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SUMMARY

The objective of this Masters Thesis is to investigate the system stability

implications of integration of power electronic converter interfaced generation (CIG)

into conventional power systems. Due to differences between conventional generation

and CIG, the power system fault currents, voltage response, and frequency response

will likely change with increased penetration of CIG. This research has employed state

of the art software tools to perform simulations on the IEEE 24-Bus Reliability Test

System (RTS-24), appropriately modified to include converter interfaced generation.

Time-domain dynamic simulations and fault calculations have been performed for the

system. A comprehensive set of simulations has been performed on the base case,

comprised entirely of conventional generation. Conventional generation was replaced

by CIG in the model, one generating station at a time until CIG penetration reached

one-hundred percent. The comprehensive set of simulations has been performed at

each level of CIG penetration. The results have been compared to the base case, with

a focus on voltage response, frequency response, and fault current levels of the power

system.

As conventional generation is replaced by CIG the system frequency declines to

lower and lower minimum values in response to disturbances. Furthermore, the sys-

tem voltages oscillate at higher and higher frequencies and can resolve at undesirable

deviations from their initial values. These undesirable results, however, can be mit-

igated by active and reactive power injections in response to system disturbances.

To mitigate some of the issues observed in the maximum CIG power system, active

and reactive power injections were modeled to represent the potential contribution

to dynamic stability of the system. Use of active power injection in response to a

xii



fault is shown to mitigate some of the additional frequency dip caused by reduction

in generator inertia. Use of reactive power injection in response to a fault is shown

to mitigate some of the voltage deviation observed due to insufficient reactive power

margin of available generation.

Power electronic converter rating limits have a significant impact on fault current

levels in the system, but the network impedance is shown to reduce the impact of these

converter limitations at locations remote from the converter. As penetration of CIG

into the power system increases, fault current levels begin to approach load current

levels in proximity to the converters. This condition in large-scale power systems may

require new protection methods to maintain reliable and secure protection as power

systems evolve.

xiii



CHAPTER 1

INTRODUCTION

Power systems around the world are seeing consistent increase of CIG capacity, which

is largely due to increases in renewable energy generation connected to power systems

through power electronic converters. For example, installed wind power capacity

worldwide increased by a factor of ten between the end of 2000 and the end of 2010[1].

The characteristics of power electronic converters are very different than conventional

source equipment connected to the power system. Power electronic limitations, CIG

control modes, and decoupling of mechanical inertia are differences expected to cause

significant impact to the stability of the power system.

Because of strict limitations of power electronic equipment, fault currents con-

tributed by CIG can be significantly lower than those contributed by conventional

generators. These limitations lead to fault currents that can be difficult to distin-

guish from maximum load currents. This makes reliable and secure protection of the

power system difficult to achieve. Additionally, CIG offers control modes not avail-

able to conventional generation and CIG response times are based on electrical time

constants, which are typically much shorter than the mechanical time constants of

conventional generators. CIG control modes, coupled with shorter time constants will

likely have an impact on the voltage response of the power system. Finally, CIG does

not couple mechanical inertia to the power system directly, like conventional genera-

tion. The mechanical inertia provided to the power system by conventional generation

plays an important role in maintaining system frequency during disturbances. Since

CIG does not have inertia available to help maintain the system frequency during

disturbances, power systems with a high penetration of CIG will likely have different

1



frequency response characteristics than conventional power systems. This research

has investigated the system changes due to integration of CIG into a generic conven-

tional power system. Fault current levels, voltage response, and frequency response

have been compared for the power system at increasing levels of CIG integration.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter summarizes some important fundamental concepts. Power flow, fault

analysis, and dynamic stability of power systems are reviewed. General descriptions

of power system equipment will be given.

2.1 Basic Concepts

Power systems cover large geographic areas and are subject to a variety of weather

conditions, among other adversities. Because of this, power systems are regularly

subject to disturbances. It is desirable to know in advance whether a power system

will be able to survive all reasonable disturbances that may occur, and to assess

whether operational actions may be necessary. In order to study this, models are

developed for the power system and disturbances are simulated to determine the

system response. Simulation of a power system using models typically involves the

solution of a variety of large scale numerical problems. For each disturbance, the

power system response is studied to identify and categorize undesirable behavior.

Voltage stability, rotor angle stability, and frequency stability are of primary interest

in this research. Although the various forms of stability are distinguished, they are

often coupled to one another and occur together.

2.1.1 Simulation

Due to the tremendous cost of power systems it is usually impractical to physically

build a test system. Therefore, it is common practice to develop mathematical models

of power systems, upon which simulations can be performed. In some cases, the sim-

ulations can be compared to sampled data from existing power systems to verify the

3
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Figure 1: Test System Oneline Diagram

accuracy of results. Modeling and simulation of conventional power systems is fairly

mature, being one of the early tasks for computers. However, as power system equip-

ment evolves and new devices are created, new models and solution techniques are

needed to accurately portray the power system using simulations. This research uses

commercially available simulation software and models. The conventional equipment

models are fairly mature, while the CIG equipment models are relatively new.

2.1.2 Simple Demonstration System

Figure 1 shows a oneline diagram of a simple power system which will be used to

review the relevant concepts of power system analysis. This power system is comprised

of one electrical load fed by two sources through transmission lines. The generator

connected to Bus1 is large compared to the generator connected to Bus3. The system

is modeled at 138 kV on a 100 MVA base. The dynamic model parameters for this

test system are shown in Tables 1, 2, 3, and 4.

2.1.3 Power Flow Analysis

Power flow analysis consists of solving the network equations representing a power

system, to identify the active and reactive power flowing in each part of the sys-

tem. The following equations are used to obtain network equations for a given power

4



Table 1: GENROU Model Parameters for the Simple System Rotors

Bus1 Bus3
T’do 7.5 7.5
T”do 0.054 0.054
T’qo 1.5 1.5
T”qo 0.107 0.107
H 11.4 11.4
D 0 0
Xd 1.64 1.64
Xq 1.575 1.575
X’d 0.159 0.159
X’q 0.306 0.306
X”d 0.102 0.102
Xl 0.113 0.113
S(1.0) 0.087 0.087
S(1.2) 0.2681 0.2681
MVA Base 1000 25

Table 2: ESAC1A Model Parameters for the Simple System Excitation Systems

Bus1 Bus3
TR 0 0
TB 0 0
TC 0 0
KA 400 400
TA 0.02 0.02
VAMAX 14.5 14.5
VAMIN -14.5 -14.5
TE 0.8 0.8
KF 0.03 0.03
TF 1 1
KC 0.2 0.2
KD 0.38 0.38
KE 1 1
E1 4.18 4.18
SE(E1) 0.1 0.1
E2 3.14 3.14
SE(E2) 0.03 0.03
VRMAX 6.03 6.03
VRMIN -5.43 -5.43
MVA Base 1000 25

Table 3: IEESGO Model Parameters for the Simple System Governor Systems

Bus1 Bus3
T1 0.5 0.5
T2 1.25 1.25
T3 0.7 0.7
T4 0.7 0.7
T5 0 0
T6 0 0
K1 25 25
K2 0 0
K3 0 0
PMAX 1 1
PMIN 0 0
MVA Base 1000 25
Pgen (Powerflow) 183.4962 25
Pmax (Powerflow) 999 999

5



Table 4: CLODAR Model Parameters for the Simple System Dynamic Loads

IAREA 1
Area Area1
LMpct 30
SMpct 30
TEXpct 2
DISpct 8
MVApct 30
KP 1
R 0
X 0

system[2].

Pik(x) =
n∑

k=1

|Vi||Vk|
(
gikcos (δi − δk) + biksin (δi − δk)

)
(1)

Qik(x) =
n∑

k=1

|Vi||Vk|
(
giksin (δi − δk)− bikcos (δi − δk)

)
(2)

In order to find the correct parameters for these equations, an admittance matrix of

the following form is typically obtained.

Ybus =


Y11 . . . Y1n
...

. . .
...

Yn1 . . . Ynn

 (3)

Once the equations for a system are identified, one of many numerical methods can

be used to solve the set of non-linear equations[3]. For example, the following is a

representation of the Newton-Rhapson method, which is commonly used to solve the

power flow problem.
xn+1
1

...

xn+1
n

 =


xn1
...

xnn

−


∂g1
∂x1

. . . ∂g1
∂xn

...
. . .

...

∂gn
∂x1

. . . ∂gn
∂xn


−1

·


g1(x

n
1 , . . . , x

n
n)

...

gn(xn1 , . . . , x
n
n)

 (4)

Table 5 shows three iterations of the Newton-Rhapson method when applied to

solve the simple system shown in Figure 1. These iterations were calculated using

a Python script which is documented in Appendix B for reference. The final result

6



Table 5: Newton-Rhapson Iterations for Simple System

Iteration δ2 δ3 V2
0 0 0 1
1 -24.9 -22.02 1.045
2 -25.84 -22.98 1.001
3 -25.95 -23.08 0.9984

Figure 2: Commercial Software Power Flow Solution

is in agreement with the result obtained using the commercial power flow analysis

software shown in Figure 2.

Solution of the power flow problem is important in this research, because this

solution provides the initial conditions for a dynamic simulation, which is discussed

later.

2.1.4 Fault Analysis

Fault analysis of the power systems can be performed using the method of symmetrical

components[2][4][5]. The method of symmetrical components involves transforming

three phase quantities into three distinct balanced sets of components, two of which

are balanced and one which is a set of three identical quantities. Figure 3 shows the

symmetrical component model of the test system. Notice that the load is neglected

in the diagram, since loads are typically neglected in fault studies. The voltage

sources in the top circuit are assumed to have 1 per unit voltage throughout the

analysis, therefore in the case of balanced operation, no fault current flows in the

network. The middle network in Figure 3 represents negative sequence while the

lower negative represents zero sequence. Fault analysis can be performed by applying

7
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Z0_12 Z0_23

Figure 3: Test System Symmetrical Component Diagram

a fault connection model at the faulted point in the network model and performing

circuit analysis. Once the symmetrical component quantities are known, the inverse

symmetrical component transform can be used to find the phase quantities. Analysis

using this method for a 3LG, a L-L, and a 1LG fault on the test system are provided

to demonstrate the general method of fault analysis used in this research.

2.1.4.1 Three Phase Fault

The network diagram used to calculate quantities for a 3LG fault on Bus2 is shown in

Figure 4. This diagram shows the complete network with the fault connection model

added, and network reduction steps taken to simplify the analysis. Notice that the

negative and zero sequence networks are neglected because this analysis assumes a

perfectly balanced 3LG fault. The resulting positive sequence current is calculated

from the reduced circuit to be 9.166 − 88.76◦pu.

I1 =
1

Zeq

=
1
1

1
Z112

+ 1
Z123

= 9.166 − 88.76◦pu (5)

The phase currents are calculated by applying the transformation shown in the

8
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Figure 5: Commercial Software Three Phase Fault

following equation[2][6].
IA

IB

IC

 =


1 1 1

1 1 6 − 120 1 6 120

1 1 6 120 1 6 − 120

 ·

I0

I1

I2

 (6)

For the 3LG fault on this test system, the resulting currents are shown below in per

unit.
IA

IB

IC

 =


1 1 1

1 1 6 − 120 1 6 120

1 1 6 120 1 6 − 120

 ·


0

9.166 − 88.76◦

0

 =


9.166 − 88.76◦

9.166 151.24◦

9.166 31.24◦

 (7)

Notice that the phase fault currents form a balanced set for this balanced 3LG fault.

The per unit current is converted into amps by multiplying it by the per unit current

base calculated in the following equation.

Ibase =
Sbase√

3 ∗ Vbase
=

100MVA√
3 ∗ 138kV

= 418.37Ω (8)

The magnitude of the fault current at Bus2 for a 3LG fault is 3832.88 amps, which

is in agreement with the result obtained using the commercial fault analysis software

shown in Figure 5.

2.1.4.2 Phase to Phase Fault

The network diagram used to calculate quantities for a L-L fault between phase B and

phase C on Bus2 is shown in Figure 6. This diagram shows the complete network with

10



the fault connection model added, and network reduction steps taken to simplify the

analysis. Notice that the zero sequence network is neglected because this network is

isolated from all sources for a L-L fault. The resulting positive and negative sequence

currents are calculated from the reduced circuit to be 4.586 − 88.76◦ per unit and

4.586 91.24◦ per unit, respectively.

I1 =
1

Zeq

=
1

0.226 88.76◦
= 4.586 − 88.76◦pu (9)

I2 =
1

Zeq

= − 1

0.226 88.76◦
= 4.586 91.24◦pu (10)

The phase currents are calculated using the transformation as before. For the L-L

fault on this test system, the resulting currents are shown below in per unit.
IA

IB

IC

 =


1 1 1

1 1 6 − 120 1 6 120

1 1 6 120 1 6 − 120

 ·


0

4.586 − 88.76◦

4.586 91.24◦

 =


0

7.936 − 178.76◦

7.936 1.24◦

 (11)

Notice that the phase B and phase C fault currents are equal in magnitude, but

opposite in phase for this L-L fault. The per unit current is converted into amps by

multiplying it by the per unit current base calculated previously. The magnitude of

the fault current at Bus2 for a L-L fault is 3319.37 amps, which is in agreement with

the result obtained using the commercial fault analysis software shown in Figure 7.

2.1.4.3 Single Phase Fault

The network diagram used to calculate quantities for a 1LG fault on phase A at

Bus2 is shown in Figure 8. This diagram shows the complete network with the fault

connection model added, and network reduction steps taken to simplify the analysis.

Notice that positive sequence, negative sequence, and zero sequence networks must

all be considered for a 1LG fault. The resulting positive, negative, and zero sequence

currents are calculated from the reduced circuit to be 1.836 − 88.76◦ per unit.

I1 = I2 = I0 =
1

Zeq

=
1

0.226 88.76◦
= 4.586 − 88.76◦pu (12)

11
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Figure 6: Test System Phase to Phase Fault
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Figure 7: Commercial Software Phase to Phase Fault

The phase currents are calculated using the transformation as before. For the

1LG fault on this test system, the resulting currents are shown below in per unit.
IA

IB

IC

 =


1 1 1

1 1 6 − 120 1 6 120

1 1 6 120 1 6 − 120

 ·


1.836 − 88.76◦

1.836 − 88.76◦

1.836 − 88.76◦

 =


5.506 − 88.76◦

0

0

 (13)

Notice that only phase A has fault current for this 1LG fault. The per unit current

is converted into amps by multiplying it by the per unit current base calculated

previously. The magnitude of the fault current at Bus2 for a 1LG fault is 2299.73

amps, which is in agreement with the result obtained using the commercial fault

analysis software shown in Figure 9.

2.1.5 Stability Analysis

Power system stability analysis involves the solution of simultaneous non-linear differ-

ential equations and algebraic equations, which mathematically represent the power

system network and equipment. The general form is outlined in the following equa-

tions, where x is the state vector of the system, V is the bus voltage vector, and I is

the current injection vector[7].

ẋ = f(x, V ) (14)

I(x, V ) = YNV (15)
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Figure 9: Commercial Software Single Phase Fault

When a power system is modeled in simulation software, the software interprets the

system and casts it into this form. Numerical methods are then applied to solve the

simultaneous set of equations at each time step. The result is a time-domain response

of the power system for a given sequence of events. Solution of this problem is covered

in detail by Kundur[7]. The following sections summarize the key concepts of power

system stability relating to this research.

2.1.5.1 Voltage Stability

Voltage stability is achieved for a power system when reactive power demand is met by

reactive power supply[8]. Voltage instability (or collapse) occurs when reactive power

demand exceeds reactive power supply[9], due to insufficient system reactive capacity

or due to reactive power transfer constraint caused by network limitations. Dynamic

behavior of power system loads, especially electric motors, can have a significant

impact on voltage stability. When the supply voltage is depressed for a sufficient

duration, the slip of an induction motor increases due to reduced electrical torque.

This reduction in electrical torque and speed can lead to motor stalling if the available

electrical torque, including torque converted from inertial energy, is less than the load

torque. During stall the reactive power absorbed by an induction motor increases

significantly, which further increases voltage drops in the network. In severe cases,

this behavior can cascade to other parts of the power system.

Figure 10 shows an example of voltage collapse following a disturbance. The
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Figure 10: Voltage collapse following generator outage

disturbance was modeled as an outage of generator 2 initiated at 20 seconds. It

can be seen that the voltages at Bus2 and Bus3 collapse to unacceptably low values

because of the generator outage. Even though Bus1 is able to recover to a voltage of

1.0 per unit, the network constrains reactive power transfer enough to prevent voltage

recovery.

2.1.5.2 Rotor Angle Stability

Rotor angle stability is achieved for a power system when generation matches active

power demand and oscillations are small and decaying. Instability occurs when os-

cillations are large to the point that generation and load lose synchronism with each

other[9]. Without swift corrective control action, the oscillations can potentially lead

to collapse and long term outages of large portions of the power system.

Figure 11 shows an example of rotor angle instability following a disturbance. The

disturbance was modeled as a 47 cycle 3LG fault on Bus 3, initiated at 20 seconds.

It can be seen that the generator at Bus3 loses synchronism with the system because
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Figure 11: Rotor angle instability following delayed-clearance of fault

of the fault. The simulation did not trip the generator after it lost synchronism,

but it reality a generator should be tripped by local protection for this condition.

Consequently, this would have led to voltage collapse for this simple power system,

as seen in the previous section. The consequences of failure to trip the unit would be

severe, and could cause additional issues.

2.1.5.3 Frequency Stability

Frequency stability is achieved for a power system when frequency deviations are

small enough that tripping of generation or load is not required. Frequency insta-

bility occurs when frequency deviations lead to tripping of enough equipment that

unsustainable imbalance between generation and load is developed[9].

Figure 12 shows examples of frequency response following various disturbances.

It clearly shows that frequency deviations can be small for a slight reduction in

generation, or quite large for faults and generator outages. The response in this case

is slightly exaggerated due to the relatively small size of the test system. Frequency
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Figure 12: Frequency response for various disturbances

deviations as large as these would be severe on a large scale power system.

Conventional generators couple mechanical inertia to the power system, which is

effectively energy storage. During system disturbances the energy stored as inertia

can be readily converted into active power at the cost of a reduction in system fre-

quency. The large amount of generation inertia in conventional power systems allows

power system needs during disturbances to be met with fairly small deviations in

system frequency. Since high penetration CIG systems have less generator inertia,

remaining conventional generators must reduce speed significantly to convert the nec-

essary active power. This leads to system frequency dips which can be considerably

greater than would be seen in conventional power systems. Frequency nadir, or the

lowest frequency, can be used to assess system frequency margin[10].

For the purposes of this research, very slow acting components of the generation

were not modeled. Therefore, no equipment is tripped from the power system during

simulations due to frequency deviations. Instead, the system frequency was observed
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to provide a basis for qualitatively assessing the frequency stability implications of

CIG integration.

2.2 Practical Considerations

Due to long service life of power system equipment, it is desirable to understand

the characteristics of power systems with high CIG penetration as early as possible.

Power system equipment costs are typically measured in millions of dollars, so it is

desirable that any equipment last as long as possible. Any information regarding the

future of power systems can be very valuable if available early enough. This research

aims to contribute to growing efforts in this regard.

The key difference between the proposed research and research already completed

is that the proposed research will focus on the technical aspects of a complete conven-

tional power system as it evolves into a complete CIG power system. The proposed

research will assume that adequate capacity of variable generation is installed, with-

out delving into weather forecasts, energy availability, or institutional aspects of the

power system. That is not to say that these aspects are unimportant, rather they are

critically important to the power system as a whole. However, the proposed research

will be focused on the stability requirements of a generic power system, assuming

that the available generation is capable of supplying the load demand in steady state

operation.

The proposed research will utilize the standard public generic models developed

for Type IV Wind Machine CIG along with General Electric (GE) parameters which

are available for these models. Dynamic simulations will be performed using DSA

Tools analysis software, and fault analysis will be performed using ASPEN analysis

software.
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2.2.1 Equipment

A utility scale power system is comprised of electrical, mechanical, and electrome-

chanical components combined into a cohesive system with the purpose of efficiently

and reliably providing electrical power to a set of loads that are geographically and

characteristically diverse. The major components which are modeled and discussed

in this research include generators, transformers, transmission lines, loads, and power

electronic devices. There are other types of devices found in a power system and,

being less relevant to this research, are left to the literature.

Generators are sources of electrical energy for the power system. They convert

energy from various forms into electrical energy with specific electrical characteristics.

The term generator is typically used to describe the entire process of energy conversion

and coupling to the power system, which is a very complex control system. The

behavior of power systems is largely dependent on the generators, including control

parameters and protection.

Loads consist of all equipment that utilize electric power from the power system.

Motors, heaters, lighting, and electronic devices are among the most common loads.

Loads are connected and disconnected from the power system at times which are

largely unpredictable. Patterns can be deduced, but many assumptions must be

made when modeling loads, more so than for other equipment. It is common to study

a power system at a maximum and a minimum load level to ascertain a range of likely

behavior for the system.

The cost of power system equipment typically goes up when voltage goes up, so

it is desirable for generators and loads to be connected at relatively low voltages.

However, the losses due to transmitting power go up as voltage goes down, so it is

desirable to transmit power at very high voltages. Therefore, transformers are used to

transfer power between portions of a power system at different voltage levels. Step-up

transformers are connected to a generator’s low voltage bus and transform the power
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to a higher voltage for transmission over long distances. Step-down transformers are

connected to high voltage transmission buses and transform the power to a lower

voltage for distribution to loads. It is no surprise that power transformers are very

expensive, but the cost savings due to low voltage generators and loads substantially

compensate for the high cost of transformers. Transformers have significantly high

inductive impedances and can be a limiting factor for certain phenomena in the power

system, such as fault current magnitudes.

Transmission lines transmit the electrical power through the power system. They

are comprised of conductors, towers, earth, and other supporting equipment in vari-

ous configurations. Transmission lines have resistance, inductance, and capacitance.

The impedance of transmission lines can be very small or very large, depending on

many factors including conductors, geometry, length, and ratings. Ultimately, any

phenomena in the power system is transmitted through the transmission lines, so the

characteristics are very important to the overall behavior of a power system.

This research is concerned with the integration of power electronic devices into

the transmission system. Although converter interfaced loads can offer tremendous

advantages[11] and are becoming more common, the focus here is power electronic

sources to the system. CIG uses a power electronic converter to connect to the power

system, which acts as a source of active and reactive power. A converter is comprised

of solid-state switches which are controlled to transfer power from the generator to the

power system, with specifically dictated characteristics. Power electronic converters

have very strict limitations, which may introduce new issues into power systems.

Furthermore, the behavior of power electronic converters is complicated by protection

and control functions which require very detailed models and consideration.
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2.3 Existing and Ongoing Research

Research in power systems has contributed and continues to contribute to this vital

technology. In recent decades, power electronics technology has enabled practical

integration of renewable energy sources to the grid in large quantities. The power

electronic converters used to connect renewable sources commonly transfer energy to

the grid using some form of pulse width modulation (PWM) control[12], and thus

have characteristics which are very different than conventional generation. Further-

more, renewable energy sources are not typically configured to offer the flexibility of

dispatchable power, which can complicate system response to disturbances. Because

of these issues, and others, research is going on in this area to identify in advance

potential problems and needs for power systems with high penetration of CIG. A brief

summary of some research in this area is provided.

Displacement of conventional generation with non-dispatchable resources has re-

ceived a lot of attention. Wind generators connected directly to the power system con-

tribute inertia during disturbance recovery, but their consumption of reactive power

can reduce the voltage stability margins[13]. However, reactive compensation can be

used in tandem with CIG[14], or the existing converter can be used to provide dynamic

reactive support. Although studies indicate that low penetration of wind may benefit

the system, high penetration of wind can result in reduction in stability margins[15].

Control modes used for wind generation can impact the stability of conventional gen-

eration, and displacement of conventional generation by non-dispatachable resources

can lead to loss of system mitigation capabilities[16]. Voltage control modes for

Doubly fed induction generators (DFIG) increase system security and improve sys-

tem voltage response compared to power factor (PF) control, but a system tends to

be more stable when more conventional generation is online[17]. As new technolo-

gies emerge, new ideas on addressing these issues have been proposed and studied.

Emulated inertial response in converters can help alleviate conventional generation

22



displacement issues[18], although a portion of available resources must be sacrificed.

As CIG increase in a power system, the protection of the grid must be adapted.

Although DFIG reduce system inertia when used to displace conventional generation,

they can provide sustained short circuit currents during grid faults[19]. This helps

enable the use of conventional protection methods for the local grid facilities. In

order to prevent issues caused by generation disconnect during disturbances, low

voltage ride through (LVRT) requirements are being implemented. This means that

the generators are not allowed to disconnect due voltage response within a certain

window. LVRT are shown to improve system performance with high penetration of

wind[20], so justifying the requirements. Multiple control techniques are available

which can help renewable resources meet LVRT requirements[21]. For example, by

controlling the converter, DFIG is capable of meeting the LVRT requirements[22].

Issues still exist though, as weak alternating current (AC) system connection can

reduce performance of voltage source converters (VSC)[23].

CIG integration into power systems is being investigated by a number of re-

searchers in industry and academia. EPRI, NREL, WECC, and others have col-

laborated to develop CIG models that are standard, public, and not specific to any

vendor. The models are designed to emulate the dynamic behavior of CIG equipment

at the terminals of interconnection with the power system. NREL has performed

research to determine appropriate capacity factors based on availability of energy

sources. NREL has also performed research to assess the needs of systems with in-

creased variable generation, taking into consideration the institutional aspects of the

system. Utilities and consulting firms perform interconnection studies for each CIG

plant that is connected to specific power systems. Tremendous work has been per-

formed by software vendors to create software interfaces and algorithms which can

accommodate CIG models in conventional power system simulation software. Fol-

lowing the lead of EPRI, NREL, and WECC, most large scale CIG manufactures
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have performed studies to determine appropriate model parameters to model their

equipment using the generic models.

This research aims to contribute to the growing body of research in this area.

This research has employed state of the art software tools to perform simulations

on the IEEE 24-Bus Reliability Test System (RTS-24), appropriately modified to

include converter interfaced generation. Time-domain dynamic simulations and fault

calculations have been performed for the system. A comprehensive set of simulations

has been performed on the base case, comprised entirely of conventional generation.

Conventional generation has been replaced by CIG in the model, one generating

station at a time until CIG penetration is one-hundred percent. The comprehensive

set of simulations has been performed at each level of CIG penetration. The results

have been compared to the base case, with a focus on voltage response, frequency

response, and fault current levels of the power system.
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CHAPTER 3

24 BUS POWER SYSTEM MODEL

Models are used in this research to simulate the behavior of conventional and CIG

power systems. This chapter details the development of eleven power system models

prepared for use in steady-state, dynamic, and fault simulations. The IEEE 24-Bus

Reliability Test System (RTS)[24] forms the positive sequence base in steady-state.

Dynamic equipment models were added to represent generators and loads in the

system. Negative and zero sequence networks were added to enable unbalanced fault

analysis.

3.1 Conventional Power System

3.1.1 Power Flow Model

The power flow model is a positive sequence representation of the power system and

forms the foundation of the dynamic and fault analysis models. This model aims to

represent a small but complete power system under steady state conditions where

generation and load are well balanced. A power flow model provides a snapshot of

voltage magnitudes and angles at buses across the system for a particular operating

condition, from which active and reactive power flows can be discerned.

A oneline diagram of the RTS power system is shown in Figure 13. It is comprised

of 10 generating plants, 17 load serving points, 5 transformers, and 33 transmission

lines. Not shown in the diagram are generation plant step-up transformers, but one

is modeled for each plant. The loads were scaled down 10% from the original RTS

system and the generation was redispatched to create more margin for disturbance

response, since the original model was not intended for dynamic analysis. The system

is comprised of transmission facilities at 230 kV and 138 kV. Total load for the system
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is 2280 MW and total generation is 2307 MW.

3.1.2 Fault Analysis Model

The fault analysis model is an addition to the power flow model, which uses the

method of symmetrical components to add specific circuits which enable analysis of

unbalanced faults. The power flow model contains the positive sequence model of

the system, so only negative sequence and zero sequence circuit models need to be

added. For this research, the negative sequence and zero sequence models were created

by assuming that the negative sequence impedance is equal to the positive sequence

impedance, and that the zero sequence impedance is three times the positive sequence

impedance, which is within the typical range for overhead transmission lines[2][6].

3.1.3 Dynamic Analysis Model

The dynamic analysis model is an addition to the power flow model, which adds

models that enable time-domain simulation of the power system. The dynamic mod-

els account for the time domain response of equipment, typically using systems of

differential and algebraic equations. For this research, dynamic models were created

for each of the generators using data available in the literature.

In a dynamic simulation, conventional generators are comprised of separate models

which work together to represent the device. The separate models typically account

for the rotor, exciter, governor, and power system stabilizers. GENROU, ESAC1A,

IEESGO, and PSS2A were selected to represent these, respectively. Parameter val-

ues for each model were selected based on equipment ratings using available data

provided by Anderson[3], except the power system stabilizer model parameter values

were determined using an optimization feature of the software. Block diagrams and

parameter values for each dynamic model used are summarized in Appendix A.
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3.2 CIG Power System

3.2.1 Power Flow Model

The CIG equipment models in steady state are similar to the conventional generator

models, since the particular model being used has voltage control capability. The only

additional requirements for each CIG plant in the steady state model are to replace

multiple unit plants with a single equivalent unit and to specify each as a wind plant

with a specific control mode.

3.2.2 Fault Analysis Model

For CIG equipment, a ten percent maximum overload rating was assumed for the

converter[25]. This rating limitation was imposed in the fault analysis software as a

part of the generator model, in conjunction with certain solution specifications.

3.2.3 Dynamic Analysis Model

The WT4E1 and WT4G1 dynamic models were used to represent CIG in the power

system. The conventional generator dynamic models were replaced by these two

models to appropriately build the set of power system models. These models were

developed by a large collaboration within the industry[26] to provide accurate repre-

sentations of Type IV wind machines which are publicly available and do not reveal

proprietary information. Block diagrams for these models are shown in Appendix A.

3.3 Complete Set of Power System Models

A set of eleven power system models was created by replacing conventional generation

with CIG one plant at a time. For each progressive power system model, an entire

conventional generating plant was replaced by a CIG model, representing a Type IV

wind farm of equivalent capacity. This replacement was made in steady state, fault,

and dynamics models. A oneline diagram of the 100% CIG power system is shown

in Figure 14, including the order of plant replacement used to create the entire set
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Table 6: CIG Composition of each Power System Model

% CIG MW CIG
Case 1 0% 0.0
Case 2 8% 174.5
Case 3 15% 349.0
Case 4 27% 621.6
Case 5 50% 1158.1
Case 6 59% 1354.1
Case 7 65% 1495.0
Case 8 81% 1858.5
Case 9 92% 2131.2
Case 10 98% 2264.1
Case 11 100% 2307.1

of cases. The plant at bus 14 is a synchronous condenser, acts as the slack bus, and

was not replaced with a CIG model. The ratio of power supplied by CIG to power

supplied by conventional generation for each study case is in Table 6.
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CHAPTER 4

SIMULATION AND ANALYSIS

A comprehensive analysis has been performed on the modified RTS-24 power system

at increasing levels of converter interfaced generation.

4.1 Dynamic Simulation and Analysis

Comprehensive disturbance analysis has been performed on each of the eleven dy-

namic cases developed. The disturbances include three-phase faults (3LG) and single-

phase faults (1LG) at each transmission bus in the system, for each of the cases. A

representative set of simulation results is discussed.

4.1.1 Voltage Response Through Power System Evolution

Figure 15 through Figure 25 show the voltage response of the power system to a

5-cycle 3LG fault at Bus 1, as CIG penetration increases. This fault is cleared in the

simulation without tripping any circuits or other equipment in the system. Although

equipment outages are required to isolate faults in a real power system, this type

of disturbance simulation without outages can provide a basis for comparing system

response to the fault only. It is clear that the voltage response of the system changes,

exhibiting an increase in frequency of voltage oscillation with increasing CIG.

Simulations with circuit tripping to clear the fault were also simulated for 3LG,

1LG, and phase to phase (L-L) faults. Since the L-L and 1LG disturbance responses

turned out to be lest severe versions of the 3LG case, only 3LG results are discussed.

Figure 26 shows the bus 1 voltage response to a 3LG fault at bus 21 with the transmis-

sion line from bus 21 to bus 15 tripping to clear the fault. The simulations represent

a close-in fault on the transmission line, which is cleared by local and remote circuit

31



0 1
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
EVENT: 3PHBF_1_CTG-1_Case-RTS24_00 ||  QUANTITY PLOTTED: Bus Voltage Magnitude (pu)

Bus 1

Bus 2

Bus 3

Bus 4

Bus 5

Bus 6

Bus 7

Bus 8

Bus 9

Bus 10

Bus 11

Bus 12

Bus 13

Bus 14

Bus 15

Bus 16

Bus 17

Bus 18

Bus 19

Bus 20

Bus 21

Bus 22

Bus 23

Bus 24

Figure 15: System bus voltage response for 0% CIG case.
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Figure 16: System bus voltage response for 8% CIG case.
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Figure 17: System bus voltage response for 15% CIG case.
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Figure 18: System bus voltage response for 27% CIG case.
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Figure 19: System bus voltage response for 50% CIG case.
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Figure 20: System bus voltage response for 59% CIG case.
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Figure 21: System bus voltage response for 65% CIG case.
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Figure 22: System bus voltage response for 81% CIG case.
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Figure 23: System bus voltage response for 92% CIG case.
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Figure 24: System bus voltage response for 98% CIG case.
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Figure 25: System bus voltage response for 100% CIG case.

breakers. The results are representative of similar disturbances at different locations

in the power system.

4.1.2 Frequency Response Through Power System Evolution

Figure 27 through Figure 37 show the frequency response of the power system to a

5-cycle 3LG fault at Bus 1, as CIG penetration increase. This fault is cleared in the

simulation without tripping any circuits or other equipment in the system. It is clear

that the frequency response of the system changes, exhibiting more severe frequency

dips with increasing CIG.

Figure 38 shows the minimum frequency experienced by a representative set of

buses within the power system for the fault at Bus 1. The system frequency response

gets progressively worse with increase in CIG. Large frequency dips can indicate a

smaller stability margin for power systems[10].

Figure 39 shows the same minimum frequency data for the fault at Bus 1, but

plotted as a function of the conventional generator power dispatch in megawatts.

This plot shows the inverse linear relation between CIG penetration and conventional
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Figure 26: Bus 1 voltage response through evolution of power system for 3LG fault
at bus 21 with circuit tripping.
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Figure 27: System bus frequency response for 0% CIG case.

38



0 1 2 3
Time (s)

59.85

59.90

59.95

60.00

60.05

60.10

60.15
EVENT: 3PHBF_1_CTG-1_Case-RTS24_01 ||  QUANTITY PLOTTED: Bus Frequency (Hz)

Bus 1

Bus 2

Bus 3

Bus 4

Bus 5

Bus 6

Bus 7

Bus 8

Bus 9

Bus 10

Bus 11

Bus 12

Bus 13

Bus 14

Bus 15

Bus 16

Bus 17

Bus 18

Bus 19

Bus 20

Bus 21

Bus 22

Bus 23

Bus 24

Figure 28: System bus frequency response for 8% CIG case.

0 1 2 3
Time (s)

59.8

59.9

60.0

60.1

60.2
EVENT: 3PHBF_1_CTG-1_Case-RTS24_02 ||  QUANTITY PLOTTED: Bus Frequency (Hz)

Bus 1

Bus 2

Bus 3

Bus 4

Bus 5

Bus 6

Bus 7

Bus 8

Bus 9

Bus 10

Bus 11

Bus 12

Bus 13

Bus 14

Bus 15

Bus 16

Bus 17

Bus 18

Bus 19

Bus 20

Bus 21

Bus 22

Bus 23

Bus 24

Figure 29: System bus frequency response for 15% CIG case.
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Figure 30: System bus frequency response for 27% CIG case.
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Figure 31: System bus frequency response for 50% CIG case.
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Figure 32: System bus frequency response for 59% CIG case.
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Figure 33: System bus frequency response for 65% CIG case.
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Figure 34: System bus frequency response for 81% CIG case.
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Figure 35: System bus frequency response for 92% CIG case.
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Figure 36: System bus frequency response for 98% CIG case.
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Figure 37: System bus frequency response for 100% CIG case.
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Figure 38: Minimum Bus Frequency as a function of CIG penetration

generation dispatch.

Figure 40 shows the same minimum frequency data for the fault at Bus 1, but

plotted as a function of the conventional generator power capacity in megawatts.

This plot shows that the relationship between CIG penetration and total conven-

tional generation capacity is not necessarily linear, since CIG penetration is based on

dispatched power and not total power capacity.

Simulations with circuit tripping to clear the fault were also simulated for 3LG,

1LG, and L-L faults. Since the L-L and 1LG disturbance responses turned out to be

lest severe versions of the 3LG case, only 3LG results are discussed. Figure 41 shows

the bus 1 frequency response to a 3LG fault at bus 21 with the transmission line from

bus 21 to bus 15 tripping to clear the fault. These plots are representative of similar

disturbances at different locations in the power system.
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Figure 39: Minimum Bus Frequency as a function of conventional generator dispatch

4.2 Fault Simulation and Analysis

Comprehensive fault analysis has been performed on each of the eleven fault cases

developed. 3LG, 1LG, and L-L fault currents were calculated at each bus in the

system, for each of the cases. The fault current values appear in Table 7, Table 8,

and Table 9.

The evolution of the power system results in significant changes in fault current

for some buses, but meager changes for other buses. The minimal change observed in

1LG fault currents is due to numerical limitations encountered in the study method,

which required a relatively high zero sequence impedance parameter value for each

generator. Table 10 shows the percent decrease in fault currents from the conventional

power system to the CIG power system for 3LG faults.

The reduction in fault current due to high penetration CIG systems appears to

be limited by the network impedances. The power electronic converter limitations
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Figure 40: Minimum Bus Frequency as a function of conventional generator capacity
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Figure 41: Bus 1 frequency response through evolution of power system for 3LG
fault at bus 21 with circuit tripping.
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Table 7: 3LG Fault Currents Through Evolution of Power System

Fault Bus 0% 8% 15% 27% 50% 59% 65% 81% 92% 98% 100%
BUS01 11779.7 6192.2 5631.8 5631.8 5631.8 5631.8 5631.8 5631.8 5631.8 5631.8 5631.8
BUS02 11370.1 10879.7 5294.9 5294.9 5294.9 5294.9 5294.9 5294.9 5294.9 5294.9 5294.9
BUS03 6723.9 6604.4 6588.2 6588.2 6588.2 6588.2 6588.2 6588.2 6588.2 6588.2 6588.2
BUS04 5051.6 5051.6 4631.6 4631.6 4631.6 4631.6 4631.6 4631.6 4631.6 4631.6 4631.6
BUS05 6165 5421.7 5250.4 5250.4 5250.4 5250.4 5250.4 5250.4 5250.4 5250.4 5250.4
BUS06 5592.9 5571 5317.7 5317.7 5317.7 5317.7 5317.7 5317.7 5317.7 5317.7 5317.7
BUS07 12717.5 12717.5 12717.5 3984.4 3984.4 3984.4 3984.4 3984.4 3984.4 3984.4 3984.4
BUS08 7660.1 7660.1 7660.1 5292.5 5292.5 5292.5 5292.5 5292.5 5292.5 5292.5 5292.5
BUS09 11156.1 11086.6 10764.7 10680.1 10668.5 10668.5 10668.5 10668.5 10668.5 10668.5 10668.5
BUS10 10951.8 10620.5 10152.5 10063 10044.9 10044.9 10044.9 10044.9 10044.9 10044.9 10044.9
BUS11 9716.6 9683.6 9605.5 9605.5 8600.4 8600.4 8590.2 8590.2 8590.2 8590.2 8590.2
BUS12 8940.6 8911.6 8840.3 8840.3 7838.5 7838.5 7838.5 7838.5 7838.5 7666 7666
BUS13 19023 19004.4 18957.7 18957.7 8603.3 8603.3 8603.3 8603.3 8603.3 8194.7 8194.7
BUS14 9380.7 9380.7 9380.7 9380.7 9370.8 9362.4 9220.4 9220.4 9220.4 9220.4 9220.4
BUS15 22126.1 22124.7 22124.7 22124.7 22124.7 14789.9 14015.4 12727.7 12412.4 12412.4 10499.3
BUS16 20730.8 20730.8 20730.8 20730.8 20730.8 18533 15808.6 14947 14608.7 13899.5 11643
BUS17 15404.3 15404.3 15404.3 15404.3 15404.3 14950.4 14454.6 13439.9 12612.6 12612.6 9240.7
BUS18 21281.8 21281.8 21281.8 21281.8 21281.8 20577.4 20182.1 17172.7 16034.2 16034.2 9047.4
BUS19 12035.4 12035.4 12035.4 12035.4 12035.4 11882.5 11477.9 11477.9 11477.9 9860.9 9823.3
BUS20 14176.7 14176.7 14176.7 14176.7 14132.3 14124.1 13979.1 13979.1 13979.1 8849.4 8849.4
BUS21 23363.6 23363.6 23363.6 23363.6 23363.6 21751 21321.1 14334.3 13024.5 13024.5 9253.6
BUS22 11129.7 11129.7 11129.7 11129.7 11129.7 11129.7 11129.7 11040.8 5760.3 5760.3 5654.3
BUS23 21119.6 21119.6 21119.6 21119.6 20486.3 20486.3 20375.9 20375.9 20375.9 8806.8 8806.8
BUS24 5118.5 5118.5 5118.5 5118.5 5118.5 5018.1 5018.1 5018.1 5018.1 5018.1 5018.1

Table 8: L-L Fault Currents Through Evolution of Power System

Fault Bus 0% 8% 15% 27% 50% 59% 65% 81% 92% 98% 100%
BUS01 10201.5 5215.9 4564 4564 4564 4564 4564 4564 4564 4564 4564
BUS02 9846.8 9374.3 4270.5 4270.5 4270.5 4270.5 4270.5 4270.5 4270.5 4270.5 4270.5
BUS03 5823.1 5683.7 5606.6 5606.6 5606.6 5606.6 5606.6 5606.6 5606.6 5606.6 5606.6
BUS04 4374.8 4356.2 3888.9 3888.9 3888.9 3888.9 3888.9 3888.9 3888.9 3888.9 3888.9
BUS05 5339 4646.9 4407.1 4407.1 4407.1 4407.1 4407.1 4407.1 4407.1 4407.1 4407.1
BUS06 4843.6 4794.9 4490.5 4490.5 4490.5 4490.5 4490.5 4490.5 4490.5 4490.5 4490.5
BUS07 11013.7 11013.7 11013.7 3225.8 3225.8 3225.8 3225.8 3225.8 3225.8 3225.8 3225.8
BUS08 6633.9 6626.9 6607.9 4435.6 4435.6 4435.6 4435.6 4435.6 4435.6 4435.6 4435.6
BUS09 9661.4 9562.5 9190.4 9000.2 8812.7 8812.7 8812.7 8812.7 8812.7 8812.7 8812.7
BUS10 9484.5 9153.8 8648.9 8455.4 8267.1 8267.1 8267.1 8267.1 8267.1 8267.1 8267.1
BUS11 8414.8 8361.6 8239.2 8214 7246.6 7246.6 7226.2 7226.2 7226.2 7226.2 7226.2
BUS12 7742.8 7694.1 7579.6 7558.2 6598.7 6598.7 6598.7 6598.7 6598.7 6357.1 6357.1
BUS13 16474.4 16438.5 16351.7 16347.4 7222.3 7222.3 7215.1 7215.1 7215.1 6736.1 6736.1
BUS14 8123.9 8119.2 8109.7 8109.7 8034.1 7999.5 7860.3 7860.3 7860.3 7860.3 7860.3
BUS15 19161.7 19146.2 19137 19137 19137 12792.3 12090.1 10941.6 10673.5 10650.5 8813.3
BUS16 17953.4 17945 17936.3 17936.3 17901.3 15991.2 13607.8 12830.2 12540 11708.6 9597.8
BUS17 13340.5 13340.5 13340.5 13340.5 13340.5 12944 12513.1 11640.9 10950 10950 7903.4
BUS18 18430.5 18430.5 18430.5 18430.5 18430.5 17825.1 17480.1 14894.8 13934.1 13934.1 7686.1
BUS19 10422.9 10422.9 10422.9 10422.9 10422.9 10275.7 9923 9917.1 9917.1 8362.1 8221.3
BUS20 12277.4 12277.4 12277.4 12277.4 12195.4 12165.7 12026.5 12026.5 12026.5 7458.2 7458.2
BUS21 20233.4 20233.4 20233.4 20233.4 20233.4 18857.6 18478.9 12407.2 11283.5 11283.5 7854.9
BUS22 9638.6 9638.6 9638.6 9638.6 9638.6 9638.6 9637.6 9556.2 5044.3 5044.3 4872.8
BUS23 18290.1 18286.6 18279.3 18279.3 17650.9 17623.1 17502 17502 17502 7329.1 7329.1
BUS24 4432.8 4419 4418 4418 4418 4310.9 4304.9 4304.9 4304.9 4304.9 4304.9
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Table 9: 1LG Fault Currents Through Evolution of Power System

Fault Bus 0% 8% 15% 27% 50% 59% 65% 81% 92% 98% 100%
BUS01 10201.5 5215.9 4564 4564 4564 4564 4564 4564 4564 4564 4564
BUS02 9846.8 9374.3 4270.5 4270.5 4270.5 4270.5 4270.5 4270.5 4270.5 4270.5 4270.5
BUS03 5823.1 5683.7 5606.6 5606.6 5606.6 5606.6 5606.6 5606.6 5606.6 5606.6 5606.6
BUS04 4374.8 4356.2 3888.9 3888.9 3888.9 3888.9 3888.9 3888.9 3888.9 3888.9 3888.9
BUS05 5339 4646.9 4407.1 4407.1 4407.1 4407.1 4407.1 4407.1 4407.1 4407.1 4407.1
BUS06 4843.6 4794.9 4490.5 4490.5 4490.5 4490.5 4490.5 4490.5 4490.5 4490.5 4490.5
BUS07 11013.7 11013.7 11013.7 3225.8 3225.8 3225.8 3225.8 3225.8 3225.8 3225.8 3225.8
BUS08 6633.9 6626.9 6607.9 4435.6 4435.6 4435.6 4435.6 4435.6 4435.6 4435.6 4435.6
BUS09 9661.4 9562.5 9190.4 9000.2 8812.7 8812.7 8812.7 8812.7 8812.7 8812.7 8812.7
BUS10 9484.5 9153.8 8648.9 8455.4 8267.1 8267.1 8267.1 8267.1 8267.1 8267.1 8267.1
BUS11 8414.8 8361.6 8239.2 8214 7246.6 7246.6 7226.2 7226.2 7226.2 7226.2 7226.2
BUS12 7742.8 7694.1 7579.6 7558.2 6598.7 6598.7 6598.7 6598.7 6598.7 6357.1 6357.1
BUS13 16474.4 16438.5 16351.7 16347.4 7222.3 7222.3 7215.1 7215.1 7215.1 6736.1 6736.1
BUS14 8123.9 8119.2 8109.7 8109.7 8034.1 7999.5 7860.3 7860.3 7860.3 7860.3 7860.3
BUS15 19161.7 19146.2 19137 19137 19137 12792.3 12090.1 10941.6 10673.5 10650.5 8813.3
BUS16 17953.4 17945 17936.3 17936.3 17901.3 15991.2 13607.8 12830.2 12540 11708.6 9597.8
BUS17 13340.5 13340.5 13340.5 13340.5 13340.5 12944 12513.1 11640.9 10950 10950 7903.4
BUS18 18430.5 18430.5 18430.5 18430.5 18430.5 17825.1 17480.1 14894.8 13934.1 13934.1 7686.1
BUS19 10422.9 10422.9 10422.9 10422.9 10422.9 10275.7 9923 9917.1 9917.1 8362.1 8221.3
BUS20 12277.4 12277.4 12277.4 12277.4 12195.4 12165.7 12026.5 12026.5 12026.5 7458.2 7458.2
BUS21 20233.4 20233.4 20233.4 20233.4 20233.4 18857.6 18478.9 12407.2 11283.5 11283.5 7854.9
BUS22 9638.6 9638.6 9638.6 9638.6 9638.6 9638.6 9637.6 9556.2 5044.3 5044.3 4872.8
BUS23 18290.1 18286.6 18279.3 18279.3 17650.9 17623.1 17502 17502 17502 7329.1 7329.1
BUS24 4432.8 4419 4418 4418 4418 4310.9 4304.9 4304.9 4304.9 4304.9 4304.9

Table 10: Fault Current Percent Decrease From Conventional to CIG Power System

BUS 3LG
BUS01 52.19 %
BUS02 53.43 %
BUS03 2.02 %
BUS04 8.31 %
BUS05 14.84 %
BUS06 4.92 %
BUS07 68.67 %
BUS08 30.91 %
BUS09 4.37 %
BUS10 8.28 %
BUS11 11.59 %
BUS12 14.26 %
BUS13 56.92 %
BUS14 1.71 %
BUS15 52.55 %
BUS16 43.84 %
BUS17 40.01 %
BUS18 57.49 %
BUS19 18.38 %
BUS20 37.58 %
BUS21 60.39 %
BUS22 49.20 %
BUS23 58.30 %
BUS24 1.96 %
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Figure 42: Fault currents from Bus 1 toward Bus 3

appear most significant for faults near the converter, and become less prominent as

the fault moves away from the converter. Figure 42 shows the fault current for faults

beginning at Bus 1 and moving toward Bus 3 in 10% increments. Results for the

conventional power system and the 100% CIG power system are shown. Bus 1 has

a generating plant connected to it, while Bus 3 has the low-side of a transformer

connected to it. As the fault progresses from a source into the network, the difference

in fault currents for the two systems becomes insignificant.

Figure 43 shows the fault current for faults beginning at Bus 23 and moving toward

Bus 12 in 10% increments. Results for the conventional power system and the 100%

CIG power system are shown. Bus 23 has a generating plant connected to it, while

Bus 12 has the high-side of a transformer connected to it. As the fault progresses

from a source into the network, the difference in fault currents for the two systems

becomes insignificant.

Figure 44 shows the fault current for faults beginning at Bus 19 and moving toward
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Figure 43: Fault currents from Bus 23 toward Bus 12

Bus 20 in 10% increments. Results for the conventional power system and the 100%

CIG power system are shown. Bus 19 and Bus 20 are in the middle of the power

system, relatively remote from sources. As the fault progresses from one bus remote

from source to another bus remote from sources, the difference in fault currents for

the two systems is relatively unchanged.

Figure 45 shows the fault current for faults beginning at Bus 7 and moving toward

Bus 8 in 10% increments. Results for the conventional power system and the 100%

CIG power system are shown. Bus 7 has a generating plant connected to it which is

radially connected to Bus 8 through a single transmission line. As the fault progresses

from a source into the network along the radial transmission line, the difference in

fault currents for the two systems becomes less.

Figure 46 shows the fault current for faults beginning at Bus 13 and moving toward

Bus 23 in 10% increments. Results for the conventional power system and the 100%

CIG power system are shown. Bus 13 and Bus 23 have generating plants connected.
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Figure 44: Fault currents from Bus 19 toward Bus 20
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Figure 45: Fault currents from Bus 7 toward Bus 8
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Figure 46: Fault currents from Bus 13 toward Bus 23

As the fault progresses from a source toward another source, the difference in fault

currents is minimum near the middle of the line and maximum near the ends of the

line.
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CHAPTER 5

MITIGATIONS

To assess the ability to mitigate the observed frequency and voltage response issues,

active power injection and reactive power injection models were created. The combi-

nation of active and reactive power injections can represent the capabilities of energy

storage systems, or special control modes available for modern CIG equipment.

The reactive power injection was modeled as a static var compenstator (SVC),

which is designed to maintain the terminal bus voltage at a specific level. Any dis-

turbance which causes a voltage deviation at the terminal bus of the SVC will trigger

reactive power injection or absorption. SVC models rated at 50MVAR were placed

at bus 5 and bus 19 in the 100% CIG case.

The active power injection was modeled as two constant power loads of equal

magnitude and opposite polarity, attached to the same bus. While both loads are

connected to the system, they effectively cancel each other. At the point of desired

injection, the positive load is switched out, with the result being an active power

injection equal in magnitude to the negative load. In order to halt the power injection,

the positive load is reconnected to the system. An active power injection model rated

at 200MW was placed at bus 5 in the 100% CIG case.

Using the 100% CIG system, active and reactive power injection mitigations were

simulated for the base set of disturbances. With a 13 cycle duration active power

injection of 200MW initiated 2 cycles into the fault, the average system frequency

nadir was increased by about 0.65Hz. Maintaining active power margins in CIG equip-

ment requires underutilization of available energy, but this may allow for frequency

response.
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It is evident that active power is capable of reaching farther in the system from

its source than reactive power. Transmission system active power losses are rela-

tively small, when compared to transmission system reactive power losses. Therefore,

active power injections for disturbance mitigation may be relatively distant from a

disturbance and remain effective. Reactive power injections, though, must be closer

to the disturbance to remain effective. Therefore, the effect of the SVCs during a

disturbance was to regulate the voltages near their respective buses. The effect of the

active power injection during a disturbance was to arrest the frequency decline for

most of the system.

Figure 47 shows the CIG system frequency response to a short power injection

initiated in response to the fault. the active power injection was initiated 2 cycles

into the fault and lasted for a duration of 13 cycles. It is clear that the power

injection restrained the frequency dip to about one-half of the deviation without

power injection.

Figure 48 shows the CIG system voltage response with the described reactive

compensation implemented. It is clear that the reactive power injection reduced the

severity of voltage oscillations local to the reactive injection point.
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Figure 47: System bus frequency response for 100% CIG case with and without
active power injection.

Figure 48: Bus6 voltage response for 100% CIG case with and without reactive power
injection.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The RTS 24 Bus power system model has been modified to accommodate dynamic and

fault analysis. A comprehensive set of simulations has been performed to assess the

impact of increased penetration of converter interfaced generation. The simulation

and analysis revealed that increased penetration of converter interfaced generation

into a conventional power system changes the characteristics of the system with regard

to dynamic stability and fault current magnitudes. Increased magnitudes of frequency

deviation and decreased fault current magnitudes have been observed as a result

of displacement of conventional generation by CIG. Active power injection into the

system in response to disturbances has been shown to arrest frequency decline, thereby

compensating for some inertia displacement. Therefore, maintaining active power

margins in CIG equipment or implementing energy storage may provide flexibility to

the system and improve the system response to disturbances, although no indication

is made that such things are an absolute requirement.

Power electronic converter ratings limit the fault current contribution from CIG

sources to values much lower than conventional generators. The network impedance

can reduce the impact of these converter limitations on fault current levels at remote

buses, even though the local buses may see a dramatic decrease in fault current levels.

As penetration of CIG into power systems increases, fault current levels may begin

to approach load current levels. This condition may require new protection methods

to maintain reliable and secure protection as power systems evolve.
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6.1 Future Work

The models used for CIG were developed to replicate the terminal behavior of specific

wind generator technology, as seen in mostly conventional power systems. Therefore,

it is possible that this terminal behavior will become less accurate as the power

system changes dramatically, as demonstrated in this research. Investigation of the

system behavior using detailed models of CIG equipment would address some of the

deficiencies of this research.

The dynamic stability simulation tools available only consider positive sequence

networks for the solution of disturbances. This means that simulation of unbalanced

disturbances, such as 1LG and L-L faults, are not accurately represented away from

the fault itself in dynamic simulations. Investigation using full three-phase models

of the power system and CIG equipment in an electromagnetic transients program

would help address some of these deficiencies. This type of study could also indicate

the effects of high frequency transients in the system as a result of CIG.

The results of this research indicate that an investigation of the protective relay-

ing requirements in a CIG system will be very important. Since many of the existing

power system protection techniques rely on fault currents that are much larger than

load currents, new techniques may be required as fault currents become nearly indis-

tinguishable from load currents. Furthermore, the variance in dispatch of renewable

generation can make calculation of robust protective relay settings difficult.

Power electronic converters have minimum voltage thresholds, below which the

converter will not allow switching of the power electronic components. Therefore,

faults very near the converter may temporarily eliminate any fault contribution by

the converter. Investigation using accurate models of converter protection and control

functions in an electromagnetic transients program may provide a better understand-

ing of system behavior for faults very near power electronic converters. Furthermore,

better methods of simulation should be pursued to eliminate numerical limitations
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encountered with the current limiting fault calculation method. Many different stud-

ies may be required, as there exists a large variety of power electronic technologies

for renewable resource integration into the grid[27].

An in depth study of energy storage in CIG systems would provide useful in-

formation for the industry as renewable generation continues to expand worldwide.

Coordinated control between various CIG in the power system, with or without en-

ergy storage, could be used to optimize system response. Due to the large variety

of energy storage technologies being developed and actively researched[27], there are

many potential opportunities for system improvement.
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APPENDIX A

BLOCK DIAGRAMS AND PARAMETERS

Block diagrams, including parameter values, for the dynamic models used in this

research are provided in this appendix. The block diagrams are referenced from the

PowerWorld Simulator help files[28]. The parameter values were selected from data

made available by Anderson[3], except for the power system stabilizer parameters

which were generated using an optimization feature of TSAT.
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Figure 49: GENROU Block Diagram

Table 11: GENROU Model Parameters for the 24-Bus System Rotors

MVA Base 500 438 247 195 125 100 95 63 25 15
T’do 5.432 5.21 5.9 5.9 5.9 4.2 7.5 6.6 4.61 4.2
T”do 0.042 0.042 0.033 0.033 0.042 0.035 0.054 0.038 0.054 0.035
T’qo 1.5 1.5 0.535 0.54 0.3 0.792 1.5 0.792 1.5 0.792
T”qo 0.042 0.042 0.078 0.076 0.099 0.0977 0.107 0.0977 0.107 0.0977
H 3.704 2.621 3.302 3.963 4.985 2.611 11.4 5.078 8.877 2.611
D 0 0 0 0 0 0 0 0 0 0
Xd 1.7668 1.798 1.651 1.7 1.18 0.911 1.64 1.27 1.85 0.911
Xq 1.7469 1.778 1.59 1.64 1.05 0.58 1.575 1.24 1.74 0.58
X’d 0.2738 0.324 0.232 0.245 0.22 0.408 0.159 0.209 0.225 0.408
X’q 1.0104 1.051 0.38 0.38 0.38 0.58 0.306 0.85 0.4 0.58
X”d 0.2284 0.26 0.171 0.185 0.145 0.329 0.102 0.105 0.155 0.329
Xl 0.1834 0.193 0.102 0.11 0.075 0.2 0.113 0.108 0.113 0.2
S(1.0) 0.2632 0.162 0.105 0.1251 0.0933 0.16 0.087 0.2067 0.11 0.16
S(1.2) 0.5351 0.508 0.477 0.7419 0.4044 0.446 0.2681 0.724 0.42 0.446
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Figure 50: ESC1A Block Diagram

Table 12: ESAC1A Model Parameters for the 24-Bus System Excitation Systems

MVA Base 500 438 247 195 125 100 95 63 25 15
TR 0 0 0 0 0 0 0 0 0 0
TB 0 0 0 0 0 0 0 0 0 0
TC 0 0 0 0 0 0 0 0 0 0
KA 400 400 400 400 400 400 400 400 400 400
TA 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
VAMAX 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
VAMIN -14.5 -14.5 -14.5 -14.5 -14.5 -14.5 -14.5 -14.5 -14.5 -14.5
TE 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
KF 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
TF 1 1 1 1 1 1 1 1 1 1
KC 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
KD 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38
KE 1 1 1 1 1 1 1 1 1 1
E1 4.18 4.18 4.18 4.18 4.18 4.18 4.18 4.18 4.18 4.18
SE(E1) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
E2 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14
SE(E2) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
VRMAX 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03
VRMIN -5.43 -5.43 -5.43 -5.43 -5.43 -5.43 -5.43 -5.43 -5.43 -5.43
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Table 13: IEESGO Model Parameters for the 24-Bus System Governor Systems

MVA Base 500 438 247 195 125 100 95 63 25 15
T1 0.18 0.22 0.083 65.3 0.09 48.44 0.5 0.2 0 48.44
T2 0 0 0 6.2 0 4.634 1.25 0 0 4.634
T3 0.04 0.2 0.2 0.5 0.2 0.1 0.7 0.3 0.1 0.1
T4 0.25 0.25 0.05 0 0 0 0.7 0.09 0 0
T5 8 8 8 0.65 0 0.579 0 0 0.1 0.579
T6 0 0 0 0 0 0 0 0 0 0
K1 20 20 20 26.32 20 20 25 12.82 20 20
K2 0 0 0 0 0 0 0 0 0 0
K3 0 0 0 0 0 0 0 0 0 0
PMAX 1 1 1 1 1 1 1 1 1 1
PMIN 0 0 0 0 0 0 0 0 0 0
Pgen (Powerflow) 363.52 70.5 179.03 140.86 90.88 10.91 69.07 45.44 18.18 10.91
Pmax (Powerflow) 400 350 197 155 100 12 76 50 20 12
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Figure 52: PSS2A Block Diagram

Table 14: PSS2A Model Parameters for the 24-Bus System Power System Stabilizers

MVA Base 500 438 247 195 125 100 95 63 25 15
ICS1 1 1 1 1 1 1 1 1 1 1
REMBUS1 0 0 0 0 0 0 0 0 0 0
ICS2 3 3 3 3 3 3 3 3 3 3
REMBUS2 0 0 0 0 0 0 0 0 0 0
M 5 5 5 5 5 5 5 5 5 5
N 1 1 1 1 1 1 1 1 1 1
Tw1 2 2 2 2 2 2 2 2 2 2
Tw2 2 2 2 2 2 2 2 2 2 2
T6 0 0 0 0 0 0 0 0 0 0
Tw3 2 2 2 2 2 2 2 2 2 2
Tw4 0 0 0 0 0 0 0 0 0 0
T7 2 2 2 2 2 2 2 2 2 2
KS2 0.27 0.3815 0.3028 0.3148 0.2006 0.383 0.0877 0.1969 0.1127 0.383
KS3 1 1 1 1 1 1 1 1 1 1
T8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
T9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
KS1 15.05 15.05 18.1 15.05 11.6 15.05 15.05 6.6 15.05 11.6
T1 0.124 0.145 0.178 0.152 0.198 0.191 0.211 0.226 0.18 0.19
T2 0.01 0.01 0.013 0.011 0.014 0.014 0.015 0.016 0.013 0.014
T3 0.124 0.145 0.178 0.152 0.198 0.191 0.211 0.226 0.18 0.19
T4 0.01 0.01 0.013 0.011 0.014 0.014 0.015 0.016 0.013 0.014
VSTMAX 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
VSTMIN -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
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APPENDIX B

POWER FLOW SOLUTION SCRIPT

The following python script was developed and used to solve the power flow problem

for the simple system depicted in Figure 1 using the Newton/Rhapson method.

## newton/rhapson power f l ow s o l u t i o n f o r s imple system

# import symbo l ic t o o l b o x

from sympy import ∗

# de f i n e symbo l ic v a r i a b l e s

v2 , d2 , d3 = symbols ( ’ v2 d2 d3 ’ )

# de f i n e admittance matrix

Y11=(0.173310235142708−4.15944528579712 j )

Y12=(−0.173310235142708+4.15944528579712 j )

Y13=(0+0 j )

Y21=(−0.173310235142708+4.15944528579712 j )

Y22=(0.198309611529112−9.15932035446167 j )

Y23=(−0.024999376386404+4.99987506866455 j )

Y31=(0+0 j )

Y32=(−0.024999376386404+4.99987506866455 j )

Y33=(0.024999376386404−4.99987506866455 j )

Y = Matrix ( [

[ Y11 ,Y12 , Y13 ] ,

[ Y21 ,Y22 , Y23 ] ,
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[ Y31 ,Y32 , Y33 ]

] )

# de f i n e power f l ow equa t ions

p2 = v2∗∗2∗Y22 . r e a l + v2 ∗(Y21 . r e a l ∗ cos ( d2 ) + Y21 . imag∗ s i n ( d2 ) ) + v2 ∗(Y23

. r e a l ∗ cos (d2−d3 ) + Y23 . imag∗ s i n (d2−d3 ) ) + 2 .05

p3 = Y33 . r e a l + v2 ∗(Y32 . r e a l ∗ cos (d3−d2 ) + Y32 . imag∗ s i n (d3−d2 ) ) − 0 .25

q2 = −v2∗∗2∗Y22 . imag + v2 ∗(Y21 . r e a l ∗ s i n ( d2 ) − Y21 . imag∗ cos ( d2 ) ) + v2 ∗(

Y23 . r e a l ∗ s i n (d2−d3 ) − Y23 . imag∗ cos (d2−d3 ) ) − 1 + 0.5125

# determine p a r t i a l d e r i v a t i v e s

dp2 d2 = d i f f ( p2 , d2 )

dp2 d3 = d i f f ( p2 , d3 )

dp2 v2 = d i f f ( p2 , v2 )

dp3 d2 = d i f f ( p3 , d2 )

dp3 d3 = d i f f ( p3 , d3 )

dp3 v2 = d i f f ( p3 , v2 )

dq2 d2 = d i f f ( q2 , d2 )

dq2 d3 = d i f f ( q2 , d3 )

dq2 v2 = d i f f ( q2 , v2 )

# de f i n e equa t ions matrix

G = Matrix ( [

[ p2 ] ,

[ p3 ] ,

[ q2 ]

] )

# de f i n e jacob ian

J = Matrix ( [
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[ dp2 d2 , dp2 d3 , dp2 v2 ] ,

[ dp3 d2 , dp3 d3 , dp3 v2 ] ,

[ dq2 d2 , dq2 d3 , dq2 v2 ]

] )

# func t i on to e va l ua t e numerical j acob ian

def Jn (d2n , d3n , v2n ) :

a = J . subs ( v2 , v2n )

b = a . subs (d2 , d2n )

c = b . subs (d3 , d3n )

return c

# func t i on to e va l ua t e numerical e qua t i ons

def Gn(d2n , d3n , v2n ) :

a = G. subs ( v2 , v2n )

b = a . subs (d2 , d2n )

c = b . subs (d3 , d3n )

return c

def degree s ( x ) :

return N(x∗180/ p i )

# f l a t s t a r t i n i t i a l guess

es t imate = Matrix ( [

[ 0 ] ,

[ 0 ] ,

[ 1 ]

] )

# i n i t i a l e r ror

e r r o r = N(Jn (0 , 0 , 1 ) ∗∗−1∗Gn(0 , 0 , 1 ) )
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# i t e r a t e s o l u t i o n us ing newton/rhapson method

for x in range (11) :

# pr in t i t e r a t i o n r e s u l t s

print x , ’ ; ’ , l i s t ( [N( degree s ( e s t imate [ 0 ] ) , 4 ) ,N( degree s ( e s t imate [ 1 ] )

, 4 ) ,N( es t imate [ 2 ] , 4 ) ] ) , ’ ; ’ , l i s t (N(Gn( es t imate [ 0 ] , e s t imate [ 1 ] ,

e s t imate [ 2 ] ) , 2 ) )

# ad ju s t e s t imate by error

t = est imate

es t imate = est imate − e r r o r

# update jacob ian and error e s t imate

e r r o r = N(Jn ( es t imate [ 0 ] , e s t imate [ 1 ] , e s t imate [ 2 ] ) ∗∗−1∗Gn( es t imate

[ 0 ] , e s t imate [ 1 ] , e s t imate [ 2 ] ) )
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