwy. 14), since the majority of these highways carry more 

traffic than other state highways. Nonetheless, since many of Louisiana’s state-maintained 

highways serve only a local importance themselves, these highways were not considered as 

major highways when determining the shortest distance from a count station to a major 

highway access point due to their lower-level importance in the state highway network. 

Appendix E shows the types of major highways that were considered. 

3.1.2.4 Deriving Shortest Distance 

Using ArcGIS, the shortest distance between a count location and access point to an 

Interstate or major highway can be determined. The ArcGIS feature used was the Closest 

Facility Analysis, which requires the following: 
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 Incidents, which for this analysis, is the location of the count stations 

 Facilities, which for this analysis, is either where an on-ramp merges with the 

Interstate mainlanes or at an intersection of a local road with a major highway. 

In addition, to prevent any portion of the route between the count station and the Interstate 

from accessing the Interstate where no actual access exists (i.e. where a street crossed the 

Interstate at a grade-separated non-interchange), point barriers were implemented along an 

Interstate where a local road crosses the Interstate or where the route would have a possibility 

of traveling the wrong way on a divided major highway. This was done to prevent wrong-

way traveling and accessing an Interstate improperly. Because the route from the count 

stations to the nearest major state highway will not include any major highways (divided or 

undivided) or Interstates, point barriers were not needed for the shortest distance to major 

highway analysis. The step-by-step process in calculating the shortest distance from the count 

station to an Interstate or major highway is as follows: 

1. Load all count stations as Incidents 

2. Load all access points to the Interstate as Facilities 

3. Run the program by clicking SOLVE, which gives the shortest paths to an 

intersection with major highway or Interstate on-ramp as “routes.” 

The point barriers must be loaded for the shortest distance to Interstate analysis due to the 

aforementioned possibilities that the “route” will access the Interstate at a location where 

access to the Interstate is not allowed (route suddenly accessing grade-separated intersection) 

or the “route” travels the wrong-way to an Interstate access point. An example of the shortest 
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route between a count station and Interstate or major highway access is shown in Figure 6 

and Figure 7. 

 

Figure 6: Example Shortest Distance to Interstate Analysis in Acadia Parish 

 

Figure 7: Example Shortest Distance to Major Highway Analysis in Acadia Parish 

In both of the above figures, the routes from the count station (green triangles) to an 

Interstate/major highway access point (red circles) are depicted in blue along the roadway 

network. The point barrier feature is shown as with a white “X” inside a red circle, as shown 

in Figure 6. However, some routes between the count station and Interstate/major highway 
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access may not have been determined due to these reasons: the location of the count station 

not locking to the roadway network, or the count station is located along a segment of 

disconnected network, typically near parish lines. Typically, manual measurement to the 

shortest path by calculating the distance from the problematic count station location to a 

count station where a “route” to major highway or Interstate access was determined. 

3.1.3 Census Data 

3.1.3.1 Geographic Units 

All Census demographic and geographic data, updated as of the most recent Census in 2010, 

was obtained from two sources: the demographic information from the American FactFinder, 

and the block shapefiles from TIGER. Census data is subdivided into three units within each 

parish: Tracts, Block Groups, and Blocks (16, 17, and 18). Each of these units is further 

detailed below:  

 Tract: The highest-level geographic unit, relatively permanent statistical subdivisions 

of a parish, generally defined to contain 1,200 to 8,000 people, identified with an 

integer number of up to four digits, and special codes exist for special land-use tracts 

with little or no population (9800s) or to cover large bodies of water (9900s) 

 Block Group: The intermediate-level geographic unit, the division of tracts and 

clusters of blocks, generally defined to contain 600 to 3,000 people, identified as first 

digit of the block code (for example if a particular tract has blocks 2000, 2001, 2002, 

etc., then those blocks belong to block group 2 of that particular tract) 

 Block: The lowest-level geographic unit, the division of block groups, generally 

small statistical areas bounded by visible features such as roads, streets, small bodies 



27 

 

of water, or railroad tracts, all blocks are numbered between 0000 and 9999, and 

blocks beginning with zero are water-only blocks (i.e. 0XXX). 

A map comparing two of the Census geographic subdivisions for Acadia Parish is shown in 

Figure 8. 

 

Figure 8: Census Tracts (left) and Census Blocks (right) for Acadia Parish 

The amount of available demographic and economic data from the Census website is based 

on the geographic subdivision of each parish, with more readily available data at the Tract 

level than the lower two levels. While data at the Census Block level is more accurate than at 

the Tract level, the amount of available demographic and socioeconomic data at the Block 

level is considerably lower. The shapefiles obtained from TIGER show the shape of each 

Census subdivision and its geographic attributes. Appendix F gives an explanation to these 

attributes.  

3.1.3.2 Demographic and Socioeconomic Data 

Demographic and socioeconomic data for each Census geography in 2010 obtained from 

Census’ American FactFinder include, but are not limited to, the following: population, 

households, employment, and travel time to work.  The Census demographic data sets for the 

Census Geographic Features on ArcGIS from 

TIGER  
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population and number of households in the study parish include both rural and urban 

subtotals within the Census geographic subdivision, which was used in the data processing to 

separate into rural and urban data sets. 

3.2 Data Processing 

3.2.1 Merging Census Geographic and Demographic Datasets 

The Census geographic and demographic data is initially provided in separate data sets, and 

before any models can be developed, these sets must be merged. This three-step process was 

used to merge the two data sets: 

1. Add both data sets to ArcGIS 

2. Use ArcGIS’s Join feature to merge the tables, with the required attributes from both 

tables: the GEOid from the Census geographic shapefiles and the GEOID2 from the 

Census demographic data  

3. The merged table has both demographic and geographic data 

This merged dataset can be used to determine the demographic and socioeconomic 

information of the Census geographic subdivision. However, if the data is not available for a 

particular geographic unit, then Longitudinal Employer-Household Dynamics is to be used to 

collect the data not available. 

3.2.2 Merging Census and Roadway Data 

Once the Census data sets have been merged, then this merged Census data set is combined 

with the AADT data set to create a data set of all interested variables that can be used in 

model development. Figure 9 shows the process in merging data, with Acadia Parish as an 

example (The remaining counts are shown in parenthesis). 
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Figure 9: Data Merging Process for Acadia Parish 

Initially, the geographic dataset includes information on all Blocks within a particular parish 

(3,106 Blocks in the example), while the AADT dataset includes all non-state and some state 

counts in a particular parish (1,172 counts). Because some counts in the non-state AADT 

database are on major state highways or Interstates, those counts are removed (1,155 counts 

remaining); following the removal of those counts, LEHD is used to locate which Block the 

count is located in. Because more than one count may be located within a particular Block, 

the third step averages the observed AADT and the distance to an Interstate or major 

highway of the count stations within a particular Census block (reducing to 819 counts). The 

fourth step merges the socioeconomic datasets that were collected from the LEHD datasets, 

which are available from the Census (19); this data is merged with the LEHD Residential 

Area Characteristics (RAC) economic (629 counts remaining). The final step in creating a 

data set with the roadway, demographic, and socioeconomic information is to remove any 

count stations that are located in urban areas (dataset containing 473 counts).   
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Afterwards, the rural dataset is processed further, and counts containing these three attributes 

are retained in the final dataset: 

 Counts greater than one-tenth of a mile from a major highway 

 Population of Block greater than five 

 Observed AADT less than 2,000 

Table 2 shows the changes from this data processing in an initial model development for 

Acadia Parish as an example. 

Attribute MAPE MAPE 

Change 

Number 

Remaining 

Percent 

Remaining 

Original 551.6% - 473 - 

Distance 

greater than 

1/10 mile from 

major highway 

449.0% 18.6% 346 73.1% 

Block 

Population 

Greater than 5 

440.2% 2.0% 315 91.0% 

ADT less than 

2,000 

379.1% 13.9% 309 98.1% 

 

Table 2: Data Processing Example for Acadia Parish 

In this example, the Mean Absolute Percentage Error (MAPE) improved between the initial 

and final rural datasets, and about two-thirds of the original rural dataset was retained in the 

data processing. The formula for calculating MAPE is detailed more in Chapter 4: Results. 
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3.3 Model Development 

3.3.1 Model Variables 

After all the required data had been collected and processed, the variables that would be used 

in the model development were determined, including the demographic, socioeconomic, and 

the roadway network data which are further detailed below: 

 TOTAL_POPULATION: the total population of the Census block that the count 

station is located in 

 TOTAL_JOBS: the number of jobs within the Census block 

 POPULATION_TO_JOB _COMPARISON: a factor to compare if the Census block 

was more residential (larger number of households) or more commercial (larger 

number of jobs); if the population was greater than the number of jobs, then a value 

of 2 was used, otherwise 1 

 DISTANCE_INTERSTATE; the shortest distance (in miles) between the count and 

Interstate access point (on-ramp merge with mainlanes) 

 DISTANCE_MAJOR HIGHWAYS; the shortest distance (in miles) between the count 

and intersection with major highway 

Because of the variations in the attributes for each parish (e.g. demographic, Interstate 

access), more than one final model was developed, with at least one for all parishes with 

Interstate access within the Parish and at least one for parishes not having Interstate access 

within the parish.  
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3.3.2 Creating an Initial Model 

JMP (“Jump”) software, a Graphical User Interface (GUI) software developed by the 

Statistical Analysis System (SAS) Institute, was used for model development and selection. 

Poisson modeling would be the final model selected. The results generated from JMP were 

used to determine the type of model to use and is shown in Figure 10. 

 

Figure 10: Model Results from JMP 

A major consideration in model selection is the use of probability tests (Chi-Square-, p-, 

and/or t-tests) to determine if a model and its parameters are statistically significant. If the 

probability of being greater than a particular probability test is greater than 0.05 (95% 

confidence interval or two-standard deviations), the model or parameter estimate is 

considered not to be statistically significant. Initial models studied include: OLS regression, 

exponential, Poisson, and negative binomial. Since AADT data is discrete, only the Poisson 

and negative binomial models would be explored further. The Poisson model would be 
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selected as that model was statistically significant (using the aforementioned probability 

tests). The basic equations for Poisson models are: 

 

ln(𝐴𝐴𝐷𝑇) = ( 𝑐 + ∑ 𝑘𝑖𝑥𝑖) 

𝐴𝐴𝐷𝑇 = 𝑒( 𝑐+∑ 𝑘𝑥𝑖) 

Where: 

xi is the ith independent variable of the model 

c is the intercept of model function 

ki is the coefficient of independent variable 

 

The first equation is a generalized linear model as the equation is in terms of the natural-log 

of the AADT. The first equation must be converted to AADT by taking the exponential of 

the linear portion of the first equation, resulting in the second equation. 

3.3.3 Results of Initial Poisson Models 

Using the JMP software, ten initial models were developed: eight Parish-specific models and 

two models combining the data from the four Interstate and four non-Interstate parishes, 

which are shown in Table 3 and Table 4 as well as Figure 11 to Figure 20. 
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MODEL 

TYPE 

FUNCTION 

Acadia AADT =  exp [5.587784 – 0.022865 *  (DISTANCE_TO_INTERSTATE) + 

0.100474 * (DISTANCE_TO_MAJOR_HIGHWAYS) + 0.001422 * 

(TOTAL_POPULATION) + 0.006517 * (TOTAL_JOBS) + 0.009075 * 

(POP_TO_JOB_COMPARISON)] 

Avoyelles AADT = exp [5.274059 + 0.006048 *  (DISTANCE_TO_INTERSTATE) – 0.015370 

* (DISTANCE_TO_MAJOR_HIGHWAYS) + 0.005035 * (TOTAL_POPULATION) 

– 0.004790 * (TOTAL_JOBS) + 0.158717 * (POP_TO_JOB_COMPARISON)] 

Natchitoches AADT = exp [4.985668 + 0.003497 *  (DISTANCE_TO_INTERSTATE) – 0.022803  

* (DISTANCE_TO_MAJOR_HIGHWAYS) + 0.003313 * (TOTAL_POPULATION) 

+ 0.004970 * (TOTAL_JOBS) + 0.186539 * (POP_TO_JOB_COMPARISON)] 

Webster AADT = exp [6.885442 + 0.001682 *  (DISTANCE_TO_INTERSTATE) – 0.099051 

* (DISTANCE_TO_MAJOR_HIGHWAYS) – 0.002901 * (TOTAL_POPULATION) 

+ 0.004136 * (TOTAL_JOBS) – 0.658609* (POP_TO_JOB_COMPARISON)] 

Combination AADT = exp [5.975311 + 0.006731 *  (DISTANCE_TO_INTERSTATE) – 0.053398  

* (DISTANCE_TO_MAJOR_HIGHWAYS) + 0.033997 * (TOTAL_POPULATION) 

– 0.037866 * (TOTAL_JOBS) – 0.375535* (POP_TO_JOB_COMPARISON)] 

 

Table 3: Poisson Model Functions for Parishes with Interstate Access 

 

MODEL 

TYPE 

FUNCTION 

Claiborne AADT = exp [5.153063 – 0.124589 *  (DISTANCE_TO_MAJOR_HIGHWAYS) 

– 0.000398 * (TOTAL_POPULATION) + 0.013775 * (TOTAL_JOBS) + 

0.027771 * (POP_TO_JOB_COMPARISON)] 

Franklin AADT = exp [6.262507 – 0.063446 * (DISTANCE_TO_MAJOR_HIGHWAYS) + 

0.006997 * (TOTAL_POPULATION) – 0.014393 * (TOTAL_JOBS) – 0.390779 

* (POP_TO_JOB_COMPARISON)] 

Vermilion AADT = exp [5.739465 – 0.017628  * (DISTANCE_TO_MAJOR_HIGHWAYS) 

+ 0.002380 * (TOTAL_POPULATION) + 0.005512 * (TOTAL_JOBS) – 

0.008011 * (POP_TO_JOB_COMPARISON)] 

Washington AADT = exp [5.724025 – 0.007453 * (DISTANCE_TO_MAJOR_HIGHWAYS) + 

0.000835 * (TOTAL_POPULATION) + 0.004292 * (TOTAL_JOBS) – 0.153256 

* (POP_TO_JOB_COMPARISON)] 

Combination AADT = exp [5.544503 – 0.025703  * (DISTANCE_TO_MAJOR_HIGHWAYS) 

– 0.000458 * (TOTAL_POPULATION) + 0.012488 * (TOTAL_JOBS) – 

0.026565 * (POP_TO_JOB_COMPARISON)] 

 

Table 4: Poisson Model Functions for Parishes without Direct Interstate Access 
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Figure 11: Acadia Poisson Observed versus Estimated AADT 

 

Figure 12: Avoyelles Poisson Observed versus Estimated AADT 
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Figure 13: Claiborne Poisson Observed versus Estimated AADT 

 

Figure 14: Franklin Poisson Observed versus Estimated AADT 
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Figure 15: Natchitoches Poisson Observed versus Estimated AADT 

 

Figure 16: Vermilion Poisson Observed versus Estimated AADT 
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Figure 17: Washington Poisson Observed versus Estimated AADT 

 

Figure 18: Webster Poisson Observed versus Estimated AADT 
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Figure 19: Interstate Parishes Poisson Observed versus Estimated AADT 

 

Figure 20: Non-Interstate Parishes Poisson Observed versus Estimated AADT 

The 45-degree line Observed=Estimated was included in each of the above figures to 

compare the estimated AADT values to the observed AADT values, and the closer the 

observations were to this line, the better fit the model was. All ten initial models (eight 

parish-specific and two combination) overestimated the AADT for lower observed AADT 

values (typically below 400) and underestimated the AADT for the higher observed AADT 

values (usually above 400), as shown where the Observed=Estimated line crosses the 

datasets. In addition, while the range of observed AADT values was between 0 and 2,000 
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(with the exception of Claiborne Parish), the range of the estimated values was more narrow 

(usually between 300 and 600), with the exception of the Natchitoches and Vermilion Parish-

specific models. The analysis of the estimated AADT range disregards the combination 

models since the maximum and minimum estimated AADT values for the combination 

models are similar to the overall maximum and minimum estimated AADT values from the 

parish-specific models. Because of the estimation errors detailed, no further analysis was 

performed for the Poisson model. 

3.3.4 Support Vector Regression 

Because the fit of the Poisson models was still poor even though among regression models, 

the Poisson model had the best fit, machine learning would have to be used, and support 

vector regression (SVR or support vector machine-SVM) was further studied due to its 

strong theoretical foundation, good generalization performance, the absence of local minima, 

and sparse representation of solutions. In addition, SVR can enhance prediction accuracy and 

provides an efficient way to compute SVR parameters. The quality and performance of the 

SVR models depend on the setting of three parameters: kernel type, value of the penalty for 

excess deviation during training (C), and error-term value for the ε-insensitive loss function 

(ε) (2). An open-source software programming language, R, is used to estimate AADT with 

these parameters: 

 SVM-Type, which in this study is eps-regression 

 SVM-Kernel, radial in this study 

 Cost, a value of 100 in the study 

 Gamma, a value of 1 

 Epsilon, a value of 0.1 
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In addition, the number of support vectors is determined before running the SVR analysis. 

Once all parameters are determined, R is used to run the SVR analysis. Also, the values can 

be graphically summarized to better analyze the results since the initial estimated values are 

not shown in the script window in R. Appendix G shows how to use R for model 

development as well as sensitivity analysis. 

3.3.5 Sensitivity Analysis 

To determine if the final model selection will be parish-specific (meaning a total of eight 

models) or combination (two models), a sensitivity analysis was conducted. In this sensitivity 

analysis, the minimum and maximum values of each independent variable of the combined 

parishes (four Interstate and four non-Interstate) were taken, and each independent variable is 

divided into twenty equal increments between and including the minimum and maximum 

values with the exception of the population to job comparison variable as the value of that 

variable is binary, either 1 or 2. Determining what type of model to use is based on the 

relationship among the parish-specific models; if the relationship among the individual 

models is similar, then a combination model can be used, but individual parish models must 

be used if no clear relationship among the individual models is shown to exist. The results of 

the sensitivity analysis is detailed in 4.1 Sensitivity Analysis.



 

 

Chapter 4: Results and Discussion 

4.1 Sensitivity Analysis 

Using SVR, a sensitivity analysis was conducted for two datasets, one for the parishes with 

Interstate access, and one for parishes without Interstate access. The sensitivity analysis was 

used to determine if individual models for each parish or one model for all parishes with and 

without Interstate access would be used. The results are detailed in Figure 21 and Figure 22. 

 

Figure 21: Sensitivity Analysis Interstate Parishes
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Figure 22: Sensitivity Analysis Non-Interstate Parishes 

The results of the sensitivity analyses above determined that individual parish models would 

have to be used since no clear relationship exists among the individual models. A likely 

reason for this unclear relationship is that the maximum values for the entire group of 

parishes may not be applicable to certain parishes. One notable observation from the results 

of the sensitivity analysis is the “plateau” that occurs in some models as the case number 

increases; this likely results when the values of all the independent variables exceed the 

maximum values of a particular parish before reaching the overall maximum values for the 

combination datasets. 

4.2 SVR Parish Models 

After determining that individual parish models would need to be developed, SVR would be 

used to create the eight parish-specific models. Figure 23 to Figure 30 show the results 

using SVR to estimate AADT, and two bands are shown to compare how the estimated 
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AADT is related to the observed AADT (estimated AADT within 100 or 200 of the observed 

AADT). 

 

Figure 23: Acadia SVR Observed vs. Estimated 

 

Figure 24: Avoyelles SVR Observed vs. Estimated 
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Figure 25: Claiborne SVR Observed vs. Estimated 

 

Figure 26: Franklin SVR Observed vs. Estimated 
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Figure 27: Natchitoches SVR Observed vs. Estimated 

 

Figure 28: Vermilion SVR Observed vs. Estimated 



47 

 

 

Figure 29: Washington SVR Observed vs. Estimated 

 

Figure 30: Webster SVR Observed vs. Estimated 

Compared to the initial models, the SVR greatly improved the estimation of the AADT. Far 

more observations followed the same direction as the Observed=Estimated line. Nonetheless, 

for all eight models, SVR did underestimate the AADT at higher observed AADT values, but 

the underestimation of the AADT in SVR was not nearly as problematic as in the Poisson 
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models. In other words, the SVR “captured” most of the overestimation of AADT, but some 

underestimation of AADT still existed. Also, the SVR models did overestimate some AADT 

values, typically occurring at lower observed AADT values. Nonetheless, the SVR did better 

estimate the AADT for some of the higher observed AADT values. The next section explains 

in more detail how close the estimated AADT was to the observed AADT using the two 

bands shown (within 100 or 200 of the observed). 

4.3 Comparison of Poisson and SVR Models 

Because SVR does not determine probability estimates (standard deviation), two bands were 

used (within 100 and 200 of the observed AADT) to determine how SVR estimated the 

AADT in comparison to the observed AADT. The percentage of observations within these 

two bands is shown in Table 5. 

  ±100 ±200 

Model Sample 

size 
Count Percent Count Percent 

Interstate 

Acadia 307 270 87% 284 92% 

Avoyelles 272 242 89% 255 94% 

Natchitoches 243 213 88% 229 94% 

Webster 393 306 78% 338 86% 

Non-

Interstate 

Claiborne 179 140 78% 168 94% 

Franklin 233 187 80% 209 90% 

Vermilion 306 212 69% 254 83% 

Washington 422 304 72% 362 86% 
 

Table 5: Fit within 100 or 200 of Observed Values for SVR 

 

For six of the eight models, more than three quarters (75%) of all estimations were within 

100 of the observed, and the percentage of estimations within 100 of the observed for the 



49 

 

remaining two models were near or above 70%. The average percentage of estimations 

within 100 of the observed for parishes with direct Interstate access was 85.5% while the 

average for parishes without direct Interstate access was somewhat lower at 75%, owning to 

the fact that the two models where the percentage of estimations within 100 of the observed 

AADT was less than 75% were both for parishes without direct Interstate access. The 

number of estimations within 200 of the observed for all eight models exceeded 80%, and 

five of the models exceeded 90%. In addition to determining how many estimations were 

within 100 or 200 of the observed AADT, the Mean Absolute Percentage Error (MAPE) for 

the Poisson and SVR models was compared to show the improvement in fit between these 

models. The formula for MAPE is shown below: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐸𝑖 − 𝑂𝑖

𝑂𝑖
|

𝑛

𝑖=1

 

Where: 

Ei is the estimated value at observation i 

Oi is the observed value at observation i 

n is the total number observations of the model 

 

Table 6 shows the comparison between the Poisson and SVR MAPE calculations as well as 

the percentage improvement using SVR.  
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Model Poisson MAPE SVR MAPE Percent Improvement 

Interstate 

Acadia 379.2% 75.9% 80.0% 

Avoyelles 252.5% 48.9% 80.6% 

Natchitoches 256.1% 74.2% 71.0% 

Webster 230.3% 66.4% 71.2% 

Non-

Interstate 

Claiborne 215.8% 113.9% 47.2% 

Franklin 201.4% 56.5% 71.9% 

Vermilion 197.9% 75.9% 61.6% 

Washington 207.3% 76.0% 63.3% 

 

Table 6: MAPE Results 

 

The MAPE for the Poisson models further iterates the poor fit shown when using Poisson to 

estimate AADT. The MAPE for all eight models significantly exceeded 100%, and all but 

one model exceeded 200%. In addition, while the MAPE for all eight models was large, the 

MAPE for the Acadia model was nearly 50% greater than the model with the second highest 

MAPE - Avoyelles. Using SVR improved the MAPE by as much as 80%, and an 

improvement of at least 60% was shown for all but one model (Claiborne). Although the 

MAPE improved using SVR versus Poisson modeling, the MAPE was still relatively high for 

all eight models. Only one model (Avoyelles) had an SVR MAPE of less than 50% while the 

MAPE for the Claiborne SVR model still exceeded 100%. The main reason for the relatively 

high MAPE is not caused by the aforementioned outliers (underestimating AADT at higher 

observed AADT values) but occurs when the estimated AADT is significantly greater than 

the observed AADT. The MAPE in some of these observations exceeds 1,000% while the 

MAPE for the observations where the estimated AADT was less than observed was 

significantly lower than when the estimated AADT was greater than observed. In addition, 

the absolute percentage error (percentage error for each individual observation) for most of 

the individual observations was less than the MAPE of the entire model due to the relatively 

few observations where the MAPE exceeded 1,000%. The much greater MAPE when 
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observed values are small and estimated values are significantly larger than the observed is 

an inherent problem of using MAPE since the denominator of the MAPE equation is the 

observed value. Nonetheless, using MAPE to compare between the Poisson and SVR models 

is a good fit parameter since SVR does not calculate probability statistics including standard 

deviation and variance.



 

 

Chapter 5: Conclusion 

To consider the variability in characteristics, including demographic, economic, and roadway 

attributes throughout Louisiana, eight parishes were selected for model development. An 

emphasis was placed on rural parishes having a high number of count stations in a particular 

parish, as these parishes do not have the resources to collect AADT counts on a regular basis. 

The type of model selected was Poisson as this type of model is commonly used for the 

discrete data of AADT. Creating selection models proved this as the Poisson model was the 

only one that was statistically significant through the use of a Chi-square test, and the 

coefficients of the model were also determined to be statistically significant using the same 

statistical test. Initially, ten models were developed for rural non-state roads in Louisiana, 

with eight of those being Parish-specific and two models combining the data from four 

Parishes each. One of those combination models included a variable considering the distance 

between a count station and an Interstate access location (on-ramp) for those Parishes having 

direct Interstate access within the study Parish, while the second combination model was for 

the Parishes that did not have Interstate access. Using the JMP program, Poisson models 

were developed, and a major and common error was shown for all developed models. The 

models tended to overestimate the AADT at lower observed AADT values and underestimate 

the AADT at higher observed values (i.e. estimated > observed when observed AADT was 

less than a particular value and estimated < observed when observed AADT was greater than 

a particular value). That particular observed AADT value for all models developed was 

similar, typically between 300 and 500. Another method would need to be used in an attempt 

to “capture” this error.
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Even with Poisson being the best regression model, the results were still less than 

satisfactory. Therefore, another method of estimation would need to be used, and Support 

Vector Regression (SVR) was used in an attempt to create a better fit model. Before 

developing the models, a sensitivity analysis was conducted to determine which type of 

model would be used, each Parish having a model that was specific to that Parish or a 

combination model that could be used on all four of the similar Parishes (Interstate or Non-

Interstate). This analysis determined that the prediction models would have to be specific to 

each Parish as using each model on the combination values for the independent variables 

resulted in vastly different estimated AADT values. Using SVR, the relationship between the 

observed and estimated AADT greatly improved. Two goodness-of-fit parameters were used 

to understand the relationship between the observed and estimated AADT: determining how 

many estimations were within a particular value of the observed AADT (100 and 200 were 

used in this project), and using Mean Absolute Percentage Error (MAPE). Using both of 

these goodness-of-fit parameters showed a major improvement in using SVR, though some 

drawbacks were shown in using MAPE that are inherent to that goodness-of-fit parameter 

(much higher MAPE for smaller observed AADT). 

 

While using SVR significantly improves AADT estimation and the relationship between the 

observed and estimated AADT in contrast to the Poisson models, some drawbacks do exist 

when using SVR. The most noticeable drawback is that probability estimates, including 

standard deviation and variance, cannot be estimated using SVR. Another drawback is that 

SVR does not determine mathematical equations, likely the result of SVR being a machine 

learning algorithm. Also, as a result of the sensitivity analysis, SVR must be used for 

individual parish datasets, and the application of SVR must be conducted as a “test” batch. 
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Some considerations that can be looked further into include the results of the sensitivity 

analysis and models for the smaller urban areas in the study parishes. A new type of 

sensitivity analysis could be used to determine if a combination parish model could be used, 

but the use of several different sensitivity analyses may not change the results of the initial 

model. While the focus of this study was the rural areas in Louisiana, the smaller 

municipalities (or urban areas), like the rural parishes, likely do not collect traffic counts on 

their roads. Therefore, a separate use of SVR in estimating AADT in the smaller urban areas 

may provide a better result than combining all non-state counts within a particular parish. A 

notable consideration in estimating AADT in small urban areas is that likely only one model 

would be needed for the parish’s entire municipalities, not individual small urban models like 

the individual parish models.
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Appendix A: Selection of Parishes in Louisiana Based on the Number of Count Stations 

and Population (Census 2010) 



 

Appendix B: Attributes of the Local AADT Dataset from the Louisiana Department of 

Transportation and Development 

The attributes for each non-state (local) count station (location and observed AADT in a 

particular year) in Louisiana is detailed below: 

 STATION: The five or six digit ID for the count station, with the first digit or two 

digits being the parish code 

 DISTRICT: The LA DOTD District the count station is located in (Appendix D 

gives further explanation on the Districts) 

 PARISH CODE: The parish the count station is located in. The code starts with the 

value of 1, being Acadia Parish, the first parish in alphabetical order and increases by 

1 for each successive parish in alphabetical order 

 STREET NAME: The name of the street the count station is located on 

 LRS ID: The state-issued ID for a particular roadway segment, which is in the format 

PPP-X-NNNNNN-TTT-S-F-LL and is described below: 

o PPP- Parish FIPS 

o X- Prefix Code (N,S,E, or W) 

o T- Type Code (Ave., Blvd., St., etc.) 

o S- Suffix (N, S, E, or W) 

o F- Feature Type Code (Main direction, Frontage Road, or Ramp) 

o L- Sequential Occurrence. 

 LRS LOGMILE: Logmile on the roadway segment where the count station is 

located
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 YEAR 1, YEAR 2, … YEAR 6: The year when the AADT was recorded; not all 

stations have data for six different years. Year 1 is the most recent year the AADT 

was recorded, and no stations have more than six different years of recorded data 

 ADT 1, ADT 2, …, ADT 6: The recorded AADT for a particular year (For example, 

if year 1 was in 2007, then the ADT 1 that is given is what was recorded in 2007) 

 LATITUDE: The coordinate detailing the Y-Axis component of the location of the 

count station 

 LONGITUDE: The coordinate detailing the X-Axis component of the location of the 

count station. 

Since some count stations have more than one year of count data available for local roads, 

only the data recorded for the most recent year (YEAR 1) is to be used as the dependent 

variable in model determination. The Latitude and Longitude of the count station is to be 

used in ESRI’s ArcGIS program to locate where the count station is on the State roadway 

network.



 

 

Appendix C: Statewide Roadway Network Attributes 

The attributes of the Louisiana Statewide roadway network, which includes a roadway 

segment’s descriptive characteristics (name of road, length of roadway segment, etc.) is 

detailed below: 

 NAME, the street name (e.g. Main) 

 STREET_CATEGORY, the type of street (Ave., St., Blvd., Rd., etc.) 

 SUFFIX, if the roadway has a directional identifier (e.g. North) 

 FULL_NAME, the full name of the roadway (e.g. North Main Street) 

 DOTD_DISTRICT, the DOTD District the road segment is located in 

 PARISH_FIPS, the Census Parish code 

 CONTROL_SECTION, the State-identified code for a roadway 

 LRS_ID, based on the Control Section and additional information to distinguish 

between roadway segments (the state LRS_ID is in the XXX-XX-F-LLL format 

where XXX-XX is the control section, F is the feature type code, and LLL is the 

sequential occurrence) 

 BEGIN AND END LOGMILE, the beginning and ending logmile from the Control 

Section of the roadway segment 

 SHAPE_LENGTH (MILES), the length of the roadway segment 

 STATE_ROUTE, if the roadway segment is on a state-maintained roadway 

 ROADWAY_CATEGORY, the type of roadway (main road, frontage road, etc.) 

 OWNERSHIP, the owner of the road (State, Parish, or Municipal).



 

 

Appendix D: Louisiana Department of Transportation and Development Districts 

The Louisiana Department of Transportation and Development (DOTD) operates nine 

districts throughout the state3 that are responsible for operations and highway maintenance in 

a particular region of the state, which include: 

 District 02: Southeastern Louisiana south of Lake Pontchartrain (headquarters in 

Bridge City just west of New Orleans) 

 District 03: Acadiana (headquarters in Lafayette) 

 District 04: Northwestern Louisiana (headquarters in Bossier City immediately east of 

Shreveport) 

 District 05: Northeastern Louisiana (headquarters in Monroe) 

 District 07: Southwestern Louisiana (headquarters in Lake Charles) 

 District 08: Central Louisiana (headquarters in Alexandria) 

 District 58: East-Central Louisiana (headquarters in Chase) 

 District 61: South-Central Louisiana and Capitol Area (headquarters in Baton Rouge) 

 District 62: Northshore of Lake Pontchartrain (headquarters in Hammond) 

The map on the next page shows the location of each district within Louisiana, including the 

District number and the location of the headquarters of the District.

                                                 
3 http://wwwapps.dotd.la.gov/administration/announcements/DistrictMap.aspx 
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Louisiana DOTD Districts 

Image Courtesy of Louisiana DOTD 



 

 

Appendix E: Major Highways in Louisiana 

United States Highways 

United States Highways (i.e. “US Highways”) are generally state-maintained highways that 

are interstate in nature (serving more than one state) but do not typically meet Interstate 

Highway standards. In many locations where Interstates are nearby (e.g. Interstate 10 

paralleling United States Hwy. 90 from the Texas State Line to Lafayette and New Orleans to 

the Mississippi State Line), these highways serve predominately local traffic; however, these 

highways can still be major thoroughfares in other locations where Interstates that are not 

nearby (e.g. United States Highway 90 between Lafayette and New Orleans). 

 

Example: U.S. Highway 90 in Acadia Parish
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Trans Parish Direct Highways 

These highways are the direct route between two Parish Lines. The figure below shows 

Louisiana Highway 13 in Acadia Parish serving as the direct route between Vermilion Parish 

to the south (particularly between Gueydan, Kaplan, and Abbeville) and St. Landry Parish 

(Eunice) to the north. Especially in coastal areas, the North-South Trans-Parish highways 

serve as Hurricane Evacuation Routes from the coastal communities in the south towards 

North Louisiana. 

 

Example: Louisiana Highway 13 in Acadia Parish from Vermilion Parish to St. Landry 

Parish 
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Main Highway to Parish Seat in Neighboring Parish 

Some major highways have a terminus within a particular Parish, but serve as the main route 

to a major population center such as a Parish Seat in the neighboring Parish. The example 

figure below shows that the southern terminus of Louisiana Highway 9 is in Natchitoches 

Parish, and this highway serves as the direct route to the seat in Bienville Parish-Arcadia; in 

this particular example, this highway is more direct, especially for Natchitoches Parish, to 

reach Arcadia (and Interstate 20 Eastbound) versus using United States Hwy. 71 or Interstate 

49 towards Shreveport to reach Interstate 20 Eastbound. 

 

Example: Louisiana Highway 9 in Natchitoches Parish Connecting to Arcadia in 

Neighboring Bienville Parish



 

 

Appendix F: Census Geographic Attributes 

The Census geographic dataset includes these attributes, regardless of whether the 

geographic subdivision is a Tract, Block Group, or Block: 

 FID, which is the numerical order of the Census geographic subdivision 

 STATEFP10, the Census’s code for each state (The STATEFP10 for Louisiana is 

22.) 

 COUNTYFP10, the Census’s code for each parish (The code follows a 2n-1 formula 

where n is the Parish’s number in alphabetical order; for example, Avoyelles Parish’s 

COUNTYFP10 is 7 since this Parish is the fourth Parish in alphabetical order in 

Louisiana; this is related to the Parish_FIPS code in Appendix D) 

 GEOID10, the numerical designation of the Census geography, given in the format 

USSSCCCTTTTTTBBBB 

o SS-STATEFP10 

o CCC-COUNTYFP10 

o TTTTTT-Census Tract 

o BBBB-Block Number 

 NAME10, the number of the Census geography which is in the format- Block GBBB, 

Block Group G, Census Tract TTTT, (Parish Name), Louisiana 

 NAMELSAD10, the full name of the Census geography (e.g. Census Tract 2) 

 ALAND10, the land area of the Census geography, in square meters 

 AWATER10, the water area of the Census geography, in square meters 

 INTPLAT10, the Latitude of the centroid of the Census geography 

 INTPTLON10, the Longitude of the centroid of the Census geography
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Since the area of a particular Census geographic subdivision (both land and water) is in 

square meters, a conversion to square miles is necessary to calculate the geographic 

subdivision’s population density, which is shown in this formula: 

𝐴𝑅𝐸𝐴𝑆𝑞𝑢𝑎𝑟𝑒 𝑀𝑖𝑙𝑒𝑠 =  
∑ 𝐴𝑅𝐸𝐴 𝑆𝑞𝑢𝑎𝑟𝑒 𝑀𝑒𝑡𝑒𝑟𝑠

( 1000 × 1.609)2
 

Dividing by 1,0002 (or 1,000,000) converts the area from square meters to square kilometers 

while dividing by 1.6092 (or 2.588) converts the area from square kilometers to square miles. 



 

 

Appendix G: Using R in SVR and Sensitivity Analysis 

Before starting an analysis, the data source (spreadsheet) has to be in the EXCEL file format 

Comma Separated Values (CSV), and a script needs to be created. Below is the initial setup 

of R with the console to the left and script to the right. 

 

Because this study focuses on whether the parish has direct Interstate access, two CSV files 

are to be created for both model development and sensitivity analysis. A folder containing all 

necessary files (script and CSV spreadsheets) is highly recommended, and the resulting CSV 

spreadsheets can be saved in this particular folder. Next, to run the lines in the script, the 

particular lines must be highlighted, followed by clicking the “Run Line or Section”; a 

section is a group of lines between two spaces in the script. The initial lines and/or sections to 

be run in the script are shown in the script window below. 
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The results from running the initial script are shown in the following two figures in the R 

console. 

 

Afterwards, the necessary library for SVM Model must be installed (“e1071”) by running the 

line install.packages (“e1071”). The CRAN mirror to be installed is USA (TX 1). Once the 

library is loaded into the console, then SVM can be used to estimate AADT. The initial lines 

to be run and the results are shown below. 
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Because R only shows the results from the first few observations, a graphical representation 

is needed to compare observed and estimated AADT. To create a spreadsheet with the 

estimated AADT values, the line immediately below the initial highlighted code must be run. 

The resulting spreadsheet (in CSV format) is saved in the path folder determined when 

starting the analysis. Because the results are for only one parish selected, the next lines to be 

run to estimate AADT for the next parish are shown below. 

 

To create the spreadsheet with the estimated AADT values for this parish, the line 

immediately below the highlighted lines must be run, like in the first parish analysis. This 

process repeats for the remaining parishes in a particular group (Interstate or Non-Interstate 

access). The only change in using R for estimating AADT in the second group is shown 

below. 

 

Once these lines are ran using R, then the succeeding lines in the script can be run to create 

spreadsheets with the estimated AADT for each parish in the second group.  
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For the sensitivity analysis, these script lines must be run in the initial run. 

 

Afterwards, the first three lines must be ran to start the sensitivity analysis, and to create the 

results for each parish, the last line of the section code must be ran. Estimated AADT for 

each of the eight study parishes is determined from the eight code line sections.
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ABSTRACT 

Average annual daily traffic (AADT) is important in transportation engineering and planning, 

and although the State of Louisiana collects AADT on a regular basis on state-maintained 

highways, most parishes and smaller municipalities do not have the resources to collect 

AADT frequently. Because the roads under the jurisdiction of parishes and municipalities 

account for three-fourths of the entire state road network, a practical method to estimated 

AADT must be developed. Before model development, previous studies into AADT 

estimation and their results are to be further analyzed. Roadway, demographic, and economic 

data for selected parishes in Louisiana is collected and processed to remove any data not 

necessary in model development, and afterwards, parish-specific and combination data 

models using this data are developed to compare to the observed AADT at a particular count 

station. Parish selection is based on population, number of existing count stations within the 

parish, and if an Interstate Highway traverses the parish. Because of the varying 

characteristics among the data in the selected parishes, parish-specific models for the rural 

parish roads are developed, and Poisson is selected as the regression model due to discrete 

data. Results for all Poisson models developed show that the models tend to overestimate 

AADT for lower observed AADT and underestimate AADT for higher observed AADT. 

Because of this, support vector regression (SVR) was used, and this method greatly improved 
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the estimation of AADT in comparison to the Poisson regression as shown using certain 

goodness-of-fit parameters.
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