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ABSTRACT 

Modern unmanned aerial vehicles (UAV) are made of lightweight structures, owing 

to the demand for longer ranges and heavier payloads. These lightweight aircraft are more 

susceptible to vibrations caused by atmospheric turbulence transmitted to the fuselage from 

the wings. These vibrations, which can cause damage to the payload or on board avionics 

present a serious problem, since air turbulence is expected to increase over the next few 

decades, due to climate change. 

The objective of this thesis is to predict the vibration of an aircraft fuselage by 

establishing a relationship between wing and fuselage vibration. A combination of 

ANSYS® and MATLAB® modeling are used to simulate aircraft vibrations. First, the 

displacement of a lumped mass aircraft model to step and sinusoidal forces acting on the 

wings are compared to displacements calculated using modal superposition equations. 

Next, a state space representation of this system is found using system identification 

techniques, which uses wing displacement as input, and provides fuselage displacement as 

output. This state space model is compared to a derived state space model for validation. 

Finally, a three dimensional aircraft with distributed displacement sensors on its wings is 

modeled. A state space representation is established using the wing displacement output 

from the sensors as its input and the motion and rotation of the fuselage along the X, Y and 

Z axes as the output. 

It is seen that the displacement results of the lumped mass system match with 

those calculated using modal superposition equations. The state space model can also 
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accurately predict the fuselage vibration of the lumped mass system, when provided with 

wing displacement as input. More importantly, results have shown that the distributed 

vibration sensors on the three dimensional plane model are able to measure the wing 

displacements. Using the output from these distributed sensors, the motion and rotation of 

the fuselage about all three axes can be effectively predicted.  
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CHAPTER I 

INTRODUCTION 

The Unmanned Aerial Vehicle (UAV) industry is a highly competitive market, ever 

since its popularity in both military and civil applications have drastically increased. 

Longer ranges and heavier payloads are currently areas of continuous improvement in this 

industry. A common approach to this demand is the use of lightweight materials for aircraft 

structures. Light airplane structures allow for longer ranges and heavier payloads, but are 

more difficult to control under turbulent conditions [1]. Turbulent loads can cause damage 

to the payload and aircraft structure as these loads are transmitted to the fuselage through 

the wings.  

Modern unmanned aircraft carry avionics in their fuselage which are sensitive to 

vibration and high values of acceleration. A 50% reduction in vibrations experienced by 

these avionics can improve their lifetime by a factor of 100 to as much as 1000 [2]. 

Clear-air turbulence is frequently encountered by such aircraft at cruising altitudes, 

and are not often detected by conventional radar. The strength of clear-air turbulence is 

expected to rise by 10 – 40%, and its frequency is expected to rise by 40 – 170% by the 

middle of this century due to climate change [3].  

This predicted increase in aircraft turbulence frequency and intensity could lead to 

shorter lifetimes for aircraft avionics and greater structural damage on aircraft. Ultimately, 

replacing unreliable avionics and damaged aircraft structures prompt steeper maintenance 

costs.  
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Research Objective 

 The objective of this thesis is to predict the rigid body vibration of the aircraft 

fuselage by measuring the vibration of its wings. Modern commercial aircraft carry on 

board highly sophisticated avionics, which are able to significantly damp turbulence 

effects. Introducing sophisticated electronics to the UAV could prove to be 

counterproductive, and hence the need for a system that is lightweight, cost effective and 

reliable is noteworthy.  

Piezoelectric materials are widely used for their electromechanical properties, as a 

sensor as well as an actuator [4]. They add very little weight to the receiving structure and 

are easy to cut and shape. These properties make piezoelectric materials very suitable in 

sensing the displacement caused by turbulent loads on the wings of the aircraft.  

By establishing a state space model which uses the vibration of the wings through 

the sensor as its input, the vibration of the fuselage along all axes can be predicted. An 

Active/Passive Vibration Control system can be developed by predicting fuselage 

vibrations, which provides suitable actuator signals for countermeasures. With the 

introduction of such a control system, a reduction in vibration can be ensured by means of 

active vibration mounts, thus protecting the payload, on board avionics and the structural 

integrity of the aircraft.  

Background 

Gust detection systems such as LiDAR (Light Detection and Ranging) are currently 

employed in aircraft to detect any turbulence that it may encounter in the near future. 

Another turbulence probe used in aircraft known as the Best Aircraft Turbulence (BAT) 

probe, which consists of an air data probe, an inertial measurement system, a global 
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positioning system and software to link the hardware together [5]. While such systems are 

indeed effective on larger aircraft, it would be counterproductive to incorporate them into 

small unmanned vehicles. In general, the avionics of small unmanned aircraft are focused 

on aircraft navigation and control [6]. Tracking changes in turbulence that lie ahead of the 

plane can be computationally expensive, which may ultimately interfere with the range and 

payload characteristics of the aircraft. 

Therefore, there is a need for a system that can measure turbulence without 

undermining the basic functionalities of the aircraft. From a structural point of view, 

turbulent loads cause wing deformations, fuselage roll as well as disturbances in the pitch 

of the aircraft [7]. If this wing deformation could be measured, it could be related to the 

consequential fuselage disturbance by means of a state space model, which would be less 

processor intensive than a system that can predict fuselage motion by constantly tracking 

changes in turbulence that the aircraft would encounter in the near future. With the 

introduction of said state space model to predict the motion of the fuselage, effective 

countermeasures to maintain the stability of the avionics or payload can be made without 

largely impacting the range and payload carrying characteristics of the aircraft.  

Research has been widely conducted on the effects of turbulent winds on small 

unmanned aircraft, the suitability of conventional sensors in detecting turbulence and 

potential solutions to this problem. These studies are briefly discussed, followed by the 

possibility of using piezoelectric materials as displacement sensors for an aircraft. 

Turbulence Effects 

 In this thesis, turbulence is defined as: Severe wind gusts that cause undesirable 

motion. Hoppe also describes turbulence as [8]: “Change in angle of attack or an added 
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vertical component of headwind”. 

 Unmanned aerial vehicles have a number of unique constraints imposed upon them 

such as size, range, payload capacity and others based on their requirements. These 

constraints can present a number of issues such as undesirable roll, difficulty in 

maneuvering and poor stability in turbulent wind conditions. Unmanned vehicles often 

operate at lower altitudes; an atmospheric region where turbulence intensity is much higher 

and much more frequent [1].  

A study conducted in 2013 by Mohamed, Massey, Watkins and Clothier looks into 

the attitude stability of an aerial vehicle while encountering significant turbulence and 

evaluates the effects of constraints such as size on the performance of the aircraft.  

While a smaller airplane size may be more desirable, it could also lower the stability 

of the aircraft. The study also found that the ability of an aircraft to damp rolls is directly 

proportional to the wing span of the aircraft [1]. The roll mode time constant (𝜏𝑟) can be 

approximated as the inverse of roll damping (𝐿𝑝) as [1]: 

𝜏𝑟 =  
−1

𝐿𝑝
 

This implies that [1]: 

𝜏𝑟~√𝑏 

where 

𝑏 = wingspan of the aircraft 

Hence for small unmanned aerial vehicles, it can be assumed that its ability to 

maintain a given angle of attack and roll angle while encountering turbulent winds is rather 

poor.  

Since UAVs have limited payload capacity, it is unable to carry highly sophisticated 
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avionics or stabilizing gimbals [1]. This further undermines the ability of these vehicles to 

navigate safely through gusty conditions. These problems are summarized in Fig. 1. 

 

Figure 1. Constraints imposed on UAVs and their side effects [1]. 

 One of the main consequences of turbulence is undesirable roll on UAVs. More 

often than not, turbulent loads acting on the wings of a UAV are unsymmetrical – such 

loads cause the UAV to roll, which can prove to be detrimental to its performance. Fig. 2 

illustrates the effects of unsymmetrical loading. 

 

Figure 2. Effects of asymmetric gust loading on an aircraft [9]. 
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Human control    

An experiment conducted in 2014 by Chen, Clothier, Mohamed and Badawy tries 

to determine if humans are able to control a small unmanned aircraft through turbulent 

conditions. In this experiment, a random sample of volunteers were asked to take part in a 

simulation which involved maneuvering an unmanned aircraft using a controller [10]. The 

simulation involved guiding the aircraft, which was allowed to rotate only about its roll 

axis, through turbulent winds [10]. Results showed that most of the volunteers were able 

to keep the wings level within ±20° for 50% of the time [10]. The instability of an 

unmanned aerial vehicle through such conditions could have several implications such as 

damage to payload, reduced avionics lifetimes or total loss of the aircraft. UAVs are often 

involved in assignments that are stability intensive, and in such cases, the input from a 

human controlling the vehicle may not suffice. It is also a concern that turbulent winds are 

observed to act at frequencies as high as 25 Hz [11]. Making corrections to the attitude of 

the plane at such frequencies may prove to be highly strenuous to human beings, and their 

performance may decrease over time. 

Potential solutions to this problem are discussed by the previous study, which 

suggests that this situation may be solved either by redesigning the physical characteristics 

of the aircraft, or by using control systems. Redesigning the aircraft involves reducing wing 

span, velocity and mass of the aircraft [9]. While this solution will stabilize the aircraft, it 

would diminish the maneuverability of the aircraft, which may be unacceptable in many 

operations. Control systems, which consists of a sensor, actuator and a processing unit 

provides a robust and attractive solution to this problem, since it would make the aircraft 

more maneuverable and completely autonomous [9]. The study emphasizes on minimizing 
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the latency between sensing the gust and providing suitable countermeasures to the 

actuator, so that the control system can be effective at dissipating the effects of turbulence. 

With the availability of advanced processors, this latency can be reduced to a minimum. 

These solutions are summarized in Fig. 3.  

 

Figure 3. Approaches towards aircraft stability [9]. 

Conventional turbulence sensors 

A paper presented in 2014 by Mohamed, Clothier, Watkins, Sabatini and 

Abdulrahim explores the adequacy of conventional sensors in detecting turbulence. One of 

the most commonly used sensors are reactive sensors – these sensors estimate the inertial 

response of the unmanned vehicle due to a disturbance [12]. MEMS (Micro-

ElectroMechanical Systems) are often used as accelerometers in unmanned vehicles. The 

downside to these accelerometers are that they are not only unable to differentiate between 

components of acceleration, but they are also susceptible to temperature changes and 

vibrations [12].The technology to counter the effects of vibrations have still not been 

incorporated into the avionics of small unmanned vehicles owing to weight constraints 

[12]. MEMS gyroscopes, which are often used in larger commercial aircraft, have been 

miniaturized for use with UAVs. Miniaturization brings along with it a host of other 

problems, since MEMS devices are highly sensitive to manufacturing tolerances [12].  
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Other sensors used to aid navigate unmanned aerial vehicles are horizon sensors – 

these sensors may prove useful in certain situations, but in an urban scenario these sensors 

may not be effective at all due to presence of high rise buildings [12].  

 Studies show that conventional airplane sensors are not well suited for UAV 

applications. There is a need for a sensor that is accurate, reliable and robust since the 

effectiveness of the control system in dissipating the effects of gust are highly dependent 

on the accuracy of the sensors being employed. 

Piezoelectric materials as sensors 

Piezoelectric materials have been widely studied for their properties as sensors as 

well as actuators [4]. Piezoelectric materials can used as lightweight, cost effective sensors 

which are able to monitor structural loadings in real time. Research has shown that by 

placing patches of piezoelectric materials along the length of a structure, each patch 

provides an output voltage based on the state of strain it experiences. The voltages from 

each of these patches are proportional to the slope of the lateral displacement curve of the 

patch [13]. The slope from each patch can effectively be used to determine the 

displacement curve of a beam [13].  

This application of distributed piezoelectric patches as displacement or vibration 

sensors can be used in UAVs to measure the displacement curve of a wing. Deflection 

measurements can be made in real time, which when sent to the controller of an 

active/passive vibration control system, can provide suitable signals to dissipate the effects 

of gust load.  

 Observations from research conducted on UAVs indicate that instability while 

encountering turbulence is a problem that needs to be addressed with a solution that is 
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effective and robust. Human control in such situations is ineffective as well as strenuous 

on the controller. A more effective solution would be to use an active/passive vibration 

control system which can control the vibrations transferred to the avionics or payload by 

means of a controller, actuator and a sensor.  

 Hence, by predicting the rigid body motion of the fuselage, the vibrations can be 

reduced using two methods. One approach to this problem would be to mount the avionics 

or payload on an active mount, which would provide countermeasures to prevent the 

transmission of vibrations to the avionics or payload. Another approach to this problem 

would be to program the on board avionics to damp out the predicted fuselage vibrations. 
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CHAPTER II 

DEVELOPMENT OF A LUMPED MASS MODEL 

 A simplified form of an aircraft is first analyzed in the form of a two dimensional 

lumped mass model. A lumped mass system assumes that the mass of a body is 

concentrated at its center of gravity, while maintaining links between bodies by means of 

massless springs or beams. This lumped mass system is easy to model and simulate, and 

the results are just as easy to calculate theoretically using natural frequency and modal 

superposition equations.  

Modal Analysis of the Lumped Mass System 

Fig. 4 shows a model of an aircraft, based on which a lumped mass system is 

modeled in ANSYS® as shown in Fig 5. This lumped mass system can then be represented 

as a series of spring mass systems for a mathematical analysis, as shown in Fig. 6.   

 

 

Figure 4. Aircraft model. 
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Figure 5. Lumped mass system. 

 

Figure 6. Representation of the lumped mass system as a spring mass system. 

By determining the mass and stiffness matrices of the spring mass system, its 

natural frequencies can be calculated. This three degree of freedom system has springs 𝑘2 

and 𝑘3 which represent the beams that connect the fuselage to the wings. Springs 𝑘1and 𝑘4 

represent the aerodynamic forces that hold the lumped mass model in the air. Dampers 

𝑏1, 𝑏2, 𝑏3, 𝑏4 represent the material damping exerted by the system. The equations of 

motion of the undamped spring mass system are:  

  

1 1 1 2 1 2 2

2 2 2 3 2 2 1 3 3

3 3 3 4 3 3 2

( ) 0

( ) 0

( ) 0

m x k k x k x

m x k k x k x k x

m x k k x k x

   


    
    

                     (2.1) 

where  

𝑚1, 𝑚3 = masses of the wings (kg) 

 𝑚2 = mass of the fuselage (kg) 
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𝑥1, 𝑥3 = displacements of the wings (m) 

𝑥2 = displacement of the fuselage (m) 

𝑘1, 𝑘4 = spring stiffness (N/m) 

𝑘2, 𝑘3 = beam stiffness (N/m) 

The parameter values assumed for the simulation procedure are shown in Table 1. 

It is arbitrarily assumed that the mass of the fuselage is five times the mass of the wings. 

The spring stiffness representing the aerodynamic forces is calculated such that the 

behavior of the lumped mass system is realistic. 

Table 1. Parameter values used for simulation 

Parameter Stiffness (N/m) Mass (Kg) 

Wing (𝑚1, 𝑚3) Point Mass 2 

Fuselage (𝑚2) Point Mass 10  

Beam (𝑘2, 𝑘3) 10002  Massless  

Spring (𝑘1, 𝑘4) 17167.5  Massless 

 

 Equation 2.1 can also be represented in a matrix form as:     

 

1 1 1 2 2 1

2 2 2 2 3 3 2

3 3 3 3 4 3

0 0 0 0

0 0 0

0 0 0 0

m x k k k x

m x k k k k x

m x k k k x

          
        

            
                  

  (2.2) 

 After substituting variables with values from Table 1, the mass matrix [m] and the 

stiffness matrix [k] are represented as:

    

2 0 0 27169.5 10002 0

0 10 0 10002 20004 10002

0 0 2 0 10002 27169.5

m k
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           To solve for the natural frequency of the system, the characteristic Eigen value 

equation solved is [14]: 

 
2( [ ] [ ])[ ] 0m k x     (2.3) 

where  

𝜔 = natural frequencies of the system (rad/s) 

[𝑥] = displacements of the masses (m)  

On solving Eq. 2.3, it becomes: 

 

2

2

2

2 0 0 27169.5 10002 0

0 10 0 10002 20004 10002 0

0 0 2 0 10002 27169.5







   
   

       
      

  (2.4) 

 Equation 2.4 can be expressed as: 

 
3 240 1166796 9155651998.5 9330513554565 0         (2.5) 

On solving this polynomial equation, three natural frequencies are obtained. The 

calculated natural frequencies of the system are 5.49 Hz, 18.55 Hz and 19.09 Hz. 

Since [𝑥] is a non-zero matrix, it can be established that [14]: 

 2det | [ ] [ ]) | 0m k     (2.6) 

The mode shapes [𝑋] of the system can be found by replacing 𝜔 with the 

calculated frequencies. The mode shapes of the system are:  

 (1) (2) (3)

1 1 1

[ ] 1 [ ] 0 [ ] 0.4

1 1 1

X X X

     
     

   
     
          

  (2.7) 
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Mode shape [𝑋](1) is the rigid body motion the aircraft. Mode shape [𝑋](2) 

denotes the wings moving in opposite directions with no fuselage motion. Mode shape 

[𝑋](3)shows the wings moving the same direction, while the fuselage moves in an 

opposite direction.  

Finite Element Modeling and Simulation of the Lumped Mass System 

 The lumped mass system is modeled and simulated using ANSYS®. Fig. 5 

illustrates the two dimensional lumped mass system modeled in ANSYS®. In this 

simulation, damping is ignored and no external forces are considered to act on the system. 

The model geometry and material properties were chosen such that this model 

remains identical to the theoretical lumped mass system. To ensure this, the masses of the 

three bodies, beam stiffness and spring constants are obtained from Table 1. Since the 

beams connecting the three bodies have negligible mass, they were assigned low density 

values, in the order of 1 × 10−8 𝑘𝑔/𝑚3 . The geometry and modulus of elasticity of these 

beams were assigned such that their stiffness remains identical to the theoretical lumped 

mass model. The constants of the springs which suspend the wings are obtained from Table 

1 as well.  

Spot welds are connections that allow structural loads to be transmitted between 

connected entities, and are ideal connections in the case of a two dimensional analysis. A 

modal analysis is conducted to determine the mode shapes and natural frequencies of the 

system.  

Constraints are placed on the fuselage allowing it to move only along the Y-axis, 

while the wings are constrained using springs, thus allowing them to move only along the 

Y-axis as well. The ANSYS® simulation results are summarized in Table 2.  
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Table 2. Summary of ANSYS® modal analysis results 

Natural Frequency (Hz) Mode Shape 

5.4841 Rigid body translation 

18.704 

Wings move in opposite directions; No 

fuselage motion 

19.233 

Wings move in same direction; Fuselage 

moves in opposite direction 

  

The observed mode shapes of the lumped mass system are illustrated in Fig. 7, 8 

and 9. 

 

Figure 7. First mode shape of the lumped mass system, 5.48 Hz. 

 

Figure 8. Second mode shape of the lumped mass system, 18.70 Hz. 
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Figure 9. Third mode shape of the lumped mass system, 19.23 Hz. 

Table 3 compares the calculated results with the simulation results. This 

comparison confirms the natural frequencies and mode shapes obtained using the two 

methods are in very good agreement with one another, thus validating the finite element 

modal analysis of the lumped mass system.   

Table 3. Comparison between calculated results and simulation results 

            

            Frequency 

 

Approach 

1st Natural 

Frequency and 

Mode Shape 

2nd Natural 

Frequency and 

Mode Shape 

3rd Natural 

Frequency and 

Mode Shape 

Theoretical Modal 

Analysis 

ω = 5.49 Hz 

𝑋(1) =  [
1
1
1

] 

ω = 18.55 Hz 

𝑋(2) =  [
1
0

−1
] 

ω = 19.09 Hz 

𝑋(3) =  [
1

−0.4
1

] 

ANSYS® 

Simulation Results 

ω = 5.4841 Hz 

 

ω = 18.704 Hz 

 

ω = 19.233 Hz 
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Forced Vibration Analysis using Modal Superposition Equations 

The use of modal superposition equations determines the positions of all three 

masses with respect to time. This section reviews the modal superposition equations that 

are used to obtain the position of the masses with respect to time. This theoretical analysis 

is damped since it is assumed that the system has a 5% natural damping ratio (ζ=0.05). The 

analysis of the system is conducted for a step input and a sinusoidal input acting on the 

wings. As can be seen in Fig.6, a force 𝑢 is applied to one wing and a force 𝑣 is applied to 

the other wing. Applying these forces on the wings causes them to be displaced, which in 

turn causes the fuselage to vibrate. 

Using Fig. 6, the equations of motion of a damped lumped mass system are:  

 

1 1 1 2 1 1 2 1 2 2 2 2

2 2 2 3 2 2 3 2 2 1 2 1 3 3 3 3

3 3 3 4 3 3 4 3 3 2 3 2

( ) ( )

( ) ( ) 0

( ) ( )

m x b b x k k x b x k x u

m x b b x k k x b x k x b x k x

m x b b x k k x b x k x v

      


        
       

  (2.8) 

     where  

𝑚1, 𝑚3 = masses of the wings (kg) 

 𝑚2 = mass of the fuselage (kg) 

𝑥1, 𝑥3 = displacements of the wings (m) 

𝑥2 = displacement of the fuselage (m) 

𝑘1, 𝑘4 = spring stiffness (N/m) 

𝑘2, 𝑘3 = beam stiffness (N/m) 

�̈�2 = acceleration of the fuselage (m/s2) 

�̈�1, �̈�3 = accelerations of the wings (m/s2) 

𝑥2̇= velocity of the fuselage (m/s) 
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𝑥1̇ , �̇�3= velocity of the wings (m/s) 

𝑏1, 𝑏2, 𝑏3, 𝑏4 = damping constants (N.s/m) 

𝑢 = force applied on 𝑚1 

𝑣 = force applied on 𝑚3 

For a step input analysis, it is assumed that a force of -5 N is applied on one wing, 

while a -10 N force is applied onto the other wing in order to simulate an unsymmetrical 

loading condition. Hence for a step input, 𝑢 = 2 × 𝑣. Considering the sine input simulation, 

a sinusoidal force of 5 N with an arbitrary frequency of 10 Hz applied to both wings. Hence 

for a sine input, 𝑢 = 𝑣.  

For a damped multi-degree-of-freedom system, the equation of motion of all its 

masses is represented as [14]: 

  [ ] [ ]m x bx k x F     (2.9) 

where  

[𝑥] = displacement vector of the system or solution vector  

[𝑚] = mass matrix of the system 

[𝑏] = damping matrix of the system 

[𝑘] = stiffness matrix of the system  

[𝐹] = external force(s) acting on the system 

 In accordance with Eq. 2.9, the equations of motion can be represented in matrix 

form as:   

   
1 1 2 2

2 2 2 3 3

3 3 3 4

0 0 0

0 0

0 0 0

m k k k

m m k k k k k

m k k k
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1 2 2

2 2 3 3 sin

3 3 4

0

0

step e

b b b

b b b b b F u F v

b b b

  
 

     
 
   

 

The damping coefficient, ζ = 0.05. From this value, the damper values can be 

calculated. Damper values are calculated for each mass using the equation [15]:  

 
c

c

c
    (2.10) 

 where 

𝑐 = actual damping of the system  

cc = critical damping, 𝑐𝑐 = 2√𝑘𝑚. 

Table 4 summarizes the damping values used in Fig.6, using Eq. 2.10.  

Table 4. Summary of calculated damping values 

Mass Number Left Side Damper  

(N.s/m) 

Right Side Damper  

(N.s/m) 

𝑚1 18.5296 14.1436 

𝑚2 31.626 31.626 

𝑚3 14.1436 18.5296 

 

Plugging in values from Table 2, these matrices can now be expressed as:    

    

2 0 0 27169.5 10002 0

0 10 0 10002 20004 10002

0 0 2 0 10002 27169.5

m k
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  sin

32.6732 14.1436 0

31.626 63.252 31.626 5 5 (10 )

0 14.1436 32.6732

step eb F N F t N

 
 

       
 
  

 The solution vector, [𝑥] can be represented as a linear combination of the natural 

modes of the undamped system as [14]: 

    [ ] ( )x t X q t      (2.11) 

where  

[𝑋] = corresponding normal modes  

[𝑞] = generalized displacement of the masses. 

[𝑋] is obtained by normalizing each mode shape with respect to [m]. This is done 

by solving the equation [14]:  

 [ ] .[ ].[ ] [ ]TX m X I   (2.12) 

Vector [𝑞] is defined as [14]: 

 

 
2

0

0

( ) cos sin (0)
1

1 1
sin (0) sin ( )

i i

i i i i

t i
i di di i

i

t

t t

di i di

di di

q t e t t q

e t q Q e t d

 

   


 



   
 



 

  
  

  

 
   
 



  (2.13) 

where  

[𝑞] = generalized displacement of the masses  

[𝑞𝑖(0)] = initial generalized displacement of the masses 

[ �̇�𝑖(0)] = initial generalized velocities of the masses 
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ζ = damping ratio of the system 

ω = natural frequencies of the system 

In Eq.2.13, the damped natural frequency, 𝜔𝑑𝑖 is represented as [14]: 

 
21di i i      (2.14) 

Also in Eq.2.13, the vector of generalized forces, [𝑄(𝑡)] is represented as [14]: 

  ( ) [ ] ( )TQ t X F t   (2.15) 

For a step force excitation,  

1.854

( ) 2.504

7.268

Q t

 
 


 
  

  

For a sine force excitation,  

1.236 sin(10 )

( ) 0.003 sin(10 )

4.845 sin(10 )

t

Q t t

t

  
 

 
 
   

   

 Since the initial displacements and velocities of the lumped mass system is zero, 

Eq.2.13 can now be expressed as [14]:  

  
0

1
( ) sin ( )i i

t

t

i i di

di

q t Q e t d
    




    (2.16) 

 Plugging in variable values in the above equation, the three generalized 

displacements of the masses become:                                 

In the case of a step input:  

 

 

0.6909( )

1

0

2.3310( )

2

0

( ) 0.0537 sin 34.5362( )

( ) 0.0215 sin116.5279( )

t

t

t

t

q t e t d

q t e t d
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                            2.3994( )

3

0

( ) 0.0606 sin119.9440( )

t

tq t e t d        (2.17) 

In the case of a sine input:  

 

 

 

 

0.6909( )

1

0

5 2.3310( )

2

0

2.3994( )

3

0

( ) 0.0358 sin(10 ) sin 34.5362( )

( ) 2.5745 10 sin(10 ) sin116.5279( )

( ) 0.0404 sin(10 ) sin119.9440( )

t

t

t

t

t

t

q t t e t d

q t t e t d

q t t e t d







 

 

 

 

  

 

  

  

  







  (2.18) 

 [𝑋] is obtained from previously calculated mode shapes and normalizing them 

using Eq. 2.12. Combining all three vectors, [𝑋] can be represented as:   

 

0.1237 0.3064 0.1236

0.4997 0 0.5003

0.4843 0.0782 0.4847

X

 
 

 
 
  

  

 The closed form equation for the displacement of the masses can be obtained by 

using Eq. 2.11. The time period used in the closed form equation is five seconds. The focus 

is on determining the motion of the fuselage, which is represented by the variable 𝑥2(𝑡).  

Using the Eq. 2.11, a closed form equation for the motion of the fuselage with 

respect to time is derived, in the case of an applied step force as well as an applied 

sinusoidal force.  

For the step input case, the closed form equations of the masses are defined as:

 

  -1.7271t -4 -6

1

-5.9984t -4

-5 -5.8275t -5

-6

x (t) = e (1.9225×10 ×cos(34.499 t) + 9.6247×10

×sin(34.499 t)) + e (2.4458×10 ×cos(119.8178 t)

+1.2245×10 ×sin(119.8178 t)) - e (9.1899×10

×cos(116.5511t) + 4.595×10 ×sin(116.5511t)) -3.44 -49×10

                   (2.19) 
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  -1.7271t -4 -5

2

-5.9984t -5

-6 -4

x (t) = e (4.762×10 ×cos(34.499 t) + 2.384×10

×sin(34.499 t)) - e (3.9493×10 ×cos(119.8178 t)

+1.9771×10 ×sin(119.8178 t)) - 4.3671×10

  (2.20) 

  -1.7271t -4 -6

3

-5.9984t -4

-5 -5.8275t -5

-5.8275t -5

x (t) = e (1.921×10 ×cos(34.499 t) + 9.6169×10

×sin(34.499 t)) + e (2.4479×10 ×cos(119.8178 t)

1.2255×10 ×sin(119.8178 t)) - e (9.2010×10

×sin(119.8178 t) - e (9.2010×10 ×cos(116.551

-6 -4

1t)

+4.6005×10 ×sin(116.5511t)) -5.2889×10

  (2.21) 

For the sine input case, the closed form equations of the masses are defined as:

    -1.7271t -4

1 3

-6 -4 -5.827 t -7

-9 -7

-5.

x (t) = x (t) = (sin(10 t))[e (1.2819×10 ×cos(34.499 t) + 6.4173×

10 ×sin(34.399 t)) -1.2819×10 ]- (sin(10 t))[e (1.1008×10 ×

cos(116.5511t) + 5.5041×10 ×sin(116.5511t)) -1.1008×10 ]+

(sin(10 t))[e 9984t -4 -6

-4

(1.6303×10 ×cos(119.8178 t) +8.1619×10 ×

sin(119.8178 t)) -1.6303×10 ]

    (2.22) 

  -1.7271t -4

2

-5 -4 -5.9984t

-5 -6 -7

x (t) = (sin(10 t))[e (3.1751×10 ×cos(34.499 t) +1.5895

×10 ×sin(34.399 t)) -3.1751×10 ]- (sin(10 t))[e (2.6325

×10 ×cos(119.8178t) +1.3719×10 ×sin(119.8178t)) - 2.6325×10 ]

  (2.23) 

  Since the same sinusoidal forces are applied on both wings, their displacements 

are the same. It can therefore be said that the displacement of the aircraft is symmetrical. 

Hence, the displacements both wings can be determined using the same function, as 

shown in Eq. 2.22.  

Finite Element Forced Vibration Simulation of the Lumped Mass System 

The model in Fig. 5 will now undergo a transient response analysis to step and 

sinusoidal forces respectively, using ANSYS®. The resultant fuselage motion observed 

in this analysis will be compared with mathematical results for comparison.  
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 Similar to the theoretical analysis, while applying a step load to the system, a force 

of -5 N is applied to one wing while a -10 N force is applied to another wing, to simulate 

unsymmetrical loading. An application of this load will cause the wings to displace, which 

in turn causes a vibration in the fuselage. The simulation is run for a period of 5 seconds. 

While applying a sinusoidal load to the system, the lumped mass model is subjected to a 

sinusoidal force of 5 N with an arbitrary frequency of 10 Hz applied to both wings. The 

results of both simulations are compared with the theoretical results for validation. It should 

be noted that a damped simulation was conducted in both cases, since all materials have an 

inherent damping property. Hence, a 5% damping ratio (ζ = 0.05) was used.   

Fig. 10 compares the calculated response of the fuselage with the simulation results 

for a step force input. Fig. 11 compares the same results for a sinusoidal force input.  

 

Figure 10. Comparison between calculated and simulation results for a step force input. 
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Figure 11. Comparison between calculated and simulation results for a sine force input. 

The above graphs indicate that the results are in good agreement with each other. 

During the sine force excitation analysis, the two results show a slight disagreement in 

displacement within the first two seconds of the analysis. This is because the closed form 

equation does not reflect the transient period which is calculated by the ANSYS® 

simulation. From the results, it can be said that the graphs validate the forced vibration 

response simulation of the lumped mass model.  

Theoretical State Space Model 

The next step in validating the lumped mass model analysis will be to compare the 

output of the state space representation derived through system identification with the 

output of the state space model derived through equations of motion. The results obtained 

using this step are used to validate the state space model obtained using the system 

identification tool. 
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To derive a state space model, Fig.6 is used to obtain the equations of motion, which 

are given by Eq. 2.8. The state space model is derived using the following state space 

variables: 

 

1 1

2 2

3 3

4 1 1

5 2 2

6 3 3

z x

z x

z x

z z x

z z x

z z x







 

 

 

  

 Along with the equations of motion in Eq. 2.8, the state space model can be 

written as: 

 

1 1

2 2

3 3

2 5 2 2 1 2 1 1 2 4
4

1 1 2 1 1

2 4 2 1 3 6 3 3 2 3 2 2 3 5
5

2 2 2 2 2 2

3 5 3 2 3 4 3 3 4 6
6

3 3 3 3 3

( ) ( )

( ) ( )

( ) ( )

z x

z x

z x

u b z k z k k z b b z
z

m m m m m

b z k z b z k z k k z b b z
z

m m m m m m

v b z k z k k z b b z
z

m m m m m







 
    

 
     

 
    

  (2.24) 

The state space representation of a system is written in its matrix form as [15]: 

 
x Ax Bu

y Cx Du

 

 
  (2.25) 

where 

[𝑥] = state vector 

[𝑦] = output vector  

[𝑢] = input vector 
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[𝐴] = state matrix 

[𝐵] = input matrix 

[𝐶] = output matrix  

[𝐷] = feedthrough matrix 

Similar to the forced vibration response calculations, for a step input analysis, it is 

assumed that a force of -5 N is applied on one wing, while a -10 N force is applied onto 

the other wing in order to simulate an unsymmetrical loading condition. Hence for a step 

input, 𝑢 = 2 × 𝑣. In this case, the input vector 𝑢(𝑡) is defined as: 𝑢(𝑡) =  −5𝑁.  

Considering the sine input simulation, equal sinusoidal forces of −5 × sin (10𝑡) N 

are applied to both wings. Hence for a sine input, 𝑢 = 𝑣. In this case, 𝑢(𝑡) =  −5 ×

sin(10 × 𝑡) 𝑁.  

The C matrix specifies the output of the state space model. Since the focus of this 

state space model is the rigid body motion of the fuselage, the C matrix, which is multiplied 

by the 𝑥(𝑡) matrix, will therefore be defined as:  0 1 0 0 0 0C  .  

Using Eq. 2.25 and Eq. 2.8, the constituent matrices of the theoretical state space 

model [𝐴], [𝐵], [𝐶] and [𝐷] can be represented in a general form as:  

1 2 2 1 2 2

1 1 1 1

2 3 3 2 3 32 2

2 2 2 2 2 2

3 3 4 3 3 4

3 3 3 3

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0

0 0

k k k b b b

m m m mA

k k k b b bk b

m m m m m m

k k k b b b

m m m m
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1

2

3

1 4

5

6

3

0

0

0

1
0 1 0 0 0 0 0 ( )

0

2

z

z

z
B C D x t

m z

z

z

m

 
 

 
 

 
 

 
 

 
      
 

 
 

 
 

 
    
 
  

  

 Plugging in values from Table 1 and Table 4, the matrices of the state space 

model can be rewritten as: 

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

13584.7 5001 0 16.3366 7.0718 0

1000.2 2000.4 1000.2 3.1626 6.3258 3.1626

0 5001 13584.7 0 7.0718 16.3366

A

 
 
 
 

  
  
  
 

  

 

             sin

0 0

0 0

0 0
0 1 0 0 0 0

0.5 0.5

0 0

1 0.5

step eB B C

   
   
   
   

     
   
   
   
   

 

1 1

2 2

3 3

4 1

5 2

6 3

0 ( )

z x

z x

z x
D x t

z x

z x

z x

   
   
   
   

     
   
   
   
      

     (2.26) 

It should be noted that the entire state space model does not change as a function 

of the input. Only the [B] matrix changes as a function of the input.  
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System Identification State Space Model 

Using the system identification toolbox in MATLAB®, a fitting state space model 

can be found using the displacements of the wings as inputs, and the position of the 

fuselage as the output. System identification is to find the dynamic model of a physical 

object or process by defining a mathematical relation between the inputs and outputs. The 

resulting dynamic mathematical model can be further used to perform simulation and 

prediction of systems or processes. 

In order to identify the state space model of the system using ANSYS® 

simulation results, the displacements of both wings are specified as inputs while the 

displacement of the fuselage along the Y axis is specified as the output. Since this system 

has multiple inputs (displacements of both wings) and a single output (displacement of 

the fuselage), it is a MISO (Multiple Input Single Output) system. Once the inputs and 

outputs have been specified in the data import toolbox, the state space model estimator is 

chosen in the system identification toolbox, and models between orders 4 and 10 are 

compared for the best fit with the given data. The toolbox estimated state space models 

with fits of 99.5% in both cases. 

In the case of a step input, the system identification toolbox derived the state 

space model as:   

4

4 4

4 4

7 7

6 5

34.91 134.1 6.721 82.42

21.82 30.33 7.237 41.23

202.5 38.84 1351 2.524 10

2.411 1.877 1410 710.3

9.823 10 4.53 10

4.163 10 3.103 10

3.012 10 1.465 10

1.387 10 7.132 10

A

B
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6 6

5

5

7

6

0.001084 0.000111 7.805 10 2.34 10

0

5.823 10

2.763 10

1.874 10

2.655 10

C

D

K

      



 
 
  
 
 

  

  (2.27) 

In the case of a sine input, the system identification toolbox derived the state 

space model as: 

4 4

28.57 56.88

47.23 24.63

9233 7012

7.686 10 2.569 10

A

B

  
  
 

 
  

    

 

            

5

5

6

0.0003362 1.496 10

0

5.535 10

3.293 10

C

D

K

    



 
  

  

                                (2.28) 

 It should be noted that the equations of the state space model derived with 

MATLAB® are expressed as [16]: 

 
x Ax Bu Ke

y Cx Du e

  

  
  (2.29) 

where 

[𝑥] = state vector 

[𝑦] = output vector 

[𝑢] = input vector 

  [𝐴] = state matrix 

[𝐵] = input matrix 
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[𝐶] = output matrix  

[𝐷] = feedthrough matrix 

[𝐾] = 0 gives the state space representation of the output – error model 

Fig. 12 compares the results between the derived state space model and the 

MATLAB® model for a step force input. Fig. 13 compares the same results for a 

sinusoidal force input.  

 

Figure 12. Comparison between derived state space model and MATLAB® model for a 

step input.  

 

Figure 13. Comparison between derived state space model and MATLAB® model for a 

sine input. 
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The comparisons show that the two results given by the two state space models 

superimpose, indicating a very good agreement between them. This verification also 

signifies that the MATLAB® system identification toolbox is a valuable tool in modeling 

suitable state space models to determine the dynamic behavior of the given lumped mass 

system.  

Although two different state space models are used to predict the motion of the 

fuselage for step and sine inputs acting on the system, the step input state space model is 

just as capable of predicting the motion of the system when subjected to a sine input. This 

can be proved by using a sine force as input to this state space model, and comparing its 

output with the sine input state space model. Fig. 14 compares the two outputs.  

This comparison reveals that the step input state space model, which is derived 

using MATLAB® is indeed capable of predicting the fuselage rigid body motion of the 

lumped mass system, when it is subjected to both sinusoidal forces and step forces as 

inputs. 

 

Figure 14. Comparison between the two state space models. 
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Frequency Response Function 

A Frequency Response Function (FRF) can be defined as the characteristic of a 

system that describes its response to excitation as the function of frequency [17]. The FRF 

of a system is expressed by the equation [18]: 

 ( )
j

k

X
H

F
    (2.30) 

  where 

  𝐻(𝜔) = Frequency Response Function 

  𝑋𝑗= Harmonic response of the system 

  𝐹𝑘= Harmonic force applied to the system 

  Research shows that turbulent loads can impact UAVs with frequencies as high as 

25 Hz [11]. In order to ascertain the dynamic characteristics of the lumped mass system, a 

frequency response function is simulated using ANSYS® between frequencies of 0 Hz and 

40 Hz. Although the maximum observed turbulence frequency is 25 Hz, the simulation is 

conducted up to 40 Hz to ascertain its response characteristics well and over the established 

limit. 

 A harmonic response simulation is conducted on the model, with a force of 

amplitude 1 N applied to the wings, whose frequencies range from 0 to 40 Hz. The 

displacement of the wings causes a disturbance in the fuselage of the model, which is the 

focus of this simulation. The amplitude and phase of the fuselage displacement across all 

frequencies is measured and compared with the frequency response of the theoretical state 

space model as well as the state space model derived using system identification. 

In order to compare the state space model response with the results of the ANSYS® 



34 
 

simulation, a complete state space model of the lumped mass system first needs to be 

developed – a model which can correctly predict the dynamic characteristics of the entire 

system. In the previously derived model, the position of the fuselage was determined using 

the displacement of the wings as input. This state space model may not represent the 

dynamics of the lumped mass model over a broad band of frequencies. To capture the 

dynamic characteristics of the entire system, the forces acting on the wings will be used as 

input, and the displacement of the wings and the fuselage will be used as the output.  

 The frequency domain model is developed using the system identification toolbox 

in MATLAB® and is represented as:  

 

3.185 35.05 0.4014 0.3619 0.01251 0.03344

33.39 0.2711 0.1433 0.1273 0.007432 0.01493

2.468 7.582 10.3 101.6 0.9093 0.9107

12.95 14.22 124.1 0.2526 1.205 0.7821

1.396 7.185 20.59 22.06 10.22 94.12

14.97 22.26 35.

A

 

    

  


   

 

  05 2.095 128.2 0.02665

 
 
 
 
 
 
 
 

 

  

 

11 12 13

21 22 23

31 32 33
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     (2.31) 

 The frequency response of the derived state space model is obtained by generating 

its Bode plots in MATLAB®. Figs. 15 and 16 compare the magnitude and phase responses 

of the lumped mass model using: (1) theoretical approach  (2) ANSYS® simulation   (3) 

frequency domain system identification. 

 

Figure 15. Amplitude comparison between simulation results and state space models. 
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Figure 16. Phase comparison between simulation results and state space models. 

The comparisons show the response of the model across different frequencies, 

which are a close match between the simulation results and the two models. The theoretical 

state space model, MATLAB® state space model and the ANSYS® frequency response 

simulation show a good agreement in response till about 40 Hz. Beyond this frequency, the 

MATLAB® state space model is seen to veer off from the path followed by the theoretical 

state space model. Since the highest frequency of concern in this part of the simulation is 

40 Hz, this discrepancy does not matter as it occurs beyond this limit. This match implies 

that the state space models can accurately describe the dynamic behavior of the lumped 

mass system.  
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CHAPTER III 

DEVELOPMENT OF A THREE DIMENSIONAL MODEL 

 Chapter 2 describes the steps used in simulating the lumped mass model using finite 

element analysis. Simulation results were later compared against mathematical results to 

validate the boundary conditions used to simulate this finite element model, which showed 

a good consistency between the two results. A similar three dimensional model of the 

aircraft is now modeled using SOLIDWORKS® and its response to excitation is simulated 

in ANSYS®. The results of this simulation are used to derive a state space model which 

relates the applied force to the fuselage motion. 

Free Vibration Simulation of the Three Dimensional Aircraft 

 The three dimensional model of the aircraft was modeled, and is shown in Fig. 17. 

This model is loosely based on the BTE Super Hauler, designed by Bruce Tharpe 

Engineering, which is presented in Fig. 18. 

 

Figure 17. Three Dimensional model of the aircraft used for analysis. 
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Figure 18. BTE Super Hauler. 

 Table 5 summarizes the specifications of the BTE which were used to develop the 

3D model.  

Table 5. Specifications used to develop the 3D model. 

Parameter Value Unit 

Wingspan 3.65 m 

Wing Width 0.65 m 

Wing Area 2.374 m2 

Fuselage Length 3.048 m 

Maximum Fuselage Width 0.323 m 

Standard Empty Weight 14 kg 

 

 A modal analysis is conducted on the three dimensional model, by constraining it 

in a manner similar to the lumped mass model – the fuselage is allowed to move only along 

the Y-axis while the wings are suspended using springs. These spring constants are 

obtained from Table 1.The fuselage is constrained by applying a displacement boundary 

condition on its bottom face. The boundary conditions are made to compare the mode 
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shapes of the three dimensional model to the mode shapes of the lumped mass model. Fig. 

19 shows the constraints placed on the three dimensional plane. 

 

Figure 19. Constraints placed on the three dimensional plane. Area shaded in green 

shows the constrained face of the fuselage. 

 

 The materials used for the system were developed by using structural steel from the 

ANSYS® material library as the material to begin with, and then changing its densities and 

modulus of elasticity accordingly. The fuselage is chosen to be comparatively rigid, while 

the wings show more of an elastic behavior. The material properties are chosen such that 

the behavior of the aircraft as realistic as possible.  

 The material properties used while executing the simulation are shown in Table 6. 

The results of the modal analysis are shown in Table 7. 

Table 6. Material specifications used for three dimensional simulation. 

Part Name 

Density  

(kg/m3) 

Modulus of Elasticity 

(MPa) 

Fuselage 36.527 1 x 1012 

Wings 90.013 1 x 109 
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Table 7. Summary of the 3D modal analysis results 

Natural Frequency (Hz) Mode Shape 

5.6818 Rigid body motion 

12.16 

Wings move in opposite directions; No 

fuselage motion 

16.804 

Wings move in same direction; Fuselage 

moves in opposite direction 

  

The densities of the materials are chosen such that the masses of the wings and the 

fuselage are the same as those used during the lumped mass analysis. The mode shapes of 

the three dimensional model are the same as that of the lumped mass model. The first 

natural frequency, which is the rigid body motion, is comparable to the lumped mass model 

result. The other two natural frequencies are different, owing to the differences in wing 

stiffness between the two models and the distributed weight in the wing. 

In this modal analysis, the fuselage was allowed to translate along the Y-axis. In a 

real life environment, the fuselage can translate and rotate about all three axes. Hence, 

elastic supports are used to constrain the model. Elastic supports behave similar to springs, 

but are much better suited for voluminous objects that need to be constrained by more than 

a couple of springs. Since most of the lift generated by an aircraft is through its wings, it 

would be ideal to place elastic supports right underneath them.  

However, placing constraints on the wings of the aircraft will not allow them to 

deflect freely and will result in an incorrect analysis. Therefore, elastic supports are placed 

at the top face of the fuselage and on one side of the fuselage. The analysis involves 
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studying the rigid body motion of the fuselage, hence placing the elastic supports on the 

fuselage will be appropriate. Elastic supports allow the movement or deformation of the 

bodies it is attached to according to a spring behavior [19]. Moreover, elastic supports also 

act in a direction normal to the selected face of the body [20]. Therefore, applying supports 

to the top face and on one side of the fuselage will suffice. 

During this part of the simulation, the elastic supports on the top face have a 

stiffness of 32506 N/m3 and the supports on the side face have a stiffness of 29818 N/m3. 

The elastic stiffness values are established by assigning a value for the required 

displacement for a predetermined force acting on the fuselage. Fig. 20 shows the aircraft 

with the locations of the elastic supports which are represented in blue. 

 

Figure 20. Locations of the elastic supports on the aircraft. 

Forced Vibration Simulation 

 The forced vibration analysis of the three dimensional is simulated using ANSYS®, 

and the model is subjected to both step and sinusoidal loads. The loads are applied on both 
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wings. When step loads are being applied, unequal loads are applied on the wings, to 

simulate an unsymmetrical loading condition. In the case of sinusoidal loads, equal loads 

are applied on the wings. Fig. 21 shows the faces of the wings where the loads are applied. 

 

Figure 21. Loads applied on the faces of the wings. 

  A load of -10 N is applied at five points of one wing, and a load of -20 N is applied 

at five points of the other wing while simulating a step load. Ten point forces are applied 

to the wings of the aircraft since this would allow a total of ten inputs to be used to develop 

the state space model. If a distributed load were used to excite the model, a total of two 

inputs would be used to develop a state space model with six outputs – a model which 

would not be able to predict the motion of the fuselage accurately. A sinusoidal load of 10 

N with an arbitrary frequency of 10 Hz is applied at five points of both wings while 

simulating a sinusoidal load. The simulation is run for a period of 5 seconds, and a 5% 

damping ratio (ζ = 0.05) is used. To record a change in position of the fuselage, a 

displacement probe can be placed on the fuselage. The position of this probe does not make 

a difference, since the relative rigid body displacement and rotation are the quantities being 

measured. Hence the probe was placed on the bottom face of the fuselage. A total of 6 

probes are used, each probe to record translation or rotation of the fuselage about a given 
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axis. The observed data is then imported to MATLAB® for further processing, which is 

discussed below. 

Deriving State Space Models using System Identification 

Once the simulation is completed, the data can now be analyzed using system 

identification to derive suitable state space models. Since the fuselage is free to translate 

and rotate about all axes, a single state space model, which uses the forces applied on the 

wings as input and gives the change in position or rotation about an axis as output can be 

used. 

 The system has ten inputs which yields six outputs. Systems with more than one 

input and more than one output can be classified as MIMO (Multiple Input, Multiple 

Output) systems. State space models are better suited for MIMO systems than transfer 

functions since it can calculate all the outputs using a single model unlike a transfer 

function, which needs a transfer function for each and every output of the system. The 

equations of the state space representation are expressed using Eq. 2.29. 

For the step input simulation, the state space model is represented as: 
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  For the sine input simulation, the state space model the equations of the state space 

representation are expressed as: 
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  (3.2) 

Validation of Derived State Space Models 

In order to validate the derived state space model, the output of the state space 

model is compared against simulation results. This is done by exciting the model with a 

different set of step and sinusoidal forces, and comparing the fuselage motion obtained 

with the state space model output.  

For this comparison, a force of -6 N was applied at five points on one wings, and a 

force of -12 N was applied at five points on the other wing. For the sinusoidal comparison, 

a force of -6 N with a frequency of 10 Hz was applied at five points on each wing. Fig. 22-

33 compare these two results.  
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Figure 22. Comparison between simulation results and state space output for 

fuselage motion in the X direction. The force applied is a step input. 

 
Figure 23. Comparison between simulation results and state space output for 

fuselage motion in the Y direction. The force applied is a step input. 
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Figure 24. Comparison between simulation results and state space output for 

fuselage motion in the Z direction. The force applied is a step input. 

 

 

 
Figure 25. Comparison between simulation results and state space output for 

fuselage rotation about the X direction. The force applied is a step input. 
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Figure 26. Comparison between simulation results and state space output for 

fuselage rotation about the Y direction. The force applied is a step input. 

 

 

 
Figure 27. Comparison between simulation results and state space output for 

fuselage rotation about the Z direction. The force applied is a step input. 
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Figure 28. Comparison between simulation results and state space output for 

fuselage motion in the X direction. The force applied is a sine input. 

 

 
Figure 29. Comparison between simulation results and state space output for 

fuselage motion in the Y direction. The force applied is a sine input. 
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Figure 30. Comparison between simulation results and state space output for 

fuselage motion in the Z direction. The force applied is a sine input. 

 

 

 
Figure 31. Comparison between simulation results and state space output for 

fuselage rotation about the X direction. The force applied is a sine input. 
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Figure 32. Comparison between simulation results and state space output for 

fuselage rotation about the Y direction. The force applied is a sine input. 

 

 

 
Figure 33. Comparison between simulation results and state space output for 

fuselage rotation about the Z direction. The force applied is a sine input. 
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The results show that the derived MATLAB® state space model is able to predict 

the motion of the fuselage when the forces acting on the wings are provided to it as input. 

The graphs show discrepancies between the two results within the first few seconds. This 

is the transient period, and small differences between the two plots during this period of 

time is not significant.  

Frequency Response Function 

The Frequency Response Function of the 3D model is simulated using ANSYS® 

to study the dynamic characteristics of the aircraft across a range of frequencies. As 

previously described in Chapter 2, a frequency response simulation is performed to 

determine the response of the aircraft model over a broad range of frequencies. 

 The analysis is conducted using the same parameters that were used to determine 

the Frequency Response Function of the lumped mass model. The forcing function used in 

the simulation has an amplitude of 1 N and frequencies ranging from 0 to 40 Hz, to 

determine the response of the system well and over the established turbulence frequency. 

This force is applied to both wings of the aircraft in the Y-axis and the displacement of the 

fuselage across all frequencies are observed. A 5% damping ratio (ζ = 0.05) was used while 

conducting the analysis. 

Since equal forces are applied to the wings, the displacements and rotations of the 

aircraft about all other axes is almost zero or negligible. The motion of the fuselage and 

the wings are mostly along the Y-axis and therefore the motion of the fuselage along this 

axis is the focal point of the analysis. Although this analysis is restricted to motion about 

one axis, the displacements about other axes can be observed, and suitable state space 

models can be derived. Figs. 34 and 35 compare the amplitude and phase response of the 
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MATLAB® state space model with the ANSYS® results.  

 

Figure 34. Amplitude comparison between simulation results and state space model. 

 

Figure 35. Phase comparison between simulation results and state space model. 
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 Using the frequency response characteristics of the model, a suitable state space 

model is derived using MATLAB®. This state space model is expressed in Eq. 2.29. 
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  (3.3) 

 Using this MATLAB® derived state space model, the transient behavior of the 

fuselage about the Y-axis can be predicted. The output of the model can be compared 
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with the results of a transient analysis simulated in ANSYS®.  

The transient analysis is conducted by applying a single force of 1 N on the wings 

of the aircraft, and then observing the motion of the fuselage in the Y-axis. The output of 

the state space model also refers to the motion of the fuselage in the Y-axis. The output of 

this derived model is generated by applying a step load input to it, using MATLAB®. The 

comparison between these two results are shown in Fig. 36.  

 

Figure 36. Comparison between FRF state space model and transient analysis. 

The comparison shows the derived state space model can also be used to determine 

the motion of the fuselage about any given axis. The limitation of using a frequency domain 

state space model to predict the motion of the fuselage is that ANSYS® only provides the 

displacements of the fuselage as output, its rotations about various axes cannot be 

determined. Therefore this frequency domain state space model cannot be used to predict 
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the rotations of the fuselage, although it can be used to predict the translations of the 

fuselage. 
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CHAPTER IV 

VIBRATION SENSOR DESIGN 

In order to make measurements such as forces applied to wings or displacement of 

the wings, a suitable sensor which can actively monitor the system needs to be employed. 

This measurement can be made by bonding patches of piezoelectric displacement sensors 

onto the wings of the aircraft. This chapter looks at using piezoelectric materials as 

displacement sensors for airplane wings. 

Development of a Theoretical Sensor 

 Piezoelectric materials can be used as displacement sensors by bonding patches of 

film along the length of a structure. To demonstrate this theory, a cantilever beam is 

covered with distributed piezoelectric films along its length. This beam is illustrated in 

Fig. 37. 

 

Figure 37. Cantilever Beam covered with piezoelectric patches [13]. 
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A number of assumptions have been made while theoretically developing this 

sensor. It is assumed that the strains in the film are equal to the outer surface strains of the 

beam. The film is perfectly bonded to the beam but does not change its dynamic properties. 

It is also assumed that the piezoelectric patches are of equal length and thickness. 

A modified form of a one dimensional piezoelectric equation earlier presented by 

Tzou is extended to patches bonded onto the beam [13]. This equation can be represented 

as [13]:  
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bh z
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   (4.1) 

  where 

 ɸ𝑠 = output voltage 

 b = beam width 

 ℎ𝑠 = piezoelectric sensor layer thickness 

 𝑆𝑒 = electrode surface area 

 ℎ31 = piezoelectric film strain charge coefficient 

 𝑟𝑥
𝑠 = distance from beam neutral axis to the mid-plane of sensor layer 

 z = beam lateral displacement 

 x = sensor length in x direction 

If the beam has n number of patches bonded on its surface, the output voltage of 

the ith patch is [13]: 
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   (4.2) 

On integrating this equation [13]: 
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   (4.3) 

If the slope ai is assumed to be constant, Eq. 4.3 can be rewritten as [13]: 
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      (4.4) 

Therefore, the slope of the ith patch on the beam can be expressed as [13]: 
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Since it is assumed that the patches are of equal length and thickness, Eq. 4.5 can 

be simplified as [13]: 
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  (4.6) 

With Eq. 4.6, the slopes of all the patches can be determined. With the slope ai of 

the ith linear approximation segment on a curve, the ordinate zi can be found as [13]: 

 1 1( )i i i i iz a x x z      (4.7) 

 where 

 𝑧𝑖 = lateral displacement of the ith segment of the beam 

 𝑧𝑖−1 = lateral displacement of the (i-1)th segment of the beam 

 𝑎𝑖 = slope of the ith
 segment of the beam 

 𝑥𝑖 = location of the ith segment of the beam along its length 

 𝑥𝑖−1 = location of the (i-1)th segment of the beam along its length 
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Using Eq. 4.7, the displacement curve of the entire beam can be found. For a 

cantilever beam, a boundary condition 𝑧0 = 0 can be assumed. This boundary condition 

states that the displacement of the beam at the support is equal to zero. Since Eq. 4.7 

approximates the displacement of the beam, the accuracy of this displacement is dependent 

on the number of patches bonded on to the beam surface. 

MATLAB® Simulation of the Theoretical Sensor 

 To evaluate the performance of the sensor patches, a force of 1 N is applied on the 

third node of the beam. The output of the displacement sensors is compared with the 

displacement results calculated using a modal superposition equation which is expressed 

as: 

 
^

1

( ) ( )
m

k k

k

x W x


    (4.8) 

 where 

 x = sensor length in the x direction 

 Ŵ𝑘 = modal coordinates of the beam 

 𝜓𝑘 = mass-normalized modal displacement functions 

The Frequency Response Function (FRF) of the displacement of the beam, when 

excited by a force vector {f} is expressed in discretized form as: 
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   (4.9) 

 where 

 z = beam lateral displacement 

 𝜓𝑘 = mass-normalized modal displacement functions 
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 {𝑓} = harmonic excitation force vector 

 ω = excitation frequency 

 j = √−1 

 𝜔𝑘 = beam kth natural frequency 

 𝜂𝑘 = modal damping loss factors 

Table 8 summarizes the beam and sensor parameters used while evaluating the 

performance of the sensor. 

Table 8. Summary of beam and sensor parameters used during simulation. 

Aluminum Beam PVDF 

l = 0.2 (m) ℎ𝑠 = 50 × 10−6 (m) 

b = 0.025 (m) ℎ31 = 0.4 × 109(V/m/m/m) 

hb = 0.95 × 10−3  

ρ =2770 (kg/m3)  

E = 71 × 109 (N/m2)  

 

The sensor used in this simulation is PolyVinyldene Fluoride (PVDF). The 

evaluation procedure involves first discretizing the beam and calculating its mode shapes 

in discretized form. Next, the discretized lateral displacement harmonic response of the 

beam is found for frequencies ranging from 0 to 800 Hz using Eq. 4.9. Its displacement is 

also found for an arbitrary excitation force frequency of 298 Hz using Eq. 4.8. Using this 

response, the voltage output is calculated for all patches using Eq. 4.4. The lateral 

displacement curve of the beam is determined using Eq. 4.7, and the two results are 

compared.  
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Fig. 38 compares the displacement curves of the two results. Fig. 39 compares the 

cantilever beam admittance of the two results. 

 

Figure 38. Comparison between results for a cantilever beam displacement for an 

arbitrary force excitation frequency of 298 Hz. The continuous line represents the actual 

displacement of the beam, the dots represent the sensor output. 

 

 

Figure 39. Comparison between results for the Frequency Response Function of 

displacement of a cantilever beam. The continuous line represents the actual 

displacement of the beam, the dots represent the sensor output. 
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ANSYS® Simulation 

  To simulate this theory, an analysis is first conducted on a clamped-clamped 

prismatic steel beam with 25 piezoelectric sensors placed along its length. This simulation 

is conducted by using a transient analysis with ANSYS®, with a 2% damping ratio (ζ = 

0.02). PolyVinyldeneFluoride (PVDF) patches are bonded on one side of the beam.  

These patches are bonded on to the surface of the beam after placing fixed supports 

at both ends of the steel beam. The polarization axis of the sensors is along the length of 

the beam. A vertical force of 5000 N is applied at the center of the beam. The beam and 

piezoelectric patches are shown in Fig. 40. 

 

Figure 40. Prismatic beam with piezoelectric patches. 

 Table 9 describes the parameter values used for the simulation. Table 10 

summarizes the parameters used to specify the properties of the PVDF displacement 
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sensor [21].  

Table 9. Parameter values used to simulate a clamped-clamped beam 

Beam Sensor 

l = 2.5(m) ℎ𝑠 = 2 × 10−3 (m) 

b = 0.115(m) ℎ31 = 0.4 × 109(V/m/m/m) 

h = 0.115(m) ρ = 1789 (kg/m3) 

ρ = 7850 (kg/m3) E = 8.4 × 109 Pa 

E = 2 × 1011 Pa ν = 0.18 

 

Table 10. Parameters used for the PVDF displacement sensor. 

Parameter Value 

e31 0.024 [A sec/m2] 

e33 -0.0270 [A sec/m2] 

e15 0 [A sec/m2] 

ep11 7.4 

ep33 7.6 

  

Application of the force will cause the beam to deform symmetrically along its 

length. This kind of deformation also causes symmetrical strains on the sensors, which in 

turn will exhibit symmetrical voltage readings along the length of the beam. The voltage 

reading from each sensor patch will be the sum of the voltages across its surface. Each 

node on the sensor patch surface yields a different voltage depending on its state of strain. 

While calculating the beam displacement from the sensor output, the sum of the voltages 
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at every node of a sensor patch gives the open circuit voltage of that patch. The 

displacement of the entire beam is calculated using Eq. 4.6 and 4.7. Since the beam is 

clamped at both ends, a boundary condition is used, which sets the displacements of the 

patches at both clamped ends to zero. 

Fig. 41 shows the different voltage outputs present on a single sensor patch, due to 

the variations in strain that it experiences. Fig. 42 shows the comparison between the 

measured displacement of the beam and the displacement of the beam obtained from the 

sensor voltage readings. 

 

Figure 41. Voltages on a single sensor patch. 

 

Figure 42. Comparison between measured displacement and patch output for a clamped-

clamped beam. 

 

 This comparison shows that the displacement of the beam obtained from the 
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voltage readings of the piezoelectric sensors are in good agreement with the measured 

displacement of the beam. 

Displacement Sensors on an Airplane Wing 

The next step will be to place these displacement sensors on an airplane wing to 

measure its displacement. This simulation involves fixing one end of an airplane wing 

while applying a vertical force to its bottom face, like a cantilever beam. To ensure that the 

results are accurate, 30 PVDF patches are placed along the length of the wing, on its bottom 

face. The parameters used for the sensors are obtained from Tables 9 and 10. The 

parameters used for the wing are obtained from Table 6.  

Fig. 43 shows the placement of the sensors on the airplane wing. Fig. 44 shows the 

face on which the force is applied. 

 

Figure 43. Piezoelectric displacement sensors on an airplane wing. 

 

Figure 44. Force applied to the airplane wing. The green face shows the fixed end. 
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 An arbitrary force of 750 N is applied to the bottom face of the wing. The 

polarization axis of the sensors is along the length of the wing. The wing is fixed at one 

end, and a boundary condition is applied such that the displacement of the patch closest to 

this fixed support is equal to zero. Fig. 45 compares the measured displacement of the wing 

to the displacement of the wing calculated from the displacement sensor output.  

 

Figure 45. Comparison between measured displacement and patch output for a fixed 

airplane wing. 

 

It can be clearly seen that there is a clear disagreement between the two results 

towards the last 11 patches. This is because the strains at the unconstrained end of a 

cantilever beam, are very small. When a cantilever beam is deformed, a section of the beam 

that is close to the fixed support experiences high strain. A certain section of the beam that 

is further away from the fixed support does not undergo much strain. This is illustrated in 

Fig. 46.  
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Figure 46. Cantilever beam. 

 As can be seen from the Fig.46, the strain of the cantilever of the cantilever beam 

steadily approaches zero towards the free end. Therefore the displacement sensors cannot 

measure any strain in this region, which prevents it from measuring the displacement curve 

of the entire beam. Therefore, to compensate for this, a correction factor must be introduced 

into the calculated slopes, so that the displacement curve of the entire cantilever beam can 

be calculated. 

Slope Correction 

This discrepancy between the two displacements can be rectified by using a correction 

factor. The correction factor will be used with the patches which show a deviation from the 

measured value, due to low strain values. The value of the correction factor depends on 

parameters such as the stiffness of the beam, the length of the beam, and the force applied 

on the beam.  

Fig. 47 shows the comparison between the measured displacements of the wing 

with the displacement of the wing calculated from the displacement sensor output, with a 

correction factor being applied. 
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Figure 47. Comparison between measured displacement and patch output for a fixed 

airplane wing with an applied correction factor. 

 

 The above figure shows a much better agreement between the two results, after 

applying the correction factor. These simulations validate the developed theoretical 

equations. It also implies that the piezoelectric displacement sensor can effectively be used 

to measure the displacement of an airplane wing. 
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CHAPTER V 

VIBRATION SENSORS ON AN AIRPLANE 

 Results so far have shown that piezoelectric materials are very capable of 

measuring the displacements of structures to which they are bonded. The next objective is 

to use displacement sensors on wings which are attached to an airplane fuselage. The output 

from the sensors will be later used as the input to predict the vibration of the fuselage. In 

the following, wing displacement calculated from the PVDF output will be referred to as 

measured displacement. 

Fixed Fuselage Simulation 

 For this simulation, the airplane fuselage is fixed so that the deflection of the wings 

can be measured. This simulation is conducted because a cantilever wing behaves 

differently from a wing that is attached to the fuselage using bonded connections. Elastic 

supports on the fuselage will enable both the wings and the fuselage to exhibit rigid body 

motion, because of which measurements of wing deflections cannot be made for 

comparison. Similar to previous simulations, unequal loads are applied to the wings of the 

aircraft.  

The voltage readings from the sensor patches are used to calculate the displacement 

curve of the two wings. Correction factors will be used while calculating the displacement 

of the wings. Fig. 48 shows the model of the aircraft with distributed displacement sensors 

bonded on to its wings. This model is developed by attaching displacement sensors on both 

wings of the aircraft using bonded connections. In creating such a model, the 



76 
 

displacements of both wings can be calculated and thereby used as inputs in creating a 

suitable state space prediction model. The faces shaded in blue represent the areas where 

fixed supports are used. The simulation is run for a period of 20 seconds using a 2% 

damping ratio (ζ = 0.02). 

 

Figure 48. Aircraft with distributed displacement sensors on it wings.  

 

Figs. 49 and 50 compare the results obtained from the simulation.

 

Figure 49. Comparison between the measured displacement and calculated displacement 

of wing 1. A force of 50 N was applied to this wing. 
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Figure 50. Comparison between the measured displacement and calculated displacement 

of wing 2. A force of 75 N was applied to this wing. 

 

 The graphs show that the calculated displacements of the wings are in close 

agreement with the measured displacements of the wings.  

Elastically Supported Fuselage Simulation 

In the next simulation, elastic supports are used on the fuselage, which would allow 

it to translate and rotate about all three axes. Even though the forces applied on to the wings 

are the same as in the previous case, it will not deflect as in the previous simulation since 

the fuselage is not fixed. This implies that the voltage readings from the sensor patches 

would be different, and the displacement curve of the wings would have to be calculated. 

This calculated displacement cannot be cannot be compared against a measured wing 

displacement in ANSYS® because this result also accounts for the rigid body motion of 

the wing. 
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A displacement and rotation probe is placed on the fuselage to measure its 

translation and rotation about all three axes. These measurements will be used as the output, 

and the voltage readings from the sensors as the input to derive the state space model. Figs. 

51 and 52 show the calculated displacement curve of the two wings. 

 

Figure 51. Calculated displacement of wing 1. A force of 50 N was applied to this 

wing. 

 

 
 

Figure 52. Calculated displacement of wing 2. A force of 100 N was applied to 

this wing. 
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 A total of 60 displacement sensors are placed underneath both wings of the aircraft. 

The displacements of the wings will be used as inputs, the rotation and translation of the 

fuselage about all three axes will be used as outputs in developing a suitable state space 

model that will be able to predict the motion of the fuselage based on the output of the 

displacement sensors.  

 Using the system identification toolbox in MATLAB®, a fitting state space model 

was found for the Multiple Input-Multiple Output (MIMO) system. The state space model 

is represented in Eq. 2.29. 
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7.4377 4.1668 0.0355 8.4283

10.2354 5.7342 0.0489 11.5986

4

B

B





  
 


 
 
 
  

 

 


 

210

.0517 2.2699 0.0194 4.5913

3.5232 4.9007 6.6893 8.4392

16.2399 22.5890 30.8335 38.8997

22.3485 31.0859 42.4315 53.5318

8.8468 12.3055 16.7968 21.1908

B

 
 
 
 
 

  

    
 
 
 
 
    

 



83 
 

211

212

10.2337 11.9906 13.8576 15.1708

47.1712 55.2692 62.6304 69.9282

64.9146 76.0587 86.1888 96.2317

25.6968 30.1082 34.1183 38.0938

16.7227 18.1700 21.0444 23.7890

77.0815 83.7523 97.0018 109.6

B

B

    
 
 
 
 
    

   



213

528

106.0758 115.2558 133.4891 150.8987

41.9906 45.6246 52.8424 59.7340

26.4422 30.5027 34.3775 38.2352

121.8821 140.5988 158.4589 176.2410

167.7281 193.4850 218.0633 242.5340

66.3960 76.5921 86.

B

 
 
 
 
 
    

   



  

214

215

3215 96.0084

40.5321 42.7047 44.8601 46.7522

186.8279 196.8425 206.7777 215.4987

257.1032 270.8848 284.5571 296.5585

101.7757 107.2312 112.6434 117.3943

50.656 53.2253 56.217

B

B

 
 
 
 
 

 

    
 
 
 
 
    

  



4 4

11

4

9 59.2339

230.7716 245.3360 259.1302 273.0317

317.5763 337.6192 356.6020 375.7325

125.7143 133.6483 141.1628 148.7357

0.1451 0.0027 0.0055 0.0047

1.7305 10 0.0036 0.0044 3.0109 10

2.3353 10

C  



 
 
 
 
 
    

  

    

  4 4

4

5 4 4 4

12

4 4 4 4

21

0.0060 7.2168 10 3.0156 10

3.4055 10 0.0040 0.0035 0.0034

7.4117 10 6.0337 10 3.1823 10 8.0022 10

1.6283 10 6.3690 10 5.8428 10 4.1873 10

0.0653 1.7057 0.194

C

C

 



   

   

 
 
 
   

   
 

        
        

 



4

22

11

9 0.0909

0.2180 0.0114 0.0029 0.0094

51.5160 0.9871 1.9648 1.7089

0.0188 0.1800 0.1667 0.1205

4.7844 10 0.0080 0.0065 0.0035

0.1213 1.3920 1.2630 1.2018

255.5143 505.9206 53.9191

13

C

K



 
 
  

 
    

 
 

   
 
   






3 4

3 3

0.8322 736.4786 90.4383

1.1296 10 1.1603 10 59.4599

4.3630 10 2.2555 10 985.8026
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12

3

3 4 3

3 5

21 3 5

0.0733 132.7676 1.1927

42.5669 2.9547 1.9619

41.5373 33.1619 2.0021

55.0306 3.3168 10 1.8927

4.6030 10 5.3864 10 4.0080 10

1.9654 10 1.0933 10 293.5151

5.3402 10 1.6175 10 3.1254

K

K

   
 
 
 
  
 
    

   

  


    3

3 4 3

3 4

4

22 4

4

10

5.6876 10 4.2291 10 2.6128 10

1.5370 10 1.1123 10 129.6085

177.0743 1.2910 10 103.1746

482.6644 3.1909 10 160.6948

119.3118 2.0716 10 114.0318

K

 
 
 
 
 
      

  
 

  
  
 
    

  (5.1) 

  This state space model uses the measured displacements of the wings as input, and 

gives the displacements of the fuselage about the X, Y and Z axes and then the rotations of 

the fuselage about the X, Y and Z axes. The output of the state space model, which is in a 

matrix form, is given in this particular order.  

To ensure that this state space model can predict the motion of the fuselage, a 

transient analysis is performed by applying a different set of forces to excite the model, 

using ANSYS®. In this part of the simulation, a 40 N force is applied to one wing, and a 

60 N force is applied to the other wing. The graphs are generated by comparing the rigid 

body motion of the fuselage from the simulation with the output of the state space model 

when the measured displacement of the wing is provided to it as its input.  

Figs. 53-58 compare the state space output to the ANSYS® simulation results. 

Some graphs such as Y rotation, can be seen to show slightly different displacements, since 

these outputs are noisy owing to the fact that there is not much motion in these directions. 

The figures show a good agreement between the state space model results and the 

simulation results, thus validating the derived state space model.  
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Figure 53. Comparison between state space outputs and simulation results for fuselage 

motion about the X-axis. 

 

 

Figure 54. Comparison between state space outputs and simulation results for fuselage 

motion about the Y-axis. 
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Figure 55. Comparison between state space outputs and simulation results for fuselage 

motion about the Z-axis. 

 

 

Figure 56. Comparison between state space outputs and simulation results for fuselage 

rotation about the X-axis. 
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Figure 57. Comparison between state space outputs and simulation results for fuselage 

rotation about the Y-axis. 

 

 

Figure 58. Comparison between state space outputs and simulation results for fuselage 

rotation about the Z-axis. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 Vibration control systems are used in larger aircraft, but miniaturizing such a 

system for use with unmanned aerial vehicles brings with it many complexities. Aircraft 

are especially very flexible since they are large in size and have structurally light damping 

[22]. Therefore there is a need for a method to predict the motion of the aircraft in turbulent 

conditions, and provide suitable countermeasures to a payload mounted on active mounts 

by means of a system that is computationally inexpensive as well as cost effective. Another 

approach to this problem is to incorporate this system into the avionics of the aircraft to 

damp out the fuselage vibrations. To introduce said vibration control system, the first step 

is to develop a sensor that will be able to measure some effect of turbulent loads on the 

aircraft structure.  

 This research first began by analyzing a lumped mass model, which was later 

expanded to a full three dimensional aircraft model. This aircraft was excited by applying 

forces on its wings, and state space models were derived that could satisfactorily predict 

the motion and rotation of the fuselage in three dimensional space. 

The next phase of this research involved developing a suitable sensor for the 

aircraft. It is found that the PolyVinylDene Fluoride (PVDF) displacement sensors can be 

used on the aircraft wings to measure the displacements of its wings. By deriving a fitting 

state space model that uses the displacement of the wings as the input, and the 

displacements and rotations of the fuselage as output, the motion of the fuselage was 
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predicted about all three axes. 

 To ensure accuracy and fast response time, commonly used sensors are not ideally 

adapted because of their sizes and limited measurements of degrees of freedom [23]. 

Piezoelectric sensors are analog sensors and the number of measurements that can be made 

per second is purely limited by the ability of the processors that will be used with this 

system. Steady improvements in processor technology over the last decade have made 

available fast and powerful processors that are cost effective as well. 

  The development of such a system can lead to the development of a robust, 

accurate, lightweight and cost effective Active/Passive Vibration Control system, which 

can actively dissipate the effects of turbulent wind load on the aircraft or payload. An 

Active/Passive Vibration Control system can help in protecting any sensitive payloads 

carried by the aircraft, and can prove to be very useful in missions where the stability of 

the aircraft is of the utmost importance.  

 Opportunities for future work include to first derive a method to identify equations 

that would serve as correction factors on the unconstrained ends of a cantilever beam. Such 

a readymade method would leave no room for error, and will aid in further increasing the 

accuracy of the measured displacements. Next would be to build an aircraft model and 

bond the piezoelectric displacement sensors onto its wings and to observe the output of the 

sensors in a laboratory environment. Conducting an experimental procedure on this model 

will allow for proper calibration of the sensors. The results for load conditions such as 

sinusoidal loads are time consuming processes by simulation, and hence it would be easier 

to measure the output of the sensors through an experimental procedure. The data obtained 

in an experimental set up could be used in the development of a state space model as well.  
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The end goal is to create a state space model that can predict the motion of the 

fuselage in all sorts of environments and under all sorts of conditions.  
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APPENDIX A 

MATLAB® Codes for a Lumped Mass Model 

All of the mathematical analysis done in this research is with the help of 

MATLAB®. This part of the appendix contains all the codes that were used in 

developing the lumped mass model. 

Below is the MATLAB® code used to derive the motion of the fuselage and 

wings due to a step force excitation, using modal superposition equations. 

clear all 
close all 
clc 

  
%Mass Matrix 
m = [2 0 0; 0 10 0; 0 0 2]; 

  
%Stiffness Matrix 
k = [27169.5 -10002 0; -10002 20004 -10002; 0 -10002 27169.5]; 

  
%Natural Frequencies 
w1 = 34.5431; 
w2 = 116.5512; 
w3 = 119.968; 
wd1 = 34.4999; 
wd2 = 116.5512; 
wd3 = 119.8179; 

  
%Eigenvalue Matrix 
x = [0.1237 0.4997 0.4843; 0.3064 0 -0.0782; 0.1236 -0.5003 0.4847]; 

  
%Force Matrix 
f = [-5;0;-10]; 

  
%Vector of generalized forces 
q = x'*f; 

  
%Principal Coordinates 
syms t tau 

  
%Generalized mass displacement 
q1 = (q(1)/wd1)*exp(-0.05*w1*(t-tau))*sin(wd1*(t-tau)); 
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q1 = int(q1,tau,0,t); 
t = [0.0005:0.0005:5]; 
q1 = eval(q1); 

  
syms t 
q2 = (q(2)/wd2)*exp(-0.05*w2*(t-tau))*sin(wd2*(t-tau)); 
q2 = int(q2,tau,0,t); 
t = [0.0005:0.0005:5]; 
q2 = eval(q2); 

  
syms t 
q3 = (q(3)/wd3)*exp(-0.05*w3*(t-tau))*sin(wd3*(t-tau)); 
q3 = int(q3,tau,0,t); 
t = [0.0005:0.0005:5]; 
q3 = eval(q3); 

  
%Solution Vector 
sol = x*[q1;q2;q3]; 

  
x1 = sol(1,:); 

  
x2 = sol(2,:); 

  
x3 = sol(3,:); 

                                                                             
%%Derived State Space Model for comparison 

  
A = [0,0,0,1,0,0;0,0,0,0,1,0;0,0,0,0,0,1;-13584.7 5001 0 -16.3366 

7.07175 0; 1000.2 -2000.4 1000.2 3.16259 -6.32578 3.16259; 0 5001 -

13584.7 0 7.07175 -16.3366]; 
B = [0;0;0;0.5;0;1]; 
C = [0,1,0,0,0,0]; 
D = 0; 
sys = ss(A,B,C,D) 

 

Below is the MATLAB® code used to derive the motion of the fuselage and 

wings due to a sinusoidal force excitation, using modal superposition equations. 

clear all 
close all 
clc 
syms t; 

  
%Mass Matrix 
m = [2 0 0; 0 10 0; 0 0 2]; 

  
%Stiffness Matrix 
k = [27169.5 -10002 0; -10002 20004 -10002; 0 -10002 27169.5]; 

  
%Natural Frequencies 
w1 = 34.5431; 
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w2 = 116.5512; 
w3 = 119.968; 
wd1 = 34.4999; 
wd2 = 116.5512; 
wd3 = 119.8179; 

  
%Eigenvalue Matrix 
x = [0.1237 0.4997 0.4843; 0.3064 0 -0.0782; 0.1236 -0.5003 0.4847]; 

  
%Force Matrix 
f = [-5*sin(10*t);0;-5*sin(10*t)]; 

  
%Vector of generalized forces 
q = x'*f; 

  
%Principal Coordinates 
syms tau 

  
q1 = (q(1)/wd1)*exp(-0.05*w1*(t-tau))*sin(wd1*(t-tau)); 
q1 = int(q1,tau,0,t); 

  
q2= (q(2)/wd2)*exp(-0.05*w2*(t-tau))*sin(wd2*(t-tau)); 
q2 = int(q2,tau,0,t); 

  
q3 = (q(3)/wd3)*exp(-0.05*w3*(t-tau))*sin(wd3*(t-tau)); 
q3 = int(q3,tau,0,t); 

  

  
%Solution Vector 
sol = x*[q1;q2;q3]; 

  
x1 = sol(1,:); 

  
x2 = sol(2,:); 

  
x3 = sol(3,:); 

  

  
t = [1e-3:1e-3:5]; 
x1 = eval(x1); 
x2 = eval(x2); 
x3 = eval(x3); 

  

  
%%Derived State Space Model for comparison 
talt = [8e-3:8e-3:5]; 
input = [-5*sin(10*talt)]; 
A = [0,0,0,1,0,0;0,0,0,0,1,0;0,0,0,0,0,1;-13584.7 5001 0 -16.3366 

7.07175 0; 1000.2 -2000.4 1000.2 3.16259 -6.32578 3.16259; 0 5001 -

13584.7 0 7.07175 -16.3366]; 
B = [0;0;0;0.5;0;0.5]; 
C = [0,1,0,0,0,0]; 
D = 0; 
sys = ss(A,B,C,D) 
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 The derived state space models in this research are done using MATLAB® 

system identification toolbox. This toolbox is relatively user friendly, and the processing 

time is small. To access this toolbox, the user first needs to have the system identification 

toolbox license installed. The toolbox can then be accessed by entering the keyword 

“ident” into the MATLAB® workspace. Fig. 59 illustrates the options available to enter 

the data into the identification toolbox. 

 

Figure 59. Data input options in the system identification toolbox. 

 Following this, the data that exists on the MATLAB® workspace need to be 

entered into the data box. Fig. 60 shows a time domain data example. 

 

Figure 60. Data being imported into the toolbox. 

 The state space estimation option can be selected from Estimate-State Space 
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Models. When this is done, the user has a choice between entering a model order and 

comparing between specified model orders for the best fit, which is shown in Fig. 61. 

 

Figure 61. State Space Model window. 

 If the user chooses to compare state space models of different orders, the 

following window pops up, allowing the user to find a state space model that has a good 

balance between model order and fit. 

 

Figure 62. Model order selection window. 

 Once a suitable model order has been selected, the model can be checked with the 

output data for its fit. This is done by clicking the model order check box. 
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Figure 63. Model output. 
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APPENDIX B 

MATLAB® Codes for Piezoelectric Displacement Sensors 

 To calculate the displacements of the wings from the patch voltage, a code is run 

in MATLAB®. This code is shown below: 

clear all 
close all 
clc 
format long 

  
%%Sensor constants 
h31 = 0.4e9; 
hs = 1e-3; 
hb = 20.6961e-3; 

  
%%Read the ANSYS voltage files 
voltage1 = xlsread('Voltage1.xlsx'); 
voltage2 = xlsread('Voltage2.xlsx'); 
voltage3 = xlsread('Voltage3.xlsx'); 
voltage4 = xlsread('Voltage4.xlsx'); 
voltage5 = xlsread('Voltage5.xlsx'); 
voltage6 = xlsread('Voltage6.xlsx'); 
voltage7 = xlsread('Voltage7.xlsx'); 
voltage8 = xlsread('Voltage8.xlsx'); 
voltage9 = xlsread('Voltage9.xlsx'); 
voltage10 = xlsread('Voltage10.xlsx'); 
voltage11 = xlsread('Voltage11.xlsx'); 
voltage12 = xlsread('Voltage12.xlsx'); 
voltage13 = xlsread('Voltage13.xlsx'); 
voltage14 = xlsread('Voltage14.xlsx'); 
voltage15 = xlsread('Voltage15.xlsx'); 
voltage16 = xlsread('Voltage16.xlsx'); 
voltage17 = xlsread('Voltage17.xlsx'); 
voltage18 = xlsread('Voltage18.xlsx'); 
voltage19 = xlsread('Voltage19.xlsx'); 
voltage20 = xlsread('Voltage20.xlsx'); 
voltage21 = xlsread('Voltage21.xlsx'); 
voltage22 = xlsread('Voltage22.xlsx'); 
voltage23 = xlsread('Voltage23.xlsx'); 
voltage24 = xlsread('Voltage24.xlsx'); 
voltage25 = xlsread('Voltage25.xlsx'); 
voltage26 = xlsread('Voltage26.xlsx'); 
voltage27 = xlsread('Voltage27.xlsx'); 
voltage28 = xlsread('Voltage28.xlsx'); 
voltage29 = xlsread('Voltage29.xlsx'); 
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voltage30 = xlsread('Voltage30.xlsx'); 

  
%%Sum up all the voltages 
v1 = sum(voltage1); 
v2 = sum(voltage2); 
v3 = sum(voltage3); 
v4 = sum(voltage4); 
v5 = sum(voltage5); 
v6 = sum(voltage6); 
v7 = sum(voltage7); 
v8 = sum(voltage8); 
v9 = sum(voltage9); 
v10 = sum(voltage10); 
v11 = sum(voltage11); 
v12 = sum(voltage12); 
v13 = sum(voltage13); 
v14 = sum(voltage14); 
v15 = sum(voltage15); 
v16 = sum(voltage16); 
v17 = sum(voltage17); 
v18 = sum(voltage18); 
v19 = sum(voltage19); 
v20 = sum(voltage20); 
v21 = sum(voltage21); 
v22 = sum(voltage22); 
v23 = sum(voltage23); 
v24 = sum(voltage24); 
v25 = sum(voltage25); 
v26 = sum(voltage26); 
v27 = sum(voltage27); 
v28 = sum(voltage28); 
v29 = sum(voltage29); 
v30 = sum(voltage30); 

  
%%Calculated slopes  
a(1) = ((-2*v1(2))/(hs^2 + (hs*hb*h31))); 
a(2) = ((-2*v2(2))/(hs^2 + (hs*hb*h31))); 
a(3) = ((-2*v3(2))/(hs^2 + (hs*hb*h31))); 
a(4) = ((-2*v4(2))/(hs^2 + (hs*hb*h31))); 
a(5) = ((-2*v5(2))/(hs^2 + (hs*hb*h31))); 
a(6) = ((-2*v6(2))/(hs^2 + (hs*hb*h31))); 
a(7) = ((-2*v7(2))/(hs^2 + (hs*hb*h31))); 
a(8) = ((-2*v8(2))/(hs^2 + (hs*hb*h31))); 
a(9) = ((-2*v9(2))/(hs^2 + (hs*hb*h31))); 
a(10) = ((-2*v10(2))/(hs^2 + (hs*hb*h31))); 
a(11) = ((-2*v11(2))/(hs^2 + (hs*hb*h31))); 
a(12) = ((-2*v12(2))/(hs^2 + (hs*hb*h31))); 
a(13) = ((-2*v13(2))/(hs^2 + (hs*hb*h31))); 
a(14) = ((-2*v14(2))/(hs^2 + (hs*hb*h31))); 
a(15) = ((-2*v15(2))/(hs^2 + (hs*hb*h31))); 
a(16) = ((-2*v16(2))/(hs^2 + (hs*hb*h31))); 
a(17) = ((-2*v17(2))/(hs^2 + (hs*hb*h31)))+a(16);//correction factor 

a(18) = ((-2*v18(2))/(hs^2 + (hs*hb*h31)))+a(16);//correction factor 

a(19) = ((-2*v19(2))/(hs^2 + (hs*hb*h31)))+a(16);//correction factor 

a(20) = ((-2*v20(2))/(hs^2 + (hs*hb*h31)))+a(17);//correction factor 

a(21) = ((-2*v21(2))/(hs^2 + (hs*hb*h31)))+a(17);//correction factor 
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a(22) = ((-2*v22(2))/(hs^2 + (hs*hb*h31)))+a(17);//correction factor 
a(23) = ((-2*v23(2))/(hs^2 + (hs*hb*h31)))+a(16);//correction factor 
a(24) = ((-2*v24(2))/(hs^2 + (hs*hb*h31)))+a(16);//correction factor 
a(25) = ((-2*v25(2))/(hs^2 + (hs*hb*h31)))+a(16);//correction factor 
a(26) = ((-2*v26(2))/(hs^2 + (hs*hb*h31)))+a(16);//correction factor 
a(27) = ((-2*v27(2))/(hs^2 + (hs*hb*h31)))+a(17);//correction factor 
a(28) = ((-2*v28(2))/(hs^2 + (hs*hb*h31)))+a(17);//correction factor 
a(29) = ((-2*v29(2))/(hs^2 + (hs*hb*h31)))+a(17);//correction factor 
a(30) = ((-2*v30(2))/(hs^2 + (hs*hb*h31)))+a(17);//correction factor 

  
%%Locations of the center points of each sensor patch 
x(1) = 1651/30; 

  
for i=2:30 
    x(i) = x(i-1)+(1651/30); 
end 
%%Calculate the displacement of the wing 
z(1) = 0; // boundary condition 
for i=2:30 
  z(i) = (a(i)*(x(i)-x(i-1))) + z(i-1); 
end 
%%Plot the displacement of the wing 
plot(x,z/815) 
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