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ABSTRACT

ADVANCED CONTROL OF PERMANENT MAGNET SYNCHRONOUS
GENERATORS FOR VARIABLE SPEED WIND ENERGY CONVERSION SYSTEMS

by

JACOB HOSTETTLER

Chairperson: Professor Xin Wang

Various environmental and economic factors have lead to increased global investment in

alternative energy technologies such as solar and wind power. Although methodologies for

synchronous generator control are well researched, wind turbines present control systems

challenges not presented by traditional generation. The varying nature of wind makes

achieving synchronism with the power grid a greater challenge. Departing from early

use of induction machines, permanent magnet synchronous generators have become the

focus of power systems and control systems research into wind energy systems. Their

self excited nature, along with their high power density make them ideal. The problem

of grid synchronism is alleviated through the use of high performance power electronic

AC-AC converters. In order to achieve the highest level of efficiency, advanced control

systems techniques become necessary. This work presents the application of two control

systems techniques: sliding mode control, and the use of linear matrix inequalities

with H∞ and finite-time boundedness performance criteria. These methods are applied

to the dynamical model of a permanent magnet synchronous generator coupled with

aerodynamic properties of a variable speed wind energy conversion system. Simulations

on the dynamical models are carried out to demonstrate the effectiveness of the proposed

control systems methodologies.
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CHAPTER 1

INTRODUCTION

1.1 Importance

The paradigm shift away from the use of fossil fuels as the primary means of electrical

power generation creates necessity for a multitude of new technologies, approaches, and

organizational structures within the field. One such prospective technology, Wind energy

conversion systems (WECS), seeks to aid in the transition from the collective global

reliance on fossil fuels. The necessity for this change stems from a plethora of issues.

However, climate change, namely the damages enacted through persistent use of carbon

rich fuel sources, prevails as one of the leading arguments in support of this trend. In

“Renewable energy: A Response to Climate Change,” R.E.H. Sims brings together findings

from the International Energy Agency and the United Nations Intergovernmental Panel

on Climate Change. Sims argues that the availability of cheap fossil fuels hinders the

growth of renewable energy sources, but stresses the necessity of a transition in order to

avoid compounding the amount of damage inflicted by the use of fossil fuels for power

generation [1]. Another leading argument in favor of reducing a nation’s dependence on

fossil fuels lies in the desire to achieve energy independence. This concept is addressed

in David L. Greene’s work “Measuring Energy Security: Can the United States Achieve

Oil Independence?” Greene, addresses the economic and security issues associated with

reliance on another nation for supply of a desirable commodity [2]. Within the article in

Nature, “Energy: A Reality Check On the Shale Revolution,” J. David Hughes comments

on recent resource extraction methods such as hydraulic fracturing. These methods have

gained collective attention as a means by which to achieve energy independence, but receive

substantial criticism due to the possibility of undesirable environmental repercussions [3].

Increased research into, and implementation of renewable technologies such as wind, could
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arguably help expedite or alleviate this dependence. This sentiment is evident in part by

the congressional report from Fred Sissine on the “Energy Independence and Security

Act of 2007” by the United States of America. The act seeks to address a multitude of

issues regarding energy independence. [4].

1.2 Wind Energy Development

The oil problems of the 1970s initiated new research in wind energy, which according to

Optimal Control of Wind Energy Systems: Towards a Global Approach by I. Munteanu et

al., helped propel this former experimental novelty into the increasingly significant role it

plays today. The heterogeneous nature of WECS technology gives rise to two main control

classifications: power- and speed-control. Power control involves the manipulation of the

aerodynamic properties of a wind turbine. Some form of power control, implemented

by all WECS in the form of either stall-control or pitch control and active-stall control,

sees implementation in all wind turbines. Stall-control reduces aerodynamic efficiency

without changing the geometry of the WECS blades, using the stall effect during high

winds. As the simplest form of power control, it suffers from disadvantages such as high

mechanical stresses. Pitch- and active-stall control modifies the blade geometry through

pitch adjustment, while adding complexity, this method offers improved power control.

Speed control offers two types of WECS: fixed-speed and variable-speed. Fixed-speed

WECS, much as the name implies, operate at a single speed, regardless of wind speed,

through direct coupling to the power grid. Variable-speed WECS or VS-WECS see

the largest scale implementation, and consequently are the focus of this work. The

lack of direct grid coupling results in distinct control flexibility, but requires the use of

costly power electronics in order to link the generators to the grid [5]. Therefore the

control challenge then becomes achieving the highest level of efficiency from the available

wind resource, also known as maximum power point tracking (MPPT). This importance

is evident in the continual and recent publication of works such as Maximum Power
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Point Tracking Strategy and Direct Torque Control of Permanent Magnet Synchronous

Generator Wind Farm by Youssef Errami, et al, [6].

1.3 Permanent Magnet Synchronous Generators

Given various advantages over other generator types, this work focuses on the use of

permanent magnet synchronous generators (PMSGs). Although, doubly fed induction

generators have seen wide implementation, PMSGs are becoming the more popular form

of generation in wind energy. PMSGs. R. Scott Semken, et al. point to the expansion

in generation capabilities of wind turbines from the three megawatt range to over six

megawatts as a major reason for this shift. The newest of these large designs, often

intended for offshore purposes, employ PMSGs. Due to an improved level of reliability,

longer life expectancy, improved performance, and lower weight PMSGs exist as a desirable

candidate to meet the needs as indicated by their implementation in WECS by companies

such as Vestas, GE WIND, and Siemens to name a few [7]. PMSGs also exhibit the distinct

advantage of self-excitation [5]. Lack of DC brushes, and the associated maintenance costs,

coupled with high efficiency at low speeds and high power to size ratio illuminate the

reasons behind the increased employment of PMSGs in in VS-WECS [5], [6]. A popular

method of control for electric machines and drives, known as field oriented control (FOC).

According to A. Farhan, A. Saleh, and A. Shaltout in High Performance Reluctance

Synchronous, FOC offers notable control advantages in electric machine control. FOC

involves the transition from the stationary stator reference frame to the stationary rotor

reference, reducing the system model from the three equations of the (a, b, c) stationary

stator coordinate frame model, to the two equation direct- and quadrature-axis model [8]

1.4 Contribution

This work seeks to incrementally expand on existing research in the field of wind energy

by applying existing advanced and non-linear control design techniques for maximum
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power point tracking through field oriented control (FOC) of wind energy conversion

systems employing permanent magnet synchronous generators (PMSGs). The stationary

rotor reference frame PMSG model is derived through the application of Clarkes and

Parks transformation methods. First sliding mode control (SMC) techniques are applied

towards MPPT of the system. A detailed block model of the system and controller is

developed in MATLAB and Simulink. Detailed simulations using a varying wind input are

carried out, and the results of the simulations are presented and commented upon. Next,

continuous and discrete time control using linear matrix inequalities with robust H∞

and finite-time boundedness performance criteria are applied to the system. MATLAB

solutions of the inequalities provide data on the disturbance responses characteristics of

the VS-WECS system. The results of detailed simulations given disturbances applied to

the system are presented, and the results are commented upon. Lastly, conclusions drawn

upon the results of the simulations presented are presented for consideration.
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CHAPTER 2

WIND ENERGY CONVERSION SYSTEM MODELING

As previously stated, the system of interest is a fixed-pitch, variable-speed wind energy

conversion system employing a permanent magnet synchronous generator. This WECS

construction is given by Fig. 2.1 [5]. The mathematical modeling of the aerodynamics,

high speed shaft, and the generator used throughout this wrk have been adapted from the

text in [5] and Wind Energy Control Systems Engineering Design by Mario Garcia-Sanz

and Constantine H. Houpis.

Figure 2.1: WECS Model

2.1 Aerodynamics

The primary input to a WECS is the wind. This wind acts against the blades of the

wind turbine, and creates mechanical torque

τm =
ρπR2

tCp(λ, β)v3

2ωl
, (2.1)

where ρ is the air density, Rt is the radius of the rotor, v is the wind speed, and ωl is

the rotational speed of the low speed shaft. The factor Cp(λ, β) is known as the power
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coefficient. It is a function of the tip speed ratio λ = ωlRt

v
, and the blade pitch β. This

factor represents the efficiency of mechanical power extracted from an available wind

resource, and is found as follows:

Cp(λ, β) = c1

(c2
λi
− c3β − c4

)
e−c5/λi (2.2)

λi =
( 1

λ+ c6β
− c7
β3 + 1

)−1
,

where c1, c2, c3, c4, c5, and c6 are constants that depend on the system [5, 9].

Even under ideal assumptions about the performance and construction of a wind

turbine a limit exists on the value of Cp(·). Chapter 2 of Magdi Ragheb and Adam

M. Ragheb’s book Fundamental and Advanced Topics in Wind Power, along with the

aforementioned texts being used for system modeling describe this as the Betz Limit.

This limit provides that a wind turbine can extract, at most 59.2% of the mechanical

energy available in a wind resource. However, non-ideal behavior result in systems which

perform below this limit, typically closer to 40% [5, 9, 10]. A plot of λ against Cp(·) yields

a curve, typically similar to the given in Fig. 2.2., from which the max power coefficient

Cp,max can be obtained. The tip speed ratio corresponding to the highest efficiency is

known as the optimal tip speed ratio λo [9].

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

λ

C p

Figure 2.2: Cp v.s. λ Curve
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2.2 Drive Train Dynamics

Rotational motion of the electrical generator is provided by rotational motion of the

turbine rotor through a mechanical transmission. Known as a drive train, the structure of

the transmission depends on the type of generator being used. Most systems employing

induction generators use gearboxes with multiplying ratios in order to increase the

rotational speed transmitted to the generators. Multi-pole synchronous machines however

use what is known as a direct drive transmission, or more simply the direct coupling of

the generator and the turbine rotor on the same shaft. This topology helps to eliminate

inefficiency associated with weight and reliability of the gearbox [5].

In order to model the transmission of turbine rotor motion into generator rotation rigid

drive train modeling will be used. Fig. 2.5, represents this topology. Since the generator

to be modeled is synchronous in nature, the drive train ratio 1 : 1. The rotational speed

of the generator shaft, often known as the high speed shaft in cases where the drive train

ratio results in a step up in generator speed, will be known as ωr. For which the equation

governing speed is ωr = i · ωl, where i is the drive train ratio, and ωl is the rotational

speed from the low speed shaft, or that created by rotation of the turbine. The drive

train dynamics in terms of the inertias are as follows:

Jh
dωr
dt

=
η

i
τm − τe (2.3)

Jl
dωl
dt

= τm −
i

η
τe, (2.4)

where η is the efficiency of transmission, and τe is the electromagnetic torque induced in

the generator.
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Figure 2.3: Rigid Drive Train

Due to the direct coupling, i = 1 and η will be considered to be 100%. This will mean

that Jh is simply −Jl. Letting J = Jh be the drive train inertia, and considering the

stiffness coefficient B the resulting equation governing the behavior of the drive train can

be reduced to a single equation:

dωr
dt

=
τm
J
− τe
J
− Bωr

J
. (2.5)

The stiffness coefficient is typically of a small value, and is often neglected for simplicity.

However, in this work the complexity added by its inclusion is negligible, and therefore it

will be considered.

2.3 Permanent Magnet Synchronous Generator Modeling

The voltage equations for a synchronous generator, as provided by the IEEE standard

for synchronous generator modeling [11] are given as

va

vb

vc

efd


=



Ra 0 0 0

0 Rb 0 0

0 0 Rc 0

0 0 0 Rfd





−ia

−ib

−ic

ifd


+
d

dt



Ψa

Ψb

Ψc

Ψfd


. (2.6)

The terms for (2.6) are defined within Table 2.1. Taking into acount the construction of a
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Armature Winding Voltages: va, vb, vc

Field Voltage: efd

Armature phase resistance: Ra, RbRc

Field-winding resistance: Rfd

Winding currents: ia, ib, ic, ifd

Winding Flux Linkage: Ψa,Ψb,Ψc,Ψfd

Table 2.1: Generator Parameters

PMSG, the field-winding equation can be neglected. It then follows that the flux linkages

for the various phases are given as

Ψa = Laaia + Labib + Lacic (2.7)

Ψb = Labia + Lbbib + Lbcic (2.8)

Ψc = Lacia + Lbcib + Lccic. (2.9)

(2.10)

The inductances given in (2.8) through (2.10) are deifned within Table 2.2. By means

Armature-phase self inductances: Laa, Lbb, Lcc

armature phase-phase mutal inductances: Lab, Lbc, Lac

Table 2.2: Armature Inductances

of the Park’s transformation technique the stationary stator reference frame (a, b, c)

coordinate model of a synchronous generator can be converted to the stationary rotor

(d, q, 0) coordinate model of a PMSG [5, 9, 11, 12].

The simplified matrix representation of (2.6); disregarding field winding effects can be
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given as

Vabc = Rss · Iabc +
d

dt
(Lss · Iabc), (2.11)

where the matrix Rss represents the armature-phase resistances, and the armature-phase

self and mutual inductances are given by

Lss =


Laa Lab Lac

Lab Lbb Lbc

Lac Lbc Lcc

 . (2.12)

From the Park’s transform, it follows that the transformation matrix

T =
2

3


cos(σ) cos(σ − 2π

3
) cos(σ − 4π

3
)

−sin(σ) −sin(σ − 2π
3

) −sin(σ − 4π
3

)

1
2

1
2

1
2

 , (2.13)

where σ represents the phase angle difference between the A-axis and the direct axis (d-

axis) of the rotor. Application of the Park’s transformation to find the direct, quadrature,

and zero axis voltages, represented by Udq0 gives

T ·Vabc = T ·Rss ·T−1 ·T · Iabc + T · d
dt

(Lss · Iabc) (2.14)

Udq0 = T ·Rss ·T−1 · Idq0 + T · d
dt

(T ·Λdq0), (2.15)

where the dq0 flux linkage, and the time derivatives are

Λdq0 = T ·Λabc = T · Lss · Iabc (2.16)

Λ̇dq0 = (T · Lss ·T−1) · Idq0. (2.17)

Next, note that d
dt

(T) = ωeG ·T where

G =


0 1 0

−1 0 0

0 0 0

 (2.18)
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and ωe is the developed generator electrical angular frequency [5]. It then follows that

Udq0 = T ·Rss ·T−1 · Idq0 + Λ̇dq0 − ωeG ·Λdq0. (2.19)

However, from

Λ̇dq0 = (T ·T−1) · İdq0, (2.20)

it can be noted that T · Lss ·T−1 is time independent. Therefore

Udq0 = Rss · Idq0 + (T · Lss ·T−1) · İdq0 − ωeG · (T · Lss ·T−1) · Idq0 (2.21)

Let the time invariant direct, quadrature, and zero axis inductance matrix be defined as

Ldq0 = T · Lss ·T−1 =


Ld 0 0

0 Lq 0

0 0 L0

 (2.22)

Lastly, simplification results in the expanded state space (d, q, 0) voltage equations which

are given as
ud

uq

u0

 =


Rs 0 0

0 Rs 0

0 0 Rs



id

iq

i0

+


0 −ωeLq 0

ωeLd 0 0

0 0 0



id

iq

i0

+


Ld 0 0

0 Lq 0

0 0 L0



diq
dt

diq
dt

di0
dt

 (2.23)

The final representation for the direct-axis (d-axis) and the quadrature-axis(q-axis) volt-

ages, matching models given in various sources including [5, 9, 11, 12] to be used within

this work becomes:

ud = Rsid + Ld
did
dt
− Lqiqωe (2.24)

uq = Rsiq + Lq
diq
dt

+ (Ldid + Ψm)ωe, (2.25)

Considering a surface mounted PMSG, one in which the rotor makes use of surface

mounted permanent magnets [13], will result in the inductances Lq and Ld having the



12

same value, and thereforeLd = Lq = L [5]. Using this consolidation, and rearranging

(2.24) and (2.25) to form the system to be controlled results in the following:

did
dt

= −Rs

L
id + ωeiq −

1

L
ud (2.26)

diq
dt

= −Rs

L
iq − ωeid −

1

L
uq +

1

L
Ψmωe (2.27)
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CHAPTER 3

SLIDING MODE CONTROL

3.1 Introduction

One of the control systems techniques applied to the VS-WECS model that has

been developed is sliding mode control (SMC). According to [14], it is in the control of

hybrid dynamical systems with both discontinuous and continuous behavior that sliding

mode control (SMC) made it’s debut. Eventually sliding modes became a principal

mode of operation for these variable-structure systems. Nearly all variable-structure

design methods purposefully introduce sliding modes. The commonly touted benefits

of SMC continue to make it a popular topic of study among control systems engineers.

Among the benefits offered by SMC are order reduction, low sensitivity, and efficiency in

controlling complex high-order and even nonlinear systems [14, 15, 16]. It is generally

desirable to decouple a system’s motion into individual components in order to simplify

the study of multi-dimensional systems. Enforcement of sliding modes enables this

order reduction. This leads to decoupling, and subsequent simplification of the design

process. The discontinuous function employs high-frequency switching. Theoretically, this

switching is infinite. Modern semi-conductor devices make this high-frequency control

action attainable, but the effects of switching delays needs to compensated for. This

switching action sees uses in suppression of external disturbances, and uncertainties in

model parameters. These finite switching actions, unlike continuous high-gain control

systems, make this invariance of state behavior achievable [14]. In SMC state trajectories

are forced to reach a sliding manifold or sliding surface within a finite amount of time.

Then, the trajectories are to remain at this manifold for all future time. Also, matched

uncertainties do not affect the motion along this surface [17].
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3.2 Outline of Sliding Mode Control Methodology

Consider systems described by nonlinear, or affine differential equations of the form:

ẋ = f(x, t, u) (3.1)

in an arbitrary n-dimensional space, with m-dimensional vector control actions, where

x ∈ <n, f ∈ <n, u ∈ <m, and t represents time. The control is selected as

ui =


u+i (x, t) si(x) > 0

u−i (x, t) si(x) < 0

(i = 1, ...,m) (3.2)

The control is a station function which is discontinuous. Each component ui can experience

discontinuities on si(x) = 0. si(x) = 0 are continuous nonlinear surfaces in the state

space. u+i (x, t) and u−i (x, t) are continuous and do not equal each other [14].

Sliding modes may occur at the intersection of m-surfaces si(x) = 0, (i = 1, ...,m),

and the order of the motion equations is m less than the original order of the system. The

discontinuous function uses high (theoretically infinite) gain. This is a common tool for the

suppression of disturbances and parameter uncertainties in a system. This organization

results in order reduction of the system, and invariance to parameter uncertainties and

disturbances [14].

3.3 Regularization

Most conventional mathematical techniques for the solution of continuous differential

equations are not applicable for discontinuous control methods such as SMC. One of the

broadest methods requires that the Lipschitz condition ||f(x1)− f(x2)|| < L||x1 − x2||

is satisfied by functions f(x) in the right-hand sides of the differential equation. L is

positive number known as the Lipschitz constant, and x1 and x2 are any point.This

constrains the growth of the function to be less than that of some linear function, as long

as x1 and x2 are not close to the discontinuity point [14]. However, the boundary layer
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method of regularization can more effectively deal with more expansive scope of non ideal

conditions. The boundary layer method can be described through consideration of the

following general system with a vector control:

ẋ = f(x, u) x, f ∈ <n, u(x) ∈ <m (3.3)

u(x) =


u+i (x, t) si(x) > 0

u−i (x, t) si(x) < 0

where for the vector s(x), it’s components [s1(x)...sm(x)] are smooth functions. The ith

component of u(x) experiences discontinuities on the ith surface si(x) = 0. Sliding modes

may occur at s(x) = 0. In order to obtain the sliding mode equations, the control ũ

replaces the ideal control given the for (3.3), such that the solution exists in the broadest

sense. The boundary layer, with width ∆ > 0 confines the trajectories, such that they

are not bound to s(x) = 0 only. It follows that:

||s(x)|| ≤ ∆, ||s|| = (sT s)1/2.

The boundary layer regularization method can be summarized as follows: for the ap-

proximation of the control u = ũ, and a boundary layer width ∆ which asymptotically

approaches zero, if the limit of the solution of (3.3) exists such that

lim
δ→0

x(t,∆) = x∗(t), (3.4)

then x∗(t) represents the solution with ideal sliding mode [14], as shown by Fig.3.1 [18].

Figure 3.1: State Behavior Along Switching Surface
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3.4 Equivalent Control Method

The equivalent control method is another important concept in SMC, and attempts to

analyze whether the equations can be taken as the motion model. The initial state vector

of the system (3.3) is assumed to lie apart from the sliding surface. Through satisfying

the reaching conditions, the state reaches the sliding surface. The equivalent control

is responsible for the motion of the state along the sliding surface, towards the origin

[14, 18].

To begin, the control discontinuities are disregarded, and the vector u is calculated

such that it’s time derivative

ṡ(x) =
∂s

∂x
· f(x, u) = 0. (3.5)

Substitute the equivalent control ueq for the discontinuous control u into the original

system (3.3):

ẋ = f(x, ueq) (3.6)

where ueq is a continuous function, and is a solution that exists for (3.5). Note that

for initial conditions s
(
x(0)

)
= 0, agreeing with (3.5), further motion is dictated by

(3.6), and is along the state trajectories in manifold s(x) = 0, as in the sliding mode

for (3.3). (3.6) is considered the sliding mode equation where m discontinuity surfaces

si(x) = 0(i = 1, ...,m) intersect [14].

For input-affine systems with right-hand sides in the motion equations (3.3) as linear

functions of the control input u:

ẋ = f(x) +B(x)u x, f(x) ∈ <n, B(x) ∈ <n×m, u(x) ∈ <m (3.7)

ui(x) =


u+i (x, t) si(x) > 0

u−i (x, t) si(x) < 0

.
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Similarly, for control component ui, each surface si(x) = 0, is the set of discontinuity

points. First select the following Lyapunov candidate, and its corresponding derivative:

V =
1

2
sT s (3.8)

V̇ =
∂V

∂s
= sT · ṡ, (3.9)

where

ṡ =
∂s

∂x
ẋ =

∂s

∂x

(
f(x) +B(x)u

)
. (3.10)

Therefore, in order to ensure that the state trajectories are driven towards the switching

surface, the control ueq must be chosen such that V̇ < 0. The equivalent control is given

as follows:

ueq = −(G(x)B(x))−1G(x)f(x) (3.11)

where m× n matrix G = ∂s/∂x [18]

The purpose of the equivalent control is due to the fact that motion in sliding mode

was considered somewhat ideal. Realistic imperfections in switching devices result in state

oscillations about the sliding manifold, instead of the state velocity vector being oriented

precisely along it. The oscillations are made up of high-frequency and slow components.

The equivalent control represents the slow component of the control. The equivalent

control depends on system parameters, and helps ensure that the state is always driven

towards the sliding manifold, while the switching control keeps the state trajectory bound

to a certain area around it [14].

3.5 Switching Control

Mathematically, the switching portion of the control can be represented various ways.

Two such ways are the signum and hysteresis functions. The signum function is the
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method of choice in this work, which is given by

sgn(s) =


1, if s > 1

0, if s = 0

−1, if s < 1.

(3.12)

This switching control is mathematically ideal, and lends itself to simpler calculations.

However, high frequency switching devices will ultimately experience switching delay,

making its behavior better categorized by a hysteresis. This has the effect of allowing the

state trajectory to shoot past the sliding surface. This behavior is colloquially referred to

as chattering. Fig. 3.2 represents this effect [18].

Figure 3.2: Trajectory Behavior Due to Switching Delays

3.6 Existence Conditions

For nonlinear systems of the form (3.7), existence conditions can be derived though

analysis of the stability of the motion projection on subspace s governed by the differential

equation

ṡ =
∂s

∂x
· ∂x
∂t
. (3.13)

Subsequently the control is re-written as

u(x) = ueq(x) + u0(x)sgn(s), (3.14)
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It follows that on subspace s, the motion projection is governed by

ṡ =
∂s

∂x

(
f(x) +B(x)(ueq + uN)

)
, (3.15)

where uN = u0sgn(s). Standard analysis techniques for stability analysis of affine systems

involve trying to find a candidate Lyapunov function. In order to find the existence

conditions conditions for stability of the origin s = 0 for equation (3.15), this standard

nonlinear analysis approach is used. However, given the discontinuous nature of the

right-hand side of the motion equation, and that the motion equation is undefined when

the argument of the switching function is zero, care must be taken [14].

The discontinuous components of control should be replaced by their corresponding

equivalent ones in order to be able to use a Lyapunov function in the form of the sum of

absolute values. Then, the time derivative of the Lyapunov function should be found. The

following definition, theorem, and remarks from [14] are necessary in order to facilitate

this design process.

Definition 3.1. The set S(x) in the s(x) = 0 is the domain of the sliding mode if, for

the motion governed by equation (3.15), the origin in the subspace s is asymptotically

stable with finite convergence time for each x from S(x).

Definition 3.2. If the inequalies

lim
s→+0

ṡ < 0 (3.16)

lim
s→−0

ṡ > 0 (3.17)

holds for any x, then it is simultaneously the condition for the state to reach the sliding

manifold from any initial point. This is also known as the reaching or reachability

condition.

These definitions deal solely with time-invariant systems. However, the results remain

valid for time -varying systems. The primary difference is that for a time-varying sliding
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manifold s(x, t) = 0, the equivalent control equation should contain the addition of

δs(x, t)/δt term:

ṡ = Gf +GBueq + ∂s(x, t)/∂t = 0

and it’s solution ueq = −(GB)−1(Gf + ∂s/∂t) should be substituted into (3.7) regardless

of whether the motion equation functions f and B are time dependent [14]

3.7 Relevant Applications

Recent publications continue to research into the application of SMC in a range of topics.

Some range from pure control systems theoretical expansion [15, 19] to model applications

[16, 20, 21, 22]. The primary focus of this work is in the context of electromechanical energy

conversion for permanent magnet synchronous machines. So, the application precedents

given primarily concern these types systems. However, it should be noted that work in

other electric machines and drives such as induction machines has also received a notable

amount of attention. In WECS, research into these generation means, demonstrated

in works such as [23, 24, 25], shows the . Coinciding and expanding upon theory laid

forth in [14], detailed coverage of permanent magnet synchronous motor (PMSM) control

appears in [16, 20]. These two works focus on speed control, but the given simulations and

implementations demonstrate the high level of control and robustness that SMC offers

in the control of electric machines. As stated previously, the increased use of PMSGs

in wind energy applications has created the need for more powerful control systems

designs. Research such as, but not limited to that given in [21] and [22] demonstrates the

effectiveness of this control systems technique in speed control of PMSG based VS-WECS

control. Current control schemes such as those in [26] also demonstrate promising results.
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CHAPTER 4

CONTROL USING LINEAR MATRIX INEQUALITIES WITH VARIOUS

PERFORMANCE CRITERIA

4.1 Introduction

The study of linear matrix inequalities (LMIs) dates back to the 1940’s, with use

in control systems research following in the 1960’s [27]. LMI research within control

systems theory demonstrated the ability to solve convex control systems. However, the

tedious nature of the solutions prevented any practical use in complex systems [28]. In

the the following decades advancements in computing, and the development of powerful

solution techniques helped to further the practical use of LMIs in complex systems control

applications [27, 28].

Control systems research involving the use of LMIs consistently demonstrates effec-

tiveness in an assortment of potential engineering applications. Power systems research

into load frequency control in systems with communication delays, and robust controllers

for multi-machine systems help to provide practical examples of applicability [29, 30].

The primary distinguishing factor between these works appears in the performance goals

for which each controller is designed.

Finite-time stability (FTS) and finite-time boundedness (FTB), concepts concerning

the stability of a state of a system in the presence of L2 type disturbances during a finite

time interval given initial state values, receive extensive attention in the various works of

Amato, et. al. Methods for control and stability using the solutions of LMIs designed

with FTS or FTB performance criteria consistently demonstrate promise in applications

for various system types including, but not restricted to linear time varying systems,

discrete-time linear systems, nonlinear quadratic systems, dynamic output feedback, and

linear systems with parametric uncertainties [31, 32, 33, 34, 35].
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In the 1970’s, robust control theory surfaced with the primary goal of controlling

systems with parametric uncertainties. Within robust control, H2 and H∞ techniques

receive a significant amount of focus in research and publication [36]. LMI control research

involving robust H∞ performance criteria applied to continuous-time nonlinear controller

demonstrates novel effectiveness when applied to a model of an inverted pendulum [37].

Electric machine and helicopter control research demonstrate the effectiveness of designs

in both power systems and aerospace, when employing LMI based control techniques with

H∞ performance criterion [38, 39].

4.2 General System Modeling

The following gives the conditions for a general system with disturbances, to be used

in the definitions of the performance criteria.

Let the continuous-time system of interest be the time-invariant continuous-time

system given by

ẋ =F (x, u, w) = (A+ ∆A)x

+(B + ∆B)u+ (F + ∆F )w (4.1a)

ẇ =Φw. (4.1b)

where x ∈ <n is the state of the system, u ∈ <m is the input applied to the system, and

w ∈ <q is a structured disturbance. A,B, F, and Φ are the known coefficient matrices

of appropriate dimensions, and ∆A,∆B, and ∆F are bounded fluctions in the systems

parameters. The corresponding controlled output is

z = Cx+Du, (4.2)

where, C and D are known coefficient matrices. The bounded L2 type disturbances are



23

defined as

∆A∆AT ≤ σ2
AI (4.3)

∆B∆BT ≤ σ2
BI (4.4)

∆F∆F T ≤ σ2
F I. (4.5)

Let the control u be a linear state feedback controller with gain K ∈ <n×m be denoted as

u = Kx. (4.6)

For discrete-time, the system will be given as follows: The general system discrete-time

dynamics, disturbance, controlled output, and input are adapted from the continuous

time system given previously by (4.1a), (4.1b), (4.2), and (4.6)

xk+1 = (A+ ∆A)xk + (B + ∆B)uk + (F + ∆f)wk (4.7a)

wk+1 = φwk, (4.7b)

zk = Cxk +Duk (4.7c)

uk = Kxk. (4.7d)

With parameter definitions equivalent to those in the continuous-time system.

4.3 Finite-Time Boundedness

What follows are the definitions of finite time boundedness as used in this work, as well

as an important Lemma to be used in the control design to follow for both continuous-time

and discrete-time cases.

Definition 4.1. The following extends from the definitions for short-time stability, or

equivalently FTS, and FTB given by [40] and [34] to equations (4.1a) and (4.1b). For

the continuous-time case, given the positive scalars α2
x, α

2
w, and T , and matrix R > 0, the
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system is FTB with regards to (T,R), if ∀ t ∈ [0, T ]
x(0)TRx(0) ≤ α2

x

w(0)Tw(0) ≤ α2
w

⇒ x(t)TRx(t) ≤ β2.

The discrete-time definition of FTB (4.1) extends from [41], and is given as follows:

Definition 4.2. The system xk+1 = Axk + Fwk where k ∈ N0, and wk+1 = φwk is FTB

with respect to (αx, αw, R,N), where matrix R > 0, 0 ≤ αx ≤ β, αw ≥ 0, and N ∈ N0, if
xT0Rx0 ≤ α2

x

wT0 w0 ≤ α2
w

⇒ xTkRxk ≤ β2 ∀k ∈ 1, ..., N.

The following Lemma provides sufficient conditions for continuous-time FTB

Lemma 4.3. Given the system dynamics in equations (4.1a), (4.1b), and (4.2) the FTB

condition can be satisfied if there exists matrices, P1 > 0 and P2 > 0, such that the

following condition holds:

λmin(P1)β
2 ≤ [λmax(P1)α

2
x + λmax(P2)α

2
w]eαt (4.8)

where the minimum and maximum eigenvalues of the argument are represented λmin(·)

and λmax(·) respectively.

Proof. Consider further the quadratic Lyapunov function

V
(
x(t), w(t)

)
= x(t)TP1x(t) + w(t)TP2w(t), (4.9)

with the corresponding inequality found in [17]:

V̇
(
x(t), w(t)

)
< αV

(
x(t), w(t)

)
. (4.10)

Divide both sides of (4.9) by V (x(t), w(t)), and integrate from from 0 to t, where t ∈ [0, T ]

to obtain the following inequality:

ln
V
(
x(t), w(t)

)
V (x(0), w(0))

< αt. (4.11)
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From (4.9) re-write the energy function as

[
x(t)T w(t)T

]P1 0

0 P2


x(t)

w(t)

 . (4.12)

Before continuing, denote

ζ =

x(t)

w(t)

 . (4.13)

Combining (4.11), (4.12), and (4.13), and considering inequality 4.10 it follows that:

ζ(t)T

P1 0

0 P2

 ζ(t) < ζ(0)T

P1 0

0 P2

 ζ(0)eαT . (4.14)

Subsequently

ζ(t)T

P1 0

0 P2

 ζ(t) = x(t)TP1x(t) + w(t)TP2w(t), (4.15)

which satisfies

x(t)TRx(t) ≤ β2 (4.16)

from the definition for FTB. Then, denote the following matrices M and P as:

M =

R 1
2 0

0 I

 , P =

P1 0

0 P2

 .
For inequality (4.14) replace P , and pre- and post-multiply by M to obtain

ζ(t)TMPMζ(t) < ζ(0)TMPMζ(0)eαt. (4.17)

Using Rayleigh’s inequality

λmin(R)uTu < uTRu < λmax(R)uTu, (4.18)

and (4.15) it follows that from the left side of (4.16),

ζ(t)TMPMζ(t) = x(t)TR
1
2P1R

1
2x(t) + w(t)TP2w(t)

≥ λmin(P1)x(t)TRx(t) = λmin(P1)β
2, (4.19)
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Considering the right side of (4.8), the matrix P , and the following:
xT0Rx0 ≤ α2

x

wT0 w0 ≤ α2
w

,

from the definition for FTB it follows that

ζ(0)TMPMζ(0)eαt

= [x(0)TR
1
2P1R

1
2x(0) + w(0)TP2w(0)]eαt

≤ [λmax(P1)α
2
x + λmax(P2)α

2
w]eαt, (4.20)

Lastly, combine the (4.17) and (4.19) to achieve 4.8.

Subsequently, the discrete-time case of this lemma follows from [41] as:

Lemma 4.4. Given the system (4.7) the FTB condition can be satisfied with respect to

(αx, αw, β, R,N), if there exists matrices, P1 > 0, P2 > 0, and positive scalar α < 1, such

that the following condition holds:

λmin(R−1/2P1R
−1/2)β2 < αkλmax

R−1/2 0

0 P2

 (α2
x + α2

w) (4.21)

.

Proof. Assume that xT0Rx0 ≤ α2
x, and wT0 w0 ≤ α2

w. If the conditions in the lemma hold,

then xTkRxk < β2 for all k = 1, ..., N .

For Vk = xTkP1xk + wTk P2wk, let

Vk+1 < αVk, 0 < α < 1. (4.22)

Subsequently

xTk+1P1xk+1 + wTk+1P2wk+1 < α(xTkP1xk + wTk P2wk). (4.23)

It can be found that

Vk < αkV0, (4.24)
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or equivalently

xTkP1xk + wTk P2wk < α(xT0 P1x0 + wT0 P2w0) (4.25)

Using Ralyeigh’s inequality of the form λmin(P )xTx < xTPx < λmax(P )xTx it can be

found that

λmin(R−1/2P2R
−1/2)xTkRxk < xTk (P1)xk

< αk(xT0R
−1/2P1R

−1/2x0 + wT0 P2w0)

< αk(λmax(R
−1/2P1R

−1/2xT0Rx0) + λmax(P2)w
T
0 w0) (4.26)

Therefore, if

λmin(R−1/2P1R
−1/2)β2 < αk(λ(R−1/2P1R

−1/2)α2
x + λmax(P2)α

2
w), (4.27)

this is the condition given by the lemma, and is written equivalently as

λmin(R−1/2P1R
−1/2)β2 < αkλmax

R−1/2 0

0 P2

 (α2
x + α2

w) (4.28)

4.4 H∞ Control Design

A popular control systems design tool for multi-variable systems, H∞-optimization

is a we research concept from robust control theory. For a relevant frequency response

function, H∞-optimization is essentially the minimization of the infinity norm. The H∞

norm can be defined as

||G(s)||∞ = sup
u(t)6=0

||y(t)||2
||u(t)||2

, (4.29)

with external input u(t) and output y(t) The space H∞ is also know as the Hardy space.

This space is comprised of of all fluctuations that are bounded an analytic in the right-

half complex plane. This method of optimization has differences from the also popular

H2-optimization. However, the allowance of explicit inclusion of robustness constraints is

an important property of H∞-optimization [42].
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Definition 4.5. The following H∞ design method is adapted from [43]. Given the

performance output (4.2), structured noise w(t), and a positive constant γ, the objective

J =

∫ ∞
0

(zT z − γ2wTw)dt < 0 (4.30)

must be minimized, such that ∫∞
0
zT zdt∫∞

0
wTwdt

< γ2. (4.31)

Subsequently, for the discrete-time system, the H∞ performance objective has the

following definition, given as an extension from the continuous-time definition.

Definition 4.6. Given the performance output from uk = Kxk, structured noise wk, and

positive constant γ. The objective

J =
N∑
k=0

(zTk zk − γ2wTk w) < 0 (4.32)

must be minimized, such that

zTk zk
wTk wk

< γ2 (4.33)

Lemma 4.7. The following inequality from [44] states that the following condition

ABT +BAT ≤ αAAT + α−1BBT , (4.34)

Proof.

(α
1
2A− α−

1
2B)(α

1
2A− α−

1
2B)T ≥ 0. (4.35)

It also follows that by choosing:

A =

aT
0

 and B =

 0

bT

 , (4.36)

that the following inequality holds: 0 aT b

bTa 0

 ≤
ζaTa 0

0 ζ−1bT b

 . (4.37)
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4.5 Control Using Linear Matrix Inequalities

4.5.1 Linear matrix inequalities

A summarized definition of linear matrix inequalities obtained from [28] follows:

A strict LMI takes the following form of a positive definite matrix:

F (x) , F0 +
m∑
i=1

xiFi > 0, ∀u ∈ <n, (4.38)

for the given variable x ∈ <m and symmetric matricies Fi = F T
i ∈ <n×n, i = 0, ...,m.

The leading principal minors of F (x) are positive, and therefore equivalent to a set of

n polynomial inequalities. Note also that LMIs of the form F (x) ≥ 0 are referred to as

nonstrict

Considering only strict LMIs, {x|F (x) > 0} is a convex set, or the the LMI given

by (4.38) is a convex constraint on x. This form is capable of representing many convex

constraints on x. The ability of Lyapunov inequalities to be cast in the form of an LMI is

of particular interest in this work.

For diagonal matricies Fi, the LMI exists as a set of linear inequalities. Schur

complements are used in order to obtain an LMI from nonlinear (convex) inequalities.

Consider the LMI Q(x) S(x)

S(x)T R(x)

 > 0, (4.39)

where Q(x) = Q(x)T , R(x) = R(x)T , and S(x) are nonlinearly dependent on x. The LMI

(4.39) is equivalent to the set of affine inequalities R(x) > 0, Q(x)−S(x)R(x)−1S(x)T > 0.

The Lyapunov inequality is given as follows:

ATP + PA < 0, (4.40)

where the matrix A ∈ <n×n is given, and the matrix P = P T is the variable. The

inequality (4.40) can be written in the form of 4.38, where P1, ..., Pm is the basis for a
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symmetric n× n matrices (m = n(n+ 1)/2). Let F0 = 0 and Fi = −ATPi − PiA.

4.5.2 Schur complements

From [45] schur complement as used in this work is defined as follows:

For symmetric matricies A and C, suppose that the quadratic function

f(x, y) = xTAx+ 2xTBy + yTCy (4.41)

is convex in (x, y). Therefore  A B

BT C

 ≥ 0 (4.42)

If C is nonsingular, then the matrix

A−BC−1BT (4.43)

is the Schur complement of C in matrix A B

BT C

 (4.44)

4.5.3 Relevant applications

A number of articles researching the use of LMI based control methodologies in wind

energy systems exist. Work in H2/H∞ power system stabiliziers [46], robust control of

wind systems with system parameter uncertainties [47], robust model predictive pitch

and torque control [48], and fuzzy DC link control of WECS [49] are examples of these.

There is still much work to be done in this field, and the customizeable nature of the

performance objectives make LMI based control a potentially wide ranging technique.
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CHAPTER 5

SLIDING MODE CONTROL DESIGN AND SIMULATION

This section builds upon existing SMC control designs developed for FOC of VS-WECS

in [14]. In this work, the basis for permanent magnet synchronous motor current and

speed control through SMC is developed. Typically, the two are considered separately.

In this work both current control and speed control are implemented. The previously

developed plants for shaft and the PMSG are considered. Subsequent development and

simulation of the proposed control scheme follows, and provides a control structure that is

robust given model uncertainties, and exhibits a high level of performance given a highly

varying wind input.

5.1 System Model

For the application of SMC, the system to be controlled is from equations (2.5), (2.26),

and (2.27). First considering that ωe = P
2
ωr, where P is the number of stator poles.

Furthermore, τe = Ktiq, where Kt = 3
4
PΨm. The overall third-order model to be used in

the following design become:

did(t)

dt
= −Rs

L
id(t) +

P

2
iq(t)ωr(t)−

1

L
ud(t) (5.1)

diq(t)

dt
= −Rs

L
iq(t)−

P

2

(
id(t)−

Ψm

L

)
ωr(t)−

1

L
uq(t) (5.2)

dωr(t)

dt
=
τm
J
− Ktiq(t)

J
− Bωr(t)

J
. (5.3)



32

5.2 Sliding Surfaces

The first part of the controller design will be to define the three sliding surfaces for

each dynamical equation. The sliding modes for (5.1), (5.2), (5.3) respectively are,

sd(t) = [id(t)− i∗d(t)] = 0 (5.4)

sq(t) = [iq(t)− i∗q(t)] = 0 (5.5)

sωr(t) = [ωr(t)− ω∗r(t)] = 0. (5.6)

The reference values for each surface are represented by i∗d(t), i
∗
q(t), and ω∗r (t) respectively.

For the d-axis and due to the nature of FOC, i∗d(t) = 0. The speed reference ωr = iλv
R

.

Recall that i is the fixed drive train multiplying ratio [9]. The q-axis current reference

will be developed as a result of the control law to be developed for equation (5.3).

5.3 Reachability Conditions

The reachability conditions for the sliding surfaces to ensure that the state trajectories

will be driven towards their corresponding sliding surfaces are [14].

sd(t)ṡd(t) < 0 (5.7)

sq(t)ṡq(t) < 0 (5.8)

sωr(t)ṡωr(t) < 0. (5.9)

5.4 Parameter Variations

In order to appropriately compensate for the presence of un-modeled dynamics present

in the system (5.1)-(5.3). The system variables will be represented as in Table 3.1 Where

the parameter will be equal to its nominal value plus some bounded disturbance.
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Stator Resistance: Rs = R̂s + ∆Rs

Inductance: L = L̂+ ∆L

Flux Linkage: Ψm = Ψ̂m + ∆Ψm

Mechanical Torque: τm = τ̂m + ∆τm

Inertia: J = Ĵ + ∆J

Stiffness: B = B̂ + ∆B

Table 5.1: System Parameters

5.5 Direct Axis Control Design

In order to develop the d-axis controller inequality (5.7) must be satisfied. Using

equation (5.1), (5.7) can be re-written as:

sd(t)

L

[
−Rsid(t) +

P

2
Liq(t)ωr(t)− Lud(t)− L

di∗d(t)

dt

]
< 0. (5.10)

Next, the d-axis control law is denoted as:

ud(t) = ud,eq(t) + ud,N(t), (5.11)

where ud,eq(t) designates the equivalent controller and ud,N(t) designates the switching

controller. From the nominal values of the system parameters the equivalent control is:

ud,eq(t) = −R̂sid(t) +
P

2
L̂iq(t)ωr(t)− L̂

di∗d(t)

dt
. (5.12)

Therefore, ṡd(t) from inequality (5.10) becomes:

ṡd(t) =
1

∆L

[
−∆Rsid(t)−∆L

(
di∗d(t)

dt
− P

2
iq(t)ωr(t)

)
− ud,N(t)

]
. (5.13)

Due to the bounded nature of the system parameter uncertainties, along with the

variables
di∗d(t)

dt
, id(t), iq(t), and ωr(t), there exists a positive constant udo such that

udo(t) >

∣∣∣∣−∆Rsid(t) + ∆L
P

2
iq(t)ωr(t)−∆L

di∗d(t)

dt

∣∣∣∣ . (5.14)
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From this, the switching control is taken to be:

ud,N(t) = −udosign(sd(t)). (5.15)

The resulting control law for the d-axis should ensure that the trajectory of id(t) is

driven towards the surface (5.4), and remains there in the presence of bounded distur-

bances.

5.6 Quadrature Axis Control Design

The same method used for the d-axis control design can be applied towards the q-axis

design. Considering the reachability condition inequality (5.8), and re-writing it using

the dynamics for the q-axis given by (5.2) yields

sq(t)

L

[
−Rsiq(t)−

P

2
(Lid(t)−Ψm)ωr(t)− uq(t)− L

di∗q(t)

dt

]
< 0. (5.16)

Again, control law, this time for the q-axis, is written as as the sum of the equivalent and

switching controls:

uq(t) = uq,eq(t) + uq,N(t). (5.17)

The equivalent control will be taken as

uq,eq(t) = −R̂siq(t) +
P

2
(L̂id(t)− Ψ̂m)ωr(t)− L̂

di∗q(t)

dt
. (5.18)

Then, ṡq(t), from inequality (5.16) becomes

ṡq(t) =
1

∆L

[
−∆Rsiq(t)−

P

2
(∆Lid(t)−∆Ψm)ωr(t)−∆L

di∗q(t)

dt
− uq,N(t)

]
. (5.19)

As before, due to the bounded nature of the uncertainties, and the aforementioned

variables, there exists a positive constant uqo such that

uqo(t) >

∣∣∣∣−∆Rsiq(t)−
P

2
(∆Liq(t) + ∆Ψm)ωr(t)−∆L

di∗d(t)

dt

∣∣∣∣ , (5.20)

which leads to the switching control:

uq,N(t) = −uqosgn(sq(t)). (5.21)
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The final result is a controller which should ensure that the trajectory of the quadrature

axis current iq(t) will be driven towards the reference value i∗q(t) and remain there.

5.7 Rotational Speed Controller Design

Once more, applying the same approach used in the previous two subsections; this

time for equation (5.3), the primary contribution of this work in SMC is developed. The

inequality given by (5.9) must be satisfied. Re-stating ṡωr(t) using (5.3) and (5.6), the

reachability condition for the rotational speed dynamics becomes

sωr(t)

[
τm
J
− Ktiq(t)

J
− Bωr(t)

J
− J dω

∗
r(t)

dt

]
< 0. (5.22)

By selection of the q-axis current reference as the control variable, the control law is

designated as

i∗q(t) = i∗q,eq(t) + i∗q,N(t). (5.23)

From the nominal parameter values, the equivalent control is written as

i∗q,eq(t) =
1

Kt

[
τ̂m − B̂ωr(t)− Ĵ

dω∗r(t)

dt

]
. (5.24)

From (5.22), and using the bounded model uncertainties, ṡωr(t) is re-written to yield

ṡωr(t) =
1

J

[
∆τm −∆Bωr(t)−∆J

dω∗r(t)

dt
−Ktiq,N(t)

]
. (5.25)

Once more, there exists a positive constant iqo, such that:

iqo(t) >

∣∣∣∣ 1

Kt

[
∆τm −∆B −∆J

dω∗r(t)

dt

]∣∣∣∣ , (5.26)

from which the switching control i∗q,N(t) is

i∗q,N(t) = −iqosgn(sωr(t)). (5.27)

The desired result of this controller is that the control variable i∗q(t) is adjusted to

accurately compensate for rotational speed changes based upon the wind input. This
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reference value is then used by the q-axis controller to accurately compensate for the

changes. The final result should give Cp(λ) near or at the Betz limit calculated for

the system with behavior that is consistent given model uncertainties and un-modeled

dynamics.

5.8 Simulation and Results

The implementation of the wind input, VS-WECS and PMSG dynamics, and the de-

veloped SMC controllers to create a model of a VS-WECS system and control architecture

in Simulink is represented by Fig. 5.1.

Figure 5.1: Global Simulink VS-WECS and SMC Model

Within each subsystem block the various parts of VS-WECS system are implemented

with the certain parameter references generated through MATLAB files prior to simulation.

The nominal PMSG parameters used are listed in Table 3.2. Bounded parameter

variations are implemented through the addition of bounded noise to each nominal

parameter value within the Simulink model.
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Rotor Radius: Rt = 3meters

Stator Resistance: Rs = 3.5Ω

Inductance: L = 35mH

Flux Linkage: Ψm = 0.3Wb

Poles: P = 6

Inertia: J = 1

Stiffness: B = 0.001

Table 5.2: Turbine and Generator Parameters

The following simulations demonstrate the performance of the controller given a range

of wind inputs with varying degrees of intensity. The point of these simulations are to

exhibit the high level of disturbance response, and reference tracking ability that the

proposed controller can achieve.

5.8.1 Simulation 1: disturbance rejection

The purpose of the first simulation is to demonstrate the ability proposed control

system design at steady state to cope with a drastic change in wind speed in a short

amount of time, and then achieve a new steady state value. The wind profile used for this

simulation is shown in Fig. 5.2. At the start of the simulation the wind has a constant

velocity of seven meters per second. At time t = 30 seconds the wind jumps quickly to

nine meters per second.
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Figure 5.3: d-axis Current
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The desired value for the direct-axis current is zero amperes (A). Fig. 5.3 demonstrates

that the proposed d-axis controller results in the state trajectory of the d-axis current

remaining bound to the manifold at 0A. Even given the drastic change in the wind input,

the d-axis controller sufficiently rejects the affect of the disturbance, and maintains the

desired state throughout the simulations time.
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Figure 5.4: Rotational Speed Reference

Figures 5.4 and 5.5 show the shaft rotational speed reference and state behavior

throughout the simulation. The effect of the equivalent control can be seen in the

rotational speed rise up to the steady state value associated with the initial wind speed.

Upon reaching the sliding surface, the tracking ability of the controller is demonstrated

during the disturbance. Response time can be increased, but with increased chattering.

So, the gains of the controllers were tuned to minimized this effect.
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Figure 5.5: Rotational Speed

The quadrature axis current should have a trajectory that follows the same profile

as the wind input. This is due to the fact that the reference value of the q-axis current,

shown by Fig. 5.6 is dependent on the rotational speed of shaft. Fig. 5.7 shows that the

q-axis controller ensures the state of the q-axis current, upon reaching the sliding surface

accurately tracks the changing reference. As in the d-axis controller, the chattering effect

is more noticeable here. The controller gains were tuned in order to achieve an acceptable

compromise between chattering magnitude and response time.
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Figure 5.6: q-axis Current Reference
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Lastly, Fig. 5.8 represents the efficiency of MPPT for this simulation.
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Figure 5.8: Cp(λ) v.s. Time

5.8.2 Simulation 2: maximum power point tracking

Simulation 2 demonstrates the tracking ability of the designed control system. A

highly varying wind input is presented to the system. The wind profile used is given by

Fig. 5.9
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As previously stated, the reference value id ∗ (t) = 0. Fig. 5.10 shows that upon

reaching the manifold, the state remains within a bounded area around it throughout the

simulation.
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Figure 5.10: d-axis Current

The following Figures 5.11 and 5.12 show the q-axis current reference and state values

over the course of the simulation. Due to the dependence of the reference value on the

rotational speed control, it is expected that the reference for the q-axis current must

change, in order to achieve a constant MPPT.
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Figure 5.11: q-axis Current Reference
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The sliding mode behavior is different for the q-axis current and rotational speed. The

reference values for these states change constantly due to the changing wind speed.

Lastly, Fig. 5.14 demonstrates the tracking of the state of the rotational speed given

its reference Fig. 5.13
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Figure 5.13: Rotational Speed Reference
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Figure 5.14: Rotational Speed

The ultimate result to be taken from this simulation is the Cp(λ) v.s. time curve

given by Fig. 5.15. This shows that that given the highly varying wind input used for

this simulation, the controller is able to be tuned to achieve a relatively constant MPPT

efficiency just above 48%, which shows little deviation over the course of the simulation.
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CHAPTER 6

CONTINUOUS TIME FINITE-TIME BOUNDEDNESS AND ROBUST CONTROL

USING LINEAR MATRIX INEQUALITIES

The control design in his work combines the aforementioned performance goals of FTB and

H∞ to develop a new LMI control technique for continuous-time and discrete-time systems.

The design seeks to ensure robustness and boundedness in the presence of undesired

system dynamics. Subsequent application of the method in field oriented control (FOC)

of a permanent magnet synchronous generator (PMSG) seeks to solidify the applicability

of the new controller.

6.1 Controller Design

The LMI for the stated performance criteria is developed as follows: Given positive

matrices P1 > 0 and P2 > 0, consider a quadratic Lyapunov function candidate, and its

corresponding derivative given by

V (x,w) = xTP1x+ wTP2w (6.1)

V̇ (x,w) = 2ẋTP1x+ 2ẇTP2w. (6.2)

In order to ensure the FTB and H∞ performance objectives, the following inequality must

hold true:

V̇ (x,w)− αV (x,w) + zT z − γ2wTw < 0 (6.3)

From the system given by (4.1a), (4.1b), and (4.2), and from the linear state feedback

control given by (4.6) inequality (6.3) becomes

xT [2(AT + ∆AT +KTBT +KT∆BT − α)P1

+ (CT +KTDT )(C +DK)]x+ 2wTΦTP2Φx

+ wT [(2ΦT − α)P2 − γ2]w < 0 (6.4)
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Noting that 2MTN = NM +MTN for appropiatly sized matricies M and N , inequality

can be re-written as

[
xT wT

]



P1A+ ATP1 + P1∆A+ ∆ATP1

+P1B +BTP1 + P1∆B + ∆BTP1 F + ∆F

+(CT +KTDT )(C +DK)

F T + ∆F T P2Φ + ΦTP2

−αP2 − γ2I



x
w

 < 0. (6.5)

From (6.5), the following matrix inequality can be obtained as

P1A+ ATP1 + P1∆A+ ∆ATP1

+P1B +BTP1 + P1∆B + ∆BTP1 F + ∆F

−αP1 + (CT +KTDT )(C +DK)

F T + ∆F T P2Φ + ΦTP2 − αP2 − γ2I


< 0. (6.6)

It is now desired to employ the assumptions made about bounded disturbances by (4.3),

(4.4), and (4.5). The first step is to pre- and post-multiply the inequality byP−11 0

0 I

 . (6.7)

For simplicity sake, let X = P−11 , and Y = KP−11 . It follows that (6.6) becomes

AX +XAT +BY + Y TBT

+∆AX +X∆AT + ∆BY + Y T∆BT F + ∆F

−αX + (CT +KTDt)(C +DK)

F T + ∆F P2Φ + ΦTP2 − αP2 − γ2I


< 0. (6.8)
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From Lemma 4.7, the following two inequalities can be formulated: 0 ∆F

∆F T 0


≤

α1∆F∆F T 0

0 α−11 I


≤

α1σ
2
F I 0

0 α−11 I

 (6.9)


∆AX +X∆AT 0

+∆BY + Y T∆BT

0 0



≤


α−12 XX + α2∆A∆AT 0

+α3∆B∆BT + α−13 Y Y T

0 0



≤


α2σ

2
AI + α−12 XX 0

+α3σ
2
BI + α−13 Y TY

0 0

 (6.10)

Based on the conditions developed by (6.9) and (6.10), (6.8) is re-given as follows:

AX +XAT +BY + Y TBT + α−12 XX

+α−13 Y TY + α1σ
2
F I + α2σ

2
AI + α3σ

2
BI F

−αX + (XCT + Y TDT )(CX +DY )

F T P2Φ + ΦTP2 − αP2

−γ2I + α−11 I


< 0. (6.11)
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At this point the inequality still contains non-linear terms. The application of Schur

Complement allows for the linearizion of the matrix inequality. Through this, the matrix

inequality (6.11) can be transformed into the linear matrix inequality, and subsequently

the final result of the derivation. Therefore, if the solution of following inequality given by

AX +XAT

+BY + Y TBT − αX F XCT + Y TDT X Y

+α1σ
2
F I + α2σ

2
AI + α3σ

2
BI

F T P2Φ + ΦTP2 0 0 0

−αP2 − γ2I + α−11 I

CX +DY 0 −I 0 0

X 0 0 −α2I 0

Y T 0 0 0 −α3I



< 0

(6.12)

is found to exist, then the system is FTB in the presence of bounded disturbances. Also,

the H∞ performance specifications are satisfied, which results in robustness given model

parameter uncertainties and disturbances.

6.2 Simulation Results

The following simulations use the (d, q) coordinate frame model of the PMSG developed

in Chapter 2; given by (2.26) and (2.27). The LMI Editor GUI, which is part of the

Robust Control Toolbox in MATLAB was utilized to implement the LMI. The system

was implemented, with initial state disutrbances for id and iq. The consant parameters of

the LMI were adjusted in order to obtain a feasible solution that guarantees the design
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goals of the control method, and provides a sufficiently fast disurbance response. The

simulation results are shown in Fig. 6.1 through Fig. 6.3.

For initial disurbances imposed upon the state, the state trajectories are asymptot-

ically stable, and driven towards the reference value in a timerly manner. The images

demonstrate the satisfaction FTB and H∞ performance criteria. For a single speed in the

WECs application.
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Figure 6.1: d-axis Current
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Figure 6.2: q-axis Current
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Figure 6.3: Rotational Speed
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CHAPTER 7

DISCRETE-TIME FINITE-TIME BOUNDEDNESS USING LINEAR MATRIX

INEQUALITIES

Using the discrete-time system given in chapter 4, the following gives the existing work

on the discrete-time LMI guaranteeing the FTB and H∞ performance objectives.

Given positive matrices P1 > 0 and P2 > 0, consider the following discrete-time

quadratic Lyapunov candidate, and it’s discrete-time derivative

vk = xTkP1xk + wTk P2wk (7.1)

vk+1 = xTk+1P1xk+1 + wTk+1P2wk+1 (7.2)

In order to satisfy FTB, the following inequality must be satisfied:

vk+1 < αvk,∀ k ∈ N0, (7.3)

where α ≤ 1. Neglecting bounded uncertainties, the inequality becomes

xTk+1P1xk+1 + wTk+1P2wk+1 < α(xTkP2xk + wTk P2wk) (7.4)

From (4.7a), (4.7b), and (4.7d), (7.4) can be re-written as

xTk (AT +KTBT )P1(A+BK)xk + xTk (AT +KTBT )P1Fwk

+ wTk F
TP1(A+BK)xk + wTk F

TP1Fwk + wTKφ
TP2φwk

< α(xTkP1xk + wTk P2wk) (7.5)

In matrix form, inequality (7.5) becomes

[
xk wk

]T (AT +KTBT )P1(A+BK) (AT +KTBT )P1F

F TP1(A+BK) F TP1F + φP2φ


xk
wk


<

[
xk wk

]T αP1 0

0 αP2


xk
wk

 (7.6)
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Extracting the variables, and re-orienting the terms to one side, the matrix inequality

can be given equivalently as

αP1 − ATP1A− ATP1BK −(ATP1F +KTBTP1F )

−KTBTP1A−KTBTP1BK

−(F TP1A+ F TP1BK) αP2 − F TP1F − φP2φ


> 0. (7.7)

Next, consider the H∞ performance criterion. It is necessary to re-define H∞ for

discrete-time applications.

Definition 7.1. The following inequality must hold true:

Vk+1 < αVk, (7.8)

for α ≤ 1. From (4.7c) and (4.7b), inequality (7.8) becomes

zTk zk − γ2wTk wk + Vk+1 − αVk < 0, (7.9)

Applying Definition (7.1), it follows that

(Cxk +Duk)
T (Cxk +Duk)− γ2wTk wk + Vk+1 − αVk < 0. (7.10)

Combining this with the LMI for FTB, (7.7) becomes

−ATP1A− ATP1BK

−KTBTP1A−KTBTP1BK −ATP1F −KTBTP1F

−(C +DK)T (C +DK) + αP1

−F TP1A− F TP1BK αP2 − F TP1F

−φP2φ− γ2I


> 0. (7.11)
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In order to separate the nonlinear terms in the inequality, Schur complement is applied,

and (7.11) becomes

αP1 − CTDK−

KTDTC − CTC 0 AT +KTBT

−KTDTDK

0 αP2 + γ2I − φP2φ F T

A+BK F P−11



> 0 (7.12)

Next, pre- and post-multiply inequality (7.12) by
P−11 0 0

0 I 0

0 0 I

 , (7.13)

and let X = P−11 and Y = KP−11 . It follows that (7.12) becomes

αX −XCTDY − Y TDTCX

−XCTCX − Y TDTDY 0 XAT + Y TBT

AX +BY F X


> 0. (7.14)

Lastly, the applciation of Schur complement to (7.14) provides the following LMI result

αX 0 XAT + Y TB XCT + Y TD

0 αP2 + γ2I − φP2φ F T 0

AX +BY F X 0

CX +DY 0 0 I


> 0, (7.15)

which is FTB and robust given external disturbances.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

Global interest in moving away from the use of fossil fuels as the primary source

for electric power generation has lead to a vested interest in wind energy technology.

Increased use of, and interest in variable-speed wind energy conversion systems have

created due cause for research in the global control systems engineering community.

This work first presented the application of various control systems techniques in

a model application of a VS-WECS using a permanent magnet synchronous generator.

Sliding mode control is given in the context of field oriented and speed control of the

model. The results of extensive simulations show that this method can be implemented

in order to achieve a higher level of maximum power point tracking and disturbance

rejection. Moreover, experimentation using wind profiles of varying intensity show that

this control scheme is applicable over a significant range of input conditions. Only minor

gain adjustments are necessary in order to maximize response while minimizing the

magnitude of switching delay effects. The results of this controller have been published in

[50]

Furthermore, the combination of H∞ and finite-time boundedness performance criteria,

achieved through the use of LMIs, are applied to the VS-WECS model. Simulations

in stability analysis and disturbance rejection help to exhibit the effectiveness of the

proposed design. LMIs, already proven to be a powerful method for complex system

control, provide a seemingly effective medium for the implementation of the desired

performance objectives.
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8.2 Future Work

The results presented here seek to demonstrate the potential of the proposed control

methods. However, they do not fully encompass the entire scope challenges associated

VS-WECS and PMSG control. Future work into the proposed sliding mode control

architecture should include analysis of conditions such as loading, grid connections, and

faults; eventually leading to actual implementation of the proposed control schemes.

Where, expansion upon the performance of the Continuous-TIME LMI based control

scheme should demonstrate the effectiveness of this control scheme over dynamic wind

profiles. Further development is neccessary for the discrete-time LMI to include bounded

parametric uncertainties. Simulations involving of the discrete-time LMI would also

provide foundational evidence in support of this methodology. It is hoped that the

results presented in this work will serve to incrementally build upon the prior research in

VS-WECS, PMSG control, and even dynamical systems control fields.
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