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Abstract 

In MRI, it is more desirable to scan less data as possible because it reduces MRI scanning 

time. We want to get a clear image by reconstructing the signals we acquire from the MRI 

machine. Special scanning or sampling techniques are needed to overcome this issue based 

on various mathematical methods. 

We present an improved random sampling pattern for SAKE (simultaneous auto-

calibrating and k-space estimation) reconstruction and an iterative GRAPPA reconstruction 

using Wiener filter. 

In our iterative method using Wiener filter, in contrast to the conventional GRAPPA 

where only the auto calibration signals (ACS) are used to find the convolution weights, our 

proposed method iteratively updates the convolution weights using both the acquired and 

reconstructed data from previous iterations in the entire k-space. To avoid error propagation, 

the method applies adaptive Wiener filter on the reconstructed data. Experimental results 

demonstrate that even with a smaller number of ACS lines the proposed method improves the 

SNR when compared to GRAPPA.  

In compressed sensing MRI, it is very important to design sampling pattern for random 

sampling. For example, SAKE (simultaneous auto-calibrating and k-space estimation) is a 

parallel MRI reconstruction method using random undersampling. It formulates image 

reconstruction as a structured low-rank matrix completion problem. Variable density (VD) 

Poisson discs are typically adopted for 2D random sampling. The basic concept of Poisson 

disc generation is to guarantee samples are neither too close to nor too far away from each 

other. However, it is difficult to meet such a condition especially in the high density region. 

Therefore the sampling becomes inefficient. In this paper, we present an improved random 

sampling pattern for SAKE reconstruction. The pattern is generated based on a conflict cost 

with a probability model. The conflict cost measures how many dense samples already 

assigned are around a target location, while the probability model adopts the generalized 

Gaussian distribution which includes uniform and Gaussian-like distributions as special cases. 

Our method preferentially assigns a sample to a k-space location with the least conflict cost 
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on the circle of the highest probability. To evaluate the effectiveness of the proposed random 

pattern, we compare the performance of SAKEs using both VD Poisson discs and the 

proposed pattern.  Experimental results for brain data show that the proposed pattern yields 

lower normalized mean square error (NMSE) than VD Poisson discs.
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Chapter 1 

Introduction 

1.1 Motivation 

It takes a long time to get good quality for images of patients’ inside bodies by the 

technologies such as X-rays and CTs. The tools for investigating the body of a patient should 

be fast in order to be safe and to get more money at the same processing time and benefit of 

less hardware cost. Hence, the speed is important but the image quality should be good 

enough for doctors to distinguish abnormal parts of the body like cancers from normal parts 

of the body. As a result, magnetic resonance imaging (MRI) came out. 

There are a lot of efforts to make MR image acquisition faster in good quality. 

Compressed sensing proposed by D. Donoho is based on that one can use signal parts only 

that have meaningful information and we can abandon the remaining parts which are most of 

the signal to reconstruct the signal [1]. Parallel Imaging comes from the idea that we can 

reconstruct images faster by getting the part of images simultaneously using multiple coils 

[2]. There are various methods that can improve image quality further. Some of them 

however yield problems such as aliasing and artifacts. Therefore, many people try to solve 

those problems. 

 

1.2 Challenge 

Fast imaging is a challenge because people who investigate MRI try to reduce time by 

decreasing the acquisition time. Most of the time is for MRI scanning. At the same time, we 

want good image quality, which may be measured by signal noise ratio (SNR). However, if 

we reduce data too much, then there will be aliasing and noise so that it is so hard to figure 
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out what the image is. On the contrary, if we reduce too little then it will cause a lot of 

computation time. We thus need to deal with trade-off of the acquisition time and the image 

reduction. We use numerous mathematical tools to find the solution for this. Reducing 

aliasing and noise provides good image quality enough for the doctors. At the same time, the 

image reduction causes less time to get the images by removing what makes patients more 

uncomfortable being inside of an MRI machine. Efficient sampling design and improved 

algorithm using image processing techniques will be expected to reduce the aliasing and 

noise. 

In the following experiments, we always use full data of brain images for reference data. 

We assume that we are doing MRI scanning by sampling parts of the full data. It means that 

we did not perform actual MRI scanning. We usually call it ‘in vivo data’. 

 

1.3 Outline of Thesis 

In this chapter, we have mentioned the motivation and challenge of the thesis. Chapter 2 

introduces the background of MRI related to the proposed methods. We will talk about the 

recent MRI techniques including Parallel MRI and Compressed Sensing MRI. As their 

examples, we will also explain GRAPPA for Parallel MRI and Sparse MRI for Compressed 

MRI. Chapter 3 and Chapter 4 explain in detail our proposed methods we developed during 

the research of thesis. We will talk about their introduction, method, result, and conclusion in 

order. Chapter 3 explains the improved method of GRAPPA. Chapter 4 talks about the 

improved method of new random sampling for the MRI. Finally, in Chapter 5, we will 

conclude our whole work and suggest our future work. 
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Chapter 2  

Background 

2.1 Magnetic Resonance Imaging (MRI)  

Medical imaging has been developed since Röntgen invented X-ray to see bones and 

living body in 1895. In 1970s, computerized tomography (CT) was invented and then nuclear 

magnetic resonance (NMR) in 1973. MRI is the same technique with NMR but has a 

different name because the term ‘nuclear’ sounds dangerous. MRI has many advantages 

including good contrast to distinguish tumors from normal organs. Also, MRI is safer to 

human body than previous methods because MRI uses magnetic fields while X-ray uses 

ionizing radiation. Besides, MRI can make 3D images and has better resolution than CT. 

 The MRI uses electromagnetic waves in radio frequencies (RF) and external magnetic 

fields and makes images by the computer. Most parts of human body consist of water which 

has Hydrogen nuclei or protons. When a proton is in the external magnetic fields, the proton 

starts to rotate and goes to a higher energy state at Larmor frequency. Larmor frequency is as 

follows [3]: 

߱ ൌ  ሺ2.1ሻ																																																																								଴ܤߛ

where the constant ߛ  indicates the unique property of nuclei spinning and ܤ଴  external 

magnetic field. For example, the precession frequency of a hydrogen nucleus is 

42.6MHz/Tesla. This Larmor precession is important because after RF is turned off, the 

protons release excess energy, and we can get the signals from this spinning 

 When external magnetic fields ܤ଴ are exposed on a human body, then spinning protons 

of the body are lined. Then if a RF pulse is sent to a patient body, a signal is received from 

the spins, which is the MRI signal. MRI gets the signals on 2D frequency domain called k-

space. If we use constant magnetic field along the spatial directions, we cannot get the spatial 



4 
 

information. For this reason, for the spatial encoding to verify the spatial information, we 

change the magnetic field by using gradients along each direction.  

ܤ ൌ ଴ܤ ൅  ሺ2.2ሻ																																																																	ݔ௫ܩ

We use three directions of gradient fields, ܩ௫, ,௬ܩ -௭ each for frequency encoding, phaseܩ

encoding, and slice selection. If we want to choose some part of the body, then we need to 

select a slice. The equation of slice selection is as follows, 

߱௥௙ ൌ ଴ܤሺߛ ൅  ሺ2.3ሻ																																																										ሻݖ∆௭ܩ

where ∆ݖ denotes slice thickness. Figure 2.1 shows how the location of the z gradient coils is 

related to magnetic field strength. 

 

Figure 2.1 patient in z-gradient field 

 We can decide this parameter by changing the bandwidth of RF frequency ߱௥௙ or slope 

of magnetic field and gradient. Ljunggren and Twieg invented the k-space method to 

reconstruct an image using Fourier transform of spin density in 1983. 
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ܵሺݐሻ ൌ නߩሺݔሻ݁ି௜ఊሺ஻బାீೣ௫ሻ௧݀ݔ 																																																ሺ2.4ሻ 

where ߩሺݔሻ denotes proton density and ݁ି௜ఊ஻బ௧ simple modulation factor. We can remove the 

factor by demodulation [4]. By adding more gradient ܩ௬, we can represent 2D data space. 

ܵሺݐሻ ൌ නනߩሺݔ,  ሺ2.5ሻ																																							ݕ݀ݔሻ݁ି௜ఊሺீೣ௫௧ାீ೤௫்ሻ݀ݕ

݇௫ ൌ ,ݐ௫ܩߛ 		݇௬ ൌ  ௬ܶܩߛ

We can consider the data space represented by ݇௫ and ݇௬ as new spatial frequency domain 

and the inventors called it k-space. The symbols ݇௫ and ݇௬ are called frequency encoding 

and phase encoding respectively according to the name of gradients. We can see that each of 

݇௫ and ݇௬ depends on time and so the process is done sequentially. This is why we call MR 

imaging or MRI scanning. Figure 2.2 shows the k-space domain consisting of phase and 

frequency directions and also shows how the MRI scans sequentially. 

Figure 2.2 k-space 
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We can reconstruct the image by performing inverse Fourier transform on the k-space 

data. RF frequencies including 90, 180 degree pulse and three gradients are called pulse 

sequences. These sequences are key ingredients to make k-space trajectories. 

 The field of view (FOV) is expressed as the size of an image obtained from MRI 

scanning. We can calculate FOV as follows [3]: 

ܸܱܨ ൌ
ܹܤ
ܩߛ

																																																																		ሺ2.6ሻ 

where ߛ is constant, ܩ is the slope of the gradient, and ܹܤ ൌ 2 ௠݂௔௫ is bandwidth. Also, we 

can calculate FOV in image space from the k-space as follows: 

ܸܱܨ ∝
1
∆݇

																																																																				ሺ2.7ሻ 

As ∆݇ increases, which means that the k-pace is undersampled, FOV decreases by image 

processing and this causes the image wrapping or aliasing artifacts. 

  Recently, parallel imaging techniques such as SENSE[5] and GRAPPA[6] have been 

introduced to get images faster by using multiple RF coils. Also, compressed sensing MRI 

has been introduced as a different approach by using compressed sensing theorem proposed 

by D. Donoho based on the property of sparse sampling. 

In MRI, the speed of image acquisition is so important that reduced image data is 

acquired by scanning of a part of the whole image data. We call the factor reducing the image 

data or FOV, acceleration or reduction factor. This factor is defined by the ratio of the size of 

image to the size of sampled pixels in k-space domain. Later, this factor will be frequently 

used for both parallel MR imaging and compressed sensing MR imaging. 

To measure the error between an original image and its reconstruction image, we always 

use NMSE (Normalized Mean Square Error) as follows [7]. 

NMSE = 
∑ ൫ூ౨౛ౙ౥౤ሺ௥Ԧሻିூ౨౛౜ሺ௥Ԧሻ൯

మ
ೝሬሬԦ

∑ ൫ூ౨౛౜ሺ௥Ԧሻ൯
మ

ೝሬሬԦ
                          (2.8) 
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where ܫ୰ୣ୤  and  ܫ୰ୣୡ୭୬  denote an original reference image and its reconstruction image, 

respectively. 

 

2.2 Parallel MRI 

In clinical MR imaging, the image quality and imaging speed are important [8]. Existing 

MRI scanners have technical problems to switch the magnetic field gradients to increase the 

speed of MR Image acquisition. Recently, parallel MRI methods came out to get the 

sensitivities using multiple coils simultaneously without changing the gradients. We call it 

parallel imaging because it is done simultaneously. 

 We get the coil sensitivities used for reconstruction. Each coil location has an effect on 

the sensitivities. FOV is reduced by reduction factor. The reduction causes aliasing in images. 

Then we recover the original FOV by reconstruction. The values of reduction factors 

commonly used are 2 or 3. Commercially and clinically, two famous methods are widely 

used: SENSE and GRAPPA. The former is an image based method and the latter k-space 

based one. 

 Future aim of parallel imaging is getting better image quality by using increase of 

reduction factor, better calibration methods, and reconstruction algorithms. Also, hardware 

and MRI scanners will be developed based on these new techniques or theories. 
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 2.2.1 Generalized autocalibrating partially parallel 

acquisition (GRAPPA) [6] 

This is one of parallel imaging methods done in k-space or frequency domain. While 

SENSE uses estimation of coil sensitivities, but GRAPPA does not so [9]. This method skips 

some lines of the k-space so there are missing lines for a faster speed. To reconstruct or 

estimate the missing lines accurately, it uses auto calibration signal (ACS) lines, which 

means that they were used for calibration process automatically using the image itself. The 

ACS lines are located in a center part of the k-space. ACS lines are acquired in frequency 

encoding direction [9] and acquired reducing the number of phase encoding lines so that we 

take a part of the phase encoding lines and this reduces FOV and causes aliasing [8]. The 

values of these lines are an important factor to have an effect on image quality. 

Figure 2.3 GRAPPA reconstruction using the correlations along coils and blocks [6] 
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Figure 2.3 shows how the acquired line, unacquired line and ACS lines are related to 

each other in GRAPPA reconstruction. We calculate the weights using the correlation 

between coils by fitting the acquired lines into ACS lines. Using these weights, we can 

reconstruct the missing lines. This seems like interpolation process because we interpolate 

the missing lines so sometimes we called the correlations between acquired lines and ACS 

lines, interpolation net [10]. After the missing lines are reconstructed, the uncombined coils 

were combined using sum of squares [11]. As we get more ACS lines acquired, we obtain 

better image quality. There are some studies about getting more correlations to increase the 

data to get more accurate weights. The original GRAPPA method uses the correlations along 

the coils and blocks. Block is a part of the whole k-space data, which have an acquired line 

and neighbor missing lines. It is for exploiting the correlations along the ky direction. Then 

the improved GRAPPA method adopts even columns, which includes neighbors along the kx 

direction [10]. It is for using the correlations along the kx direction. Especially GRAPPA has 

net reduction factor because actual reduction factor will be thought including combination of 

ACS lines and acquired lines. 

We can use various MRI images such as cardiac, lung, and abdominal images. Other 

GRAPPAs usually test on brain images or phantom images. There are various GRAPPAs but 

famous ones are using multicolumn multiline interpolation [10],  regularization [12], iterative 

method [13], and nonlinear kernel [14]. They give solutions to the problems by statistical 

methods such as least square methods or goodness-of-fit. Also, recently there are some 

GRAPPAs using temporal correlations such as TGRAPPA [15] and k-tGRAPPA [16]. 

 

2.2.2 Nonlinear GRAPPA [14] 

 This method uses fine parameter tuning to get better reconstruction in GRAPPA. In the 

paper of nonlinear GRAPPA, to improve medical image quality further, the author uses 

polynomial kernel method called ‘kernel trick’ before the data reconstruction. Kernel trick is 

widely used in machine learning technique. The author also says that this method is known to 

reduce noise effectively in brain data. We map the original data x into high dimensional 
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feature space F using nonlinear mapping ߶ሺ∙ሻ: ݔ →  So this is why the author called the .ܨ

method ‘nonlinear’ because we solve the problem in nonlinear space instead of linear space. 

We use the second-order polynomial kernel function as follows. 

݇ሺݔଵ, ଶሻݔ ൌ൏ ߶ሺݔଵሻ, ߶ሺݔଶሻ ൐ൌ ሺݔߛଵ
ଶݔ் ൅ ܿሻௗ	 where ݀ ൌ 2																									ሺ2.9ሻ 

߶ሺݔሻ ൌ ሾݔ௡ଶ, … , ଵݔ
ଶ, ,௡ିଵݔ௡ݔ2√ … , ,ଵݔ௡ݔ2√ ,௡ିଶݔ௡ିଵݔ2√ …,																								ሺ2.10ሻ 

,ଵݔ௡ିଵݔ2√ … , ,ଵݔଶݔ2√ ,௡ݔ2ܿ√ … , ,ଵݔ2ܿ√ ܿሿ 

For simplifying the complexity of the computation, we only use linear terms 

,௡ݔ2ܿ√ … , ,௡ଶݔ ଵ and part of nonlinear termsݔ2ܿ√ … , ଵݔ
ଶ and remove other terms. As a result, 

߶ሺݔሻ ൌ ,௡ଶݔൣ … , ଵݔ
ଶ, ,௡ݔ2ܿ√ … ,  ሺ2.11ሻ																																							ଵ൧ݔ2ܿ√

 

2.3 Compressed Sensing [1] 

Compressed sensing proposed by D. Donoho is based on that we can use signal parts only 

that have meaningful information and most of the signals can be thrown away. He assumes 

that the signal is sparse in certain domain, for example, wavelet or Fourier domain. We can 

consider the underdetermined system (݉ ≫ ݊) as follows: 

ݕ ൌ Φݔ																																																																								ሺ2.12ሻ 

where ݕ ∈ Թ௠  denotes linear measurement or sample,  ݔ ∈ Թ௡  recovery, and Φ encoding 

matrix [17]. E. Candes shows that we can recover the original signal even from much smaller 

samples than ones based on the Nyquist-sampling theorem [18] by solving the following 

convex optimization problem in ݈ଵ norm [19]. 

min‖߰ݔ‖ଵ .ݏ			 ݔΦ		.ݐ ൌ  ሺ2.13ሻ																																																							.ݕ

MRI is one of famous applications of compressed sensing. 
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2.3.1 CS MRI [2] 

MRI needs to reduce acquired data but requires good image quality without aliasing and 

artifacts. This property is well fit to the theory of the compressed sensing because the MR 

images are sparse in k-space domain, in other words, Fourier domain so that the compressed 

sensing MRI is introduced. We can set the constrained optimization problem from the 

compressed sensing as follows 

min‖߰ݔ‖ଵ 																																																																ሺ2.14ሻ 

.ݏ		 ݔ௨ܨ‖		.ݐ െ ଶ‖ݕ ൏  ଵߝ

where ܨ௨  means undersampled Fourier transform, ݕ acquired MRI k-space data, and ߰ the 

linear operator which makes data sparse. Numerous experiments were done but still not used 

clinically for hardware constraints. Hence, CS MRI is limitedly used in 3D reconstruction or 

3D cardiac images (2D space and 1D time) in kt-space domain by using temporal correlation. 

Well known methods using temporal correlation are ktFocuss [20] and ktISD [21]. 
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Chapter 3 

Iterative GRAPPA 

 with Wiener Filter 

3.1 Introduction 

Partially parallel imaging (PPI) is designed for MR imaging to reduce the information and 

increase the imaging speed. GRAPPA is one of PPI modalities and uses relatively small 

amount of auto calibration signals (ACSs) in whole k-space. It utilizes the correlations 

between the coils to estimate the missing lines [6]. Since GRAPPA has been introduced, 

several iterative GRAPPA approaches have been proposed to estimate the missing lines more 

accurately [13,22,23]. They use arbitrary k-space sampling by using iteratively conjugate 

gradient method[22], later developed into SPIRiT (Iterative Self-consistent Parallel Imaging 

Reconstruction from Arbitrary k-space)[24], or iteratively estimate more accurate 

convolution weights using regularization [13] or Kalman filtering on weights [23].  

In this chapter, we present a new iterative method using Wiener filter. Conventional 

GRAPPA methods use the auto calibration signals (ACS) to find the convolution weights 

because the convolution weights of the ACS is shift-invariant, which means that the 

GRAPPA assumes the weights can be used everywhere in k-space regardless of the locations 

[25]. 

We however note that the convolution weights obtained from ACS cannot represent the 

relationship between the acquired and missing data accurately because the information in 

ACS is quite different from the information in signals far from ACS. To address this issue, 

we propose a method that iteratively updates the convolution weights using both the acquired 
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and reconstructed data from previous iterations in the entire k-space. Among various 

conventional GRAPPAs, we adopt an improved GRAPPA using multicolumn multiline 

interpolation (MCMLI) with floating net-based fitting [10] for GRAPPA reconstruction in 

each iteration. In order to avoid error propagation due to iterations, the method applies 

adaptive Wiener filter on the reconstructed data where the power spectra are estimated from 

the neighboring data adaptively without any a priori information. Our experiments are 

performed on the brain data. We compared the proposed method with the conventional 

GRAPPA. The method shows improvement in SNR over the GRAPPA. 

 

3.2 Conventional GRAPPA 

Multicolumn multiline interpolation [10] chosen for one-step Grappa reconstruction uses 

the convolutional weights and the acquired data to reconstruct the missing lines as follows: 

൫݇௬ܴݏ̂ ൅ ,ݎ ݇௫; ݆൯ ൌ෍ ෍ ෍ ,ሺ݈ݓ ܾ, ݄; ݆, ൫ሺ݇௬ݏ		ሻݎ ൅ ܾሻܴ, ݇௫ ൅ ݄; ݈൯

ுమ

௛ୀିுభ

஻మ

௕ୀି஻భ

௅

௟ୀଵ

										 

for	ݎ ൌ 1, 2,⋯ , ሺܴ െ 1ሻ		ሺ3.1ሻ 

where the symbol ݎ is the order of missing lines under acceleration factor ܴ and the indices ܾ 

and ݄  count blocks and columns, respectively. The symbols ݏ൫݇௬ܴ, ݇௫; ݆൯  and ̂ݏ൫݇௬ܴ ൅

,ݎ ݇௫; ݆൯ denote the acquired signal of ݆th coil and the estimate of the rth unacquired signal or 

missing line. The estimation of a missing line is obtained by the convolution (3.1) for 

ݎ ൌ 1,⋯ , ሺܴ െ 1ሻ. It is assumed in (3.1) that the missing lines can be reconstructed by a 

weighted summation of  neighbor acquired lines along blocks,  columns, and coils.  

In order to express (3.1) in a vector-matrix representation for easy calculation, we now 

reorder the elements ̂ݏ൫݇௬ܴ൅ݎ, ݇௫; ݆൯ and ݓሺ݈, ܾ, ݄; ݆,  ሻ as the following.  Fixing  j and r andݎ

reordering the two-dimensional elements ̂ݏ൫݇௬ܴ൅ݎ, ݇௫; ݆൯ of two indices ݇௬ and ݇௫  into one-

dimensional elements of a new index n, we can express them as ̂ݏሺ݊ሻ௝,௥. Similarly, fixing j  
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Figure 3.1 improved GRAPPA using Multicolumn multiline interpolation [10] 
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and r and reordering the three-dimensional elements ݓሺ݈, ܾ, ݄; ݆,  ሻ of three indices ݈, ܾ, andݎ

݄  into one-dimensional elements of a new index m, we can express them as ݓሺ݉ሻ௝,௥. Then 

the elements ݏ൫ሺ݇௬ ൅ ܾሻܴ, ݇௫ ൅ ݄; ݈൯ of three indices ݈, ܾ, and ݄  and two indices ݇௬ and ݇௫ 

can be represented as ݏሺ݊;݉ሻ. As a result, the equation (3.1) can be rewritten by 

ሺ݊ሻ௝,௥ݏ̂ ൌ ෍ݏሺ݊;݉ሻ	ݓሺ݉ሻ௝,௥																																											
௠

									ሺ3.2ሻ 

Or in a vector-matrix representation, we get 

ො௝,௥ܛ              ൌ Sܟ௝,௥     for ݆ ൌ 1,… , ௟ܰ	and  ݎ ൌ 1,… , ሺܴ െ 1ሻ						ሺ3.3ሻ 

where ܛො௝,௥  and ܟ௝,௥  are a vector of size ௬ܰௗ ௫ܰ ൈ 1  and a vector of size ௟ܰ ௕ܰ ௖ܰ ൈ 1 , 

respectively, and S a matrix of size ௬ܰௗ ௫ܰ ൈ ௟ܰ ௕ܰ ௖ܰ. The symbol ௬ܰௗ denotes the number 

of undersampled ݇௬  lines, ௫ܰ  the number of ݇௫  lines, ௟ܰ  the number of coils, ௕ܰ  is the 

number of blocks, and  ௖ܰ the number of columns. 

Minimizing the least-square error of MCMLI as in least square fitting, we can obtain the 

optimal weights ܟ௝,௥. The least-square error of MCMLI is written as 

ܬ               ൌ ො௝,௥ܛ|| െ  																																																																																					௝,௥||ଶܛ

                 ൌ ൫Sܟ௝,௥ െ ௝,௥൯ܛ
்
൫Sܟ௝,௥ െ  ሺ3.4ሻ																																																								௝,௥൯ܛ

To minimize the cost function  J, we get [26] 

             
డ௃

డ܅ೕ,ೝ
ൌ 2S்൫Sܟ௝,௥ െ ௝,௥൯ܛ ൌ 0																																																									ሺ3.5ሻ     

Or 

௝,௥ܟ           ൌ ሺS்SሻିଵS்ܛ௝,௥																																																															ሺ3.6ሻ 

where ܶdenotes the conjugate transpose. Since we do not know the values of the rth missing 

lines, we substitute S and ܛ௝,௥ with ACS data of S and ܛ௝,௥ to get the weight matrix ܟ௝,௥: 
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௝,௥ܟ           ൌ ሺS஺஼ௌ
்
S஺஼ௌሻିଵS஺஼ௌ

்
௝,௥ܛ
஺஼ௌ																																																			ሺ3.7ሻ 

We call (3.6) or (3.7) the LS fitting for obtaining weights. 

FNF is a scheme that floats the net-based fitting to increase the amount of data needed to 

obtain LS fitting as in (3.6) or (3.7) [10]. That is, they consider a new fitting from ݏ൫ሺ݇௬ ൅

ܾሻܴ ൅ ݀, ݇௫ ൅ ݄; ݈൯ to ̂ݏ൫݇௬ܴ ൅ ݎ ൅ ݀, ݇௫; ݆൯. Then we can obtain a new matrix Sௗ and vector 

݀ ௝,௥. We see that ifܛ ௝,௥ାௗ corresponding to S andܛ ൌ 0, then Sௗ and ܛ௝,௥ାௗ become S and ܛ௝,௥, 

respectively. 

Averaging the weights obtained over ݀ ൌ 0,⋯ , ܴ െ 1,	we get a new weight computation 

as  

௝,௥ܟ ൌ
1
ܴ
෍ሺSௗ

்SௗሻିଵSௗ
																																											௝,௥ାௗܛ்

ோିଵ

ௗୀ଴

									ሺ3.8ሻ 

In case of using ACS data only, we get 

௝,௥ܟ ൌ
1
ܴ
෍ሺSௗ

஺஼ௌ்Sௗ
஺஼ௌሻିଵSௗ

஺஼ௌ்ܛ௝,௥ାௗ
஺஼ௌ 																																	

ோିଵ

ௗୀ଴

									ሺ3.9ሻ 

3.3 Proposed Method 
3.3.1 Overall System 

 

 

 

 

 

Figure 3.2 Block diagram of the proposed iterative GRAPPA 
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Figure 3.2 shows the block diagram of the proposed iterative GRAPPA. As mentioned in 

the previous section, we use MCMLI-FNF [10] for one-step GRAPPA.  

(Step 0) At the iteration index n=0, we get the initial weights ݓሺ଴ሻ from ACS data based on 

(3.9) and set the initial filtered signal ̃ݏሺ଴ሻ൫݇௬, ݇௫; ݆൯ ൌ 0. We then iterate the following five 

steps.  

(Step 1) We update the iteration index ݊ → ݊ ൅ 1 and use the (n-1)th weights ݓሺ௡ିଵሻ and the 

acquired data to reconstruct the missing lines as follows: 

ሺ௡ሻ൫݇௬ܴݏ̂ ൅ ,ݎ ݇௫; ݆൯ ൌ෍ ෍ ෍ ,ሺ௡ିଵሻሺ݈ݓ ܾ, ݄; ݆, ൫ሺ݇௬ݏ		ሻݎ ൅ ܾሻܴ, ݇௫ ൅ ݄; ݈൯	

ுమ

௛ୀିுభ

஻మ

௕ୀି஻భ

௅

௟ୀଵ

			ሺ3.10ሻ 

where R represents a reduction factor and the indices ܾ and ݄ count blocks and columns, 

respectively. The symbols ݏ൫݇௬ܴ, ݇௫; ݆൯  denotes the acquired signal of ݆ th coil and 

ሺ௡ሻ൫݇௬ܴݏ̂ ൅ ,ݎ ݇௫; ݆൯ the estimate of rth missing lines of ݆th coil at the nth iterations. The 

convolution by (3.10) is obtained for ݎ ൌ 1,⋯ , ሺܴ െ 1ሻ. Since there is no estimation for r=0, 

it is filled with the part of the previous filtered signal ̃ݏሺ௡ିଵሻ൫݇௬ܴ, ݇௫; ݆൯.  

(Step 2) Apply an adaptive Wiener filter to all the reconstructed lines ̂ݏሺ௡ሻ obtained in Step 1 

to reduce the aliasing noise [27] using 

,ሺ௡ሻ൫݇௬ݏ̃ ݇௫; ݆൯ ൌ ݃ሺ௡ሻ൫݇௬, ݇௫; ݆൯	̂ݏሺ௡ሻ൫݇௬, ݇௫; ݆൯,																																	ሺ3.11ሻ 

where ݃ሺ௡ሻ൫݇௬, ݇௫; ݆൯ represents the Wiener filter gain computed for the location ൫݇௬, ݇௫; ݆൯ 

at the nth iteration. How to get the gain will be described in the next section. 

(Step 3) The portion of acquired data and ACS in ̃ݏሺ௡ሻ are replenished by ACS and acquired 

data s because acquired data and ACS are original and always better than filtered data. 

(Step 4) Find the convolutional weights ݓሺ௡ሻ by using (3.8) to fit the filtered data ̃ݏሺ௡ሻ into 

acquired data s.   
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(Step 5) Repeat Step 1~4 until a stop condition holds. 

 

3.2.2 Adaptive Wiener filter 

The Wiener filter we use is a sort of denoising SNR filter. Using the Wiener filtering by 

locally estimating the signal power spectrum adaptively [27], we can effectively remove the 

noise instead of using a simple Wiener filter. For this purpose, the Wiener filter gain 

computed at the nth iteration is given as 

݃ሺ௡ሻ൫݇௬, ݇௫; ݆൯ ൌ
௦ܲ
ሺ௡ሻ൫݇௬, ݇௫; ݆൯

௦ܲ
ሺ௡ሻ൫݇௬, ݇௫; ݆൯ ൅ ௡ߪ

ଶሺ௡ሻ 																																	ሺ3.12ሻ 

where ௦ܲ൫݇௬, ݇௫; ݆൯  denotes the signal power spectrum. We estimate the signal power 

spectrum by soft thresholding the average |̂ݏሺ௡ሻ൫݇௬, ݇௫; ݆൯|ଶ	in a neighborhood: 

௦ܲ
ሺ௡ሻ൫݇௬, ݇௫; ݆൯ ൌ ൞

1

௦ܰ
෍ ,ሺ௡ሻ൫݇௬ݏ̂| ݇௫; ݆൯|ଶ െ ௡ߪ

ଶሺ௡ሻ,
஻ሺ௞೤,௞ೣሻ

if	 ௦̂ܲ
ሺ௡ሻ൫݇௬, ݇௫; ݆൯ ൐ ௡ߪ

ଶሺ௡ሻ

0, otherwise

	ሺ3.13ሻ 

where ܤሺ݇௬, ݇௫ሻ is the neighborhood of ሺ݇௬, ݇௫ሻ and ௦ܰ is the size of ܤሺ݇௬, ݇௫ሻ on k-space. 

If ௦ܰ is too small, then the power spectrum will be noisy. On the contrary, if ௦ܰ is too large, 

then it does not reflect local characteristics. We assume that the noise is stationary and white 

so that the noise power spectrum is 

௡ܲ
ሺ௡ሻ൫݇௬, ݇௫൯ ൌ 		  ሺ3.14ሻ																																																												௡ଶߪ

where  ߪ௡
ଶሺ௡ሻ is the noise variance of the nth iteration. The noise variance is estimated form 

ACS lines and their reconstructed ones in a very high frequency (VHF) zone as follows: 

௡ଶߪ ൌ
ఉ

ேೈ
∑ ቚS஺஼ௌ൫݇௬, ݇௫; ݆൯ െ S෠ሺ௡ሻ

୅ୌ
൫݇௬, ݇௫; ݆൯ቚ

ଶ

൫௞೤,௞ೣ;௝൯∈௏ுி	௓௢௡௘ 		.               (3.15) 

We estimate the noise variance in a VHF zone because that in the center part of the ACS 

lines is often severely high so that it is not matched to that in non ACS lines. The noise 
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variance is estimated by the mean squared errors between the reconstructed and acquired data 

in the ACS region. Since the VHF zone contains only high frequency components along kx 

axis but belongs to low frequency region along ky axis, the noise variance may be over-

estimated yet and the parameter ߚ is used for reducing the estimated value further.  

 

3.2.3 Nonlinear GRAPPA 

We previously mentioned this method in section 2.2.2. The method is known to reduce 

noise effectively in brain data [14].  

For simplifying the complexity of the computation, we only use linear terms 

,௡ݔ2ܿ√ … , ,௡ଶݔ ଵ and part of nonlinear termsݔ2ܿ√ … , ଵݔ
ଶ and remove other terms. As a result, 

߶ሺݔሻ ൌ ,௡ଶݔൣ … , ଵݔ
ଶ, …,௡ݔ2ܿ√ ,  ሺ3.16ሻ																																															ଵ൧ݔ2ܿ√

We can simplify the kernel expression using vector presentation as follows. 

ܠ → ሾܠ,  ሺ3.17ሻ																																																																	ଶሿܠ

where ܠଶ denote the vector whose elements are the squares of elements of ܠ. 

 

3.4 Results 

We compare the performance of our method with the conventional GRAPPA for two sets 

of brain data. The first test data is a set of in vivo axial brain data scanned on a 3T MRI 

scanner (GE, Waukesha, Wisconsin, USA) using an eight-channel head coil with matrix size 

256ൈ256 [14]. The second test data is the vivo axial brain data scanned on a 1.5T MRI 

scanner (GE, Waukesha, Wisconsin, USA) using eight-channel receive-only head coil with 

data size 200ൈ200 [28]. We choose ௦ܰ ൌ 7 ൈ 7 in (3.13) and β ൌ
ଷ

ଵ଴
 , 
ଵ

ହ
 in (3.15) for linear 

and nonlinear GRAPPA cases, respectively.  We set the VHF zone to be a third of the entire 

ACS so that the two third of low kx-frequency components is excluded. The number of 
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columns and the number of blocks are ௕ܰ ൌ 2, ௛ܰ ൌ 15. The number of iterations is fixed as 

5. We also fixed the reduction factor as R=3 which is commonly used in clinical MRI and 

changed the size of the ACS lines. 

 

3.4.1 Case of linear GRAPPA 

Figure 3.3 shows the NMSEs of the conventional MCMLI-FNF and the proposed 

iterative GRAPPA according to different net reduction factors (netR), which come from 

different ACS sizes of 48,42, 	⋯,  18 at R=3. We see in Figure 3.3 that our method 

outperforms the conventional GRAPPA in NMSE over all netR. 

In implementing MCMLI-FNF, we need upward-shifting operation by bR+d for a matrix 

array such as ݏ൫ሺ݇௬ ൅ ܾሻܴ ൅ ݀, ݇௫ ൅ ݄; ݈൯ which results in down-side boundary problem. We 

solve the boundary problem by choosing circular shifting [29]. The circular shifting is easy to 

implement but may bring about discontinuities in the boundary and so somewhat 

performance degradation. Our proposed method uses a half of Hamming window whose size 

is NbR in the down-side boundary to overcome the degradation [29]. Figure 3.4 shows the 

effectiveness of using Hamming window. After applying Hamming window to the 

conventional MCMLI-FNF, the NMSE is reduced. Figure 3.5 shows the results from the 

second brain data. These results also show that our proposed method effectively reduces the 

noise. 

The experiments on image quality for the first brain data are shown in Figure 3.6. Our 

iterative method reduces the reconstruction errors compared to the conventional method. 

Figure 3.7 shows the results for the second brain data. The NMSE using our proposed 

method is much below the conventional GRAPPA. The reconstructed images by our method 

are more accurate than those by the conventional method. 
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Figure 3.3 NMSE Comparison of the conventional MCMLI-FNF (linear) and the proposed 

iterative GRAPPA (iter) according to various net reduction factors for the first brain data. 
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Figure 3.4 NMSE Comparison of the MCMLI-FNF (linear) and MCMLI-FNF without 

hamming window (linearNW) according to various net reduction factors for the first brain 

data. 

 

 

Figure 3.5 NMSE Comparison of the conventional MCMLI-FNF (linear) and the proposed 

iterative GRAPPA (iter) according to various net reduction factors for the second brain data. 
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(a) 

 

(b) 

Figure 3.6 Original image, reconstructed images, and error images (15x) for the 

conventional MCMLI-FNF (linear) and the proposed iterative GRAPPA (iter) using ACS 

lines of 24 at R=3 (netR=2.49) for the first brain data. 
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(a) 

 

(b) 

Figure 3.7 Original image, reconstructed images, and error images (15x) for the 

conventional MCMLI-FNF (linear) and the proposed iterative GRAPPA (iter) using ACS 

lines of 24 at R=3 (netR=2.41) for the second brain data. 
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3.4.2 Case of nonlinear GRAPPA 

Our proposed method is the combination of iterative Wiener filter and nonlinear kernel. 

Before performing nonlinear GRAPPAs, we normalized k-space data for stabilization of 

nonlinear GRAPPA so that all k-space data should be smaller than the maximum of sampled 

k-space data. 

We compare our method with the conventional GRAPPA and nonlinear GRAPPA used 

in our lab. Also, we show the effect of the iterative Wiener filter and proposed nonlinear 

GRAPPA, which we can see here the improvement of our proposed method. 

 Figure 3.8 shows the NMSE comparison of various methods for the first brain data. Our 

proposed method is called ‘iterative NL Wiener’. In the figure, Chang’s linear GRAPPA 

means the version of removing constant and second-order kernels in Chang’s NL GRAPPA 

[14]. Chang’s linear GRAPPA shows the worst performance at netR=2.1. However, when the 

net reduction factor increases above netR=2.5, which means ACS lines are a few as 18, the 

performance of all nonlinear method is getting worse. Our proposed iterative NL Wiener 

filter method keeps the performance lowest. Figure 3.9 shows the NMSE comparison of 

various methods for the second brain data. Our proposed method shows further improved 

performance than the conventional method. 

The experiments on image quality for the first brain data are shown in Figure 3.10. Our 

iterative NL method reduces the reconstruction errors compared to the conventional 

GRAPPA. Figure 3.11 shows the results for the second brain data. The NMSE using our 

proposed nonlinear method is much lower than the conventional GRAPPA. The 

reconstructed images using our method are more accurate than those using GRAPPA.  
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Figure 3.8 NMSE Comparison of 6 GRAPPAs according to various net reduction factors for 

the first brain data. 

 

 

Figure. 3.9 NMSE Comparison of 6 GRAPPAs according to various net reduction factors for 

the second brain data. 
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(a) 

 

(b) 

Figure 3.10 Original image, reconstructed images, and error images (15x) for the 

conventional MCMLI-FNF (linear) and the proposed iterative NL GRAPPA (iterNL) using 

ACS lines of 48 at R=3 (netR=2.15) for the first brain data. 
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(a) 

 

(b) 

Figure 3.11 Original image, reconstructed images, and error images (15x) for the 

conventional MCMLI-FNF (linear) and the proposed iterative NL GRAPPA (iterNL) using 

ACS lines of 48 at R=3 (netR=2.02) for the second brain data. 
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3.5 Conclusion 
We have proposed a new iterative GRAPPA method using adaptive Wiener filter. Our 

proposed method outperforms the conventional GRAPPA when the reduction factor is R=3 

in case of various sized ACS lines. Our proposed method improves the SNR when compared 

to the conventional GRAPPA. Especially, it was shown to greatly outperform Chang’s 

nonlinear GRAPPA in small ACSs. 
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Chapter 4 

Conflict-Cost Based 

 Random Sampling Design for     

 Parallel MRI 

 with Low Rank Constraints 

4.1 Introduction  

Compressed sensing is introduced to enable exact recovery of sparse signals from data 

sampled below what the Shannon-Nyquist sampling theorem [1] requires. Compressed 

sensing becomes very useful in MRI [2] because it allows the image to be acquired with 

much faster speed. For success of compressed sensing, the sampling needs to satisfy the 

incoherent requirement. Random sampling of the k-space (data domain) has been adopted in 

Sparse MRI [30] and many subsequent studies. It allows the aliasing artifacts to be noise-like 

such that they can be effectively removed using some nonlinear reconstruction algorithms. 

Many different random sampling patterns have been introduced such as power density 

function [30], Poisson disk [31-32], and variable density (VD) Poisson disk sampling [33] in 

order to make the sampling more effectively and satisfy the incoherent requirement for 

compressed sensing. 

The challenge in sampling pattern design is how to sample most efficiently. In MRI, we 

usually take advantage of the fact that most important information is around the low 
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frequencies, especially zero frequency or direct current (DC), when we sample the Fourier 

domain (called k-space in MRI) of natural images. Therefore most random sampling methods 

consider full sampling in the center part and random sampling in the outer region.  

Recently, Poisson disc sampling pattern or its advanced versions, VD Poisson sampling 

patterns have been used extensively. Poisson disc sampling pattern requires any two points to 

be separated by at least a minimum distance [34]. However, in the case of reduction factor of 

2 or 3 which is typically used to obtain high quality reconstructions, it is difficult for all 

samples to satisfy the minimum distance requirement. This is because Poisson disc method 

usually uses dart throwing [34] to generate the random pattern and the pattern can be 

arbitrary. Also it is usually computationally expensive to generate a Poisson disc pattern, 

which can be an issue for real implementation or experiments [35]. 

In this work, we propose a new random sampling pattern using a probability model and 

cost function. In order to produce a desired random sampling pattern, we will first allocate 

samples to a set with the same probability using the probability function of a generalized 

Gaussian shape. We next will use a cost function to assign samples to points of the least cost 

so as to make the sampling pattern more incoherent. Then we reconstruct a brain image using 

SAKE (simultaneous auto-calibrating and k-space estimation) [28] with the proposed 

sampling pattern. We finally compare the performance of our random sampling mask with 

that of VD Poisson disk. 

 

4.2 Method 

Figure 4.1 shows the whole process of the proposed reconstruction. We first make a 

random sampling mask. Then we use the mask to randomly sample the k-space and apply 

SAKE to the k-space data randomly sampled to get the reconstruction image. We will give 

the explanation about section 4.2.1 Probability Model and section 4.2.2 Sample Selection 

Algorithm. The new method exploits a generalized Gaussian probability including a wide 

range of distributions from a uniform one to a Gaussian-like one severely centralized in a 

center frequency. Next is the algorithm of generating the proposed random sampling mask. 
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Figure 4.1 Flow chart of the reconstruction process 

 

4.2.1 Probability Model 

In order to control the distribution of sampling locations, one needs a probability model. 

Let ݌ሺݎԦሻ be the probability of assigning a sample to a spatial point ݎԦ where ݎԦ ൌ ሾݎ௫,  ௬ሿ. Thenݎ

 Ԧሻ is a constantݎሺ݌ Ԧሻ becomes the success probability of a Bernoulli random process. Ifݎሺ݌

with regard to ݎԦ , then it shows a uniform distribution as in Poisson disks. As a good 

probability model, we choose an exponential function which is bounded in [0, 1] while the 

power density function [30], which is used in some conventional random sampling for 

compressed sensing, does not satisfy the bounded property. Introducing a shape parameter 

into the function as in a generalized Gaussian probability density function (pdf) [36], we can 

control how much concentrated samples are around DC. Since DC and near-DC Fourier 

components contain meaningful information more than other regions, it is important to 

sample densely in those regions to produce good SNR. 

The generalized Gaussian probability model of sample allocation using a shape parameter 

is formulated as 

mask generation 
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Ԧሻݎሺ݌ ൌ exp ቊെ
1
ோߤ
ቆ
Ԧݎ‖ െ ‖Ԧ଴ݎ
‖Ԧ଴ݎ‖

ቇ
஑

ቋ																																														ሺ4.1ሻ 

where ݎԦ଴ denotes a center point and ߙ the parameter controlling the probability shape. The 

parameter ߤோ depends on the reduction factor ܴ, which satisfies the following constraint: 

෍݌ሺݎԦሻ
௥Ԧ∈۷

ൌ
|ܫ|
ܴ
																																																													ሺ4.2ሻ 

where I stands for the set of all locations in the whole k-space and |ܫ| the size of ܫ. Also, Eq. 

(4.2) is equivalent to the total number of the samples. Given an ܴ , the parameter ߤோ  is 

determined based on (4.2) not explicitly but by numerical iteration such as bisection method. 

The number of samples is an integer that is not exactly the same every time, but we can get a 

number close to the reduction factor. We will talk about this more on section 4.2.3. 

Grouping all points into sets of points of the same probabilities, we rewrite (4.2) into the 

following: 

෍ ෍ Ԧሻݎሺ݌
௥Ԧ∈ௌ೙௡

ൌ
|ܫ|
ܴ
																																																														ሺ4.3ሻ 

where ܵ௡ , n=1, 2, …, represents the set of all points of the same probability. We now 

determine the number of samples to be allocated to the points of the same probability as 

௡ܰ ൌ ෍ Ԧሻݎሺ݌
௥Ԧ∈ௌ೙

																																																									ሺ4.4ሻ 

 

4.2.2 Conflict Cost  

Considering the incoherence requirement of compressed sensing, assigning samples 

purely randomly according to the probability model may not meet the incoherence 

requirements. To address the issue, we introduce conflict cost for each sample allocation in 

order to distribute samples evenly. We define the conflict cost of a point ݎԦ to a sample ݏԦ as 

∆ܿሺݎԦ; Ԧሻݏ ൌ eሺିஓ‖௥Ԧି௦Ԧ‖ሻ				for		ݎԦ ∈  ሺ4.5ሻ																																						Ԧሻ,ݏሺܤ
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where ܤሺݏԦሻ  denotes the set of neighbor points within a distance ݀  around ݏԦ  and ߛ  the 

exponential slope parameter. The slope parameter should be larger than 0 because farther 

neighbor samples have to contribute less to the cost. Therefore, the total conflict cost of a 

point ݎԦ is obtained by summing the conflict costs between the point ݎԦ and all its neighbor 

samples. 

 

4.2.3 Sample Allocation Algorithm 

Let M be a sampling matrix, and initialize ܯሺݎԦሻ ൌ 0 for ݎԦ ∈  Whenever a sample is .ܫ

allocated to a point ݎԦ , the corresponding mask value becomes ܯሺݎԦሻ ൌ 1 . A conceptual 

sample allocation algorithm is given in [37] and a more practical one is shown below. 

Next are the steps for the sample allocation algorithm based on the probability model and 

conflict cost. 

Step 1: Initialize a sampling mask and a conflict cost array as ܯሺݎԦሻ ൌ 0 and ܿሺݎԦሻ ൌ 0 

for  ݎԦ ∈  .ܫ

Step 2: Compute ݌ሺݎԦሻ for ݎԦ ∈  .ோ according to (1) and (2)ߤ and the parameter ܫ

Step 3: Group all points into sets ܵ௡  of points of the same probabilities. Let ݊ ൌ

1,… , ௚ܰ. Then ݁ݏݏ݁ܿݔ ൌ 0 and ܵ௣௥௘௩ ൌ ∅ where ∅ means an empty set. 

Step 4: Do the following operations for the set ܵே೒ of the highest probability to the set 

ଵܵ of the lowest probability.  

(1) Compute the number of samples ௡ܰ to be allocated to ܵ௡ according to (4). Then 

get ௡ܰ
ᇱ ൌ roundሺ ௡ܰ െ   .ሻݏݏ݁ܿݔ݁

(2) Do the following operations for ݉ ൌ 1 to ݉ ൌ ௡ܰ
ᇱ . 

    - Set ܵ௡ ← ܵ௡ 	∪ ܵ௣௥௘௩ and ܵ௣௥௘௩ ൌ ∅. 

    - Sort the conflict costs of all points ݎԦ in ܵ௡. 
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    - Find the points of minimum conflict cost. 

    - If there are multiple minimum points, then select a point ݏԦ randomly. 

    - Set ܯሺݏԦሻ ൌ 1		and		ܿሺݏԦሻ ൌ ∞. 

     ‐ Set ܿሺݎԦሻ ← ܿሺݎԦሻ ൅ ∆ܿሺݎԦ; Ԧݎ		for			Ԧሻݏ ∈ ;ԦݎԦሻ, where ∆ܿሺݏሺܤ  .Ԧሻ is given in (5)ݏ

(3) If  ௡ܰ
ᇱ>0, then ݁ݏݏ݁ܿݔ ← ௡ܰ

ᇱ െ ሺ ௡ܰ െ ሻ. Else ܵ௣௥௘௩ݏݏ݁ܿݔ݁ ← ܵ௡. 

The reason why we set the conflict cost of ݏԦ to be infinity is that the same point should 

not be selected as a sample point again in the following steps. For more practical 

implementation, we round ௡ܰ in Step 4 (1) into an integer because the number of samples 

should be an integer. However, excess or shortage in sum of probabilities caused by the 

integer rounding should be compensated in the next iteration. Especially, ܵ௣௥௘௩  is for 

considering ܵ௡ of ௡ܰ= 0 in the next iteration.  

Next are the steps for the image reconstruction algorithm. 

 

4.2.4 Image reconstruction 

We use SAKE as an image reconstruction. SAKE is one of the parallel imaging 

reconstruction algorithms using low rank completion. Next is a brief review about SAKE. 

Unlike GRAPPA [6], one of the well-known parallel imaging techniques, which needs 

ACS (auto calibration signal) lines to reconstruct images from undersampled multi-channel 

data, SAKE is an algorithm to reconstruct images from randomly undersampled data without 

calibration data. SAKE first connects all the coil data in series and the connected data are 

reformulated as the shape of the Hankel matrix used for Cadzow’s signal enhancement. As a 

result, the reconstruction becomes a low rank matrix completion problem in k-space. The 

solution is obtained by singular value thresholding, especially hard-thresholding. The SAKE 

reconstruction is formulated as follows: 

Minimize		‖Dx െ y‖ଶ																																																				ሺ4.6ሻ 
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subject to rankሺAሻ ൌ k, 

x ൌ HାሺAሻ 

where D denotes the sampling operation related to the sampling matrix M mentioned in 

section 2.3, x the desired image, y the acquired data, A the low-rank data matrix and Hା the 

pseudo-inverse operator.  

We use the nonlinear kernel method again, which is explained in section 3.2.3.  We 

hereafter call the original SAKE reconstruction ‘linear’ but the reconstruction with the 

nonlinear kernel ‘nonlinear’. 

 

4.3 Results   

In order to evaluate the effectiveness of the proposed random masks, we compare the 

SAKE reconstructions using VD Poisson discs [33] and the proposed random masks. The VD 

Poisson disk is generated from a Poisson disk using μ-law [38]. 

In general, the information of a Poisson disk is expressed as locations of samples on 

ሾെ1,1ሿ 	ൈ ሾെ1,1ሿ. If we map the continuous space linearly into digital image space [1, ௬ܰሿ ൈ

ሾ1, ௫ܰሿ, we get the very Poisson disk. However, if we map the space nonlinearly into the 

image space, we may get variable density (VD) Poisson disk. In this case, we choose the ߤ-

law for the nonlinearity, which is one of non-uniform quantization methods and expressed as 

ݎ ′ ൌ sgnሺݎሻ
lnሺ1 ൅ ሻ|ݎ|ߤ

lnሺ1 ൅ ሻߤ
																																																							ሺ4.11ሻ 

where ߤ is the parameter for controlling the nonlinearity. The symbol ݎ is the input of ߤ-law 

and ݎ′ the output. In relation with disk generation, ݎ corresponds to the radius or distance of 

each sample location from the origin and ݎ′ that of the new location. Due to the nonlinearity, 

the effective sizes of cells around (0,0) increase so that the densities become lower and those 

of cells near boundaries decrease so that the densities become higher. 
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In order to get the effect that sample densities around the center become denser and those 

near mask boundaries become rarer, we choose the modified ߤ-law as follows. 

ݎ ′ ൌ sgnሺݎሻሾ1 െ
lnሼ1 ൅ ሺ1ߤ െ ሻሽ|ݎ|

lnሺ1 ൅ ሻߤ
ሿ																																									ሺ4.12ሻ 

Figure 4.2 shows the input-output relation of the original ߤ-law and that of the modified 

 law compresses an interval near the center but expands-ߤ law. We see that the modified-ߤ

that near boundaries. Figure 4.3 shows a Poisson mask and a VD Poisson mask generated by 

 law from the Poisson disk at R=3.0. We see that using the modified nonlinearity, the-ߤ

densities around the center become higher and the densities near boundaries become lower. 

We generate Poisson disks using the Poisson disk generation code from the website 

http://www.cs.virginia.edu/~gfx/pubs/ antimony/ [39]. For fair comparison, we also used 

three masks provided by one of the authors of SAKE [28], called Shin masks here. We select 

the parameter ߤ as 0.4=ߤ(R-1) to generate a VD Poisson disk so that the ߤ-law masks seem 

similar to Shin masks.  

Figure 4.4 shows Shin and ߤ-law masks. The ߤ-law patterns are shown to be very close to 

the Shin masks. We will compare the performance of ߤ-law VD Poisson disk with that of our 

proposed mask. In the following experiments, we generate our masks and ߤ -law masks 

randomly fifty times at each reduction factor R to investigate the averaged behavior of the 

masks. Because of the way that the VD Poisson masks are generated, it is hard to get the 

exact reduction factor we want, while our masks show exact reduction factors. We place a 

fully sampled area called core in the center of all the masks and choose the circle of radius 3. 

In (4.5), the slope parameter ߛ  is set to be ln4  and the maximum neighbor distance 

d=1ڿ ൅  The MRI data first used for test is the vivo axial brain data scanned on a 1.5T .ۀܴ

MRI scanner (GE, Waukesha, Wisconsin, USA) using an eight-channel receive-only head 

coil with data size 200 ൈ 200 [28]. The second scanned dataset was an axial brain image 

acquired on a GE 3T scanner (GE Healthcare, Waukesha, WI) using an 8-channel head coil 

with data size 256 ൈ 256 from http://www.acsu.buffalo.edu/~jlv27/ [14]. 

Figure 4.5 shows the masks according to various shape parameters α at R=3. The mask of 

ߙ ൌ 0 is close to uniform random mask and ߙ ൌ 2.0 shows the Gaussian mask. We see that 
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one can easily control the concentration of samples around DC in the proposed mask by 

varying the shape parameter.  

The magnification of center parts of the masks is shown in Figure 4.6. We can see that 

samples in the center part of our mask are more uniformly distributed and especially along 

circles than those of VD Poisson disks by ߤ-law and Shin.  

Table 1 shows means and standard deviations of three types of masks at different 

reduction factors. This represents that our masks show exact reduction factors but VD 

Poisson masks yield reduction factors somewhat deviated from desired ones and varied. 

When we look at mask generation cases of no conflict cost, no rounding compensation 

and normal in section 4.2.3, the differences are clear as shown in Figure 4.7-9. When we do 

not have conflict cost, we can see in case of low reduction factor near 2 or 3 that there are 

many samples are closely located which do not satisfy with incoherence. However, our 

method shows good incoherence even in low reduction factor. If we do not use the rounding 

compensation, then sometimes rounding cause lack of samples and we can see the circular 

borders like waves. Also, we had experiments on our proposed method and one without 

rounding compensation. Even though it is observed that there is no big improvement in 

NMSEs and MCCs, we see that our masks hold the continuity in sample density well. 
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(a) (b) 

Figure 4.2 Input-output relation of ߤ-law: (a) ߤ-law of ߤ ൌ 5 and (b) its modified one 

 

  

(a) (b) 

Figure 4.3 VD Poisson mask generated by ߤ-law from a Poisson disk at R=3.0:  (a) 

Poisson and (b) VD Poisson 
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Figure 4.4 Shin and µ-law masks according to various reduction factor R. 

 

 

              (a)                         (b)                            (c)                           (d)                          (e) 

Figure 4.5 Proposed mask using different shape parameter at R=3: (a) 0.0, (b) 0.2 (c) 0.5, (d) 

1.0, and (e) 2.0 

Shin R=2.6 R=3.1 R=3.6

-law R=2.5 R=3.0 R=3.5
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        (a) (b)               (c) 

Figure 4.6 Magnification of center parts of various masks at R=3: (a) Shin, (b) 	μ-law, and 

(c) proposed masks. 

 

Table 4.1 Means and standard deviations of three types of masks at different reduction 

factors. 

R=2.5 R=3.0 R=3.5 

μ –law 
(2.505, 

0.013) 

(3.010, 

0.016) 

(3.494, 

0.024) 

Proposed 
(2.500, 

0.000) 

(3.000, 

0.000) 

(3.500, 

0.000) 
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Figure 4.7 Mask generation using generalized Gaussian probability random sampling 

without conflict cost according to various reduction factors 

 

Figure 4.8 Mask generation using generalized Gaussian probability random sampling with 

conflict cost and without rounding compensation according to various reduction factors 

 

R=2 R=3 R=4 R=5

R=6 R=7 R=8

R=2 R=3 R=4 R=5

R=6 R=7 R=8
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Figure 4.9 Proposed mask generation according to various reduction factors  

 

4.3.1 Case of linear SAKE 

We choose the SAKE parameters as wnthresh=1.8 and sakeiter=20 except sakeiter=15 in 

case of our mask for brain_SAKE data. Figure 4.10 shows the normalized mean square error 

(NMSE) of SAKE using the proposed mask with R = 3.0 according to the shape parameter ߙ. 

The number of SAKE iterations is set to 15 for ߙ ൐ 0.5, and to 100, 45, and 30 for ߙ ൌ

0, 0.2, 0.4, respectively. In the figure, the NMSE of ߙ ൌ 1.0 is shown to be minimum and 

other shape parameters yield higher NMSEs. We can see that NMSE of ߙ ൌ 1.0 is somewhat 

less than that of ߙ ൌ 2.0 which indicates Gaussian function.  

Correlation coefficient is widely used in signal and image processing community. In 

order to analyze the correlation of sampling noise, we will introduce correlation coefficient 

into our experiment. The correlation coefficient of two random variables X and Y is defined 

by 

ߩ ൌ E ቈ
ܻܺ െ EሾܺሿEሾܻሿ

ඥVarሺܺሻVarሺܻሻ
቉																																																			ሺ4.13ሻ 

R=2 R=3 R=4 R=5

R=6 R=7 R=8
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We then consider a random process ܺሺݎԦሻ  which is a function of location ݎԦ . Then the 

correlation coefficient function (CCF) can be defined by 

Ԧሻݍሺߩ ൌ E
௣∈ூ

ۏ
ێ
ێ
ԦݎԦሻܺሺݎሺܺۍ ൅ Ԧሻݍ െ EሾܺሺݎԦሻሿEሾܺሺݎԦ ൅ ሻሿݍ
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																											ሺ4.14ሻ 

where ݍԦ  is called lag or displacement. The CCF of the reference image at R=3 for 

brain_SAKE data is shown in Figure 4.11. We can see in Figure 4.11 that the correlation 

coefficient of displacement 1 is very high as 0.938.  

The CCF of the error image of proposed mask at R=3 for brain_SAKE data is shown in 

Figure 4.12. We can see in Fig. 4.12 that the correlation coefficient of displacement 1 is very 

low as 0.054, which means that it is close to white noise. 

 The CCF of the error image of VD Poisson mask at R=3 for brain_SAKE data is shown 

in Fig. 4.13. We can see in Fig. 4.13 that the correlation coefficient of displacement 1 is 

somewhat high as 0.125, which means that it is less incoherent than that of proposed mask. 

Figure 4.14 shows the comparison of CCFs of two masks for brain-SAKE data. 

The effect of conflict cost for the proposed generalized Gaussian (GG) mask is shown in 

Figure 4.15 as a function of the reduction factor R. Figure 4.15(a) shows the NMSE 

comparison of SAKE using the proposed mask with and without conflict cost. We can clearly 

see that our method with conflict cost has less noise than that without. Figure 4.15(b) shows 

the maximum correlation coefficients (MCC) between pixels and their eight nearest 

neighbors for reconstruction error images. Since the ideal reconstruction has noise-like 

reconstruction errors, we can say that the smaller MCC is, the more incoherent the sampling 

mask is [40]. 

The normalized mean square errors (NMSEs) of various types of masks applied to SAKE 

according to R=3.0 are plotted in Figure 4.16 (a). The NMSEs curve for all method show the 

mean curve with the minimum and maximum for fifty masks. We see in the figure that the 

proposed random mask shows the best performance and least deviations all over the 

reduction factors. Figure 4.16(b) shows that the MCCs of our proposed masks are less than 
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half of those of VD Poisson disk all over the reduction factors. The correlation coefficients 

for our proposed method are also shown to be less varied than those of VD Poisson disk. It 

suggests that our mask is more incoherent than the VD Poisson masks. 

The experiments on the brain data [28] are shown in Figure 4.17. Our method using the 

proposed masks pattern reduces the reconstruction errors compared to the original method 

using the VD Poisson disks. 

 Figure 4.18 shows the results from the second brain data. The NMSE using our sampling 

mask is below the mask used in the original SAKE paper. The reconstructed images of the 

brain using our method are more accurate than those using the VD Poisson disk. 

 

 

 

 

 

Figure 4.10 NMSE of SAKE reconstruction method using proposed random mask of R=3.0 

according to the shape parameter ߙ.  
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Figure 4.11 Reference image and its CCF ߩሺ߬, 0ሻ of horizontal lag for brain-SAKE data. 

 

Figure 4.12 Error image of proposed mask and its CCF ߩሺ߬, 0ሻ of horizontal lag for brain-

SAKE data. 
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Figure 4.13 Error image of VD mask and its CCF ߩሺ߬, 0ሻ of horizontal lag for brain-SAKE 

data. 

 

 

Figure 4.14 Comparison of CCFs of two masks for brain-SAKE data. 
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(a) 

 

(b) 

Figure 4.15 Effect of conflict cost.  Comparison of SAKE reconstruction (a) NMSEs and (b) 

maximum correlations using the proposed generalized Gaussian (GG) masks with and 

without conflict cost as a function of the reduction factor R. 
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(a) 

 

(b) 

Figure 4.16. Comparison of SAKE reconstruction: (a) NMSEs and (b) maximum 

correlations using VD Poisson disk sampling of Shin, ߤ-law, and the proposed GG masks as 

a function of the reduction factor R. 

  

2.4 2.6 2.8 3 3.2 3.4 3.6

1.5

2

2.5

3

3.5

4

x 10
-3

reduction factor R

N
M

S
E

 

 

VD Poisson by -law

VD Poisson by Shin

GG

2.4 2.6 2.8 3 3.2 3.4 3.6
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

reduction factor R

m
ax

 c
or

re
la

tio
n

 

 

VD Poisson by -law

VD Poisson by Shin

GG



50 
 

 

(a) 

 

(b) 

Figure 4.17 For the first data set at R=3, (a) sampling mask (top), reference and 

reconstructions (middle), and the corresponding error images (bottom) , (b)  reconstructions 

in region of interest. 
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(a) 

 

(b) 

Figure 4.18 For the second data set at R=3, (a) sampling mask (top), reference and 

reconstructions (middle), and the corresponding error images (bottom),  (b) reconstructions 

in region of interest.  
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4.3.2 Case of nonlinear SAKE 

Figure 4.19 shows how nonlinear kernel has an effect on the performance of the 

reconstruction according to the reduction factor R. Using the nonlinear kernel reduces noise 

more effectively than the original method. However, the distribution of the noise is not 

uniformly random and the error image shows a distinctive pattern. For this reason, we will 

use the combination reconstruction method, which uses nonlinear kernel in the first third of 

entire iterations and then linear kernel in the later iterations, in order to reduce errors but 

remove the distinctive patterns. We choose the SAKE parameters as wnthresh=2.2 for NL 

SAKE or combination of Linear and NL SAKES. In addition, we normalized k-space data for 

stabilization of nonlinear or combination SAKE so that all k-space data should be smaller 

than the maximum of sampled k-space data. 

Figure 4.20(a) shows the normalized mean square errors (NMSEs) of various types of 

masks applied to SAKE according to R=3.0. The NMSE curve for each method shows the 

mean curve with minimum and maximum bounds for fifty masks. We see in the figure that 

the proposed random mask shows the best performance and least deviations all over the 

reduction factors. Figure 4.20(b) shows that the MCCs of our proposed masks are less than 

half of those of VD Poisson disk all over the reduction factors. The correlation coefficients 

for our proposed method are also shown to be less varied than those of VD Poisson disk. It 

means that our masks produce more incoherent noise against VD Poisson masks. 

The experiments on the brain data [14] are shown in Figure 4.21. Our method using the 

proposed masks pattern reduces the reconstruction errors compared to the original method 

using the VD Poisson disks. Figure 4.22 shows the results for the second brain data. The 

NMSE using our sampling mask is below the mask used in the original SAKE paper. The 

reconstructed images of the brain using our method are more accurate than those using the 

VD Poisson disk. 
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(a) 

 

 

(b) 

 

Figure 4.19  Error images by L and NL SAKEs using proposed mask at R=3: (a) One for the 
first brain data and (b) one for the second brain data. 
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Figure 4.20 Performance comparison of  SAKE reconstruction method using Shin masks and 

one using 	ߤ -law mask, one using proposed masks, and nonlinear SAKE on using proposed 

masks according to the reduction factor R: (a) NMSEs and (b) maximum correlations. 
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(a)

 

(b) 
Figure 4.21  Reference image, reconstructed, magnified reconstruction, and error images by 
various SAKEs at R=3: (a) Reference image, reconstructed, and error images (b) magnified 
reconstructions. 
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(a) 

 

(b) 
Figure 4.22  Reference image, reconstructed, magnified reconstruction, and error images by 
various SAKEs at R=3: (a) Reference image, reconstructed, and error images (b) magnified 
reconstructions. 
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4.4 Conclusion   
We have proposed a new method to generate VD random sampling. Our masks have the 

following advantages over VD Poisson discs: Our method can always generate masks with a 

constant reduction factor, which means it is easy to control the number of samples with a 

parameter. Furthermore, our method is conceptually easy to implement using probability 

model and cost function satisfying the incoherence requirement. In addition, our proposed 

masks yield better image quality and lower NMSEs over VD Poisson disks. Future work will 

apply our proposed method to 3D MRI reconstruction or reconstruction of dynamic MR 

images in k-t domain. 

 

  



58 
 

Chapter 5 

Conclusions and Future works 

The work described in this thesis has been concerned with the development of image 

processing algorithm for MRI within filter design and probability. A number of interesting 

features of the proposed algorithm have been described and the method was shown to be 

effective in reconstruction of acquired data. These may be summarized as: 

 Iterative GRAPPA using  adaptive Wiener filter 

 Mask sampling design using Generalized Gaussian probability and conflict cost function 

 

5.1 Thesis Summary 

A general introduction of the motivation and challenges of medical image processing was 

first presented in Chapter 1. Medical imaging processing plays an important role in reducing 

the MRI scanning time, the problem of extracting clinically useful information has become 

important from little amount of scanned data. For example, brain imaging helps to define the 

character and extent of brain disease, aiding diagnosis and treatment. To facilitate an 

effective and efficient analysis of this brain information, techniques for performing sampling 

or removing noise become a key challenge, among other image processing analysis such as 

visualization and quantitive comparison, which led to the main focus of this thesis: 

A review of common techniques for MR imaging algorithms was given in Chapter 2. 

In Chapter 3, we proposed an improved GRAPPA using adaptive Wiener filter. We tested 

it on brain images and get better noise reduction in reconstructing the data. 

In Chapter 4, we proposed a new sampling pattern generation using generalized 

probability and conflict cost function. Changing many parameters to produce the variations 
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of our proposed pattern and applying different brain data, we showed how our method is 

effective. 

 

5.2 Recommendations for Future Work 

Although the results presented here have demonstrated the effectiveness of the image 

processing approach in MRI, it could be further developed in a number of ways: 

 

Extending the mask applying to different domain 

The proposed algorithm takes into account both and to describe features. Limitations on 

the existing model have been discussed in Chapter 4 and it was shown that such might, in 

some ways, not be well adapted to implement on 3D images or k-t domain to improve 

dynamic images. Perhaps by doing some experiments on other images, such as bones, and 

more data by including more random results than 50 cases, we could obtain more reliable 

results. 

  

Using more advance image processing techniques 

We discussed compressed sensing in Chapter 2. Nowadays, there are many solutions or 

reconstruction algorithm to compressed sensing such as total variation. Furthermore, we can 

change the domain into wavelet or curvelet domain to reconstruct the original image 

effectively. This would lead to a better optimization. 
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