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Abstract 

Implementations of surface traffic management strategies at congested airports have the potential 

to yield significant benefits, but must account for the constraints and objectives of multiple 

stakeholders. This thesis considers the implementation of pushback control policies at LaGuardia 

Airport in New York. This class of control policies regulate departure pushback rates by holding 

aircraft at their gates during congested periods, in a manner that maintains the departure throughput 

of the airport while reducing the taxi-out time. Such a time reduction leads to reductions in fuel 

burn and emissions. The main contribution of this thesis is the consideration of gate-holding limits 

at the gate which aim at including operational benefit-cost analysis in addition to the pushback 

control. The main consequence of those gate holds are gate conflicts and take-off order swaps, 

which are analyzed in detail throughout this thesis.  

The results show that taxi-out savings are a nonlinear and increasing function of gate-holding limit, 

and thus, more benefits are expected from longer gate conflict limits. However, the non-linear 

component creates opportunities for additional benefits with marginal cost increases.  

On the cost side, gate-holding times are the biggest component, but are commensurate with the 

benefits. 0ne held minute translates to one saved minute in taxi-out; this finding holds true 

regardless of the gate-holding limit. Departure order swaps and gate conflicts increase as stricter 

limits are imposed on the gate-holding times, but not significantly. The benefits and costs are 

shown to be approximately equivalent to the share of the airlines departures at LaGuardia, 

demonstrating a fair allocation strategy. 
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1. INTRODUCTION 
 

Congestion is one of the major challenges currently faced by the U.S. National Airspace System 

(NAS) and is expected to continue to experience in the foreseeable future. Although only a limited 

number of airports experience mismatches between supply and demand, (De Neufville et al. 2013) 

and are therefore congested, these airports have a large impact on the performance of the rest of 

the network. Delays from these airports propagate to large parts of the system (Pyrgiotis 2012) due 

to the network and complexity effects. The Joint Economic Committee of the U.S. Senate (Joint 

Economic Committee 2008) estimated that in 2007, delays cost $40.7 billion to the U.S. economy. 

The study considered airline operations, passenger cost and other economic activities, and 

estimated that 20% of the delay costs correspond to the taxi-out phase. These costs include both 

private and public components; taxi-out delays lead to additional engines-on time, which in turn 

increases fuel burn for airlines, and emissions (particulate matter, carbon dioxide, hydrocarbons, 

oxides of nitrogen, oxides of sulfur, among others) – a public cost for the society.   

The goal of this thesis is to propose different policies to mitigate the effects of congestion, using 

New York’s LaGuardia Airport as a case study.   

 

1.1. SCOPE 

Congestion occurs when the demand for a resource exceeds available capacity. There are broad 

approaches to managing the problem of congestion at airports: infrastructure expansion, demand 

management and airport surface management. 

First, infrastructure expansions aim at solving the problem by increasing the physical infrastructure 

(usually additional airport surface and/or additional runways), and hence increasing the airport 
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capacity. However, there are several concerns with such an approach: first, infrastructure generally 

requires large amounts of investments; second, there may not be space to expand the airport 

(usually airports are constrained by the neighboring cities); finally, investing in infrastructure to 

meet demand may turn into an unsustainable pattern from an environmental perspective. 

Demand management, as described in (De Neufville et al. 2013), “refers to set of regulations or 

other interventions aimed at constraining the demand for access to a busy airfield and/or at 

modifying the temporal characteristics of such demand”. Demand management tries to limit access 

to an airport through three main measures: overall demand reduction, demand limitations at 

particular times, and demand shifts from high-demand to low-demand periods. Examples of 

demand management approaches include schedule coordination (administrative strategy) and 

congestion pricing (economic strategy), among others. In contrast to infrastructure expansion, 

demand management aims at reducing demand to capacity levels through access control, instead 

of increasing capacity to meet demand. Such an approach either denies access or charges a fee for 

resources (arrival and departure rights). 

Third, airport surface management manages the flow of aircraft at the airport during congested 

periods in order to mitigate the impacts of congestion. It requires a detailed understanding of the 

queuing processes taking place from the moment aircraft touch down until they take-off. The key 

difference between surface management and the two previous strategies is that with this approach, 

there is no change in the physical layout of the airport (capacity is the same) or the flight demand. 

Thus the performance improvement arises from the way the traffic flows are managed. This 

approach is the least capital intensive, and the least disruptive of the current everyday airline 

operations, and therefore, the easiest to implement in practice. 
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Airport surface management deals with the following processes, which occur after the aircraft has 

touched-down at the runway: 

 

 

Figure 1: Airport surface processes 

 

This research focuses on the departure part of the process, which corresponds to the last block of 

processes in Figure 1. 

 

1.2. DEPARTURE METERING-BASED POLICIES: DISCUSSION AND 

LITERATURE REVIEW 

Departure metering is an airport surface management strategy that consists of holding aircraft at 

the gate to avoid congestion at the runway in periods where the airport experiences saturation. In 

this regard, Simaiakis (2013) reviews all the most relevant departure management algorithms and 

classifies them as either trajectory-based models or flow-based (or Eulerian models). While the 

Arrival

• The aircraft taxies-in from the runway to ramp area and the gate.

Gate service

• Ground handlers ensure passenger service (de-boarding and boarding), 
baggage (unload and load), fueling, cleaning, and other services required 
to get the aircraft ready for pushback.

• The flight gets clearance from ATC (Air Traffic Control)

Departure

• The aircraft is ready for pushback

• The aircraft pushes back

• The aircraft taxies-out

• The aircraft joins the departure queue

• The aircraft takes-off
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former optimizes the individual trajectory of each aircraft, the latter optimizes aircraft counts at 

different control points; the actuation point in the context of this thesis is the gate, before the 

pushback procedure. Using flow-based models involves creating virtual queuing approaches, as 

initially suggested by Feron et al. (1997), and developed by Burgain, Feron, and Clarke (2008). 

Indeed, the main rationale behind the proposed virtual queues is to ensure the fairness of aircraft 

queuing without physically queuing at the runway. The virtual queue of concern here occurs at the 

gate, with aircraft being held before their pushback procedure. A well studied Eulerian approach 

is the N-control strategy (Pujet, Delcaire, and Feron 2003; Carr et al. 2002; Simaiakis 2009; 

Simaiakis 2013). In addition to these references, the implementation of the N-control surface 

management strategy at Boston Logan airport by Sandberg et al. (2014) sets a precedent in the 

implementation of the proposed strategy.   

The main benefits of the N-control metering strategy are the reduction of engines-on time, which 

in turn leads to a reduction of fuel burn and greenhouse gas emissions. The trade-offs and impact 

of surface operations to the environment has been analyzed by Simaiakis and Balakrishnan (2009); 

Simaiakis and Balakrishnan (2010); Ravizza et al. (2013);and Khadilkar (2011), among others. 

Building upon the N-control strategy framework developed above, this thesis presents three main 

contributions:  

 The thesis builds a model to implement an N-control surface strategy at LaGuardia Airport, 

learning from the lessons at Boston Logan Airport. Each airport presents fairly different 

challenges and constraints that make the implementation of a surface control strategy an 

ambitious task.  

 The thesis proposes maximum gate-holding policies as well as a tool to evaluate these 

policies during the implementation design process. Metering strategies lead to significant 
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reductions in taxi-out times; however, pure metering may lead to operational challenges 

for some stakeholders, especially if the gate-hold durations are high. This thesis develops 

and evaluates a new portfolio of policies to bring flexibility during the implementation of 

metering. 

 The thesis updates previous studies of metering using RAPT (Runway Availability 

Prediction Tool) as a weather variable in addition to the visibility conditions (IMC/VMC). 

RAPT is used as an independent variable in order to predict runway capacity. The statistical 

analysis confirms the relevance of such an indicator as a runway capacity predicting 

variable.  

 

1.3. LAGUARDIA AIRPORT 

This thesis focuses on analyzing the implementation of an airport surface control management 

strategy at LaGuardia, one of the most congested airport in the U.S. In order to understand the 

challenges and opportunities associated with airport surface congestion management, this section 

presents fixed characteristics of the airport (those that are not likely to change in the short nor in 

the medium term, such as airport layout, airport terminals, and some stakeholders) as well as 

“dynamic” characteristics (those that may change in the medium term future, such as airline 

schedules). 

 

1.3.1. AIRPORT CONGESTION 

Figure 2 displays the results of a typical capacity analysis based on the concept of Operational 

Throughput Envelope (OTE). An OTE is a curve in the 2-D space defined by the average number 

of arrivals and the average number of departures that can be operated per unit of time. This curve 
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represents the trade-offs between the arrival throughput and the departure throughput at the airport. 

Put another way, “the envelopes indicate the capacity that can be achieved for all possible mixes 

of arrivals and departures” (De Neufville et al. 2013). For the case of LaGuardia, the interrelations 

of arrivals and departures are particularly relevant given the fact that the two runways intersect 

and therefore, the capacity of the departing runway is affected by the performance in the arrival 

runway. OTEs are a function of the runway configuration in use (i.e. set of runways used for 

arrivals and departures) and the meteorological conditions. In Figure 2, the two OTEs correspond 

to VMC1 (Visual Meteorological Conditions) and IMC2 (Instrument Meteorological Conditions), 

which, can generally be thought of as “good weather” and “bad weather” conditions, respectively. 

IMC always generates smaller average throughput than in VMC. 

An OTE is generated as follows: First, from a rather large set of historic operational data from 

departures in a particular period of time (in this case, 15-min periods), mathematical models are 

used to build envelopes based on runway configuration and visibility conditions (Simaiakis 2013). 

Second, using scheduling data, for each time period, the number of scheduled arrivals and number 

of scheduled departures is computed and plotted. This observation may fall outside, inside, or on 

the edge of the OTE. Figure 2 shows that, at LGA, significant imbalances between demand and 

capacity may occur, as the scheduling leves fall frequently outside the area defined by the OTEs. 

                                                           
1 VMC or Visual Meteorological Conditions: Aviation flight category in which visual flight rules (VFR) 

flight is permitted- that is, conditions in which pilots have sufficient visibility to fly the aircraft 

maintaining visual separation from terrain and other aircraft. They are the opposite of Instrumental 

Meteorological Conditions.  

2 IMC or Instrumental Meteorological Conditions: Aviation flight category that describes weather 

conditions that require pilots to fly primarily by references to instruments, and therefore under Instrument 

Flight Rules, rather than by outside visual references under Visual Flight Rules. 
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Note that these imbalances are, of course, more significant in IMC (“bad weather”). These 

observations justify some intervention aimed at managing surface congestion. 

 

 

Figure 2: OTEs envelopes at LGA for VMC and IMC, and scheduled number of flights. Source: 

(Simaiakis 2013; Jacquillat and Odoni 2015)  

 

1.3.2. STAKEHOLDERS 

In the context of this thesis there are four main groups of stakeholders:  

- Private carriers. This group includes all the airlines operating at the airport; the key among 

which are Delta, American, US Airways, United, Spirit, Southwest, and JetBlue. Figure 3 

depicts the relative number of operations of each airline for the July-August period in 2013. 

During this Summer period, Delta Airlines, (including all of its regional and shuttle carriers 

that offer services out of LGA) had nearly a 40% of the departures out of the airport; this 

number increased during the Fall, Winter, and Spring. Delta’s market share is currently 
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around 50%. The second largest carrier is American Airlines, with approximately a 20% 

departure share, followed by US Airways, which holds approximately a 10%. The fourth 

and fifth carriers are United and Southwest with a 5% market share each. In addition to 

smaller participants such as Spirit or JetBlue, LaGuardia has a 20% of departures operated 

by other airlines, which include general aviation and charter flights. 

 

Figure 3: Departure share by carrier at LaGuardia Airport during the July-August 2013 period 

 

- Airport-related institutions. There are two organizations with an essential role at LaGuardia 

Airport:  

o The Port Authority of New York and New Jersey (PANYNJ) is a Joint organization 

between the States of New York and New Jersey whose main mandate is to oversee 

bridges, tunnels, airports and seaports around the New York City area. In the 

context of this thesis, the PANYNJ is relevant because it oversees LaGuardia 

Airport, JFK Airport and Newark Airport. Therefore, the PANYNJ has a large stake 

in any change in airport operations (De Neufville et al. 2013).  

Delta

American

US Airways

United

Spirit

Southwest
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o The Federal Aviation Administration is responsible of the Air Traffic Management 

in the United States, and thus, they decide on which air traffic management policies 

to implement at all the airports in the country. In this thesis we propose new policies 

to manage airport surface traffic which needs to be implemented by the FAA 

controllers at the tower, and thus needs to be approved by the FAA. 

- Passengers are important stakeholders in this thesis because they pay the costs of delays, 

particularly with the lost opportunities. 

- Society and the environment are relevant in this problem because the goal is to minimize 

gas emissions and improve air quality. The former is salient given the significant 

contribution of air transportation to greenhouse gas emissions, and the latter aims at making 

to improve the life of people living in the neighborhoods surrounding the airport. 

This thesis considers the main trade-offs among the interests of these stakeholders.  

 

1.3.3. LAYOUT 

This section introduces the physical layout of the airport, principally the runways, the terminals 

and the taxiway system. Figure 4 clarifies of the overall layout of the airport. LaGuardia airport 

has two crossing runways: one runway is oriented in the direction 4/223 (S-SW/ N-NE)4 and the 

other in the direction 13/31 5(NW/SE).These two runways intersect and thus, as opposed to what 

occurs with separated parallel runways, the departing traffic is greatly influenced by the arriving 

traffic. Put another way, the intersection of runway diminishes the capacity compared with the 

                                                           
3 Runways are referred to base on their orientation as indicated in (De Neufville et al. 2013) 

4 South-South West/ North-North East 

5 The directions of the runways are displayed in the edges of each runway in Figure 4 
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situation when these runways can operate independently (De Neufville et al. 2013). However, there 

are two advantages of having crossing runways: First, they can handle more capacity than a single 

runway, and thus, in heavily urbanized areas like New York City, they allow more traffic despite 

the land availability restrictions. Second, they allow arrivals and departures to operate in a variety 

of weather conditions, particularly different wind directions.  

 

 

Figure 4: LaGuardia Airport layout, including runways, taxiways and terminals. Source: Federal 

Aviation Administration, www.faa.gov 

 

The combination of these two runways offers the airport of a portfolio of runway configurations 

to process the arriving and departing flows. The usual terminology for runway configurations is 

X/Y, where X is the arrival runway and Y the departing runway. In this regard, the most common 

runways for the first months of 2013 are displayed in Figure 5. Five configurations (31|4, 22|31, 

31|31, 22|13, and 4|13) are the most common in this eight-month period; the rest are not as used 

much, but having them brings some flexibility for air traffic controllers to adapt airport capacity 
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to weather issues and noise protected areas in specific periods time. The importance of the five 

mentioned runways is strengthened in Figure 6, which contains the runway configurations used 

during the July-August 2013 period, which is the focus time period for this research. 

 

Figure 5: Use of runway configurations during the eight months from January 2013 to August 

2013 

 

Figure 6: Use of runway configurations during July 2013 and August 2013. 
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As for terminals, the airport has four terminals: A, B, C and D. In Figure 7 Terminal A is denoted 

as the Marine Air Terminal, Terminal B as Central Terminal Building, Terminal C as the US 

Airways Terminal, and Terminal D as the Delta Terminal. Despite the name of the terminals, they 

do not quite represent the current operations at the airport due to some gate transfers between US 

Airways and Delta. The main airlines under study operate from the following terminals: 

 

Table 1: List of airlines operating out of each terminals at LaGuardia 

Terminal Airlines 

Terminal A Delta 

Terminal B American, United, Spirit, Southwest, and JetBlue 

Terminal C US Airways and Delta 

Terminal D Delta 

 

 

Figure 7: Map of the four terminals at LaGuardia Airport. Source: Port Authority of New York 

and New Jersey, www.panynj.gov 

 

http://www.panynj.gov/
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The next airport layout factor to comment on is the taxiway system, which allow aircraft to travel 

to and from the terminal and the runway. Figure 4 depicts the network of taxiways at LaGuardia 

Airport.  

The airport is constrained by the limited surface available, and that translates to a limited number 

of taxiways. Such a taxiway system has three important aspects worth noting: 

- There is only one taxiway feeding runway 4 | 22 in the southernmost part of the airport, 

taxiway B. This is particularly salient for departures from runway 4; indeed, in cases of 

high demand, the departure queue of more than 30 aircraft can use the taxiway up to just 

before the runway crossing. As for the taxiway AA, parallel to the runway to the left, is 

mainly used by aircraft operating from Terminal A, in the westernmost area of the airport. 

- There are two taxiways parallel to runway 13 | 31, taxiways A and B. These two runways 

bring flexibility to airport operations, particularly in two circumstances:  

o During periods when the 31 is used as departure runway, these two taxiways are 

the departure feeders; however, one taxiway is assigned to manage arrivals and the 

other to departures. By doing so, traffic is not mixed and there is more 

predictability. Such a strategy should facilitate surface operations without creating 

additional challenges, and that is why, in case one taxiway is blocked, aircraft may 

use the other to overcome such blockage. 

o During periods when runways 4, 22, or 13 serve as departure runways, one taxiway 

is used for eastbound movements and the other for westbound movements. Such a 

strategy avoids situations with two aircraft facing each other. 

- The taxiway density in the eastern area of the intersection is higher than in other areas of 

the airport, which is helpful at handling departures from runway 13 in periods of high 
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demand. Taxiing out to runway 13 may be longer and less predictable from aircraft 

travelling from terminals B, C, and D, because they need to first cross the runway and then 

wait for their “take-off slot”. Such a waiting time requires aircraft to be able to wait in that 

area without interfering with the arrival traffic. To this end, taxiways, AA, BB, and CC 

classify aircraft before take-off. 

 

1.4. OUTLINE 

This thesis describes the problem of congestion at a constrained airport, focuses on airport surface 

departure management, proposes a control strategy and, finally, has presentes the characteristics, 

opportunities and challenges of implementing such a strategy at LaGuardia Airport.   

The remainder of this thesis delves deeper into the model and evaluates its performance.  Chapter 

2 describes the different approaches to airport surface departure control, and derives several 

control policies based on the strategies described; this description includes mathematical 

formulation, estimation of parameters, and compilation of data; Chapter 3 presents the 

performance results of the strategies and policies presented in Chapter 2; finally, Chapter 6 

concludes this thesis, summarizing the findings, recommending policies and indicating next 

research steps.
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2. MODEL 
 

This chapter presents the details of the mathematical model built to compare two airport surface 

control strategies: Pushback-at-discretion (Strategy A), and Metering (Strategy B); the former 

represents the status quo, and the latter is the proposed strategy that is being evaluated throughout 

the thesis. Section 2.1 introduces a general overview of the two strategies. Evaluation and 

assessment of these strategies is done using three datasets: ASPM (Federal Aviation 

Administration), flightstats (www.flighstats.com), and RAPT (MIT Lincoln Labs). Based on the 

model requirements, the chapter then introduces the parameters, mathematical tools, and variables 

that need to be input to the model. One issue that arises when building the model is gate conflicts, 

which are a consequence of the increase in the time aircraft spend at the gate. Thus, the next section 

lays out ways to include into the model. Drawing upon all this information, the chapter presents 

the mathematical formulation associated with each strategy.  

 

2.1.AIRPORT SURFACE CONTROL STRATEGIES FOR DEPARTING TRAFFIC 

The strategies below represent two different ways of managing the departing flow aircraft from 

the moment each aircraft is ready for pushback (in aviation jargon, off-block time6), until the 

aircraft takes off (in aviation jargon, Wheels off-time7 or Take-off time). As indicated, this section 

                                                           
6 Off-block time: Time at which the aircraft is ready to start the pushback process. The term block refers 

to the physical objects that are put in front and behind the wheels to prevent de aircraft from moving at 

all. 

7 Wheels-off time: the moment the aircraft is rolling on the runway and the wheels lose physical contact 

with the runway due to lift. Wheels-off refers to the moment when the wheels are off the runway. 
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only provides a brief general overview/introduction to these strategies so that the reader can have 

a general understanding of all the components required for the model.  

Before plunging into the description and comparison of the two strategies, it is helpful to introduce 

a time framework to analyze the processes in a systematic way. Indeed, defining key milestones 

in the departure process provides a clear pattern for comparison and simulation (as presented later 

in the thesis). The time framework has four key milestones: 

 EOBT8: Earliest Off-Block Time. Earliest time an aircraft is ready to start the pushback 

procedure 

 TOBT: Target Off-Block Time. Time that an aircraft is authorized to start the pushback 

 DQET: Departure Queue Entry Time. Time when the aircraft joins the physical queue of 

aircrafts waiting to take-off that starts at the runway heading and growths through the 

taxiway system. An aircraft joins this queue after taxiing from the gate the queue. 

 ATOT: Actual Take-Off Time. Wheels-off time for each aircraft 

Having this framework in mind, it is possible to introduce and compare the two strategies. In 

particular, this framework is interesting to look at these other parameters. 

 GHT: Gate-holding Time or Gate Hold. Time an aircraft is being held at the gate, 

“prevented” from starting the pushback procedure. Using the framework introduced above, 

GHT=TOBT-EOBT. 

 EOT: Engines On Time. Total time departing aircraft spends with the engines on burning 

fuel and emitting gases while on the airport surface. The assumption in this thesis is that 

                                                           
8 For clarity purpose, EOBT, TOBT, DQET, and ATOT in capital letters will refer to the general variable, 

whereas when referring to values of these variables for specific flights this thesis uses non capitalized 

letters: eobt(i), tobt(i), dqet(i), atot(i) 
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pilots switch on engines slightly before TOBT and keep them on after that. Hence, in the 

context of airport departure surface operations, EOT= ATOT-TOBT.  

 TOT: Taxi Out Time. Time a departing aircraft spends travelling through the taxiway 

system. This parameter coincides with the time the aircraft has its engines on, and hence 

TOT=EOT. 

This framework will allow us to analyze the performance of strategies A and B throughout this 

thesis. 

 

2.1.1. STRATEGY A: PUSHBACK-AT-DISCRETION 

Pushback-at-discretion, from now referred to as Strategy A or the baseline case, represents the way 

the majority of airports handle the departure processes. The main essence of such a strategy is that 

aircraft pushback whenever they are ready; put another way: EOBT=TOBT. Given the uncertainty 

in airport operations (Hall and Fernandes 2013) and the lack of schedule coordination in the U.S. 

(De Neufville et al. 2013), it is common to see long departing queues at the runway. In other words, 

with this strategy, when aircraft pushback, they do not know what the current queue length at the 

runway is, and therefore, after pushing back, they taxi to the runway, join the queue, regardless of 

the length, and eventually take off. Based on this, it is difficult to set up a straightforward 

relationship between DQET and ATOT. As far as the EOT taxi concerns, it is worth noting that the 

lack of information on the congestion situation downstream generates useless idling time with the 

engines on. 

In the baseline case aircraft push back at EOBT (EOBT=TOBT), then, the aircraft taxies out for an 

uncertain amount of time until they join the queue at time DQET and then, after all the aircraft in 

queue have taken off, the aircraft proceeds to take-off at ATOT. 
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It is clear that information in this strategy propagates only downstream. Indeed, there is no 

information moving upstream. As a consequence, airlines have an incentive to adopt the following 

attitude: the earlier I join the queue, the earlier I will take off. 

 

2.1.2. STRATEGY B: METERING 

Metering consists of holding aircraft at the gate long enough to avoid, as much as possible, the 

inefficient idling time at the departing queue, without interfering much with the take-off time. In 

order to do that, this strategy propagates the information upstream, instead of downstream. The 

model carries out the following process: first, it evaluates the runway departure capacity; second, 

it propagates this departure capacity through the taxiway system into the terminal, and finally, 

recommends a pushback rate. Put another way, the model converts runway capacity into “pushback 

capacity”, and aims at limiting the number of aircraft on the surface causing congestion, allowing 

the pushback procedure only to the number of aircraft that will sustain departure capacity without 

creating unnecessary congestion. This upstream information process requires two tools to predict 

departure runway capacity, and the propagation of this runway capacity through the taxiway 

system. These tools are regression trees and saturation plots and will be addressed in section 2.3.  

At this point it is possible to broadly put this proposed strategy into the time framework introduced 

above. The first difference between the two strategies is that EOBT is not necessarily equal to 

TOBT due to the definition of gate hold. Indeed, a gate hold is the situation in which an aircraft is 

“prevented” from starting its pushback procedure despite being ready to do so. It is important to 

note that gate holds do not occur all the time, and therefore, there may be instances when EOBT 

and TOBT are still the same. Indeed, gate holds only occur during periods of congestion; in this 
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regard, section 2.6 explains the details about the conditions in which gate holds occur and the way 

the model determines TOBT. 

As for DQET and ATOT, the difference from Strategy A is that in circumstances when aircrafts 

are held, the difference between ATOT and DQET is smaller, and so is the EOT, which is the main 

reason why reductions in emissions and fuel burn exist. 

 

2.2. DATASETS 

This research requires two main types of data, weather data and airport scheduling data. As for the 

meteorological data, the model uses a weather predictability tool called RAPT (DeLaura et al. 

2008), which stands for Route Availability Prediction Tool, and was developed by Lincoln 

Laboratory with the main goal of helping air traffic controllers at airports severely affected by 

convective weather9, as is the case of LaGuardia Airport. This tool is effective at analyzing how 

available a particular air route is on a scale from 0 to 3, where 0 is good weather and 3 corresponds 

to a route being totally blocked by convective weather and thus, inoperative. In the tower, the 

numbers are converted into colors and the conversion is the following: 

 

 

 

                                                           
9 Convective weather: In meteorology, the term is used specifically to describe vertical transport of heat 

and moisture in the atmosphere, especially by updrafts and downdrafts in an unstable atmosphere. The 

terms "convection" and "thunderstorms" often are used interchangeably, although thunderstorms are only 

one form of convection. Cbs, towering cumulus clouds, and ACCAS clouds all are visible forms of 

convection. However, convection is not always made visible by clouds. Convection which occurs without 

cloud formation is called dry convection, while the visible convection processes referred to above are 

forms of moist convection. Source: www.forecast.weather.gov 
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Table 2: RAPT conversion table from numbers to colors 

Number Color Weather implications 

0 Green Clear 

1 Dark Green Low Impact 

2 Yellow Caution 

3 Red Blocked 

 

Taking this color code into account, it is possible to understand the RAPT display that air traffic 

controllers have in the tower, on which they base their decisions. Figure 8 shows such a display, 

where it is possible to see the different colors available for different routes; such information helps 

controllers decide upon which route to guide the flow of aircraft through, both arrivals and 

departures based on the weather situation. 

 

Figure 8: Route Availability Planning Tool display at the tower. Source: (DeLaura et al. 2008) 
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For the case of this research, the RAPT indicator used is an average all the routes operated to/from 

the airport. This tool is rather intuitive given its straightforwardness to understand and interpret; 

however, it is challenging to associate the non-integer numbers (such as 1.67) with the real weather 

meaning. For the purpose of this research, RAPT is a given variable that is used as a proxy for 

weather, and as proven throughout the thesis, RAPT is an effective variable for considering 

meteorological conditions in the context of airport performance. 

Regarding the airport scheduling data, this research uses two complementary datasets. On the one 

hand, the model is fed and most of the parameters are calibrated using the ASPM dataset, which 

stands for Aviation System Performance Metrics and is developed by the FAA 10 . The most 

interesting variables from the ASPM dataset are the mentioned below, but the most relevant aspect 

here is that the information provided is granular, as the data is presented at a flight level, which 

means that all the parameters are shown flight by flight: 

 Airline (Arrivals & Departures) 

 Flight number (Arrivals & Departures) 

 Runway configuration (Arrivals & Departures) 

 Visibility conditions at LGA (Arrivals & Departures) 

 Arrival Actual Wheels-on time: Time at which the aircraft put its wheels on the runway. 

 Departure Actual call time: Time at which the flight is ready and calls for pushback. In the 

framework presented above, this time is equivalent to the Earliest Off-Block Time, EOBT. 

 Departure Wheels-Off time: Time in the departure roll when the flight lifts off the ground. 

In the framework presented, this is equivalent to the Actual Take-Off Time, ATOT. 

                                                           
10 Data search can be done at  https://aspm.faa.gov/ 
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It is worth noting that there are two key important data missing: terminal building and gate at 

which each flight is serviced.  This lack of data is what makes the second dataset detrimental for 

the model; indeed, the model needs flight-specific information on terminal and gate from where 

the flight is being operated. On the one hand, the terminal information is required to incorporate 

into the model the pros and cons of operating at each specific terminal, particularly the most salient 

fact being the difference in taxi-out time that may affect the order dynamics on the surface. On the 

other hand, the gate information is necessary, when evaluating and avoiding gate conflicts caused 

by the implementation of the metering strategy. Based on these needs, the second dataset is 

obtained from the flightstats website11, which offers flight level details based on generic FAA 

datasets, but the website buys additional information to airlines in order to provide a better service. 

In particular, the website adds terminal and gate information, which is of great relevance for this 

research. 

Finally, it is important to clarify the time span of each dataset. Given the way ASPM data is 

compiled, it is possible to obtain fairly long records of data, and that is the reason why this research 

uses data from June 2012 until August 2013. However, flightstats data is more cumbersome to 

obtain as need to be pulled out in 2-hour periods and thus, only strictly necessary data is gathered. 

This difficulty has some consequences in the parameter estimation as explained in the next section. 

 

2.3. PARAMETERS, MATHEMATICAL TOOLS, AND VARIABLES 

This section introduces several parameters, tools and variables that the model requires, and are 

important to describe before plunging into the model analysis. In particular, this section introduces 

the concept of unimpeded taxi-out time, decides the length of the time steps used for the simulation, 

                                                           
11 www.flightstats.com 
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and finally presents the two prediction tools required to implement metering, characterized by the 

upstream flow of information. 

 

2.3.1. UNIMPEDED TAXI-OUT TIME 

The unimpeded taxi-out time is the taxi-out time that allows the model to simulate a congestion 

free situation; however, this is a rather broad and unspecific definition. To this end, Simaiakis 

(2013) carries out a review of different ways unimpeded taxi-out time can be defined. The general 

definition is the nominal, free flow taxi out time, which is related to the absence of obstacles in the 

taxi-out process. The FAA definition is the following: “taxi-out time under optimal operating 

conditions, when neither congestion, weather nor other factors delay the aircraft during its 

movement from the gate to take-off” (Office of Aviation Policy and Plans, Federal Aviation 

Administration. 2002). From this definition and based on Simaiakis (2009), the following 

statements can be made: 

 The unimpeded taxi-out time is not the minimum taxi-out time; it actually is the average 

taxi-out time when there is no departure queue.  

 Talking about average values is reasonable given that taxi-out times are random variables. 

Several factors that come into play in this random process are: use of different taxiway 

routes, use of different speeds, differences in the duration of the pushback process, 

differences in the process of engine start, or variations in the controller-pilot 

communications. 

 The unimpeded taxi-out time is an average value, which implies than is the result of a 

calculation, not an observation. 
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In addition to these observations, it is worth noting that the unimpeded taxi-out time has a weak 

correlation with the number of aircraft taxiing-out on the surface at the pushback time of each 

flight (Idris et al. 2001). This is because such an indicator does not consider factors such as aircraft 

pushing back later but still affecting the taxi-out process of the flight. In order to correct this 

mismatch, Idris et al. (2001) suggest using the concept of take-off queue for a particular flight, 

defined as the number of aircraft taking off between the pushback and take-off time of that flight; 

after describing the concept, they also suggest using such a concept to predict taxi-out times. 

Based on all these considerations, Simaiakis (2013) sets up the following to estimate the 

unimpeded taxi-out time. First, he defines Effective traffic “for each aircraft l, Neff(l), as the sum if 

the aircraft taxiing out, N(l), at the time of the flight’s pushback t, and the number of aircraft that 

push back while it is travelling to the departure runway”. From a data availability standpoint, Neff(t) 

requires the model to be fed with the ASDE-X12 dataset, a more detailed and granular dataset 

compared to the ASPM the dataset. Clewlow (2010) suggested using another indicator, the 

adjusted traffic, which is equivalent to the effective traffic at being well correlated with the taxi-

out time, but it can be obtained from ASPM datasets, which makes the simulations simpler but 

                                                           

12 ASDE-X enables air traffic controllers to detect potential runway conflicts by providing detailed 

coverage of movement on runways and taxiways. ASDE-X collects data from a variety of sources to track 

vehicles and aircraft on the airport movement area and obtain identification information from aircraft 

transponders. The ASDE-X data comes from surface movement radar located on the air traffic control 

tower or remote tower, multilateration sensors, ADS-B (Automatic Dependent Surveillance-Broadcast) 

sensors, the terminal automation system, and aircraft transponders. By fusing the data from these sources, 

ASDE-X is able to determine the position and identification of aircraft and transponder-equipped vehicles 

on the airport movement area, as well as aircraft flying within five miles of the airport. Source: 

www.faa.gov 
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equally effective. Adjusted traffic is defined for “each aircraft l, as the aircraft taxiing out, N(l), at 

the time of its pushback t, and the number of aircraft that push back while aircraft l is taxiing out”. 

The interesting aspect of both the effective and adjusted traffic is the consideration of the traffic 

ahead while pushing back as well as the traffic that joined while the aircraft is taxiing-out in order 

to consider all the aircraft that can interfere with this flight’s trajectory. 

Then the model computes the empirical unimpeded taxi-out time as the time corresponding to the 

adjusted (as a proxy for the effective) traffic for which the taxi-out time does not increase, with 

increasing effective traffic. To calculate the empiric taxi-out time, it is necessary to use historic 

data to compute, for each flight, the effective traffic and the observed taxi-out time. Then, for each 

subcategory of flights, create a scatter plot as seen in Figure 9 with the effective traffic on the x-

axis and the taxi-out time in y-axis. For each subcategory we understand all the combinations of 

factors based on which the results are displayed; in this case results are shown by terminal and 

runway configuration. For example, the effective traffic and the observed taxi-out time of all flights 

leaving from terminal B when there is runway configuration 22|31 are depicted in a scatter plot as 

seen in Figure 9.  

These scatter plots allow the model to run a convex optimization regression to fit a non-decreasing, 

and convex function to the observed data. Such a curve would predict the taxi-out time as a 

function of the adjusted traffic. As described in (Simaiakis 2013),  

Given m pairs of measurements Nadj(l) and τ(l), denoted (u1,y1), …, (um,ym), we seek a 

convex,  non-decreasing function fmean: ℝ →ℝ that estimates the mean τ=f(Nadj(l)). This 

infinite-dimensional problem is significantly simplified by the fact that Nadj is defined only 

in the domain of natural numbers (ℕ0). f can be restricted to within the domain of ℕ0 as 

well, and we need to estimate the values f(0), f(1), …, f(n), where n=max(Nadj). The function 
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f is simply a piecewise linear function of N, and the monotonicity and convexity constrains 

are imposed at the points 0,1, ..., max(Nadj) by comparing the values and the slopes of a 

subsequent pieces. f is given by the solution to the following convex optimization problem: 

𝑚𝑖𝑛∑(�̂�𝑖 − 𝑦𝑖)
2

𝑚

𝑖=1

 

subject to: 

�̂�𝑖 = 𝑓(𝑢𝑖), 𝑖 = 1, … ,𝑚 
 

𝑓(𝑖 + 1) ≥ 𝑓(𝑖), 𝑖 = 0,… , (𝑛 − 1) 
 

𝑓(𝑖 + 1) − 𝑓(𝑖) ≤ 𝑓(𝑖) − 𝑓(𝑖 − 1), 𝑖 = 1,… , (𝑛 − 1) 

Eq. 1 

 

 

 

Figure 9: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

terminal B when the runway configuration was 22|13. Data from July 1, 2013 to August 30, 2013 

 

Solving this mathematical problem we obtain the non-decreasing and convex functions, as 

depicted in Figure 10, as well as the empirical unimpeded taxi-out times utot(i) that are a defined 
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for each runway configuration and terminal. Table 3 displays the empirical unimpeded taxi-out 

times, which have been obtained by identifying in each non-decreasing, and convex function, the 

minimum value of the function. 

 

Figure 10: Mean, standard error, and fit function from the scatter plot in Figure 9 for flights from 

Terminal B when the airport operates with runway configuration 22|13. Data from July 1, 2013 to 

August 30, 2013 

 

Table 3: Unimpeded taxi-out times (in minutes) for each terminal – runway configuration pair 

 31|4 22|31 31|31 4|31 13|13 22|13 4|13 13|4 22 31|31 4|4 

T-A 13.92 12.96 12.74 13* 12* 13.6 13* 12* 9.9 12.95 

T-B 13.22 10.72 11.39 11* 12* 13.07 14* 12* 14.36 12.41 

T-C & T-D 16.63 13.20 12.85 12.66 15* 15.85 15.8 16.5* 10.71 11.89 

 



42 

 

For clarification purposes, the values with an * have been interpolated from configurations with 

the same departing runway, given that the pool of observations for that configuration was too small 

to obtain a reliable enough number. 

Another important comment is the reason behind merging Terminal C and Terminal D together. 

The ASPM dataset does not contain information on terminal or gates; therefore, we need to filter 

the ASPM dataset by other parameters to indirectly obtain data at a terminal level. Indeed, we 

identified those airlines and destinations (data available in the ASPM dataset, for each flight) that 

are served in each terminal, and that provided the model with a de facto terminal based 

classification. Unfortunately, it was not possible to find a clear classification pattern for Terminals 

C and D because Delta operates from both terminals and in particular, it serves one same 

destination from different terminals. This inability to classify flights from terminals C and D is the 

reason for a combined calculation of unimpeded taxi-out times. 

After these two clarifying comments, the results in Table 3 give a sense of the length of typical 

free-flow taxi-out length; however, it is difficult to compare rows from that table because different 

terminals have different challenges and different layouts, as can be grasped from the LaGuardia 

layout in Figure 11. One example of such a challenge is the need for departing flights from 

Terminal A to cross arrival runway 22 when the departing runway is 31, which is likely to add 

additional time to the taxi-out time. Another challenge is the availability of handling resources. 

Recalling that the pushback procedure is one of the key variables affecting the unimpeded taxi-out 

time, the main carrier in terminal C and D, Delta, has a limited number of resources (tugs and 

manpower) to serve departing flights. Having more flights to serve with shared resources may 

affect the efficiency with which Delta carries out pushback. Nevertheless, this is just an example 

of reasons why comparing rows from Table 3 is challenging. In order to prove the validity of such 
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an explanation it would be necessary to carry out a resource availability benchmark that would 

allow us to compare each carrier’s performance. 

 

 

Figure 11: LaGuardia Airport layout, including runways, taxiways and terminals. Source: 

www.faa.gov 

 

2.3.2. TIME PERIOD LENGTH 

At this point we need to decide the length of the simulation time period. This time period is the 

time fraction in which the model breaks out all days in order to implement a discretized analysis. 

That is, in order to implement the metering strategy, it is necessary to divide up the whole day into 

smaller segments. However, choosing the time period length of the simulation is not a 

straightforward decision. It is, indeed, a key decision and it has different types of implications of 

which it is worth being aware. The time period length is a trade-off between computational cost, 

prediction accuracy, usefulness during implementation, and synchronization with the structure of 

the model and other parameters. These four aspects separately would lead to opposite time period 

lengths, and therefore, the important exercise here is how to compromise on these opposite trends. 
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First, from a computational cost point of view, the shorter the time period, the more costly it 

becomes. Indeed, shorter periods mean more periods and thus, the model needs to carry out a 

similar routine more time. Therefore, from a computational cost standpoint, the longer the period, 

the better.  

Second, from the prediction accuracy perspective, the shorter the time period, the better. In order 

to understand such a statement, it is necessary to understand how predictions are carried out. In a 

nutshell, at the beginning of each period, the algorithm predicts a departure capacity and a 

pushback rate derived from parameterized tools presented below. From an ongoing work we have 

seen that the accuracy of these tools becomes less reliable as the length of the time period increases. 

One particular example of such a trend is the worsening of success rates from the regression trees 

(presented in section c below), which are being used to predict runway capacity. Table 4 shows 

that the standard deviation of the error for regression trees increases as the time period length 

increases, which makes the predictions less reliable. 

 

Table 4: Standard deviation of the prediction error for regression trees with 15-, 30-, and 60- 

minute time intervals. 

Time period length 15-minute 30-minute 60-minute 

Standard deviation of the error  1.7 (dep/15-min) 3.6 (dep/30-min) 6.2 (dep/60-min) 

 

Such a worsening trend can be extrapolated to the other tools used at the beginning of each time 

period. Analyzing the data we can see that the main reason for this behavior is the uncertainty, and 

particularly the noise. The larger the time period length, the more the noise and thus, the poorer 

the performance of those tools.  
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Third, the usefulness during implementation phase has not much to do with the mathematical 

capability and strengths of the model; it concerns mainly the effectiveness when being 

implemented in reality. In particular, as indicated in coming sections, the main goal of metering is 

to suggest a pushback rates to controllers, who then communicate with airlines to give them a 

prediction of the expected time to start the pushback procedure (TOBTs). One of the strengths of 

such an approach is the ability to predict, at the beginning of each period, the TOBTs for the 

duration of the period. This information is greatly appreciated by airlines given that gate-holdings 

may represent a disruption to them. With such information, airlines can plan their handling 

resources accordingly. However, the value of this information decays with short notice. That is, 

information on TOBTs provided 15 minutes in advance is significantly more useful than that 

information provided 5 minutes in advanced as the ability to plan around it is more salient in the 

former case than in the latter. Based on such facts, the longer the time period, the more valuable 

the information provided to airlines is.  

Fourth, and last, the synchronization with the structure of the model and other model parameters 

concerns how this time period lengths fits with the other model components. In particular, given 

that the model updates predictions and allocations of TOBTs at the beginning of the time period, 

it is important to match its time length with the dynamics of what happens in that time period. On 

particularly important factor is the unimpeded taxi-out time, which, as has been shown already, 

has values around 15 minutes. This makes a very good case to fix the time length to 15 minutes. 

Indeed, having a time period length similar to the taxi-out time helps isolate the performance of 

different flights occurring in different time periods. In particular, all the flights that started their 

pushback during time period T, are likely to join the queue in period T+1; this creates a separation 
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of flights that is relevant in those cases where there is a change in airport performance conditions 

in these two periods. 

This fourth point justifies the use of a 15-minute time period as opposed to a shorted or longer 

duration. We believe that 15 minutes is ideal as it leads to a reasonable computational load, it 

results in rather accurate results, and provides valuable information to airlines to allocate resources 

based on potential disruptions caused by metering.  

 

2.3.3. SATURATION PLOTS 

The next step of the parameter estimation process is to develop one of the two predictive tools that 

allow the propagation of runway capacity information to pushback information. The tool used for 

such a task is the saturation plots and its main goal is to measure the capacity of the airport surface. 

This representation, introduced by Shumsky (1995) and Pujet (1999), presents the surface traffic 

N, on the y-axis, and then the departure throughput DT, on the y-axis, as a function of N, as depicted 

in Figure 12.  

 

 

Figure 12: Saturation plot for LGA under VMC rules for runway 31|4. Source: (Simaiakis 2013) 
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Figure 12 shows that, initially, the departure throughput increases as the surface traffic increases; 

however, this behavior only occurs up until a saturation point, when demand exceeds the critical 

value, N*. From Figure 12, the N* value is 21 and the take-off throughput at saturation is 

approximately 9 aircraft every 15 minutes. This N* can be seen as an intrinsic value of the airport, 

given that it is operating under a particular runway configuration. Knowing this value, the operator 

can decide to use it as a control threshold in order to avoid excessive aircraft on the surface. And 

therein lies the difference between what the literature (Sandberg et al. 2014; Simaiakis et al. 2011) 

refers to as N-Control and N*. N-control (Nctrl) is the value that the operator may decide to set as 

a threshold, and N* is an airport configuration-specific characteristic that cannot be modified 

unless the airport physical characteristics change. This difference leads to the ideal Nctrl discussion. 

First, Nctrl always has to be larger than N*, otherwise the model would likely be starving the 

runway, and thus not using the runway capacity efficiently. Second, there is some reluctance to 

change from the current state which corresponds to Nctrl equal infinity, which is the same as no 

control of the surface traffic. Such reluctance translates into a pressure to control significantly 

above the N* value. That is finally a policy decision made by the operator. However, in the context 

of this research, metering –primarily dependent on the value of Nctrl- is associated with Nctrl = N*. 

Considering all the above, the model derives the throughput-surface traffic function, fitting a curve 

to observed data from the ASPM dataset for the first 8 months of year 2013. Indeed, for each 15-

minute period, we calculate the surface traffic demand N(t) - defined as the number of aircraft that 

have pushed back from their gates, but have not yet taken off, and the departure throughput DT(t) 

- defined as the number of aircraft that take off during the time period of analysis. Then the model 

implements rather similar to the model used to obtain the unimpeded taxi-out time, except for the 

concavity instead of the convexity condition. The main goal here is to obtain a monotonically non-
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decreasing and concave function that links departure throughput and departure demand 

(independent variable), based on the observed pairings of [N(t), DT(t)]. As presented by Simaiakis 

(2013): 

The estimation of the data mean regression fit can be formulated as a least-squares problem. 

Given m pairs of measurements N(t) and DT(t), denoted (u1,y1),…,(um,ym), we seek a non-

decreasing, concave function fmean: R →R that estimates the mean DT= fmean(N) This 

infinite dimensional problem is significantly simplified by the fact that N is defined only in 

the domain of natural number (N0). fmean can be restricted in the domain of N0 as well, and 

we need to estimate the values fmean (0), fmean (1), …, fmean (n), where n=max(Nadj). The 

function fmean is simply a piecewise linear function of N, and the monotonicity and 

concavity constrains are imposed at the points 0,1, ..., max(Nadj) by comparing the values 

and the slopes of a subsequent pieces. fmean is given by the solution to the following convex 

optimization problem: 

𝑚𝑖𝑛∑(�̂�𝑖 − 𝑦𝑖)
2

𝑚

𝑖=1

 

subject to: 

�̂�𝑖 = 𝑓𝑚𝑒𝑎𝑛(𝑢𝑖), 𝑖 = 1,… ,𝑚 
 

𝑓𝑚𝑒𝑎𝑛(𝑖 + 1) ≥ 𝑓𝑚𝑒𝑎𝑛(𝑖), 𝑖 = 0,… , (𝑛 − 1) 
 

𝑓𝑚𝑒𝑎𝑛(𝑖 + 1) − 𝑓𝑚𝑒𝑎𝑛(𝑖) ≤ 𝑓𝑚𝑒𝑎𝑛(𝑖) − 𝑓𝑚𝑒𝑎𝑛(𝑖 − 1), 𝑖 = 1,… , (𝑛 − 1) 

Eq. 2 

 

A similar process is proposed by Simaiakis (2013) to estimate the median throughput as a function 

of the departure demand, which can be set up as follows: 
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𝑚𝑖𝑛∑|�̂�𝑖 − 𝑦𝑖|

𝑚

𝑖=1

 

subject to: 

�̂�𝑖 = 𝑓𝑚𝑒𝑑(𝑢𝑖), 𝑖 = 1,… ,𝑚 

𝑓𝑚𝑒𝑑(𝑖 + 1) ≥ 𝑓𝑚𝑒𝑑(𝑖), 𝑖 = 0,… , (𝑛 − 1) 

𝑓𝑚𝑒𝑑(𝑖 + 1) − 𝑓𝑚𝑒𝑑(𝑖) ≤ 𝑓𝑚𝑒𝑑(𝑖) − 𝑓𝑚𝑒𝑑(𝑖 − 1), 𝑖 = 1,… , (𝑛 − 1) 

Eq. 3 

An example of a solution for this problem can be seen in Figure 13; the observed data already 

indicates a saturation trend that the optimized functions follow. In the case of Figure 13, from both 

the mean- and median-optimized functions we can infer that 23 is the most likely saturation point, 

or N*.  

 

 

Figure 13: Mean- and median-optimized saturation plots for runway configuration 4|13. The 

curves are the result of a monotonically non-decreasing and concave function. 
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It may happen that the mean and the median lead to different N*, which is one of the challenges 

of the visually recognized N-control strategy. When confronting discerning N* from the mean- 

and media-optimized functions, leaning towards the smallest or the largest is a matter of how 

conservative toward the current situation (high N*) or willing to take advantage of the benefits of 

metering, the decision maker is.  

Repeating this procedure for all the runway configurations and for IMC and VMC, it is possible 

to obtain all the N* values shown in Table 5; these are the values fed into the model to evaluate 

surface capacity during the simulations.  

 

Table 5: N-control values (# of aircraft) for each terminal – visual conditions pair 

 31|4 22|31 31|31 4|31 13|13 22|13 4|13 13|4 22_31|31 4|4 

VMC 23 25 18 19 19 20 23 25 25 20 

IMC 18 21 16 17 20 21 21 23 25 13 

 

2.3.4. REGRESSION TREES 

The second prediction tool that the model requires is the runway capacity regression tree; whose 

main goal is to predict runway capacity based on observable factors. The predicting variables are 

arrival rate – which can be obtained from different displays at the tower- and the RAPT value – 

also available at the tower. It is worth noting that we are building these trees with data from 

observed saturated periods; that is, the training, validation, and test datasets only include 

observations where the observed N is equal or larger than Nctrl. (which is a function of the runway 

configuration and the visibility conditions and can be obtained from Table 5). Imposing such a 

saturation condition ensures that the departure throughput are the highest values, which can be 

assumed to be the capacity. Indeed, saturation implies that no matter how many more available 
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aircraft are ready to take-off, there is no more room for these aircraft to do it,; that is the reason 

why it is assumed that those throughput values correspond to capacity levels. 

The process to build regression trees is the following: 

 Step 1: Train a classification tree using 70% of the data as training dataset. 

 Step 2: Carry out a 10-fold cross validation with 2/3 of the remaining 30% of the dataset 

to determine the minimum number of leafs (elements of the sample) required on each 

branch of the tree. For each possible minimum, we calculate the mean ad standard error. 

 Step 3: For each minimum number of leafs, carry out a pruning test to determine errors 

associated with each level. 

 Step 4: Build two matrices where the rows are pruning levels and columns are minimum 

leaf requirements; the first matrix contains mean error values and the second contains 

standard error values. 

 Step 5: Based on these data, decide the minimum requirement and the pruning level that 

lead to both minimum error and minimum deviation around that error.  

The outcome of such a process is a regression tree like the one shown in Figure 14. The same 

process needs to be carried out for every configuration under VMC and IMC conditions. A quick 

interpretation of the tree in Figure 14 is: if the Arrival Rate is larger than 5.5, the RAPT larger than 

0.5, and the Arrival Rate larger than 6.5, then, the expected runway capacity is 5 aircraft every 15 

minutes.  
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Figure 14: Regression tree for runway configuration 4|4 

 

2.3.5. DEPARTURE SLOTS 

For each simulation period T, the model generates a Take-off Slot Vector, TOSV(T), which 

contains all the Take-off Slots for each simulation period T, or tosT(k), where k=1,2,… nT. nT 

is the number of take-off slots 13in time period T, and is equal to the number of take-off 

operations observed in the ASPM dataset in that time period T. The rationale is that given that 

the model is not trying to alter the nature of the take-off process, the take-off throughput is 

expected to be the same in the experienced and in the simulated case. After obtaining nT, the 

model homogeneously distributes nT slots over time period T, with an average time separation 

between tosT of T/ nT .  

                                                           
13 It is worth noting that both vectors represent internal tools of the model, which are used to simulate the 

departure capacity. When talking about slots, this thesis is not referring to the administrative system to 

manage departure demand in most of the airports outside the United States. For more information, see (De 

Neufville et al. 2013) 
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𝑇𝑂𝑆𝑉(𝑇) = (

𝑡𝑜𝑠𝑇(1)
𝑡𝑜𝑠𝑇(2)
⋮

𝑡𝑜𝑠𝑇(𝑛𝑇)

) 
Eq. 4 

 

After calculating the take-off slots for all the time periods, it is necessary14 to put all of them 

together in a “day-long take-off vector” that includes all the TOSV(T) on day d. Such a vector 

is referred to as Day Take-Off Slot Vector, or DTOSV and is built as follows: 

𝐷𝑇𝑂𝑆𝑉 = (

𝑇𝑂𝑆𝑉(1)

𝑇𝑂𝑆𝑉(2)
⋮

𝑇𝑂𝑆𝑉(𝑁𝑇)

) =

(

 
 
 
 
 
 
 
 
 
 
 (

𝑡𝑜𝑠1(1)
𝑡𝑜𝑠1(2)
⋮

𝑡𝑜𝑠1(𝑛1)

)

(

𝑡𝑜𝑠2(1)
𝑡𝑜𝑠2(2)
⋮

𝑡𝑜𝑠2(𝑛2)

)

⋮

(

 

𝑡𝑜𝑠𝑁𝑇(1)

𝑡𝑜𝑠𝑁𝑇(2)

⋮
𝑡𝑜𝑠𝑁𝑇(𝑛𝑁𝑇))

 

)

 
 
 
 
 
 
 
 
 
 
 

= (

𝑡𝑜𝑠(1)

𝑡𝑜𝑠(2)
⋮

𝑡𝑜𝑠(𝑁𝑎𝑑𝑑)

) 
Eq. 5 

For the sake of clarification, NT is the number of time periods in one day and Nadd is the length 

of all the take-off slots. 

Associated with the DTOSV, the model creates a Take-Off Slot Availability Vector, or TOSAV. 

This is a binary vector (0 or 1) that indicates, for each take-off slot tos(k), whether the slot is 

available (takes value of 0) or used (takes value of 1).  

                                                           
14 It is necessary because aircraft do not necessarily pushback, taxi and take-off in the same time period 

due to the length of the period and congestion. Put another way, an aircraft that is ready to take-off in one 

time period may have aircraft ahead that prevent that aircraft from taking-off until some time periods 

later.  
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𝑇𝑂𝑆𝐴𝑉 = (

𝑡𝑜𝑠𝑎(1)

𝑡𝑜𝑠𝑎(2)
⋮

𝑡𝑜𝑠𝑎(𝑁𝑎𝑑𝑑)

) 
Eq. 6 

While doing the simulations, the algorithm needs to update each take-off slot availability, 

tosa(k), from 0 to 1, when the take-off slot tos(k) is allocated to a particular flight. 

 

2.4. GATE CONFLICTS 

The metering strategy has several advantages that make its implementation interesting. However, 

the nature of metering, which consists of holding aircraft at the gate for a longer time, is likely to 

cause additional gate conflicts. A gate conflict is defined as the situation in which an arriving 

aircrafts touches-down (wheels of the landing gear touch the runway) at a time when the gate the 

aircraft is assigned to is still being used by the previous aircraft. These conflicts are the 

consequence of the late departure of the departing aircraft and/or an early arrival of the arriving 

aircrafts. As for metering, holding aircraft at the gate increases the chances of “next flights” 

touching-down while the departing flights are being held.  

Several reasons can increase the likelihood of gate conflicts, among which it is worth noting two: 

firstly, those airports or terminal areas where gates are a scarce resource are more likely to 

experience gate conflicts as there is not much room to find alternative gates; secondly, airlines that 

adopt an aggressive approach to scheduling (they operate a lot of flights out of the same gate) are 

more likely to experience gate conflicts. The latter reason may look interesting as a way to ensure 

earlier releases in a metering environment; this would be true if airports behaved in a rather 

deterministic manner. However, airport operations are exposed to a high degree of stochasticity 

that is likely to play against the interest of the airlines. Indeed, aggressive scheduling is likely to 

lead to long waiting time for arriving aircrafts that have no alternative gate to use and need to wait, 
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blocking the way for other aircraft. Put another way, airlines have no objective incentive to game 

the system by provoking gate conflicts, because such a strategy is expected to negatively affect the 

performance of airline operations at the airport. However, Kim and Feron (2014) proved that 

airlines can reduce the effect of gate conflicts caused by metering, through the implementation of 

a more robust gate assignment; they recommend a robust gate assignment together with metering 

to improve the performance at congested airports. 

 

2.5. STRATEGY A: PUSHBACK-AT-DISCRETION  

As indicated by the name of the strategy and as previously described, pushback-at-discretion 

implies no control over the pushback procedure, which translates into a downstream information 

process; this section introduces the mathematical formulation of this strategy. In order to keep 

consistency and clarity throughout the thesis, this section strictly follows the time framework 

presented in section 2.1, applied to each particular flight. That is, for each flight, the algorithm 

needs to be able to simulate eobt(i), tobt(i), dqet(i), and atot(i). 

 

2.5.1. MATHEMATICAL FORMULATION 

Taking all the above into consideration, the following presents all the steps to model the pushback-

at-discretion strategy for one particular day. Carrying out all the steps subsequently allow the 

model to simulate as many days as required.  

Step 1: Create a matrix with as many rows as flights in the simulated day. Column 1 will be filled 

out with EOBTs, column 2 with TOBTs, column 3 with DQETs and column 4 with TOTs. Column 

5 contains information on the terminal where each flight starts its taxi-out process, column 6 

presents information on visibility conditions (IMC, VMC), and column 7 has information about 
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runway the runway configuration. The data in both column 6 and 7 correspond to the conditions 

(visual conditions and runway configuration) at the time when each flight starts its push-back 

procedure. 

Step 2: Fill out EOBTs and TOBTs. The algorithm assumes eobt(i) and tobt(i)to be the “actual 

pushback time” from the ASPM dataset, which is the time that flight i started the pushback process. 

The rationale behind this assumption is that in the current strategy aircraft tend to start the 

pushback process as soon as they are ready. Thus, the eobt(i) – time when flight i is ready to push 

back- and the tobt(i) – time when flight i actually pushes back – coincide and are equal to the time 

the plane pushed back in reality, which corresponds to the “actual pushback time”.  

Step 3: Evaluate the unimpeded taxi-out time for each flight, utot(i), as a function of the terminal, 

the runway configuration and the visibility conditions. 

𝑢𝑡𝑜𝑡(𝑖) = 𝑓(𝑡𝑏, 𝑟, 𝑣) 

    tb: terminal building 

    r: runway configuration 

    v: visibility conditions 

Eq. 7 

Step 4: Fill out DQETs. the mathematical expression for dqet(i) can be obtained as follows: 

𝑑𝑞𝑒𝑡(𝑖) = 𝑡𝑜𝑏𝑡(𝑖) + 𝑢𝑡𝑜𝑡(𝑖) 
Eq. 8 

The assumption here is that aircraft circulate through the taxiway system for a time equal to the 

unimpeded taxi-out time (Travel time in Figure 15) until they join the departure queue. This 

assumption is simple but is effective at including important factors such as the difference in taxi-

out time from different terminals that leads to changes in the queue order. Figure 15 divides the 

taxi-out time in the travel portion (Module 1) and the queuing portion (Module 2). Module 1 in 
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Figure 15 effectively shows that travel portion of the taxi-out process is only affected by the ramp 

delays and taxiway delays, which are mainly dependent on the terminal building of origin. 

 

 

Figure 15: Taxi-out framework that divides the taxi-out time in travel time and queuing delay. 

Source: (Simaiakis 2013) 

 

It is also worth noting that, DQET is related to the real performance at the airport; it is actually the 

end of the travel portion following the framework from Figure 15 , right before the aircraft starts 

idling. The main deviation from reality is the uncertain nature of the unimpeded taxi-out time, 

which makes it the most likely value in absence of surface traffic. Put another way, the unimpeded 

taxi-out time is a useful mathematical tool to tool to calculate ATOT, although it might be difficult 

to clearly observe it when compared with other milestones. 

Step 5: Sort all flights by DQET, which provides a list of the flights based on the order they are 

ready off take-off, after having taxied through the taxiway system and joined the departure queue 

at DQET. 

Step 6: Assign a take-off slot atot(i) to all the flights following the order of joining the queue. For 

each flight i proceed to do the following sub-steps: 

Step 6.1: Identify the earliest available take-off slot after dqet(i). That is, the slot should 

minimize the time difference between the slot and the dqet(i), verifying that the availability 
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vector TOSAV has a value of 0 for that slot. It is worth noting that here the flight is fixed 

and the variable the model is seeking to allocate is the take-off slot, tos(k), from the 

DTOSV vector. Mathematically, this condition could be expressed as looking for k such 

that: 

𝑚𝑖𝑛| 𝑡𝑜𝑠(𝑘) − 𝑑𝑞𝑒𝑡(𝑖) |     𝑘 = 1,2, … ,𝑁𝑎𝑑𝑑 

subject to: 

𝑡𝑜𝑠(𝑘) ≥ 𝑑𝑞𝑒𝑡(𝑖)     𝑘 = 1,2, … ,𝑁𝑎𝑑𝑑 

𝑡𝑜𝑠𝑎(𝑘) = 0     𝑘 = 1,2, … ,𝑁𝑎𝑑𝑑 

Eq. 9 

Many tools provide solutions to this problem. Given that the simulations in this thesis are 

run in Matlab, the tool used to solve the take-off slot search is the Matlab find function. 

Step 6.2: Update the TOSAV. After allocating a take-off slot to a flight, the corresponding 

component of the availability vector TOSAV should change to 1. 

Step 6.3: Repeat sub-steps 6.1 and 6.2. for all the flights in the day. 

 

2.6. STRATEGY B: METERING 

Metering requires a more complex mathematical formulation to account for the upstream 

propagation of information that will allow a reduction in the surface traffic. Using a similar 

approach as for Strategy A, the goal here is to simulate eobt(i), tobt(i), dqet(i), and atot(i) for each 

flight i. One new feature in the formulation of Strategy B is the need to carry out the simulation in 

time steps. By segmenting the time, the model is able to improve performance. 
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2.6.1. MATHEMATICAL FORMULATION 

Before plunging into the step by step formulation of the model, it is worth having a general 

understanding of how the model goes about propagating the information upstream. It is important 

to recall the following: the main objective is to be able to predict runway capacity data, and then 

propagate these data upstream to suggest a pushback rate that limits the surface traffic to those 

aircraft that strictly ensure number of aircraft that get to the runway and need to idle before they 

can take-off. A three-stage process provides a clear context of the proposed strategy built in this 

thesis: 

 

Figure 16: Conceptual stages to describe the metering strategy 

 

 Stage 1 consists of determining runway capacity using the regression trees already 

introduced. That is, based on the runway configuration, the visibility conditions, the rate 

of arrivals and weather (RAPT), the trees provide a predicted value of runway capacity. As 

indicated previously, it is important to use predicted capacity (from the regression trees) 

instead of observed throughput in those situations when we are forecasting instead of 

analyzing “what would have happened if”. In this case, the goal is to predict the capacity 

Stage 1
• Determining runway capacity using regression trees

Stage 2
• Building queuing dymamics model to suggest pushback rates

Stage 3
• Converting pushback rates into pushback slots
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before this capacity is experienced, and thus, it would be conceptually inappropriate to use 

the observed capacity as it has not been observed in the time when the prediction is made. 

 Stage 2 primarily intertwines all the variables involved in the queuing dynamics at the 

taxiway level. In this stage, the main goal is to understand the dynamics of the ramp area 

and taxiway system, from section 2.3, in order to evaluate how to translate the runway take-

off capacity translates to surface traffic. In order to do so, the model imposes the 

conservation principle the taxiway system, taking into account inputs, and outputs. That is, 

in a particular time period, there needs to be control over the number of aircraft that leave 

the system, those that stay. All these variables need to be aligned with the saturation 

considerations coming from the saturation plots presented above. By imposing the no-

saturation condition it is possible to obtain the number of aircraft that need to push back in 

an easy expression. Figure 17 provides a framework to deduce such an expression: 

𝑁𝑝𝑢𝑠ℎ = 𝑁𝑐𝑡𝑟𝑙 +𝑁𝑡𝑎𝑘𝑒𝑜𝑓𝑓 − 𝑁𝑐𝑢𝑟 Eq. 10 

where Npush is the number of aircraft that need to push in order to satisfy the no-saturation 

condition; Nctrl is the saturation threshold from the saturation plots above; Ntakeoff is the 

expected take-off capacity obtained in Stage 1; and Ncur is the number of aircraft that are 

on the surface at the beginning of the time period. 

 

Figure 17: Taxiway system queuing model to deduce Npush 
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Stage 3 translates Npush to a pushback slot vector PBSV(T) equivalent to the take-off slot vector 

TOSV(T) derived in section 2.3. Indeed, the model homogeneously distributes Npush pushback 

slots (pbs) over time period T, with an average time separation between pbsT of T/ Npush .  

𝑃𝐵𝑆𝑉(𝑇) = (

𝑝𝑏𝑠𝑇(1)
𝑝𝑏𝑠𝑇(2)

⋮
𝑝𝑏𝑠𝑇(𝑛𝑇)

) 
Eq. 11 

Similar to what happened with the take-off slots, each PBSV has a pushback slot availability 

vector that indicates whether a particular slot has been used or not in a particular moment. 

𝑃𝐵𝐴𝑉(𝑇) = (

𝑝𝑏𝑠𝑎𝑇(1)
𝑝𝑏𝑠𝑎𝑇(2)

⋮
𝑝𝑏𝑠𝑎𝑇(𝑛𝑇)

) 
Eq. 12 

 

With this strategy, it is possible to limit the number of aircraft in the departure queue and thus 

reduce the queuing time. It is interesting at this point to recall the framework presented in Figure 

15. With the metering strategy, the taxi-out portion of queuing delay is being reduced significantly 

and thus, the taxi-out time gets significantly limited to travel time.  

This metering framework has several expected benefits, but it also important to consider the main 

challenges associated with it; the most important of these challenges being gate conflicts. In this 

fashion, Figure 18 depicts the simulation process implemented in this research in order to consider 

these gate conflicts. First, the model carries out a simulation with a pure metering strategy; 

understanding pure metering as a strategy where there are no constraints and therefore aircraft can 

be held for as long as they need to be in order to avoid unnecessary queuing delay. Second, the 

model analysis the gate conflicts by looking at the interactions between arrivals and departures out 

of each gate, for all the gates at the airport; by doing this it is possible to identify flights for which 
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the holding time leads to a conflict with an arriving flight. Third, the model identifies these 

conflicting flights and modifies their pushback times in order to avoid this situation. 

 

 

Figure 18: New simulation process to include gate conflicts 

 

The remainder of this section describes in detail the steps to implement this three-process 

simulation framework.  It is important to notice that although the format of the steps may seem 

different from the steps in Strategy A, they are analogous and the their target is the same. Indeed, 

the two sets of steps aim at deriving EOBTs, TOBTs, DQETs, and ATOTs for all the flights.   

 

Table 6: Steps to simulate the departure procedure including gate conflict analysis and the 

correction to include those conflicts in the model 

Process Steps 

Simulation 1 

 

Step 1: eobt(i) for all flights is equal to the actual pushback time from the ASPM 

dataset 

Step 2: Update the time counter. T = T+1 

Step 3: Compute Ncur (Number of aircraft currently active on the surface) 

Step 4: Evaluate Nctrl as a fuction of the runway confuguration and the visibility 

conditions Nctrl=f(r,v)  

Step 5: Compare Nctrl and Ncur 

Simulation 1:

Pure metering 
algorithm

Analysis of gate 
conflicts

Simulation 2:

Correction for gate 
conflicts
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If Ncur < Nctrl : Follow the steps in strategy A, only for the flights in the 

time period under analysis. 

If Ncur>Nctrl : Go to step 6 

Step 6: For all flights from previous time periods without a pushback slot, the 

algorithm allocates the pushback slots available on a FCFS basis. If pushback 

slots are still available they are allocated to the flights calling for pushback in the 

time period analyzed in a FCFS manner. Allocating a pushback slot to a flight 

means searching for the first pbsT(k) available after eobt(i); put another way, the 

algorithm imposes tobt(i) equal to the pbsT(k) which fulfills the availability 

conditions. Those flights without pushback slot allocated have to wait until 

subsequent time periods. 

Step 7: For all flights that have a tobt(i) assigned, dqet(i) is deduced as in 

Strategy A:  𝑑𝑞𝑒𝑡(𝑖) = 𝑡𝑜𝑏𝑡(𝑖) + 𝑢𝑡𝑜𝑡(𝑖) , with utot(i) as a function of the 

terminal, the runway configuration and the visibility conditions. 

Step 8: For all flights with dqet(i) calculated, atot(i) is obtained by following 

Step 6 and sub-Steps 6.1, 6.2 and 6.3 from Strategy A. In brief, it is necessary to 

identify, for each flight, the earliest take-off slot available and then update the 

availability vector.  

Gate conflict 

analysis 

 

Step 1: List all the arriving and departing flights from the ASPM dataset 

Step 2: List all the gates for each arriving and departing flight from the flightstats 

dataset. 

Step 3: For each gate, create a 3 column matrix with all the departing and arriving 

aircraft that are serviced at that particular gate. The first column shows with a -1 
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or a +1 whether the flight is a departure or an arrival. The second column contains 

the TOBTs of departing aircraft and the wheels-on time of arriving aircraft. The 

third column shows the gate-holding length due to metering. 

Step 4: Determine those departing flights for which the next arriving aircraft 

touches down during the additional gate-holding. Flights that fall in this category 

are the ones that need to pushback soon after an arriving aircraft touches down. 

Step 5: Create a “gate conflicts matrix” with 2 columns with length equal to the 

number of flights in the simulated day. The first column contains those departing 

flights that need to push back earlier as they are involved in gate conflicts. Flights 

with such a condition are displayed with the number 1; otherwise, this column is 

0. For those flights with 1 in the first column, the second column provides the 

time when the conflicting aircraft needs to start the pushback procedure, which 

corresponds to the time the next aircraft touches down. 

Simulation 2 

 

Step 1: From the list provided by the gate conflicts analysis, identify all the 

flights that are affected. 

Step 2: For those flights, change the tobt(i) to the value shown in the second 

column of the gate conflicts matrix.  

Step 3: For all flights repeat Steps 4, 5 and 6 from Strategy A to allocate the new 

dqet(i) and atot(i).  
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2.7. DEFINITION OF MAXIMUM GATE-HOLDING POLICIES  

After describing all the details of the metering strategy, the natural transition would be to proceed 

to show results; however, at this point it is best to run a first round of simulations and see how the 

model is performing. In particular, we would like to look at the most controversial output of the 

model, the gate-holding times. Indeed, the gate-holding times are what ensures the efficiency of 

the model, but are also perceived as an operational challenge from an airline’s perspective. To this 

end, Figure 19 plots the duration of the gate holds at a flight level, a consequence of the metering 

strategy. Three main conclusions can be drawn from Figure 19:  

 Between 80% and 90% of the flights are not being held at all 

 The frequencies associated with gate holds longer than 10 minutes are small 

 The tails of the distributions are rather long, but with low frequency. 

We anticipate that the last point may bring some discussion among stakeholders. Indeed, from a 

practical perspective, managing a 5-minute gate hold may be manageable by an airline current 

operation procedures given the current uncertainty. However, a 20- or 25-minute gate hold may 

be an operational challenge. Given this reality, this research proposes a portfolio of three metering 

policies to help in order to provide some flexibility in the implementation of the metering strategy. 

 Policy B.Unr: This policy corresponds to a pure metering strategy as described so far with 

no limit to the gate hold length. 

 Policy B.15: This policy is limits the gate-holding time to 15 minutes. That is, after 15 

minutes of holding, the aircraft is allowed to start the pushback procedure even though 

from a metering standpoint it would be recommended to wait. 

 Policy B.10: This policy is similar to the previous one, but in this case the gate-holding 

limit is 10 minutes. 
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Figure 19: Histogram of duration of gate holds in minutes for the main seven carriers at LaGuardia. Data from July 1, 2013 to August 

30, 2013 
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As depicted in Figure 20, in order to input these restrictions into the model, it is necessary to create 

a new step in the simulation process. That is, after carrying out the simulation including the pure 

metering strategy, there needs to be a second simulation that releases those aircraft holding longer 

than the threshold. Then we can and finally carry out the gate conflict analysis as well as the 

correction for gate conflicts.  

 

Figure 20: New simulation process to include max hold conditions 

 

At this point, it is relevant to understand how the model goes about implementing this max holding 

time condition; this can be seen in Table 7. The table shows the new row that would fall between 

Simulation 1 (pure metering) and the analysis of gate conflicts.  

 

Table 7: Additional row in Table 6 in order to include the maximum holding time condition. 

Process Steps 

Simulation 2: 

Imposing maximum 

hold conditions 

 

Step 1: From the list provided by the gate conflicts analysis, identify all 

the flights that are affected. 

Step 2: For those flights, change the tobt(i) to the value shown in the 

second column of the gate conflicts matrix.  

Step 3: For all flights repeat Steps 4, 5 and 6 from Strategy A to allocate 

the new dqet(i) and atot(i). 

 

Simulation 1:

Pure metering 
algorithm

Simulation 2:

Imposing max 
hold conditions

Analysis of 
gate conflicts

Simulation 3:

Correction for 
gate conflicts
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The reason for calculating the maximum holding times before the gate conflicts is just a matter of 

computational cost. Limiting the time aircraft hold at the gate reduces the time aircraft are exposed 

to cause a gate conflict. Thus, by implementing the MHP policies we reduce the number of gate 

conflicts generated and, hence, the computational cost of solving those conflicts. 

Looking back at all the sections in Chapter 2 it is worth stating that this chapter proposes a metering 

strategy that tackles the inefficiencies related to queuing time (as opposed to travelling) derived 

from the pushback at discretion strategy. In particular, metering is based on an accurate 

understanding of the flow propagations through the airport surface to recommend gate holds, 

which leads to a reduction in engines-on time during the taxi-out procedure, which in turn leads to 

reductions in the fuel burn and gas emissions. As main challenges, we can point out the increase 

in gate conflicts (although Chapter 3 shows the small scale of the increase) and more granular 

resource management operational challenges that arise from an increase resource utilization time. 

Early results show that the necessary length to implement such a strategy is in the great majority 

of cases short; however, a small proportion of flights being held longer times, potentially stressing 

the challenges of the model, from an airline’s perspective. Considering this argument, we introduce 

three different metering-based policies that limit the length of the gate holds with the rationale that 

shorter gate holds lead to a significantly less noticeable consequences. The first policy is pure 

metering, with no gate-holding limit, the second sets a limit of 15 minutes, and the third policy a 

limit of 10 minutes. With these three policies we believe stakeholders have enough flexibility to 

choose the option they believe best solves the trade-off between benefits and their own set of 

challenges. The three strategies present benefits in terms of real money savings (fuel burn 

reduction), however, the portfolio of strategies allow decision makers to pick the strategy based 

on the trade-off between the value added and perceived risks. To help inform stakeholders on how 
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to assess the advantages and disadvantages of implementing a particular policy, Chapter 3 presents 

numeric values of value added by each policy, in terms of benefits and challenges. 
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3. RESULTS AND DISCUSSION 
 

This chapter presents the results in the following manner: The first section is a general proof that 

metering is an effective strategy at reducing the taxi-out time, looking at it from an aggregate 

perspective, from terminal standpoint, as well as from a runway configuration viewpoint. This first 

section emphasizes not a quantitative but a qualitative understanding of the taxi-out reduction. The 

second section provides more detailed analysis about the presence of gate conflicts with the 

implementation of metering. Finally, the third section presents a more quantitative-based approach 

to compare the three different maximum gate-holding time policies introduced. It is worth noting 

that given the way the B.Unr. policy has been defined, it corresponds to the pure metering strategy 

and thus, the general results in section 3.1 correspond to the unrestricted maximum gate-holding 

limit policy. 

 

3.1.EFFECTIVENESS OF THE METERING STRATEGY 

This section aims at understanding the circumstances in which metering provides a reduction in 

taxi-out time and thus a reduction in emissions and fuel burn. 

3.1.1. GENERAL EFFECTIVENESS 

The first aspect to consider is whether the metering strategy actually leads to a significant reduction 

in taxi-out reduction. In this regard, it is interesting to look at Figure 21, which plots the average 

taxi-out time by time of the day for both the baseline and metering strategies. These average taxi-

out times are computed over the 62 days from July and August 2013. The most interesting aspect 

to look at in Figure 21 is the difference between the two curves and the relation between this 

difference and the baseline taxi-out time. The first observation is that once the traffic builds in the 
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morning (from 6 AM to 9 AM), there is a consistent reduction of taxi-out time throughout the day 

until the traffic is reduced at night. The reduction is particularly salient during the afternoon peak 

(4 PM – 6PM). It is worth understanding that these results are average reduction over a period of 

62 days, and therefore, the results do not imply that every day will experience a taxi-out a taxi-out 

reduction as the one displayed in Figure 21. Indeed, there may be days with no reduction at all, 

and other days with a larger reduction. The main take-away from this figure is the consistency in 

the taxi-out reduction throughout the day. 

 

Figure 21: Average taxi-out time by time of the day for the baseline and metering case. The 

metering strategy leads to a significant reduction in taxi-out time. Data from July 1, 2013 to August 

30, 2013 
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3.1.2. BY TERMINAL 

In this section the main goal is to determine the way these taxi-out reductions are distributed among 

terminals. Figure 22 shows a breakdown of the aggregate data presented in Figure 21 by terminal 

area. The first observation, and the main take-away, is that flights operating in all terminals are 

seeing reductions in their taxi-out times throughout the day in a consistent way. Put another way, 

the reductions seen at an aggregate level are not dependent on the terminal the flight is operated 

from. In addition it is possible to see that independently from the scheduling levels (number of 

flights per hour), the flights still experience consistent reductions during the day. This comes from 

the fact that the bottleneck in this situation is the runway; given that pushback slots and runway 

take-off slots are allocated on a FCFS basis, the terminal from which the flight is being operated 

is likely to not be a relevant factor in the taxi-out reduction.  

 

Figure 22: Average taxi-out time by terminal and by time of the day for the baseline and metering 

case. The metering strategy leads to a significant reduction in taxi-out time. Data from July 1, 2013 

to August 30, 2013 
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3.1.3. RUNWAY CONFIGURATION 

The next aspect worth analyzing is the relevance of taxi-out time reductions for the most used 

runway configurations. Figure 23 depicts a breakdown of the general taxi-out reductions in the 

five most frequent runway configurations: 31|4, 22|31, 31|31, 22|13, and 4|13. Opposed to the fairly 

homogeneous reduction in taxi-out time by terminal observed in Figure 22, Figure 23 shows two 

different behaviors in runway configurations. On the one hand, runway configurations 31|4, 22|13, 

and 4|13 see fairly consistent taxi-out reductions throughout the day from the morning traffic build-

up to the time traffic goes down in the evening. On the other hand, runway configurations 22|31 

and 4|13 experience non-existent taxi-out reductions as both the baseline and the metering average 

taxi-out curves overlap.  

 

Figure 23: Average taxi-out time by runway configuration and by time of the day for the baseline 

and metering case. The metering strategy leads to a significant reduction in taxi-out time. Data 

from July 1, 2013 to August 30, 2013 
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When comparing the absolute values of baseline taxi-out times (dotted lines) from each subplot in 

Figure 23, the average taxi-out time values for configurations 22|31 and 31|31 are already lower 

than the other configurations. This indicates that these runways are being used in circumstances 

where the surface traffic is low, and thus, congestion is not a salient factor. Given that metering is 

particularly effective in periods with congestion, we claim that the lack of congestion likely 

justifies the non-existent or small reduction in taxi-out time.  

The objective at this point is to use the data available, ASPM, to justify the difference in taxi-out 

reduction. We do this by comparing the runway configuration use in the period of analysis, July-

August 2013, with those periods of time when metering occurs. Alternatively, the objective is to 

understand whether the use of all the runway configurations is the same with or without metering. 

Put another way, the goal is to see whether metering promotes the use of a particular set of runway 

configurations. To do so, it is worth comparing Figure 24 and Figure 25. On the one hand, Figure 

25 depicts the configurations during the July – August 2013 period in which all flights operated; 

that is, Figure 25 displays the proportion of flights that operated in a particular runway 

configuration. On the other hand, Figure 24 depicts the configurations during the same period, but 

only for flights that experienced a gate hold, and thus operated in a period when congestion led to 

the implementation of the metering strategy. By comparing the two figures, the following 

conclusions can be drawn: 

 Runway configurations 31|4, 22|13, and 4|13 are overrepresented in those periods with 

metering. These configurations represent more than 90% of the flights with metering, 

compared to the approximately 70% of those flight in general situations. 
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 Runway configurations 22|31 and 31|31 are underrepresented during metering as these two 

configurations are only used approximately 10% of the time, compared to approximately 

30% of the time in the general case. 

 
Figure 24: Use of runway configurations during July 2013 and August 2013.Runway 

configurations 22|31 and 4|31 have approximately a joint 30% share. 

 

 

Figure 25: Use of runway configurations during the metering periods on July 2013 and August 

2013. Runway configurations 22|31 and 4|31 have approximately a joint 30% share. 
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From these results we can deduce that there is no significant reduction in taxi-out time because 

runway configurations 22|31 and 31|31 are barely used when metering and the observed taxi-out 

times are the shortest, which indicate periods of low congestion. The interesting fact is that both 

configurations use the same departing runway, runway 31. Therefore, further analysis on runway 

31 may suggest the reasons for its not being used much during metering periods. However, this 

would require additional work beyond the scope of this research. 

At this point of it is worth pointing out that metering is an effective strategy to reduce the taxi-out 

time in a consistent way during the day regardless of the terminal the flights operate from. As for 

runway configurations, only those configurations used during metering periods see a consistent 

reduction throughout the day, which also strengthens the effectiveness of the metering strategy. 

 

3.2.GATE CONFLICTS 

The previous section proves that metering is effective at reducing the taxi-out time, but it also 

important to quantify the consequences of the implementation of such a strategy. In particular, this 

section looks at gate conflicts, which have been described in section 2.4. To this end, Figure 26 

shows an airline-specific analysis of average gate conflicts by time of day.  

The blue bars show the current gate conflicts obtained from the ASPM and flighstats datasets. That 

is, the model computes for each gate, the arrivals whose gates are in use at the wheels-on time. In 

this regard, Delta currently has the worst performance with maximums of 1.3 gate conflicts per 

hour at 10 AM. In this case, having a larger market share and operations at the airport does not 

justify the larger number of gate conflicts as Delta also has more gates. The larger number of 

conflicts has to with the way Delta uses these gates and allocates flights to them. The other carriers 
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currently present a significantly lower level of conflicts around 0.4 gate conflicts per hour, on 

average.  

As expected, holding aircraft at the gate leads to additional gate conflicts, which are depicted in 

red in Figure 26. Although the initial expectations were to see a significant increase in gate 

conflicts, the actual numbers are small. In particular for Delta, the maximum average additional 

number of gate conflicts is 0.4 conflicts per hour, a situation that only concerns one one-hour 

period during the day; the rest of the day, the values are significantly smaller. An average value of 

0.4 conflict is small because out of the approximately 40 departures per hour, only 0.4 is affected 

by this type of conflicts. For the case of Delta, there is a sustained 0.1 to 0.4 additional gate 

conflicts throughout the day, particularly from the moment the traffic builds up in the morning to 

the moment the traffic decreases in the evening. This is an interesting case as the gate conflicts 

(direct cost) are sustained throughout the day, and the same occurs with taxi-out reductions (direct 

benefit). Such a behavior does not replicate for other carriers. On the one hand, American and US 

Airways have two hours (3 PM to 5 PM) when the gate conflicts are on the 0.2 to 0.4 level, but the 

rest of the day the gate conflicts are disregardable. As for the rest of the carriers, the additional 

gate conflicts are either non-existent or they are too small to have a considerable impact on the 

performance of these carriers. Such low results are the consequence of the comparatively low 

scheduling levels at the airport out of gates where they are the only carriers, which allows them to 

schedule a small number of flights in a more robust manner. 
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Figure 26:Baseline (Strategy A) gate conflicts by time of day in blue and additional gate conflicts by time of day when implementing 

Metering (Strategy B.Unr.). Data from July 1, 2013 to August 30, 2013 
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After understanding the small scale impact of the gate conflicts derived from metering, it is worth 

understanding whether there is any particular variable that is more influential when analyzing gate 

conflicts. Indeed, the total number of gate conflicts is a function of many variables such as the 

scheduling strategy, the limited number of gates, the turnaround times and the network delays. 

When it comes to understanding gate conflicts, other values may come into play. Our initial 

hypothesis are to analyze the time of day and the weather as potential sources of gate conflicts. 

The results from Figure 27 and Figure 28, however, do not support our initial assumptions.  

First, Figure 27 illustrates the average number of gate conflicts by time of day (in black) and the 

same indicator broken down by weekday and weekend. As the black curve is an average value, it 

is interesting lo break it down in subsets to identify trends based on the subset. In particular Figure 

27 shows no clear evidence as to whether more gate conflicts occur during weekdays or weekends 

with the only potential exception of Delta, which shows a smaller level of conflicts on weekends 

than weekdays in some periods of the day, although not throughout the day. The potential 

justification for such a difference is the regular 30% scheduling reduction that Delta implements 

on Saturdays to accommodate the reduction in demand. As indicated earlier, the evidence of the 

difference in pattern between weekdays and weekends is not strong and even in regions where the 

difference is strong, the smaller value of gate conflicts is negligible. 

The rest of the carriers present a similar, or not discernable, trend between the two sorts of days. 

Second, Figure 28 depicts the average number of gate conflicts by time of day (in black) and the 

same indicator broken down by two weather categories, whether or not there were RAPT values 

larger than zero. Put another, “days with RAPT” category contains all the days with some RAPT 

values above 0. To reiterate, this research uses the RAPT variable as a proxy for weather. As for 

the results, Figure 28 shows that there is not enough evidence to think of significant difference 
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between days with or without positive RAPT values. Similarly to what happened with the day of 

the week factor, only Delta seems what could be regarded as a difference between periods with 

weather and without weather, but the evidence is weaker than in the previous case; indeed, the 

difference is only observable in the afternoon and evening times.  

Based on this analysis we can state that metering leads to additional gate conflicts that are smaller 

than initially expected and in average values per hour, they are small when compared to traffic 

data. In trying to identify factors influencing the presence of gate conflicts, the day of the week, 

and the weather, the data reveals no evidence to help us divide the data into segments in order to 

better predict behavior. 

This extensive analysis shows the low frequency of gate conflicts, which allows us to manage 

these events without significantly altering airport surface operations nor diminishing the 

effectiveness of the proposed strategy. 
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Figure 27: Mean gate conflicts by time of day in three situations: mean of all days, week days and weekends. Data from July 1, 2013 to 

August 30, 2013 
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Figure 28: Mean gate conflicts by time of day in three situations: mean of days with RAPT larger than 0 (“bad weather”), mean of days 

with RAPT equal to 0 (“good weather”). Data from July 1, 2013 to August 30, 2013 
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3.3.ANALYSIS OF MAXIMUM GATE-HOLDING POLICIES 

After understanding the dynamics of the taxi-out reduction and the occurrence of gate conflicts, 

this section analyzes quantitatively the implementation of the three proposed metering-based 

maximum holding policies. Going back to the definition of these maximum holding policies, this 

analysis compares the B.Unr. or unrestricted policy, the B.15, and the B.10 policies. The first does 

not limit the gate-holding time at all and therefore the results shown for such a policy are those of 

the pure metering strategy. The second and third policies limit the gate-holding times to 15 and 10 

minutes, respectively. As described earlier, these three proposed strategies aim at providing the 

stakeholders with flexibility around the implementation process. With these policies on the table, 

each stakeholder can understand how those interact with internal operational practices and weigh 

the benefits and costs. 

Before delving into the results in Figure 29, it is worth taking into consideration the following 

observations. First, the color code used is: black corresponds to the baseline case or Strategy A 

(push-back-at-discretion), blue corresponds to Policy B.Unr, red corresponds to Policy B.15, and 

finally green corresponds to Policy B.10. Second, there are three sets of curves plotting three 

different variables:  

 The topmost subplot shows surface traffic for the four curves, with surface traffic defined 

as the number of aircraft that, at the beginning of the time period, have started the pushback 

procedure (not including those that are holding at the gate) but have not yet taken off. 

From a mathematical perspective, the surface traffic at time period T is the sum of all 

flights that fulfil the two following conditions:  

o the TOBT(i), the Target Off-Block Time, is earlier (or smaller) than the initial time 

t of time period T 
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o the ATOT(i), the Actual Take-Off Time, is later (or larger) than the initial time t of 

time period T 

 The curves on the positive side of the lower subplot depict average taxi-out times, defined 

as the difference between atot(i) and tobt(i). 

 The curves on the negative side of the lower subplot illustrate average gate-holding times. 

Showing these gate-holding times in the negative area of the subplot is a way to easily plot 

the three variables together, as they are clearly interwoven.  

Despite plotting the three variables together, it is important to be aware of the time lapse between 

them. The simulation time period length of 15 minutes, and thus, if an aircraft with EOBT is T is 

held during T, it is likely that this aircraft does not start taxiing-out until time period T+1 and 

therefore the reduction in surface traffic is not observed until period T+1 or even T+2. That is the 

reason why some accounting mismatches of one or two time periods occur. 

At this point, it is worth understanding how each policy works by analyzing Figure 29, in 

particular, the connections between the three variables displayed. The main observations from 

Figure 29, corresponding to July 9, 2013, are the following: 

 For surface traffic levels below the Nctrl level (21 in the case of the Figure 29), the three 

metering policies yield the same results as those provided by the baseline case. This 

translates into the color curves overlapping with the black curve. Such behavior can be 

seen from the beginning of the day until 11:45AM. 

 The three metering policies behave similarly in circumstances when the surface traffic is 

slightly above of the Nctrl level. These small differences lead to short gate holds, which are 

shorter than 10 minutes, and thus, policy B.10 does not require any forced push. This 

situation takes place between noon and 2:30 PM. Despite the small size of the difference 
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in the figure, the real magnitude of the taxi-out reductions, which is similar to that of the 

gate holds, is about 5 minutes. 

 In periods when the surface traffic is significantly above the Nctrl value, there is a significant 

difference between the unrestricted policy and the other two policies. The three policies 

perform the same up to a point at which the B.10 policy starts noticing aircraft being held 

more than 10 minutes and forces those aircraft to pushback even though the metering 

strategy would recommend them to hold at the gate, given that they are generating 

congestion.  A similar argument can be made for the B.15 policy when aircraft start holding 

longer than 15 minutes.  

 B.10 and B.15 are effective at maintaining gate-holding times at 10 and 15 minutes 

respectively. The flat lines green and red lines during the 3:30 PM to 8:30 PM are clear 

signs of the model’s effectiveness of ensuring there is no gate hold longer than the specific 

threshold. 

 The unrestricted policy is the most effective at keeping the surface traffic constant 

throughout the day at values around the Nctrl level. However, the performance during the 

evening peak is above the expected threshold; the reason for such higher-than-expected 

traffic levels is the presence of gate conflicts as gate holds increase. As explained in section 

2.4, gate conflicts are resolved, forcing a pushback regardless of whether this additional 

aircraft on the surface brings the surface traffic to exceed Nctrl.  

 Having taxi-out values and gate holds on the same scale allows for fair comparisons 

between reductions and gate holds. Before looking at quantitative results (analyzed below), 

it possible to state that taxi-out reductions seem comparable to the gate-holding times, plus 



86 

 

or minus some adjustment of one or two time periods due to surface traffic taking place 

one or two time periods after the EOBT of each flight. 

 In periods with large surface traffic, policies B.10 and B.15 perform similarly; specifically, 

they lead to parallel taxi-out and gate-holding curves separated 5 minutes from one another.  

The space between the black and blue curves in the three families of curves show the reduction 

opportunities by implementing different maximum gate-holding strategies. Indeed, this research 

has chosen 10- and 15-min thresholds, but should other values be picked, the resulting performance 

curves would fall somewhere between the black and blue curves. However, due to the non-linearity 

of the problem it is difficult to pick a gate-holding limit to obtain particular threshold.  

These observations are made based on the data from July 9, 2013, which was chosen because of 

the clarity of the values and the figures associated to it. However, not all the days in the data behave  

in such a way and actually, there are days in which there are no gate holds at all because the surface 

traffic is never above the Nctrl level. As a reminder, the high values of surface traffic may be due 

to two main reasons:  

- The number of aircraft scheduled to take-off in a particular tie period is large. 

- The weather and or airport characteristics in that particular period lead to an airport 

capacity which is unable to manage given demand. 

The former reason is a given or static reason, as scheduling takes place at least six months in 

advance, but the latter reason is dynamic as it depends on how is the weather like on a particular 

day or what runway configuration the airport is operating in at that particular moment. Therefore, 

one particular schedule may be operated under no congestion or gate holds, and that same schedule 

may lead to significant congestion and gate holds given that the dynamic part of the problem is 

being affected by weather. However, in reality these two problems are coupled as although 
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scheduling levels tend to remain fairly consistent throughout a season, the real performance of that 

schedule can vary significantly from what is predicted due to weather, and runway configuration 

to a lesser extent. Indeed, weather affects the overall airport capacity, including arrivals and 

departures. Such modifications in capacity are likely to change the realization of the schedule from 

what they are initially planned. To this end, the evening surface traffic levels observed in Figure 

29 are a consequence of the decrease in capacity due to RAPT values higher than 0 that lead to 

lower departure throughput capacity.  
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Figure 29: Surface traffic, taxi-out times and gate-holding times for three MHP, compared with the baseline cases. Data from July 9, 

2013 
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Having analyzed Figure 29 and conceptually derived the dynamics behind the different policies, 

Table 8, Table 9, and Table 10 quantify the benefits, costs and fairness of each policy in terms of 

time and benefit share. Principally, the information provided in the three tables is organized as 

follows: 

 Taxi-out time reductions: In this block we provide the data to assess the benefits of each 

metering policy. 

o Total airline taxi-out reduction over the 62-day period (in minutes): This value is 

the addition of all the taxi-out reductions by airline for all flights from July 1 to 

August 31 2013 (i.e. Delta is expected to see a reduction of 24,493 minutes for all 

the Delta flight belonging to the July-August period should the unrestricted policy 

be implemented). From the model’s performance viewpoint, this number itself does 

not provide much information, apart from showing how large the number can 

become over the period of two months. However, from the operator’s perspective, 

this is number can be multiplied by unit emissions and unit fuel burn to obtain total 

reductions. 

o % Reduction in taxi-out time: This is % reduction in total taxi-out time when 

compared with the baseline case for each particular airline. (i.e. For Delta, the 

24,493 minutes would represent a 6.5% reduction should the unrestricted  policy 

be implemented). This number is relevant as it is one of the key performance 

indicator of the benefits associated with a particular policy. 

o Percentage of the benefits: This value is the share of the taxi-out reductions that 

corresponds to each airline in percentage terms. That is, if all the taxi-out 

reductions, in minutes, for each airline are added up we would obtain all the benefits 
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generated by each policy; the percentage of the benefits is the portion of the total 

benefits allocated to every airline (i.e. For Delta, the predicted 24,493 reduced 

minutes if the unrestricted policy were implemented would represent a 39.1% of 

the benefits achieved by all the carriers). This indicator is relevant while assessing 

fairness of benefits; further information is provided in the Market Share block 

below. 

 Gate Holds: In this block we provide data to evaluate the impact of each of metering policy 

in terms of the gate holds generated, in absolute and relative terms. 

o Total gate holds over the 62-day period (in minutes): This indicator adds up all the 

gate-holding times that all the flights for each airline experience over the course of 

the 62 days (i.e. The unrestricted policy is expected to lead to 24,660 minutes of 

holding for Delta). From the model’s performance viewpoint, this number itself 

does not provide much information, apart from showing how large the number can 

become over the period of two months.  

o % of the benefits: This variable computes the airline-specific portion of the total 

gate-holding time (i.e. The model predicts that Delta would experience 39.4% of 

the total gate-holding time by all airlines). This indicator is relevant while assessing 

fairness of the gate holds; further information is provided in the Market Share block 

below. 

 Market Share of departures: This indicator accounts for the share of departures operated 

by each airline during the July-August 2013 period (i.e. Delta operated 38% of the 

departures). This indicator is the base for comparing the percentage of benefits and 
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percentage of the gate holds that each airline experiences, which will allow us to make 

conclusions about the fairness of the metering strategy. 

Understanding the variables, it is possible to start learning from each table. First, Table 8 displays 

the performance data for the unrestricted policy, which is equivalent to a pure metering strategy 

and can be seen as the maximum yield that can be derived from implementing metering. In such 

conditions, the main key points are: 

 The average efficiency of this policy is between 5.7% and 6.9%. Interestingly, the values 

on the lower side of the interval belong to smaller carriers and those in the higher part 

belong to bigger carriers. 

 The unrestricted policy leads to a reduction of taxi-out times by airline that are 

commensurate with the gate-holding time. 

 The percentage of benefits are nearly identical to the percentage of the costs, which is a 

clear signal of fairness. That can be thought of as, for each 1% of the total taxi-out reduction 

an airline needs to wait 1% of the total gate-holding time. From the previous point, we 

know that these two total values are the same and thus, from 1 minute of holding airlines 

get 1 minute of taxi out reductions. 

 The percentage of benefits (and thus the percentage of the gate holds) for each airline is 

approximately equal to the share of departures. For example, Delta operated 38% of the 

departures in the period under study and the model grants Delta 39.1% of the benefits of 

holding and 39.4% of the gate holds. The error between the benefits and the departure share 

is +/- 1.5% which we believe is a small prediction error. Based on this finding, we can state 

that this policy ensures fairness, given that operators with more departures are likely to see 

more benefits (and more gate holds) from the model. 
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In addition to these observations, it is useful to keep in mind what are the main consequences 

of this policy in terms of gate holds, particularly the distribution of their duration. For the 

unrestricted policy, or pure metering, the distribution of gate hold duration is shown in Figure 

19, showing the preliminary results of the pure metering strategy. Having that distribution in 

mind is helpful to understand the performance of the two policies presented below. 

The B.15 policy performance results are shown in Table 9. Most of the observations from in 

this case are rather similar to those from the unrestricted policy, except for the magnitude of 

the total taxi-out reductions and efficiency rates that on this occasion fall between 2.8% and 

3.8%. The benefits are commensurate with the costs, which in turn are approximately equal to 

the departure share, ensuring the fairness of the policy.  

Keeping in mind the distribution of gate hold durations from Figure 19, it is helpful to see how 

policy B.15. changes the shape of that distribution; such a change in the shape of the histogram 

is depicted in Figure 30. The only difference when compared with Figure 19 is that all the 

values located in the tail to the right of the 15-min threshold are moved to the 15-min bar. Put 

alternatively, any gate hold longer than 15 minutes is reduced to 15 minutes; that is the reason 

why the frequency associated with 15 minutes increases. The interesting part is that the left 

part of the plot remains the exactly the same. 

 

.
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Table 8: Taxi-out time reductions (absolute and relative) and gate-holding time (absolute and 

relative) for policy B.Unr. Data from July 1, 2013 to August 30, 2013 

B.Unr TAXI-OUT TIME REDUCTIONS GATE HOLDS Market 

share Minutes Reduction % of the benefits Minutes % of gate holds 

Delta 24,493 6.5 % 39.1 % 24,660 39.4 % 38.0 % 

American 11,713 6.6 % 18.7 % 11,662 18.6 % 19.8 % 

US Airways 5,842 6.9 % 9.3 % 5,848 9.3 % 8.2 % 

United 2,377 6.4 % 3.8 % 2,343 3.7 % 4.3 % 

Spirit 1,037 6.0 % 1.7 % 1,038 1.7 % 2.0 % 

Southwest 2,486 5.8 % 4.0 % 2,489 4.0 % 5.1 % 

JetBlue 1,450 5.7 % 2.3 % 1,421 2.3 % 3.1 % 

Others 13,250 6.9 % 21.1 % 13,187 21.1 % 19.6 % 

 

Table 9: Taxi-out time reductions (absolute and relative) and gate-holding time (absolute and 

relative) for policy B.15. Data from July 1, 2013 to August 30, 2013 

B.15 TAXI-OUT TIME REDUCTIONS GATE HOLDS Market 

share Minutes Reduction % of the benefits Minutes % of gate holds 

Delta 13,345 3.5 % 39.0 % 13,392 39.4 % 38.0 % 

American 6,472 3.6 % 18.9 % 6,262 18.4 % 19.8 % 

US Airways 3,207 3.8 % 9.4 % 3,212 9.4 % 8.2 % 

United 1,267 3.4 % 3.7 % 1,263 3.7 % 4.3 % 

Spirit 572 3.3 % 1.7 % 537 1.6 % 2.0 % 

Southwest 1,322 3.1 % 3.9 % 1,313 3.9 % 5.1 % 

JetBlue 710 2.8 % 2.1 % 699 2.1 % 3.1 % 

Others 7,296 3.8 % 21.3 % 7,345 21.6 % 19.6 % 
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Figure 30: Policy B.15. histogram of duration of gate holds in minutes. Data from July 1, 2013 to August 30, 2013 
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The simulation results for policy B.10 are shown in Table 10. Two main observations can be made: 

first, the taxi-out reduction efficiency rates range from 2.4% to 3.1%; second, as happened with 

policies B.Unr. and B.15, the distribution of benefits and gate holds is approximately the same as 

the distribution of departure shares, ensuring fairness.  

Another interesting aspect to observe is the new distribution of gate-holding times resulting from 

policy B.10, depicted in Figure 31. As predicted, there are no gate holds longer than 10 minutes, 

and all the observations that were initially to the right of the 10-minute point are relocated around 

the 10-minute point.  

 

Table 10: Taxi-out time reductions (absolute and relative) and gate-holding time (absolute and 

relative) for policy B.10. Data from July 1, 2013 to August 30, 2013 

B.10 TAXI-OUT TIME REDUCTIONS GATE HOLDS Market 

share Minutes Reduction % of the benefits Minutes % of gate holds 

Delta 11,547 3.1 % 38.9 % 11,602 39.3 % 38.0 % 

American 5,601 3.1 % 18.8 % 5,444 18.4 % 19.8 % 

US Airways 2,815 3.3 % 9.5 % 2,763 9.4 % 8.2 % 

United 1,085 2.9 % 3.7 % 1,103 3.7 % 4.3 % 

Spirit 512 3.0 % 1.7 % 478 1.6 % 2.0 % 

Southwest 1,139 2.7 % 3.8 % 1,133 3.8 % 5.1 % 

JetBlue 606 2.4 % 2.0 % 615 2.1 % 3.1 % 

Others 6,409 3.3 % 21.6 % 6,406 21.7 % 19.6 % 
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Figure 31: Policy B.10. histogram of duration of gate holds in minutes. Data from July 1, 2013 to August 30, 2013 
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The natural next step is to compare the three strategies using the indicators introduced in Table 8, 

Table 9, and Table 10. To this end, Table 11 brings together all this information, rearranging it to 

present it in a more clear way. The main considerations from Table 11 are the following: 

 Limiting the gate-holding time to 15 minutes leads to a reduction of benefits (taxi-out 

reductions) and costs (gate-holding time) of about 45%; for example, Delta is expected to 

go from 24,493 minutes of taxi-out reduction to 13,345 minutes, which falls approximately 

in the 45% reduction. The same calculations can be done for the total gate-holding times. 

In addition, these calculations hold true for all the carriers. 

 Similarly to the previous point, limiting the gate-holding time to 10 minutes, starting from 

an unrestricted policy, leads to a reduction in benefits and costs of about 55%. 

 As expected, all the taxi-out reduction efficiency rates decrease as the policies restrict 

more; that is, the less time we allow aircraft to hold, the less the taxi-out reduction. The 

fourth column of the table quantifies that trend. 

 The distribution of benefits are split nearly equally (with an error of 0.2%) between airlines 

regardless of the metering policy implemented. The same is true gate-holding time. 

 These distributions of benefits and costs are approximately the same as the distribution of 

departures among airlines (departure share). 
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Table 11: Table summarizing Table 8, Table 9, and Table 10. Data from July 1, 2013 to August 

30, 2013 

Airline Policy 

Taxi-out time reductions Gate-holding time % share 

of 

departures 
Minutes % reduction % share Minutes % share 

Delta 

Unr. 24,493 6.5 39.1 24,660 39.4 

38.0% 15 13,345 3.5 39.0 13,392 39.4 

10 11,547 3.1 38.9 11,602 39.3 

American 

Unr. 11,713 6.6 18.7 11,662 18.6 

19.8% 15 6,472 3.6 18.9 6,262 18.4 

10 5,601 3.1 18.8 5,444 18.4 

US 

Airways 

Unr. 5,842 6.9 9.3 5,848 9.3 

8.2% 15 3,207 3.8 9.4 3,212 9.4 

10 2,815 3.3 9.5 2,763 9.4 

United 

Unr. 2,377 6.4 3.8 2,343 3.7 

4.3% 15 1,267 3.4 3.7 1,263 3.7 

10 1,085 2.9 3.7 1,103 3.7 

Spirit 

Unr. 1,037 6.0 1.7 1,038 1.7 

2.0% 15 572 3.3 1.7 537 1.6 

10 512 3.0 1.7 478 1.6 

Southwest 

Unr. 2,486 5.8 4.0 2,489 4.0 

5.1% 15 1,322 3.1 3.9 1,313 3.9 

10 1,139 2.7 3.8 1,133 3.8 

JetBlue 

Unr. 1,450 5.7 2.3 1,421 2.3 

3.1% 15 710 2.8 2.1 699 2.1 

10 606 2.4 2.0 615 2.1 

Others 

Unr. 13,250 6.9 21.1 13,187 21.1 

19.6% 15 7,296 3.8 21.3 7,345 21.6 

10 6,409 3.3 21.6 6,406 21.7 

Based on the analysis so far, several conclusions can be drawn: 
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 One minute of gate-hold leads approximately to one minute reduction in the taxi-out time. 

Such a fact is important as it ensures that no additional departure delay is added to the taxi-

out time in the baseline case. Put another way, the gate-holding time is subtracted from the 

idling time without causing any delay in taxi-out. 

 From the three policies analyzed, setting stricter limits leads to different levels of total taxi-

out reductions - below we prove that the reduction follows a non-linear trend. However, 

regardless of the reduction, the benefits and costs of metering are commensurate, and the 

policies are fair regarding the distribution of benefits and costs with airline departure share. 

Based on these considerations, we assume that the one-to-one relationship of cost and benefits, 

and its distribution fairness remain, independently of the gate-holding limit. With such an 

assumption we can calculate, without the detailed approach used until now, the reduction for other 

gate-holding limits different than the ones already calculated, in order to understand how the total 

taxi-out reduction varies based on the gate-holding limit set. To do so, we run simulations for 5-, 

10-, 15-, 20-, 30-, and 35-min thresholds and we compute the average, the minimum and the 

maximum taxi-out reduction experienced by airlines. Figure 32 plots these taxi-out reductions as 

a function of the gate-holding limit. Apart from the model performance value, Figure 32 can be 

extremely useful during the pre-implementation decision making process. Indeed, the table 

connects the operational effort an airline is willing to make with the benefits associated with that 

effort. The operational effort consists of ensuring that the airline can manage a gate hold of a 

particular length, both in terms of having enough handling resources to deal with gate holds and 

in terms of scheduling through planning gate use by adding some additional buffer time to 

accommodate those gate holds. The benefits’ side is key as it can directly translate into economic 
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value because percentage reduction in taxi-out can directly translate into fuel burn reductions 

during taxi-out. 

Such considerations allow us to analyze Figure 32 from both the model performance and the 

decision maker’s perspective. The most relevant comments on the figure are:  

- The limit-benefit curve presents a non-linear behavior. That is, equal movements in the x-

axis lead to different benefits changes in the y-axis; were this relation linear, then the unit 

change in values would lead to the exact same change in benefit, no matter where in the x-

axis the evaluation point is located. 

- The average reduction tracks rather accurately the trends set by the minimum and the 

maximum. Such an observation is particularly salient to assess the reliability of the average 

as a good indicator. 

- Incremental benefit after the 20-min gate-holding limit are marginal. Indeed, the low 

frequency of gate holds longer than 20 minutes makes longer gate-holding limits to not 

contribute to much benefit.  

 

Figure 32: Variation of the percentage in taxi-out reduction with different gate-holding limits 
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Previous work on metering focused on the accurate development of the metering algorithms and 

implementation protocols. However, no previous study has proposed metering-based policies that 

allow operators to think of the problem from a limit-benefit exercise. Indeed, Figure 32 relates 

each limit to consequent benefit. Therefore, decision makers may use such information to better 

inform inputs and outputs of the proposed model.  

One last factor should come into play while making a decision of which policy to implement: the 

order conservation. That is, whether the metering-based policies lead to larger violations of the 

First Come First Served (FCFS) order, compared to the baseline case. In order to assess such 

considerations, Figure 33 and Figure 34 illustrate the differences in the order in two different 

circumstances so as to determine the causes of order swaps. 

First, Figure 33 shows order differences (or swaps) between the take-off (ATOT) order and the 

ready-for-pushback (EOBT) order. For all the flights in the 62-day period, we assign order number 

based on EOBT, we assign order based on ATOT, and then we compute the differences between 

these two order lists. Assigning order based on EOBT implies that such a list has not been altered 

by any of the metering-based policies nor by gate conflicts. However, the ordered list based on 

ATOT is affected by the metering policies and gate conflicts. This figure shows these differences 

for the eight different gate-holding strategies presented in Figure 32 so as to provide additional 

information during the decision.  
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Figure 33: Order differences between the take-off order and the EOBT order (ready for push order) for the different gate-holding limit 

policies. Negative values correspond to flights that have been moved backward in the departure line and positive values correspond to 

flights that have moved forward in the departure line. This plot considers all the swaps after from the moment the aircraft is ready to push 

until the actual take-off time; which includes those coming from gate conflicts. 
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Figure 34: Order differences between the take-off order and the TOBT order (pushback order) for the different gate-holding limit policies. 

Negative values correspond to flights that have been moved backward in the departure line and positive values correspond to flights that 

have moved forward in the departure line. This plot considers all the swaps after from the moment the aircraft pushes until the actual 

take-off time, and thus it does not consider the swaps coming from gate conflicts. 
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Second, Figure 34 shows order differences between the ATOT order and the pushback (TOBT) 

order. For all the flights in the 62-day period, we build Figure 34 in the same way as Figure 33, 

but sorting for TOBT, instead of EOBT. In this case, Figure 34 also displays the differences for 

the eight different gate-holding policies. From the conceptual perspective, the main difference 

between the two figures is that in Figure 34, both the TOBT and ATOT occur after the metering-

based policies and the gate conflict forced pushes have been implemented. Hence, the differences 

in order are due to differences in unimpeded taxi-out time. For instance, imagine the case in which 

aircraft 1 starts pushing back at 10:06 and has an unimpeded taxi-out time of 14 minutes, and thus 

reaches the departure queue at 10:20; also imagine an aircraft 2 that pushes back at 10:07, with an 

unimpeded taxi-out time of 12 minutes and joins the queue at 10:19, which is earlier that the time 

at which aircraft 1 joins the queue. In this example, aircraft 1 takes-off later than aircraft 2 even 

though aircraft 1 started pushing back earlier than aircraft 2. This is an example where the FCFS 

order is not followed. It is worth keeping the conceptual differences between Figure 33 and Figure 

34 in mind to understand the former includes the effect of gate conflicts, the gate-holding limits, 

and the differences in unimpeded taxi-out time, whereas the latter only accounts for differences in 

taxi-out time. However, setting gate-holding limits applies to all flights in the same way and 

therefore, the order is not affected by such policies. Put another way, whereas gate-holding limits 

change the TOBT for some flights and reduce the chances of gate conflicts, setting limits itself 

does not lead to swaps because it affects all flights in the same way. Considering the rationale and 

explanations behind Figure 33 and Figure 34, the main observations are the following: 

- A perfect policy should be able to ensure a FCFS order, which would correspond to all 

occurrences being represented over the 0 difference. However, such a behavior is not 
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observed in any of the policies. That is, all the policies fail at complying with the FCFS 

order. 

- The darkest blue bars in both figures correspond to gate-holding limit of 0 minutes, which 

is equivalent to the baseline case. The presence of occurrences outside the 0 value indicate 

that the baseline strategy (pushback-at-discretion) is already violating the FCFS policy. 

- Both figures show symmetrical distribution of differences, which align with the intuition 

that the number of flights moving forward should balance out with those moving backward.  

- The policies with a larger gate-holding limit lose some of occurrences compliant with the 

FCFS policy toward +1 or -1. That is, the three central bins - corresponding to -1, 0, and 

+1- are the only bins experiencing noticeable changes, in both figures. The interesting part 

is that what is being lost in the 0 bin is gained in both the -1 and +1, which makes sense 

because if an aircraft moves back, then another one moves forward. Therefore, losing one 

0-bin occurrence leads to one +1 observation and a -1 observation. 

- The decreasing trend for the 0-bin and the increasing trend for bins -1 and +1 are slightly 

more pronounced in Figure 33 than in Figure 34. Recalling that differences in Figure 33 

account for gate conflicts and unimpeded taxi-out time, and Figure 34 accounts for 

unimpeded taxi-out time, we can state that gate conflicts are leading to slightly more 

pronounced change in order trend. However, comparing both figures, it is also clear that 

the biggest part of the increasing/decreasing trend is caused by the differences in 

unimpeded taxi-out time, which are triggered by the changed in TOBT. Put another way, 

metering based policies lead to new TOBT that can easily translate into different surface 

dynamics. In particular, the different terminal-dependent unimpeded taxi-out times are the 

responsible for differences in take-off order. Notwithstanding these differences in TOBTs 
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and unimpeded taxi-out time, the impact on the simulation is relatively small, as these 

switches are of 1 position forward and backward. 

After understanding that metering policies lead to results that are not significantly different from 

those in the baseline at an aggregate level, the next step is to assess whether there are differences 

at an airline level. To this end, Figure 33 plots the order differences between EOBT and ATOT. 

For comparison clarity purposes, Figure 35, on the one hand, only plots the baseline case and the 

unrestricted case given that they are the most extreme ones and provide upper and lower bounds 

values; on the other hand, Figure 35 plots percentage values of occurrences, as opposed to absolute 

number of occurrences, in order to facilitate the comparison exercise (different airlines operate 

different numbers of departures and thus, it is not fair to compare the absolute number of 

occurrences).  
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Figure 35: Order differences between the take-off order and the EOBT order for the different airlines and for the two extreme gate-

holding policies. Negative values correspond to flights that have been moved backward in the departure line and positive values 

correspond to flights that have moved forward in the departure line.  
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The results in Figure 35 support our hypothesis that most of the order differences are caused by 

the difference in taxi-out time by terminal. Delta and US Airways (operating in Terminals C and 

D) present a similar behavior; indeed, these carriers tend to see their flights either complying with 

the FCFS (equivalent to difference equal to 0) policy or moved forward. Conversely, the rest of 

the carriers (American, United, Spirit, Southwest, and JetBlue), operating in Terminal B, see their 

flights either complying with the FCFS order or moved backward. Although these findings are not 

ideal, the most relevant take-away from Figure 35 is that metering barely worsens the situation in 

this regard, given that variations in the bins above are marginal. If the differences between the 

most extreme gate-holding policies are small, any gate-holding policy in between will certainly 

present a portion of it, which will be, indeed, small.  

This chapter has proven that metering is effective at reducing taxi-out times without causing a 

significant increase in gate conflicts, while barely altering the departure order, avoiding taxi-out 

delays due to gate-holding, and ensuring fair distribution of benefits (proportional to departure 

share). Finally, delving deeper into the dynamics of gate-holding policies, the percentage reduction 

in taxi-out time evolves in a non-linear fashion with the gate-holding limits, which provides 

stakeholders with a portfolio of implementation policies connecting operational effort to monetary 

benefits. Such a finding can help ease discussions on the implementation of metering-based 

strategies aiming at reducing airport surface congestion, which offer emission and fuel burn saving 

opportunities. 
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4. CONCLUSIONS 
 

4.1. SUMMARY AND POLICY IMPLICATIONS 

This thesis presents modifications to the metering strategy consisting of limiting the maximum 

gate-holding time. The main goal of this thesis was to assist decision makers in the process of 

implementing metering and to ease the practical implementation challenges that arise at a 

chronically congested airport such as LaGuardia. To this end, this thesis introduces a portfolio of 

metering-based policies, and a tool to evaluate benefits and costs of implementing one of the 

policies. On the benefits side, the thesis looks at taxi-out time reductions up to 6.7%, which lead 

to reductions in fuel burn and emissions. On the challenges side, the thesis analyses gate-holding 

time, gate conflicts and order differences; while the gate-holding time becomes significant with 

metering, gate conflicts and order swaps increase only slightly. 

As for the benefits of implementing metering-based policies, they follow a non-linear increasing 

function of the gate-holding limit. The increasing portion of the function supports that the larger 

the gate-holding limit, the larger the taxi-out reduction limits. However, the non-linear portion of 

the function requires decision makers to use the tools and analysis proposed in this thesis to pick 

the best policy. 

From a fairness perspective, all the policies lead to gate-holding times that are commensurate with 

the reduction in taxi-out times, which indicates that every holding minute translates into a minute 

of taxi-out reduction. In addition, the gate-holding times and taxi-out time saving in all policies 

are allocated in proportion to the number of departure operations amongst the different air carriers.  

Taking all these results into account, airlines can do an internal analysis of costs associated with 

implementing each strategy and compare these costs with the benefits. Then, based on individual 
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airline cost-benefit trade-offs, all the stake-holders should set an implementation plan, deciding 

which, if any, stages would help overcome some of the challenges, enabled by the policy 

portfolio’s flexibility.   

 

 

4.2. FUTURE RESEARCH 

The final part of the thesis suggests directions for further investigation. As presented in Section 

2.3.2, the major trade-offs while deciding the time period length of the simulation are 

computational cost, prediction accuracy, usefulness during implementation and synchronization 

with the model structure. However, prediction accuracy was the variable that led us to pick 15 

minutes as time period, because of the suboptimal results of the current model for time periods of 

30 and 60 minutes. Figure 33, Figure 34, and Figure 35 depict the prediction errors for time period 

durations of 15, 30, and 60 minutes.  

 

Figure 36: Prediction error with the estimated regression trees with a model time period of 15 

minutes.  
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Figure 37: Prediction error with the estimated regression trees with a model time period of 30 

minutes. 

 

 

Figure 38: Prediction error with the estimated regression trees with a model time period of 60 

minutes. 
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Based on these observations, future research could study more sophisticated and dynamic models 

that can improve predictions for periods longer than 15 minutes. Previous studies (Simaiakis 2013) 

suggest using Dynamic Programming (DP) algorithms to better track surface traffic and departing 

queuing performance. DP can be implemented in a similar way to what is described in this thesis 

for metering-based strategies. DP algorithms also hold aircraft at the gate to achieve reductions in 

taxi-out time. Should DP algorithms be successful at reducing prediction error, the time period 

length could be used as another factor during the implementation design process, in addition to the 

gate-holding limit. 
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I. APPENDIX A: UNIMPEDED TAXI-OUT TIME 

PLOTS 
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Figure A. I: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

terminal A with runway configuration 31|4. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. II: Mean, standard error, and fit function for flights from Terminal A when the airport 

operates with runway configuration 31|4. Data from July 1, 2013 to August 30, 2013 
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Figure A. III: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

terminal B with runway configuration 31|4. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. IV: Mean, standard error, and fit function for flights from Terminal B when the airport 

operates with runway configuration 31|4. Data from July 1, 2013 to August 30, 2013 
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Figure A. V: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

Terminals C&D with runway configuration 31|4. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. VI: Mean, standard error, and fit function for flights from Terminals C&D when the 

airport operates with runway configuration 31|4. Data from July 1, 2013 to August 30, 2013 
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Figure A. VII: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

terminal A with runway configuration 22|31. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. VIII: Mean, standard error, and fit function for flights from Terminal A when the airport 

operates with runway configuration 22|31. Data from July 1, 2013 to August 30, 2013 
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Figure A. IX: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

terminal B with runway configuration 22|31. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. X: Mean, standard error, and fit function for flights from Terminal B when the airport 

operates with runway configuration 22|31. Data from July 1, 2013 to August 30, 2013 
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Figure A. XI: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

Terminals C&D with runway configuration 22|31. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. XII: Mean, standard error, and fit function for flights from Terminals C&D when the 

airport operates with runway configuration 22|31. Data from July 1, 2013 to August 30, 2013 
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Figure A. XIII: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

terminal A with runway configuration 31|31. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. XIV: Mean, standard error, and fit function for flights from Terminal A when the airport 

operates with runway configuration 31|31. Data from July 1, 2013 to August 30, 2013 
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Figure A. XV: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

terminal B with runway configuration 31|31. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. XVI: Mean, standard error, and fit function for flights from Terminal B when the airport 

operates with runway configuration 31|31. Data from July 1, 2013 to August 30, 2013 
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Figure A. XVII: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

Terminals C&D with runway configuration 31|31. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. XVIII: Mean, standard error, and fit function for flights from Terminals C&D when the 

airport operates with runway configuration 31|31. Data from July 1, 2013 to August 30, 2013 
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Figure A. XIX: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

terminal A with runway configuration 22|13. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. XX: Mean, standard error, and fit function for flights from Terminal A when the airport 

operates with runway configuration 22|13. Data from July 1, 2013 to August 30, 2013 
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Figure A. XXI: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

terminal B with runway configuration 22|13. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. XXII: Mean, standard error, and fit function for flights from Terminal B when the airport 

operates with runway configuration 22|13. Data from July 1, 2013 to August 30, 2013 
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Figure A. XXIII: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

Terminals C&D with runway configuration 22|13. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. XXIV: Mean, standard error, and fit function for flights from Terminals C&D when the 

airport operates with runway configuration 22|13. Data from July 1, 2013 to August 30, 2013 
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Figure A. XXV: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

terminal A with runway configuration 4|13. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. XXVI: Mean, standard error, and fit function for flights from Terminal A when the 

airport operates with runway configuration 4|13. Data from July 1, 2013 to August 30, 2013 
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Figure A. XXVII: Scatter plot with taxi-out time as a function of the adjusted traffic for flights 

from terminal B with runway configuration 4|13. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. XXVIII: Mean, standard error, and fit function for flights from Terminal B when the 

airport operates with runway configuration 4|13. Data from July 1, 2013 to August 30, 2013 



128 

 

 

Figure A. XXIX: Scatter plot with taxi-out time as a function of the adjusted traffic for flights from 

Terminals C&D with runway configuration 4|13. Data from July 1, 2013 to August 30, 2013 

 

 

Figure A. XXX: Mean, standard error, and fit function for flights from Terminals C&D when the 

airport operates with runway configuration 4|13. Data from July 1, 2013 to August 30, 2013
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II. APPENDIX B: SATURATION PLOTS 
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Figure B. I: Saturation plot for runway configuration 31|4 under VMC conditions 

 

Figure B. II: Saturation plot for runway configuration 22|31 under VMC conditions 
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Figure B. III: Saturation plot for runway configuration 31|31 under VMC conditions 

 

Figure B. IV: Saturation plot for runway configuration 4|31 under VMC conditions 
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Figure B. V: Saturation plot for runway configuration 13|13 under VMC conditions 

 

Figure B. VI: Saturation plot for runway configuration 22|13 under VMC conditions 
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Figure B. VII: Saturation plot for runway configuration 4|13 under VMC conditions 

 

Figure B. VIII: Saturation plot for runway configuration 4|4 under VMC conditions 
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Figure B. IX: Saturation plot for runway configuration 31|4 under IMC conditions 

 

Figure B. X: Saturation plot for runway configuration 22|31 under IMC conditions 
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Figure B. XI: Saturation plot for runway configuration 31|31 under IMC conditions 

 

Figure B. XII. Saturation plot for runway configuration 4|31 under IMC conditions 



136 

 

 

Figure B. XIII: Saturation plot for runway configuration 13|13 under IMC conditions 

 

Figure B. XIV: Saturation plot for runway configuration 22|13 under IMC conditions 
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Figure B. XV: Saturation plot for runway configuration 4|13 under IMC conditions 

 

Figure B. XVI: Saturation plot for runway configuration 4|4 under IMC conditions 



138 

 

REFERENCES 

Burgain, Pierrick, Eric Feron, and John-Paul Clarke. 2008. “Collaborative Virtual Queue: Fair 

Management of Congested Departure Operations and Benefit Analysis.” arXiv Preprint 

arXiv:0807.0661. http://arxiv.org/abs/0807.0661. 

Carr, Francis, Antony Evans, Eric Feron, and J.-P. Clarke. 2002. “Software Tools to Support 

Research on Airport Departure Planning.” In Digital Avionics Systems Conference, 2002. 

Proceedings. The 21st, 1:1D3–1. IEEE. 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1067900. 

Clewlow, R. 2010. A Prediction Model for Aircraft Surface Delay. MIT. 

DeLaura, Rich, Michael Robinson, Russell Todd, and Kirk MacKenzie. 2008. “Evaluation of 

Weather Impact Models in Departure Management Decision Support: Operational 

Performance of the Route Availability Planning Tool (RAPT) Prototype.” In 13th 

Conference on Aviation, Range, and Aerospace Meteorology, AMS, New Orleans, LA. 

https://ams.confex.com/ams/pdfpapers/132880.pdf. 

De Neufville, Richard, Amedeo R. Odoni, Peter Belobaba, and Tom Reynolds. 2013. Airport 

Systems : Planning, Design, and Management, Second Edition / Richard de Neufville, 

Amedeo R. Odoni ; with Contributions by Peter Belobaba and Tom Reynolds. New York : 

McGraw-Hill Education, c2013 (Norwood, Mass. : Books24x7.com [generator]). 

Federal Aviation Administration. “Aviation System Performance Metrics.” 2014. 

Feron, Eric R., R. John Hansman, Amadeo R. Odoni, R. B. Cots, B. Delcaire, W. D. Hall, H. R. 

Idris, A. Muharremoglu, and N. Pujet. 1997. “The Departure Planner: A Conceptual 

Discussion,” December. http://dspace.mit.edu/handle/1721.1/34944. 



139 

 

Hall, William D., and Alicia Fernandes. 2013. “Key Performance Issues in Surface Collaborative 

Decision Making.” In Digital Avionics Systems Conference (DASC), 2013 IEEE/AIAA 

32nd, 1B1–1. IEEE. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6712507. 

Idris, Husni, John-Paul Clarke, Rani Bhuva, and Laura Kang. 2001. “Queuing Model for Taxi-

out Time Estimation.” http://dspace.mit.edu/handle/1721.1/37322. 

Jacquillat, Alexandre, and Amedeo R. Odoni. 2015. “Endogenous Control of Arrival and 

Departure Service Rates in Dynamic and Stochastic Queuing Models of Airport 

Congestion.” Transportation Research Part E: Logistics and Transportation Review 73: 

133–51. 

Joint Economic Committee. 2008. Flight Delays Cost Passengers, Airlines, and the U.S. 

Economy Billions. 

Khadilkar, Harshad. 2011. Analysis and Modeling of Airport Surface Operations / by Harshad 

Khadilkar. c2011. 

http://libproxy.mit.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db

=cat00916a&AN=mit.002002779&site=eds-live. 

Kim, Sang Hyun, and Eric Feron. 2014. “Impact of Gate Assignment on Departure Metering.” 

IEEE Transactions on Intelligent Transportation Systems 15 (2): 699–709. 

doi:10.1109/TITS.2013.2285499. 

Office of Aviation Policy and Plans, Federal Aviation Administration. 2002. Documentation for 

the Aviation System Performance Metrics (ASPM),. 

Pujet, Nicolas. 1999. “Modeling and Control of the Departure Process of Congested Airports.” 

Thesis, Massachusetts Institute of Technology. http://dspace.mit.edu/handle/1721.1/9363. 



140 

 

Pujet, Nicolas, Bertrand Delcaire, and Eric Feron. 2003. “Input-Output Modeling and Control of 

the Departure Process of Congested Airports.” http://arc.aiaa.org/doi/pdf/10.2514/6.1999-

4299. 

Pyrgiotis, Nikolaos. 2012. “A Stochastic and Dynamic Model of Delay Propagation within an 

Airport Network for Policy Analysis.” Massachusetts Institute of Technology. 

http://dspace.mit.edu/handle/1721.1/71452. 

Ravizza, Stefan, Jun Chen, Jason Atkin, Edmund Burke, and Paul Stewart. 2013. “The Trade-off 

between Taxi Time and Fuel Consumption in Airport Ground Movement.” Public 

Transport (1866749X) 5 (1/2): 25. 

Sandberg, M., I Simaiakis, H. Balakrishnan, T.G. Reynolds, and R.J. Hansman. 2014. “A 

Decision Support Tool for the Pushback Rate Control of Airport Departures.” IEEE 

Transactions on Human-Machine Systems 44 (3): 416–21. 

doi:10.1109/THMS.2014.2305906. 

Shumsky, Robert Arthur. 1995. “Dynamic Statistical Models for the Prediction of Aircraft Take-

off Times.” Thesis, Massachusetts Institute of Technology. 

http://dspace.mit.edu/handle/1721.1/10592. 

Simaiakis, Ioannis. 2009. “Modeling and Control of Airport Departure Processes for Emissions 

Reduction.” Massachusetts Institute of Technology. 

http://dspace.mit.edu/handle/1721.1/58289. 

Simaiakis, Ioannis. “Analysis, Modeling and Control of the Airport Departure Process.” 

Massachusetts Institute of Technology. http://dspace.mit.edu/handle/1721.1/79342. 



141 

 

Simaiakis, Ioannis, and Hamsa Balakrishnan. 2009. “Queuing Models of Airport Departure 

Processes for Emissions Reduction.” In AIAA Guidance, Navigation and Control 

Conference and Exhibit. http://arc.aiaa.org/doi/pdf/10.2514/6.2009-5650. 

Simaiakis, Ioannis, and Hamsa Balakrishnan. 2010. “Impact of Congestion on Taxi Times, Fuel 

Burn, and Emissions at Major Airports.” Transportation Research Record: Journal of the 

Transportation Research Board 2184 (-1): 22–30. doi:10.3141/2184-03. 

Simaiakis, Ioannis, Hasmsa Balakrishnan, Harshad Khadilkar, Tom G. Reynolds, R. John 

Hansman, Brendan Reilly, and Steve Urlass. 2011. “Demonstration of Reduced Airport 

Congestion through Pushback Rate Control.” http://18.7.29.232/handle/1721.1/60882. 

 


