

DEGREE PROGRAMME IN ELECTRICAL ENGINEERING

MASTER’S THESIS

PERFORMANCE ANALYSIS OF SYSTEM-

LEVEL BUS IN A MODEM SYSTEM-ON-CHIP

 Author Tapio Hautala

 Supervisor Jukka Lahti

 Second Examiner Timo Rahkonen

 Technical Advisor Pekka Kotila

December 2016

Hautala T. (2016) Performance Analysis of System-Level Bus in a Modem Sys-

tem-On-Chip. University of Oulu, Degree Programme in Electrical Engineering.

Master’s Thesis, 62 p.

ABSTRACT

This thesis presents a performance analysis of a system-level bus structure in a

modem system-on-chip. The high-level operations of a modem are presented and

the communication requirements inside a modem studied. The ARM AMBA 3

AHB-Lite bus protocol and the ARM multi-layer AHB interconnect used in the

modem are presented and the common arbitration schemes compared. System-

level bus latency sources, such as arbitration, memory access times and synchro-

nization, are discussed. Study into the implementation of bus performance anal-

ysis is presented, including introduction to bus traffic generation, traffic model-

ing and monitoring.

 The practical part of the thesis presents the implementation of the SystemVer-

ilog-based register transfer level simulation environment created for bus perfor-

mance analysis. The environment includes the test bench and the class based ver-

ification components. The performance analysis environment is able to replace

the relevant bus masters in the modem design and model realistic bus traffic.

Simulations that mimic the downlink and uplink bus traffic were done and the

results are presented. The results show that the extreme parallelism of the bus

structure works mostly as expected. Most design masters are able to maintain

high throughput and low latencies in all tests. In the worst-case scenario, how-

ever, one bus master experiences an 81 % decrease in the average throughput due

to bus congestion. By configuring some quiet times to the masters, the results

show much lower impact. Processor’s access times to the peripherals were also

measured with the simulation environment. At least one peripheral showed too

slow access times. An optimization was made, and verified successful with the

simulation environment. The results shown in this thesis can be used in further

optimization of the bus structure. The created simulation environment can also

be used to verify the performance of future design revisions.

Key words: digital baseband, on-chip bus, arbiter, AMBA, verification IP

Hautala T. (2016) Modeemipiirin järjestelmäväylän suorituskykyanalyysi. Oulun

yliopisto, sähkötekniikan koulutusohjelma. Diplomityö, 62 s.

TIIVISTELMÄ

Tässä työssä esitetään digitaalisen modeemipiirin järjestelmäväylän suoritusky-

kyanalyysi. Työssä käsitellään modeemin korkean tason toiminnallisuutta ja

pohditaan modeemipiirin sisäisiä tiedonsiirtovaatimuksia. Modeemipiirin käyt-

tämät ARM AMBA 3 AHB-Lite -väyläarkkitehtuuri ja ARM multi-layer AHB -

väyläliitäntä kuvataan ja sovittelumenetelmiä vertaillaan. Järjestelmäväylän la-

tenssin lähteitä, kuten isäntien välistä sovittelua, muistien nopeutta ja synkro-

nointia pohditaan. Väylän suorituskykyanalyysin vaiheet, kuten väyläliikenteen

tuottaminen, mallintaminen ja tarkkailu esitetään.

 Työn käytännön osuudessa esitellään suorituskykymittauksia varten kehitetty

rekisterisiirtotason simulointiympäristö. Simulointiympäristö koostuu testipen-

kistä ja luokkapohjaisista verifiointikomponenteista. Simulointiympäristö kyke-

nee korvaamaan modeemipiirin alkuperäiset väyläisännät ja mallintamaan pii-

rin väyläliikennettä vastaanotto- ja lähetystilanteissa. Tulokset osoittavat, että

väylärakenteen äärimmäinen rinnakkaisuus toimii suurimmalta osin odotetusti.

Suurin osa väyläisännistä kykenee ylläpitämään korkeaa tiedonsiirtonopeutta ja

kokee pieniä tiedonsiirtoviiveitä kaikissa testeissä. Pahimmillaan yksi väyläisäntä

kokee 81 % laskun keskimääräisessä tiedonsiirtonopeudessa väylän ruuhkautu-

misen takia. Kun simuloinneissa mallinnetaan isäntien ajoittaisia hiljaisia hetkiä,

ruuhkautumisen vaikutukset ovat huomattavasti vähäisemmät. Simulointiympä-

ristöllä mitattiin myös prosessorin tiedonsiirtoviiveitä oheislaitteisiin. Tiedon-

siirto ainakin yhteen oheislaitteeseen osoittautui liian hitaaksi. Optimointi tehtiin

ja verifioitiin onnistuneeksi simulointiympäristöllä. Työssä esitettyjä tuloksia voi-

daan käyttää väylärakenteen jatkokehittämisessä. Kehitettyä simulointiympäris-

töä voidaan myös käyttää tulevien piiriversioiden suorituskyvyn verifioimiseen.

Avainsanat: kantataajuusmodeemi, järjestelmäväylä, sovittelija, AMBA, verifi-

ointikomponentti

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

LIST OF ABBREVIATIONS AND SYMBOLS

1. INTRODUCTION .. 9

2. MODEM OVERVIEW ... 11

2.1. Introduction to the modem .. 11

2.2. Communication requirements ... 12

2.2.1. Latency .. 13

2.2.2. Throughput .. 13

3. SYSTEM-LEVEL BUS .. 15

3.1. Parallel bus .. 15

3.2. ARM AMBA 3 AHB-Lite ... 15

3.3. ARM multi-layer AHB .. 17

3.4. Arbitration schemes ... 18

3.4.1. Static priority ... 19

3.4.2. Round-robin ... 19

3.4.3. Time division multiple access (TDMA) 19

3.4.4. Other arbitration schemes .. 20

4. SYSTEM-LEVEL BUS PERFORMANCE ... 21

4.1. Latency and bandwidth .. 21

4.2. Latency sources ... 21

4.2.1. Bus protocol latency .. 21

4.2.2. Arbitration latency ... 22

4.2.3. Slave processing time .. 24

4.2.4. Clock domain synchronization .. 25

4.2.5. Bus bridges .. 27

4.3. Total latency .. 28

5. BUS PERFORMANCE ANALYSIS METHODS ... 30

5.1. Requirements of the verification environment .. 30

5.2. Stages of performance analysis ... 30

5.2.1. Traffic generation .. 30

5.2.2. Traffic monitoring ... 32

5.2.3. Data processing and reporting ... 33

5.3. Commercial EDA tools and verification IPs ... 34

6. IMPLEMENTATION OF THE PERFORMANCE ANALYSIS..................... 36

6.1. AHB-Lite verification IPs ... 36

6.1.1. AHB-Lite Monitor ... 36

6.1.2. AHB-Lite Agent .. 38

6.1.3. Validating the verification IPs ... 39

6.2. Test bench .. 40

6.3. Traffic pattern generation .. 41

7. PERFORMANCE ANALYSIS RESULTS .. 44

7.1. Latency .. 44

7.2. Throughput .. 46

7.3. Intermittent traffic ... 49

7.4. Uplink test results .. 50

8. DISCUSSION ... 53

9. SUMMARY .. 56

10. REFERENCES ... 58

FOREWORD

The purpose of this thesis was to analyze the performance of a system-level bus in a

modem system-on-chip. The thesis work was conducted at Nordic Semiconductor Fin-

land during the second half of 2016.

 I would like to thank my technical advisor and boss Pekka Kotila for the amazing

opportunity to work at Nordic. Thank you also to my colleagues who have always been

willing to help me. Thanks for sharing just a tiny bit of your vast knowledge in modem

design. Special thanks to Senior R&D Engineer Hannu Talvitie for his guidance during

the practical part of the thesis. Thank you also to professor Timo Rahkonen for review-

ing my thesis. Lastly, a big thank you to Chief Engineer Jukka Lahti for acting as my

thesis supervisor. More importantly, I would like to thank him for the amazing work

he does every day at the university.

Oulu, December 20, 2016

Tapio Hautala

LIST OF ABBREVIATIONS AND SYMBOLS

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

ARM Advanced RISC Machines

BE Best-effort

BFM Bus Functional Model

DMA Direct Memory Access

DP Dynamic Priority

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

DUT Design Under Test

EDA Electronics Design Automation

EEPROM Erasable Programmable Read-only Memory

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

GT Guaranteed throughput

GUI Graphical User Interface

HDL Hardware Description Language

IP Intellectual Property

ISR Interrupt Service Routine

IS Ideal-slave

ISS Instruction Set Simulator

MAC Media Access Control

NOC Network-On-Chip

PHY Physical layer

QAM Quadrature Amplitude Modulation

TDMA Time Division Multiple Access

RF Radio Frequency

ROM Read-only Memory

RTL Register Transfer Level

SVI SystemVerilog Interface

SM Self-motivated

SoC System-on-chip

SQL Structured Query Language

SRAM Static Random Access Memory

SVI SystemVerilog Interface

UML Unified Modeling Language

UVM Universal Verification Methodology

VMM Verification Methodology Manual

WRR Weighted-Round-Robin

B burst data cycle length

buswidth data width in bits

c1 constant, depends on implementation of the bus structure

c2 constant, depends on implementation of the bus structure

CLKget receiver clock frequency

CLKput sender clock frequency

CUR channel utilization ratio

dataput bus data

fCLK bus clock speed in Hz

Nbridge bus bridge count

ND number of transfers

Nm number of masters

Nsync number of synchronizers

Ta average arbitration latency

Tamin default arbitration latency

Tbridge bridging time

Tbus bus protocol latency

Tidle time the master uses for processing the data in between bus transfers

Tslave slave access time

Tsync number of clock cycles consumed in synchronization and due to

 slower slave clock speed

Ttotal total latency (time)

1. INTRODUCTION

The on-chip communication architecture provides the means of communication inside

a system-on-chip (SoC). It provides correct connections from the source components

to their destinations. In addition, the communication must be fast and predictable. The

on-chip communication architecture has a major impact on the performance and power

consumption of modern SoCs. The communication delays in the on-chip communica-

tion architecture present a major cause of bottlenecks in many SoCs. [1 p. ix, 6 and

101] The selection of the bus (type, width and topology) is one of the most complex

tasks of SoC design [2].

This thesis studies a wireless modem SoC (also known as the baseband processor

and the digital baseband). A modem is a hard real time system. The communication

processing must be done repeatedly on time and the communication standard sets the

required throughput (bit/s) for the system. [3] Individual read/write transfer times are

not usually critical. However, if a device cannot maintain the required throughput for

an extended period of time, the operation of the system can be compromised. [4] The

communication network of a real-time system should then be predictable. Guarantees

should be made for maximum latency and minimum throughput. [5]

The thesis presents the performance analysis of chip level communication in a mo-

dem. The backbone connecting all the processing elements inside the studied modem

is the system-level bus. The goal of the work is to create a register transfer level (RTL)

verification environment that is able to measure the clock accurate latencies and aver-

age throughputs of all the relevant bus masters of the modem running simultaneously.

In order to model realistically the bus congestion the simulations imitate real downlink

and uplink bus traffic. RTL simulation is chosen because it allows clock accurate,

functional modeling of the digital design [6, p. 91]. The analysis is done with no design

RTL changes to make the performance analysis environment easily reusable with fu-

ture design revisions.

The work is done in order to characterize and validate the performance of the sys-

tem-level bus structure. This leads to the possibility to optimize the bus structure. A

possible optimization would be for instance a change in the interconnects’ arbitration

scheme or master/slave bus clock speed. The verification environment creates a plat-

form for iterative performance optimizations. The probable use case is not to revamp

the whole bus structure, but rather to point out the places where small changes matter

the most. The environment can then also be used to verify that the optimizations pro-

vide the expected performance.

Chapter 2 explains the high level functions of a modem. It shows how the baseband

processing links together the whole transceiver chain. An overview to the structure of

the studied modem is shown and the SoCs internal communication requirements dis-

cussed.

Chapter 3 introduces the system-level bus connecting the intellectual property (IP)

operating inside the modem. The interconnect structure used in the modem and the

common arbitration schemes are presented.

Chapter 4 introduces the concepts of latency and bandwidth. The relation of these

concepts is shown and the latency sources slowing down the transfers presented.

10

Chapter 5 lists the requirements set for the performance analysis environment. The

performance analysis is broken down into three stages: traffic generation, traffic mon-

itoring and data processing. Previous work done in this area is studied and some com-

mercial performance analysis tools presented.

Chapter 6 presents the implementation of the performance analysis as done by the

author. The implementation contains multiple class based verification IPs and the sim-

ulation test bench. The verification IPs are used in replacing the real bus masters of

the design. Modeling of the realistic bus traffic is then discussed and the types of tests

presented.

Chapter 7 shows the simulation results from the downlink and uplink simulations.

Some performance updates were made and the before and after results are presented.

Chapter 8 reviews the thesis work. The results are discussed and the future prospects

of the verification environment and the IPs are analyzed.

Chapter 9 gives a recap of the thesis. The main contents of the thesis are summarized

and the final results presented.

11

2. MODEM OVERVIEW

Chapter 2.1 introduces the digital baseband processing and the structure of the studied

modem. Chapter 2.2 discusses the communication requirements inside a modem sys-

tem-on-chip (SoC).

2.1. Introduction to the modem

The design studied in this thesis is a wireless modem. It includes the digital processing

done at the physical layer (PHY) of a wireless transceiver. A high-level representation

of the functions in the modem is shown in Figure 1.

Encryption
Channel

coding
Modulation

Decryption
Channel

decoding
Demodulation

MACTX data...

MACRX data... Front-end

Front-end

Transmitter (digital)Application

(digital, sofware)

Receiver (digital)

RF

(analog)

Application

(digital, sofware)

RF

(analog)

Figure 1. Digital baseband processing.

The data is passed to the transmitter from the higher layers through the media access

control (MAC). In the digital processing, the data is first encrypted. Channel coding is

then applied to improve reliability with data redundancy. The coded data is then in

modulation mapped into constellation points and sent via the front-end to the analog

processing and antenna. The front-end is a mix of analog and digital processing. The

functionalities of the front-end include filtering, upconversion from baseband to radio

frequency (RF), digital-to-analog conversion and amplification. At the receiver side,

the corresponding operations are done as shown in Figure 1. [7]

In the studied modem the digital baseband processing is done with dedicated hard-

ware accelerators and a processor. The components are connected to multiple memo-

ries via the system-level bus structure. A simplified block diagram of the modem SoC

is shown in Figure 2.

12

Dedicated

memory

Hardware

 accelerator

Hardware

 accelerator
Processor

Memory MemoryPeripherals

Modem

Front-end

IO

Interconnect fabric

Interconnect

Interconnect

Interconnect

Figure 2. Simplified block diagram of the studied modem.

The distributed nature of the processing in the modem means that a lot of communica-

tion is needed between the hardware accelerators and the processor. This internal com-

munication happens using parallel buses through the interconnect fabric. The memo-

ries are used in storing and retrieving the information, and in order to pass the data to

the next processing element. The interconnect fabric consists of multiple interconnects

that allow parallel accesses from the hardware accelerators and the processor to the

memories and peripherals.

2.2. Communication requirements

Transceiver is a real-time system. The communication standards impose hard dead-

lines on processing times and specify requirements for data throughput (bit/s). [3] The

communication requirements in a real-time system can be divided into two categories:

best-effort (BE) and guaranteed throughput (GT). Best-effort traffic is characterized

by irregular throughput needs but high sensitivity for transfer times (latency). Guaran-

teed throughput traffic requires a set, minimum throughput but only a coarse worst-

case latency guarantee for the longer transfer sequences. Typical latency sensitive de-

vice is a processor executing application software that has response time requirements

such as controlling a display. Typical guaranteed throughput requestors are applica-

tions that require real-time guarantees such as communication and video processing.

[8] The following chapters discuss the communication requirements in the digital base-

band processing.

13

2.2.1. Latency

Baseband processing is a hard real time procedure, meaning that all processing must

be done on time. The communication standard sets specific time limits for certain op-

erations. For example, the symbol processing done in the front-end and in demodula-

tion must be executed within the specified symbol period. As an example, for IEEE

802.16e (Mobile Broadband Wireless Access System) the symbol period is 23.15 µs

and for DVB-H (Digital Video Broadcasting - Handheld) the symbol period is 462 µs.

[7] The individual data transfer times on the system-level bus are many orders of mag-

nitude smaller than the processing times specified in the communication standards.

Defining hard requirements on individual bus transfers is then unrealistic and depends

heavily on the implementation.

There are some situations where the individual transfer times matter. One example

is the processor interrupt latency or the number of clock cycles it takes for the proces-

sor to respond to an interrupt request. The responsiveness of a system depends heavily

on the time it takes to fetch the interrupt service routines (ISR) from memory. [9]

The second concern with long transfer times is power consumption. Modern proces-

sors typically have the ability to enter sleep state when no processing is required. The

sleep state dramatically reduces the power consumption of the processor. Depending

on the implementation, if the processor does a read or a write access to a device that

has a slow access time, the processor must stay awake and wait for the data to go

through before it can go back to sleep. The time the processor stays awake is higher

and power consumption is increased. There are devices such as the DMA (Direct

Memory Access) controllers that can alleviate this problem. DMA controllers can in-

dependently move data between two places such as from memory to memory or be-

tween memory and IO. This allows the processor to offload transfers to the DMA con-

trollers and enter sleep state, reducing power consumption. [10]

Another form of increased power consumption comes from the fact that high

memory access times increase the overall application execution times. The processor

must then stay awake for a longer time, which increases power consumption. In order

to increase performance and decrease power consumption the processor can utilize a

fast local cache memory. [11]

2.2.2. Throughput

The performance of a communication link is usually described by the user data rate in

bits per second. The data sent over the air, however, contains additional information

such as information used for synchronization and error correction [12, p.116]. For this

reason, the throughput requirements inside the modem SoC are not completely defined

by the user data rate.

In the receiver, after down conversion the signal is sampled in the digital baseband.

The required sampling rate can be calculated from the symbol interval specified in the

communication standard. The IEEE 802.11a (Wi-Fi) receiver is used as an example in

the calculations in this chapter. For 802.11a, the specified symbol interval is 4.0 µs.

The 802.11a uses 52 subcarriers in total, of which 4 are used for synchronization (pilot

subcarriers) and 48 for the data symbols. [13] The required sampling rate is then 52

samples / 4.0 µs = 13 MS/s. The number of bits per sample and therefore the actual

sampling bit rate depends on the implementation.

14

After sampling, the data is retrieved from the samples by demodulation. In 802.11a

with the fastest data rate the modulation method used is 64-QAM (Quadrature Ampli-

tude Modulation) with 6 bits of data per constellation point (log2 (64)). The data rate

after demodulation is then 13 MS/s ∙ 48/52 ∙ 6 bit/S = 72 Mb/s.

After demodulation, the data still contains the parity bits from the channel coding

done at the transmitter. The number of parity bits depends on the coding rate used.

With the fastest data rate for 802.11a, this is ¾. The data rate after channel decoding

is then 72 Mb/s ∙ ¾ = 54 Mb/s. [12, p.116] This is the data rate as specified in the IEEE

802.11a standard [13]. Figure 3 shows the throughput requirements in the digital base-

band operation of an 802.11a receiver.

Channel

decoding
Demodulation

≥13 MS/s ∙ N b/S 72 Mb/s 54 Mb/s

received samples coded blocks data

Figure 3. IEEE 802.11a receiver throughput requirements.

As can be seen in Figure 3 the throughput requirements vary during the digital pro-

cessing phases of the receiver. The internal communication structure in the SoC must

be able to provide the required bandwidths for the modem to function. Similar analysis

can be done for the transmitter and with different communication protocols and con-

figurations.

15

3. SYSTEM-LEVEL BUS

This chapter concentrates on SoC level communication. Chapter 3.1 gives an intro-

duction on the parallel bus. Chapters 3.2 and 3.3 describe the bus interfaces and inter-

connects used in the studied modem. Chapter 3.4 introduces different bus arbitration

schemes used in handling converging traffic from multiple sources.

3.1. Parallel bus

The system-level communication of an SoC is typically implemented with parallel

buses. This is also the case for the studied modem. Parallel bus is a set of wires that

transmit data multiple bits at a time. Generic depiction of a parallel bus is shown in

Figure 4 [1, p. 20].

Master Data signal lines Slave

Control signal lines

Address signal lines

Figure 4. Parallel bus.

Figure 4 shows that the bus provides means of transferring data between the bus

master and slave. Address signal lines are used in directing the traffic to the correct

slave. Data signal lines carry the read and write data. Control signals bring additional

information, such as the state of the transfer. Bus master always initiates the data trans-

fer. It either writes data to the slave or requests a read from the slave. Slaves respond

to the transfer requests of masters. Typical bus masters are processors, DSPs (Digital

Signal Processors) and other DMA-capable bus devices. Typical bus slaves are on-

chip and off-chip memories and peripheral devices. [1, p. 17-19] Some examples of

widely used on-chip bus architectures are: ARM AMBA AHB and AXI, IBM Core-

Connect PLB, Sonics Smart Interconnect SonicsMX and STMicroelectronics STBus

Type 3. [1]

3.2. ARM AMBA 3 AHB-Lite

The main system-level bus interface of the studied modem is the ARM AMBA 3 AHB-

Lite (Advanced High-performance Bus). AHB-Lite is a high-performance synthesiza-

ble bus interface. It is provided for the SoC designers as HDL (Hardware Description

Language) code that can be implemented with logic synthesis tools. AHB-Lite is part

of the AMBA 3 (Advanced Microcontroller Bus Architecture) specification, which is

an open standard developed by ARM (Advanced RISC Machines) for on-chip com-

16

munications. AHB-Lite was developed in 2006 as a successor to the AHB bus inter-

face. [14] It supports wide data buses ranging from 32-bits to 1024-bits. The bus mas-

ter interface is shown in Figure 5. [15]

AHB-Lite

master

HWDATA[31:0]

HWRITE

HCLK

HADDR[31:0]
HREADY

HRESP

HRESETn

HRDATA[31:0]

HSIZE[2:0]

HBURST[2:0]

HPROT[3:0]

HTRANS[1:0]

HMASTLOCK

Transfer

response

Global

signals

Data

Address

and

control

Data

Figure 5. AMBA 3 AHB-Lite master interface.

As seen in Figure 5 the master contains ready (HREADY) and error (HRESP) re-

sponse signals which come from the slave. Other input signals are clock (HCLK), ac-

tive low reset (HRESETn) and read data (HRDATA). Output signals contain the slave

address (HADDR), read/write indicator (HWRITE), byte count of the transfer

(HSIZE), sequential transfer count indicator (HBURST) and write data (HWDATA).

HTRANS indicates the transfer type, such as, idle, non-sequential (NONSEQ) and se-

quential (SEQ). HMASTLOCK signal is used to signal that the transfer sequence must

be processed without interruptions. The HPROT signal contains special additional in-

formation on the transfer. It contains for example information whether the transfer is

an opcode fetch or a data access. The slave interface is presented in Figure 6. [15]

AHB-Lite

slave

HWDATA[31:0]

HWRITE

HADDR[31:0]

HREADYOUT

HRESP

HRDATA[31:0]

HSIZE[2:0]

HBURST[2:0]

HPROT[3:0]

HTRANS[1:0]

HMASTLOCK

Data

HCLK

HRESETnGlobal

signals

HSELx

Address

and

control

Select

Transfer

response

Data

HREADY

Figure 6. AMBA 3 AHB-Lite slave interface.

The slave interface as shown is almost the mirror image of the master interface. The

select signal (HSELx) is used to indicate to the slave that the current transfer is in-

tended for it. More information on these signals can be found at the ARM AMBA 3

AHB-Lite protocol specification [15].

An AHB-Lite bus transfer consists of two phases: Address phase and Data phase.

The simplest transfer takes two clock cycles; one for addressing and one for data trans-

fer. A waveform of a simple write transfer is shown in Figure 7. [15]

17

A B

Data (A)HWDATA[31:0]

HWRITE

HCLK

HADDR[31:0]

HREADY

HRESP

Address phase Data phase

Figure 7. AHB-Lite simple write.

In this example, at the start of the Address phase the master drives the HWRITE

high to indicate a write transfer. Master also controls the HADDR which defines the

receiving slave. Slave uses the HREADY to signal that it is ready to continue the trans-

fer to the Data phase. In the Data phase the bits in the HWDATA are read by the slave

and HREADY is raised to signal the end of the transfer. Slave can also raise the

HRESP signal to indicate an unsuccessful transaction. [15]

In Figure 7 the pipelined nature of AHB-Lite can also be seen. During the Data

phase of transfer A, the Address phase of transfer B occurs. Overlapping of Address

and Data phases improves performance. [15]

3.3. ARM multi-layer AHB

Usually SoCs have the requirement for multiple masters. The modem studied has for

example such masters as processor and dedicated hardware accelerators. All of these

masters need to be able to access the memory and peripheral slaves. The AHB-Lite

bus standard supports only single-master multi-slave connections. In order to connect

multiple masters to multiple slaves the multi-layer AHB interconnection scheme was

developed by ARM. This interconnection scheme creates so called “layers” for every

master. Because every layer consists of only one master, the masters and slaves can

use the AHB-Lite bus interfaces. At the backbone of the studied modem is the ARM

multi-layer AHB bus interconnect. The simplest implementation of a multi-layer AHB

interconnect is shown in Figure 8. [16]

18

Input

stage

Decoder

Master

2

Decoder

Arbiter

Arbiter

Slave

1

data

Master

1
addr. &

control

data
Input

stage

Multi-layer AHB interconnectLayer 1

Layer 2

Slave

2

addr. &

control

data

addr. &

control

addr. &

control

data

Figure 8. Multi-layer AHB interconnect.

In multi-layer AHB, two layers cannot access the same slave at the same time. This

creates a situation where masters have to “compete” for the slave resources. The arbiter

within the interconnect determines which layer has the highest priority and gets the

access to the slave. The “multiplexer” components drawn route the traffic in both di-

rections, acting as multiplexer and demultiplexer. The input stage is used to store the

address and control information of the master that has to wait for the slave access. The

master is made to wait by lowering the HREADY signal. The address decoder routes

the read and write traffic based on the layer’s HADDR address bits. The selection is

done by driving the HSEL signal of the appropriate slave high. [16]

3.4. Arbitration schemes

ARM defines in the multi-layer AHB specification that every slave port must have an

arbiter. The arbiter, as previously mentioned, makes the decision which layer is given

access to the slave. The specification leaves the implementation of the arbitration

scheme for the designer. This means that the arbiter can service the layers in multiple

ways. [16]

There are many different arbitration schemes created for different applications.

These arbitration schemes i.e., scheduling strategies can be applied not just on the bus

arbiter, but also more generally at hardware and software scheduling. The main de-

nominator is a system that manages a shared resource. In the context of hardware bus,

the shared resource is a bus memory slave. In the software context, a shared resource

can be a process or an instance of a program. [17, p. 172] In the next chapters the three

main types of arbitration schemes are presented. These are: static priority, round-robin

and time division multiple access (TDMA). [1] The chapters concentrate on the hard-

ware bus viewpoint and are applicable to ARM multi-layer AHB interconnect.

19

3.4.1. Static priority

In this arbitration scheme, the masters are given fixed priorities. If multiple masters

are trying to access the same slave at the same time the highest priority master is al-

ways given the access. This is a simple arbitration scheme and one of the most com-

monly used. It provides high performance for the high priority masters. In a crowded

bus, there is a possibility that some lower priority masters have to wait a long time for

the access or the access might never be granted. [1]

3.4.2. Round-robin

In round-robin (token passing) arbitration, the priorities change at every transfer. The

master with the highest priority (i.e. with the token) changes in circular (round-robin)

fashion. If the master with the highest priority does not need to access the slave the

token is given to the master with the next highest priority. [18] Figure 9 depicts a basic

round-robin arbiter with four masters (M1-M4) and one slave (S).

S

M1 M2 M3 M4

M3

M1

M4 M2

Round-robin arbiter

Figure 9. Round-robin arbiter.

Round-robin arbitration scheme guarantees that every master is given opportunity

for equal bandwidth. It gives fair access for every master to the slave. The maximum

wait time is predictable and proportional to the number of masters. The scheme also

ensures that the unused time slots are usable by the lower priority masters. [18]

The basic round-robin arbitration scheme can be slower than static priority scheme

for some masters. This comes from the nature of fairness where all masters are given

equal bandwidth. [1, p. 27] There exists variations of the round-robin such as the

Weighted-Round-Robin (WRR) that are meant to tackle this issue. In WRR, every

master is given “credits” or “shares” and after each transfer, one credit is deducted.

When master runs out of credits the next master is selected in round-robin fashion.

Critical masters can be given more credits, which means they get more bandwidth.

After all masters have run out of credits, they are reloaded. The drawback of the WRR

arbitration is increased complexity compared to the basic round-robin. [19]

3.4.3. Time division multiple access (TDMA)

In TDMA arbitration scheme masters are given fixed time frames for transfers. Mas-

ters that need more bandwidth can be given longer time frames. The scheme ensures

20

high bandwidth for critical masters while ensuring that lower priority masters are even-

tually served. [1, p. 27] TDMA arbitration is pictured in Figure 10 [20].

Master 1

Master 2

Master 3

timetime

frame 1

time

frame 2

time

frame 3

time

frame 4

time

frame 5

time

frame 6

Figure 10. TDMA arbitration.

The darkened areas of the time frames in Figure 10 represent the actual used transfer

times by the masters. The decision on the lengths of the time frames is crucial for

ensuring high bandwidth allocation. As an example, in Figure 10 the Master 3 uses

only under 50 % of the available time frame. This causes a lot of wasted time and

bandwidth. [1, p. 27]

The advantage of TDMA arbitration is that it guarantees fixed bandwidths for the

masters. When properly designed, it gives high performance for critical masters but

with unpredictable or changing traffic, it cannot match the bus allocation of a round-

robin arbiter. [20] That said, due to its predictability it is an attractive option in many

real-time applications. [21]

3.4.4. Other arbitration schemes

There are multiple arbitration schemes besides the more traditional ones described in

the previous chapters. For instance, the studied modem uses a programmable priority

based arbitration scheme. It allows the application to control the priorities of the mas-

ters at run time. Another form of a run-time based arbitration scheme is the dynamic

priority (DP) scheme. It can adapt the priorities of masters dynamically based on the

changing traffic profiles of the application. [1]

Some multi-level arbitration schemes also exist. One implementation uses TDMA

as the first arbitration principle and the unused timeframes are then allocated using

round-robin arbitration [20]. The self-motivated (SM) arbitration scheme changes the

priority policy during runtime between: fixed priority, round-robin and dynamic pri-

ority. It can also change the unit of arbitration between single transfer or multiple

transfers depending on the needs of the masters. The performance is increased by 19

% - 47 % but the drawback is 9 % - 25 % larger interconnect area compared to the

more traditional arbitration schemes. [22]

21

4. SYSTEM-LEVEL BUS PERFORMANCE

This chapter presents a study on the main factors that define the performance of a

system-level bus. Chapter 4.1 introduces latency and bandwidth and shows how these

concepts are related. Chapters 4.2.1-4.2.5 introduce the main causes for latency in a

system-level bus. Finally, Chapter 4.3 presents the equation for total latency.

4.1. Latency and bandwidth

Latency and bandwidth are the terms usually used in describing the performance of a

communication link, such as a system-level bus. Latency is defined as the time it takes

for a single or multiple transfers to finish. Bandwidth is the physical limit of the chan-

nel for transfer speed (bit/s). Effective bandwidth or throughput defines the actual

achieved data rate. [23, p. F13-F15]

Throughput and latency are closely related concepts. The relationship of the total

latency and the throughput is shown in Equation 1

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝐷

𝑇𝑡𝑜𝑡𝑎𝑙
∙ 𝑓𝐶𝐿𝐾 ∙ 𝑏𝑢𝑠𝑤𝑖𝑑𝑡ℎ, (1)

where Ttotal is the total latency (time) in clock cycles, ND is the number of transfers,

buswidth is the data width in bits and fCLK is the bus clock speed in Hz [24]. From

Equation 1 it can be seen that the throughput of a bus can be increased by making the

data bus wider, increasing the bus clock speed or reducing the total latency. Wider bus

means increased area, and higher clock speed increases power consumption [25]. The

total latency depends on the bus utilization and transmission time (or latency) of the

individual transfers [26].

4.2. Latency sources

The following chapters present a study on the typical sources of latency in a system-

level bus. Ways of lowering the transaction latencies are also discussed in the chapters.

4.2.1. Bus protocol latency

As previously discussed in Chapter 3.2 the simple AHB-Lite data transfer takes two

clock cycles: one for addressing and one for the data phase. This is defined as a transfer

latency of two clock cycles. Latency can also be defined with regards to time. With for

example 100 MHz clock speed the two clock cycle latency would equal to 20 ns.

AHB-Lite bus protocol supports pipelining. This means that if a single or multiple

masters do consecutive transactions the address and data phases overlap. This was il-

lustrated previously in Figure 7 in Chapter 3.2. The same pipelining effect happens

also if a master does a burst transaction. A four-beat incrementing burst read is shown

in Figure 11. [15]

22

NONSEQ

HBURST[2:0]

HWRITE

HCLK

HTRANS[1:0]

HRDATA[31:0]

SEQ SEQ SEQ

0x38HADDR[31:0] 0x3C 0x40 0x44

HSIZE[2:0]

INCR4

Word

HREADY

*0x3C *0x40 *0x44*0x38

Figure 11. Four-beat incrementing burst read.

In an incrementing burst as shown in Figure 11 the address is incremented between

every transfer. The Figure 11 shows that only the first transfer (address 0x38) takes

two clock cycles and due to pipelining, the next transfers finish in the following three

clock cycles. This shows that with a long burst the average latency per transfer ap-

proaches one clock cycle.

Cho Y-S. et al. defined an equation describing the total latency of single master

doing multiple transfers in a shared AMBA 2 AHB bus [27]. Because AHB-Lite re-

moves the request and grant signals of the AMBA 2 AHB, thus, reducing the single

transfer latency by one clock cycle, the equation for the total transaction latency Tbus

can be rewritten as follows for the AHB-Lite bus

𝑇𝑏𝑢𝑠 = 2 ∙ 𝑁𝐷 ∙ 𝑆 + [
𝑁𝐷 ∙ (1 − 𝑆)

𝐵
+ 𝑁𝐷 ∙ (1 − 𝑆)] , (2)

where ND is the data cycle count, S(0≤S≤1) is the proportion of single transfers and B

is the burst data cycle length. Equation 2 can be used in calculating the number of

clock cycles it takes to do ND number of transfers in a bus containing one master and

one or multiple slaves. This can be one layer in a multi-layer AHB interconnect. Equa-

tion 2 shows that by using the burst transfers the total transaction latency can be re-

duced [27]. It should be noted that burst transfers do not offer performance improve-

ments over back-to-back NONSEQ transfers in AHB-Lite because the pipelining ef-

fect also applies to those as discussed previously. This means that the B in Equation 2

can just as well denote the count of continuous NONSEQ transfers.

4.2.2. Arbitration latency

As discussed previously in Chapter 3.4 the arbitration resolves conflicts caused by

simultaneous accesses to a shared resource. Consequently, when one master is given

23

access to the slave others must wait. This wait time is called arbitration latency [26].

Figure 12 demonstrates a situation where two masters A and B are trying to write data

to the same slave at the same time.

NONSEQ

HWDATAA[31:0]

HCLK

HTRANSA[1:0]

HREADYA

Data (A)

NONSEQ

HWDATAB[31:0]

HTRANSB[1:0]

HREADYB

Data (B)

slave

B

A

slave

B

A

Arbitration

latency

Figure 12. Simultaneous write by two masters to the same slave.

In Figure 12 the master A is given higher priority and the first access to the slave.

This causes the data phase of master B to be extended by one clock cycle. This demon-

strates that even though the simple AHB-Lite transfer takes two clock cycles the trans-

fer time can be extended by the traffic generated by the other masters accessing the

slave. Arbitration creates a situation where transfer latencies of masters depend on the

other masters and the congestion of the slave. The average arbitration latency Ta of a

shared bus can be estimated with the following equation

𝑇𝑎 = 𝑐1 ∙ (𝑁𝑚 − 1) ∙ 𝑒𝑐2∙𝐶𝑈𝑅 + 𝑇𝑎𝑚𝑖𝑛, (3)

where c1 and c2 are constants, Nm is the number of masters, CUR is the channel

utilization ratio and Tamin is the default arbitration latency. CUR represents the number

of clock cycles the channel between masters and the slave is active, divided by the

total cycle count. [26] Default arbitration latency Tamin depends on the implementation

of the arbitration logic. More complex schemes can consume more than one clock

cycle in the arbitration process. Since arbitration happens for every transaction, a

multi-cycle arbiter can severely reduce the bus performance. This shows the drawback

of complex arbitration schemes. [1, p. 27]

24

Equation 3 shows that the latencies of transfers can vary in time based on the current

traffic conditions at the interconnect [26]. In order to ensure predictable maximum

latencies for all masters, a fair arbitration scheme, such as round-robin or TDMA,

should be used [18] and [1, p. 27].

One way of lowering the arbitration latency for a master is using the burst transfers

and burst transaction based arbitration. This way the master gets an exclusive access

to the slave for the whole duration of the burst. Burst transfers can, however, have

negative impact on the performance of other masters. The reason for this is that the

master doing the burst transactions can reserve the slave for a long time. [28] An AHB-

Lite feature called “early burst termination” can be used to enable the use of long bursts

and at the same time remove the possibility of master latency constraint violations.

The feature allows the interconnect arbiter to terminate a burst transaction if there are

pending bus transfers from other masters and the burst is taking too long to finish. [15

and 11]

Choosing the arbitration scheme that gives the best overall performance is not a

straightforward task. Minimizing the latencies might not always be the best strategy

because low arbitration latencies for some masters usually mean high latencies for

others. If the real-time application needs impose timing constraints, the arbitration

must be designed in a way that these constraints are met. The optimal bus arbitration

scheme is heavily application specific. The performance of the arbitration depends on

the type of traffic (single, burst) and the amount of traffic (a lot of internal versus a lot

of bus traffic). [22]

4.2.3. Slave processing time

In the previous examples, the slave is able to process the transaction without additional

delays. So called ideal-slave (IS) latency model as proposed by Cho Y-S. et al. and

rewritten version presented in Equation 2 in Chapter 4.2.1 disregards the processing

times of the slaves. It expects the slave to require no wait-states in the bus. [27] This

is not true for every slave device such as certain memories. Figure 13 demonstrates

how the slave can delay the transfer by inserting wait states.

A B

Data (A)HWDATA[31:0]

HWRITE

HCLK

HADDR[31:0]

HREADY

Address phase Data phase

Figure 13. Read transfer with two wait states.

Figure 13 shows the slave adding two wait states to allow extra time for it to process

the read request. [15] Wait states extend the data phase of the transfer and are seen as

additional latency by the master. Slow slaves can also lower the overall bus perfor-

mance because every wait state might delay multiple masters waiting to get access to

the slave.

25

Different memories represent the typical slow slave components. There are two

types of memories used in embedded systems: volatile and non-volatile. Volatile

memory loses its contents when the power goes down. Non-volatile memory retains

the data at power off. Typical on-chip volatile memories, such as SRAM (Static Ran-

dom Access Memory) and embedded DRAM (dynamic RAM) are used for storing the

application data. On-chip non-volatile memories, such as ROM (Read-only Memory),

EEPROM (Erasable Programmable Read-only Memory) and Flash EEPROM, are

used for storing the firmware images, operating configurations and other data. [29]

The performance of different memories varies greatly. SRAM is essentially a big

array of latches and guarantees single-cycle access times [30]. Embedded DRAM

gives comparable performance to SRAM in smaller size but with added manufacturing

complexity [29]. Modern EEPROM access times are in the range of 20-40 nanosec-

onds [31]. With for example 100 MHz clock speed this would be 2 to 4 clock cycles.

Flash is a simpler structure than EEPROM but loses the ability for single cell erase

[29]. Typical NOR Flash random access times are between 30 and 90 ns [32, p. 126]

With 100 MHz clock speed this equates to 3 to 9 clock cycles.

4.2.4. Clock domain synchronization

It is getting increasingly difficult to distribute a globally synchronous clock signal for

the whole SoC. The system-level bus spans a large area of the chip and thus operates

on multiple clock domains. The data communication between different clock domains

must be synchronized. This is to avoid erroneous register states due to metastability.

Metastability can happen when signal changes value near the rising clock edge, inside

the setup or hold time of the register. However, the synchronizer components have the

drawback of increased transfer latencies. [25]

Synchronizer IPs are provided by the bus IP vendors or they can be designed spe-

cifically for the application. ARM for example provides asynchronous and synchro-

nous AHB-AHB bridges (synchronizers) in their AMBA Design Kit. ARM asynchro-

nous AHB-AHB bus bridge is shown in Figure 14 [33]

Asynchronous

slave

AHB signals

Control

signals

AHB

M

Asynchronous

master

Synchronizer

registers

HCLKMHCLKS

AHB

S

Ahb2AhbAsync

Figure 14. ARM asynchronous AHB-AHB bridge.

This bridge component is not intended for performance applications, as stated by

ARM, due to increased overhead caused by the synchronizer registers [33]. One per-

formance-oriented approach is the AMBA wrapper designed by Kim N-J et al. [25].

This approach, however, requires the clock domains to be synchronous. The wrapper

works by latching the AHB control signals and minimizes additional delays. The third

approach to bus synchronization is the usage of mixed-clock FIFOs (First-In-First-

26

Out). The FIFO can be used to pass data between different asynchronous or synchro-

nous clock domains. An implementation of mixed-clock FIFO is shown in Figure 15.

[34]

CellCell Cell Cell

Put

Controller

Full Detector

reqput

dataput

CLKput

full

G
et

C
o

n
tr

o
ll

er

Empty Detector

reqget

dataget

CLKget

empty

enput

enget
validget

Figure 15. Mixed-clock FIFO.

The put (sender) interface is controlled by the CLKput clock. Bus data is transferred

to the cells in sequential fashion via the dataput line. The receiver reads data sequen-

tially via the get interface controlled by the CLKget clock. In this implementation, only

the global control signals full and empty need to be synchronized. With the synchro-

nization, the dataget does not go metastable even though the clocks CLKput and CLKget

align. Synchronization is implemented with basic two-flip-flop synchronizers. The

mixed-clock FIFO implementation is especially suitable for high-bandwidth traffic

and in steady state operation read and write operations can be completed in one clock

cycle. The worst case latency from input to output depends on the relation of CLKput

and CLKget clock speeds and the size of the FIFO. The worst case latency of 4-place

FIFO as reported by Chelcea T. et al. is 6.34 ns (CLKput: 565 MHz and CLKget: 549

MHz). [34] Figure 16 shows a mixed-clock FIFOs used as an interface for a memory

controller [30].

AHB Slave

Interface

AHB

Read Data

FIFO

Write Data

FIFO

Command

FIFO

AHB Slave

Interface

Memory

Interface

RAM

ROM

HCLK MCLK

Figure 16. Mixed-clock FIFOs interfacing the AHB bus.

27

 The memory interface is running a slower clock MCLK compared to the AHB slave

interface’s HCLK. Burst transactions are used and the FIFO depth depends on the burst

length. Longer bursts were shown to improve memory access times. [30]

Another latency source due to different clock domains is the clock speed difference.

As stated previously, the simple AHB-Lite transfer takes two clock cycles. If the slave

is running a slower clock than the master, the two slave clock cycles consume more

than two cycles at the master side. Figure 17 shows a situation where a data transfer is

delayed due to slower slave clock speed [25].

IDLE

HCLKS

HTRANSM

HREADYM

HCLKM

NONSEQIDLE IDLE

IDLEHTRANSS NONSEQIDLE IDLE

T1 T2 T3 T4 T5 T6 T7

Figure 17. Slow slave clock delaying a transfer.

Master clock HCLKM and slave clock HCLKS are two synchronous clock domains

with 3:1 clock speed ratios. A bridge component is connected between the master and

slave that controls the AHB control signals HTRANSS and HREADYM. At clock

cycle T2, master sets the HTRANSM to NONSEQ to start a transfer. The bridge low-

ers HREADYM and inserts three wait states to give the slow slave time to response.

The transfer completes at the end of clock cycle T6. The transfer takes five master

clock cycles in total. [25]

4.2.5. Bus bridges

Bus protocol suppliers usually provide a simpler bus protocol designed for low perfor-

mance regions of the chip. ARM, for example, provides the AMBA 3 APB (Advanced

Peripheral Bus) [15]. Other low performance peripheral buses include, IBM CoreCon-

nect OPB, Sonics Smart Interconnect Synapse 3220 and STMicroelectronics STBus

Type 1 [1]. By using a simpler bus interface, the power consumption of these areas is

reduced. These low performance areas usually contain general-purpose peripherals

such as timers and I/O ports. The high performance system-level bus is connected to

the peripheral bus through a system-to-peripheral bus bridge. [15] Figure 18 shows

ARM AHB to APB bus bridge [33].

28

HWDATA[31:0]

HWRITE

HADDR[31:0]

HTRANS[1:0]

HCLK

HRESETn

HSEL

Ahb2Apb

PWDATA[31:0]

PWRITE

PADDR[31:0]

PSELx

PENABLE

PRDATA[31:0]

APB

master

interface

AHB

slave

interface

HREADYOUT
HRESP

HREADY

HWDATA[31:0]

Figure 18. ARM AHB to APB bridge.

As shown in Figure 18 the bridge does the bus protocol transformation. Bridging

can add additional latency to the transfers. One latency source caused by bridging be-

tween AHB and APB is that APB does not support pipelining. This means that wait

states have to be inserted into pipelined transfers. [33]

Normally the master must wait until it gets a ready response from the slave. By using

a bus bridge a strategy called posted writes can be used to remove the need for this. In

posted writes the write data is temporarily stored in the fast bridge memory. The bridge

then immediately signals completion of the transfer to the master. The data is then

transferred from the bridge memory to the slow slave while the master moves on to

other operations. [35, p. 210]

4.3. Total latency

By combining the results from previous chapters an equation for the total latency can

be derived. Equation 4 defines the total time Ttotal it takes to do ND transfers on a

crowded system-level bus

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑁𝐷 (
𝑇𝑏𝑢𝑠
𝑁𝐷

+ 𝑇𝑎 + 𝑇𝑠𝑙𝑎𝑣𝑒 + ∑ 𝑇𝑠𝑦𝑛𝑐,𝑖

𝑁𝑠𝑦𝑛𝑐

𝑖=1

+ ∑ 𝑇𝑏𝑟𝑖𝑑𝑔𝑒,𝑛

𝑁𝑏𝑟𝑖𝑑𝑔𝑒

𝑛=1

) + 𝑇𝑖𝑑𝑙𝑒 , (4)

where the symbols are as follows:

 Tbus is the bus protocol latency

 Ta the arbitration latency

 Tslave the slave access time

 Nsync the number of synchronizers

 Tsync the number of clock cycles consumed in synchronization and due to

slower slave clock speed

 Nbridge the bus bridge count

 Tbridge the bridging time

 Tidle the time the master uses for processing the data in between bus transfers.

29

From Equation 4, it can be seen that two factors play a key role in the total latency.

First one, is the overall structure of the bus; how many delay elements there are be-

tween master and slave and the relation of master and slave clock speeds. The second

performance limitation happens at the interconnects; how fast is the arbitration, how

many masters are competing for the bus and the type of traffic they generate. Evaluat-

ing the total latency and from that the system-level bus throughput can be a complex

task.

30

5. BUS PERFORMANCE ANALYSIS METHODS

In this chapter the methods of doing system-level bus performance analysis are

presented. In Chapter 5.1, the requirements for the verification platform are laid out.

Then, in Chapters 5.2-5.3 a study into different bus performance analysis methods and

tools is presented.

5.1. Requirements of the verification environment

The goal of the system-level bus performance tests is to measure the transfer latencies

and throughputs of the masters. Latency sources, such as arbitration latency, are to be

measured in order to evaluate the performance of the bus structure. This information

can then be used to locate and improve the bottlenecks of the bus structure. The fol-

lowing requirements for the verification platform were defined in the beginning of the

project:

1. All relevant masters and slaves must be included.

2. The masters must be able to create bus traffic simultaneously. The system must

be able to create realistic bus traffic. A realistic scenario could be uplink or

downlink data transmission.

3. The verification environment must record information of every transfer for

later analysis.

4. The clock accurate latencies of every transfer must be reported.

5. Throughputs of the masters must be calculated and reported. Additional stress

tests can be created in order to evaluate the maximum bandwidths of the mas-

ter-to-slave channels.

6. Changes to the RTL model should be kept to a minimum. This ensures fast

reuse with future design revisions.

In order to meet the listed requirements, a cycle-accurate register transfer level (RTL)

simulation was chosen as the verification environment. This allows the accurate

measurement of all system delays [6, p. 94].

5.2. Stages of performance analysis

The bus performance verification can be divided into three tasks: traffic generation,

traffic monitoring and data processing. The following chapters discuss how these tasks

have been implemented in previous studies.

5.2.1. Traffic generation

System-level bus traffic can be generated in two ways: simulation of the complete

system, or by using abstract models of the system components. The first approach is

typically not feasible for large designs. [17, p. 195] Thus, the usual approach to bus

performance analysis is the replacement of bus masters with abstract traffic generators

or so called BFMs (Bus Functional Models) [36, 2, 4 and 9]. Traffic generators can be

developed internally or acquired from verification IP vendors. Figure 19 shows a traf-

fic generator connected to the bus interface replacing the design master.

31

Traffic

generator

Test bench

DUT

InterconnectMaster Slave

Traffic

Figure 19. Bus traffic generator connected to the design under test (DUT).

The ease of configurability is a big advantage of the traffic generators compared to

the real design masters. Traffic generators provide total control of the traffic injected

into the system. In order to characterize the performance of the master-to-slave chan-

nels, some arbitrary tests can be run with traffic generators, such as: maximum read,

write and read/write bandwidths (back-to-back transactions). These characterization

tests can also be used in evaluating the maximum performance of memory controllers.

Another typical measurement is the minimum latencies of master-to-slave channels.

This test is done with simple traffic sequences and one master active at a time. [9]

Other typical tests are random read and write traffic tests, and combined traffic test

with the throughput set at the maximum requirement of the original master [37]. Arbi-

ter performance can be verified by validating that all masters are able to sustain the

required average bandwidths for extended periods of time [4].

By using traffic generator IPs instead of the real components, a tradeoff is made

between simulation time and accuracy [38]. One way of creating realistic traffic with

traffic generators is by extracting the traffic from the real masters in IP-level simula-

tions. Pélissier G. et al. did multiple IP-level simulations and extracted the bus traffic

into VCD files. A tool called STBus Analyzer was then developed and used to convert

this traffic data into a format readable by the traffic generators. All master IPs were

replaced in this manner in order to quickly but realistically evaluate the performance

of the bus structure. [2]

Realistic traffic for traffic generators can also be created through synthetic workload

generation such as done by Hwang S. Y. et al. The following parameters were inserted

into the generator: distribution of transactions between masters (percentage), the ratio

of non-bus time and bus transaction time of the masters, and latencies of every master-

to-slave channel. The synthetic workload generator then creates traffic patterns that

can be inserted into the traffic generators. [39]

 The processor in an SoC can be used in data processing as well as initialization and

configuration of the system. If the processor IP is replaced with an abstract traffic gen-

erator this functionality is lost. Loghi M. et al. replaced the ARM processors with

ARM Instruction Set Simulators (ISS) in bus performance analysis of a multiprocessor

32

SoC. The whole design was modeled in SystemC1 and the ISS was embedded into a

SystemC wrapper. ISS processor models allow real application code to be executed in

simulations. This way the traffic generated by the processors is realistic while allowing

reasonable simulation times and clock accurate models of the communication system.

The method was used in comparing the performance of different bus protocols and in

optimization of the processor cache sizes. [11]

Another approach in the replacement of the processor logic is using a separate pro-

cessor BFM and a performance test BFM. The processor BFM first executes the SoC

initialization sequence and then the control is switched to another easily configurable

generic BFM. This approach makes it easy to create abstract traffic sequences, while

the configuration phase of the SoC is not interfered with. [40]

5.2.2. Traffic monitoring

The next task in bus performance analysis is the monitoring and recording of the traffic

generated by the masters. The recorded bus traffic can be start and end times of the

transfers and the number of data bytes sent. The usual way of monitoring bus traffic is

by using bus monitor verification IPs. The bus monitor is a component that connects

to the bus signals and by understanding the bus protocol, records the traffic. [37]

The bus monitor can be connected to the bus in many locations, mainly: at master-

side signals [2], in both master and slave signals [37] and even inside the interconnect

to the slave interfaces [39]. Figure 20 shows the three types of monitors connected to

a design.

Master side

Monitor

Master

Test bench

DUT

Interconnect

Monitor

System

Monitor

Interconnect

Slave

Figure 20. Three types of bus monitors.

1 SystemC is a system-level modeling language consisting of C++ classes and macros.

33

Master-side monitoring enables the measurement of such info as: time of bus request

to response from slave (round-trip latency) and the throughput achieved by the master

[2]. Slave-side monitors can be used in measuring the throughput of the interconnect

[39]. A bus monitor that connects to both the master and slave interfaces adds the

ability to measure the propagation delay of the request from master to slave or the

response from slave to master (end-to-end latency) [37].

 Typically, the monitor decodes the transfer information from the bus signals at run-

time [37]. Another approach is making the bus monitor a component that records the

simulation time bus signal values into a file. An analyzer component can then be de-

veloped and used after the simulation to process the bus data into transfers, latencies

and throughput information. [2]

In order to increase the reusability and allow multiprotocol support the bus monitor

can be separated into multiple components. Tiwari A. et al. created a three-stage bus

monitor where the protocol dependent bus monitor (adapter) is connected to the

higher-level protocol independent bus monitor called performance monitor. The per-

formance monitor then contains one or multiple leaf monitors. The connection between

the adapter and the performance monitor is done via analysis port in UVM2 (Universal

Verification Methodology) in a class-based test environment. The role of the adapter

is to convert the bus traffic into so-called performance transactions. The performance

transactions contain such information as the start and end times of the transfers and

the number of data bytes transferred. The protocol independent performance monitor

then takes these performance transactions and passes them to the appropriate leaf mon-

itor. The leaf monitors are responsible for calculating and reporting the latency and

bandwidth. The leaf monitors also flag the transfers for violations based on the require-

ments set for different traffic patterns. Traffic with different requirements can be, for

example, processor load and store operations. By dividing the monitor into protocol

dependent and protocol independent parts, Tiwari A. et al. were able to use the perfor-

mance monitor with multiple bus protocols such as AHB, AXI and OCP. [37]

Larson K. et al. took a similar approach of multi-stage bus monitor. They verified

the performance of an AXI bus arbiter by using the Synopsys VMM2 (Verification

Methodology Manual) Performance Analyzer. An AXI port monitor was created and

the port monitors were connected to the master interfaces in VMM test bench. The

port monitors then tracked the interface signals, and reported the start and end times

of the transfers to the higher level VMM Performance Analyzer. [4]

Another monitoring component usually added into bus verification is the bus proto-

col checker [39]. A bus protocol checker makes sure that the bus traffic always adheres

to the bus protocol by monitoring the bus signals for violations. This is especially im-

portant if abstract traffic generator IPs are used instead of the real masters.

5.2.3. Data processing and reporting

The bus monitor provides the means for tapping into the bus interface and transforming

the bus traffic into a readable format. The typical parameters recorded are the start and

end times of the transfers and the relevant address and control information such as the

initiator, target address, read/write info and number of bytes transferred. The derived

2 UVM and VMM are standardized methodologies for building verification environments. They pro-

vide an extensive base class library written in SystemVerilog. The user generated verification clas-

ses can utilize these features by extending the base classes.

34

information reported can be latencies in clock cycles and the throughput. The mini-

mum, maximum and average latency and throughput are also typically calculated, as

well as arbitration latency for every master. The latency and throughput requirements

can be added to the report with the information, whether the requirements were met or

not. [37 and 4] The measurements can be divided into timing windows to study the

throughput variation in long simulations [2].

When the data is collected it can be stored into multiple files containing information

on every transfer or a summary of the simulation [37]. In some setups, even databases

such as SQL (Structured Query Language) have been used. This allows data to be

collected from multiple simulation runs. [4]

 Many types of graphs can be used in visualizing the collected data. The typical

graphs used in the bus performance analysis are listed in Table 1.

Table 1. Typical performance analysis graphs.

Graph type Usage

Latency versus time
Shows the variation of latency in time and whether

the latency requirements were met [2]

Throughput versus time Analysis of the bus throughput variation in time [2]

Arbitration latency

Average wait time of masters with for example dif-

ferent number of masters or different arbitration

schemes; describes system performance in differ-

ent traffic loads [26]

 Countless graphing software exists to create these graphs, such as: Microsoft Excel,

OriginLab Origin, MathWorks MATLAB, gnuplot and GNU Octave. Even statistical

programs such as R have been used in processing the performance data [41].

5.3. Commercial EDA tools and verification IPs

The commercial EDA (Electronics Design Automation) tools for bus performance ver-

ification can be divided into two categories: verification IPs and performance suites.

This chapter provides a brief introduction to the commercial landscape of bus perfor-

mance verification. The information is based only on product briefs and marketing

material available online.

Many vendors, such as Cadence [42], Mentor [43], Synopsys [44] and Truechip [45]

provide bus master and slave verification IPs and also monitor IPs with performance

analysis capabilities. Some EDA tool makers also provide full bus performance veri-

fication suites, such as Cadence Interconnect Workbench, Sonics SonicsStudio and

Synopsys Platform Architect. The software suites mentioned are geared towards ar-

chitectural level design and optimization of complete SoCs or the interconnect struc-

tures. [46, 47 and 48]

Cadence Interconnect Workbench is a GUI (Graphical User Interface) -based soft-

ware for functional verification and performance analysis of SoC interconnects. The

35

software takes in an ARM CoreLink interconnect created with the ARM AMBA De-

signer software. In performance-oriented mode the software then integrates the inter-

connect into a UVM verification environment containing Cadence AMBA traffic gen-

erators and performance monitor verification IPs. The user is able to simulate and eval-

uate the performance of the interconnect with multiple traffic profiles and, for exam-

ple, plot the latencies and bandwidths in the GUI. [46 and 9]

Another commercial tool that includes bus performance analysis functionality is the

Sonics SonicsStudio. SonicsStudio is a total SoC development and verification envi-

ronment. It allows the designer to integrate their own IPs together with Sonics’ prod-

ucts via a GUI. In bus performance analysis, it provides static performance analysis as

well as RTL and SystemC simulations. Transfer latencies and bus bandwidths can be

viewed graphically and transactions can be traced and visualized in the GUI. [47]

Synopsys Platform Architect provides similar functionalities as SonicsStudio, with

GUI software and SystemC models. It allows early analysis and optimization of mul-

ticore SoCs, with such functions as bus transaction tracing and analysis, and hardware-

software performance validation. [48]

36

6. IMPLEMENTATION OF THE PERFORMANCE ANALYSIS

This chapter presents the implementation of the performance analysis tests. The veri-

fication IPs developed are introduced in Chapter 6.1. The structure of the test bench is

described in Chapter 6.2 and Chapter 6.3 shows how the bus traffic is modeled in the

tests.

6.1. AHB-Lite verification IPs

Multiple verification IPs were developed, in order to generate traffic for performance

tests and to monitor the bus signals. For monitoring, the AHB-Lite Monitor was de-

signed. The traffic generator used was an existing AHB-Lite master verification IP. In

order to simplify the configuration of the traffic generator master and the connection

to the design the AHB-Lite Agent was developed. It encloses the Monitor and master

IPs. The following chapters describe the developed verification IPs in detail.

6.1.1. AHB-Lite Monitor

The first verification IP developed was the AHB-Lite Monitor. It connects to the mas-

ter-side bus signals, records the traffic, and calculates the performance metrics. The

Monitor allows an automatic measurement of round-trip latency from master transfer

request to slave ready response. It also calculates and reports the average throughput

achieved, as well as other statistical information. The Monitor is most useful in per-

formance tests, but it can also be used as a tool to visualize and trace any AHB-Lite

master traffic in the design. It is not designed for functional verification as it does not

verify that the transfers are routed to the correct slaves. If this functionality would be

needed, a system-level monitor that connects to both the master and slave signals

would have to be designed. System-level monitor increases the connections needed to

the design and adds complexity.

The Monitor was written in SystemVerilog as a set of classes. It connects to the

design via a single SystemVerilog interface. A UML3 (Unified Modeling Language)

class diagram of the Monitor and the related classes is shown in Figure 21.

3 UML is an industry standard way of visualizing the structure, interaction and behavior of software

systems.

37

performanceMonitor

inbox < cl_PerformanceTransaction >

outbox < cl_PerformanceTransaction >

*

1

std::mailbox < T >

1

1

cl_PerformanceMonitor - masterName : string
+ ta_printMailbox()

+ ta_mailboxToCsv()

cl_AHBLiteMonitor

- uin : in_AHBLite

- masterName : string

- monitoring : bit

- toggleStart : bit

- toggleEnd : bit

- cycleCountEven : int unsigned

- cycleCountOdd : int unsigned

- lastTransferIndicator : bit

- prevAddr : logic[31:0]

- waitedTransFlag : bit

- ta_captureEvenTransaction()

- ta_captureOddTransaction()

- fu_checkStartCondition(): void

- fu_checkEndCondition(): void

- fu_getTransfSize(): int unsigned

- fu_getTransfType(): string

+ ta_monitor()

+ ta_printMailbox()

+ ta_mailboxToCsv()

+ fu_stopMonitor(): void

cl_PerformanceTransaction

- startTime : time

- endTime : time

- latency : int unsigned

- addr : logic[31:0]

- wData : logic[DW-1:0]

- rData : logic[DW-1:0]

- rwType : string

- size : int unsigned

+ toString(): string

+ toCsvString(): string

1

Figure 21. Class diagram of the developed AHB-Lite monitor IP.

As can be seen in Figure 21, a two-stage approach was taken for the Monitor. The

Monitor consists of two classes, the cl_AHBLiteMonitor and cl_PerformanceMonitor.

The cl_AHBLiteMonitor functions as an adapter and translates the bus activity into

higher abstraction level. The information is then taken in and processed by the cl_Per-

formanceMonitor. This approach tries to maximize reusability and the cl_Perfor-

manceMonitor can be used with all parallel bus protocols, not just with the AHB-Lite.

The cl_AHBLiteMonitor is a class that connects to the master signals via the uin

interface. At every bus clock cycle, it checks the bus signals for the transfer start and

end conditions. This information is then used by the two tasks, ta_captureEvenTrans-

action() and ta_captureOddTransaction(), running on separate threads. The AHB-Lite

protocol can have two transfers active at the same time so this approach allows the

Monitor to record the latencies of every individual transfer accurately, with any trans-

fer type. After a transfer is recorded, it is packaged into a class format called cl_Per-

formanceTransaction and put into a standard library mailbox object, named outbox.

After the simulation, when all transfers are done and the data has been collected into

the mailbox, the results can be printed into text files by calling the ta_printMailbox()

task in the cl_AHBLiteMonitor. This task invokes the similarly named task in the

cl_PerformanceMonitor. In cl_PerformanceMonitor the information is taken from the

mailbox, formatted appropriately and printed into text files. Statistical information

about latency and throughput is also calculated and reported. Figure 22 shows an ex-

ample result file.

38

Summary file is also created, which contains only the statistical information about

the masters. This enables quick checks that the latency and throughput values of the

masters are not violating the requirements. If violations are seen, the full result file can

be used for checking the detailed information about the exact slow transfers. The

timestamps of the transfers can then be checked in the simulation waveform to further

investigate the situation.

Another type of file that can be generated with the Monitor is a comma-separated

text file. This file contains the same transfer-based information as the previously dis-

cussed result file, but with simpler, comma separated formatting. This makes it easy

to develop additional scripts that can be used for data processing and graphing.

6.1.2. AHB-Lite Agent

In order to generate bus traffic for the performance tests, an existing AHB-Lite master

verification IP is used. The master verification IP acts as a traffic generator and gives

total flexibility to create any type of traffic. Because many traffic generators and mon-

itors are needed in the test bench, the master IP and the Monitor were wrapped into

one class called AHB-Lite Agent. Figure 23 shows the structure of the Agent.

AHB-Lite master IP SVI

AHB-Lite Monitor

AHB-Lite Agent

ta_run()

ta_stop()

appendTransaction(type)

printResults()

DUT

Figure 23. AHB-Lite Agent.

The Agent is a SystemVerilog class with one SystemVerilog interface (SVI) for the

master IP and Monitor. The Agent also contains tasks that make loading the master IP

with AHB-Lite transactions easy.

AHB Example master

START TIME | END TIME | LATENCY | READ/WRITE | TARGET | SIZE (BYTES) | DATA

 125 | 135 | 2 | READ | 00000000 | 4 |168bc342

 135 | 145 | 2 | READ | 00000000 | 4 |168bc342

...

 665 | 695 | 4 | WRITE | 00002000 | 4 |c5362c04

Transfer count | 30

Total time (ns) | 570

Avg latency (cycles) | 3

Min latency (cycles) | 2

Max latency (cycles) | 4

Avg throughput (Mbps) | 6737

Figure 22. Example result file generated by the Monitor.

39

6.1.3. Validating the verification IPs

The functionality of the Agent and Monitor was validated in multiple scenarios. The

testing of the Agent started with one Agent connected to an existing AHB-Lite slave

verification IP with a SystemVerilog interface (SVI). The AHB-Lite master IP inside

the Agent was configured to execute multiple different traffic patterns, and the validity

of the information in the Monitor’s output text file was analyzed. The validation of the

latency results was done by configuring the slave to output the number of wait cycles

of the transfers into a text file. In a single slave - single master situation the slave wait

states correspond to the amount of additional latency seen by the master. The test

bench is shown in Figure 24.

AHB-Lite Agent SVI AHB-Lite Slave

latencies
RX wait

TX wait

comparison

Figure 24. Validating the AHB-Lite Agent latency measurement.

Another test done with the setup in Figure 24 was the Monitor’s functionality in the

slave error response (HRESP) situation. The Monitor reports this as a simulation error

in the simulation log file.

The problem with the setup in Figure 24 is that it cannot automatically verify laten-

cies of pipelined waited transfers. This is because in waited transfers the ongoing trans-

fer delays the next transfer by extending its address phase. The latency of the transfers

does not then match directly with the slave wait states.

In order to test the Agent’s functionality in a more realistic scenario a test bench was

created with one Agent connected to an AHB-Lite multi-layer interconnect and two

slave verification IPs. The Agent was configured with a sequence of pipelined and

separated reads, writes and idle transfers to different addresses and slaves. Simulation

was run until the Monitor’s code coverage (statement, branch and conditional cover-

age) was 100 %. Monitor’s output file was then verified to match with the designed

transfer sequence. The results in the output file were also compared to the simulation

waveform to make sure that the reported latency and other transfer information were

correct. Later longer, more randomized sequences, were successfully tested with this

setup. Further development work would be needed to automate this validation process,

but for now, the tests of the Agent were deemed sufficient.

As the Monitor can also be used as a separate verification IP, its functionality was

checked also with the processor simulation model. An existing test case was taken,

and the Monitor was connected to the processor’s master bus. Again, output files and

waveforms were extensively compared in order to make sure that the Monitor supports

all of the processor’s transfer types. This validation method builds confidence in the

Monitor’s functionality in various use cases.

40

6.2. Test bench

The test bench created for the performance tests contains the whole modem design

with the Agents replacing the functionality of the design AHB-Lite masters. The

Agents were connected to the bus signals via the SystemVerilog interfaces. The Sys-

temVerilog interfaces enable the abstract class based verification IPs to be connected

to the RTL of the design. No design RTL changes are needed and the hierarchical bus

connections are parametrized for easy manipulation. This allows fast performance val-

idation after any bus related design update. Figure 25 shows the structure of the test

bench.

Agent 0

Protocol

Checker

Sequencer

InterconnectMaster 0

Slave

Master 1

Protocol

Checker

Agent 1

Test bench

Modem

transactionstransactions

Figure 25. Simulation environment for bus performance tests.

Figure 25 shows that for every design master two components are instantiated in the

test bench: the Agent and a protocol checker. The Agent takes over the bus signals and

replaces the design master. An AHB-Lite protocol checker IP is added in order to safe-

guard the bus traffic.

 A class-based verification IP called Sequencer was also developed. The Sequencer

contains all the test case traffic sequences. It contains tasks that load the Agents with

read, write and idle transfers. SystemVerilog’s randomization is used in creating cer-

tain variation in the traffic patterns, especially in the delays between transactions.

When new test sequences are created, they can simply be added to the Sequencer class

as a task.

41

 The test bench also contains a task for result file handling. The task calls the print

methods of the Agents one by one and collects the master traffic results into text files.

 Special care was taken not to break the ability of the processor simulation model to

configure the modem in the beginning of the simulation. For this reason, the test pro-

gram contains an initial configuration phase where the processor bus is open for the

processor model. After the configuration phase, the processor model is disabled and

the bus control is given to the Agent connected to the processor’s bus.

6.3. Traffic pattern generation

As discussed previously, the performance tests can contain many arbitrary tests, such

as maximum read and write tests with back-to-back transactions. However, many fac-

tors defining the bus performance come from the type of bus traffic generated by the

masters and the congestion of the interconnects. This is especially true for arbitration

latency. It was shown previously in Equation 3 in Chapter 4.2.2 that the arbitration

latency depends exponentially from channel utilization ratio (CUR). Therefore, in or-

der to measure the arbitration latency accurately, the bus traffic must be modeled real-

istically.

Realistic bus traffic in the tests was modeled in multiple ways. The idea was to im-

itate the maximum bus activity of each master. For some DMA devices, this means

simply doing periodic reads and writes with the expected maximum throughputs. For

complex hardware accelerators, the activity was divided into communication intensive

and computation intensive parts. IP-level simulations were run, and the waveforms

studied. The parts of the simulations, where the bus utilization is the highest for a

reasonable amount of time, were chosen. The selected transfer sequences with the ex-

act delays were then reproduced and configured into the corresponding Agents.

The traffic of the processor was imitated by doing periodic “instruction” and “data”

accesses to the memory. In addition to these, the processor Agent was configured to

access selected peripherals in order to measure the peripheral access latencies in a re-

alistic crowded bus situation.

Multiple test cases were developed, such as ones imitating uplink and downlink data

transmissions. The transfer addresses of the Agents were chosen to match the scenar-

ios, in order to model the operation realistically. An example traffic pattern of selected

masters is shown in Figure 26.

42

Figure 26. Traffic pattern recorded in a normal simulation showing accesses to two

slaves (red and cyan).

The colors in Figure 26 represent the different slaves and the width of the boxes

show the transfer times from master request to slave response. Master 1 seems to be

experiencing quite long transfer times compared to the other masters. In order to model

the “bursty” or intermittent traffic of the real masters, randomized idle times were

added to the traffic patterns of the Agents. Figure 27 shows a snapshot from this kind

of simulation.

Figure 27. Modeling intermittent traffic.

In Figure 27 it can be seen that the transfer times of master 1 are considerably shorter

when other masters are quiet. The idle durations chosen are few hundred clock cycles

43

and their interval is between about every fifty transfers. The values were chosen arbi-

trarily and they do not necessarily match the operation of the real masters. Similar

approach of randomized idle periods was taken in [28].

44

7. PERFORMANCE ANALYSIS RESULTS

This chapter presents the simulated latency and throughput results. Firstly, in Chapters

7.1 and 7.2 the selected results from the downlink tests are shown and discussed. Then,

in Chapter 7.3 the traffic patterns are modified by adding random idle periods and the

results presented. Finally, the summary of the uplink test results is shown in Chapter

7.4. The graphs presented in the chapters are generated with GNU Octave scripts from

the comma-separated text files created by the AHB-Lite Monitors.

7.1. Latency

The processor’s latency graph can be seen in Figure 28. In this test, the processor is

configured to access four different peripherals (slaves 1-4) and the transfer latencies

are measured. During the simulation, other masters are active and operating at the ex-

pected maximum throughput. However, they are not accessing these four peripherals

so the processor has an uncontested access to the slaves 1-4.

Figure 28. Processor’s transfer latencies to peripherals (normalized).

In Figure 28 it can be seen that the transfer latencies vary between different periph-

erals. The read (circle) and write (square) latencies of some peripherals also differ with

write latencies being usually slightly higher.

45

From this measurement, it was deemed that the latency to the slave 3 (blue) is too

high and a modification to the bus structure must be made, in order to improve perfor-

mance. The latency sources from the processor to the slave 3 were analyzed, and the

highest contributor to the latency was found out to be the master and slave clock speed

difference. Originally, the processor master interface and the peripheral slave interface

had an 8:1 clock speed ratio. The slave interface clock speed was raised, and also the

now unneeded synchronizer bridge removed. After the update, the master and slave

bus clock speeds have a 2:1 ratio. The results after the performance update can be seen

in Figure 29.

Figure 29. Processor’s transfer latencies after an update to the slave 3.

The higher clock speed at the slave-side causes a big drop in the transfer latencies

to the slave 3 (blue). The average latency from the processor to the slave 3 has dropped

to one fifth of the original latency, and is now at an acceptable level.

 Figure 30 shows the average latencies of all masters in the downlink simulation.

Two simulations were made with the same transfer sequences configured to the Agents

in both simulations. In the first simulation, the Agents operate individually. The first

Agent runs its sequence, stops, and the turn is given to the next Agent. This sets a

baseline on the latencies of the bus structure and the slave delays, because no compe-

tition between the masters happens. The second simulation is the more realistic case

where all relevant masters are operational.

46

Figure 30. Average latencies in two tests (normalized, downlink).

In Figure 30 it can be seen that the latencies of masters are quite diverse, ranging

from 0.05 to 1.0. The error bars represent the uncertainty of reported results. Most

masters are not greatly affected by the contentions at the slaves, but couple of masters

really stand out: master 1 and master 3. Master 9 also shows a measurable difference

in the average latency. Master 1’s latency is 10 times higher in the crowded simulation

compared to the single master simulation. This is the absolute worst-case scenario,

with continuous traffic, with the highest activity recorded in the IP-level simulations.

7.2. Throughput

Figure 31 shows the windowed throughput of a hardware accelerator accessing single

memory in two test cases. The window size chosen is 10 transfers. As previously, the

two tests done are: one where other masters are quiet and only this hardware acceler-

ator is active, and a second one where all the relevant masters are active and competing

for the same memory resources. Single master test gives a baseline on the throughput

to the memory with the configured traffic pattern.

47

Figure 31. Throughput of a hardware accelerator in two test tests (normalized).

A 14 % decrease in average throughput can be seen due to other masters competing

for the bus. At the same time this means a 15 % increase in the total transfer time of

210 transfers. All of the masters were configured to operate at the highest expected

throughput, which is much higher than the extended average throughput in the real

operation. The tests do not try to mimic the “bursty” operation of the real masters.

Figure 31 demonstrates the effect of arbitration and slave congestion at the expected

worst-case scenario.

 Figure 32 shows the average throughput of the masters. The results are from the

same simulation runs as the latency results shown in Figure 30.

48

Figure 32. Average throughput of masters in two tests (normalized, downlink).

Masters 1 and 3 show a significant drop in the average throughput due to traffic

from other masters blocking the bus. The average throughput of master 1 is approxi-

mately five times higher in the single master simulation. This means an 81 % decrease

in average throughput due to bus congestion. Masters 9 and 10 also show small

throughput changes. Other masters do not experience any major change in the average

throughput. This test shows that there is a possibility for a big drop in master 1 and 3

throughput due to competition.

 From the latency results in Figure 30 and the throughput results in Figure 32 couple

of things can be deduced. For most of the masters, the extreme traffic from the other

masters causes no significant performance drop. Performance of these masters cannot

be enhanced by altering the arbitration scheme. The only way to increase throughput

and decrease transfer latencies is to modify the bus structure (remove synchronizers,

increase clock speeds, etc.) or to modify the slaves to lower the slave access times.

On the other hand, for some masters, most notably masters 1 and 3, performance

gains can be achieved by modifying the arbitration or the bus structure in order to

allow fairer access to the slaves. Careful analysis must be done to make sure that the

bus access pattern of the masters is such, that some low traffic time is left for these

two masters to access the slaves.

49

7.3. Intermittent traffic

The same downlink test is done with modified traffic sequences, with quiet periods

added here and there as shown in Chapter 6.3 in Figure 27. The quiet times try to

imitate the “bursty” behavior of the real masters. Figure 33 shows the latency results

from this simulation.

Figure 33. Average latencies with intermittent traffic (normalized to match Figure 28,

downlink).

Master 1 is still showing slightly higher latencies when all masters are active. Still,

this is not anything major and all masters have practically the same average transfer

latencies in both cases. Figure 34 shows the throughput results.

50

Figure 34. Average throughputs with intermittent traffic (normalized to match Figure

31, downlink).

The throughput drops of masters 1 and 3 in the crowded simulation are almost gone.

Masters 1, 3, 9 and 10 are transferring to the same memory and with this intermittent

traffic, all four masters are able to operate without much interaction. The intermittent

traffic test shows that with the possibly more realistic traffic patterns, the masters are

able to catch up in the low traffic times of others. None of the masters experience any

significant slowdown.

7.4. Uplink test results

In order to analyze the system-level bus performance in the uplink communication

case, similar simulations as previously shown are done. The uplink scenario is inter-

esting because it contains some different masters, memories and traffic patterns. The

summary of results is shown and briefly discussed. The average latencies in uplink

simulation are shown in Figure 35.

51

Figure 35. Average latencies in two tests (normalized, uplink).

As can be seen in Figure 35 the masters 4, 5 and 7 are not needed in the uplink

processing, and the masters 14-17 are added. Again, as in the downlink test, masters 1

and 3 endure a big latency increase due to bus congestion. Other masters are not expe-

riencing latency increase. Figure 36 shows the throughput results from the same sim-

ulation.

Figure 36. Average throughput of the masters in two tests (normalized, uplink).

52

Masters 1, 3 and 15 show throughput drop but others are not affected. From the

uplink tests, it is possible to say that these three masters should be carefully analyzed

to verify that they meet the throughput requirements in all situations.

53

8. DISCUSSION

The goal of this thesis work was to create a simulation environment that is able to

model the realistic bus traffic inside a modem SoC and measure the latencies and

throughputs of the masters. The work was done in order to find the weak points of the

bus structure. The results show that the created simulation environment possesses the

required capabilities. With easy configurability of new tests and script based graphing

of latency, throughput and traffic patterns the environment has good potential for re-

use.

By using the object-oriented design methodology, the usage of the verification IPs

(Agent and Monitor) is straightforward. The functionality is abstracted inside the clas-

ses and a simple to use interface with couple of tasks is provided for the user. The

SystemVerilog interface makes the bus connections to the design easy. A two-stage

coding approach of separate protocol dependent bus adapter (cl_AHBLiteMonitor) and

performance monitor (cl_PerformanceMonitor) was taken with the Monitor verifica-

tion IP. This has been shown to produce highly reusable components that enable the

usage with multiple different bus protocols [37].

The unique feature of the simulation environment is the ability to show the relation

of communication performance between masters. The architectural level performance

analysis of the bus structure is no longer enough. The complexity of SoCs increases

and the processing gets more and more distributed and heterogeneous. Performance

validation through simulation is getting more relevant as demonstrated also in [1] and

[37].

The current simulation environment does not model the dynamic interaction be-

tween masters. This creates a severe limitation on the verification capabilities. Cur-

rently, the only results that can be obtained are for the worst-case performance, where

all masters are operational at the same time. Of course, the sequence of master activity

could be modeled more accurately. That said, this kind of modeling is extremely dif-

ficult. A deep knowledge of the modem operation would be needed. For this reason,

the simulations concentrate on the worst-case performance where all masters are op-

erational simultaneously.

A more realistic approach would be to simulate the whole design with real, func-

tional traffic. This was done by Loghi M. et al. for a multi-processor SoC by replacing

the design masters with processor instruction set simulators. Real application code was

then executed with the processors, and the performance of the system-level bus ana-

lyzed. [11] The same approach cannot be taken with the studied modem because it has

many hardware accelerators besides the processor. Configuring the modem and run-

ning it in the simulation with the real masters in data communication mode is currently

unrealistic. The simulation times would be too long. Possible workaround would be to

use an FPGA (Field Programmable Gate Array) or an emulation platform to speed up

the runtimes. However, the usage of such devices severely limits the ability to trace

and visualize the bus signals deep down in the design hierarchy at clock cycle level.

Lehongre D. et al. analyzed the system-level bus performance of a complex multime-

dia SoC via emulation. They created synthesizable adapters that monitor the bus sig-

nals and convert the activity into transaction information. The transaction information

was then, after the simulation, dumped from the adapter memories to a file and ana-

lyzed. [49] Similar approach could possibly be taken with the modem, if deeper anal-

ysis is needed.

54

The results in this thesis show that most masters do not experience any significant

latency increase or throughput decrease due to bus congestion. The communication

performance of these masters is not dependent on the operation of other masters. The

exceptions are masters 1, 3, and in the uplink tests, master 15. From the results it can

be concluded that any design effort to enhance the arbitration scheme, or in general

the fairness of bus access, should be pointed at the interconnects serving these three

masters.

The measured throughput values in the crowded bus simulations give a good esti-

mate on the absolute worst-case performance. The values can be analyzed to under-

stand whether the system performs as required. The performance overhead can also be

calculated. The communication requirements of a modem relate to the required data

throughput. In practice, however, the accurate analysis of the exact throughput and

latency requirements is quite complicated. Depending on the implementation, some

DMA overhead exists. This overhead should then be calculated and added on top of

the required data throughput.

The most valuable results from this thesis were the ones that led to immediate action.

The processor transfer latencies were deemed critical and the measurements revealed

multiple master-slave channels that were not performing as expected. Optimizations,

such as the clock speed raise of a peripheral as shown in the results were made and the

updates were verified to be successful with the simulation environment. The simula-

tions do not reveal the individual latency sources. Only the total latency is reported.

From the results, the individual latency sources have to be manually analyzed and cat-

egorized as shown in the theory part of this thesis. Lastly, the results provide peace of

mind that the parallelism works as expected and most bus channels are extremely fast

and predictable: never showing signs of slowdown.

The main future use for the environment is the validation of performance updates.

When the bus structure is modified, a fast simulation shows how the performance is

affected. In theory, the simulation environment, and more specifically the Agent IPs,

could be used at the verification of the whole bus structure. Early on in the chip design,

the bus structure could be created with shell masters and slaves. The Agents would be

connected to the master interfaces and slave verification IPs at the slave interfaces.

The performance of the bus structure could then be measured with similar simulations

as presented in this thesis. This would allow the decisions on the arbitration schemes

and the bus topology to be made and the performance verified from the get go. There

are commercial tools, such as the Cadence Interconnect Workbench, which are built

exactly for this purpose [46].

A future use for the Monitor IP is that it can be connected to any master-side bus

signals to monitor and report the bus activity. This allows an easy way to visualize the

transfer-level bus traffic. It can also enable any simulation to record bus performance

data. This might help uncover some unexpected weak points in the bus structure.

There is a huge temptation to do updates to the bus structure that seem to improve

the performance. The time spent on doing the optimization is worth it if the update

leads to a simpler bus structure, reduces power consumption or improves the perfor-

mance measurably. If the goal is for example to reduce master’s transfer latencies to

some slave, the results are easy to validate with simple pre-update and post-update

simulations. These simulations can be done without the performance analysis environ-

ment presented in the thesis. However, it gets more difficult if the goal is to reduce the

bus congestion or to relieve the strain on some interconnect. The validation of the need

for an update, and finally the effectiveness of the update done is impossible in simple

55

functional simulations. This is where the created simulation environment is most use-

ful.

56

9. SUMMARY

This thesis is a study of the system-level bus performance in a modem SoC. The re-

quirements of the SoCs internal communication are studied and the main causes lim-

iting the performance presented. The created simulation environment is able to model

the modem bus traffic and provide insight into the possible bottlenecks of the bus

structure.

The data processing done in the modem contains many processing phases, such as

encryption, coding and modulation. Modem has hard real-time constraints on the pro-

cessing times and requirements for throughput. For this reason, the importance of high

performance communication structure inside the chip is extremely important. The la-

tencies of individual transfers are typically not that crucial. An exception is the real-

time needs of a processor interrupt. Long transfer times also increase the power con-

sumption if they make the transferring master unable to enter sleep state. Throughput

is crucial, and the communication structure must be able to provide the varying

throughput needs of the data processing phases.

 The parallel bus is the common means for system-level communication in an SoC.

The modem uses the common parallel bus interface ARM AMBA 3 AHB-Lite. The

system-level bus structure consists of multiple ARM multi-layer AHB interconnects.

The interconnects allow the address mapped transfers to be routed correctly between

the masters and slaves. Interconnects also have the important task of deciding which

masters get the turn to transfer first. This is called arbitration. There are multiple arbi-

tration schemes, of which, the most common ones are the static priority, round-robin

and TDMA. Many variations of these strategies exist, such as the programmable pri-

ority based arbitration scheme used in the studied modem. The static priority is the

simplest arbitration scheme but it leaves a possibility for a bus master to not be served

for a long time, possibly leading to starvation. Round-robin allows a fair access and

the masters are served in circular order. It gives good performance and predictability

when the masters have the same bandwidth needs. The advantage of TDMA is the

extremely predictable timing of the transfer frames. It can use the bandwidth ineffi-

ciently.

 The system-level bus performance can be characterized by two concepts: bandwidth

and latency. The efficient bandwidth or throughput can be increased by making the

data bus wider, increasing the bus clock speed or reducing computation or communi-

cation latencies. The bus transfer latency is characterized by the bus protocol, the ar-

bitration, the delay elements between the master and slave and the memory access

times. Arbitration latency is the most unpredictable latency source in the system-level

bus, caused by multiple masters competing for slave accesses.

 The simulation-based system-level bus performance analysis can be divided into

three stages: traffic generation, traffic monitoring and data processing. The bus master

operation is typically modeled, for their ease of configurability, using class based traf-

fic generator verification IPs. Bus can be monitored from the master-side, slave-side

or both. Again, class-based verification IPs are common. Typical reports and graphs

include the transfer latencies and throughputs of the masters with statistical infor-

mation such as simulation averages.

 An RTL simulation environment was created and used in measuring the throughputs

and latencies of the masters in the modem. The created environment contains the test

bench as well as multiple AHB-Lite Agents modeling the real masters. The simulations

include tests that model uplink and downlink bus traffic at the worst-case situation,

57

where all masters are active simultaneously. The traffic is modeled by copying the

traffic patterns from the individual IP-level simulations. Small variations are added as

well as some quiet times in order to better model the computation and communication

intensive parts of the master operation.

 The simulation results show that most masters are able to operate without much

intervention. Nevertheless, there are optimizations to be made. The processor latency

to some peripheral slaves was concluded to be too high. The clock speed of slave bus

was increased, and after the optimizations the latency dropped to an acceptable level

of one fifth of the original. The simulation results also show that the master 1 is heavily

influenced by bus congestion. At worst case, master 1 experiences an 81 % decrease

in average throughput compared to the single master situation. Masters 3 and 15 also

experience a measurable throughput drop. Quiet times were configured to the masters,

in order to model more realistically the overall bus traffic. The bus congestion is much

lesser and the throughput drop of the masters is almost nonexistent. The simulation

environment was able to show some known weak points in the bus structure, as well

as uncover couple of new places ripe for performance optimizations.

58

10. REFERENCES

[1] Pasricha S. & Dutt N. (2008) On-Chip Communication Architectures: System

on Chip Interconnect. Morgan Kaufmann, Burlington, 521 p.

[2] Pelissier G., Hersemeule R., Gambon G., Torres L. & Robert M. (2001) Bus

analysis and performance evaluation on a SOC platform at the system level de-

sign. In: VLSI-SOC 11th International Conference on Very Large Scale Integra-

tion, December 3-5, Montpellier, France.

[3] Palkovic M., Raghavan P., Li M., Dejonghe A., Van der Perre L. & Catthoor F.

(2010) Future Software-Defined Radio Platforms and Mapping Flows. IEEE

Signal Processing Magazine 27, p. 22-33.

[4] Larson K., Dickol J. & O'brian K. (2010) Performance verification of a complex

bus arbiter using the VMM Performance Analyzer. EE Times, MediaTek Wire-

less, Inc.

[5] Kuiper G. (2013) Guaranteed-Throughput Improvement Techniques for Con-

nectionless Ring Networks. Master’s Thesis. University of Twente, Department

of EEMCS, Enschede.

[6] Lavagno L., Martin G., Markov I. & Scheffer L. (2016) Electronic Design Au-

tomation for IC System Design, Verification, and Testing. Taylor & Francis

Group, Boca Raton, 644 p.

[7] Nilsson A. (2007) Design of programmable multi-standard baseband processors.

Doctoral dissertation. Linköping University, Department of Electrical Engineer-

ing, Linköping.

[8] Ecco L., Saidi S., Kostrzewa A. & Ernst R. (2015) Real-time DRAM throughput

guarantees for latency sensitive mixed QoS MPSoCs. In: 10th IEEE Interna-

tional Symposium on Industrial Embedded Systems (SIES), European Union.

[9] Heaton N. (accessed: October 19th 2016) How to Measure and Optimize the Sys-

tem Performance of a Smartphone RTL Design. ARM Connected Community,

Cadence. URL: https://community.arm.com/groups/soc-implementa-

tion/blog/2013/10/29/how-to-measure-and-optimize-the-system-performance-

of-a-smartphone-rtl-design.

[10] Application note: Atmel AVR1304: Using the XMEGA DMA Controller

(2013). Atmel, San Jose, 11 p.

[11] Loghi M., Angiolini F., Bertozzi D., Benini L. & Zafalon R. (2004) Analyzing

On-Chip Communication in a MPSoC Environment. In: IEEE Proceedings of

the Design, Automation and Test in Europe Conference and Exhibition, Febru-

ary 11-14. Vol. 2, p. 752-757, Italy.

59

[12] Pahlavan K. & Krishnamurthy P. (2009) Networking Fundamentals: Wide, Lo-

cal and Personal Area Communications. John Wiley & Sons Ltd, Chichester,

656 p.

[13] IEEE standard 802.11a supplement: Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications. High-speed Physical Layer in

the 5 GHz Band (1999). IEEE, New York, 90p.

[14] Ayla J. (2011). Communication Architectures for Systems-on-Chip. Taylor &

Francis Group, Boca Raton, 402 p.

[15] Specification: AMBA 3 AHB-Lite Protocol v1.0 (2006). ARM, 72 p.

[16] Overview: Multi-layer AHB (2004). ARM, 8 p.

[17] Jerraya A. & Wolf W. (2005) Multiprocessor Systems-on-chips. Morgan

Kaufmann, San Francisco, 581 p.

[18] Shin E., Mooney J. & Riley G. (2002) Round-robin arbiter design and genera-

tion. In: IEEE 15th International Symposium on System Synthesis, October 2-4,

Kyoto, Japan, p. 243-248.

[19] Sonntag S. & Helmut R. (2008) An Efficient Weighted-Round-Robin Algorithm

for Multiprocessor Architectures. In: IEEE 41st Annual Simulation Symposium,

April 13-16, Ottawa, Canada, p. 193-199.

[20] Cilku B., Crespo A., Puschner P., Coronel J. & Peiro S. (2015) A TDMA-Based

Arbitration Scheme for Mixed-Criticality Multicore Platforms. In: IEEE First

International Conference on Event-Based Control, Communication, and Signal

Processing, June 17-19, Krakow, Poland, p. 1-6.

[21] Poletti, F., Bertozzi, D., Benini L. & Bogliolo A. (2003) Performance Analysis

of Arbitration Policies for SoC Communication Architectures. Design Automa-

tion for Embedded Systems 8, p. 189-210.

[22] Hwang S., Kang D., Park H. & Jhang K. (2010) Implementation of a Self-Moti-

vated Arbitration Scheme for the Multilayer AHB. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems 18, p. 818-830.

[23] Patterson D. (2011) Computer Architecture: A Quantitative Approach. Morgan

Kaufmann, 856 p.

[24] Kyoungrok C., Hyeon-Seok N., Tae W. & Younggap Y. (2012) Analysis of sys-

tem bus on SoC platform using TSV interconnection. In: IEEE 4th Asia Sympo-

sium on Quality Electronic Design (ASQED), July 10-11, Penang, Malaysia, p.

227-231.

[25] Kim N-J. & Lee H-J. (2004) Design of AMBA TM Wrappers for Multiple-Clock

Operations. In: IEEE International Conference on Communications, Circuits and

Systems, June 27-29, p. 1438-1442.

60

[26] Suh J. & Yoo H-J (2004) Arbitration Latency Analysis of the Shared Channel

Architecture for High Performance Multi-Master SoC. In: IEEE Proceedings of

2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits,

August 5-5, p. 388-391.

[27] Cho Y-S., Choi E-J. & Cho K-R. (2006) Modeling and Analysis of the System

Bus Latency on the SoC Platform. In: ACM SLIP '06: Proceedings of the 2006

international workshop on System-level interconnect prediction, March 04-05,

Munich, Germany, p. 67-74.

[28] Conti M., Caldari M. & Orcioni S. (2004) Performance analysis of different ar-

bitration algorithms of the AMBA AHB bus. In: IEEE Proceedings. 41st Design

Automation Conference, July 07-11, San Diego, USA, p. 618-621.

[29] White Paper: Everything You Wanted to Know About SOC Memory. (2011)

Tensilica, 29 p.

[30] Anendhar A. & Srilatha C. (2014) Implementation Methodology of High Perfor-

mance Multi Byte Data Access Control of AMBA Bus. International Journal of

Emerging Technology and Advanced Engineering 4, p. 461-465.

[31] Xu Y., Hu J., Xiao J., Yang G. & Kong W. (2016) Design Techniques for a 30-

ns Access Time 1.5-V 200K-bytes Embedded EEPROM Memory. IEEE Trans-

actions on Circuits and Systems II: Express Briefs 63, p. 1064-1068.

[32] Richter D. (2014) Flash Memories: Economic Principles of Performance, Cost

and Reliability Optimization. Springer Science & Business Media, Dordrecht,

268 p.

[33] Technical Reference Manual. AMBA Design Kit. Revision: r3p0 (2007). ARM,

226 p.

[34] Chelcea T., Nowick S. M. (2001) Robust Interfaces for Mixed-Timing Systems.

In: IEEE Proceedings of the 38th Design Automation Conference, June 22-22,

Las Vegas, USA, p. 21-26.

[35] Mishra S., Kumar Singh N. & Rousseau V. (2015) System on Chip Interfaces

for Low Power Design. Morgan Kaufmann, 406 p.

[36] Lahiri K., Ragunathan A. & Dey S. (2001) Evaluation of the traffic-performance

characteristics of system-on-chip communication architectures. In: IEEE Four-

teenth International Conference on VLSI Design, January 07-07, Bangalore, In-

dia, p. 29-35

[37] Tiwari A., Patel B., Patel J. & Modi K. (2015) Using a Generic Plug and Play

Performance Monitor for SoC Verification. In: Design and Verification

Conference and Exhibition, Austin, USA.

61

[38] Lahiri K., Raghunathan A, & Dey S. (1999) Fast Performance Analysis of Bus-

Based System-On-Chip Communication. In: IEEE/ACM International Confer-

ence on Computer-Aided Design. Digest of Technical Papers, November 07-11,

San Jose, USA, p. 566-572.

[39] Hwang S. Y., Kang D. S., Park H. J. & Jhang K. S. (2010) Implementation of a

Self-Motivated Arbitration Scheme for the Multilayer AHB Busmatrix. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems 18, p. 818-830.

[40] Wen H., Chen J. & Huang D. (2013) Whitepaper: Tackling Verification Chal-

lenges with Interconnect Validation Tool. Cadence.

[41] Keppler B. & Jonack R. (2012) Presentation: SoC performance evaluation using

high performance SystemQ and TLM models for communications SoCs. Lantiq

Germany GmbH & Sonics Inc.

[42] AMBA AHB Simulation VIP Datasheet. (Accessed: October 20th 2016) Ca-

dence. URL: http://ip.cadence.com/ipportfolio/verification-ip/simulation-

vip/arm-amba/amba-ahb-simulation-vip.

[43] Mentor Graphics AXI Verification IP Suite (Altera Edition). (Accessed: October

20th 2016) Mentor® Verification IP Altera® Edition AMBA AXI3TM/AXI4TM

User Guide. URL: https://www.altera.com/products/intellectual-prop-

erty/ip/basic-functions/m-mentor-graphics-axi-verification.html.

[44] VIP Experts. (Accessed: October 20th 2016) How do you Verify the AMBA Sys-

tem Level Environment? VIP Central blog. URL: https://blogs.synop-

sys.com/vip-central/2015/03/19/how-do-you-verify-the-amba-system-level-en-

vironment/.

[45] Truechip's Products. (Accessed: October 20th 2016) AMBA 3 AHB-Lite Verifi-

cation IP. Truechip. URL: http://www.truechip.net/AMBA-AHB3-VIP.html.

[46] Goering R. (Accessed: October 19th 2016) Interconnect Workbench Eases Anal-

ysis and Verification for ARM-Based SoCs. Industry Insight Blogs. Cadence

Design Systems, Inc. URL: https://community.cadence.com/ca-

dence_blogs_8/b/ii/archive/2012/10/09/interconnect-workbench-eases-analy-

sis-and-verification-for-arm-based-socs.

[47] Sonics, Inc. (Accessed: October 19th 2016) SonicsStudio Director Product Brief.

Sonics, Inc. URL: http://sonicsinc.com/products/development-tools/sonicsstu-

dio-director/

[48] Synopsys. (Accessed: October 19th 2016) Platform Architect. PROTOTYPING

- ARCHITECTURE DESIGN. URL: https://www.synopsys.com/Prototyp-

ing/ArchitectureDesign/pages/platform-architect.aspx.

[49] Lehongre D. (Accessed: November 28th 2016) SoC interconnect performance

verification methodology based on hardware emulator. Design & Reuse.

62

STMicroelectronics. URL: http://www.design-reuse.com/articles/16220/soc-in-

terconnect-performance-verification-methodology-based-on-hardware-emula-

tor.html.

