
PALTask: An Automated Means to Retrieve

Personalized Web Resources in a Multiuser Setting

by

Pratik Jain

B. Tech., Uttar Pradesh Technical University, India 2009

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in the Department of Computer Science

c© Pratik Jain, 2015

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

PALTask: An Automated Means to Retrieve

Personalized Web Resources in a Multiuser Setting

by

Pratik Jain

B. Tech., Uttar Pradesh Technical University, India 2009

Supervisory Committee

Dr. Hausi A. Müller, Supervisor

Department of Computer Science

Dr. Alex Thomo, Departmental Member

Department of Computer Science

iii

Supervisory Committee

Dr. Hausi A. Müller, Supervisor

Department of Computer Science

Dr. Alex Thomo, Departmental Member

Department of Computer Science

ABSTRACT

When performing web searches, users manually open a web browser, direct it

to a search engine, input keywords, and finally manually filter and select relevant

results. This repetitive task can negatively impact the user’s experience, something

the automation and personalization of web search can address.

This thesis presents PALTask, an Instant Messaging (IM) application that exploits

context of both the user and their conversation in order to automate and personal-

ize related web tasks such as web searches relevant to the conversation. PALTask

dynamically gathers context and provides feedback from the user and the system at

runtime including keywords from the conversation and running them through various

search services such as YouTube and Google to retrieve relevant results. This thesis

also explores various natural language processing (NLP) tasks such as keyword ex-

traction, sentiment analysis, and stemming. These NLP tasks help in the collection

of dynamic context at runtime, identifying personalized context, and analyzing it to

iv

improve the user’s experience. We also present our keyword ranking algorithm which

aims to improve accuracy when retrieving web resources.

v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables viii

List of Figures ix

Acknowledgements xi

1 Introduction 1

1.1 Problem Definition and Motivation 1

1.2 Research Methodology . 3

1.3 Thesis Outline . 6

2 Problem Description and Background 7

2.1 Introduction . 7

2.2 Context-Aware Personalized Applications 8

2.3 Context-Aware IM Applications . 10

2.4 Natural Language Processing Tasks 14

2.4.1 Keyword Extractor . 15

2.4.2 Sentiment Analysis and Stemming 15

vi

2.5 Personal Context Sphere . 16

2.6 Web Service APIs . 17

2.7 Summary . 17

3 Dynamic Context Gathering and Resource Retrieval 19

3.1 PALTask . 19

3.2 Components of PALTask . 21

3.2.1 Graphical User Interface Component 21

3.2.2 Server . 28

3.2.3 Client . 28

3.2.4 PCSManager . 29

3.2.5 Keyword Extractor . 31

3.2.6 ConRank . 35

3.2.7 Web Service API . 36

3.3 Architecture of PALTask . 41

3.4 User Experience . 43

3.5 Summary . 43

4 Personalization of Web Resources 45

4.1 Sentiment Analysis . 47

4.1.1 Sentiment Analysis Using NLTK API 48

4.1.2 Challenges in Sentiment Analysis 50

4.1.3 Sentiment Analysis in the PALTask Implementation 51

4.1.4 Analysis of Chat Conversation 52

4.2 Stemming of Words . 53

4.2.1 Porter Stemming Algorithm 54

4.2.2 Stemming in the PALTask Implementation 57

vii

4.3 Integration of PCS and Keywords from Conversation 58

4.4 Managing location context in the PCS 59

4.5 Keyword ranking algorithm . 60

4.6 Example of PALTask using ConRank 61

4.7 Summary . 65

5 Evaluation 66

5.1 Efficiency . 66

5.2 Effectiveness . 67

5.3 User Experience . 68

5.4 Experiment 1 . 68

5.4.1 Evaluation by Participant 1 69

5.5 Experiment 2 . 73

5.5.1 Evaluation by Participant 2 76

5.6 Summary . 78

6 Conclusions 80

6.1 Summary . 80

6.2 Contributions . 81

6.3 Future Work . 82

Bibliography 84

A Source Code 91

viii

List of Tables

Table 3.1 Extracted keywords and stop words 34

Table 3.2 Modified stop words list . 35

Table 4.1 Experiments of Sentiment Analysis 47

Table 4.2 Keywords priority . 53

Table 4.3 Stemming of words . 58

Table 4.4 Polarity Factor for Ranking . 61

Table 4.5 Sentiment analysis on chat example 63

Table 4.6 Candidate keywords scores . 63

Table 4.7 Stemming on chat example . 64

Table 4.8 Example of analysis on three sentence chunks using ConFactor . 65

Table 5.1 Sentiment analysis with probabilities and label 70

Table 5.2 Sentiment analysis with probabilities and label 74

ix

List of Figures

Figure 2.1 GaChat [HIHO09] . 11

Figure 2.2 GaChat [HIHO09] . 12

Figure 2.3 ConChat [RCRM02] . 13

Figure 2.4 Architecture of SemChat [AC10] 14

Figure 3.1 Gathering of Context . 20

Figure 3.2 High Level Architecture of Components 22

Figure 3.3 QTcreator components . 23

Figure 3.4 Code editor . 24

Figure 3.5 PALTask Login Screen . 25

Figure 3.6 PALTask Menu . 26

Figure 3.7 PALTask Settings . 27

Figure 3.8 Personalized web resources displayed on the right 29

Figure 3.9 Detailed Component Architecture 42

Figure 4.1 ConRank Overview . 46

Figure 4.2 Keywords extracted with their candidate scores 63

Figure 5.1 Participant 1’s screen, chat, and retrieved resources 68

Figure 5.2 Participant 1’s screen, chat, and retrieved resources 69

Figure 5.3 Participant 2’s screen, chat, and resources shared by Participant 1 70

Figure 5.4 Participant 1’s screen, showing negative sentiments 71

x

Figure 5.5 Participant 1’s screen, showing positive sentiments 72

Figure 5.6 Participant 1’s screen, showing positive sentiments 73

Figure 5.7 Participant 2’s screen, chat, and retrieved resources 74

Figure 5.8 Participant 2’s screen, chat, and retrieved resources 75

Figure 5.9 Participant 1’s screen, chat, and resources shared by Participant 2 76

Figure 5.10Participant 2’s screen, showing positive sentiments 77

Figure 5.11Participant 2’s screen showing negative sentiments (no resources

retrieved) . 78

xi

ACKNOWLEDGEMENTS

I would like to thank:

Dr. Hausi Müller, my supervisor, for his support, encouragement, and guid-

ance. I want to thank him for his ideas, being my mentor, and providing moral

support during this research. I have learned a lot under his supervision and I am

grateful to him for providing me the opportunity to work with him.

Dr. Alex Thomo, for being my committee member and mentor, and providing

feedback on this research.

Andi and Lorena, for their support, ideas, and implementation. They were part

of the PALTask team and I would like to share the credit of this work with them.

This thesis would have not been possible without their help. Thanks for being my

mentors, friends, and colleagues.

Nina, Ron, Przemek, Ishita, Atousa, and all Rigi group members, for

their valuable feedback and discussions which generated ideas and leads to implemen-

tations, and all the fun we had inside and outside the Rigi Research Lab.

My parents and other family members, for their love and support.

Chapter 1

Introduction

1.1 Problem Definition and Motivation

The internet is a part of our daily lives. Users perform numerous activities with

web services and applications using ubiquitous, connected devices to achieve personal

and professional goals. For this purpose, users turn to the web, with its hundreds of

millions of pages presenting information on an amazing variety of topics. However,

web search, a very common and ordinary activity, often becomes an arduous task

given the complexity and colossal size of the internet.

Searching for a web resource (e.g., video, audio, text, or images) involves a set

of repetitive steps that increases the complexity of the task and diminishes a user’s

experience. Users have to manually input keywords into search engines or related

websites and manually filter results. Writing a thesis and searching for synonyms of

particular words, or communicating with friends and colleagues when sharing inter-

esting resources, are both examples of multi-step, manual web searches performed

by a user. However, these tasks could be simplified into fewer steps and automated

by exploiting context. Context is defined as all relevant information gathered from

2

the environment, users, web interactions, sensors, devices, and other systems that

affect the situation of users [ADB+99]. Contextual information gathered from nu-

merous sources (e.g., users, devices, applications, and conversations) can be useful in

enhancing the automation and personalization of context-driven web searches.

Ng et al. describe the purpose of “web browsing” as information retrieval in the

web of the user’s interactions, whereas “web tasking” as an action towards user goals

using information cues in the web [NL13]. The authors identify that web browsing

lacks context awareness as well as customization and personalization in returned

HTML pages.

Web tasking can aid web browsing by concentrating on actions associated with a

user’s goals. Actions involved in web tasks can be mined for context to customize the

task according to the user’s needs and preferences. Web tasking can be conducted by

users or machines acting on behalf of the user. The automation of a web task, which is

a web task conducted by programmed code on behalf of a user, can simplify the task

by reducing repetitive steps involved in web browsing [CnMV13]. Automating web

tasks to achieve a personal goal can improve user experience. However, decomposing

a personal web task into simpler tasks whose complexity is hidden to the user is

challenging [CnMV13].

The recent proliferation of smart mobile devices with embedded sensors along

with Big Data analytics has enabled the collection of huge amounts of contextual

information. Although the information can be used to improve user experience, it

has no value unless we analyze, interpret, and understand it. Most of the time,

sufficient context is available to perform web searches, but it is not used to reduce

the number of steps required to identify relevant information on the internet.

Previous work has shown that context is gathered during post processing (after

chat session ends) rather than dynamically at runtime [HPK+10]. However, under-

3

standing the dynamic context (those unpredictable changes) and responding to it at

runtime remains an open challenge [BHCNM01].

According to Chignell et al., “The new generation of internet which can be termed

as smart internet where web entities, represented by on-line services and content, are

discovered, aggregated and delivered dynamically, automatically, and interactively ac-

cording to users’ needs and situations” [CCNY10]. Therefore, a smart internet needs

smarter applications that can retrieve web entities (e.g., web resources) dynamically,

automatically, and interactively according to user needs and situations. This thesis

intends to provide PALTask as an example of such an application.

Based on the above motivation, we formulated three Research Questions (RQ). In

this thesis we aim to answer the following:

• RQ 1 : How can we automate the web search task by exploiting context in an

Instant Messaging (IM) application to improve user experience?

• RQ 2 : How can we gather dynamic context and provide feedback at runtime in

a personalized chat application in which the user has control of their own web

profile?

• RQ 3 : What are the natural language processing techniques that can be used in

a collaborative environment to improve user experience?

1.2 Research Methodology

During a manual web search task, users know beforehand what web resources need

to be search and retrieved. Users filter the results according to their goals and se-

lect useful results. However, automation of web searching tasks is challenging when

the context is dynamic. Dynamic situations such as an online conversation has dy-

namic topics and searching occurs while carrying out the conversation. Users have

4

to navigate back and forth between their Instant Messaging (IM) tool and browser.

Furthermore, users do not have personal goals to reach when retrieving web resources.

This thesis aims to provide context-aware resource retrieval in a personalized envi-

ronment, employing techniques and processes used in an IM conversation. The thesis

is intended as a proof of concept for automation of resource retrieval in a dynamic

environment. The IM scenario can also be replaced with email conversation, website

content, business communication, or resource retrieval in corporate repositories.

Instant Messaging (IM) is one of the most popular forms of daily communication

because it is fast, cheap, convenient, and reliable. Initially designed for one-on-one

personal chats, it has permeated the workplace. Many businesses are choosing text-

based IM in concert with phone calls and email, preferring its immediacy and stream-

lined efficiency in getting real-time information from partners, suppliers, customers,

and colleagues working remotely.1 In workplaces, there can also be a huge repository

that can be searched while communicating with colleagues regarding policies, ideas,

actions, or codes.

When instant messaging is integrated with user context, fascinating results emerge.

It can simplify many complex personalized tasks. Picture yourself in a conversation

with a colleague or customer. You wish to break for lunch and find a good restaurant.

The application, from the context of your messages, researches local restaurants that

are specialized in items you like and displays them in the conversation window. Then

you simply drag and drop web resources to share your personal interests with your

colleague. The shared web resource might be interesting to them, too. Results can be

affected if the application can interpret the location and conversation context, along

with personal preferences.

1Microsoft, Instant messaging for business. Retrieved Jan 2015,
http://www.microsoft.com/business/en-us/resources/technology/communications/10-tips-for-
using-instant-messaging-for-business.aspx?fbid=5ayGWY8cHXw

5

The most popular applications using context over the internet are social net-

working sites and chat applications such as Facebook Messenger, Gtalk, Skype, and

iMessage. These applications allow users to communicate with each other with little

or no context to enhance user experience.

We took an approach to contextualize contents by building an IM application

called PALTask (Personalized Automated web resources Listing Task), which provides

context-aware, self-adaptive capabilities. It is an application that collects dynamic

context (through context gathering at runtime) and retrieves web results dynami-

cally. PALTask reduces repetitive and mundane tasks in retrieving personalized web

resources in an IM conversation. We also developed a component called ConRank

(Context Ranking), which performs various operations over text such as natural lan-

guage processing. It is a component of our PALTask application, helping PALTask

generate more accurate, context based, personalized web resources by prioritizing

keywords and retrieving more personalized results. It improves the user experience

by exploiting dynamic context in an IM conversation.

ConRank analyzes a conversation by performing various operations over text

such as sentiment analysis, stemming, and integrating the Personal Context Sphere

(PCS) [VM10][Vil13]. The PCS is a user’s preference repository that can be con-

trolled by the user. ConRank checks for sentiments in communication text in the

form of positive, negative, and neutral sentences, and also performs stemming (re-

ducing inflected words to their word stem, base or root form) operations on text in

order to make context easier to process.

6

1.3 Thesis Outline

This chapter introduced our research area, goals, and motivation. The remaining

sections of this thesis are organized as follows.

Chapter 2 provides the problem description and related research work, which gives

us an idea of what work has been done already to increase user experience in IM and

other scenarios.

Chapter 3 discusses dynamic context gathering and resource retrieval including

the design and implementation of our IM application PALTask.

Chapter 4 discusses retrieval of more accurate and personalized web resources us-

ing ConRank. This chapter also presents the design and implementation of ConRank.

Chapter 5 presents the evaluation of PALTask based on efficiency, effectiveness,

and user experience.

Chapter 6 summarizes the contributions of this thesis and proposes future work.

7

Chapter 2

Problem Description and

Background

This chapter presents an overview of applications that exploit context and perform

various operations on text to improve user experience in Instant Messaging (IM)

applications. We also discuss various language processing libraries we are exploring

for keyword extraction, sentiment analysis, and stemming of keywords as well as the

Personal Context Sphere (SmarterContext).

2.1 Introduction

Web search, which is an ordinary and repetitive task, often frustrates users. The

challenge in the automation of such tasks is to fully understand them and execute it

efficiently using the information provided. The personal context of the user, location,

and conversation can be used to infer contextual information needed for retrieving

web resources, thereby enhancing user experience in IM applications. Due to the

complexity in gathering, mining, and providing feedback for dynamic context, the

challenge is to identify and retrieve web resources dynamically [VM10].

8

Context analysis for the purpose of providing personalized augmentation has been

demonstrated before [ZSL05]. Ubiquitous computing and existing chat technology

have used context gathering for personalized communications, but most related ap-

proaches have failed to provide dynamic feedback from the context they collect. In

most of the related work described in this chapter, context gathering is done as a

post-processing step, rather than dynamically at runtime. We aim to demonstrate

our ideas with PALTask, an IM application that uses improved context extraction

and mining techniques. This IM application gathers context from a variety of sources

and mines it at runtime in order to improve user experience based on contextual

information.

To gather and mine context from the conversation, natural language processing

(NLP) is needed. NLP is a large research area in computer science. Combined with

Artificial Intelligence (AI) (which involves understanding and analytics), they support

natural language comprehension using various tasks such as morphological segmenta-

tion, named entity recognition, keyword extraction, and sentiment analysis [Cho03].

For our PALTask application, we explored a few open source libraries and APIs

for keyword extraction, sentiment analysis, stemming tasks, and web services.

2.2 Context-Aware Personalized Applications

Personalized applications have become ubiquitous in today’s world. These appli-

cations mainly focus on user context in order to enhance user experience. Mobile

applications are the best example of applications that can be personalized with user

context. For example, Google Maps1 on mobile devices gather user context dynam-

ically and provide improved results as we continue to use it. It uses the current

1Google Maps. Retrieved Jan 2015, https://www.google.ca/maps

9

location context for route searches and suggests routes to the user based on saved

searches performed.

Learning from past searches and providing a space to store personalized destina-

tions makes it a smart context-aware application. Context-aware applications are of

great interest as they can adapt to different situations and become more responsive

to user needs.

Another example of a personalized context-aware application is Google’s email

client Gmail,2 which uses context to provide advertisements. To show relevant adver-

tisements, Gmail uses account information, text from email conversations, and the

user’s Google search queries.3 Google also extracts keywords from user emails that

have context information related to the Google calendar application. It automates the

steps needed to add an entry to the user’s Google calendar (e.g., a meeting, dinner,

or lecture). The multi-step process is reduced to a single click to add the calendar

entry.

The important entity used by Google is the users’ context information — what,

how, and why the user searches or performs operations with Google applications.

The disadvantage of Google’s advertisement model for some is their profile, which is

not under their direct control. This user profile is different from the one which the

user would set up themselves, providing some information to Google such as name,

address, and phone number. The profile used in the advertisement model is created

automatically from the user’s browsing habits; users cannot make direct changes to

their preferences and interests and they cannot definitively update what they do or

do not want to see in advertisements, which may lead to frustration.

In a web network, there is a need for a model in which users can control their own

web profile. They should be able to update their preferences, likes, and dislikes, as well

2Gmail. Retrieved Jan 2015, https://mail.google.com/
3Ads in Gmail. Retrieved Jan 2015, https://support.google.com/mail/answer/6603?hl=en

10

as receive automated suggestions for a personalized experience. For example, Pratik

visited Toronto, and was interested in flights from Toronto to Victoria. However,

after returning home to Victoria, he still received information about flight deals in

his Gmail account based on previous web searches. In this thesis, we assume such a

web model to gather a user’s context by employing the Personalized Context Sphere

(PCS), which is a concept of the SmarterContext management system proposed by

Villegas [Vil13].

2.3 Context-Aware IM Applications

This section discusses IM applications that exhibit functionality similar to PALTask.

These applications use dynamic or static context extraction techniques. Our applica-

tion is more efficient and effective than the applications listed below because of the

way we handle dynamic context, apply context extraction techniques, and use natural

language processing libraries.

GaChat, as described by Satoshi et al., is built to improve awareness among chat

partners and augments the chat dialogue with related information [HIHO09]. GaChat

extracts only proper nouns from communication and then searches for online images

and articles in Wikipedia and Google Image Search as depicted in Figures 2.1-2.2.

The authors mention in their paper that the goal of their GaChat application is to

avoid misunderstanding certain topics due to low awareness. GaChat demonstrated

that by extracting the proper nouns from the conversations and synchronously dis-

playing the image or article, the quality of the conversations improved, and new topics

were often suggested. Chat partners retrieve the same kind of resources which also

increases their knowledge and common understanding of the topic.

11

Figure 2.1: GaChat [HIHO09]

Windows Live Messenger also has an integrated web search function and retrieval

(search) button, which adds a URL to the associated proper noun. The disadvantage

is that the user has to perform chat and search simultaneously as searching takes

place in the users’ browser, thus the user has to cut and paste between browser and

IM application [HIHO09].

Another application that analyzes context in chat conversations is Con-

Chat [RCRM02]. Rangnathan et al. demonstrate that chat messages can be aug-

mented by collecting contextual information from the user to prevent semantic ambi-

guity between chat participants as depicted in Figure 2.3. ConChat resolves semantic

ambiguities related to time, currency, date formats, and units of measurement. It

collects context from various sensors such as location, lighting, and temperature. In

their paper they illustrate the issue with a conversation between an American and a

12

Figure 2.2: GaChat [HIHO09]

Canadian. If one of them says “$10,” it is not clear whether CAD or USD is implied.

ConChat resolves it using a location sensor and identifies the currency.

SemChat works with the notion of a social semantic desktop [DF04]. Semantic

Desktop aims to tackle the difficulties in managing personal information in a social

context. It focuses on strengthening Personal Information Management (PIM) using

the contents of a user’s desktop by using semantic web standards and technologies.

Extending the semantic desktop in a social dimension, which can facilitate infor-

mation distribution and collaboration, creates a social semantic desktop. SemChat

extracts the relevant concepts for a particular user from conversations which are not

present in the Personal Information Model (PIMO) and updates the PIMO for each

user as depicted in Figure 2.4, an architecture of SemChat. It also identifies and

extracts the events from chat conversations that can be annotated with a task/event

scheduler. It provides a search facility for the chat-related concepts and events. The

disadvantage of SemChat is that it monitors chat sessions but only analyzes data

after the conversation ends. It extracts the keywords and uses ANNIE (a named

13

Figure 2.3: ConChat [RCRM02]

entity recognizer) for recognizing entities like locations, people, organizations, and

dates [AC10].

According to a SemChat usability study, the most exciting feature for all partic-

ipants was extraction of concepts and events to provide information from Wikipedia

after the chat session ended. Out of all related chat tools, SemChat is closest to our

application PALTask. It contains chat analytics but does not analyze conversations

at runtime. Instead, it extracts keywords, recognizes entities, and retrieves resources

after the chat session has ended. PALTask has a keyword extractor (RAKE), which

uses context such as location and also extracts user data from the Personal Context

Sphere. It also provides feedback at runtime.

14

Figure 2.4: Architecture of SemChat [AC10]

2.4 Natural Language Processing Tasks

Natural Language Processing (NLP) tasks comprise information extraction and clas-

sification that are useful for context extraction and analysis. In particular, we can

extract information from text or documents and label them using classifiers. In this

section, we introduce the keyword extractor, sentiment analysis, and stemming li-

braries we explored for our research.

15

2.4.1 Keyword Extractor

Keywords are frequently used as a simple method of providing descriptive metadata

about a collection of documents or conversations. Keywords are the essence of a

conversation and can be used as search keys for finding relevant resources on the web.

We evaluated several natural language keyword extractors based on various factors,

such as quality of results, availability of a remote API and source code, cost, and

license. The keyword extractors we investigated include RAKE,4 Yahoo API Term

Extractor,5 World Finder Extractor,6 Sketch Engine,7 and Alchemy.8 We decided to

use a Python implementation of the Rapid Automatic Keyword Extraction (RAKE)

algorithm for PALTask [RECC10]. It requires no training and the only input is a list

of stop words. Its source code is freely available for use and the quality of results are

high.

2.4.2 Sentiment Analysis and Stemming

The task of sentiment analysis is to identify the polarity of text as positive, negative,

or neutral. Sentiment analysis is becoming a popular area of research in social media

analysis, especially around user reviews and tweets. It is a special case of text mining

generally focused on identifying opinion polarity. Its accuracy rate is approximately

80% using various algorithms [Liu12].

For simplicity, and because the training data is easily accessible, we looked at

various open source text analytic tools for sentiment analysis and stemming of words.

A few of the tools are Natural Language ToolKit (NLTK),9 R Text Mining module (R

4RAKE implementation. Retrieved Jan 2015, https://github.com/aneesha/RAKE
5Yahoo term extractor. Retrieved Jan 2015,

http://developer.yahoo.com/search/content/V1/termExtraction.html
6World finder extractor. Retrieved Jan 2015, http://wordsfinder.com/api Keyword Extractor.php
7Sketch engine extractor API. Retrieved Jan 2015, http://trac.sketchengine.co.uk/wiki/SkE/KeywordsAPI
8Alchemy extractor API. Retrieved Jan 2015, http://www.alchemyapi.com/api/keyword/
9Natural Language Toolkit (NLTK). Retrieved Jan 2015, http://www.nltk.org/

16

TM),10 General Architecture for Text Engineering (GATE),11 and Sentiment classi-

fiers for WEKA data mining workbench.12 We chose NLTK as our sentiment analysis

and stemming tool because it is a leading platform with built-in Python libraries. It

allows us to modify code according to project needs, and all the data and datasets

are freely available. It also has well structured documentation.

Stemming is a process that removes morphological affixes from words and leaves

only the stem. There are various stemmers available in the NLTK Library. The

Porter13 stemmer works on various pluralized words. The Regexp14 stemmer works

on patterns provided to the stem, and the Snowball15 stemmer is available for various

languages.

2.5 Personal Context Sphere

The Personal Context Sphere (PCS) is a repository of context information rele-

vant to users and their preferences; it is hosted by a third party and owned by

users [Vil13]. Some of this information might include gender, age, favorite locations,

and web sites. It is a concept of the Smart Internet, where users can integrate into

dynamic context management processes of Situation-Aware Smart Software Systems

(SASS) [NCCY10a]. PCS concepts are in compliance with the SmarterContext ontol-

ogy, which is a model that represents the context entities proposed by Villegas [VM10].

10R TM (Text Mining). Retrieved Jan 2015, http://www.rdatamining.com/examples/text-mining
11GATE: Open source tool. Retrieved Jan 2015, https://gate.ac.uk/
12Weka: Data mining software. Retrieved Jan 2015, http://www.cs.waikato.ac.nz/ml/weka/
13Porter stemmer. Retrieved Jan 2015, http://tartarus.org/martin/PorterStemmer/
14NLTK stemmers. Retrieved Jan 2015, http://www.nltk.org/api/nltk.stem.html
15Snowball stemmer. Retrieved Jan 2015, http://snowball.tartarus.org/

17

2.6 Web Service APIs

Web service APIs are a method of connecting web applications via HTTP or another

protocol. Currently, REpresentational State Transfer (REST) APIs are a preferred

design when compared to traditional SOAP/WSDL XML based protocols. REST is

an architectural style and SOAP is a standard XML based protocol communicated

typically over HTTP. REST APIs are more dynamic in nature and are not restricted

to XML formats like SOAP architecture. REST web services can send plain text,

JSON, ATOM, and XML. In public APIs, REST is mostly used with the HTTP

protocol and usually JSON is used for the structuring of data.

Retrieving web resources from a web service is an important task for our IM

application. We explored many web service APIs to integrate into our tool. Out of

all the APIs examined, Google web services APIs which includes Google Search,16

Google Image Search, and the YouTube API,17 were very well structured, efficient,

and return results based on the users’ needs. These Google web services are REST

APIs which can send and receive text in JSON/ATOM formats. They are best suited

for our purposes. Our retrieval of web resources in the IM application were keyword

driven and these web service APIs include search functions based on those keywords.

These web APIs provide functionalities for the retrieval of text, image, video, and

audio resources. Additionally, use of these APIs is free for research purposes.

2.7 Summary

This chapter discussed context-aware IM applications, various APIs explored for key-

word extraction, sentiment analysis, and stemming. Some of these IM applications

16Google custom search API. Retrieved Jan 2015, https://developers.google.com/custom-
search/json-api/v1/overview

17YouTube search API. Retrieved Jan 2015,
https://developers.google.com/youtube/1.0/developers guide python

18

provide feedback to users after processing or while performing the task. However,

none of them provides feedback at runtime. We explored various web service APIs

for the retrieval of web resources and found Google web services to be comparatively

more structured and straightforward to use. We also discussed the Personal Context

Sphere (PCS) which is a repository of context information relevant to users.

19

Chapter 3

Dynamic Context Gathering and

Resource Retrieval

This chapter discusses the dynamic gathering of context and how resources can be

retrieved, including a detailed picture of the design and implementation of PALTask.

Further sections illustrate the components, architecture, and user experience of PAL-

Task. This chapter also explains the Rapid Automatic Keyword Extraction (RAKE)

algorithm used in our keyword extractor component [BK10].

3.1 PALTask

Personalized Automated web-resources Listing Task (PALTask) improves user ex-

perience through the automation of repetitive and ordinary tasks in order to fulfill

personal goals when taking part in an IM conversation. It is a context-aware tool that

gathers context from two resources: personal context spheres and the conversation

itself [JBCnM13] as depicted in Figure 3.1.

20

First, user context is crucial. This includes aspects such as browsing history,

search preferences, and interests stored in the personal context sphere. Second, the

conversation between users can be analyzed dynamically to extract context.

Chat as
a Context

Generated
keywords
for web

resources

Personal Context
Sphere of User 2

Personal Context
Sphere of User 1

Generated
keywords
for web

resources

Figure 3.1: Gathering of Context

For example, during an online conversation, context analysis determines that one

of the users is looking for restaurants nearby. Furthermore, the user’s personal con-

text sphere contains a preference list for restaurants (e.g., Mexican). The tool dis-

plays relevant restaurants from Google web search and other sources through context

matching. This eliminates manual steps such as opening a browser, connecting to a

website, searching for the preferred restaurants, and finally copying and pasting the

URL into the chat.

Recommending web resources that satisfy users is challenging, as it is necessary

to understand the personal interests of people. Furthermore, it is necessary to have

a mechanism to identify the feelings of the user which influences to their attitude in

a situation or event at a particular moment.

21

In order to recommend web resources of interest to users at runtime, we addressed

the following research challenges. First, sentiment (i.e., conveying the attitude, opin-

ion, or feelings of a user) is useful to determine the need for retrieval of web re-

sources. Second, after analyzing the sentence and determining the need for retrieval

of resources, keywords are extracted. Keywords are also matched from the context

sphere of the user, which helps in retrieving more personalized keywords. Keywords

are given to a different web service API in order to retrieve web resources.

In general, negative sentiment in a conversation indicates the user is less likely

to be interested in retrieving resources, whereas positive sentiment indicates the op-

posite. For example, if the user does not like McDonald’s, we should not retrieve

resources related to McDonald’s as it may lead to a higher degree of frustration. In

this thesis, we are using sentiment analysis to filter out the results based on deter-

mining the polarity of positive and negative moods.

3.2 Components of PALTask

The architecture of PALTask comprises seven software components as depicted in

Figure 3.2: Graphical User Interface (GUI), Server, Client, PCSManager, ConRank,

Keyword Extractor, and Web Services APIs. Out of these seven components, PCS-

Manager, ConRank, Keyword Extractor, and Web Service APIs are external services

which are connected through APIs.

3.2.1 Graphical User Interface Component

The GUI’s main function, as depicted in Figures 3.5-3.8, is to facilitate user interaction

and display retrieved web resources automatically. The GUI provides the following

widgets: chat console, web-resource list, and filtering buttons. The filtering buttons

22

PCSManager

Ranked/
Personalized

keywords

Users
 Interactions

PCS
metadata

Personalized
web-resources

Chat

Keywords

WEB
SERVICES

ConRank

KEYWORD
EXTRACTOR

PALTask
Server
Logic

PALTask
Client Logic

PALTask
GUI

Web
resources

Figure 3.2: High Level Architecture of Components

provide the ability to like, delete, and share resources from different formats such as

audio, video, text, and image. The menu provides, for example, chat and keyword

history, and allows the user to turn off context information.

After two working prototypes for the client (built in JAVA and Python), we de-

cided to build our GUI using QTCreator which simplifies prototype creation consid-

erably. Selected components of QTCreator such as QT Designer, Widget box, Object

inspector, and Property editor are depicted in Figure 3.3.

23

Figure 3.3: QTcreator components

GUI using QTCreator

QTCreator is a cross platform Integrated Development Environment (IDE) with an

integrated code editor and QT designer. It uses the system’s resources (e.g., draw

windows and controls) to give the application a native look. Thus, the resulting

applications look like native applications on their respective platforms (e.g., Mac,

Windows, Linux, and Mobile platforms). The syntax-directed code editor of QT

supports the C++ language. Similarly, QT designer is for designing and building

graphical user interfaces from QT widgets.1 The programmer can compose and cus-

tomize widgets or dialogs and test them using different styles and resolutions. This

all comes with no cost as QTCreator is licensed under the LGPL, which means it can

also be used for commercial applications.

Designing the GUI is straightforward with QT Designer, as it integrates widgets

and forms with the programmed code. QT Designer has a widget box with widgets

1QTCreator. Retrieved Jan 2015, http://doc.qt.digia.com/qtcreator-2.4/

24

Figure 3.4: Code editor

such as Button, QTextEdit, QLineEdit, and QFrame. It also includes an object in-

spector which inspects object properties. As depicted in Figure 3.3, MainWindow

Object from QMainWindow class contains all the graphical elements such as wid-

gets, frame, label, textfields, buttons, and layouts. These graphical elements can

be added easily using drag and drop from the widget box. Behavior of graphical

elements can be assigned using the Signal and Slot mechanisms as depicted in Fig-

ure 3.4. The “connect” function is used to perform an action (Slot) on the selected

menus, buttons, and forms that act as a Signal to widgets. Slots are implemented

as functions that provide action on the QMainWindow class such as void MainWin-

dow::switchOffContext(), void MainWindow::videoResources(), and void MainWin-

dow::on webResources linkClicked(const QUrl &arg1).

User Interface

Figures 3.5-3.7 exhibit the GUI of PALTask with its two main pages. The first is

the login page; its function is to register accounts, handle forgotten user names and

25

Figure 3.5: PALTask Login Screen

passwords, and log users in to registered accounts using the submit button. Second,

the chat page has three main elements: a) the contact list; b) a conventional chat

window; and c) the web resources list display.

The first element contains a list of friends (including their status) and a notification

on the contact list if a message comes in from a friend. The second element contains

the chat display window with a text input field and a send button. Finally, the last

element has a tab navigation that represents the web resource format list (i.e., video,

image, text, and/or audio).

As shown in Figures 3.6-3.7, PALTask also features a menu bar on all pages as

follows:

PALTask

Chat : The menu button redirects to the conversation page, where people can chat

and retrieve resources.

26

Figure 3.6: PALTask Menu

Add Friend : This button opens a new page where we can input details of a friend

to be invited.

Profile: The profile page provides user details such as profile picture, name, and

status. This information can also be stored and retrieved by accessing the

users’ personal context sphere (cf. Section 3.2.4).

Logout : To logout from the client, the logout button redirects to the login page.

Settings

Resource Type: Select the type of resource (i.e., text, video, audio and image).

Enabling resource type will retrieve the resources from the respective API.

Chat History : Browse the chat history, which is stored at the client’s end. Chat

history, which is timestamped, is stored per chat partner. The functionality to

delete chat history at any time from the user’s clients is included.

27

Figure 3.7: PALTask Settings

Chat Keywords : Extracted keywords which are used for retrieval of resources are

listed here. The user can modify listed keywords as acceptable or unacceptable

based on their likes and dislikes. For example, if the user does not want a

particular keyword to retrieve resources, the user can mark it as an unacceptable

keyword. This keyword is added to the stoplist (cf. Section 3.2.5) and will not

be used for retrieving resources.

Turn Off Context : Turns off collecting context information from the conversation.

This feature is for users who feel that privacy/security is a concern. PALTask

can act as a simple IM program instead of a context-aware one. Users can also

disable the collection of location context.

Context Information: All the context information collected is stored in this page.

We can also access and modify the user’s personal context sphere from here. It

contains the profile as set by the user in PALTask.

28

Help

About PALTask : All the information related to PALTask is provided here. It explains

how to navigate and use the application.

Support : This displays the contact details for the PALTask support team.

3.2.2 Server

Our server component is a traditional chat management system to manage chat con-

versations, using sockets to connect to the client. The server includes functions that

connect users, exchange messages, and control chat sessions. PALTask adheres to the

traditional centralized client server architecture: clients are connected to a central

server component via a network. All client messages pass through the central server,

which controls all message passing. Furthermore, the server is responsible for relaying

text that is to be analyzed by the ConRank and Keyword Extractor components.

The server component handles all web service APIs and has functions such as

getVideoResources(), getTextResources(), and getAudioResources(). These functions

return the web resources list from the respective web service APIs (e.g., YouTube,2

Google custom search,3 and Grooveshark4) when keywords are provided. The server

component also handles functions such as adding friends, sending and storing mes-

sages, and keywords.

3.2.3 Client

A client connects to the server as an ordinary chat application, which includes login

and communication interactions. To connect server and client, TCP sockets are used.

2YouTube search API. Retrieved Jan 2015, https://developers.google.com/youtube/
3Google custom search API. Retrieved Jan 2015, https://developers.google.com/custom-

search/json-api/v1/overview
4Grooveshark API for songs. Retrieved Jan 2015, http://developers.grooveshark.com/

29

Figure 3.8: Personalized web resources displayed on the right

All PALTask interactions between the GUI and client logic are handled using QTCre-

ator. Keywords, which represent the context of the conversation, are obtained from

the server for displaying keyword history as a functionality. The client component

accesses the user’s PCS through PCSManager. It has functions which send various

kinds of information to the server such as login and logout information, messages sent,

and resource share requests. The client component also receives the personalized web

resources list as depicted in Figure 3.8.

3.2.4 PCSManager

The PCSManager is a component that is responsible for requesting and updating

the users’ PCS into the SmarterContext Reasoning Engine (SCoRE) [Vil13]. SCoRE

replies to the PCS in the form of an XML file representing RDF graphs. The PCS-

Manager is comprised of two main modules: PCSReader and PCSUpdater.

The PCSReader module converts the XML file into a JSON string, which is used

for context matching with conversation keywords. The PCSUpdate module updates

30

the XML file whenever the user updates their personal context (which in turn updates

the PCS). The PCSManager is accessed through the client component of PALTask.

The user is identified by his/her name and email address, and the PCSManager sends

requests for PCS to SCoRE for each user.

Listing 3.1 shows Pratik’s PCS in XML format containing all likes, dislikes, and

other personal information. These elements and values stored in the XML file are

considered to be PCS keywords. Stemming is performed on these keywords for context

matching with conversation keywords.

Listing 3.1: Pratik’s PCS

columns

<?xml version="1.0" encoding="UTF -8"?>

<pcs>

<!-- From the Context Ontology by Villegas , 2013 -->

<pwc:user >Pratik </pwc:user >

<gc:geoLocation type="country">Canada </gc:geoLocation >

<gc:geoLocation type="city">Victoria </gc:geoLocation >

<gc:geoLocation type="origin" >India</gc:geoLocation >

<!-- From the Context Ontology for PALtask , 2013 -->

<!-- Personal Information -->

<pi-lan language1="English" language2="Hindi">English </pi-lan>

<pi-gender >M</pi -gender >

<pi-age>Adult </pi-age>

<!-- Topics of Interest (simplified version)-->

<topicsInterest >

<music>Bollywood </music>

<music>Baba Sehgal </music >

<music>Palash Sen</music>

<sports >Badminton </sports >

<sports >Cricket </sports >

<technology >iOS</technology >

<technology >Android </technology >

<technology >Blackberry </technology >

31

<development >C</development >

<development >Java</development >

<development >Ecplise </development >

<food>Vegetarian </food>

<food>Subway </food>

<food>Tea</food>

<food>Fairway Market </food>

</topicsInterest >

</pcs>

3.2.5 Keyword Extractor

The essence of conversations can often be summarized in a few keywords. The key-

word extractor component extracts those keywords from a textual representation of a

conversation. It is an external service to the server component connected via an API.

We used the Rapid Automatic Keyword Extraction (RAKE)5 algorithm to extract

keywords from chat messages. RAKE is document-oriented and thus does not rely on

a corpus to identify keywords. Consequently, statistical analysis or frequency analysis

is also unnecessary with RAKE. These aspects make RAKE attractive for use in an

IM environment, where accuracy and speed are two crucial metrics.6 Below is an

overview of the RAKE algorithm used for extracting keywords.

RAKE Algorithm

Input parameters of RAKE are stop words (or a stoplist), a set of phrase delimiters,

and a set of word delimiters. RAKE uses stop words and phrase delimiters to partition

a document into candidate keywords. The score of keywords is calculated based on

5RAKE implementation. Retrieved Jan 2015, https://github.com/aneesha/RAKE
6Keyword extraction tutorial. Retrieved Jan 2015, https://www.airpair.com/nlp/keyword-

extraction-tutorial

32

co-occurrences within these candidate keywords. Frequency (freq(w)) and degree

(deg(w)) of a word is calculated using co-occurrence graph of words [BK10]. Steps to

extract keywords are as follows:

Identify Candidate Keywords

1. Create an array of words using word delimiters.

2. Remove standard punctuation and stop words.

3. The list of contiguous candidate keywords is ready.

4. Candidate keywords are divided into individual keywords for calculating scores.

For example, a sentence given for keyword extraction is “System of linear Dio-

phantine equations”. Here, candidate keywords are “System” and “linear Dio-

phantine equations.”

Score the Keywords

1. Create a graph of word co-occurrences (e.g., system, linear, Diophantine, and

equations are plotted on x and y axis and co-occurrences of these keyword are

calculated in large document).

2. Calculate word frequency (freq(w)), word degree (deg(w)) and ratio of degree

to frequency (deg(w))/(freq(w)).

3. Individual keyword score is ratio of degree to frequency.

Adjoin Keywords

1. Look for pairs of keywords that adjoin one another at least twice in the same

document and in the same order. This is to identify keywords that contain

interior stop words such as axis of evil.

33

2. A new candidate keyword is created as a combination of those keywords and

their interior stop words.

3. The score of a new candidate keyword is the sum of its member keywords score.

Extract Keywords

1. Write down all candidate keywords with the new scores.

2. The top one third of the scoring candidates should be selected. For example, if

the number of content keywords is 37, then select the top 12 as candidates.

3. Extracted keywords are ready to use.

Evaluation of RAKE in comparison to several comparable keyword-extraction

methods on a benchmark dataset of short technical abstracts shows that RAKE

achieves higher precision and recall in extracting keywords [BK10].

Keyword Extractor in PALTask

In PALTask, we analyze the most recent messages sent. Sentences are built up for

analysis until they are 160 characters long. We define sentence chunk as a group

of words that are of at least 160 characters in length. We have used 160 characters

as our threshold value, which seem to be a sufficient character limit for effective

communication [BV04][RS10]. We implemented the formula for our semantic analysis

in the ConRank component: if a sentence is less than 160 characters, add one more

sentence to it until the 160 or more characters are obtained. The last sentence in

the sentence chunk is not truncated even if it exceeds the character limit. The three

equations below define how a sentence chunk is formed [JBCnM13].

Length (Sentence) <= 160 characters (3.1)

34

Length (Sentence) = Length (Sentence) + Length (Last Sentence) (3.2)

Sentence Chunk = Length (Sentence) (3.3)

Each time a message is sent to the ConRank component, it forms a sentence chunk.

ConRank analyzes this sentence chunk to determine sentiment polarity and sends it

to the keyword extractor. To obtain significant information from a conversation,

analysis is performed on more than one chunk at a time. Keyword extraction occurs

on the last individual chunk that was formed, as well as on the several most recent

chunks. This is necessary because chat messages are often short.

Table 3.1: Extracted keywords and stop words
Sentence keywords stop words
I like Subway Subway I, like
I don’t like food in Victoria food, Victoria I, don’t, like, in
Victoria is a great place for food Victoria, place, food is, a, great, for

Therefore, by keeping a record of approximately the 10 most recent chunks, we are

able to gather keywords representing the conversation’s context more accurately. For

short messages, RAKE often returns no keywords. This is due to the high frequency

of stop words. Stop words as depicted in Table 3.1, are common elements in text,

yet do not aid in providing unique contextual information [BTJ+13]. Examples of

stop words are the, a, and should. In short phrases, stop words are very frequent and

proper keyword candidates are not present. In personal chat applications, text com-

munication often doesn’t follow a standard language dictionary in terms of spelling

and capitalization. Spelling mistakes are frequent and remain uncorrected, and ab-

breviations and acronyms or “chatspeak” (e.g., LOL, BRB, TTYL) are common.

Consequently, we modified the stopword list to reflect this type of text. Without the

modified stopword list, chatspeak is erroneously interpreted as a keyword [BTJ+13].

35

Table 3.2 shows the sentence, keywords extracted, stop words, and modified stop

words list.

Table 3.2: Modified stop words list
Sentence keywords stop words modified stop words list
LOL, It’s a hilarious movie hillarious, movie It’s, a LOL, It’s, a

Currently, we alter the stoplist manually to include words commonly found in chat

text. In the future, this will be replaced with an automatically generated stop words

list that is also domain specific to chat. Techniques on how to generate these stop

word lists are illustrated by Berry et al. [BK10].

3.2.6 ConRank

Context Ranking (ConRank), as the name suggests, handles the ranking and per-

sonalization of keywords. The ConRank component improves PALTask’s results by

reducing the number of resources retrieved and personalizing the results. PALTask

can also work without the ConRank component, but results are not personalized.

ConRank is an external service connected through an API to the Server, PCSMan-

ager, and Keyword extractor.

The ConRank component performs following activities to improve PALTask’s re-

sults: a) sentiment analysis; b) stemming of words; c) integration of PCS and key-

words from conversation; d) managing location context in the PCS; and e) provides

a keyword ranking algorithm. ConRank uses natural language processing tasks such

as sentiment analysis and stemming of words for personalization. Sentiment analysis

filters the results by analyzing sentences as positive, negative, and neutral; stemming

of words is useful for keyword matching with the users’ PCS. The component has

inputs from the PCSManager, Server, and Keyword Extractor, and outputs to the

36

Keyword Extractor and Web service API. ConRank first passes filtered chat to the

keyword extractor, which then passes the keywords back to ConRank.

ConRank receives each user’s PCS as input from the PCSManager. The PCS is

context matched with the extracted keywords using a stemming technique, which in

turn provides a more personalized keyword list. Analysis and ranking of keywords

is done by calculating the score of candidate keywords and sentiment polarity (cf.

Chapter 4).

3.2.7 Web Service API

PALTask has used various web service APIs for retrieving web resources. Here in this

section we describe two of them: Google custom search7 API and YouTube8 API.

These two APIs are used for retrieving text and video resources respectively.

Google Custom Search API

Google has deprecated its web search API, but we can still use its custom search to

explore the entire web. Steps to create a Google custom search engine that searches

the entire web or mentioned websites are:

• From the Google custom search homepage (http://www.google.com/cse/),

click the link: Custom Search Engine (CSE).

• Type a name and description for your search engine.

• Under “define your search engine” (the sites to search box), enter at least one

valid URL (e.g., www.google.com). We can also have other websites in the box.

But to search the whole web, just enter any one to pass this screen.

7Google custom search API. Retrieved Jan 2015, https://developers.google.com/custom-
search/json-api/v1/overview

8YouTube search API. Retrieved Jan 2015,
https://developers.google.com/youtube/1.0/developers guide python

http://www.google.com/cse/

37

• Choose the CSE edition, accept the terms of service, and then click “next”.

Select the layout option and click “next”.

• Click any of the links under the next step section to navigate to your control

panel.

• In the left-hand menu, under control panel, click “Basics”.

• In the search preferences section, select “search the entire web but emphasize

the included sites”.

• Click save changes.

• In the left-hand menu, under Control Panel, click “sites”.

• Delete the site you entered during the initial setup process.

• Now your custom search engine will search the entire web.

Google custom search enables you to search the entire web or a collection of

websites. We can create a search engine that searches only the contents of one website

(site search), or one that focuses on a particular topic from multiple sites. The

JSON/Atom Custom Search API helps in retrieving and displaying the search results

from Google Custom Search programmatically. With this API, we can use RESTful

requests to get either the web search or image search results in JSON or Atom format.9

JSON/Atom Custom Search API can return results in one of two formats (JSON

is the default data format). JSON/Atom Custom Search API requires the use of an

API key, which users can obtain from the Google cloud console. For experimental

research purposes, we have used free CSE in which the API provides 100 search

9Google custom search API. Retrieved Jan 2015, https://developers.google.com/custom-
search/json-api/v1/overview

38

queries per day for free. If we need more, we may sign up for billing in the Cloud

Console. Additional requests cost $5 per 1,000 queries, up to 10k queries per day.

Representational State Transfer (REST) in the JSON/Atom Custom Search API

is somewhat different from the traditional REST. Instead of providing access to re-

sources, the API provides access to a service. As a result, the API provides a single

URI that acts as the service endpoint. We can retrieve results for a particular search

by sending an HTTP GET request to its URI or pass the details of the search request

as query parameters. The format for the JSON/Atom Custom Search API URI is:

https://www.googleapis.com/customsearch/v1?{parameters}

Three query parameters are required with each search request:

• API key: Use the key query parameter to identify your application.

• Custom search engine ID: Use either cx or cref to specify the custom search

engine we want to use to perform this search.

– Use cx for a search engine created with the Control Panel.

– Use cref for a linked custom search engine (does not apply for Google Site

Search).

– If both are specified, cx is used.

• Search query: Use the q query parameter to specify your search expression.

All other query parameters are optional. Here is an example of a request that searches

a test Custom Search Engine for keyword “lectures”:

https://www.googleapis.com/customsearch/v1? {parameters}

39

GET https://www.googleapis.com/customsearch/v1?key=INSERT_YOUR_

API_KEY&cx=0123456789:omuauf_lfve&q=lectures

In above GET request, API Key is INSERT YOUR API KEY, cx is 0123456789,

and search query (q) is lectures. Below is the Python code for web search from custom

search API:

Listing 3.2: WebSearch.py

import httplib2

import sys

import pprint

import time

from apiclient import discovery

def main(argv):

query = ["Mark Hamil"]

if (len(argv) > 0) :

if "," in argv[1] :

query = argv[1].split(",")

else :

query = argv[1]

Create an httplib2.Http object to handle our HTTP requests .

http = httplib2.Http()

Construct the service object for the interacting with the CustomSearch API.

service = discovery.build(’customsearch’, ’v1’,

developerKey=’abcdefghi123456789’, http=http)

results = ""

for item in query[:-1] :

test = item + ""

res = service.cse().list(q=test, cx=’0123456789:-oitaexu1tu’, num=3,

safe="high", gl="ca", start = 1, googlehost="google.ca").execute()

time.sleep(1)

for items in res[’items’]:

try :

url=items[’link’]

title=items[’title’]

snippet=items[’snippet’].replace("\n", " ")

except IndexError :

https://www.googleapis.com/customsearch/v1?key=INSERT_YOUR_API_KEY&cx=0123456789:omuauf_lfve&q=lectures
https://www.googleapis.com/customsearch/v1?key=INSERT_YOUR_API_KEY&cx=0123456789:omuauf_lfve&q=lectures

40

pass

results += url + "\n" + title + "\n" + snippet + "\n"

searchresults = results.encode(’utf-8’)

print searchresults

For more information on the CustomSearch API you can visit:

https://developers.google.com/custom-search/v1/using_rest

For more information on the CustomSearch API Python library surface you can visit:

https://developers.google.com/resources/api-libraries/documentation/customsearch/v1/python/latest/

if __name__ == ’__main__’:

main(sys.argv)

YouTube API

YouTube API is also an API from Google services. We need to enable the service

from Google Cloud Console and an API key is needed to access YouTube API.10 It

is a REST API similar to the Google Custom Search API. Below is the Python code

for video search from YouTube API:

Listing 3.3: YouTube.py

#!/usr/bin/python

import sys

from apiclient.discovery import build

from optparse import OptionParser

Set DEVELOPER_KEY to the "API key" value from the "Access" tab of the

Google APIs Console http://code.google.com/apis/console#access

Please ensure that you have enabled the YouTube Data API for your project.

DEVELOPER_KEY = "abcdefghi123456789"

YOUTUBE_API_SERVICE_NAME = "youtube"

YOUTUBE_API_VERSION = "v3"

def youtube_search(options):

youtube = build(YOUTUBE_API_SERVICE_NAME, YOUTUBE_API_VERSION, developerKey=DEVELOPER_KEY)

search_response = youtube.search().list(q=options.q, part="id,snippet",

maxResults=options.maxResults).execute()

videos = []

channels = []

10YouTube search API. Retrieved Jan 2015,
https://developers.google.com/youtube/1.0/developers guide python

41

playlists = []

for search_result in search_response.get("items", []):

if search_result["id"]["kind"] == "youtube#video":

videos.append("%s (%s)" % (search_result["snippet"]["title"], search_result["id"]["videoId"]))

elif search_result["id"]["kind"] == "youtube#channel":

channels.append("%s (%s)" % (search_result["snippet"]["title"], search_result["id"]["channelId"]))

elif search_result["id"]["kind"] == "youtube#playlist":

playlists.append("%s (%s)" % (search_result["snippet"]["title"], search_result["id"]["playlistId"]))

if __name__ == "__main__":

my_keywords = ""

for item in sys.argv[1:]:

my_keywords += item + " "

if len(my_keywords) == 0 :

my_keywords = "Hausi Muller"

parser = OptionParser()

parser.add_option("--q", dest="q", help="Search term", default=my_keywords)

parser.add_option("--max-results", dest="maxResults", help="Max results", default=5)

(options, args) = parser.parse_args()

youtube_search(options)

3.3 Architecture of PALTask

The architecture of PALTask consists of seven components as defined in Section 3.2.

In Figure 3.9, we describe how all these components interact with each other.

The GUI component interacts with the client for functionalities such as chat con-

versations, retrieving resources, turning off context, web resources display, chat his-

tory, and keyword history. All functions of the context aware IM client are a click

away from the GUI.

When the user is logged into PALTask, the Client component interacts with PC-

SManager to request the user’s PCS. The server interacts with various clients and

works as a simple standalone chat server. It also records chat data from the client

component and sends it to the ConRank component for analysis. The ConRank com-

42

GUI SERVERCLIENT

KEYWORD
EXTRACTOR

PCSManager

Ranked/
Personalized

keywords

PALTask
Interactions

WEB
SERVICES

(e.g., Google
custom
search,

YouTube)

PCS
metadata

Personalized
web-resources

list

Keywords

ConRank
Filtered

Chat

Keywords

Chat

Access PCS

Web resources

Chat

Figure 3.9: Detailed Component Architecture

ponent analyzes chat messages using sentiment analysis. After identifying the polarity

of sentences, it sends the filtered chat to the keyword extractor. Keywords are ex-

tracted from the filtered chat and the extracted keywords are returned to the ConRank

component for personalization. Personalization is achieved using PCS metadata by

performing context matching. PCS metadata is obtained from the PCSManager in

the form of a JSON string, which contains the PCS of each user. Keyword stem-

ming is performed on keywords retrieved from chat and PCS metadata to perform

context matching. If the context is matched, then more personalized keywords are

43

retrieved. Ranking of keywords is performed using our keyword ranking algorithm.

Personalized ranked keywords are passed to various web services, which provide the

personalized web resources list to the server. The server sends the top five resources

retrieved from each keyword to the client which are displayed in the resources pane

of the user’s GUI.

3.4 User Experience

First, we ensure that the user’s experience is consistent across all devices as we have

used QTCreator to create a cross platform application. Furthermore, using a concept

like the PCS, which allows users to control their own web profile for personalized

applications, greatly increases user experience. The application has the ability to

retrieve personalized resources automatically and share it with the chat partner. The

chat application is context aware and has self-adaptive capabilities. It continually

configures and reconfigures itself, and provides feedback to the user while keeping

its complexity hidden. Some of the features of self-adaptability include modifying

the stop list, dynamically updating the user’s PCS, and retrieving resources as the

mood of the user changes dynamically using sentiment analysis. The users experience

in this application is not confined to only chat with a partner, but includes context

aware chat which saves time and automates web searching by exploiting context.

3.5 Summary

This chapter introduced PALTask, the Personalized Automated Listing web resources

Task, which is a proof of concept for personalized automated applications in an IM

scenario. It is an application that can automate the repetitive steps in a web search by

exploiting context information. This application provides an overview of how the user

44

experience can be increased by task automation, using the users’ context and other

contextual information gathered before or during an IM conversation. Feedback at

runtime is provided in the form of retrieved resources based on the context provided.

The architecture of PALTask, with all of its seven components, are explained in detail.

This chapter also describes the dynamic context gathering algorithm RAKE, which

is implemented as a keyword extractor. Further, it discusses how to create and use

Google web services such as the Google Custom Search API and YouTube API.

45

Chapter 4

Personalization of Web Resources

This chapter focuses on the analysis of personalization techniques and discusses the

design and implementation of Context Ranking (ConRank) in detail. ConRank im-

proves personalization of web resources by providing ranked personalized keywords

that can be fed into web services. To provide ranked personalized keywords, it exploits

context gathered and performs various operations on text as depicted in Figure 4.1.

Most importantly, it is an external service used as a component for PALTask.

ConRank performs the following activities:

• Sentiment analysis

• Stemming of words

• Integration of PCS and keywords from conversation

• Managing location context in the PCS

• Provides a keyword ranking algorithm

To succeed with task personalization, we can either look for factors involved in the

success of tasks, or failures to be eliminated. In our IM scenario, a large number of

46

ConRank
filters

resources
retrieved

Sentiment

Analysis
Stemming

of Words

Location

Context
Personalized

Context

Sphere

Improves retrieval of personalized web
resources by exploiting context and
performing various operations on text.

Better personalization

and relevance when

retrieving web

resources to the user

Operations

on Text
Operations

on Text

Context

Exploitation

Context

Exploitation

Figure 4.1: ConRank Overview

irrelevant web resources are failures and it decreases user experience. These failures

can be eliminated by taking the users frame of mind into account. Otherwise, the

user will become frustrated if PALTask retrieves a large and irrelevant number of

resources. Personalization, properly implemented, brings focus to the task at hand

and delivers an experience that is user-oriented, quick to inform, and relevant. Poorly

implemented personalization complicates the user experience and orphans content.1

We illustrate the implementation of personalization in a way that simplifies the com-

plexity associated with delivering and consuming rich, dynamic, personalized content.

1Personalization is not Technology: Using Web Personalization to Promote your Business
Goal. Retrieved Jan 2015, http://boxesandarrows.com/personalization-is-not-technology-using-
web-personalization-to-promote-your-business-goal/

47

4.1 Sentiment Analysis

In the PALTask initial prototype without ConRank, each message sent by the user

results in the retrieval of web resources. It frustrates users with the large number of

irrelevant web resources. To overcome this problem, we needed techniques to analyze

conversations and filter web resources based on personalization.

Sentiment analysis is the process of extracting opinions, emotions, and attitude

from text. It is done by classifying the contextual polarity of a given text as posi-

tive, negative, or neutral. The accuracy of sentiment analysis is approximately 80%.

Sentiment analysis on Twitter feeds, reviews from shopping sites, and analysis of

social networks is an exciting approach in machine learning. It ranges from predict-

ing the U.S. elections to movie sales from blogger opinions to analysis within social

networks [BMZ11][CGR+11][MG06].

We used the sentences listed in Table 4.1 to experiment with our sentiment analysis

technique.

Table 4.1: Experiments of Sentiment Analysis
Sentence Label
Dr. Hausi Müller is a professor at the University neutral
I am proud to be Dr. Hausi Müller’s student positive
Dr. Hausi Müller doesn’t like sloppy work negative

The first sentence is a fact and doesn’t exhibit any sentiment. In the other two

sentences, the words “proud” and “sloppy” indicate positive and negative sentiment,

respectively.

In PALTask, we used sentiment analysis as a technique to make things personalized

by sensing the current mood of the user and reducing the number of sentences to be

processed by the keyword extractor. The sentence mood can be positive, negative,

or neutral. We assume that the user prefers to retrieve resources based on extracted

48

keywords when the mood of user is likely to be positive. We rank the keywords based

on the polarity of a sentence, but retrieve resources based on the top five keywords.

4.1.1 Sentiment Analysis Using NLTK API

Natural Language Tool Kit (NLTK) is a leading Python library for performing sen-

timent analysis which uses the Naive Bayes classification method.2 The Naive Bayes

classifier is a probabilistic classifier based on the Bayes’ theorem [TSK06]. The senti-

ment is determined by computing the classification probabilities of subjectivity and

polarity of the sentence. The text under classification is classified as subjective or

objective. If the text is objective then a label of neutral is returned. Otherwise, a

polarity classifier is used to determine the users mood as positive or negative. We

use sentence chunks (cf. Chapter 3) for sentiment analysis. To increase the user

experience, we analyzed the users mood, since it can change dynamically.

Here is a synopsis on how we perform sentiment analysis using the NLTK API:

• NLTK API provides a corpus of movie reviews in which reviews are categorized

as positive, negative, and neutral.

• The trainable classifier Naive Bayes is used to train the data.

• The feature extraction method returns a simple dictionary mapping a feature

name to a feature value. In this method, a simplified “bag of words” model is

used, if the word is found in a bag of words then it would be a feature with a

value of “True”. The feature extraction method is illustrated as follows:

2Natural Language Toolkit (NLTK). Retrieved Jan 2015, http://www.nltk.org/

49

def words feats(words) :

return dict([(word, True) for word in words])

• The movie reviews corpus has 1,000 positive files and 1,000 negative files. Out

of these 2,000 reviews, 75% are used as a training set and the remaining as a

test set. In other words, 1,500 training instances and 500 test instances.

• The classifier training method involves token tuples of the form [(feats, label)],

where feats is a feature dictionary and label is the classification label.

• In our case, feats is of the form {word: True} and label is either “pos” or “neg”.

Below is the Python code for training and testing a Naive Bayes classifier on the

movie review corpus. The accuracy was approximately 73%.3

Listing 4.1: SentimentAnalysis.py

import nltk.classify.util

from nltk.classify import NaiveBayesClassifier

from nltk.corpus import movie_reviews

def word_feats(words):

return dict([(word, True) for word in words])

negids = movie_reviews.fileids(’neg’)

posids = movie_reviews.fileids(’pos’)

negfeats = [(word_feats(movie_reviews.words(fileids=[f])), ’neg’) for f in negids]

posfeats = [(word_feats(movie_reviews.words(fileids=[f])), ’pos’) for f in posids]

3Sentiment analysis. Retrieved Jan 2015, http://text-processing.com/docs/sentiment.html

50

negcutoff = len(negfeats)*3/4

poscutoff = len(posfeats)*3/4

trainfeats = negfeats[:negcutoff] + posfeats[:poscutoff]

testfeats = negfeats[negcutoff:] + posfeats[poscutoff:]

print ’train on %d instances, test on %d instances’ % (len(trainfeats), len(testfeats))

classifier = NaiveBayesClassifier.train(trainfeats)

print ’accuracy:’, nltk.classify.util.accuracy(classifier, testfeats)

classifier.show_most_informative_features()

4.1.2 Challenges in Sentiment Analysis

Sentiment analysis is an active research field. Accuracy of around 80% has been

achieved using various methods of processing in different domains such as movie

reviews, and sentiment from blogs and twitter [Liu12][SC10]. Sentiment analysis is a

domain specific problem which needs labeled training data within the same domain

to build an accurate sentiment analysis system. For example, the words we used to

describe positive context for chat do not necessarily describe movies in the same way.

Different domains can have different meanings when describing the text, for example,

a “cold” beverage is good but a “cold” politician is bad [OSH06].

Another challenge is to judge the dynamic nature of human beings. For instance,

negative sentiments are uniquely expressed. Sometimes criticism is expressed in a

polite manner, making it difficult to recognize negative sentiment.

In the realm of machine learning, there are no reliable methods to detect sarcasm,

irony, or other forms of expression where the literal meaning is opposite to what is

intended. We are not dealing with pragmatic competence in this thesis (which ar-

gues based on intended meaning). However, the accuracy of sentiment analysis is

not perfect, as it requires a deeper understanding of context in which the sentence is

said[Tur02]. User reviews or chat conversations are unstructured, natural language

51

texts. Interesting information such as opinions have to be extracted from the reviews

or IM conversations for further analysis which is usually done with the aid of various

natural language processing (NLP) techniques. Chat conversations also have chat-

speak (e.g., LOL, ROFL, and OMG), which expresses some opinion or sentiment.

These words are hard to recognize as opinion if they are not in a database. Usually a

database of opinion words (including the strength of those words) is maintained for

sentiment analysis.

The Sentiment Orientation (SO) of an expressed opinion can be determined using

a database of opinion words with their predicted SO. The SO is a real-number measure

of positive or negative sentiment in a phrase. Our scenario does not require the SO

(strength) of the opinion words. For instance, both “excellent” and “good” represent

positive sentiment, but we know that the sentiment implied by “excellent” is much

stronger. We need to retrieve web resources if the sentiment is positive, but are not

very concerned about the positiveness of a word; we therefore do not have to take

strength into account.4

4.1.3 Sentiment Analysis in the PALTask Implementation

We used NLTK in PALTask as one of our services. The primary analysis requirement

is to do an HTTP post using the URL5 with the “text” that needs to be recognized. In

response, it returns two JSON objects: label and probability. The text of the returned

label is either positive (pos), negative (neg), or neutral (neutral). In addition, the

probability of a “pos” and “neg” label is given, which adds up to 1. Neutral has a

standalone probability; if neutral is greater than 0.5, then the label will be neutral.

Otherwise, the probability of pos and neg, whichever is higher, determines the text.

4Sentiment analysis is hard. Retrieved Jan 2015, http://idibon.com/why-is-sentiment-analysis-
hard/

5URL for HTTP post. Retrieved Jan 2015, http://text-processing.com/api/sentiment/

52

The returned value is a JSON object. For example, it returns a “200 ok” response

on success, which is as follows:

{

‘ ‘ l abe l ’ ’ : ‘ ‘ pos ’ ’ ,

‘ ‘ p r obab i l i t y ’ ’ : {

‘ ‘ pos ’ ’ : 0 . 74 ,

‘ ‘ neg ’ ’ : 0 . 26 ,

‘ ‘ neutra l ’ ’ : 0 . 3

}

}

The “400 bad request” error message is returned if no text value is provided or

the text exceeds 80,000 characters. We are using NLTK’s free API, and it has a daily

request limit; if we exceed that daily request limit, then “503 throttled” is returned.6

Here are the parameters that are required with the HTTP post:

• The “text” that needs to be analyzed and is less than 80,000 characters; and

• The language of the text which needs to be analyzed (the default is English).

4.1.4 Analysis of Chat Conversation

For each sentence its polarity is returned from the NLTK API. The polarity reflects a

positive sentiment if the probability value is between (0.5-1] or a negative sentiment

if the value is between [0.0-0.5). A value of [0.5] shows the neutrality of a sentence.

The basic motivation of performing sentiment analysis in a chat tool is to improve

user experience by retrieving personalized web resources based on the users current

mood. Sentiment analysis, which provides a filter based on the polarity of a sentence,

6Sentiment analysis. Retrieved Jan 2015, http://text-processing.com/docs/sentiment.html

53

can be used to direct the retrieval of web resources. If the sentiment of the sentence

is negative, the tendency to retrieve web resources is decreased and a low priority

is assigned to the keywords. If the sentiments are positive, the tendency to retrieve

resources is increased and a high priority is assigned to the keywords. If the mood

is neutral, a high priority is still assigned to keywords to retrieve resources, because

neutral behavior shows the sentence is basically a fact.

The table below shows the current analysis of a chat conversation and keyword

retrieval.

Table 4.2: Keywords priority
Sentence Probability Label Keywords

Priority
Victoria is a great place for food neutrality: 0.6, polarity: 0.4 neutral High
I like Subway pos: 0.7, neg: 0.3 positive High
I don’t like food in Victoria pos: 0.3, neg: 0.7 negative Low

4.2 Stemming of Words

Sentiment analysis, as explained in the previous section, works as a standalone appli-

cation/service for injecting personalization into an IM application such as PALTask.

To gather personalized keywords from a user’s personal context sphere we need to

use stemming of keywords. Otherwise, we would fail to hit sub personalized keywords

from the conversation keywords.

Stemming is the linguistic normalization of a word mostly used in information

retrieval (IR). Stemming reduces the inflected words to their word stem, base, or root

form. For example, words such as technologies and technology can be reduced to

technolog as a stem form. Two important types of algorithms are used in stemming;

lookup algorithms and suffix stripping algorithms. Lookup algorithms are used in

stemmers to look up the inflected form in a lookup table. All inflected forms must be

54

explicitly present in the tables to match the word. Suffix stripping algorithms remove

suffixes from the word and retrieve the stem. The disadvantage of suffix stripping

algorithms is that the resultant word might not be a real word in that language.7

In the NLTK library, stemming can be done using various algorithms that remove

and replace word suffixes to arrive at a common root form of the word. Stemming al-

gorithms are present for different languages, such as English, French, German, Danish,

or Dutch. In this thesis we only deal with the English language. The main stemming

algorithms for English are Lovins,8 Porter Stemming,9 Lancaster Stemming,10 and

Snowball Algorithm.11 All differ in accuracy, precision, and recall.

4.2.1 Porter Stemming Algorithm

We used the Porter stemming algorithm which removes the common morphological

and inflectional endings from words in English [Por80]. The algorithm is similar to the

normalization process usually performed when reducing the redundant letters from a

word. The algorithm has been implemented in various programming languages (C,

C], Java, Perl, Python, .Net, and many more), and has been widely adopted.

In any suffix stripping program for IR, two points must be kept in mind. First, the

suffixes are being removed simply to improve IR performance, and not as a linguistic

exercise. This means that it would not be at all obvious under what circumstances

a suffix should be removed, even if we could exactly determine the suffixes of a

word by automatic means. In our case, we don’t care if suffix removal results in

a non-English word, as we need this algorithm just for a context match from both

7Stemming Algorithms. Retrieved Jan 2015,
http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

8Lovins Algorithm. Retrieved Jan 2015,
http://snowball.tartarus.org/algorithms/lovins/stemmer.html

9Porter stemmer. Retrieved Jan 2015, http://tartarus.org/martin/PorterStemmer/
10Lancaster background. Retrieved Jan 2015,

http://www.comp.lancs.ac.uk/computing/research/stemming/Links/background.htm
11Snowball Algorithm. Retrieved Jan 2015, http://snowball.tartarus.org/

55

sides (PCS and keywords extracted from chat). Second, the success rate of a suffix

stripping algorithm would be significantly less than 100%, regardless of the evaluation

process. For example, if “sand” and “sander” are conflated, then probably “wand”

and “wander” would be conflated as well. The problem here is that the “er” is treated

as a suffix, but in “wander” it is part of the stem.12

Algorithm Overview

1. Identify vowels and consonants as “v” and “c”, respectively, in a word that

needs to be processed for stemming.

2. Recognize sequences of consecutive vowels and consonants with length greater

than 0, such as vvv... as V and ccc... as C, respectively.

3. Transform all words or part of words into the following four expressions:

CV CV....C

CV CV....V

V CV C....C

V CV C....V

The four expressions illustrated above can be represented in a single expression

as [C]VCVC...[V], where [C] and [V] represent arbitrary presence of consonants

and vowels.

12Suffix stripping algorithm. Retrieved Jan 2015, http://tartarus.org/martin/PorterStemmer/def.txt

56

4. Rebuild the expression [C]VCVC...[V] as [C](VC)m[V], where (VC)m (repre-

senting VC) is repeated m times. Some examples are:

m = 0 TR, EE, TREE

m = 1 TROUBLE, OATS, TREES

m = 2 TROUBLES, OATEN

5. Consider the conditional substitution for removing a suffix as in the below rule:

(condition)S1− > S2

Where S1 and S2 are suffixes. This rule means that if the word ends with suffix

S1, it can be replaced by S2 if the condition is satisfied.

6. Express the condition in terms of m, for example,

(m > 1)EMENT− >

Here S1 is EMENT and S2 is null. To satisfy the condition, m should be greater

than 1. This would map REPLACEMENT to REPLAC, as it is a word part for

m=4. The condition can also be *P, *v*, *d, (asterisk represents any character)

which means the stem ends with P, contains a vowel (v), and ends with a double

consonant, respectively.

7. Consider if there are multiple rules defined, then the rule which is chosen is the

longest matching S1 for a given word.

57

The detailed description of this algorithm [Wil06], with all the rules and conditions

is also available on the web.13

4.2.2 Stemming in the PALTask Implementation

Stemming in PALTask is similar to the HTTP post in sentiment analysis explained

in Section 4.1. The stemming process performs the HTTP post in ConRank using

the URL14 with encoded data containing the “text.” In response, a JSON object is

returned and its text attribute contains the stemmed text. For example, a JSON

object that returns a “200 ok” response on success is as follows:

{

‘ ‘ text ’ ’ : ‘ ‘ stemmed text ’ ’

}

The “400 bad request” error message is returned if no text value is provided, the

language is not compatible with the stemmer, or the text exceeds 60,000 characters. In

addition, if the NLTK’s free API daily request limit is exceeded, then “503 throttled”

is returned.15

Here are the parameters that are required with the HTTP post:

• The “text” for the stem. It should be less than 60,000 characters;

• The language of the text to be analyzed (the default is English); and

• The stemmer algorithm used (the default is the Porter stemmer).

The table below shows an example of keywords extracted and transformed to its

stem or root form.

13Porter Algorithm. Retrieved Jan 2015, http://tartarus.org/martin/PorterStemmer/
14URL of HTTP post. Retrieved Jan 2015, http://text-processing.com/api/stem/
15Sentiment analysis. Retrieved Jan 2015, http://text-processing.com/docs/sentiment.html

58

Table 4.3: Stemming of words
Keywords Stem or Root Form
Development, Developed Develop
Technologies, Technology Technolog
Musical, Music Music

4.3 Integration of PCS and Keywords from Con-

versation

The integration of personalized keywords from the PCS and the conversation is per-

formed using context matching. Our approach mines the context sphere of each user

and matches it to the keywords extracted from the conversation. The process in Con-

Rank looks for the stemmed keyword in the PCS and returns personalized keywords.

Personalized results are retrieved based on the context information associated with

each users preferences, and will therefore return different results for the same type of

query for different users.

As mentioned in Section 4.2, the Porter stemming algorithm using NLTK API is

used to provide keywords in their stem or root form. The stemming process occurs in

two places: i) keywords from the PCS; and ii) keywords from the conversation. First,

stemming is performed over PCS keywords and then over the keywords extracted

from the conversation. The stemmed keywords from the conversation are context

matched with the stemmed PCS keywords. If matching takes place, then the PCS

retrieves sub keywords that are personalized to the user.

For example, if the sentence “Which web technologies are you working on?” is

used in PALTask, the keywords for this query would be “web” and “technologies.”

ConRank would return personalized results for different users for the same keywords.

Although the keyword “web” is generic and will return the same result for all users,

59

“technologies” can have context matching in the users PCS and can have more per-

sonalized keywords.

Therefore, the keyword “technologies” can have sub keywords in the PCS and

could return different results for each user. For instance, a user’s PCS keyword

“technology” has sub keywords such as “Javascript,” “PHP,” and “HTML,” and the

keyword from conversation is “technologies.” Stemming is performed on keyword from

conversation returning “technolog” as the stem or root form. Similarly, stemming is

applied to the PCS and the context is matched at “technolog,” which returns new

sub keywords such as “Javascript,” “PHP,” and “HTML.”

4.4 Managing location context in the PCS

In Section 1.1 we mentioned an example of retrieving a list of nearby restaurants when

colleagues are talking about eating lunch together. The user’s location context helps

to retrieve personalized resources related to location. Context is collected dynami-

cally using GPS sensors on mobile devices and IP addresses on computers. Location

context is stored in the user’s PCS using the PCSUpdater module in the PCSMan-

ager of PALTask. If we already have stored the location information in the PCS, our

PCSReader module can retrieve the location information from it and provide location

keywords through context matching.

We also modified keywords in the PCS for PALTask to help identify location

context. Previously, the PCS had only one keyword associated to location, but we

manually added other similar keywords to help identify location context in chat. For

example, keywords such as “place,” “nearby,” “location,” “position,” and “locality”

can also return location context values from the PCS.

60

4.5 Keyword ranking algorithm

The keyword ranking algorithm ranks keywords based on the polarity of the sentence

chunk and candidate keyword score calculated from the RAKE algorithm. Appendix

A.1 contains the Python source code used for keyword extraction and calculation of

candidate keyword score.

To gather accurate personalized web resources and to reduce irrelevant results,

ConRank analyzes each sentence chunk and the last 10 sentence chunks from a con-

versation between two users. The last 10 sentences form the basis of the larger context

structure that is derived from the whole conversation.

Each sentence chunk: The polarity of each sentence chunk is retrieved from

NLTK API and the keywords are retrieved from the RAKE algorithm. If the polarity

is positive or neutral, then the user is likely to retrieve web resources. We consider

neutral because those sentence chunks are facts and do not show negative sentiments.

The ranking of keywords from the same sentence chunk is performed by the candi-

date keyword score from the RAKE algorithm. Preference is given to personalized

keywords retrieved from the PCS when retrieving web resources.

Last ten sentence chunks: The polarity of sentences (from which keywords are

retrieved) and the candidate keyword score of each keyword are used to determine

the rank of keywords for the last ten sentence chunks. The application recognizes the

sentence to which a keyword belongs and identifies its polarity as positive, negative, or

neutral. We define the Polarity factor as the weight assigned to the keywords based

on the polarity of their sentence chunk. Higher weights are assigned to keywords

of sentence chunks with positive polarity, as the user in this case is more likely to

retrieve web resources. On the contrary, lower weights are assigned to sentence chunks

with negative polarity as the user in that case is less likely to retrieve web resources.

For example, if the sentence is negative and a keyword is extracted from a negative

61

sentence, the polarity factor assigned to the keyword is -1. Table 4.4, exhibits the

polarity factor for positive, negative and neutral sentences.

Table 4.4: Polarity Factor for Ranking
Sentence Polarity Polarity Factor

Positive 1
Negative -1
Neutral 0

We define ConFactor as the factor when ranking keywords in the last 10 sentence

chunks. It is a summation of both the polarity factor and the candidate keyword

score of a keyword. The higher the ConFactor, the higher the rank of a keyword.

The ConFactor is calculated using the below equation to rank the keywords of the

last 10 sentence chunks:

ConFactor = Polarity Factor + Candidate Keyword Score (4.1)

Top 5 ConFactors exhibits top 5 keywords that can be given to web services for

retrieving resources. We use top 5 keywords as they show higher precision and recall

for web resources. The preference is given to personalized keywords retrieved from

the PCS when retrieving web resources.

4.6 Example of PALTask using ConRank

The ConRank component has a collection of activities (mentioned at the beginning

of this chapter), which are performed on sentence chunks. Given below is an example

of a conversation on which an analysis has been made using the mentioned activities.

62

Conversation example:

User 1: Hello User 2

User 2: Hello User 1

User 1: What technologies are you working on?

User 2: Currently, I am working on Java, Ruby, and Scala.

User 1: ok, that sounds great. I have been using Java from quite long time now.

Do you use any Java web frameworks?

User 2: Yes, I do a lot of web programming using Struts and Google Web Toolkit.

Activity 1 - Sentiment Analysis: The first activity that is performed on the

sentence chunk is sentiment analysis. For the above mentioned conversation example,

the analysis has been run on User 1 whose conversation is marked in red as depicted

in Table 4.5. The sentiment analysis returns a JSON object from the NLTK API

that provides label and probability of the chunk. The analysis on the sentence chunk

of our chat example exhibits positive polarity. The returned JSON object is given

below:

{

‘ ‘ l abe l ’ ’ : ‘ ‘ pos ’ ’ ,

‘ ‘ p r obab i l i t y ’ ’ : {

‘ ‘ pos ’ ’ : 0 . 8 ,

‘ ‘ neg ’ ’ : 0 . 2 ,

‘ ‘ neutra l ’ ’ : 0 . 2

}

}

Activity 2 - Keywords Extraction: After performing sentiment analysis, key-

words are extracted from the conversation using a RAKE algorithm. The candidate

63

Table 4.5: Sentiment analysis on chat example
Sentence Probability Label
Hello User 2
What technologies are you working on?
ok, that sounds great. I have been using Java from quite long time now. Do you use any Java web frameworks?

pos: 0.8, neg: 0.2 positive

keyword score is calculated from all keywords extracted. The keywords retrieved

from the chat example and their candidate keyword score is depicted in Figure 4.2

and Table 4.6

Figure 4.2: Keywords extracted with their candidate scores

Table 4.6: Candidate keywords scores
Keyword extracted Candidate keyword score
Java web frameworks 8.0
long time 4.0
sounds great 4.0
java 2.0
technologies 1.0
working 1.0
user 2 1.0

Activity 3 - Stemming: Extracted keywords are given to the stemmer. In this

stage the root form of conversation keywords and PCS keywords are retrieved. As

depicted in Table 4.7, the keyword “technologies” from the mentioned chat conversa-

tion example is context matched on technologies from the conversation and technology

64

from the PCS. Personalized keywords for User 1 that are returned from User 1’s PCS

keyword “technology” are: Java, Spring MVC, and Python.

Table 4.7: Stemming on chat example
Keyword from the conversation Keyword from the PCS Stem or Root Form Personalized keywords retrieved
Technologies Technology Technolog Java, Spring MVC, and Python

Activity 4 - Ranking of Keywords: The sentence chunk analyzed from the

chat example is of positive polarity. Therefore, the top 5 keywords for retrieval of web

resources are selected based on their candidate keyword score. A keyword ranking

algorithm gives preference to personalized keywords retrieved from the PCS.

Activity 5 - Web Service APIs: Finally the following personalized keywords

are given to web services such as Google web search:

• Java

• Spring MVC

• Python

• Java web frameworks

• Long time

• Sounds great

The analysis described above is only for one sentence chunk. If analysis has to

be done on 10 sentence chunks, the polarity of all sentence chunks are identified.

Following above mentioned activities, the top 5 keywords from each sentence chunk

with their candidate keyword scores are retrieved. The ConFactor is calculated for

each keyword based on the keyword candidate score and polarity factor associated

with a keyword which is described in the keyword ranking algorithm 4.5.

65

The higher the ConFactor for the keyword, the higher the rank of the keyword.

Top 5 keywords with the higher ConFactor are chosen and given to web service APIs

for retrieval of web resources. An example of calculating ConFactor is described in

Table 4.8 by considering the sentence chunk 1, 3, and 4 whose contextual polarities

are positive, negative, and neutral, respectively.

Table 4.8: Example of analysis on three sentence chunks using ConFactor
Sentence Chunk Keyword number Sentence Polarity Polarity Factor Candidate score of keywords ConFactor
1 1 Positive 1 5 6
1 2 Positive 1 1 2
3 1 Negative -1 8 7
3 2 Negative -1 2 1
3 3 Negative -1 4 3
4 1 Neutral 0 3 3
4 2 Neutral 0 1 1

Top five ConFactors in the Table 4.8 exhibits top 5 keywords that are given to

web services for retrieval of web resources from larger context gathered.

4.7 Summary

This chapter presented the ConRank component of PALTask for ranking personalized

context results. It provided an overview of how we can implement natural language

processing techniques such as sentiment analysis, stemming of words, and PCS in-

tegration to increase user experience. The above mentioned techniques can also be

applied in any context-aware resource retrieval tool. It also presents a keyword rank-

ing algorithm for ranking of keywords in sentence chunks.

66

Chapter 5

Evaluation

The evaluation of our application and the techniques used are based on the accuracy of

the application’s results. Our evaluation shows that the techniques used in ConRank

improve the retrieval of web resources, making them more personalized to the user.

As a result, ConRank demonstrably improved user experience in PALTask. The

evaluation of our application is completed using multiple factors of a usability study

that measures an applications ability to achieve specific goals such as retrieval of

resources. The factors involved in this study are:

1. Efficiency: the time and number of steps taken to reach the goal.

2. Effectiveness: the degree of accuracy in the attained goal compared to the

planned goal.

3. User Experience: the user’s level of satisfaction with the application.

5.1 Efficiency

Efficiency is based on the number of steps required to automate web searches and

retrieve personalized resources. Another parameter is the time saved searching for

67

those results. This evaluation factor shows how many steps are required to retrieve

the preferred result while working through various operations on text such as keyword

extraction, sentiment analysis, and stemming.

A user involved in a conversation in a collaborative environment knows what their

preferences are and what they want to share. The user usually opens a browser to

a particular website such as YouTube or Google Search and enters their keywords.

They may or may not share the retrieved results with the other party. Our application

helps by extracting the resources dynamically and automatically. As a result, the

application reduces manual steps taken and a great deal of time is saved.

5.2 Effectiveness

The effectiveness of the application is evaluated based on the quality of web resources

retrieved. The evaluation is performed on PALTask by comparing the tool’s results

with and without ConRank, qualitatively analyzing the accuracy and personalization

of the results. The planned set of user preferences and conversation was developed in

advance. The keywords retrieved based on preferences and conversation are therefore

known beforehand, as is the personalized web resource list.

We can therefore analyze the results by evaluating PALTask with and without

ConRank, comparing the planned and actual results. The accuracy of the results

can be divided into three categories: low, moderate, and high, thereby evaluating the

effectiveness of our application.

For example, Andi is conversing with Lorena about having lunch together. From

Lorena’s Personal Context Sphere, we know her preferences towards food, and we have

gathered other information from the planned conversation. Any results retrieved in

68

the application could be highly, moderately, or barely accurate, comparing to the

planned results.

5.3 User Experience

The level of satisfaction can be used to measure user experience. Is the user frustrated,

satisfied, or dissatisfied with the search results? A scale from one to ten has been

used to measure user experience, in addition to open-ended feedback, which can be

used to improve PALTask.

Figure 5.1: Participant 1’s screen, chat, and retrieved resources

5.4 Experiment 1

Our first participant, whose context sphere is filled with her preferences, talked about

having lunch together with the second participant. Her context sphere has person-

alized keywords associated with lunch and food (Subway, Mexican food, and Mc-

Donald’s). PALTask, in conjunction with ConRank, retrieves personalized resources,

which includes Subway, Mexican food, and McDonald’s (cf. Figures 5.1-5.2).

69

Figure 5.3 shows the second participant’s screen, in which Participant 1 shared

the resources reflecting her interests. On the other hand, PALTasks results without

ConRank are merely a listing of restaurants in Victoria (using location context).

Figure 5.2: Participant 1’s screen, chat, and retrieved resources

In Figure 5.4, Participant 1 talked about how much she hates the weather in

Toronto. No results are retrieved as the sentence carries negative sentiment. In

addition, she also mentioned that she loves the weather in Victoria and she is look-

ing forward to a job there. Certainly, this sentence was positive and retrieved two

resources from each of the Victoria keywords: tourism, jobs, and weather (Figures 5.5-

5.6). The results are based on sentiment analysis as depicted in Table 5.1, which is a

part of ConRank. Otherwise, results are retrieved every time a message is sent and

no personalization takes place.

5.4.1 Evaluation by Participant 1

Efficiency : 0-1 steps (i.e., selection of resources)

• Ordinarily, a user opens a web browser and then searches Google, Yelp, or

some other site to look for preferred restaurants. Here, web resource retrieval

70

is automated and only the desired type of restaurant is returned. Results are

returned based on user preferences (Subway, Mexican food, and McDonald’s)

as depicted in Figures 5.1-5.2 without any manual search steps taken (i.e., 0

steps).

• A great deal of time is saved in the search task. An automated web search took

only 5 seconds to retrieve a list of restaurants without any manual steps taken.

Participant 1 also had a choice of completely ignoring or sharing resources with

the other participant.

• The selection of preferred choices was easily available, and therefore more effi-

cient. The user has to take only one step in the sharing or selection of resources.

Figure 5.3: Participant 2’s screen, chat, and resources shared by Participant 1

Table 5.1: Sentiment analysis with probabilities and label
Sentence Probability Label Resources

Retrieved
I hate the weather in Toronto pos:0.1, neg:0.9 negative No
Yeah, I have started looking jobs in Victoria
because of awesome weather

pos:0.6, neg:0.4 positive Yes

Effectiveness: High with ConRank; moderate without ConRank

71

• PALTask without ConRank retrieves eight resources, out of which six are related

to restaurants. These restaurants do not match the preferred choices of the

user. However, restaurants retrieved are from Victoria using the users location

context. Her user experience was moderate; the results were acceptable to her

but she had to spend more time looking for the specific restaurants of her choice.

Figure 5.4: Participant 1’s screen, showing negative sentiments

• When using PALTask with ConRank, we noted user preferences (Subway, Mexi-

can food, and McDonald’s) which were also reflected in the user’s PCS. Knowing

the preferred choices, it was not hard to determine the resources that met her

requirements. Comparing the planned results (those the participant would have

searched for) and the actual results from PALTask, Participant 1 was very happy

with the restaurants provided.

• Another aspect of evaluating effectiveness is looking for results based on senti-

ment in the conversation. We planned to retrieve resources based on positive

sentences. Participant 1 was happy with the results retrieved based on those

72

positive sentences, and was pleased that she did not have to bother with results

based on negative emotions.

User’s Experience: Highly satisfied with the results retrieved

• After the experiment, we asked her opinion of our application. Based on her

answers, we concluded that she was pleased with the experience, and would

prefer to use PALTask over other applications. She understands that PALTask

is not only providing chat functionality, but also a better experience by providing

feedback at runtime using her dynamic context and PCS. She is also aware that

she can switch off her context gathering whenever she wants.

Figure 5.5: Participant 1’s screen, showing positive sentiments

However, she did not like when some irrelevant resources popped up, such as the

last resource in Figure 5.2 (CBC News: McDonald’s accused of favoring foreign

workers-British Columbia) and resources in Figure 5.6 (Yeah, and Joe Nichols-

Yeah). We learned that the former resource (from CBC news) retrieved from

“McDonald’s” keyword, and the resources in Figure 5.6 was included because

of chatspeak (Yeah) as a keyword. For chatspeak, as we already mentioned,

we are currently modifying our stoplist (cf. Section 3.2.5) manually. In future

73

work, the stoplist will be updated automatically from context. Overall however,

she rated PALTask with ConRank as an eight on a scale of one to ten.

Figure 5.6: Participant 1’s screen, showing positive sentiments

5.5 Experiment 2

The experiment was conducted using our second participant, whose PCS is also filled

with his preferences. He was more interested in video resources instead of text,

therefore he updated his preferences accordingly. He started a conversation with his

new school-mate, asking about her interests in music as depicted in Figures 5.7-5.8.

He wrote, “What kind of music do you like?” She replied with Hip Hop and Heavy

Metal. He was amazed to see similar interests.

Participant 2 has personalized keywords associated with “music” in his PCS

(Heavy Metal, Rock, and Hip Hop). He retrieves video resources from YouTube

on Heavy Metal, Rock, and Hip Hop (Figures 5.7-5.8) and shares a heavy metal song

from Iron Maiden with his colleague (Figure 5.9). However, PALTask’s results with-

out ConRank does not include personalization, and is therefore a little frustrating

74

because resources are retrieved every time he sends a message. He retrieves results

as music videos from the YouTube API in PALTask using “music” as a keyword.

Figure 5.7: Participant 2’s screen, chat, and retrieved resources

We also demonstrated sentiment analysis in the evaluation by Participant 2. In

Figures 5.10-5.11, Participant 2 started talking about how much he loves listening

to motivational TED talks. As the sentence was positive, three motivational TED

talks were retrieved. He shared some of these at the request of his chat partner. The

chat partner asked Participant 2: “Do you watch Hollywood movies?” Participant 2

replied, “No, I don’t like to spend much time watching movies.” Since Participant

2’s interest was not in watching movies, and as sentence showed negative sentiments,

no resources were retrieved as depicted in Table 5.2.

Table 5.2: Sentiment analysis with probabilities and label
Sentence Probability Label Resources

Retrieved
I love to listen motivational TED talks pos:0.6, neg:0.4 positive Yes
Ya, sure. No, I don’t like to spend
much time on watching movies

pos:0.3, neg:0.7 negative No

75

Figure 5.8: Participant 2’s screen, chat, and retrieved resources

76

5.5.1 Evaluation by Participant 2

Efficiency : 0-1 steps (i.e., selection of resources)

• Usually, a user would open a web browser and YouTube or another website to

look for preferred videos. Here, our application retrieve preferred videos from

YouTube automatically (i.e., 0 steps).

• Time is saved in searching for videos related to the music of his preferred choice.

Resources retrieved automatically in 6 seconds.

Figure 5.9: Participant 1’s screen, chat, and resources shared by Participant 2

Effectiveness: Moderate with ConRank; low without ConRank

• PALTask without ConRank retrieved videos of all kinds of music based on the

keyword “music”. However, the resources were retrieved automatically without

opening any particular website. Participant 2 was not very happy with so many

retrieved results, and his user experience was low.

• Participant 2’s preferences were known from his PCS, and the context is matched

at “music.” Resources from various music types were retrieved (Rock, Heavy

77

Metal, and Hip Hop). He was very happy with this, as he wanted to watch and

share some of his favorite videos. Based on a comparison of the planned and

actual results, the effectiveness was moderate. The degree of accuracy was not

high, as Participant 2 was really looking for a specific video from Iron Maiden,

which he didn’t find in the retrieved resources.

• As planned, resources were retrieved only on positive sentences, and negative

sentences were ignored.

User’s Experience: Satisfied

• After the experiment, Participant 2 was very pleased with the video resource

retrieval functionality, since he really enjoys listening to music and watching

videos while working. His biggest frustration was that he was not able to

play some of the resources, and two video links did not include thumbnails

(Figures 5.7-5.8). We learned that two videos retrieved from YouTube were

restricted, and could only be played on an embedded YouTube player or on

YouTube’s site itself.

Figure 5.10: Participant 2’s screen, showing positive sentiments

78

Thumbnails of some videos were not available from the YouTube API (which is

a problem in video retrieval from the API). In future work, we can examine how

we can eliminate such videos from the retrieval. Participant 2 also suggested

the ability to listen to or watch videos while in conversation. This functionality

is not currently present however, due to the fact that when a new chat message

is delivered, new resources update the resource pane. Overall, Participant 2 had

a good experience and rated our application as seven on the scale of one to ten.

Figure 5.11: Participant 2’s screen showing negative sentiments (no resources re-
trieved)

5.6 Summary

This chapter evaluated our PALTask application with ConRank. Two users helped

with the experiment, which used their daily dialog over the PALTask client. We eval-

uated the usability of our application based on three factors: efficiency, effectiveness,

and user experience. The feedback helped in identifying pros and cons in the appli-

cation. For example, Participant 1 was keen on looking at text web resources, while

79

Participant 2 was happy to retrieve videos. They were pleased to have the context

gathering facility and to leverage it for an increased user experience.

80

Chapter 6

Conclusions

This chapter summarizes this thesis, outlining our contributions and ideas for future

improvement in our application model.

6.1 Summary

This thesis investigated context extraction methods and services for providing feed-

back at runtime for dynamic context. We concentrated on natural language processing

techniques such as keyword extraction, sentiment analysis, and stemming of words

for analyzing gathered context. Services such as YouTube and Google web search are

explored and used for providing feedback in the form of web resources at runtime.

We have identified that web searching can be improved by leveraging context, and

automating web tasks associated with users’ goals can improve user experience.

We discussed how personalized applications are everywhere in today’s world, espe-

cially in mobile applications. We illustrated various examples of Google’s personalized

applications, but the disadvantage of those applications is that the user’s web profile

is owned and managed by Google. As a consequence, the user can’t modify their own

preferences for advertisements or any other recommendations by Google. We used

81

the Personal Context Sphere approach, which solves that problem by letting the user

control their own context.

In Chapter 2, we focused on related work and identified that none of the reviewed

applications in an IM scenario provide dynamic feedback to the user. We also dis-

cussed various libraries and APIs, and explored the keyword extractor, sentiment

analysis, stemming techniques, and web service APIs. In Chapter 3, we discussed

PALTask, an instant messaging tool that retrieves personalized web resources by au-

tomating the task of searching for those resources on the web.

In Chapter 4, we discussed ConRank, our personalization component to refine

PALTask results and provide better personalized results. This chapter discussed the

design and implementation of ConRank, including the implementation of sentiment

analysis, stemming, PCS integration with keywords, and a keyword ranking algo-

rithm. We evaluated PALTask in Chapter 5 based on the experiment conducted with

the help of two participants. These experiments assessed our application based on

three factors: efficiency, effectiveness, and user satisfaction. The participant’s feed-

back was positive, and they also suggested few improvements in the tool which we

can examine in our future work.

6.2 Contributions

The following summarize the contributions of this thesis:

• Concept and implementation of web search automation by exploiting context.

PALTask, as a personalized automated web search application, retrieves web

resources based on personal context, location context, and conversations. The

application gathers dynamic context and provides feedback at runtime. This

application is an example of a context-aware resource gathering model which

82

acquires relevant context, then interprets it and provides relevant information

to the user. This model could be applied to different scenarios.

• We identified RAKE, a document-oriented keyword extractor that can identify

keywords from documents. We evaluated it based on factors such as quality of

results, availability of a remote API and source code, cost, and license.

• Using the PCS in our IM application, we demonstrated how personalizing the

application increases user experience. This also demonstrates the value of the

Personal Context Sphere (PCS) for personalizing applications.

• ConRank, a component of PALTask that performs various operations on text

such as sentiment analysis, stemming of keywords, integration of PCS and key-

words, and ranking of keywords to provide more relevant results.

• We explored the NLTK API for sentiment analysis and stemming of words. The

API consists of various operations for processing natural language text. It is a

very rich API, well structured and documented.

• We identified that for designing GUI (front end) applications, QTCreator is

straightforward. It is a cross platform IDE with an integrated code editor and

QT designer, giving the application a native look. The application looks like

all other applications on the various platforms (e.g., Mac, Windows, Linux, and

Mobile platforms).

6.3 Future Work

Smart applications can leverage contextual information to increase users’ experience

as we demonstrated in this thesis. Our application PALTask was designed to demon-

83

strate the approach adopted in this research. There is a great deal of work that can

still be done in this resource gathering model:

• PALTasks future includes the ability to exploit context from audio and video

conversations. Recognizing audio and video conversation is also proposed in

our research paper [BTJ+13]. Audio conversation detection such as Siri by

Apple [Aro11], could also be done via our application model. Video conversation

can detect faces, tagging the people involved with their names or displaying their

profile automatically in a conference call [BTJ+13].

• The PCSUpdate module can be enhanced in an application. Currently, the

PCS cannot be updated based on the feedback of users engaging with resources.

Acceptance or rejection of resources offered should update the PCS dynamically.

• We don’t have a database in our application, something which could be very

helpful for storing keywords, chat history, and even some resource links for

future use.

• Currently, PALTask is a desktop application, but it can be implemented in mo-

bile operating systems. However, turning this application into a web application

could attract more users still.

• We have used sentiment analysis using a movie corpus from NLTK API, in

which data is gathered from movie reviews. A corpus of chat data which is

labeled as positive, negative, or neutral could improve accuracy.

• We can include smiley emoticons in sentiment analysis for detecting sentiment

in text that can provide enhanced accuracy.

84

Bibliography

[AC10] C. Abela and K. Cortis. Semchat: Extracting personal information from

chat conversations. In Workshop on Personal Semantic Data, Knowl-

edge Engineering and Knowledge Management (EKAW 2010), page 10,

2010.

[ADB+99] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and

P. Steggles. Towards a better understanding of context and context-

awareness. In Proceedings of the 1st International Symposium on Hand-

held and Ubiquitous Computing (HUC 1999), pages 304–307. Springer,

1999.

[Aro11] J. Aron. How innovative is Apple’s new voice assistant, Siri? New

Scientist, 212(2836):24, 2011.

[BHCNM01] C. Basu, H. Hirsh, W. W. Cohen, and C. G. Nevill-Manning. Techni-

cal paper recommendation: A study in combining multiple information

sources. Journal of Artificial Intelligence Research (JAIR 2001), pages

231–252, 2001.

[BK10] M. W. Berry and J. Kogan. Text mining. Applications and Theory.

John Wiley & Sons, 2010.

85

[BL01] T. Bauer and D. B. Leake. Word sieve: A method for real-time

context extraction. In Proceedings of the 3rd International Interdis-

ciplinary Conference, Context : Modeling and Using Context, pages

30–44. Springer, 2001.

[BMZ11] J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock mar-

ket. Journal of Computational Science, 2(1):1–8, 2011.

[BTJ+13] A. Bergen, N. Taherimakhsousi, P. Jain, L. Castañeda, and H. A.

Müller. Dynamic context extraction in personal communication appli-

cations. In Centre for Advanced Studies Conference (CASCON 2013),

pages 261–273, 2013.

[BV04] L. Barkhuus and A. Vallg̊arda. Saying it all in 160 characters: Four

classes of sms conversations. The IT University of Copenhagen, Tech-

nical Report: TR-45, 2004.

[CCNY10] M. Chignell, J. Cordy, J. Ng, and Y. Yesha. The Smart Internet: Cur-

rent Research and Future Applications, volume 6400 of Lecture Notes in

Computer Science. Springer, 2010.

[CGR+11] M. D. Conover, B. Gonçalves, J. Ratkiewicz, A. Flammini, and

F. Menczer. Predicting the political alignment of twitter users. In Pri-

vacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Iner-

national Conference on Social Computing (SocialCom), pages 192–199.

IEEE, 2011.

[Cho03] G. G. Chowdhury. Natural language processing. Annual review of in-

formation science and technology, 37(1):51–89, 2003.

86

[CnMV13] L. Castañeda, H. A. Müller, and N. M. Villegas. Towards Personalized

Web-Tasking: Task Simplification Challenges. In 2013 IEEE Ninth

World Congress on Services (SERVICES 2013), pages 147–153. IEEE,

2013.

[DF04] S. Decker and M. Frank. The social semantic desktop. In Workshop

Application Design, Development and Implementation Issues in the Se-

mantic Web on World Wide Web (WWW 2004), volume 9, page 10,

2004.

[DJ11] M. Dostál and K. Jezek. Automatic Keyphrase Extraction based on

NLP and Statistical Methods. In Databases Texts Specifications and

Objects (DATESO 2011), pages 140–145, 2011.

[Eva11] D. Evans. The Internet Of Things. How The Next Evolution Of The

Internet Is Changing Everything (Whitepaper). Cisco Internet Business

Solutions Group (IBSG), 2011.

[FD06] J. Forlizzi and C. DiSalvo. Service robots in the domestic environment:

A study of the Roomba vacuum in the home. In Proceedings of the 1st

ACM SIGCHI/SIGART Conference on Human Robot Interaction (HRI

2006), pages 258–265. ACM, 2006.

[GBL98] C. L. Giles, K. D. Bollacker, and S. Lawrence. Citeseer: An Automatic

Citation Indexing System. In Proceedings of the Third ACM Conference

on Digital Libraries, pages 89–98. ACM, 1998.

[HFH+09] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten. The weka data mining software: an update. ACM SIGKDD

Explorations Newsletter, 11(1):10–18, 2009.

87

[HIHO09] S. Horiguchi, A. Inoue, T. Hoshi, and K. Okada. Gachat: A chat system

that displays online retrieval information in dialogue text. In Workshop

on Visual Interfaces to the Social and the Semantic Web (VISSW 2009),

pages 1–5, 2009.

[HPK+10] Q. He, J. Pei, D. Kifer, P. Mitra, and L. Giles. Context-aware citation

recommendation. In Proceedings of the 19th International Conference

on World Wide Web (WWW 2010), pages 421–430. ACM, 2010.

[HSK09] J. Y. Hong, E. H. Suh, and S. J. Kim. Context-aware systems: A

literature review and classification. Expert Systems with Applications,

36(4):8509–8522, 2009.

[JBCnM13] P. Jain, A. Bergen, L. Castañeda, and H. A. Müller. PALTask Chat: A

Personalized Automated Context Aware Web Resources Listing Tool.

In 2013 IEEE Ninth World Congress on Services (SERVICES 2013),

pages 154–157. IEEE, 2013.

[LHC05] B. Liu, M. Hu, and J. Cheng. Opinion observer: Analyzing and com-

paring opinions on the web. In Proceedings of the 14th International

Conference on World Wide Web (WWW 2005), pages 342–351, 2005.

[Liu12] B. Liu. Sentiment analysis and opinion mining. Synthesis Lectures on

Human Language Technologies, 5(1):1–167, 2012.

[LMJ03] V. Lavrenko, R. Manmatha, and J. Jeon. A model for learning the

semantics of pictures. In Advances in neural information processing

systems, page None, 2003.

[MG06] G. Mishne and N. S. Glance. Predicting movie sales from blogger sen-

timent. In Association for the Advancement of Artificial Intelligence

88

(AAAI) Spring Symposium: Computational Approaches to Analyzing

Weblogs, pages 155–158, 2006.

[NCCY10a] J. W. Ng, M. Chignell, J. R. Cordy, and Y. Yesha. Overview of the

Smart Internet. In The Smart Internet, volume 6400 of Lecture Notes

in Computer Science, pages 49–56. Springer, 2010.

[NCCY10b] J. W. Ng, M. Chignell, J. R. Cordy, and Y. Yesha. Smart Interactions. In

The Smart Internet, volume 6400 of Lecture Notes in Computer Science,

pages 59–64. Springer, 2010.

[NL13] J. W. Ng and D. H. Lau. Going beyond web browsing to web tasking:

Transforming web users from web operators to web supervisors. In 2013

IEEE Ninth World Congress on Services (SERVICES 2013), pages 126–

130. IEEE, 2013.

[OSH06] S. Owsley, S. Sood, and K. J. Hammond. Domain specific affective clas-

sification of documents. In Association for the Advancement of Artificial

Intelligence (AAAI) Spring Symposium: Computational Approaches to

Analyzing Weblogs, pages 181–183, 2006.

[Por80] M. Porter. An algorithm for suffix stripping. Program, 3 (14): 130–137,

1980.

[PZCG14] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context

aware computing for the internet of things: A survey. Communications

Surveys & Tutorials, IEEE, 16(1):414–454, 2014.

[RCRM02] A. Ranganathan, R. H. Campbell, A. Ravi, and A. Mahajan. Conchat:

A context-aware chat program. IEEE Pervasive Computing, 1(3):51–57,

2002.

89

[RECC10] S. Rose, D. Engel, N. Cramer, and W. Cowley. Automatic keyword

extraction from individual documents. Text Mining, pages 1–20, 2010.

[RS10] S. Rybalko and T. Seltzer. Dialogic communication in 140 characters

or less: How fortune 500 companies engage stakeholders using twitter.

Public Relations Review, 36(4):336–341, 2010.

[Sat01] M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE

Personal Communications, 8(4):10–17, 2001.

[SAW94] B. Schilit, N. Adams, and R. Want. Context-aware computing applica-

tions. In First Workshop on Mobile Computing Systems and Applica-

tions (WMCSA 1994), pages 85–90. IEEE, 1994.

[SC10] S. O. Sood and E. F. Churchill. Anger management: Using sentiment

analysis to manage online communities. Grace Hopper Celebration,

2010.

[TSK06] P. N. Tan, M. Steinbach, and V. Kumar. In Introduction to Data Mining,

volume 1, pages 231–258. Addison Wesley, 2006.

[Tur02] P. D. Turney. Thumbs up or thumbs down?: Semantic orientation

applied to unsupervised classification of reviews. In Proceedings of the

40th annual meeting on association for computational linguistics, pages

417–424. Association for Computational Linguistics, 2002.

[Vil13] N. M. Villegas. Context Management and Self-Adaptivity for Situation-

Aware Smart Software Systems. PhD Thesis, Department of Computer

Science, University of Victoria, 2013.

90

[VM10] N. M. Villegas and H. A. Müller. Managing dynamic context to optimize

smart interactions and services. In The Smart Internet, volume 6400 of

Lecture Notes in Computer Science, pages 289–318. Springer, 2010.

[Wei93] M. Weiser. Some computer science issues in ubiquitous computing.

Communications of the ACM, 36(7):75–84, 1993.

[Wil06] P. Willett. The Porter Stemming Algorithm: Then and Now. Program:

Electronic Library and Information Systems, 40(3):219–223, 2006.

[WWH05] T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing contextual polarity

in phrase-level sentiment analysis. In Proceedings of the conference on

Human Language Technology and Empirical Methods in Natural Lan-

guage Processing, pages 347–354, 2005.

[ZSL05] A. Zimmermann, M. Specht, and A. Lorenz. Personalization and con-

text management. User Modeling and User-Adapted Interaction, 15(3-

4):275–302, 2005.

91

Appendix A

Source Code

Listing A.1: RAKE Keyword Extraction Algorithm

1 # Implementation of RAKE - Rapid Automtic Keyword Exraction algorithm

2 # as described in:

3 # Rose, S., D. Engel, N. Cramer, and W. Cowley (2010).

4 # Automatic keyword extraction from indi-vidual documents.

5 # In M. W. Berry and J. Kogan (Eds.), Text Mining: Applications and Theory.unknown: John Wiley and Sons, Ltd.

6

7 import re

8 import operator

9 import math

10

11 debug = False

12 test = True

13

14 def isnum (s):

15 try:

16 float(s) if ’.’ in s else int(s)

17 return True

18 except ValueError:

19 return False

20

21 # Utility function to load stop words from a file and return as a list of words

22 # @param stopWordFile Path and file name of a file containing stop words.

23 # @return list A list of stop words.

92

24 def loadStopWords(stopWordFile):

25 stopWords = []

26 for line in open(stopWordFile):

27 if (line.strip()[0:1] != "#"):

28 for word in line.split(): #in case more than one per line

29 stopWords.append(word)

30 return stopWords

31

32 # Utility function to return a list of all words that are have a length greater than a specified number of characters.

33 # @param text The text that must be split in to words.

34 # @param minWordReturnSize The minimum no of characters a word must have to be included.

35 def separatewords(text,minWordReturnSize):

36 splitter=re.compile(’[^a-zA-Z0-9_\\+\\-/]’)

37 words = []

38 for singleWord in splitter.split(text):

39 currWord = singleWord.strip().lower()

40 #leave numbers in phrase, but don’t count as words, since they tend to invlate scores of their phrases

41 if len(currWord)>minWordReturnSize and currWord != ’’ and not isnum(currWord):

42 words.append(currWord)

43 return words

44

45 # Utility function to return a list of sentences.

46 # @param text The text that must be split in to sentences.

47 def splitSentences(text):

48 sentenceDelimiters = re.compile(u’[.!?,;:\t\\-\\"\\(\\)\\\’\u2019\u2013]’)

49 sentenceList = sentenceDelimiters.split(text)

50 return sentenceList

51

52 def buildStopwordRegExPattern(pathtostopwordsfile):

53 stopwordlist = loadStopWords(pathtostopwordsfile)

54 stopwordregexlist = []

55 for wrd in stopwordlist:

56 wrdregex = ’\\b’ + wrd + ’\\b’

57 stopwordregexlist.append(wrdregex)

58 stopwordpattern = re.compile(’|’.join(stopwordregexlist), re.IGNORECASE)

59 return stopwordpattern

60

61 def generateCandidateKeywords(sentenceList, stopwordpattern):

62 phraseList = []

63 for s in sentenceList:

93

64 tmp = re.sub(stopwordpattern, ’|’, s.strip())

65 phrases = tmp.split("|")

66 for phrase in phrases:

67 phrase = phrase.strip().lower()

68 if (phrase!=""):

69 phraseList.append(phrase)

70 return phraseList

71

72 def calculateWordScores(phraseList):

73 wordfreq = {}

74 worddegree = {}

75 for phrase in phraseList:

76 wordlist = separatewords(phrase,0)

77 wordlistlength = len(wordlist)

78 wordlistdegree = wordlistlength - 1

79 #if wordlistdegree > 3: wordlistdegree = 3 #exp.

80 for word in wordlist:

81 wordfreq.setdefault(word,0)

82 wordfreq[word] += 1

83 worddegree.setdefault(word,0)

84 worddegree[word] += wordlistdegree #orig.

85 #worddegree[word] += 1/(wordlistlength*1.0) #exp.

86 for item in wordfreq:

87 worddegree[item] = worddegree[item]+wordfreq[item]

88

89 # Calculate Word scores = deg(w)/frew(w)

90 wordscore = {}

91 for item in wordfreq:

92 wordscore.setdefault(item,0)

93 wordscore[item] = worddegree[item]/(wordfreq[item] * 1.0) #orig.

94 #wordscore[item] = wordfreq[item]/(worddegree[item] * 1.0) #exp.

95 return wordscore

96

97 def generateCandidateKeywordScores(phraseList, wordscore):

98 keywordcandidates = {}

99 for phrase in phraseList:

100 keywordcandidates.setdefault(phrase,0)

101 wordlist = separatewords(phrase,0)

102 candidatescore = 0

103 for word in wordlist:

94

104 candidatescore += wordscore[word]

105 keywordcandidates[phrase] = candidatescore

106 return keywordcandidates

107

108 def test (message, api_option):

109 #text = "I don’t think so, we shold go to San Fransisco and not Chicago"

110 msg = message

111 if len(message) == 0 :

112 import sys

113 print sys.argv[1]

114 msg = ""

115 for item in sys.argv[1:]:

116 msg += item + " "

117 text = msg

118 # Split text into sentences

119 sentenceList = splitSentences(text)

120

121 stoppath = "SmartStoplist.txt"

122 #SMART stoplist misses some of the lower-scoring keywords in Figure 1.5,

123 #which means that the top 1/3 cuts off one of the 4.0 score words in Table 1.1

124

125 stopwordpattern = buildStopwordRegExPattern(stoppath)

126

127 # generate candidate keywords

128 phraseList = generateCandidateKeywords(sentenceList, stopwordpattern)

129

130 # calculate individual word scores

131 wordscores = calculateWordScores(phraseList)

132

133 # generate candidate keyword scores

134 keywordcandidates = generateCandidateKeywordScores(phraseList, wordscores)

135 if debug: print keywordcandidates

136 sortedKeywords = sorted(keywordcandidates.iteritems(), key=operator.itemgetter(1), reverse=True)

137 if debug: print sortedKeywords

138 totalKeywords = len(sortedKeywords)

139 if debug: print totalKeywords

140 print sortedKeywords[0:(totalKeywords/3)]

141 print sortedKeywords[0:(totalKeywords/1)]

142 return sortedKeywords[0:(totalKeywords/1)]

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Problem Definition and Motivation
	Research Methodology
	Thesis Outline

	Problem Description and Background
	Introduction
	Context-Aware Personalized Applications
	Context-Aware IM Applications
	Natural Language Processing Tasks
	Keyword Extractor
	Sentiment Analysis and Stemming

	Personal Context Sphere
	Web Service APIs
	Summary

	Dynamic Context Gathering and Resource Retrieval
	PALTask
	Components of PALTask
	Graphical User Interface Component
	Server
	Client
	PCSManager
	Keyword Extractor
	ConRank
	Web Service API

	Architecture of PALTask
	User Experience
	Summary

	Personalization of Web Resources
	Sentiment Analysis
	Sentiment Analysis Using NLTK API
	Challenges in Sentiment Analysis
	Sentiment Analysis in the PALTask Implementation
	Analysis of Chat Conversation

	Stemming of Words
	Porter Stemming Algorithm
	Stemming in the PALTask Implementation

	Integration of PCS and Keywords from Conversation
	Managing location context in the PCS
	Keyword ranking algorithm
	Example of PALTask using ConRank
	Summary

	Evaluation
	Efficiency
	Effectiveness
	User Experience
	Experiment 1
	Evaluation by Participant 1

	Experiment 2
	Evaluation by Participant 2

	Summary

	Conclusions
	Summary
	Contributions
	Future Work

	Bibliography
	Source Code

