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 Monitoring and mapping the presence and/or intensity of an environmental hazard 

through space, is an essential part of public health surveillance. Radon, a naturally 

occurring radioactive carcinogenic gas, is an environmental hazard that is both the 

greatest source of natural radiation exposure in human populations and the second 

leading cause of lung cancer worldwide. Concentrations of radon can accumulate in an 

indoor setting, and, though there is no safe concentration, various guideline values from 

different countries, organizations and regions provide differing threshold concentrations 

that are often used to delineate geographic areas at higher risk. Radon maps demarcate 

geographic areas more prone to higher concentrations but can underestimate or 

overestimate indoor radon risk depending on the concentration threshold used. The goals 

of this thesis are to map indoor radon risk in the province of British Columbia, identify 

areas more prone to higher concentrations and their associations with different radon 

concentration thresholds and lung cancer mortality trends. 
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The first analysis was concerned with developing a data-driven method to predict 

and map ordinal classes of indoor radon vulnerability at aggregated spatial units. 

Spatially referenced indoor radon concentration data were used to define low, medium 

and high classes of radon vulnerability, which were then linked to regional environmental 

and housing data derived from existing geospatial datasets. A balanced random forests 

algorithm was used to model environmental predictors of indoor radon vulnerability and 

predict values for un-sampled locations. A model was generated and evaluated using 

accuracy, precision, and kappa statistics. We investigated the influence of predictor 

variables through variable importance and partial dependence plots. The model 

performed 34% better than a random classifier. Increased probabilities of high 

vulnerability were found to be associated with cold and dry winters, close proximity to 

major river systems, and fluvioglacial and colluvial soil parent materials. The Kootenays 

and Columbia-Shuswap regions were most at risk. 

We built upon the first analysis by assessing the difference between temporal 

trends in lung cancer mortality associated with areas of differing predicted radon risk. We 

assessed multiple scenarios of risk by using eight different radon concentration 

thresholds, ranging from 50 to 600 Bq m
-3

, to define low and high radon vulnerability. 

We then examined how the following parameters changed with the use of a different 

concentration threshold:  the classification accuracy of each radon vulnerability model, 

the geographic characterizations of high risk, the population within high risk areas and 

the differences in lung cancer mortality trends between high and low vulnerability 

stratified by sex and smoking prevalence. We found the classification accuracy of the 

model improved as the threshold concentrations decreased and the area classified as high 
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vulnerability increased. The majority of the population were found to live in areas of 

lower vulnerability regardless of the threshold value. Thresholds as low as 50 Bq m
-3 

were associated with higher lung cancer mortality trends, even in areas with relatively 

low smoking prevalence. Lung cancer mortality trends were increasing through time for 

women, while decreasing for men. We suggest a reference level as low as 50 Bq m
-3

 is 

justified for the province. 
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1.0 INTRODUCTION 

1.1 Research Context 

The interactions between human populations and environmental hazards have 

important implications for global population health. It is estimated that nearly a quarter of 

the global burden of disease can be attributed to human exposure to environmental 

hazards   r ss- st n et al. 2006). Regional disparities in disease burden to specific 

environmental hazards arise in part as a result of the differing presence or intensity of a 

given environmental hazard through space and their proximity to human populations 

  r ss- st n et al. 2006). In order to mitigate the negative effects of environmental 

hazards it is of utmost importance to understand the hazards physical properties, 

generating processes, and biological mechanisms by which it induces negative health 

effects (Maantay & Mclafferty 2011). Once the health effects of an environmental hazard 

are understood, a central component of strategies to reduce human exposure is to map its 

variation in magnitude or presence through space, making spatial perspectives essential 

(Maantay & Mclafferty 2011). Specific interventions to mitigate the effects of 

environmental hazards can then be put into place to reduce the burden of disease and 

increase population-level health of an affected region. 

When adverse health outcomes associated with exposure to a specific and 

measurable environmental hazard has been established, the surveillance of the spatial 

distribution of that hazard represents the most effective means for intervention in 

reducing human exposure (Thacker et al. 1996). Hazard surveillance refers to simply 

measuring the intensity or presence of a specific hazard responsible for negative health 
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outcomes in a population within a given geographic region (Thacker et al. 1996). Often 

environmental hazards are spatially continuous and therefore surveys of measured 

observations will only represent a sample of the spatial distribution of the phenomenon of 

interest. Therefore, applied spatial analysis methods are suited for predicting values in 

unmeasured areas of a jurisdiction (Zhu et al. 2001; Miles & Appleton 2005; Kemski et 

al. 2008). 

Geographic Information Science (GIS) approaches and techniques are appropriate 

for studying environmental hazards as GIS technologies can effectively store, manipulate, 

analyze and visualize spatial data, such as measurements of the intensity of an 

environmental hazard. Using applied spatial analysis methods and the data acquired from 

directly or indirectly monitoring a given hazard, researchers can determine where a 

hazard poses the greatest threat and visualize the results (Maantay & Mclafferty 2011; 

Kemski et al. 2008; Miles & Appleton 2005; Zhu et al. 2001; Ielsch et al. 2010; Sainz-

Fernandez et al. 2014). When these datasets are overlaid with other relevant geospatial 

datasets that describe the conditions known, or theorized to affect the intensity or 

presence of a hazard, it can result in the discovery of relationships between spatial-

variables associated with the higher intensities of the hazard through space, a model of 

the hazards spatial distribution and an assessment of its subsequent impact on human 

populations (Cromley 2003). There exists a growing range of studies on different 

environmental hazards, from the modeling of airborne toxic chemicals to the mapping of 

the spatial distribution of biological agents of disease (Cromley 2003). The use of GIS 

technologies and techniques for the analysis, modeling and visualization of the spatial 

distributions of various causative disease agents is a critical component to hazard 



 

 

3 

surveillance and a vital precursor to effectively implementing interventions to reduce 

negative health effects in local populations.  

1.2 Research Focus 

The focus of this thesis is concerned with the environmental hazard radon, a 

naturally occurring radioactive carcinogenic gas. Radon is not only the greatest source of 

natural radiation exposure in human populations, but also the second leading cause of 

lung cancer worldwide (Charles 2001; World Health Organization 2009). Radon is 

produced naturally by the earth’s surface through the radioactive decay of uranium and is 

diluted to low concentrations when exhaled into outdoor air. Uranium and its daughter 

products are present in varying amounts in all terrestrial substances, meaning some 

concentration of radon is present in both outdoor and indoor air (Bissett & McLaughlin 

2010; Appleton 2007). Radon concentrations can, however, accumulate within enclosed 

structures such as residential homes to levels several orders of magnitude higher than a 

typical outdoor concentration. There is no safe concentration of radon , and the risk of 

lung cancer increases linearly with increasing concentrations (Darby et al. 2005). In order 

to reduce population level exposure to indoor radon, the hazard must first be monitored. 

Surveillance of indoor radon involves testing individual homes within jurisdictions, 

which consists of placing a radon detector in a home for a specified period of time, 

typically at least three months during the heating season, which will record the average 

concentration during that period. Indoor radon is a spatially variable environmental 

hazard that can be readily monitored, and, as a result, can be studied using GIS 

approaches to analyze, model and map regions at greater risk to higher concentrations. 
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Radon maps that identify areas more prone to higher indoor radon concentrations 

are an important component of any radon reduction strategy that can help to guide radon 

policy, future radon surveys and communicate risk (Chen 2009; Long & Fenton 2011; 

Miles & Appleton 2005). The methods used to create radon risk maps vary based on the 

availability of existing relevant data sources, but can be delineated into two broad areas 

based on which data sources they use to infer radon risk: indoor radon data or geologic 

proxy data (Chen 2009; Appleton & Ball 2002). Maps produced by the former generally 

will either visualize the variability in radon risk through the mean observed concentration 

across mapping units or estimates of the proportion of homes expected to exceed a 

threshold concentration (Dubois 2005; Miles & Appleton 2005; Sainz-Fernandez et al. 

2014). The latter method infers indoor radon risk through the use of proxy data such as 

uranium and/or radium concentrations in rocks and soils, radon concentrations in soil gas, 

or soil permeability, among others, which all serve to estimate a regions capacity for 

delivering radon to the surface (Kemski et al. 2001; Kemski et al. 2008; Appleton & Ball 

2002; Ielsch et al. 2010). In order to produce spatially continuous maps using observed 

measurements at a fine level of geographic detail, a large number of measurements that 

are uniformly distributed throughout the jurisdiction are required (Miles & Appleton 

2005). If the region is sparsely sampled and/or populated, the resulting map will either 

contain many blank areas or make use of much larger mapping units (Chen 2009; Sainz-

Fernandez et al. 2014). Though the use of geologic proxy data can provide a means for 

predicting radon risk in sparsely measured or populated areas, they can be unreliable for 

inferring indoor radon risk due to the importance of housing characteristics on individual 

concentrations (Appleton & Ball 2002; Rauch & Henderson 2013). 
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Additional uncertainty is introduced for maps of indoor radon risk that make 

direct use of indoor radon data, due to the fact that generally, a specific concentration 

threshold is used either directly or indirectly to delineate different classes of radon risk 

for mapping units (Miles & Appleton 2005; Dubois 2005; Friedmann 2005; Sainz-

Fernandez et al. 2014). There are a variety of differing radon concentration guidelines 

provided throughout the world that are generally intended for homeowners to decide if 

they need to implement remediation measures to reduce the concentration in their home 

(World Health Organization 2007), but are also often used as a threshold concentration 

for delineating classes of risk in radon mapping. A recommended concentration threshold 

within a given jurisdiction can be used to define regional risk, and, due to the arbitrary 

nature of its recommendation, can potentially over or underestimate risk depending on 

the concentration selected. 

British Columbia(BC) has many radon-prone communities and indoor radon has 

been identified as an important contributor to lung cancer incidence and mortality 

(Henderson et al. 2014; Henderson et al. 2012). A rich dataset of spatially referenced 

observed indoor radon concentrations from several sampling campaigns that took place in 

the province between 1991 and 2014 are archived at the BC Centre for Disease Control. 

Due to the fact large regions of the province are sparsely populated, the indoor radon 

dataset is not uniformly distributed throughout the province, resulting in current radon 

risk maps making use of large mapping units (Henderson et al. 2012) or having blank 

spaces in unmeasured areas (BC Centre for Disease Control 2009). The Radon Potential 

Map of Canada (Radon Environmental Management Corp. 2011) is available and can 

provide a spatially continuous estimate of radon risk for the province, but its predictions 
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are inconsistent with radon observations in BC (Rauch & Henderson 2013). The 

availability of indoor radon data, combined with the lack of spatially continuous maps of 

indoor radon risk at fine spatial resolutions, provide opportunity to develop methods for 

mapping indoor radon risk in the province using GIS approaches and techniques.  

1.3 Research Goals and Objectives 

The goals of this thesis are to map indoor radon risk in the province of British 

Columbia, identify areas more prone to higher concentrations of indoor radon and their 

associations with different concentration thresholds and lung cancer mortality trends. 

Using applied spatial modeling techniques and methods we base our approach on 

combining observed indoor radon concentrations with various related environmental 

geospatial datasets to predict ordinal classes of regional vulnerability to indoor radon, and 

assess the sensitivity of geographic characterizations of risk to different parameters, 

specifically, the use of different concentration thresholds to delineate areas of high and 

low radon risk. In order to accomplish these goals the following objectives will be met: 

1) The first objective consists of developing a data-driven method to predict classes 

of indoor radon risk and assess the relationships between predictors and classes of 

radon risk that we term radon vulnerability. The results can then be mapped and 

used to identify regions most at risk in the province.  

2) The second objective is to assess the difference in temporal trends in lung cancer 

mortality associated with areas of differing predicted radon vulnerability. We test 

different geographic characterizations of radon vulnerability associated with 

changes in radon concentration thresholds and observe the subsequent changes in 



 

 

7 

populations within high vulnerability areas. We then compare lung cancer 

mortality trends across them. 
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2.0 A GEOSPATIAL APPROACH TO THE PREDICTION OF INDOOR 

RADON VULNERABILITY IN BRITISH COLUMBIA, CANADA 

2.1 Abstract 

Radon is a carcinogenic radioactive gas produced by the decay of uranium. 

Accumulation of radon in residential structures contributes to lung cancer mortality. The 

goal of this research is to predict residential radon vulnerability classes for the province 

of British Columbia (BC) at aggregated spatial units. Spatially referenced indoor radon 

concentration data were partitioned into low, medium, and high classes of radon 

vulnerability. Radon vulnerability classes were then linked to environmental and housing 

data derived from existing geospatial datasets. A balanced random forests algorithm was 

used to model environmental predictors of indoor radon vulnerability and values at un-

sampled locations across BC. A model was generated and evaluated using accuracy, 

precision, and kappa statistics. The influence of predictor variables was investigated 

through variable importance and partial dependence plots. The model performed 34% 

better than a random classifier. Increased probabilities of high vulnerability were 

associated with cold and dry winters, close proximity to major river systems, and 

fluvioglacial and colluvial soil parent materials. The Kootenays and Columbia-Shuswap 

regions were most at risk. Here we present a novel method for predictive radon mapping 

that is broadly applicable to regions throughout the world. 

2.2 Introduction 

 Indoor radon is the second-leading cause of global lung cancer, and puts those 

who smoke at elevated risk (World Health Organization 2009; Saccomanno et al. 1988). 
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In Canada, radon is estimated to be a factor in more than 3,000 lung cancer deaths 

annually (Chen et al. 2012). Radon-222 is an odourless, and colourless radioactive noble 

gas that results from the decay sequence of uranium-238. Uranium-238 occurs naturally 

in bedrock and soil so its daughter products are present in varying amounts in all 

terrestrial substances (Bissett & McLaughlin 2010). Because radon is a gas with a half-

life of 3.8 days, it can migrate from its source through permeable soils or cracks in rocks 

and into the atmosphere where it can interact with humans. Radon exposure accounts for 

an estimated 50% of the worldwide average human radiation dose from natural sources 

(Charles 2001). Although radon quickly disperses in outdoor air, it can enter buildings 

through cracks in their foundations and concentrations can accumulate (Bissett & 

McLaughlin 2010). 

 Indoor radon concentrations depend on complex interactions between 

environmental factors and housing characteristics, making them highly variable both 

locally and regionally. Variation in surficial radon is influenced by the quantity and 

distribution of uranium in the grains, as well as the characteristics of the substrates 

through which radon atoms move (Michel 1987). Radon is ejected into the pore space of 

rock and soils from a radium atom embedded in the grains, and is transported to the 

surface through diffusive or advective transport (Nazaroff 1992; Arnold 2006). Diffusive 

transport is the dominant process, which is affected by moisture content, porosity, and 

tortuosity of the substrate (Nazaroff 1992; Arnold 2006). Advective transport is 

controlled by permeability, moisture content, and the pressure gradient dictating the flow 

of soil gas from high to low concentrations. Two factors that affect permeability of 

certain soils are grain size and moisture content (Nazaroff 1992). The larger the grain, the 
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larger the pore spaces, the more space through which soil gas can flow. Higher moisture 

contents generally reduce air permeability of a soil, as more moisture in the pore spaces 

reduces the amount of space through which soil gas can flow (Nazaroff 1992). Factors 

affecting soil moisture and pressure gradients will also affect the diffusive and advective 

movement of radon in the subsurface (Washington & Rose 1990; Schumann et al. 1988). 

Additionally, radon transport can be increased by movement through crevices in the earth 

such as faults, or anthropogenic openings such as mining tunnels (Appleton 2007). 

 While geologic properties influence surficial radon levels, indoor radon levels 

can be primarily attributed to the permeability of a building, especially the parts of the 

foundation that are in contact with the ground. Most indoor radon can be attributed to the 

flow of soil gas into a building through permeable entry points (Appleton 2007). This 

occurs because of the "stack effect" (Vasilyev & Zhukovsky 2013; Al-Ahmady & 

Hintenlang 1994; Kitto 2005) whereby temperature differences create an area of low 

pressure within the building compared with outside, causing soil gas to be drawn indoors 

(Wang & Ward 2002; Garbesi et al. 1993). However, radon concentrations in soil gas are 

weakly correlated to corresponding indoor radon concentrations (Varley & Flowers 

1998). The complexities introduced by differing foundation types, construction methods, 

and ventilation characteristics of homes can result in variable rates of radon entry and 

accumulation, even within homes that have equal concentrations of radon in the 

underlying soil gas (Appleton 2007). Similarly, homes with the same construction may 

have different concentration measurements due to differing underlying geologic 

conditions, causing different rates of geogenic production and transport of radon into the 

home (Appleton & Miles 2010; Appleton 2007). Increased rates of geogenic production 
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will not necessarily translate into high indoor radon concentrations, just as low geogenic 

production will not necessarily translate into low indoor radon concentrations.  

The province of British Columbia (BC) in Canada has areas with an abundance of 

uranium (Jones 1990), and many small and large radon-prone communities. Indoor radon 

concentrations in BC have been measured in five disparate sampling campaigns from 

1991-2013, and the data are archived at the BC Centre for Disease Control (BCCDC). 

The provenance of these datasets is inconsistent, but few other resources are available to 

gauge the regional variations in indoor radon in BC. Some provinces such as Quebec and 

Nova Scotia have independently developed radon potential maps in order to provide a 

spatial indication of regions with more or less capacity to exhale radon at the surface 

 Drolet et al. 2013; Drolet et al. 2014; O’Reilly et al. 2013). In British Columbia, an 

ambient radon potential map is available only as a part of the broader Radon Potential 

Map of Canada (Radon Environmental Management Corp. 2011). Radon potential maps 

are based on an assessment of geologic conditions that contribute to the relative 

difference between the natural capacities for geologic formations to deliver radon to the 

atmosphere. As such, they do not necessarily reflect indoor radon concentrations 

(Appleton & Ball 2002; Ielsch et al. 2010; Gruber et al. 2013). This uncertainty is 

reflected by the fact that the Radon Potential Map of Canada is known to be inconsistent 

with residential radon observations (Rauch & Henderson 2013) in many areas of BC. 

Therefore, an indoor radon vulnerability map of BC would be complementary. The 

significant health risks associated with radon provide great motivation to identify and 

map areas of BC most at risk. The creation of an indoor radon vulnerability map could 



 

 

14 

inform radon mitigation policy as well as be a means to generate increased radon 

awareness.  

 The goal of this research is to create an indoor radon vulnerability map for the 

province of BC by addressing the following objectives: 1) pre-process spatially 

referenced indoor radon concentration data and relevant overlapping environmental 

geospatial datasets, and conflate each into a common zonal system to create an indoor 

radon vulnerability database; 2) using the database, develop a model for the prediction of 

indoor radon vulnerability for unmeasured areas of the province and assess the 

relationships between the predictors and radon vulnerability; 3) classify the unmeasured 

areas of the province, identify regions and population centres most at risk and those most 

in need of further sampling, and map the results. 

2.2.1 Study Area 

 The study area is the province of BC, on the west coast of Canada (Figure 2.1). 

BC is a large, mountainous province, whose spatial extent covers over 940,000 km
2
 and 

encompasses a wide variety of landscapes, geologic conditions, and surficial materials. 

The province has a complex tectonic and glacial history, so its uranium content, geology, 

climate, and soil characteristics are highly variable on local and regional scales.  

2.3 Materials and Methods 

2.3.1 Indoor Radon Concentration Observations 

 The five available datasets for residential radon concentrations were provided in 

tabular form by the BCCDC. They included surveys conducted by the BCCDC, the 
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Northern Health Authority, the BC Lung Association, The Donna Schmidt Foundation, 

and one private contractor. The BCCDC tested 1,552 homes between 1991-1992 and 

2004-2006. The first survey was designed to oversample areas with high ambient 

radiation levels, and the second survey oversampled areas with moderate ambient 

radiation levels. The Northern Health Authority, the BC Lung Association, the Donna 

Schmidt Foundation, and a private contractor all have collected volunteer samples 

between 1997 to the present time. The Northern Health Authority collected samples from 

541 homes in Northern BC, the Donna Schmidt Foundation tested 1,136 homes within 

the Kootenay Region, and the BC Lung Association collected samples from 1,277 homes 

throughout the province. A further 292 samples were collected by the private contractor 

primarily within the Thompson-Okanagan Region including cities such as Kelowna and 

Kamloops. A combined total of 4,798 homes were tested in British Columbia from 1997-

2013.  

 Each survey had the common intent of recording indoor radon concentrations, 

but was executed with different objectives and over different time periods, resulting in 

each having varying geographic extents, sampling designs, spatial resolutions, and 

relevant attributes recorded. Only three common attributes are available between the 

surveys: a six digit postal code, the date of the test period, and a radon concentration 

value. Each observation was assigned a geographic coordinate (latitude and longitude) 

based on its associated postal code using the BCCDC geocoder. Approximately 90.7% of 

homes tested were successfully geocoded, which resulted in a dataset of 4,352 indoor 

radon observations distributed throughout the province (Figure 2.1). 
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2.3.2 Predictor Variables 

 Geospatial datasets representing environmental and housing predictors were 

compiled (Table 2.1). Based on the available data the following variables were assessed 

at each radon measurement location: (1) simplified bedrock lithological class; (2) 

geologic fault presence; (3) dominant soil parent material; (4) dominant soil drainage 

class; (5) dominant rooting depth class; (6) dominant soil coarse fragment content; (7) 

dominant kind of surface material; (8) average winter temperature; (9) average winter 

precipitation; (10) distance to nearest major river; (11) dominant age of home; and (12) 

proportion of homes in need of major repairs. Each of these variables was selected based 

on its potential to affect an indoor radon concentration.  

2.3.3 Data Pre-processing 

 To enable modelling and prediction we integrated all data into similar spatial 

units that we defined by intersecting geologic units and census areas (Miles & Appleton 

2005). We labelled each unit as a "Bedrock Dissemination Area" (BDA) and assumed 

that each had relatively homogenous environmental and social conditions.  

 For BDAs with observed radon concentrations, the distribution of all 

measurements was summarized with a single value for the purposes of modelling. 

Because the distribution of our indoor radon dataset approximates log-normality the 

mean concentration would generally underestimate indoor radon vulnerability. Instead, 

we summarized the distribution in each BDA using the 95
th

 percentile.  
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 The Health Canada guidelines for radon exposure were used to classify the 95
th

 

percentile values (Health Canada 2009) as low, moderate, or high. Health Canada 

suggests that homes with concentrations < 200 Bq m
-3

 do not require remediation, that 

homes >= 200 Bq m
-3

 and < 600 Bq m
-3

 should be remediated within the next few years, 

and that homes >= 600 Bq m
-3

 should be remediated within the next year.  

 The last step was to associate each spatial unit of prediction with relevant 

predictor variables derived from overlapping geospatial datasets in order to create both a 

training dataset and a prediction dataset (Table 2.2). The assignment of predictor variable 

values to each BDA geometry was based on spatial location. 

2.3.4 Modelling and Predicting Indoor Radon Vulnerability Using Balanced 

Random Forest 

 To map radon vulnerability for the province we created a model using the 

statistical classifier random forests (Breiman 2001). The complexity of the radon data 

required a modelling technique that was able to describe multifaceted environmental 

phenomenon. Random forests were selected as they are a robust, non-parametric 

ensemble classifier with a high predictive ability that can accommodate mixed variable 

types, non-linear relationships, and high order interaction effects between predictor 

variables (Cutler et al. 2007; Prasad et al. 2006). Classification trees work by recursively 

partitioning a dataset into increasingly smaller subsets based on a value of a particular 

predictor variable (Breiman et al. 1984). Each binary split maximizes the homogeneity of 

the response variable within the resulting subsets, thereby maximizing the heterogeneity 

between subsets.  
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 The random forest algorithm works by combining hundreds to thousands of 

maximally grown classification trees, each of which is constructed from bootstrapped 

samples (Breiman 2001). Balanced random forests are a variant that improves the ability 

to classify a minority class in an imbalanced dataset (Chen et al. 2004). In a traditional 

random forest the bootstrapped sample taken from an imbalanced dataset will likely be 

comprised almost entirely of observations that belong to a majority class, resulting in the 

construction of classification trees which will be incapable of effectively predicting for 

the minority class (Chen et al. 2004). The balanced approach modifies the sampling 

method for the training data. The balanced random forest model will classify the minority 

class more effectively than the traditional random forest, though the overall accuracy will 

decrease (Chen et al. 2004). 

The predictive accuracy of a model can be obtained in a random forest using "out-

of-bag" (OOB) data. This refers to the observations that were not used to construct an 

individual classification tree (Breiman 2001). Unbiased estimates of the predictive 

accuracy can then be derived from the summation of the predicted classifications of OOB 

data over all trees in the forest. Specifically, for every tree, the OOB data are dropped 

down and their predicted classes are recorded. The final predictions of an observation 

class are made by selecting the class that was most probable when it was OOB. 

2.3.5 Evaluating Model Accuracy 

 The model was evaluated through hold-out validation (HOV) and metrics 

derived from OOB predictions, including class accuracy, precision, and kappa scores. 

HOV was computed by training the model on a stratified random sample consisting of 
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90% of the training data and testing on the remaining 10%. Results of the HOV may have 

high variance, as they are subset dependent, and therefore we used the average results 

from 100 runs. 

 Because our aim was to use the model for prediction, we also trained the model 

using the entire data set. When the complete data were used the model was validated 

using OOB comparison. Metrics derived from the OOB confusion matrix also have the 

advantage of giving accurate and unbiased estimate of the predictive ability of the model 

(Liaw & Wiener 2002).  

 The performances of each model were investigated though an evaluation of the 

accuracy and precision with which each individual class were predicted. Class accuracy 

describes classification accuracy associated with each individual class and indicates the 

proportion of the true population of a given class that will be correctly predicted for 

future instances. The class precision complements class accuracy by estimating the 

proportion of those observations predicted to be a given class that are correct.  

 The kappa statistic was used as a measure of overall performance of a model as 

it is a more robust evaluation of a models overall performance than the overall accuracy 

in an imbalanced dataset (Fatourechi et al. 2008). The kappa statistic quantifies the 

degree to which a models overall predictive accuracy (the rate at which it correctly 

classifies OOB data) are due to more than random chance alone (Cohen 1960). 
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2.3.6 Evaluating Predictors 

 The strongest predictor variables were selected based on the variable 

importance plots derived from the model, and partial dependence plots were created for 

the four strongest predictors. Variable importance plots reveal the relative importance of 

variables in the classification (Archer & Kimes 2008; Liaw & Wiener 2002). Partial 

dependence plots can then provide insight into the directionality of the effect for a given 

predictor (Berk 2008; Cutler et al. 2007). 

 Two measures of variable importance can be derived from a random forest 

algorithm: the mean decrease in the Gini Index (Gini Importance) and the mean decrease 

in predictive accuracy (Predictive Importance). Though each measure can be unreliable in 

models that use mixed variable types with different scales of measurement, we chose to 

use the Predictive Importance because it is less biased than the Gini Importance (Strobl et 

al. 2007). 

 The Predictive Importance of a variable reflects the average decrease in OOB 

estimates of predictive accuracy when the values of a given variable are randomly 

permuted (Archer & Kimes 2008). The variables causing the greatest decrease are 

considered the most important. If the decrease in predictive accuracy is zero for a 

variable, we can infer that it contributes no explanatory power to the model.  

 Partial dependence plots are a visual representation of the directionality of a 

relationship between a single class probability and a response variable while holding the 

values of the remaining predictor variables constant (Cutler et al. 2007; De’ath 2007; 
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Berk 2008). The units of the vertical axis are the difference between the logarithm of the 

class probability and the logarithm of the average class probability. Probabilities are 

derived from the predicted number of observations belonging to a class when the 

predictor variable is fixed on a single value, divided by the total number of observations 

(Berk 2008). The units of the horizontal axis are the units of the predictor. The resulting 

plot can be interpreted as the change in class probability in relation to the range of 

possible values for the predictor. 

2.4 Results 

2.4.1 Indoor Radon Vulnerability Database 

 The Indoor Radon Vulnerability database created in data pre-processing 

consisted of 36,061 total BDAs, 1054 of which were assigned an indoor radon 

vulnerability classification based on the 95
th

 percentile. The 1054 BDAs containing radon 

concentrations made up the entirety of the training dataset, where each BDA was 

associated with 12 predictor variables and 3 dependent variables. The dataset for 

prediction consisted of the remaining BDAs with the same 12 predictor variables and no 

values for the dependent variables. Approximately 23% of BDAs within the province had 

a value for at least one predictor variable that was not present in the training data, thereby 

excluding them from the prediction dataset. A total of 26,719 out of the 34,972 BDAs 

without a response variable made up the prediction dataset.  

The class distribution of indoor radon vulnerability in the training data was highly 

imbalanced (Figure 2.2). Low vulnerabilities made up 75.5% of the sampled BDAs. This 

is consistent with the fact that radon concentrations are log-normally distributed and, 
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therefore, most areas are characterized by low concentrations, even within areas more 

prone to high concentrations. 

2.4.2 Evaluating Model Performance 

 The models accuracy and precision varied between low, moderate, and high 

vulnerability classes based on both OOB and HOV estimates of error (Table 2.3). 

According to OOB estimates the model predicted low vulnerabilities 75% accurately, 

moderate vulnerabilities 44% accurately and high vulnerabilities 54% accurately. 

Precision estimates according to OOB were 92%, 29%, and 30% for low, moderate, and 

high vulnerabilities, respectively. A kappa score of 0.34 indicates that the model 

performed 34% better than a random classifier. The HOV estimates corroborated the 

OOB estimates within a few percentage points for all measures with the exception of the 

accuracy with which it predicted high vulnerabilities. The HOV estimated the class 

accuracy of high vulnerabilities to be 48% compared with the OOB estimation of 54%. 

Overall, 32% of BDAs were misclassified, the majority of which were the result of 

overestimation (Table 2.4). Of the 32% of misclassified BDAs, 76% could be attributed 

to overestimations of risk. 

2.4.3 Evaluating Predictors 

The four most important predictors in decreasing order were: (1) average winter 

temperature; (2) dominant soil parent material; (3) average winter precipitation; and (4) 

distance to nearest major river (Figure 2.3).  
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In general, BDAs with colder winter temperatures were more susceptible to moderate or 

high vulnerability classifications than areas with warmer winter temperatures (Figures 

2.4a, b and c). The odds of a low vulnerability increased rapidly for BDAs with average 

winter temperatures above -2°C (Figure 2.4a). Similar observations were made by Kropat 

et al. (2014) where warmer ambient temperatures were associated with lower indoor 

radon concentrations in Switzerland (Kropat et al. 2014).  

Increased rainfall was not clearly associated with radon vulnerability for any of the 

classes (Figure 2.4d, e and f). The odds of the highest vulnerability classification were 

generally lower with increasing precipitation (Figure 2.4f).  

Closer proximity to major rivers was associated with increased odds of a high radon 

vulnerability, and decreased odds of low and moderate vulnerability (Figure 2.4g, h and 

i). There was a steep rise in the odds of a low vulnerability with increasing distance from 

0 m to roughly 13,000 m (Figure 2.4g). At distances up to 6500 m the odds of a high 

vulnerability were increased (Figure 2.4i). For distances greater than 6500 m but less than 

13,000 m there was greatest odds of moderate classification (Figure 2.4h). For distances 

greater than 13,000 there was no change in the partial dependence of any radon 

vulnerability class. Finally, the partial dependence of radon vulnerability on dominant 

soil parent material showed that fluvioglacial and colluvial material were associated with 

the highest probability of moderate and high vulnerability classification and a decreased 

probability of a low classification (Figure 2.5).  
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2.4.4 Mapping and Assessing Regional and Local Radon Vulnerability 

 The radon vulnerability map showed that the interior region of the province had 

a greater prevalence of moderate and high radon vulnerability than the west coast, which 

was comprised mostly of low vulnerabilities (Figure 2.6). The specific regions identified 

to be at most risk were primarily in the south-east portion of the province and include the 

Central Kootenay, and Kootenay Boundary census divisions (Table 2.5). Regions least at 

risk were those on the west coast, including the Greater Vancouver area (Table 2.5). The 

population centres identified to be most vulnerable were generally within the Central 

Kootenay and Kootenay boundary census divisions and included Grand Forks, Salmo, 

Rossland, and Castlegar (Table 2.6). The population centres that are both high risk and 

under-sampled included Lillooet, Mackenzie, Sicamous, and Tumbler Ridge (Table 2.7). 

2.5 Discussion 

 Interpretation of the final predictive map should take into account that both 

moderate and high indoor radon vulnerabilities represent areas where the 95
th

 percentile 

radon concentration is estimated to be greater than the threshold set by Health Canada for 

delineating long term risk because the vulnerability classes are based on the 200 and 600 

Bq m
-3

 guidelines. There is always the potential for high individual radon concentrations 

within areas deemed to have a low vulnerability. Despite the fragmented appearance of 

the map as a result of 23% of the province being excluded from prediction, there are 

predictions for 99% of BDAs within population centre boundaries. 
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 The choice of the 95
th

 percentile radon concentration to classify indoor radon 

vulnerability resulted from testing multiple models, comparing their performance, and 

selecting the model that performed most adequately based on class accuracy, class 

precision and a kappa score. We tested and compared models that used classifications 

based on the 50
th

, 75
th

 and 95
th

 percentile concentrations. Fundamental to the evaluation 

was the notion that the importance of accurate classification was not equal between the 

classes in the context of cancer prevention. Each class represented an increasing 

vulnerability to high indoor radon concentrations, and therefore potentially an increasing 

vulnerability to higher radon induced lung cancer rates. As a result, accurately classifying 

high indoor radon vulnerability carried more weight than accurately classifying moderate 

indoor radon vulnerability. Similarly, accurately classifying moderate vulnerability was 

more important than accurately classifying low vulnerability. The 95
th

 percentile model 

was found to have the best high vulnerability class predictions, as measured by the class 

accuracy and precision, as well as the highest kappa score.  

 The relatively low precision with which the model predicts moderate and high 

vulnerabilities resulted in a predictive map that overestimates their overall prevalence 

(Table 2.4). However, given that one of the aims of the study was to reduce radon 

induced lung cancer through identification of radon prone regions, overestimations of 

radon vulnerability were considered preferable to underestimations.  

 The main strength of the final model is that it depicts areas of lower and higher 

radon risk with accuracy. If we consider the results with no distinction between the 

moderate and high categories, the accuracy of areas delineated as lower radon risk (low) 
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or higher radon risk (moderate or high) would be 75% and 81%, respectively. The 

precision with which the amalgamated class is predicted is also considerably improved at 

51%. As such, we have confidence that radon in those low BDA is likely to be low.  

 Increased probabilities of high vulnerabilities (moderate and high) were 

generally associated with colder winters, drier winters, close proximity to major river 

systems, and fluvioglacial and colluvial soil parent materials. Increased probabilities of 

high vulnerabilities associated with colder winters is consistent with the assumption that 

elevated concentrations are due to decreased ventilation and greater temperature 

difference between outdoor and indoor air (Nazaroff 1992; Al-Ahmady & Hintenlang 

1994; Wang & Ward 2002; Kropat et al. 2014). Low probabilities of high vulnerabilities 

associated with winter precipitation totals over 780 mm suggest that the “capping effect” 

(Mose et al. 1991; Schumann et al. 1988) is not a major contributor to elevated indoor 

radon concentration provincially. It could still be a significant contributor at regional or 

individual scales. Increasing soil moisture reduces the distance with which radon can be 

transported and can reduce the availability of radon in the subsurface to be advected into 

homes, which may be the cause of this provincial trend (Schumann et al. 1988; Nazaroff 

1992).  

 Increased probabilities of high radon vulnerabilities associated with closer 

distances to major river systems suggest that fluvial deposition of uranium enriched 

sediment could be contributing to elevated concentrations. The random forest algorithm 

does not allow us to specifically identify which river systems may be driving this trend, 

but we can infer that major river systems in the interior of the province are the most 
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plausible candidates given that coastal regions of the province are associated with greater 

prevalence of low radon vulnerabilities. Our data include measurements taken in close 

proximity to large river systems such as the Nechako, North Thompson and Kootenay. 

The parent material of a soil is only one of many factors influencing the characteristics 

that affect radon transport in the subsurface such as porosity, permeability, or drainage 

(Schaetzl & Anderson 2005; Nazaroff 1992). Fluvioglacial and colluvial soil parent 

materials encompass an extensive and varied range of different conditions (Schaetzl & 

Anderson 2005), making it difficult to infer any general characteristics that would 

enhance radon transport processes. Unfortunately, the relationships derived from partial 

dependence plots do not capture interaction effects and, as a result, are likely an 

oversimplification of the main factors. 

 Although partial dependence plots can help elucidate the directionality of 

relationships between predictor variables and response variables, they are also limited 

when the predictor variables are highly generalized. Many of the ancillary datasets used 

were highly generalized, resulting in large areas of land being characterized by a few 

general features. Soil and bedrock predictor variables were highly generalized due the 

fact they were derived from simplified soil landscape polygons and simplified bedrock 

geology polygons, respectively. Furthermore, random error will be present in each model 

due to the fact they were derived from the conflation of disparate data sources, digitized 

at different spatial resolutions, with different zonal systems. The results of the partial 

dependence plots are better conceptualized as a baseline for further and more in-depth 

investigation of the specific variables associated with higher radon vulnerabilities. 
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 The accuracy of the model would be improved if more detailed attribution were 

available for both soil and housing characteristics. The National Soil Landscapes data 

were simplified in data pre-processing by taking the dominant value for each variable for 

each soil landscape polygon. As a result, the soil conditions in each BDA were described 

by a set of highly generalized variables. Similarly, the housing characteristic data were 

not detailed enough to detect regional differences in housing construction that may 

increase or decrease radon concentrations (Appleton & Ball 2002). More detailed local 

housing information regarding characteristics of the home that may directly affect the 

influx of radon into the home such as the substructure type (basement, crawl-space, or 

slab on grade) are needed (Nazaroff & Nero 1984). Dominant age of home and 

proportion of homes in need of major repair did not capture these complexities.  

 The inclusion of a direct estimate for the quantity of parent material in the 

surficial material would likely improve the results. Though the British Columbia 

Drainage Geochemical Atlas is available and can provide an estimate of the uranium 

content of a drainage catchment (Lett et al. 2008), its measurements do not cover the 

north-eastern part of the province. Because the geochemical data do not cover the entirety 

of the province the dataset could not be included in the model. Though the model 

attempts to differentiate uranium content of surficial material by including bedrock type 

as a predictor variable, the simplified categories we used for rock types were likely too 

broad to capture meaningful differences in uranium content between them. Moreover, 

local variations in uranium content of overlying soil may be unrelated to the underlying 

bedrock based on the fact that majority of soils in the province are derived from materials 

that have been transported by either air, water or ice (Heung et al. 2014). Therefore the 
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uranium content of soils whose parent materials are characterized by transportation will 

be controlled by their original source material (Gundersen & Schumann 1996). 

 Many of these limitations could be addressed by reducing the size of the study 

area. Our model requires that each dataset cover the full spatial extent of the province 

with consistent attribution. If the study area was reduced, more datasets with detailed 

attribution would be available for use. For example, the detailed soil surveys are digitized 

at much finer spatial resolutions than the Soil Landscapes of Canada and, depending on 

the survey, the soil polygons can be linked to quantitative estimates of their respective 

soil textures and porosities, which are key predictors of indoor radon concentrations 

(Hauri et al. 2012). Data availability will vary from region to region, however, and 

different models with unique input predictors would need to be developed under such a 

scenario.  

 The final map provides a method for delineating areas more susceptible to high 

indoor radon concentrations, and this can be used to support further epidemiologic 

inquiry. The geographic delineation of ordinal categories of radon risk can be a means of 

estimating relative radon exposure levels in epidemiological research (Hystad et al. 

2014). Exposure estimates are made by grouping spatially referenced radon 

concentrations by administrative units that are large enough to provide seamless coverage 

of the study area (Hystad et al. 2014; Henderson et al. 2014). The size of the 

administrative units will hide the within-unit variation, increasing the uncertainty of 

results. By being able to estimate the expected relative exposure for unmeasured spatial 

units, this research can provide a means for using finer resolution spatial units to estimate 
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geographic differences in radon exposure. Further research is needed to specifically 

investigate the effect of our indoor radon vulnerability classes on lung cancer in BC.  

The results of this study can also be used to more efficiently allocate resources 

towards increasing radon awareness in the province. Currently, 58% of households in BC 

are unaware of the existence of radon (Statistics Canada 2012). Targeting resources for 

the purposes of increasing radon awareness and monitoring can be a more cost-effective 

means of reducing radon induced lung cancer (Appleton & Ball 2002). We have 

identified jurisdictions that could be prioritized for increasing radon awareness (Tables 

2.5 and 2.6). Furthermore, the populations that are largely untested but are predicted to be 

at risk (Table 2.7) should be targeted for sampling campaigns to gauge the validity of 

these predictions. 

2.6 Conclusions 

 We have presented a novel method for the creation of a predictive indoor radon 

vulnerability map. Increased probabilities of high radon vulnerabilities were generally 

found to be associated with colder winters, drier winters, close proximity to major river 

systems, and fluvioglacial and colluvial soil parent materials. The methods are broadly 

applicable to different regions throughout Canada and the world, and they provide a 

promising conceptual model for the creation of indoor radon vulnerability maps using 

existing geospatial data sources.  
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Table 2.1 - The geologic, pedologic, climate and housing predictor variables used to predict indoor radon vulnerability class 

Variable Rationale References Source 

Simplified 

Bedrock 

Lithology Class 

Bedrock geology can be major determinant in regional indoor radon vulnerability; can 

control quantity and spatial distribution of uranium; emanation of radon from bedrock can 

contribute to subsurface radon concentrations dependent upon overburden characteristics.  

(Malmqvist et al. 1989; Appleton 

& Miles 2010; Scheib et al. 2013) 
BC Digital Geology: Open 

File 2013-4 (Cui et al. 

2013) Geologic Fault 

Presence 

Geologic faults can potentially increase rate of radon transport towards the surface by 

providing pathways for upward movement of radon containing soil gas  

(Ioannides et al. 2003; Appleton 

2007; Ielsch et al. 2010) 

Dominant 

Soil Parent 

Material Mode of 

Deposition 

Soil characteristics that affect radon emanation and transport (grain size, porosity, 

permeability etc.) are partly controlled by the soils parent material; uranium content and 

distribution in soils that were deposited through transportation likely more related to soil 

parent material than underlying bedrock  

(Nazaroff 1992; Gundersen & 

Schumann 1996; Schaetzl & 

Anderson 2005; Arnold 2006) 

Soil Landscapes of Canada 

Version 2.2 (Agriculture 

and Agri-Food Canada 

2013) 

 

Dominant Soil 

Drainage Class 

The drainage class of a soil will affect radon emanation rates and transport processes by 

affecting the soil moisture. 

(Nazaroff 1992; Arnold 2006; 

Scheib et al. 2013; Shweikani et 

al. 1995) 

Dominant Soil 

Rooting Depth 

Class 

Rooting depth gives an approximation of the depth to bedrock, or impermeable layer; the 

rooting depth class will combine with other soil characteristics to affect soil moisture and 

the influence of bedrock geology on radon concentrations; depth to the bedrock can 

influence the proportion of indoor radon contributed from underlying bedrock. 

(Malmqvist et al. 1989; Nazaroff 

1992; Schaetzl & Anderson 2005; 

Arnold 2006; Shweikani et al. 

1995) 

Dominant Soil 

Coarse Fragment 

Content Class 

Coarse fragment content of a soil will affect its porosity, permeability and drainage 

characteristics and interact with other soil variables to affect radon emanation and 

transport processes.  

(Schaetzl & Anderson 2005; 

Nazaroff 1992; Arnold 2006) 

Dominant Soil 

Kind of Surface 

Material 

The dominant surface material, whether organic soil or rock for example, could affect radon 

emanation and transport properties. 
 

Average Winter 

Temperature 

Average winter temperature and average winter precipitation approximate the winter 

climate of a region and majority of radon concentration data were recorded in winter 

months; prevailing climate will affect radon emanation as well as its transport towards the 

subsurface; ambient temperatures can also serve as a proxy for average air exchange rates 

between outdoor air and a home as it will influence the “stack effect” in addition to 

ventilation characteristics of a home. 

(Nazaroff 1992; Washington & 

Rose 1990; Schumann et al. 

1988; Al-Ahmady & Hintenlang 

1994; Vasilyev & Zhukovsky 

2013; Kitto 2005; Garbesi et al. 

1993) 

Climate Western North 

America (Wang et al. 

2012) Average Winter 

Precipitation 

Distance to 

Nearest River 

Hydrological systems can influence amount and distribution of uranium in river deposits if 

downstream from Uranium rich geologic formations; BC contains known uranium deposits 

upstream from urban areas built on river deposits.  

(Cosma et al. 2013; Jones 1990) 
Freshwater Atlas of BC 

(GeoBC 2014) 

Dominant Age of 

Home 
Housing characteristics such as design, age type of construction material and ventilation 

will have an impact on an indoor radon concentration; Dominant age of home and 

proportion of major repairs needed, can serve as a coarse estimate of regional household 

characteristics. 

(Appleton 2007; Gunby et al. 

1993; Verger et al. 1994; Gerken 

et al. 2000; Hauri et al. 2012) 

NHS of Canada 2011/ 

CDBDCF and GAF 

2011(Statistics Canada 

2013; Lesack 2012) 

Proportion of 

Homes in Need of 

Major Repairs 

BC = British Columbia, NHS= National Household Survey, CDBDCF = Combined Dissemination Block Digital Cartographic File, GAF = Geographic Attribute File. 
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Table 2.2 - Summary of pre-processing and conflation details required for each predictor variable selected. 

Data Source Description Pre-processing details Conflation details 
Predictor 

Variable 

BC Digital 

Geology: Open 

File 2013-4 

Bedrock Geology 

polygons 

Bedrock geology collapsed from 187 rock types into 12 

broad lithological categories. 
N/A 

Simplified 

Bedrock 

Lithology Class 

BC Digital 

Geology: Open 

File 2013-4 

Geologic fault 

polylines 
N/A 

Presence/absence of overlapping fault line assigned to 

each BDA. 

Geologic Fault 

Presence 

Soil Landscapes 

of Canada 

Version 2.2 

Soil Landscapes of 

Canada for BC as 

polygons 

Each landscape polygon defined by several 

“components” and therefore contained multiple values 

for each variable. Each variable were simplified in order 

to derive one value for each polygon that represented the 

dominant value for that variable. Dominance was defined 

through the summation of a values percent area across all 

components. 

SLC polygons were first intersected by BDA 

polygons and total area for each resulting fragment 

calculated. Each BDA assigned the value for each 

SLC variable based on which value took up the 

largest area within that BDA. 

Soil Parent 

Material Mode 

of Deposition 

Soil Drainage 

Class 

Soil Rooting 

Depth Class 

Soil Coarse 

Fragment 

Content Class 

Soil Kind of 

Surface Material 

Climate 

Western North 

America 

Climate normal 

temperature and 

precipitation point 

data; 1 km resolution 

N/A 

Mean winter temperature and mean total winter 

precipitation was assigned to each BDA based on the 

average of all temperature points falling within 4km 

of a BDA. 4km selected as it was the distance at 

which 99% of BDA’s would have at least one 

associated temperature and precipitation value. 

Average Winter 

Temperature 

N/A 
Average Winter 

Precipitation 

Freshwater 

Atlas of BC 

Stream Network 

polylines 
River polygons whose geometry intersected stream 

network polylines with a Strahler order of 7 or greater 

were selected as major river systems in BC. 

Euclidean distance calculation from the geometry of 

the nearest major river system used to calculate 

distance. 

Distance to 

Nearest River 
River polygons 

NHS of Canada 

2011/ CDBDCF 

and GAF 2011 

Household 

Characteristic data at 

Census 

Dissemination Area 

Data not available for 5.4% of Dissemination Areas. 

Variable values estimated by multiply census dwelling 

counts by provincial average for available Dissemination 

areas. 

N/A 

Dominant Age 

of Home 

Dwelling counts at 

Census 

Dissemination Area 

Proportion of 

Homes in Need 

of Major Repairs 

BC= British Columbia, SLC= Soil Landscapes of Canada, BDA = Bedrock Dissemination Area, NHS= National Household Survey, CDBDCF = Combined Dissemination Block 

Digital Cartographic File, GAF = Geographic Attribute File. 
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Table 2.3 - Out-of-bag (OOB) estimates of classifier performance compared to hold-out 

validation (HOV). 

 Metric OOB HOV 

 Kappa Score 0.34 0.32 

Class 

Accuracy 

Low  0.75 0.74 

Moderate  0.44 0.44 

High  0.54 0.48 

Average  0.58 0.55 

Class 

Precision 

Low 0.92 0.92 

Moderate 0.29 0.28 

High 0.30 0.26 

Average 0.50 0.49 
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Table 2.4  - Confusion matrix for the balanced random forest model based on out-of-bag 

predictions. 

  Predicted Class  

  Low Moderate High Class Accuracy 

Actual 

Class 

Low 594 160 42 0.75 

Moderate 44 79 57 0.44 

High 5 31 42 0.54 

 Precision 0.92 0.29 0.30 Overall Accuracy = 

0.68 
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Table 2.5 -Regional indoor radon vulnerability by Census Division.  

Census Division % Low % Moderate  % High % Moderate or High 

Central Kootenay 9 62 29 91 

Kootenay Boundary 10 82 8 90 

Columbia-Shuswap 31 68 1 69 

Fraser-Fort George 33 57 10 67 

North Okanagan 35 63 2 65 

East Kootenay 37 56 7 63 

Okanagan-Similkameen 46 49 5 54 

Squamish-Lillooet 51 44 5 49 

Central Okanagan 52 43 5 48 

Thompson-Nicola 55 39 6 45 

Peace River 66 33 1 34 

Kitimat-Stikine 68 29 3 32 

Stikine 69 29 2 31 

Cariboo 70 24 6 30 

Bulkley-Nechako 73 24 3 27 

Fraser Valley 88 11 1 12 

Northern Rockies 91 3 6 9 

Central Coast 94 4 2 6 

Sunshine Coast 99 1 0 1 

Mount Waddington 99 1 0 1 

Cowichan Valley 99 0 1 1 

Strathcona 99 1 0 1 

Skeena-Queen Charlotte 99 1 0 1 

Capital 100 0 0 0 

Greater Vancouver 100 0 0 0 

Alberni-Clayoquot 100 0 0 0 

Comox Valley 100 0 0 0 

Nanaimo 100 0 0 0 

Powell River 100 0 0 0 
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Table 2.6 - Local indoor radon vulnerability. The 30 most vulnerable population centres by 

proportion of Bedrock Dissemination Areas classified as moderate or high. 

Population Centre % Low % Moderate % High % Moderate or High 

Grand Forks 0 50 50 100 

Salmo 0 50 50 100 

Rossland 0 83 17 100 

Mackenzie 0 89 11 100 

Lillooet 0 92 8 100 

Fruitvale 0 93 7 100 

Sicamous 0 100 0 100 

Tumbler Ridge 0 100 0 100 

Revelstoke 4 96 0 96 

Castlegar 5 30 65 95 

Golden 12 88 0 88 

Sparwood 17 66 17 83 

Nakusp 20 60 20 80 

Ashcroft 20 80 0 80 

Nelson 35 52 13 65 

Prince George 37 42 21 63 

Vernon 43 54 3 57 

Duck Lake 43 50 7 57 

Trail 44 39 17 56 

Summerland 46 54 0 54 

Kimberley 50 50 0 50 

Oliver 52 18 30 48 

Enderby 56 44 0 44 

Creston 60 40 0 40 

Cache Creek 62 38 0 38 

Elkford 62 25 13 38 

Penticton 63 35 2 37 

Osoyoos 67 0 33 33 

Atlin 67 33 0 33 

Chase 67 33 0 33 

 



 

 

44 

Table 2.7 - Population centres predicted to be high risk and are in need of further sampling 

Population Centre % BDA’s Sampled % Moderate or High 

Lillooet 0 100 

Mackenzie 0 100 

Sicamous 0 100 

Tumbler Ridge 0 100 

Sparwood 0 83 

Cache Creek 0 38 

Revelstoke 4 96 

Summerland 4 54 

Oliver 4 48 

Rossland 6 100 

Enderby 6 44 

Osoyoos 6 33 

Chase 9 33 

Princeton 11 25 

Elkford 12 38 

Fruitvale 13 100 

Duck Lake 14 57 

Fernie 17 25 

Ashcroft 20 80 

Penticton 23 37 

Salmo 25 100 

Golden 25 88 

Cowichan Bay 25 25 

Creston 27 40 

Grand Forks 30 100 

Kelowna 31 33 

Vernon 38 57 

Nakusp 40 80 
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Figure 2.1 - Study area, British Columbia, Canada. The spatial distribution of all 4352 

successfully geocoded indoor radon concentration measurements is also shown. 
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Figure 2.2 - The resulting indoor radon vulnerability class distribution by 95
th

 percentile 

radon concentration of each spatial unit.  
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Figure 2.3 - Variable importance plots. Variable importance is measured by the mean 

decrease in predictive accuracy. 
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Figure 2.4 - Partial dependence plots: important numeric predictors. Partial dependence 

plots for average winter temperature (a–c), average total winter precipitation (d–f ), and 

distance to nearest major river (g–i). The plotted functions are interpreted as the increasing 

or decreasing probability of a classification for the values of the variable of interest, holding 

all other variables constant. For example, in (a), the probability of a low vulnerability rating 

is constant and low for average winter temperature values from approximately −18 °C to 

approximately −2 °C, at which point the probability of a low vulnerability rating starts to 

increase rapidly. This plot therefore indicates that for a theoretical BDA defined by the 

average value for all other predictor variables, the probability that it is a low vulnerability 

rating is lower if it had a colder average winter temperature and higher for average winter 

temperatures greater than −2 °C. 
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Figure 2.5 - Partial dependence plots: soil parent material. The plotted functions are 

interpreted as the increasing or decreasing probability of a certain classification for the 

values of the variable of interest, holding all other variables constant. For example, given a 

theoretical BDA that is defined by the average value of all predictor variables with the 

exception of dominant soil parent material, the probability that it has a low indoor radon 

vulnerability is lowest if its dominant soil parent material is fluvioglacial or colluvial, and 

the probability of a low vulnerability is highest if its dominant soil parent material is 

morainal or alluvial. 



 

 

50 

 

Figure 2.6 - Indoor radon vulnerability map. Indoor radon vulnerability map derived from 

predictions made using a balanced random forest algorithm. Only 1% of Bedrock 

Dissemination Areas within population centres could not be predicted for. 
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3.0 DIFFERENT RADON THRESHOLDS AND THEIR 

ASSOCIATIONS WITH GEOGRAPHIC RISK 

CHARACTERIZATION AND LUNG CANCER MORTALITY 

TRENDS IN BRITISH COLUMBIA, CANADA 

3.1 Abstract 

There is no safe concentration of radon gas, but guideline values provide 

threshold concentrations that are often used to delineate geographic areas at higher risk. 

These values vary between different regions, countries, and organizations, which can lead 

to differential classification of risk. For example the World Health Organization suggests 

a value of 100 Bq/m
3
 while Health Canada recommends 200 Bq/m

3
. Our objective was to 

examine how different thresholds were associated with geographic risk and lung cancer 

mortality trends in British Columbia, Canada. Eight threshold values between 50 and 600 

Bq/m
3
 were identified, and classes of regional radon vulnerability were defined based on 

whether the observed 95
th

 percentile radon concentration was above or below each value. 

A balanced random forest algorithm was used to model vulnerability, and the results were 

mapped. We compared high vulnerability areas, their estimated populations, and 

differences in lung cancer mortality trends stratified by sex and smoking prevalence. 

Classification accuracy improved as the threshold concentrations decreased and the 

spatial area classified as high vulnerability increased. The majority of the population 

lived within areas of lower vulnerability regardless of the threshold value. Thresholds as 

low as 50 Bq m
-3 

were associated with higher lung cancer mortality, even in areas with 

relatively low smoking prevalence. Lung cancer mortality trends were increasing through 
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time for women, while decreasing for men. Radon contributes to lung cancer in British 

Columbia. The majority of the population is exposed to concentrations below the 

Canadian radon guideline, and the authors suggest a reference level as low as 50 Bq m
-3

 

is justified for the province. 

3.2 Introduction 

Radon is a colourless, odourless, radioactive noble gas produced by the 

breakdown of naturally occurring uranium within the surface of the Earth. Radon is 

estimated to be a factor in over 3,000 lung cancer deaths in Canada per year (Chen et al. 

2012). Radon atoms can be transported from their source and into homes where 

concentrations can accumulate. Though there is no radon concentration at which there is 

no risk of developing lung cancer, the probability of developing lung cancer increases 

with exposures to higher concentrations (Darby et al. 2005). Individuals who smoke are 

at an even greater risk due to the synergistic effects of radon and cigarette smoke 

(Saccomanno et al. 1988).  

In light of the public health threat posed by residential radon, varying 

concentration thresholds have been set by different regions, countries, and organizations 

throughout the world. Here we define a threshold value as the concentration above which 

remedial action to reduce radon is recommended. These thresholds do not imply a level 

of safety, but rather a concentration below which the risk of developing radon-induced 

lung cancer is considered acceptably small. Threshold values are chosen to maximize the 

overall reduction in lung cancer mortality while considering what is practical to achieve 

in a majority of homes in a given jurisdiction (Chen et al. 2012). Though the World 
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Health Organization (WHO) recommends a concentration threshold of 100 Bq m
-3

, other 

established thresholds are typically higher. For example, the USA uses a threshold of 148 

Bq m
-3

, Canada uses a threshold of 200 Bq m
-3

, and the European Union uses thresholds 

ranging between 200 and 400 Bq m
-3 

(World Health Organization 2007; Synnott 2005).  

Radon concentration thresholds are used to inform policy and to enable risk 

communication. For example, radon risk maps identify areas prone to high radon 

concentrations. Such maps allow for geographic targeting of radon awareness, testing, 

and remediation campaigns, and they can also encourage new policies (World Health 

Organization 2009). The radon risk map of Ireland divided the country into grid squares 

and mapped the proportion of homes whose indoor concentration exceeded the national 

threshold of 200 Bq m
-3

 (Long & Fenton 2011). Those grid squares where >10% of 

homes were estimated to exceed the national threshold were designated as high radon 

areas (HRAs). After completion of the map, an updated building code required that all 

new buildings be fitted with a standby radon sump that could be installed at a later date. 

Buildings within the HRAs were required to install a radon barrier in addition to the 

standby sump (Long & Fenton 2011). The choice of threshold concentration for use in 

such mapping is generally based on the recommended threshold used in the geographic 

jurisdiction for which the map is being prepared. However, the choice of threshold will 

affect the size of the spatial area classified as high risk and any resulting policy, and it 

may affect the accuracy of the classification. If the concentration threshold in Ireland was 

higher or lower than 200 Bq m
-3

 it would have changed the designation of HRAs and the 

requirement of additional radon protection measures in new buildings.  
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Ultimately, the objective of any radon risk map is to effectively delineate areas at 

risk of high indoor radon concentrations and, therefore, greater rates of radon-induced 

lung cancer. Temporal trends in the annual crude ratio of lung cancer mortality can be 

used as an exploratory tool for investigating spatial differences in radon distribution 

(Henderson et al. 2014). As such, we expect that an effective radon risk map would show 

distinct differences in lung cancer mortality trends between regions defined as higher and 

lower risk. However, the delineation of higher and lower risk areas depends on the 

chosen concentration threshold.  

Our objective is to explore how different radon concentration thresholds are 

associated with the accuracy of risk classification, geographic areas classified as higher 

or lower risk, populations classified as higher or lower risk, and observed temporal trends 

in lung cancer mortality. Understanding these relationships has important implications for 

informing policy on appropriate concentration thresholds. Following Branion-Calles et al. 

(2015) we map the radon vulnerability of geologic units using eight thresholds ranging 

from 50 to 600 Bq m
-3

. Radon vulnerability refers to the potential for a geographic area to 

exceed a specified concentration threshold. Maps of indoor radon vulnerability are then 

used to explore the association between radon concentration thresholds and lung cancer 

mortality trends stratified by sex and smoking prevalence. 

3.3 Study Area 

The study area was the province of British Columbia (BC), on the west coast of 

Canada. Many parts of BC are prone to high radon concentrations, including both small 

and large communities, primarily within the interior and northern regions (Branion-Calles 
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et al. 2015; Henderson et al. 2014; Henderson et al. 2012). In the 2011 census BC had a 

population of approximately 4.4 million people, 3.79 million living in urban areas and 

609,000 living in rural areas. The majority of the population lives within a small area in 

the southwestern region (Figure 3.1).  

3.4 Data 

3.4.1 Bedrock Dissemination Areas 

The province was divided into 36,061 mapping units based on an intersection of 

census dissemination areas and simplified bedrock lithology. Each mapping unit was 

labelled as a “Bedrock Dissemination Area”  BDA) and was assumed to represent a 

homogenous spatial area with respect to the environmental and housing conditions that 

would affect potential susceptibility to high radon concentrations. In order to enable the 

classification of indoor radon risk each BDA were associated with variables derived from 

overlapping geospatial datasets including: indoor radon concentration data, geologic, soil, 

meteorological, hydrological and neighbourhood housing data.  

Indoor Radon Concentrations and Vulnerability Class 

Indoor radon concentration data are archived at the BC Center for Disease Control 

(BCCDC) and consist of five disparate surveys conducted between 1991 and 2014. 

Surveys were conducted by the BCCDC, the Northern Health Authority, the BC Lung 

Association, the Donna Schmidt Foundation and a private contractor. The BCCDC 

survey consisted of two surveys, the first of which was designed to oversample in areas 

with known high ambient radiation levels and the second oversampled in areas with 
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moderate ambient radiation levels. The remaining four surveys collected measurements 

through volunteers. Attributes common to each survey were a six digit postal code, date 

of test period and the observed radon concentration. Each indoor radon concentration 

observation was assigned a geographic coordinate based on its associated six digit postal 

code and date through geocoding. A total of 4352 indoor radon concentrations were 

successfully assigned a spatial location. 

Indoor radon concentration values were used to construct the response variable 

for the purposes of statistical classification. We used the same classification of indoor 

radon risk, termed indoor radon vulnerability, developed in previous work (Branion-

Calles et al. 2015). Multiple binary response variables were defined where each BDA 

with observed concentrations was assigned an indoor radon vulnerability classification 

based on the following thresholds: 50, 100, 150, 200, 300, 400, 500, and, 600 Bq m
-3

. 

These values were selected based on the premise that they cover the range of radon 

threshold concentrations used in countries throughout the world and represent multiple 

scenarios of provincial radon risk. Of the total 36,051 BDAs, there were 1,054 that 

contained at least one indoor radon measurement. These BDAs comprised the training 

dataset, leaving the remaining 34,972 BDAs to be classified using model results. A 

binary indicator of either high or low vulnerability was assigned to each BDA in the 

training dataset based on whether the observed 95
th

 percentile radon measurement was 

greater or less than each concentration threshold. This resulted in eight different class 

distributions for the training dataset (Figure 3.2).  

Independent Variables 
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The potentially predictive independent variables were selected based on their 

theoretical association with local radon concentrations, either individually or in 

combination. For example, soils that allow for a greater rate of radon transport towards 

the subsurface may increase the quantity of radon available to be transported into homes 

(Arnold 2006; Nazaroff 1992; Shweikani et al. 1995). Similarly, colder ambient 

temperatures may increase the difference between indoor air and outdoor air and 

therefore increase the rate at which soil gas is drawn indoors (Al-Ahmady & Hintenlang 

1994). The transport of radon into homes can be further affected by specific housing 

characteristics, such as cracks in the foundation and the ventilation rate (Appleton 2007). 

Although we did not have such data about the individual homes, we do have 

neighbourhood data on average home age and state of repair from the 2011 National 

Household Survey (Statistics Canada 2013). 

The specific independent variables we constructed for each BDA were: (1) 

simplified bedrock lithological class from the BC Digital Geology Open File (BCDGOF) 

(Cui et al. 2013); (2) geologic fault presence from the BCDGOF (Cui et al. 2013) ; (3) 

dominant soil parent material from the Soil Landscapes of Canada Version 2.2 (SLC) 

(Agriculture and Agri-Food Canada 2013); (4) dominant soil drainage class from the SLC 

(Agriculture and Agri-Food Canada 2013); (5) dominant rooting depth class from the 

SLC (Agriculture and Agri-Food Canada 2013); (6) dominant soil coarse fragment 

content from the SLC (Agriculture and Agri-Food Canada 2013); (7) dominant kind of 

surface material from the SLC (Agriculture and Agri-Food Canada 2013); (8) average 

winter temperature (climate normals) from the Climate Western North America database 

(CWNA)(Wang et al. 2012); (9) average winter precipitation (climate normals) from the 
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CWNA(Wang et al. 2012); (10) distance to nearest major river from the Freshwater Atlas 

of BC (GeoBC 2014); (11) dominant age of home from the 2011 National Household 

Survey of Canada (NHSC) (Statistics Canada 2013); (12) proportion of homes in need of 

major repairs from the 2011 NHSC (Statistics Canada 2013); and (13) distance to nearest 

uranium mineralization. The last variable was not included our previous work (Branion-

Calles et al. 2015), but homes built on materials with high uranium content may be more 

prone to higher radon concentrations (Appleton 2007). Distance to nearest uranium 

mineralization was obtained by calculating the Euclidean distance from spatially 

referenced locations of known mineral occurrences with a significant quantity of 

uranium. Mineral occurrence data in British Columbia are available from the British 

Columbia Ministry of Energy and Mines (BC Ministry of Energy and Mines 2015). Each 

mineral occurrence in the database had a spatial location as well as a description of the 

present elements or substances that had economic potential. Detailed rationale and 

methods for the other 12 variables is given elsewhere (Branion-Calles et al. 2015). 

Population Estimates 

Estimates of the resident population for each BDA were made using data from the 

Dissemination Area (DA) level of the 2011 national census. Theses spatial areas 

generally include between 400-700 persons. Because BDAs represent the intersections 

between DAs and the bedrock geography, BDAs are smaller than their parent DAs. The 

population of a BDA was therefore estimated based on the proportion of its total area 

relative to the area of its parent DA. For example, if a 2 km
2
 DA had 500 residents and it 

was split into two 1 km
2
 BDAs, each would be assigned an estimated population of 250. 
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3.4.2 Mortality Records 

Mortality records provided by the provincial Vital Statistics agency are archived 

at the BCCDC. These data include information about age, sex, underlying cause of death, 

and postal code of residence for each decedent. The underlying cause of death is coded 

according to the International Classification of Diseases 10
th

 Revisions (ICD-10). We 

extracted deaths due to all natural causes (excluding ICD-10 codes starting with T 

through Y) and lung cancer (ICD-10 code C34) for adults aged 20 and over from 1998 

through 2012. Each death was anonymously mapped by geocoding its residential 6-digit 

postal code.  

3.4.3 Smoking Prevalence 

There are 89 local health areas (LHAs) in BC, and these are the smallest spatial 

area at which health services are administered. Data on smoking prevalence were 

available at the LHA level from the BC Ministry of Health, which contracted Statistics 

Canada to oversample in BC during the 2008-2009 Canadian Community Health Survey 

(Statistics Canada 2009; Statistics Canada 2011a). Data from some of the smaller LHAs 

were combined to ensure statistical validity, resulting in 83 rather than 89 estimates. Each 

LHA was assigned a binary classification of higher or lower smoking based on whether 

its smoking prevalence was above or below the median of all 83 estimates.  

3.5 Methods 

3.5.1 Indoor Radon Vulnerability Modelling and Mapping 

Following the methods outlined in Branion-Calles et al (2015) we used a balanced 
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random forest algorithm to classify radon vulnerability based on whether model estimates 

were above or below the eight threshold values (50, 100, 150, 200, 300, 400, 500, and 

600 Bq m
-3

). Indoor radon concentrations result from a complex combination of 

environmental and housing characteristics and therefore necessitate a modelling 

technique that can capture this complexity (Nazaroff 1992). Random forests are used to 

model complex environmental processes because they are a non-parametric ensemble 

classifier with a high predictive ability and the flexibility to accommodate mixed variable 

types, non-linear relationships, and high order interaction effects (Cutler et al. 2007; 

Prasad et al. 2006). The random forest algorithm works by combining the results of a user 

specified amount of maximally grown classification trees. Each classification tree is 

created by randomly selecting a bootstrapped sample of the training data and continually 

splitting the sample into two subsets based on the value of an independent variable, until 

all subsets can no longer be split. For each split the algorithm first selects a random 

subset of all available independent variables and, second, searches all possible binary 

splits based on the whole range of values within the selected subset of independent 

variables. The split that is chosen maximizes the class homogeneity within each resulting 

subset. When results are aggregated over all trees, the variability between trees in the 

forest reduces over-fitting and susceptibility to outliers in the model (Cutler et al. 2007; 

Prasad et al. 2006). The balanced approach modifies the random forest algorithm by 

ensuring that there is equal representation in each bootstrapped sample from which each 

tree is grown in order to more effectively classify the minority class in an imbalanced 

dataset (Chen et al. 2004). 
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Estimates of predictive accuracy can be made without an independent validation 

dataset by using “out-of-bag”  OOB) data. This refers to the observations that were left 

out of any given bootstrapped sample (Breiman 2001). In order to obtain an unbiased 

estimate of predictive performance, the OOB observations for each classification tree are 

dropped down and assigned a predicted classification. The final prediction for each 

observation is given based on its majority classification over all trees for which it was 

OOB. For all observations the OOB prediction can be compared with its observed class 

to derive an unbiased estimate for the predictive performance of the model through an 

assessment of the so-called confusion matrix.  

Class accuracy, class precision, and a kappa statistic can be all be generated from 

the OOB confusion matrix to evaluate model performance. Class accuracy refers to the 

proportion of a given observed class that was correctly classified. Class precision refers 

to the proportion of the given predicted class that were correctly classified. A kappa 

statistic quantifies the improvement of the classifier compared with a random classifier, 

which can be a robust measure to evaluate overall classifier performance for imbalanced 

datasets (Fatourechi et al. 2008). 

An individual balanced random forests model was trained on the subset of 1054 

BDAs that had observed vulnerability classes based on the eight selected radon 

thresholds (Breiman 2001; Chen et al. 2004). To ensure stable results each model 

combined twenty balanced random forest algorithm runs consisting of 10,000 individual 

classification trees. The model performance was compared by evaluating class accuracy, 

class precision, and kappa scores. A vulnerability classification was assigned to the 
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unmeasured BDAs from each model, resulting in eight different maps. Approximately 

23% of BDAs in the province had independent variable values not contained within the 

training dataset, which made them ineligible for prediction. For each map the regional 

differences in vulnerability were assessed by comparing (1) the geographic areas 

classified as high and (2) the number of people living within those areas, where regions 

were defined by census division boundaries (Statistics Canada 2011b). 

3.5.2 Comparing Lung Cancer Mortality Trends 

The effects of radon thresholds on lung cancer mortality trends was assessed by 

comparing the annual ratio of lung cancer mortality to all natural mortality in high and 

low vulnerability regions. Each death was spatially assigned to a radon vulnerability class 

for each of the eight predictive maps. Additionally, each death was assigned to higher or 

lower smoking prevalence based on the LHA in which it occurred. By attributing each 

death with both radon and smoking classifications we were able to compare trends across 

high and low radon vulnerability conditioned on smoking prevalence. For each radon 

reference threshold, the annual sum of lung cancer deaths was divided by annual sum of 

all natural deaths in the high and low vulnerability areas. The values for 1998 through 

2013 were plotted, and a trend line was fitted using a LOESS smoother. The same was 

done to explore potential differences between males and females, as was previously 

observed in BC (Henderson et al. 2014).  
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3.6 Results 

3.6.1 Indoor Radon Vulnerability 

The difference in overall classification accuracy between models improved as the 

radon threshold decreased (Table 3.1). The Kappa score for each model improved with 

each reduction in concentration threshold. The greatest gains in performance as measured 

by Kappa were found in the reductions from 600 to 500 Bq m
-3

, 300 to 200 Bq m
-3

, and 

150 to 100 Bq m
-3

, with gains of 0.11, 0.08, and 0.11, respectively. Reductions from 500 

to 300 Bq m
-3

, 200 to 150 Bq m
-3

, and 100 to 50 Bq m
-3

 resulted in minimal improvement 

to the Kappa score.  

Models for lower radon thresholds were better able to accurately the predict the 

high vulnerability classification, which lead to the observed gains in the Kappa score. 

Estimates of the accuracy for high vulnerability classification increased from 0.69 to 

0.86. Class precision also increased with each successive reduction in radon threshold, 

from 0.22 to 0.84. Conversely, estimates for the accuracy of low vulnerability 

classification decreased from 0.83 to 0.77 and estimates of its class precision decreased 

from 0.97 to 0.8 (Table 3.1). The gains in class accuracy and class precision for the high 

vulnerability class with the use of a lower concentration threshold were much greater 

than the decreases in class accuracy and class precision in the low vulnerability class.  

The overall provincial prevalence of high vulnerability areas increased with lower 

concentration thresholds (Figure 3.3), but some regions were more affected than others. 

Census divisions in the central and northeast had the largest increases across decreasing 

radon thresholds, but the highly populated southern coastal areas were generally not 
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affected. The relative ranks of areas at risk were minimally affected by changes in 

concentration thresholds. For example, census divisions within the Kootenay economic 

region were at highest risk across all thresholds. The Northeast economic region was 

most affected, showing a rapid increase in high vulnerability with decreasing threshold 

values (Figure 3.4).  

The total number of residents living in high vulnerability areas increased as the 

concentration threshold decreased, but the rate of increase varied regionally. Census 

divisions within the Thompson Okanagan, Cariboo, and Kootenay economic regions 

consistently had higher numbers of residents living in high vulnerability areas compared 

with the rest of the province, regardless of the threshold. Although there were large 

increases in the geographic area classified as high vulnerability in the Northeast and 

Nechako economic regions, the number of people living in those areas remained low due 

to their sparse populations (Figure 3.4). 

3.6.2 Lung Cancer Mortality Trends 

The trends for the entire province showed that areas with high radon vulnerability 

consistently had higher proportions of lung cancer mortality across all radon thresholds. 

Further, there was little change in the distance between the high and low vulnerability 

lines with decreasing radon thresholds. When plots were stratified by higher and lower 

smoking prevalence there was no clear separation between the lung cancer trends in areas 

with higher smoking. However, in areas with lower smoking prevalence, the high radon 

vulnerability areas had consistently higher proportions of lung cancer mortality, though 

the separation between lines decreased as the radon threshold decreased. The trends in 
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lung cancer mortality for low radon vulnerability areas with lower smoking were flat and 

stable at ~7.5% for all thresholds while the trends in higher smoking areas were curved 

and increasing (Figure 3.5).  

When lung cancer mortality trends in high and low vulnerability areas were 

stratified by sex, high vulnerability areas were consistently associated with higher 

proportions of lung cancer mortality across radon thresholds for both males and females. 

For each threshold, the trend lines for males in both high and low vulnerability areas 

showed a slight decrease through time while they were increasing through time for 

females. The ratios for females in high vulnerability appeared unstable for thresholds 

greater than 300 Bq m
-3

 (Figure 3.6). 

3.7 Discussion 

Different regions, countries, and organizations recommend different radon 

concentration thresholds that essentially classify the associated risk of lung cancer as 

being acceptable or unacceptable. In reality, however, radon is a non-threshold 

carcinogen and any level of exposure carries some risk (Darby et al. 2005). Established 

guideline concentration values reflect a balance between the health evidence, what is 

practically achievable, and other political and public health priorities. To date there has 

been little systematic evaluation of how decisions about threshold values affect variables 

such as the accuracy with which risk can be classified, the extent of geographic areas 

classified as high risk, the size of the populations classified as high risk, and the observed 

relationships between risk areas and lung cancer mortality trends. Here we have 

addressed this gap by exploring the impacts of thresholds ranging from 50 – 600 Bq m
-3
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in one Canadian province with previously demonstrated spatial variability in radon risk 

(Branion-Calles et al. 2015; Henderson et al. 2014; Rauch & Henderson 2013). 

We found that the accuracy of risk classification was improved as the threshold 

decreased, likely due to increasing balance of the training data. Though the balanced 

random forest algorithm is more effective at classifying imbalanced datasets than an 

unmodified random forest, it is still designed to minimize the overall error. This appeared 

to be more effective when high and low vulnerability were delineated using a lower 

threshold, resulting in a more balanced dataset (Chen et al. 2004). Due to the potential for 

misclassification of individual BDAs, each threshold map should be interpreted at 

regional scale rather than at the individual mapping unit.  

Unsurprisingly, the geographic extent of areas classified as high risk became 

larger as the thresholds decreased. However, much of BC is sparsely populated, so it was 

more important to consider changes in the populations classified as high and lower 

vulnerability as the thresholds changed. in the number of people living in high 

vulnerability areas increased from approximately 326,000 to 824,800 when the threshold 

was reduced from the current guideline value of 200 Bq m
-3

 to to the minimum value of 

50 Bq m
-3

. Given that high vulnerability areas were associated with higher prevalence of 

lung cancer mortality, the increase in exposed population indicates that adoption of a 

higher threshold value has the potential to mask some risk. 

Regardless of threshold employed, the majority of the provincial population lived 

in areas classified as low vulnerability. At the current guideline value of 200 Bq m
-3

 only 

7% of BC residents were estimated to live in areas of high vulnerability. However, there 
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is direct evidence that indoor radon concentrations contribute to lung cancer mortality in 

the general population at concentrations less than the Health Canada guideline (Darby et 

al. 2005). A study in the UK estimated that approximately 96% of radon-related lung 

cancer deaths resulted from exposures to indoor concentrations less than 200 Bq m
-3

, due 

to the large number of people exposed to these lower risk concentrations (Gray et al. 

2009). Given that the majority of the BC population is exposed to concentrations lower 

than 200 Bq m
-3

 it is likely the majority radon-related lung cancer deaths result from 

exposures less than 200 Bq m
-3

.  

The crude lung cancer mortality ratio within areas classified as high vulnerability 

was higher than within areas classified as low vulnerability for every concentration 

threshold through time. Smoking rates are the primary predictor of population-level lung 

cancer risk, which results in geographic variations in lung cancer mortality trends being 

dominantly associated with geographic variations in smoking prevalence (Youlden et al. 

2008; Alberg & Nonemaker 2012; Jemal et al. 2010). In BC areas with higher smoking 

prevalence, we observed no differences in lung cancer mortality trends between high and 

low vulnerability areas. In areas with lower smoking prevalence, however, differences 

between radon vulnerability areas were clear across all threshold values. Radon and 

smoking have a synergistic relationship at the individual level (Saccomanno et al. 1988; 

Office of Radiation and Indoor Air 2003), but radon vulnerability appeared to have little 

effect on population mortality trends in high smoking areas. Furthermore, the difference 

in trends between males and females suggests that sex may have a modifying effect on 

lung cancer mortality ratios in the province (Henderson et al. 2014). The difference in 

trends between high and low vulnerability in areas with a lower smoking prevalence 
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suggests that the methods first developed in Branion-Calles et al (2015) were able to 

delineate areas of higher and lower radon risk.  

In areas with lower smoking prevalence areas classified as high vulnerability had 

a distinctly higher rates of lung cancer mortality than areas classified as low vulnerability, 

even when a threshold as low as 50 Bq m
-3

 was used. Given that overall rates of cigarette 

smoking are declining in BC (Health Canada 2013a), we hypothesize that the trends in 

areas with higher smoking will approach those in areas with lower smoking over time. 

However, the smoking prevalence data were only available at the LHA level and, as a 

result, we could not account for geographic variability in smoking within LHAs. Overall, 

the elevated trends in lung cancer mortality associated with the high vulnerability areas 

indicate that radon exposure is an important risk factor in BC.  

The Health Canada radon guideline is a threshold value that provides a frame of 

reference for making informed decisions about radon testing and remediation, but 

Canadian residential radon values are not regulated (Health Canada 2006; Health Canada 

2013b). In the absence of binding federal policy, provincial governments have the 

authority to independently enact radon protection legislation through changes to 

provincial building codes (Dunn & Cooper 2014). Although BC has adopted radon 

mitigation measures for newly constructed buildings in its provincial code, there is no 

legal requirement for new buildings to test below a specific concentration threshold 

(Dunn & Cooper 2014). Based on the results of our study and the principle that no radon 

concentration is safe, there is evidence to support the recommendation of a concentration 

threshold as low as 50 Bq m
-3

 for BC. Though further research is needed to quantify the 
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absolute number of lung cancer deaths related to indoor radon across the province, a 

lower threshold value may have the potential to reduce burden of disease attributable to 

radon, especially if it was legally enforced for new buildings. While such measures 

would not affect the existing building stock, they would be an important step towards 

protecting the BC population from radon exposure in future. 

3.8 Conclusions 

We examined how different radon concentration thresholds were associated with 

classification accuracy, estimated areas and populations at risk, and lung cancer mortality 

trends in BC. Lowering the threshold from its current guideline value of 200 Bq m
-3

 to 50 

Bq m
-3

 resulted in better classification accuracy, a 2.5-fold increase in the relatively small 

population at risk, and persistent separation in lung cancer mortality trends between areas 

of high and low vulnerability. We suggest that it would be appropriate for BC to consider 

mandating a 50 Bq m
-3 

threshold value to maximize the reduction of radon-related lung 

cancer in the province.  
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Table 3.1 - The classification metrics for each balanced random forest algorithm. Accuracy 

is defined as the proportion of an observed class that was correctly classified. Precision is 

defined as the proportion of a predicted class that was correctly classified. Kappa can be 

interpreted as the percent improvement in overall accuracy of a classifier compared with 

the expected overall accuracy of a random classifier. Values in bold indicate the highest 

value between threshold models.  

 

Threshold in 

Bq m
-3

 

Lower-

than-

threshold 

Accuracy 

Lower-

than-

threshold 

Precision 

Higher-

than-

threshold 

Accuracy 

Higher-

than-

threshold 

Precision 

Kappa 
Kappa 

Gain  

a) 600 0.81 0.97 0.69 0.22 0.25 0 

b) 500 0.83 0.96 0.72 0.32 0.36 0.11 

c) 400 0.83 0.96 0.74 0.37 0.39 0.03 

d) 300 0.8 0.94 0.73 0.42 0.41 0.02 

e) 200 0.8 0.91 0.76 0.55 0.49 0.08 

f) 150 0.77 0.88 0.76 0.6 0.5 0.01 

g) 100 0.79 0.86 0.83 0.75 0.61 0.11 

h) 50 0.77 0.8 0.86 0.84 0.63 0.02 
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Figure 3.1 - The study area of British Columbia, Canada. The spatial distribution of the 

provincial population by census division boundaries is shown. 
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Figure 3.2 - The class distribution of bedrock dissemination areas (BDAs) in the training 

dataset using each threshold value. 
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Figure 3.3 - Estimated vulnerability maps for each of the eight radon threshold. Red areas 

indicate high vulnerability, green areas indicate low vulnerability, and grey areas indicate 

regions without adequate data for modelling. 
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Figure 3.4 - Changes in regional vulnerability classification based on changes in threshold 

values plotted by the proportion of high BDAs by census division (b) and the estimated 

population living within high BDAs (c). The colours all correspond to the legend in (a). 

Census divisions are demarcated by grey lines in (a), and they aggregate up to the coloured 

economic regions (a). Trends in (b) and (c) were fitted using a locally-weighted LOESS 

smoother. 
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Figure 3.5 - The annual ratio of lung cancer mortality to all natural mortality (the crude 

lung cancer mortality ratio) within high and low vulnerability areas plotted from 1998-2013 

for each predictive map based on eight threshold values. The columns show the threshold 

values in Bq m
-3

, which were used to delineate low and high vulnerability. The rows show 

the total trends, and the trends when stratified by higher smoking LHAs and lower smoking 

LHAs. The lung cancer mortality trends were fitted with a locally-weighted LOESS 

smoother.  
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Figure 3.6 - The annual ratio of lung cancer mortality to all natural mortality (the crude 

lung cancer mortality ratio) within high and low vulnerability areas plotted from 1998-2013 

for each predictive map based on eight threshold values. The columns show the threshold 

values in Bq m
-3

, which were used to delineate low and high vulnerability. The rows show 

the trends stratified by sex. 
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4.0 CONCLUSIONS 

4.1 Discussion and Conclusions 

Indoor radon is recognized as an important environmental hazard and a major 

public health concern worldwide. It is second only to smoking in contributing to lung 

cancer incidence globally (World Health Organization 2009). In Canada, radon is 

estimated to be a factor in over 3,000 lung cancer deaths annually (Chen et al. 2012). 

British Columbia has many radon prone communities with both large and small 

populations (Henderson et al. 2012), and indoor radon is a major contributor to lung 

cancer mortality in the province (Henderson et al. 2014). Population level mitigation of 

the health effects of exposure to indoor radon require an understanding of its spatial 

distribution, that is, which regions are at highest risk for homes with higher concentration 

and subsequently greater rates of lung cancer incidence and mortality. Mapping the 

regional variations in susceptibility to high indoor radon concentration is a vital tool for 

population-level reduction of exposure to indoor radon, as it can help target radon 

reduction resources to areas in greatest need, and guide the formation of policies (Miles 

& Appleton 2005; Long & Fenton 2011). Where data are not uniformly distributed in a 

study area, spatially continuous maps of indoor radon risk are produced by either 

aggregating observed indoor radon concentrations by large spatial units (Dubois 2005; 

Chen 2009; Henderson et al. 2014) or by inferring indoor radon risk from maps produced 

using proxy data, such as geochemical, rock or soil permeability, or soil-gas radon 

concentration data (Chen 2009; Appleton & Ball 2002; Ielsch et al. 2010; Kemski et al. 

2008). Using a few large spatial units to describe radon risk in a jurisdiction can hide the 
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true variability in indoor radon concentrations and oversimplify the resulting maps, while 

maps of radon risk based on proxy data can be inconsistent with observed indoor radon 

data (Rauch & Henderson 2013). 

The development of our predictive indoor radon mapping method was based on 

the need to be able to produce accurate maps of indoor radon risk based directly on 

indoor radon concentrations at spatial units much smaller in size than in previous work. 

Moreover, since there is no safe threshold concentration of indoor radon, the delineation 

of high risk areas is subject to arbitrary decisions of concentrations assumed to be 

dangerous, the choice of which can serve to under or overestimate radon risk. Radon 

thresholds that distinguish dangerous from non-dangerous concentrations are provided by 

different countries, organizations and regions, but each is subject to uncertainty due to the 

fact there is no safe concentration of radon, and risk still exists at exposures below a 

given guideline. Our mapped scenarios of radon vulnerability using a range of different 

threshold concentrations from 50 to 600 Bq m
-3

, provide vital information in 

understanding the geographic extent of the indoor radon problem in BC. 

In Chapter 2 we develop a data driven method in order to predict ordinal classes 

of radon vulnerability in areas without any indoor radon observations, map the results and 

identify areas most at risk. We define low, medium and high vulnerability based on 

whether the observed 95
th

 percentile concentration within the spatial unit of prediction 

were below, between, or above the two radon concentration thresholds recommended by 

Health Canada for individual homeowners of 200 and 600 Bq m
-3

. We then link classes 

of radon vulnerability to select environmental and neighbourhood housing predictors to 
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quantify relationships between predictor variables and classes of radon vulnerability. We 

use a balanced variant of the statistical classifier, random forests, to model radon 

vulnerability in the province. We elucidate the relationship between predictor variables 

and the probability of low, medium or high vulnerability through partial dependence 

plots. Our results reveal that a higher probability of moderate or high indoor radon 

vulnerability is associated with areas having colder and drier winters, in closer proximity 

to major rivers, and whose dominant soil parent material mode of deposition are either 

fluvioglacial or colluvial. Census divisions at greatest risk (largest proportion of moderate 

and high indoor radon vulnerability) include the Kootenays and Columbia-Shuswap.  

In Chapter 3, using the balanced random forest algorithm and data outlined in 

Branion-Calles et al (2015), we explore the impact of using different radon concentration 

thresholds to define low and high vulnerability on several factors. These factors include: 

the accuracy of the balanced random forest classification algorithm, the change in 

geographic extent of high and low vulnerability in the resulting maps, the change in 

populations classified as higher and lower vulnerability, and the temporal trends in lung 

cancer mortality associated with higher and lower vulnerability. Eight threshold values 

between 50 and 600 Bq m
-3

 model indoor radon vulnerability. We compare high 

vulnerability areas, their estimated populations and the differences in lung cancer 

mortality trends stratified by sex and smoking prevalence. Our results indicate that the 

accuracy of the classification improves with lower thresholds as a result of a more 

balanced dataset, and that, unsurprisingly, the geographic extent of high vulnerability 

areas, as well as the number of residents within them, increases with a lower threshold. 

Census divisions in the Northeast economic regions show the greatest increase in number 
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of high BDAs while census divisions within the Thompson Okanagan, Cariboo and 

Kootenay economic regions consistently contain greater number of residents within high 

vulnerability zones. The majority of the provincial population is estimated to live in low 

vulnerability areas.  

By demonstrating that the crude lung cancer mortality ratio is consistently higher 

in areas of high radon vulnerability for each threshold concentration tested, we provide 

evidence for the efficacy of the mapping methods outlined in Chapter 2 (Branion-Calles 

et al. 2015). Moreover, by comparing the results using a range of different threshold 

concentrations, we establish that the potential to exceed a concentration as low as 50 Bq 

m
-3

 is associated with elevated temporal trends in lung cancer mortality in areas of lower 

smoking prevalence. We therefore recommend the adoption of a lower threshold 

concentration in BC than the currently recommended threshold by Health Canada. 

4.2 Research Contributions 

The papers presented in this thesis contribute to the literature surrounding radon 

in BC identifying it as an important public health threat (Henderson et al. 2014; Rauch & 

Henderson 2013; Henderson et al. 2012). This thesis demonstrates the utility of GIS 

approaches for surveillance of indoor radon in the province. By developing a spatial 

model of indoor radon risk we were able to not only predict areas with a greater 

susceptibility to higher indoor radon concentrations, but also identify predictor variables 

associated with higher risk areas, allowing for an assessment of possible environmental 

contributors to regional radon risk. Furthermore, the use of GIS approaches allowed for 

the generation of multiple scenarios of risk, and the overlay of population and mortality 
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datasets to assess health outcomes. The ability to combine multiple related datasets in 

order to assess different characterizations of indoor radon’s spatial distribution, their co-

location to human populations, and associated health outcomes, is an invaluable tool to 

inform policy and promote interventions to reduce population level exposure to radon. 

A key contribution of this thesis is a framework for producing maps of indoor 

radon risk at fine spatial resolutions based on existing geospatial datasets. This novel 

method contributes to the radon mapping literature and the final product can be used for 

risk communication, geographic targeting of radon awareness and monitoring campaigns, 

and could inform the development of radon policy in the province. The method presented 

in this thesis allows for the estimation of indoor radon risk based directly on observed 

indoor radon data for much smaller mapping units than would be possible using only the 

observed data. The method could theoretically be replicated in jurisdictions throughout 

the world given that similar existing geospatial datasets are available. 

Furthermore, to my knowledge, little work has been done to assess the effect of 

the use of different threshold values on geographic characterizations of radon risk, its 

subsequent impact on population within high risk areas as well as the lung cancer 

mortality trends associated with high risk areas. While a variety of indoor radon risk 

maps are available throughout the world, they generally present only one scenario of 

geographic risk based on one set of thresholds (Dubois 2005; Sainz-Fernandez et al. 

2014; Henderson et al. 2014). Radon presents some degree of risk at all concentrations, 

and those areas characterized as lower risk via an arbitrary threshold concentration could 

serve to create a false sense of security for residents. By assessing a range of possible 
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characterizations of risk we gain a more comprehensive understanding of the spatial 

distribution of radon risk within BC. By assessing the lung cancer mortality trends 

associated with each scenario of risk, we can provide greater confidence in the predictive 

results when informing radon policy and targeting of radon reduction resources. 

4.3 Research Limitations 

It is well known that individual concentrations of residential radon are highly 

variable even between adjacent homes. For example, regression models that draw upon 

large indoor radon datasets with systematically collected and detailed explanatory 

variables, will often explain relatively little variance (Hunter et al. 2009; Hauri et al. 

2012; Andersen et al. 2007). As a result of the complexity of factors contributing to 

indoor radon concentrations, radon risk maps cannot be used to infer or predict individual 

concentrations.  

The method presented in this thesis for predictive radon mapping was unable to 

provide a spatially continuous estimate of indoor radon risk in the province, as there a 

number of large, sparsely populated areas where no predictions could be made. In order 

to predict a radon vulnerability class for a given mapping unit, the random forest 

algorithm requires that the attribution for that mapping unit contain values also present in 

the training data. Any mapping unit which has levels of an attribute not observed in the 

training data cannot be predicted for. Therefore, the production of a spatially continuous 

map of indoor radon risk using this method also requires that the spatial distribution of 

the training data cover the range of potential levels in attribution. As a result, the 

suggestion that the predictive mapping method would be improved with a smaller study 
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area and more detailed attribution must also consider that observed indoor radon 

concentrations must overlap these areas and cover the range of predictor variable levels. 

Therefore with more detailed categorical attribution, the more extensive the spatial 

distribution of the sampled data has to be. 

4.4 Research Opportunities 

Though our balanced random forest approach was successful, there are other 

sampling methods and modeling techniques that can deal with imbalanced datasets and it 

would be interesting to see how they compare. The balanced random forest technique we 

employed was able to intrinsically down-sample the majority class by stratifying each 

bootstrapped sample used to grow an individual classification tree. Although we 

employed a down-sampling method in this research, there are a number of up-sampling 

methods such as SMOTE (Chawla et al. 2002), or ADASYN (He et al. 2008) that are 

available to potentially improve classification of imbalanced datasets. Furthermore, 

boosting, a popular algorithm for statistical classification that combines multiple weak 

learners into a stronger learner (Hastie et al. 2009), is an alternative modeling technique. 

Future research opportunities could lie in combining different sampling and modeling 

techniques using the indoor radon vulnerability database and comparing their results in 

order to select the optimal radon vulnerability map in terms of classification accuracy and 

precision.  

The results of our method could be improved and made to be spatially continuous 

by employing a “multi-tier” approach as described by Chen (2009), to estimate a radon 

risk class for those mapping units for which a radon vulnerability class could not be 
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assigned. The multi-tier approach is based on the creation of a scoring system that rates 

the radon potential of a geographic area based on the data available in that specific region 

(Appleton & Ball 2002; Chen 2009). Where predictions cannot be made using our 

predictive radon risk mapping methods, estimates of risk could be made using available 

related ancillary datasets individually or in combination with one another, such as soil 

geochemical data (Lett et al. 2008), airborne radiometric data (Natural Resources Canada 

2015), or estimates of radon potential from the Radon Potential Map of Canada (Radon 

Environmental Management Corp. 2011). 

There are also opportunities to employ more sophisticated methods for 

determining the difference in lung cancer mortality trends between classes of radon 

vulnerability than the time-series approach taken in this thesis. The comparison of the 

odds of dying of lung cancer  between different estimates of ecological radon exposure 

could be potentially explored through a case-only study design (Kosatsky et al. 2012). 

This design could not only be applied to each threshold map to determine the optimal 

threshold for vulnerability mapping in the province, it could also be used to compare the 

odds of dying of lung cancer for other ecological classifications of radon risk such as 

those defined by the Radon Potential Map of Canada (Radon Environmental 

Management Corp. 2011) or Radon Risk Areas of BC (Rauch & Henderson 2013; 

Henderson et al. 2014). 

References 

Andersen, C.E. et al., 2007. Prediction of 222Rn in Danish dwellings using geology and 

house construction information from central databases. Radiation protection 

dosimetry, 123(1), pp.83–94. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/16868014 [Accessed October 23, 2013]. 



 

 

89 

Appleton, J.D. & Ball, T.., 2002. Geological radon potential mapping. In P. T. 

Bobrowsky, ed. Geoenvironmental Mapping: Methods, Theory and Practice. Exton, 

PA: A.A. Balkema Publishers, pp. 577–613. 

Branion-Calles, M.C., Nelson, T.A. & Henderson, S.B., 2015. A geospatial approach to 

the prediction of indoor radon vulnerability in British Columbia, Canada. Journal of 

Exposure Science and Environmental Epidemiology, 00, pp.1–12. 

Chawla, N. V. et al., 2002. SMOTE: Synthetic minority over-sampling technique. 

Journal of Artificial Intelligence Research, 16, pp.321–357. 

Chen, J., 2009. A preliminary design of a radon potential map for Canada: a multi-tier 

approach. Environmental Earth Sciences, 59(4), pp.775–782. Available at: 

http://link.springer.com/10.1007/s12665-009-0073-x [Accessed September 25, 

2013]. 

Chen, J., Moir, D. & Whyte, J., 2012. Canadian population risk of radon induced lung 

cancer: a re-assessment based on the recent cross-Canada radon survey. Radiation 

protection dosimetry, 152(1-3), pp.9–13. 

Dubois, G., 2005. An Overview of Radon Surveys in Europe, 

Hastie, T., Tibshirani, R. & Jerome, F., 2009. The elements of statistical learning: data 

mining, inference and prediction Second., New York: Springer. Available at: 

http://www.springerlink.com/index/D7X7KX6772HQ2135.pdf [Accessed August 

15, 2014]. 

Hauri, D.D. et al., 2012. A prediction model for assessing residential radon concentration 

in Switzerland. Journal of environmental radioactivity, 112(0), pp.83–89. Available 

at: http://www.ncbi.nlm.nih.gov/pubmed/22683900 [Accessed September 25, 2013]. 

He, H. et al., 2008. ADASYN: Adaptive synthetic sampling approach for imbalanced 

learning. In Proceedings of the International Joint Conference on Neural Networks. 

pp. 1322–1328. 

Henderson, S.B. et al., 2014. Differences in lung cancer mortality trends from 1986-2012 

by radon risk areas in British Columbia, Canada. Health Physics, 106(5), pp.608–

613. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24670910 [Accessed 

October 16, 2014]. 

Henderson, S.B., Kosatsky, T. & Barn, P., 2012. How to Ensure That National Radon 

Survey Results Are Useful for Public Health Practice. Can J Public Health, 103(3), 

pp.231–234. 



 

 

90 

Hunter, N. et al., 2009. Uncertainties in radon related to house-specific factors and 

proximity to geological boundaries in England. Radiation protection dosimetry, 

136(1), pp.17–22. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19689964. 

Ielsch, G. et al., 2010. Mapping of the geogenic radon potential in France to improve 

radon risk management: methodology and first application to region Bourgogne. 

Journal of environmental radioactivity, 101(10), pp.813–20. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/20471142 [Accessed September 25, 2013]. 

Kemski, J. et al., 2008. From radon hazard to risk prediction-based on geological maps, 

soil gas and indoor measurements in Germany. Environmental Geology, 56(7), 

pp.1269–1279. Available at: http://link.springer.com/10.1007/s00254-008-1226-z 

[Accessed November 5, 2013]. 

Kosatsky, T., Henderson, S.B. & Pollock, S.L., 2012. Shifts in mortality during a hot 

weather event in Vancouver, British columbia: Rapid assessment with case-only 

analysis. American Journal of Public Health, 102(12), pp.2367–2371. 

Lett, R.E. et al., 2008. GeoFile 2008-1: A Drainage Geochemical Atlas for British 

Columbia, Available at: 

http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/GeoFiles/Pag

es/2008-1.aspx. 

Long, S. & Fenton, D., 2011. An overview of Ireland’s National Radon  olicy. Radiation 

protection dosimetry, 145(2-3), pp.96–100. 

Maantay, J.A. & Mclafferty, S., 2011. Environmental Health and Geospatial Analysis: 

An Overview. In J. A. Maantay & S. McLafferty, eds. Geospatial Analysis of 

Environmental Health. Dordrecht: Springer Netherlands, pp. 3–37. Available at: 

http://link.springer.com/10.1007/978-94-007-0329-2 [Accessed November 27, 

2013]. 

Miles, J.C.H. & Appleton, J.D., 2005. Mapping variation in radon potential both between 

and within geological units. Journal of Radiological Protection, 25(3), pp.257–276. 

Available at: http://iopscience.iop.org/0952-4746/25/3/003/ [Accessed September 

24, 2013]. 

Natural Resources Canada, 2015. Geoscience Data Repository for Geophysical Data. 

Available at: http://gdr.agg.nrcan.gc.ca/gdrdap/dap/search-eng.php. 

Radon Environmental Management Corp., 2011. Radon Potential Map of Canada. 

Available at: http://www.radoncorp.com/pdf/presentationMappingPublic.pdf 

[Accessed November 14, 2013]. 

Rauch, S.A. & Henderson, S.B., 2013. A comparison of two methods for ecologic 

classification of radon exposure in British Columbia: residential observations and 



 

 

91 

the radon potential map of Canada. Canadian journal of public health, 104(3), 

pp.e240–5. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23823889. 

Sainz-Fernandez, C. et al., 2014. The Spanish Indoor Radon Mapping Strategy. Radiation 

Protection Dosimetry, 162(1-2), pp.58–62. 

World Health Organization, 2009. WHO Handbook on Indoor Radon: A Public Health 

Perspective H. Zeeb & F. Shannoun, eds., Geneva. 

 


