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ABSTRACT

SMART POWER GRID SYNCHRONIZATION WITH NONLINEAR ESTIMATION

by

HOSSEIN DARVISH

Chairperson: Professor Xin Wang

Grid synchronization is a critical concern for proper control of energy transfer between

the Distributed Power Generation Systems (DPGS) and the utility power grid. Nonlinear

estimation techniques are proposed to track the voltage magnitude, phase angle, and

frequency of the utility grid. Instead of directly analyzing in abc coordinate frame,

the symmetrical component is employed to separate the positive, negative, and zero

sequences in the transformed αβ stationary coordinate frame. By using the Fortescue’s

Transformations and Clarke’s Transformation, the number of system state variables is

reduced to five. The results show that our proposed nonlinear estimation technique is

efficient in smart power system synchronization. The MATLAB simulation studies have

been conducted to compare the performance of the Extended Kalman Filter (EKF), the

Particle Filter (PF), and the Unscented Kalman Filter (UKF). Computer simulations

have shown that the efficacy of our proposed nonlinear estimation methods. It also

shows that the Unscented Kalman Filter, and the Particle Filter are better estimators,

because voltage synchronization problem is nonlinear, and linearization process which

the Extended Kalman Filter is based on is not very accurate. The number of particles

in Particle Filter can be increased to improve the accuracy, but there exists a trade off

between computational effort and estimation accuracy. In our research, considering the

ii



same amount of computational complexity, we calculate the Mean Square Error (MSE)

to examine the performances of different nonlinear estimation approaches. By comparing

the MSE of different estimators, we prove that the Unscented Kalman Filter shows the

most accurate performance in voltage synchronization for three phase unbalanced voltage.

Our results have shown the potential applications of the nonlinear estimation techniques

in the future smart power grid synchronization.
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CHAPTER 1

INTRODUCTION

The number of Distributed Power Generation Systems (DPGS) which is connected to the

smart power grid is increasing rapidly, due to the necessity of producing more renewable

and sustainable energy [1][2]. There are also many micro-grids which use distributed

generation resources to manage their load optimally [3]. The voltage synchronization

is a critical concern because DPGS can not be properly controlled without accurate

and efficient grid synchronization [4]. The utility network may face instability or even

black out, when several Distributed Generations (DGs) are connected to our utility grid

but they are not synchronized [5]. Our purpose in this work for grid synchronization is

to compute the phase angle, voltage magnitude, and frequency. The phase angle and

magnitude can be used to turn on/off the distributed sources, and therefore to control

the active and reactive power flowing between DGs and the utility grid [6].

1.1 Background and History

The Kalman Filter was initialized by Rudolf Kalman in 1960s [20]. Kalman is the

proven optimal solution for linear time invariant system, but it fails to provide reliable

estimated value for nonlinear systems. The Extended Kalman Filter uses a linearization

process, and have a better performance over the Kalman Filter in nonlinear system

estimations [21].

The Particle Filter is based on the Monte Carlo method which was proposed in 1954

by Hamely and Morton. However, due to the computational effort and complexity, this

method was not applicable in industry until 1993 [10]. After that, this method becomes

very popular in different areas including target tracking robotics, signal processing, and

etc[41].

The Unscented Kalman Filter was first proposed by the Julier, and Uhlman [11][43].
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The Unscented Kalman Filter is developed based on the Unscented Transformation. It

shows the similar computational complexity as the Extended Kalman Filter, but provide

much better estimation for the highly nonlinear applications.

Other types of nonlinear estimation schemes have also been developed for special

systems applications as shown in [28][29]. D. Simon propose the Kalman Filter estimation

with state constraints. He extended his research to develop innovative filtering techniques

for nonlinear systems, including Smoothy Kalman Filter, modified Extended Kalman

Filter, modified Unscented Kalman Filter, and modified Particle Filter [30].

In [6], Sun uses an Extended Kalman Filter to synchronize the voltages, and phases of

three phase unbalanced voltage. In order to calculate the state equation, the Fortescue’s

transformation, and Clarke’s transformation are used to reduce the number of the state

variables. The paper in [6] relies on the Extended Kalman Filter only.

1.2 Literature Review

There are different algorithms proposed for grid synchronization of DPGS [7]. A variety

of nonlinear state estimation was proposed in literature based on the frequency domain

and time domain approaches. The frequency domain is mostly based on the Fourier

analysis. The time domain methods show much better accuracies and computational

effort [8][9].

The most commonly used method in voltage synchronization are the Phase-Locked

Loop (PLL) techniques [12]. In the conventional PLL, by using the Park’s transformation,

the three phase voltage from abc coordinate frame can be translated to the dq rotating

reference frame [16]. A feedback loop is used to synchronize the DG voltage with a

reference signal. The d-axis component regulates the voltage magnitude. The phase angle

can be regulated by the output of the feedback loop in the q-axis [17][18][13]. Although this

method can provide synchronization performance, it is also very sensitive to the system

noises and unbalanced voltages, and therefore, it is not reliable for grid synchronization
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[19][22]. A few improved methods have also been proposed. The Decoupled Double

Synchronous Reference Frame Phase Locked Loop (DDSRF-PLL) which uses two sets of

opposite dq-frame to cancel out the negative component. The Delayed Signal Cancellation

Phase Locked Loop (DSC-PLL), which is based on the delayed signal cancellation, can

eliminate the oscillatory error, and specific harmonic error from unbalance three phase

voltage [14][23]. However, all of the phase locked loop based techniques suffer from

external disturbances and noises.

Zero-crossing method has also been developed for synchronization. This method is

based on the time domain approach [24], which is relatively easy to be implemented, but

it very sensitive to the disturbances [15]. Therefore, the dynamic performance of this

technique is not very practical in industry applications [7][25].

There are a variety of Kalman Filter based methods, which are used for estimation in

power synchronization applications [26]. The Kalman Filter has been used widely in the

industries, and it is the optimal method for estimation, when the state equations, and

measurement equations are linear. For nonlinear dynamic systems, Kalman Filter can

not provide reliable solutions. Many advanced filtering methods based on the Kalman are

proposed to cope with the nonlinearities [27].

The Extended Kalman Filter is an improved solution for nonlinear cases [30][31]. The

Extended Kalman Filter is based on first order linearization algorithm, and it shows

good performances for nonlinear systems. However if the system is highly nonlinear, the

linearization process can lead to huge errors [31] [32] [33].

In this paper, we present new methods of using the Particle Filter (PF), and the

Unscented Kalman Filter (UKF) for power system synchronization applications, and

compare the results with the Extended Kalman Filter (EKF). Our results shows that

in all of our proposed methods the estimated values converge to the real values. Based

on the Mean Square Error (MSE), given the same amount of computational effort, it is
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concluded that the Unscented Kalman Filter works best among our proposed methods.

In order to deal with the unbalanced voltages, we use the symmetrical component

transformation to separate the positive, negative, and zero sequence. Then, the Clarke’s

transformation is applied to transform abc coordinate frame to the αβ stationary coordinate

frame. By applying these methods, we obtained the state space model of smart grid

synchronization. Then the nonlinear estimators EKF, PF, and UKF are applied to

estimate the voltage magnitudes, phase angles, and frequency. Computer simulations

confirm better performance of the Unscented Kalman Filter estimator in the presence

of unbalanced three phase voltages and external disturbances, considering the same

computation effort.

1.3 Contribution

Among different synchronization techniques, Kalman Filtering based methods show

superior performance, and reliability. This work presents that Kalman Filter nonlinear

based estimators including the Extended Kalman Filter, the Particle Filter, and the

Unscented Kalman Filter can be used to estimate the phase angles, voltage magnitudes,

and frequency of three phase unbalanced voltage.

First, a novel three phase power system model is reached by applying the Fortescue’s

and the Clarke’s transformation. A set of system state space equations consisting of

five state variables can exactly characterize the feature of arbitrary unbalanced three

phase voltage. Then, the Extended Kalman Filter, the Particle Filter and the Unscented

Klaman Filter are revisited and developed for the voltage synchronization applications.

Our simulation results and MSE studies have shown the superior performance of UKF,

comparing with other estimation techniques given the similar computational effort. There-

fore, our proposed nonlinear estimations techniques can be powerful alternatives for the

future smart grid synchronization applications.

This thesis is organized as follows: Chapter II presents the problem formulation. We
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discussed about the three phase unbalanced system,and a general model of three phase

unbalanced voltage. We use the Fortescue’s Transformation, and Clarke’s Transformation

to obtain a novel five state-variables system model. After that, we start the discretization

process, and the discrete time system and measurement models are obtained. Chapter

III presents the Extended Kalman Filter. We start from explaining the basic theory

behind the Kalman Filter, which is the basic of the other nonlinear filtering methods. The

inaccuracy of Kalman Filter for the nonlinear case is argued, and the Extended Kalman

Filter, which use the linearization process is investigated. The results and simulations

are provided at the end of the chapter to show the efficacy of EKF. In Chapter IV, the

Particle Filter is proposed. First, the Bayesian filtering method is introduced. After that,

the PF is implemented with the MATLAB software. The Unscented Kalman Filter is

developed based on the Unscented Transformation, and is summarized in Chapter V.

Then, the simulations are used to prove the accuracy of the Unscented Kalman Filter.

Chapter VI summarize all the simulation results. The MSE of the different estimator

is compared and then concluded that Unscented Kalman Filter is the best method in

voltage synchronization. The last chapter, both of the conclusion and future work are

presented.
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CHAPTER 2

PROBLEM FORMULATION

Chapter 2 presents the system model formulation. The utility grid in the presence of

unbalanced voltages can be expressed as:

v̄a = va cos(ωt+ φa)

v̄b = vb cos(ωt+ φb) (2.1)

v̄c = vc cos(ωt+ φc)

where t is the time, ω is angular frequency and v̄i and φi for i = a, b, c are the voltage

amplitudes and phase angles of the phase i. It is worthwhile mentioning that the three

system voltages is not necessarily balanced, so they may not have the same magnitude,

nor the phase angle of 120o. The grid frequency and the sampling frequency are considered

to be 60Hz, 2400Hz respectively. We also neglect the system noise.

As shown in Eqn.(2.1), there are seven different variables. In order to simplify the

system, the following two transformations are used: symmetrical component transfor-

mation and Clarke’s transformation. Based on symmetrical component transformation

(Fortescue’s Transformation) the three-phase voltage signal can be separated to positive,

negative, and zero sequence according to Fortescue’s Theorem [34] [35].

v̄(t) = v̄0(t) + v̄p(t) + v̄n(t) (2.2)

where v̄(n) is the representative of 3 phase voltage in the natural coordinate frame and v̄i

for i = 0 , p, n is the zero, positive, and negative consequences which can be defined by

v̄p(t) = vp(cos(θp(t)), cos(θp(t)−
2π

3
)), cos(θp(t) +

2π

3
))T
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v̄n(t) = vn(cos(θn(t)), cos(θn(t) +
2π

3
)), cos(θn(t)− 2π

3
))T (2.3)

v̄0(t) = v0(cos(θ0(t)), cos(θ0(t))), cos(θ0(t))
T

where θi for i = (p, n, 0) are the phase angle of positive, negative and zero sequences.

Calculating the θp or positive phase angle is the base of controlling of connecting the DGs

to the unit network. Based on symmetrical component transformation, the signals can be

separated to positive, negative, and zero sequence.

First we use the symmetrical component transformation to separated the positive,

negative, and zero sequence through the following formula:
va

vb

vc

 =


1 1 1

1 a2 a

1 a a2



v0

vp

vn

 (2.4)

where vi for i=0, p, n are zero, positive, and negative consequence, and the a = 1∠120. It

is difficult to estimate phase angle directly because of various number of variables, and

the nonlinearity of the system, so we use the Clarke’s Transformation to translate to αβ

stationary coordinate frame.

 vα

vβ

 =
2

3

 1 −1
2
−1

2

0
√
3
2
−
√
3
2



va

vb

vc

 (2.5)

Based on equation (2.4), and(2.5), we have: vα

vβ

 =

 1 1

−j −j


 vp

vn

 (2.6)
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Converting the phasor expression in (6) to instantaneous voltage, we obtain vα(t) and

vβ(t) as follows:

v̄α(t) = vp cos(ωt+ θp) + vn cos(ωt+ θn) (2.7)

= (vp cos θp + vn cos θn) cosωt− (vp sinωt + vn sin θn) sinωt

= vα cos(ωt+ φα)

v̄β(t) = vp sin(ωt+ θp)− vn sin(ωt+ θn) (2.8)

= (vp cos θp − vn cos θn) sinωt+ (vp sin θp − vn sin θn) cosωt

= vβ cos(ωt+ φα)

The zero sequence quantities are zeros after using the Clarke’s transformation.

2.1 State Space System Dynamics

Based on Equation equation (2.7) and (2.8), and after discretization process, the

dynamic model of three phase unbalanced voltage system can be obtained as follows

x1(k) = vα cos(kωT + φα)

x2(k) = vα sin(kωT + φα)

x3(k) = vβ cos(kωT + φβ) (2.9)

x4(k) = vβ sin(kωT + φβ)

x5(k) = ω

Denote t = kT and T = 1/fs, where T is sampling time and fs is sampling frequency. By

substituting k with k + 1 in equation (2.9), we have:
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x1(k + 1) = x1(k) cos(x5(k))− x2(k) sin(x5(k))

x2(k + 1) = x1(k) sin(x5(k)) + x2(k) cos(x5(k))

x3(k + 1) = x3(k) cos(x5(k))− x4(k) sin(x5(k)) (2.10)

x4(k + 1) = x3(k) sin(x5(k)) + x4(k) cos(x5(k))

x5(k + 1) = x5(k)

The process noise is assumed to be zero. The measurement equation can be defined

as follows:

y1(k) = x1(k) + e1(k) (2.11)

y2(k) = x3(k) + e2(k)

where e1(k), and e2(k) are considered to be the Additive White Gaussian Noise (AWGN).
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CHAPTER 3

EXTENDED KALMAN FILTER

3.1 Kalman Filter

In this section, the Kalman Filter (KF) is introduced, which serves as the foundation

for other nonlinear filters deviations. The Kalman Filter (KF) is the most commonly

used linear estimation, because of its accuracy and simplicity [36]. The Kalman filter is

used in a different application including navigation, military system, robotics, and etc

[37]. In Kalman Filter uses the process equation and measurement data with noise, and

apply recursively operation on data to estimate the desired state. In the Section 3.1, we

discussed the theory of Kalman Filter.

3.1.1 Formulation

The Kalman Filter uses the mean of the state variable in order to estimate the

desired value, and use the measurement to update the mean, and covariance. In order to

implement a Kalman Filter, we need state equation, and measurement equations to be

linear. The state equation and measurement equation for our system can be formulate as

follows:

xk+1 = Axk +Buk + wk (3.1)

where xk is state variable at the time k, A and B are matrices with appropriate dimensions,

and are often called system matrix and input matrix. wk is the process noise that most

of the time assumed to be normal.

The measurement process can be formulate with following formula

yk = Hxk + vk (3.2)
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where yk is measurement at the time K . H is marices with appropriate dimension,

and are called often output matrix. vk is the process noise that assumed to be white

Gaussian noise. The noise process and measurement process is considered to have a

known covariance matrices as defined below

wk ∼ (0, Qk) (3.3)

vk ∼ (0, Rk) (3.4)

where the Qk and Rk are covariance matrices. The process noise and measurement noise

are independent from each other, it can be written mathematically as follows:

E[vkw
T
j ] = 0 (3.5)

After defining our system model, we can apply Kalman Filter through recursive

iterations. The Kalman Filter operates in two steps: 1. priori state estimate 2. posteriori

estimate [38]. In order to have a better understanding of posteriori and priori we briefly

define them here. The priori estimate is the estimate of state variable before we run

the measurement process at that time. The posteriori estimate is the estimate after we

process the measurement at desired time. The priori and posteriori estimate can be

denoted as x̂−, x̂+

x̂− = E[xk|y1, y2, ...yK−1] (3.6)

x̂+ = E[xk|y1, y2, ...yK ] (3.7)

where the x̂−, x̂+ are the estimation of state variable, before and after we apply our

measurement. In order to develop the Kalman Filter, an initialization process with a

initial estimates for the state variable are given, and after that the initial value for the

covariance can be calculated as follows:

P+
0 = E[(x0 − x̂+0 )(x0 − x̂+0 )T ] (3.8)
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After making the initial guess for state and calculating the initial covariance, we can start

the time step. The time update process can be achieved through following formula:

x̂−k+1 = AK x̂
+
k +Bkuk (3.9)

P−k+1 = AkP
+
k A

T
k +Qk (3.10)

where x̂− is predicted or priori state estimate and P−k is priori estimated covariance matrix.

One can calculate Ak matrix can be obtained directly from State Equation.

After finding the priori, we use the measurement equation, to find posteriori estimate,

and correct our estimation. These procedures are called measurement update, and can be

formalized as follows:

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1 (3.11)

x̂+k = x̂−k +Kk[yk −Hk(x̂
−, 0)] (3.12)

P+
k = (I −KkHk)P

−
k (3.13)

where x̂+k is updated or posteriori state estimate and P+
k is updated or posteriori estimate

covariance.

3.2 Extended Kalman Filter

The Kalman Filter is the best optimal estimation for linear system, but most of the

system in the nature are nonlinear, or they will ultimately show nonlinear behaviors. The

Kalman Filter provides poor results for nonlinear estimator [39]. One proposed method is

based on the linearization of the nonlinear system, which is called Extended Kalman Filter

(EKF). The EKF is the most widely used estimator in the nonlinear dynamic system.

3.2.1 EKF formulation

The Extended Kalman Filter is derived based on the linearization process. The system

is nonlinear, so the state variable and measurement process is defined as a function of
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state variable, input and noise. The process and measurement noise are with known

covariance and zero mean. Our nonlinear system can be summerized as follows:

xk+1 = fk(xk, uk, wk)

yk = hk(xk, vk)

wk ∼ (O,Qk) (3.14)

vk ∼ (O,Rk)

where xk is state variable at the time k, and wk is the process noise. Yk is measurement

at the time K. vk is the process noise. fk is function of state variable, input, and process

noise. After defining the state variable, before starting the time update, and measurement

update, we need to initialize the state variables, and Covariance matrix.

P+
0 = E[(x0 − x̂+0 )(x0 − x̂+0 )T ] (3.15)

The Extende Kalman Filter is applied to estimate the voltage phase, amplitude and

frequency of three phase voltages. EKF estimator consists of two steps: 1. time update 2.

measurement update [40][44].

For time update, we need to calculate the priori covariance and priori estimate

P−k+1 = AkP
+
k A

T
k + LkQk−1L

T
k (3.16)

x̂−k+1 = fk(x̂
+
k , uk, 0) (3.17)

where x̂− is predicted or priori state estimate and P−k is priori estimated covariance matrix.

A can be calculated with the following formula

Ak =
∂f

∂x

LK =
∂f

∂w
(3.18)
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In our system A is a 5× 5 matrix. A can be calculated as follows

A =



cosx5 − sinx5 0 0 A15

sinx5 cosx5 0 0 A25

0 0 cosx5 − sinx5 A35

0 0 sinx5 cosx5 A45

0 0 0 0 1


(3.19)

where

A15 = sinx5 − x2 cosx5

A25 = x1 cosx5 − x2 sinx5

A35 = −x3 sinx5 − x4 cosx5

A45 = x3 cosx5 − x4 sinx5

Q is the covariance matrix of process noise. We neglect the process noise, so the

second term will in equation (3.16) will be zero. The next step is to update priori estimate

and calculate the posteriori estimate. The measurement update can be modeled as:

Kk = P−k H
T
k (HkP

−
k H

T
k +MkRkM

T
k )−1 (3.20)

x̂+k = x̂−k +Kk[yk − hk(x̂−, 0)] (3.21)

P+
k = (I −KkHk)P

−
k (3.22)

where x̂+k is updated or posteriori state estimate, and P+
k is updated or posteriori estimate

covariance. Mk is ∂h/∂v, and v is measurement noise. hk is the measurement function,

so Jacobian matrix Hk can be defined as follows:

Hk =
∂hk
∂x

MK =
∂h

∂v
(3.23)
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In our system H is 5× 2 matrix. H can be calculated by the following matrix

H =

1 0 0 0 0

0 0 1 0 0

 (3.24)

Figure 3.1: The First State Variable Comparison

3.2.2 EKF for highly nonlinear system

For extreme nonlinear case, the first order Extended Kalman Filter may lead into an

error. If the case is extreme nonlinear, the linearizion process is not so accurate. This

section will show that the EKF is not capable of estimating all nonlinear cases. The first

order linearizion is used in the Extended Kalman Filter, and it might have some error

when applying this method to nonlinear case. The measurement y can be expanded as a
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Figure 3.2: The Second State Variable Comparison

Figure 3.3: The Third State Variable Comparison
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Figure 3.4: The Fourth State Variable Comparison

Taylor series around the mean value of x,

y = h(x)

= h(x̄) +Dx̂h+
1

2!
D2
x̂h+

1

3!
D3
x̂h+ ... (3.25)

so that the expected value of measurement can be calculated as follows:

ȳ = E[h(x̄) +Dx̂h+
1

2!
D2
x̂h+

1

3!
D3
x̂h+ ...] (3.26)

It can be shown that all odd term will be zero, so we will have

ȳ = h(x̄) +
1

2!
D2
x̂h+

1

4!
D3
x̂h+ ... (3.27)

Truncating Eqn. (3.27) to the first order term and neglecting the higher order term will

lead to severe inaccuracy. The covariance can be calculated as follows:

Py = E[(y − ȳ)(y − ȳ)T ] (3.28)
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Figure 3.5: The Fifth State Variable Comparison

Figure 3.6: MSE Comparison
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After expanding Taylor series around the expected value

Py = HPHT + E[
Dx̂h(D3

x̂h)T

3!
+
D2
x̂h(D2

x̂h)T

2!2!
+
D3
x̂h(Dx̂h)T

3!
] + E(

D2
x̂

2!
)(
D2
x̂

2!
)T + ...

(3.29)

Truncating Eqn. (3.29) to the first order term and neglecting the higher order term

will lead to severe inaccuracy in Covariance calculation. The smart power grid system

dynamics is nonlinear, and it’s applications need an accurate estimation. In the following

chapter, two other nonlinear estimators are proposed, which show better performance in

estimation.
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CHAPTER 4

PARTICLE FILTER

As previously discussed, the Extended Kalma Filter is based on linearization process.

EKF shows inaccuracy if the system is severely nonlinear. To adress this issue, we

introduce the Particle Filter. Particle Filter (PF) is also known as a Sequential Monte

Carlo Estimation using different set of particle, rather than linearization. It does not

use linearization method, but it requires a lot of computation, so we need to trade off

between the computational time and accuracy.

4.1 Bayesian Filtering

When the state variables are nonlinear, the Particle Transformation can provide a

good solution. One advantage of the Bayesian Filter over the Extended Kalman Filter

is that it does not need the linearizion technique [41]. Although particle filter needs a

great number of computation, it is been widely used in a variety of the field from robotic,

computer vision to financial economic and chemical engineering [42]. Particle Filter works

based on the the Bayesian algorithm [45]. Bayesian Filter uses probabilistic and stochastic

process for estimating the desired states.

4.1.1 The Bayesian state estimation

The system is nonlinear, so the state variable and measurement variable can be defined

as follows:

xk+1 = fk(xk, wk)

yk = hk(xk, vk) (4.1)

where wk and vk is considered to be with known pdf. For staring the process we need

an initial guess. The Bayesian Filter approximates the conditional pdf of state variable
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based on the measurement. For the initial guess, we do not have any measurement, so it

can be denoted as below:

p(x0) = p(x0 | Y0) (4.2)

Y0 is the defined as a set whit no measurement. After the initial guess we start the

process to find the priori estimate.

Then priori pdf can be defined as follows:

P (xk | Yk−1) =

∫
p[(xk, xk−1) | Yk−1)]dxk−1

=

∫
p[xk | (xk−1, Yk−1)]p(xk−1 | Yk−1)dxk−1 (4.3)

=

∫
p(xk | xk−1)p(xk−1 | Yk−1)dxk−1

After the time update procedure, similar to the other Kalman Filter based methods the

measurement update should be implemented to find the posteriori state variable. Then a

posteriori pdf can be obtained by following formula

P (xk | Yk) =
p(Yk | xk)
p(Yk)

p(xk)

=
p(xk, yk, Yk−1)p(xk, Yk−1)p(Yk−1)p(xk, Yk)

p(xk)p(yk, Yk−1)p(yk−1)p(Yk−1 | xk)p(xk, yk)
(4.4)

=
p[Yk−1 | (xk, yk)]p(yk | xk)p(xk | Yk−1)

p(yk, Yk−1)p(Yk−1 | xk)
(4.5)

P (xk | Yk) =
p(yk | xk)p(xk | Yk−1)

p(yk | Yk−1)
(4.6)

After that we need to calculate the denominator of the above equation. it can be equated
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as follows:

P (yk | Yk−1) =

∫
p[(yk, xk) | Yk−1)]dxk

=

∫
p[yk | (xk, Yk−1)]p(xk | Yk−1)dxk (4.7)

=

∫
p(yk | xk)p(xk | Yk−1)dxk

After substituting Eqn. (4.6)(4.7) we will have:

P (xk | Yk) =
p(yk | xk)p(xk | Yk−1)∫
p(yk | xk)p(xk | Yk−1)dxk

(4.8)

4.2 Particle Filter

In this section, the particle filter is implemented to estimate the voltage amplitude,

phase angle and frequency. The Partical Filter is based on five steps [33]: The first step

is particle generation. N random number is generated on the basis of the initial pdf

p(x0)(which is assumed to be known) [33]. All of these N particle will be transfered to

the priori and posteriori step. The second step is obtain a priori particle from known

process equation:

x−k,i = fk−1(x
+
k−1,i, ω

i
k−1) (4.9)

where the particles are denoted as x−k,i, N is the number of particle, ωik−1 is the process

noise vector. The third step is to calculate the likelihood of each particle x−k,i, conditioned

on the measurement. The likelihood (qi) can be defined as the following formula:

qi = P [(yk = y∗) | (xk = x−k,i)]

= P [(vk = y∗ − h(x−k,i))] (4.10)

∝ 1

(2π)m/2 |R|1/2
exp(
−[y∗ − h(x−k,i)]

TR−1[y∗ − h(x−k,i)]

2
)
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Then we normalize the relative likelihood of (4.10). The final step is re-sampling steps,

which is to generating the posteriori particle based on the calculated normalized qi. For

implementing the re-sampling procedure , a random number uniformly distributed in [0,1]

is generated. Then the if loop will be conducted:

If :
∑j−1

m=1 qm < r and
∑j

m=1 qm ≥ r,

then : the posteriori state will be updated as x+k,i = x−k,j.

Figure 4.1: The First State Variable Comparison
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Figure 4.2: The Second State Variable Comparison

Figure 4.3: The Third State Variable Comparison
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Figure 4.4: The Fourth State Variable Comparison

Figure 4.5: The Fifth State Variable Comparison
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Figure 4.6: MSE Comparison
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CHAPTER 5

UNSCENTED KALMAN FILTER

The third method is to implement the estimation using the Unscented Kalman Filter. The

Unscented Kalman Filter was used as a solution when the system is extremely nonlinear,

and can provide superior performance in nonlinear estimations [43]. The advantage of

Unscented Kalman Filter over the Extended Kalman Filter is that it is not based on

linearization. The Unscented Kalman Filter is based on Unscented Transformation in

which sigma points are used. Particle Filter is very complicated, since it uses numerous

points to characterize the pdf of the state variable. UKF is more computationally effective,

since the 2n number of sigma points can be used to obtain the pdf, which is very closed

to the real pdf. Three steps are needed to be implemented for the UKF estimation: 1.

calculating the sigma points 2. time update 3. measurement update[46].

5.1 Unscented transformation

Unscented Transformation is a mathematical procedure used in mean approximation,

and covariance approximation. It uses set of vectors which it’s mean and covariance are

equal to real mean and covariance. In order to start the unscented transformation we

need to make sigma points. The sigma point for an n-element vector can be formulate as

following:

x̂
(i)
k−1 = x̂

(+)
k−1 + x̃(i) (5.1)

x̃(i) = (
√
nP+

K−1)
T (5.2)

x̃(n+i) = −(
√
nP+

K−1)
T (5.3)

where the
√
np is the matrix square root of np. After the sigma point is made, we need

to transform the sigma points
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y(i) = h(X(i)) (5.4)

Then we can start the mean and covariance approximation as follows:

ŷu =
1

2n

2n∑
i=1

ŷ(i) (5.5)

Pu =
1

2n

2n∑
i=1

(ŷ(i) − ŷu)(ŷ(i) − ŷk)T (5.6)

where Py is the covariance of the predicted measurement.

Unscented Kalman Filter estimates the state variables through Unscented Transfor-

mation. We can showed that Unscented Kalman Filter is more accurate because it is not

based on the linearizion process. Here we discuss an example to verify that linearizaton

process is unable to estimate the mean and the covariance of our highly nonlinear case.

In order to show the difference between te real mean and covariance, and estimated mean

and covariance the following system is studied:

y1 = r cos θ

y2 = r sin θ (5.7)

(5.8)

where r is a random variable with mean of 1 and standard deviation of δr. 300 randomly

generated points with r̂ uniformly distributed between .01 and θ̂ uniformly distributed

between.3. The H can be calculated as follows:

Hk =
∂hk
∂x

(5.9)

(5.10)

In this system H is 2× 2 matrix. H can be calculated by the following matrix
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Figure 5.1: Linearized and Nonlinearized Mean and Covariance of 300 Random Variables

H =

cos θ −r sin θ

sin θ r cos θ

 =

0 −1

1 0

 (5.11)

This figure shows that the mean and covariance for this example is not a good

approximation of the mean and covariance of the system. Therefore, we need an alternative

solution instead of the linearization process. The Unscented Kalman Filter is proposed in

this Chapter that deal much better with the nonlinear systems. According to simulation

results in the following figure, Unscented Kalman Filter is capable of tracking both mean

and covariance for the highly nonlinear example.

5.2 Unscented Kalman Filter

In this section, we apply the Unscented Kalman Filter to our system. As the other

method our system is a five-state variable which is given by:
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Figure 5.2: Comparison of the Unscented Transformation Technique and Linearization

Technique for Mean and Covariance of 300 Random Variables

xk+1 = fk(xk, uk, wk)

Yk = hk(xk, vk)

wk ∼ (0, Qk) (5.12)

vk ∼ (0, Rk)

After that for starting the estimate process, we need the initialization process.

X+
0 = E(X0)

P+
0 = E[(X0 − X̂+

0 )(X0 − X̂+
0 )T ] (5.13)

After making an initial guess we can start the process measurement and find the priori

state. To run UKF application we need to make the sigma points. Sigma Points are set
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of vectors, whose covariance and mean are equal to real mean and covariance. For this

purpose the following formulas are used:

x̂
(i)
k−1 = x̂

(+)
k−1 + x̃(i) (5.14)

x̃(i) = (
√
nP+

K−1)
T (5.15)

x̃(n+i) = −(
√
nP+

K−1)
T (5.16)

where x̃ are our sigma points. Since we have 5 state equations in our model, we will need

to produce 10 sigma points based on (5.15)and ( 5.22). The next step is time update. We

use these 10 sigma points to calculate priori covariance matrix and priori state estimate.

First we transsorm these sigma points into x̂
(i)
k

x̂
(i)
k = f(x̂

(i)
k−1, uk, tk) (5.17)

After that we combine x̂
(i)
k vector to find priori estimate

x̂−k =
1

2n

2n∑
i=1

x
(i)
k (5.18)

P−k =
1

2n

2n∑
i=1

(x
(i)
k − x̂

−
k )(x

(i)
k − x̂

−
k )T (5.19)

where x̂− is predicted or priori state estimate and P−k is predicted or priori estimate

covariance. x̃i is weighted sigma points. The next step is to start the measurement update.

Again for this process, we need to choose sigma points

x̂
(i)
k = x̂

(+)
k + x̃(i) (5.20)

x̃(i) = (
√
nP+

K−1)
T (5.21)

x̃(n+i) = −(
√
nP+

K )T (5.22)

It is not necessary to make new sigma points if the fast calculation is desired. We can also

use the previous sigma points that were generated at the time update. This will decrease
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the calculation amount, and of course, it will decrease the accuracy. After making the

new sigma points we need to transform them by measurement equations.

ŷ
(i)
k = h(x̂

(i)
k , tk) (5.23)

After that, we combine the predicted sigma point measurement vector ŷ
(i)
k to obtain

predicted measurement.

ŷk =
1

2n

2n∑
i=1

ŷ
(i)
k (5.24)

Then we need to estimate the covariance of the predicted measurement

Py =
1

2n

2n∑
i=1

(ŷ
(i)
k − ŷk)(ŷ

(i)
k − ŷk)

T (5.25)

The cross covariance between x̂−k andŶk is defined as below:

Pxy =
1

2n

2n∑
i=1

(x̂
(i)
k − x̂

−
k )(ŷ

(i)
k − ŷ

−
k )T (5.26)

The measurement Update can be performed using Kalman Filter algorithm.

Kk = PxyP
−1
y (5.27)

x̂+ = x̂− +Kk(yk − ŷk) (5.28)

P+
k = P−k −KkPyK

T
k (5.29)

where Py is the covariance of the predicted measurement, Pxy is the cross covariance

between x̂
(i)
k and ŷTk .
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Figure 5.3: The First State Variable Comparison

Figure 5.4: The Second State Variable Comparison
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Figure 5.5: The Third State Variable Comparison

Figure 5.6: The Fourth State Variable Comparison
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Figure 5.7: The Fifth State Variable Comparison

Figure 5.8: MSE Comparison
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CHAPTER 6

SIMULATION STUDIES

In Chapter 6, we compare the performances of the Extended Kalman Filter, the Particle

Filter, and the Unscented Kalman Filter. The state estimation for 5 state variable is

provided, and the MSE of all of these five states are added, and a single MSE is used for

better comparison of different nonlinear state estimation.

The result of Mean Square Error (MSE) comparison is provided. 300 iterations of

MATLAB simulation are conducted for each nonlinear estimation technique. The sampling

frequency is chosen as 1200Hz, and the initial value of the state variables are chosen as

[1, 1.2, .8], and [0, π/3,−2π/3] as the initial amplitudes, and initial phase angles of the

unbalanced three phase voltages respectively. We consider the Additive Gaussian Noise

with zero mean and Identity covariance for measurement noise and neglect the process

noise.

Fig. 6.1-6.5 show that all of the proposed nonlinear estimators successfully track

the state variables with good accuracy. For better comparison the mean square error is

defined and calculated:

MSE =
1

N

N∑
i=1

(xi − x̂i)2 (6.1)

Fig. 6.6 shows the MSE of 300 samples. As can be seen the MSE is relatively small

for all of our proposed method. UKF is the most accurate method among the proposed

nonlinear estimator given the same amount of computational effort. Particle Filter is

also accurate as can be seen in Fig. 6.6. The accuracy of Particle Filter can be improved

by increasing the number of particles, but we find a trade off between the accuracy and

computation results. For the Particle filter simulation , we choose 500 particles in order

to make a trade off between the calculation accuracy, and computation time. The particle

filter MSE can be improved by adding more particle points. Although the Extended
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Kalman Filter shows the largest MSE, it is the fastest method compared with the other

two methods.

Figure 6.1: The First State Variable Comparison
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Figure 6.2: The Second State Variable Comparison

Figure 6.3: The Third State Variable Comparison
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Figure 6.4: The Fourth State Variable Comparison

Figure 6.5: The Fifth State Variable Comparison
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Figure 6.6: MSE Comparison
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This paper presents novel nonlinear estimation techniques with the applications to

smart power grid synchronization. With the Clarke’s transformation and symmetrical

component transformation, the state space dynamical equations are derived. The Extended

Kalman Filter, the Particle Filter, and the Unscented Kalman Filter are employed to

track the three phase voltage amplitudes, phase angles and frequency, with unbalance

voltage and noisy measurements. The comparison results show that all of the proposed

method convergence with good accuracy. The Unscented Kalman Filter gives the smallest

MSE and reasonable computational complexity, therefore, is the preferred technique for

smart grid power system synchronization.

7.2 Future Work

In this thesis, we discuss the innovative method for estimating the state variable for

voltage synchronization in three phase unbalanced voltage. We start with the Kalman

Filter. Then, we extended it to the Extended Kalman Filter which is the most widely

used method for nonlinear systems. After that, we introduce the Particle filter, and the

Unscented Kalman Filter. For future work, other methods can be implemented and the

results will be compared with our proposed methods such as H∞ Filter [47]

The Extended Kalman Filter can be improved in a variety of ways: higher order

Extended Kalman Filter, including iterated Extended Kalman Filter, the second order

Extended Kalman Filter, and Adaptive Extended Kalman Filter,etc [48][33] [49].

The Unscented Kalman Filter can be modified with the Simplex Unscented Trans-

formation, the Spherical Transformation to compare the performances [50]. Meanwhile,
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Rao-Blackwellised additive unscented Kalman filter (RBAUKF) and the Adaptive Un-

scented Kalman filter also provides us powerful alternatives design which will also be

studied in the future [51] [52].

The Particle Filter performance can also be improved by increasing the number of

particles, but the computational efforts limit the number of particle we can increase.

The Adaptive Particle Filter change the likelihood distribution according to statistic

characteristic of the system, and therefore, will be studied in the future work [53].
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