

University of Oulu

DEGREE PROGRAMME IN ELECTRICAL ENGINEERING

MASTER’S THESIS

MULTIPURPOSE SYNTHESIZABLE

SYSTEMVERILOG SPI-BUS PROTOCOL

VERIFICATION SYSTEM

 Author Markku Raappana

 Supervisor Jukka Lahti

 Second Examiner Juha Häkkinen

 Technical advisor Teemu Sirviö

December 2016

Raappana M. (2016) Multipurpose Synthesizable SystemVerilog Spi-Bus

Protocol Verification System. University of Oulu, Degree Programme in Electrical

Engineering. Master’s Thesis, 50p.

ABSTRACT

The complexity of System-on-a-Chip (SoC) is continuing to increase due to the

shrinking die size, increase in the number of sub-modules, power efficiency,

performance, higher functionality and used protocols. This has an impact on the

verification process related to the overall design process.

For the verification process, there are commercial products that can be applied

in order to verify and test certain Intellectual Properties (IP) but also platforms

that lack these tools. This thesis focuses on the issue where a system has to be

constructed that helps the verification and testing process of a data bus protocol

used by the Device Under Testing (DUT).

The study of the Serial Peripheral Interface (SPI) gives the examples of some

issues that can be faced during applying this data bus protocol to any given

system.

Different kinds of testing and verifying methods are addressed in order to

show what the tools can be when applying new DUT to a system or examining the

data bus protocol it uses.

The flow of a design process is studied by showing the iterations of a particular

system that was to be created to meet the need that were introduced while

examining the issues relating this subject. This flow can be said to start from

ground level and end to the final iteration where the system could be created

from.

The functionality and structure of a Multipurpose Verification System that

was created during this thesis are explained. The proofing process of this system

is showed by examining the simulation and synthesis reports.

The outcomes and future development ideas are discussed as well. This thesis

showed that the study in hand has benefits to Nokia as the applying company and

the system could be added to the company tool library after modifying it to be

used as a stand-alone IP.

Key words: verification, synthesis, prototyping, SPI, SystemVerilog, testing.

Raappana M. (2016) Monikäyttöinen syntetisoituva SystemVerilog SPI-

väyläprotokollan verifiointijärjestelmä. Oulun yliopisto, sähkötekniikan

koulutusohjelma. Diplomityö, 50s.

TIIVISTELMÄ

Järjestelmäpiirien (SOC) kompleksisuus on jatkuvassa kasvussa johtuen

johdinpiirien pienenemisestä, alijärjestelmien määrän kasvusta, vaatimuksista

tehonkulutuksessa, suorituskyvyn kasvusta, toiminnallisuuden kasvusta ja

käytettävistä protokollista. Näillä attribuuteilla on vaikutusta

kokonaissuunnitteluprosessin verifiointiprosessiin.

Verifiointiprosessiin on tällä hetkellä saatavilla kaupallisia sovelluksia, joita

voidaan hyödyntää kolmannen osapuolen suunnitteleman systeemin testaukseen

ja verifioitiin. Samalla on myös olemassa testausalustoja, joista nämä sovellukset

puuttuvat. Tämä diplomityö keskittyy tilanteeseen, jossa täytyy rakentaa

systeemi joka helpottaa testattavassa laitteessa (DUT) käytettävän

tietoväyläprotokollan verifiointi- ja testausprosessia.

Serial Peripheral Interface (SPI)-väyläprotokollan tutkimus tuo esiin

esimerkkejä, joihin voidaan törmätä, kun kyseistä väyläprotokollaa käytetään

missä tahansa sitä hyödyntävässä systeemissä.

Diplomityössä tutkitaan erilaisia testaus- ja verifiointimetodeja, jotta voidaan

osoittaa mitä erilaisia työkaluja voidaan hyödyntää, kun uusi testattava laite

lisätään olemassa olevaan systeemiin tai tutkitaan tämän käyttämää

väyläprotokollaa.

Kokonaissuunnitteluprosessia on tutkittu esittelemällä tietyn järjestelmän

iteraatiovaiheita, joka kehitettiin ratkaisemaan aiemmin tarkasteltuja, tähän

aiheeseen liittyviä ongelmia. Suunnitteluprosessin voidaan katsoa alkaneen

tilanteesta, jossa mitään konkreettista ei ollut vielä valmiina ja päättyvän

tilanteeseen jossa järjestelmän viimeinen iteraatio voitiin alkaa konkretisoimaan.

Monikäyttöisen syntetisoituvan verifiointijärjestelmän funktionaalisuus ja

rakenne esitellään. Tutkimalla simulointi- ja synteesiraportteja näytetään tämän

järjestelmän varmennusprosessi.

Diplomityön toteutumista ja tulevaisuuden jatkokehitysideoista keskustellaan.

Tämä diplomityö osoittaa, että Nokia soveltajayrityksenä pystyy hyödyntämään

tämän tutkielman lopputulemia. Lisäksi työn tulokset voidaan lisätä,

modifioinnin jälkeen, yrityksen komponenttikirjastoon toimimaan itsenäisenä

instanssina.

Avainsanat: verifiointi, synteesi, prototypointi, SPI, SystemVerilog, testaus.

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

LIST OF ABBREVIATIONS AND SYMBOLS

1. INTRODUCTION .. 7

2. SERIAL PERIPHERAL INTERFACE .. 9

2.1. Serial Peripheral Interface ... 9

2.2. SPI structure .. 9

2.3. Modes .. 13

3. TESTING AND VERIFICATION ... 17

3.1. Testbench ... 17

3.2. Prototyping .. 18

3.3. Design checks based on assertions .. 20

4. DEVELOPMENT OF THE MULTIPURPOSE VERIFICATION SYSTEM . 23

4.1. Ground Zero .. 23

4.2. Multipurpose Verification System .. 24

4.3. Hardware versus Software ... 25

4.4. General Purpose Model and Softcore .. 26

4.5. Final Approach .. 27

4.6. Related Solutions ... 29

5. SYNTHESIZING AND FPGA PROTOTYPING .. 31

5.1. Declaring the Designs Main and Submodules ... 31

5.2. Verification .. 33

5.3. Synthesis .. 35

6. DISCUSSION ... 36

7. SUMMARY .. 38

8. REFERENCES ... 39

9. APPENDICES .. 42

FOREWORD

This Master’s Thesis was done for the Nokia Mobile Network SoC Prototyping and

Qualification team during the autumn 2016. The aim of this work was to create a

synthesizable SPI-bus protocol testing and verification system that could be used in

different platforms, i.e in simulator-, emulator- and FPGA-platforms.

I would like to thank my Technical supervisors M.Sc. Teemu Sirviö and M.Sc. Esa-

Matti Turtinen for taking time to listen and evaluating the original idea for this thesis

and giving me the opportunity to do this thesis. The appreciation also goes to Nokia

Mobile Networks that gave me the possibility and resources to actualize this thesis. I

would also like to give my gratitude to M.Sc. Aku Mikkonen and B.Sc. Ari Hautala

who had the necessary knowledge, insight, expertize and patience to help me during

this process. Thank you Dr. Jukka Lahti for giving me advice and guidance and for

supervising this thesis.

The last but not the least, kudos and love go to my family just for being there for

me.

Oulu December 2016

Markku Raappana

LIST OF ABBREVIATIONS AND SYMBOLS

ACE Advanced Extensible Interface Coherency Extensions

AIP Assertive Intellectual Property

AIP Assertion Based Intellectual Property Checker

AMBA Advanced Microcontroller Bus Architecture

ASIC Application-Specific Integrated Circuit

AXI4-lite Advanced Extensible Interface 4 Lite

BRAM Block Random Access Memory

CAN Controller Area Network

CPHA Clock Phase

CPOL Clock Polarity

CPU Central Processing Unit

DORD Data Order

DUT Device under Testing

EDA Electronic Design Automation

EEPROM Electrically Erasable Programmable Read-Only Memory

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Description Language

I2C Inter-Integrated Circuit

IP Intellectual Property

LSB Least Significant Bit

LUT Look up Table

MSB Most Significant Bit

MVS Multipurpose Verification System

OOP Object Oriented Programming

PCB Printed Circuit Board

RAM Random Access Memory

RTL Register-Transfer Language

SOC System on Chip

SPI Serial Peripheral Interface

SVA SystemVerilog Assertion

UVM Universal Verification Methodology

VHDL Very High Speed Integrated Circuit Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VIP Verification Intellectual Property

mW Milliwatt

1. INTRODUCTION

While the designing of a System-on-a-Chip (SoC) becomes more and more

complicated, because the number of gates is increasingly getting bigger and bigger as

predicted by Moore’s law [1], the importance of the system verification is evenly

increasing. The overall challenges are getting more complex due to the shrinking die

size, increase in the number of sub-modules, power efficiency, performance, higher

functionality and used protocols.[2]

An American freethinker H. L. Menchen once said in the 1910’s, ”There is always

a well-known solution to every human problem ̶ neat, plausible and wrong.”.[3] When

this thesis was started, it appeared that this aphorism hold the very truth for the problem

how to ensure that the bus protocol used holds its specification where it cannot be

ensured with tools available?

The problem arose while examining an entity, using the Serial Peripheral Interface

(SPI) that did not have any counterpart to test it against to. While appearing completely

valid, the data transmitted via this entity, did not hold the specification when used in a

proper context. At the time, an ad hoc solution was used in a form of adding an external

system to the design in hand. This solution seemed to be useful in this case but a need

for more robust, versatile, visible and generic solution was clearly seen.

A system that could be used to monitor and verify the used bus protocol in different

platforms would be the most suited for these kind of situations. The problem is shown

in Figure 1, where the bus protocol used between the Central Processing Unit (CPU)

and the Device under Testing (DUT) is verified but the bus protocol between the DUT

and the Verification Intellectual Property (VIP) is not.

CPU DUT VIP

VERIFIED

BUS

PROTOCOL

UNVERIFIED

BUS

PROTOCOL

Figure 1. A graphical presentation of a bus verification problem.

 It was studied if existing commercial solutions could be used such as a VIP, an

Assertive Intellectual Property (AIP) or a bus protocol analyzer but they were limited

to be used in specific platforms and didn’t hold all the functionality needed. The AIP

and bus protocol analyzer would analyze the data bus itself but do not take a stand

what happens on the other end of the bus. A need for company specific tool was

inevitable and the company needs in its repertoire a tool that can make this analysis at

the receiving end. Thus ,the quest of a multipurpose tool was started.

A plausible solution was manifested when SystemVerilog Assertions (SVA) were

introduced to the author of this thesis. The SystemVerilog had evolved via iterations

8

to a point where it could be reasonably utilized to solve some aspects of the given

problem.[4][5][6][7][8]

The goal was to design a system that could be used to verify the used bus protocol

with a reasonable degree of certainty with selected preconditions. The system would

have to be designed so that it could be fitted to be used in simulation, emulation as

well as in circuit implementation by logic synthesis. In this work it was studied what

is the most suitable approach for creating the previously mentioned system. The

system configuration and functionality are studied and they are iterated to meet the

specification. The SPI bus protocol characteristics are explained and the main testing

and verification methods are addressed. Chapter 2 is dedicated to explaining to the

reader how the SPI bus protocol is constructed and used. The theory gives to the reader

basic understanding why the bus has to be verified and monitored. Also the reasons

for a potential error are explained.

The reader is familiarized with the commonly used testing and verification methods in

Chapter 3. This chapter also explains some of the issues when applying different kinds

of methods to the existing DUT. In Chapter 4 it is explained what was the path when

the systems configuration was studied. All the iterations are explained to the reader.

The ideas behind these iterations are addressed, as well as the reasons why they were

discarded or taken to a further study. Chapter 5 explains to the reader how the final

iteration was created using SystemVerilog and how it was simulated and tested in order

to verify its functionality. In Chapters 6 and 7, it is discussed what were the outcomes

of this work. It is also addressed what could be the further ideas for developing the

system and what could be the alternative approaches towards to the original problem.

9

2. SERIAL PERIPHERAL INTERFACE

This chapter is designated to SPI. The basic functionality of this bus protocol is

explained and the structure of this bus protocol is shown.

2.1. Serial Peripheral Interface

Serial Peripheral Interface, or SPI for short, was originally introduced by the Motorola

Company in the late 1980’s. The reason for adapting this new protocol was to replace

parallel interfaces inside in any suitable system. Using this serial interface instead of

parallel interfaces would inevitably reduce the volume of wires needed for the routing

without reducing the data transfer speeds.[9]

The simplicity of the interfacing and the theoretical as well as concrete data transfer

speeds made SPI easy to adopt throughout the electric industry. Currently SPI can be

stated to be a de facto standard in short distance data transfer primarily in embedded

systems.[9]

The loosely standardized protocol gives the user, in a default version, a full duplex

communication with flexible bit range and with low power consumption. The

synchronous data transfer is using only one clock provided by the SPI-master unit so

the SPI-slave units can be designed without expensive precision oscillators. However,

this does not apply to units that can act both SPI-master and –slave.

Even though the SPI is a widely used protocol, there is no official formal, separate

specification of the SPI-bus. The specification can be obtained from separate

documents provided by the component vendors that use the SPI in their products.[9]

2.2. SPI structure

The SPI was introduced in its default form as a four-wire serial communication

interface. These wires included all the information that the devices needed for the

device-to-device communication between the SPI-master and -slave. The signal wires

include SCKL- (Master Clock), MOSI- (Master out Slave In), MISO- (Master in Slave

Out) and SS-signal (Slave Select) in the default form. Any system using the SPI-

protocol can be implemented with additional wiring for extra signals; however these

wires are not part of the SPI-protocol but can be implemented if needed.[9]

The SPI-master is acting always in the dominant role during the communication.

The master decides when and what the slave component will be addressed in order to

start the synchronized communication by enabling the slave select signal for that

particular device. The slave select is usually used as zero-active-signal. Due to the

loose standardization of the SPI-bus protocol, it can be said that usually the slave select

signal is pulled low in this addressing state of the communication. This method

releases the system from using unit addresses when addressing the SPI-slave

counterparts. In theory, the number of slaves is not limited in any way. The negative

side of this method is that every SPI-slave has to have its own slave select line if more

than one slave is driven by the SPI-master shown in Figure 2.[10]

10

MOSI

MISO

SCLK

SS

SPI

SLAVE

MOSI

MISO

SCLK

SS

SPI

SLAVE

MOSI

MISO

SCLK

SS

SPI

SLAVE

MOSI

MISO

SCLK

SS1

SPI

MASTER

SS2

SS3

Figure 2. SPI implementation.

SPI uses pull-up and pull-down resistors in signal lines in order to gain their idle

status. Depending on the configuration, either logical 1 or 0 is then considered as the

active state. If the slave-select signal is not in an active state, all the output signal lines

for the SPI-slaves are driven to a high impedance state. Due to this, all the slaves can

use the same signal lines, because a separate slave unit does not have an effect on the

signal line status. Since the SPI is considered as default, a full-duplex synchronized

communication protocol, the transmission state, is divided using the opposite edges of

the clock signal between the SPI-master and –slave. In practice, the system is using

shift registers in order to reach this functionality, as shown in Figure 3.[9][10]

LSB 1 2 3 4 5 6 MSB

SPI MASTER

LSB 1 2 3 4 5 6 MSB

SPI SLAVE
SS

SCLK

MOSI

MISO

SHIFT REGISTER SHIFT REGISTER

SCLK EDGE SCLK EDGE

Figure 3. SPI shift register hardware setup for master-slave transaction.

11

However, the full-duplex communication does not include any form of

acknowledgement between the counterparts. This can be said to be built-in

functionality of the SPI-protocol. After the transmission is started, by activating the

slave select signal, the SPI-master sends the data Most Significant Bit (MSB) bit firsts

to the SPI-slave shift registers Least Significant Bit (LSB), evicting or shifting that bit.

This starts the transmission in the SPI-slaves shift register where the MSB-bit is sent

to the SPI-master shift register LSB, evicting that bit or shifting it. This when Data

Order 0 (DORD) is in use. If the MSB and LSB order is reversed, the DORD is

considered to be 1. Even if the SPI-slave is transmitting data towards the SPI-master,

the SPI-master may ignore this transmission. This is not problematic per se since the

master may ignore the incoming transmission if it does not affect the SPI-master’s

functionality. This functionality can be utilized when the SPI-slaves are used in daisy

chain-configuration shown in Figure 4.[9][10]

MOSI

MISO

SCLK

SS

SPI

SLAVE

MOSI

MISO

SCLK

SS

SPI

SLAVE

MOSI

MISO

SCLK

SS

SPI

SLAVE

MOSI

MISO

SCLK

SS1

SPI

MASTER

SS2

SS3

Figure 4. SPI daisy chain-implementation

However, the possibility to ignore the transmission in either direction can be

problematic because neither of the counterparts do not have the knowledge whether

the transmission is received or not. The “in-build” lack of acknowledgement makes

the system faster but vulnerable to making a transmission to the void. This is one the

main issues that is addressed in this thesis in coming chapters.[9]

12

The SPI-protocol is highly flexible regarding the length of the data word,

transmission length and transmission periodization. The new features such as quad- or

double-protocol even broaden the spectrum of these parameters. In Figure 5, it is

shown how MOSI-signal (PIN0) and the following MISO-signals (PIN 1 to 3) are

behaving during a read operation. In the extended-protocol SPI-master is addressing

the slave first via MOSI-line (PIN0) and receiving the response via MISO-line (PIN1)

in consecutive order. In the dual- and quad-protocol, all the lines are used by

partitioning both excitation and response evenly between the signal lines.[11]

Figure 5. An example from extended-, dual and quad-protocol serial read operation.

In Figure 5, the slave-signal is not shown. Where the extended protocol is using two

unidirectional lines the dual and quad are using bidirectional lines for data transfer.

For the data transfer length calculations in clock cycles, the following formulas can be

used. For the extended protocol, Formula (1), for the dual protocol, Formula (2) and

for the quad protocol, Formula (3) respectively.

𝑁 − 𝑥 = 7 + (𝐴𝑑𝑑𝑟𝑒𝑠𝑠[𝑚𝑎𝑥] + 1) (1)

𝑁 − 𝑥 = 3 +
 3 + (𝐴𝑑𝑑𝑟𝑒𝑠𝑠[𝑚𝑎𝑥] +1)

2
 (2)

𝑁 − 𝑥 = 3 +
 1 + (𝐴𝑑𝑑𝑟𝑒𝑠𝑠[𝑚𝑎𝑥] +1)

4
 (3)

The SPI-protocol in its default form uses 8-bit data or byte manifold as the base

length in transmissions. However, this is not limiting any system to use a different kind

of widths in data words. Because the basic communication relies on use of shift

13

registers, both of the instances using the SPI-bus, should be using the same size shift

registers and the protocol should also support that size. Whereas this feature might

help the hardware usage in some extension, it also makes the system testing more

complicated.[10]

2.3. Modes

In section 2.2, it was mentioned that the transmission between SPI-master and –slave

could be problematic due the lack of acknowledgement. This can be due to the modes

that the instances are using. By default, devices have to use the same mode in order to

be able to communicate with each other. The SPI-protocol is using four different kind

of modes. The modes differ from each other depending on the Clock Phase (CPHA)

and Clock Polarity (CPOL) they are using. An additional feature is DORD that defines

whether the MSB or LSB is sent first. These combinations are shown in Figure 6 and

in Figure 7, respectively.[9][12]

Figure 6. SPI-bus protocol modes 0 and 2 with CPHA 0. The slave select is zero

active.

14

Figure 7. SPI-bus protocol modes 1 and 3 with CPHA 1. The slave select is zero

active.

The CPOL defines the idle and active state of the clock. The CPHA defines which

edge of the clock phase is used to sample the signal. These parameters set the number

of modes to four as explained in Table 1 and Figure 8.

Table 1. CPOL and CPHA functionality in different SPI-modes

 Leading Edge Falling Edge SPI Mode

CPOL = 0, CPHA = 0 Sample (Rising) Setup (Falling) 0

CPOL = 0, CPHA = 1 Setup (Rising) Sample (Falling) 1

CPOL = 1, CPHA = 0 Sample (Falling) Setup (Rising) 2

CPOL = 1, CPHA = 1 Setup (Falling) Sample (Rising) 3

15

C
lo

c
k
 P

o
la

ri
ty

 (
C

P
O

L
)

Clock Phase (CPHA)

C
P

O
L

 =
 0

C
P

O
L

 =
 1

Sample Sample

SampleSample

CPHA = 0 CPHA = 1

MODE 0

MODE 3MODE 2

MODE 1

Figure 8. The four SPI-modes corresponding to the states of CPHA and CPOL

parameters.

 If the DORD is taken into account, the number of unofficial modes rises to eight.

This results in a situation where the designer has to have encompassing knowledge of

the functionality of the instances used. This will be addressed more thoroughly in

section 4.1.

The mode dictates the basic functionality of the SPI-instance. This means that the

received data is always literally interpreted by the receiving counterpart. The

ambiguity of the data is not taken into any account. This subject is addressed in more

details in coming sections.

Usually the modes can be changed for the master when initializing the instance.

The SPI-slave components are on the other hand more or less static when it comes to

the mode selection. This means that the SPI-master component has to adapt to the used

protocol between SPI-master and –slave. Because there is no standardized hand-

shaking-protocol for the SPI-bus, the initial hand-shaking is made via trial-and-error

if the mode used is not known or additional signaling is configured to co-exist aside

the SPI-bus.[13] As mentioned earlier, the data from SPI-bus is interpreted literally by

the receiver, the received data can cause the SPI-instance to react to the incoming data.

The response on the other hand might not be as desired. This is why the mode selection

is vital and has to be the same for both instances in order to avoid plausible

communication.

To clarify the last clause in the previous sentence, it has to be understood that when

the data is received it will be translated by the receiver. If the translation is then in any

executable form, the decoded instruction (previously referred to as data) will be

executed. The execution is the literal result of the interpreted instruction. If the

interpretation is close enough to the “right one”, the executed instruction might result

in a response that is plausible but not right. The following analogue could explain the

situation. When asked ”Name a domesticated feline?”, if the answer was “A tiger.” the

answer would be plausible but wrong. This kind of an error could be spotted, for

16

example, from thoroughly examining the response from waveforms or using design

language specific property checks and assertions. If the designers do not use these

kinds of methods but rather use assumptions, such as “If a response is gained, then the

system is working.”, the plausible functionality stays and the wrong mode might be

left unfixed. This subject will be addressed more thoroughly in Chapter 4.

17

3. TESTING AND VERIFICATION

The good design practice indicates that in order to pass design criteria a new design

has to be tested and verified.[14] The design has the desired properties only in paper

if it is not tested in any way. This is a common problem when new designs are created.

If a new Intellectual Property (IP) is created but there is no counterpart to test it against

to, the IP’s functionality can be only guessed.[15] This can be solved either by using

testbenches with verification IP’s, real components or using logic analyzers. Each of

these has their own advantages and disadvantages.

In frontend testing, the designer has to evaluate what is the most efficient way to

make these tests in order to see how the design is behaving. The following sub sections

try to give some points of view what to expect when using these different techniques.

3.1. Testbench

A common way to test the new design is to test it in a testbench that is created

specifically to fit the design in hand. This practice can be utilized by using highly

complex Hardware Description Language (HDL) structures. A commonly used HDL

language is Universal Verification Methodology (UVM). A testbench topology

created with UVM is shown in Figure 9.

SEQUENCES
SEQUENCER DRIVER

CONFIG

AGENT

ANALYSIS

COMPONENT
MONITOR

AGENT

CONFIG

ENVIRONMENT

TEST

IN
T

E
R

F
A

C
E

IN
T

E
R

F
A

C
E

DUT

TESTBENCH

Figure 9. UVM-testbench layout.

The other way to proceed is by feeding the DUT’s inputs with desired data and

monitoring the outputs in a simple manner, as shown in Figure 10.[16][17]

18

TESTBENCH

SEQUENCER DUT VIP

VIP MONITORDUT MONITOR

Figure 10. Simple HDL-testbench layout.

These testbenches can usually be used in simulations and emulators. If these were

to be used in Field Programmable Gate Array (FPGA) environment, the RTL/HDL

has to be fully synthesizable or some actions have to be done in order to implement

the design to the FPGA, i.e. the use of transactors and other instances alike is vital.

The transactor is a component that actively interacts with the DUT interfaces. The

testbenches are configurable and can be fed with large data patterns in order to cover

all the corner cases inside the system.

The creation of the testbench can be even more time consuming than the DUT

design. So in order to use testbenches, the designer has to be sure that all the

specifications around the DUT are valid. Usually testbenches are created separately

from the DUT. This is advisable in order to reduce the error margin.

The testbench can be fitted to include automatic evaluating properties, aka

assertions, that indicate if the functionality of the DUT is compromised due

inconsistencies in internal or external signals. Assertions however can be only utilized

in simulations and emulations this is due assertions do not compile in synthesis tools.

Adding assertions to the RTL design is highly advisable and using SVA is an ever

increasing method in RTL designing.[18]

Using testbenches gives many possibilities to the designer to check the functionality

of the system via tools provided by the simulator, emulator and third party vendor

analyzing tools.

3.2. Prototyping

The prototyping process can include implementing highly complex devices in to the

design. If the interoperability is to be tested using real components, there is a need to

19

minimize the possible problems that might occur while the SOC is in ramp up-stage

with the attached components.

Using actual components such as Electrically Erasable Programmable Read-Only

Memories (EEPROM) driven with SPI- or Inter-Integrated Circuit (I2C) –busses can

be justifiable when time is of essence and the component can be attached to the system

with relative ease. This might be the situation where parts of the design can be driven

separately using emulator or FPGA. This method is even recommendable if it enables

the usage of the same components that are present in the final product. Usually the

vendors provide accurate and specific datasheets that help the designer to use the DUT

as it should in a real situation.[19]

The downside is the need for PCB’s or equivalent systems to implement these

components to the existing design shown in Figure 11. If the bring-up connection

board can be designed along the new design, it is very usable throughout the design

flow. This could prevent problems that are caused by thermal, connectivity,

mechanical or electrical mismatches between the used design and the implemented

circuits. This approach to testing and verifying the DUT does not exactly follow the

main principles in the good design practice and is considered to be more of a shortcut

or ad-hoc than a proper testing practice if it doesn’t follow the given design rules and

specification regarding the design in hand.[19]

Figure 11. 3-D model of a daughter board to be used in testing environment.

One has to take into account also the fact that if visibility to the DUT is of

importance, the use of the actual component can be problematic. The emulator vendors

provide tools for checking these properties via internal waveforms with ease but when

using FPGA-environment, the designer has to have good knowledge over the design

20

in order to use ILA’s (Integrated Logic Analyzer) in right nets [20]. An alternative

approach is to use an EDA vendor tool that enables the designer to choose the desired

signals that are to be monitored with limitations such as sample length and number of

signals. [21] If the design (DUT) can be transferred to FPGA-environment as it is after

synthesis, the nets can be checked from the netlist. If the design is compiled and

downloaded to FPGA with changes the RTL has to be constructed so that there are

points created where probes can be mapped to. This method enables the test engineer

to use a logic analyzer with multiple channels and good resolution to check the actual

signals generated by the DUT or the real component. Where an emulator can be used,

the instances like the FPGA ILA’s, are just a stack memories that can be analyzed. It

has to be stated that with emulators there are no means to check the external signals

without using additional equipment such as an oscilloscope.

3.3. Design checks based on assertions

A growing trend among companies that are involved in RTL-design is to use RTL-

language specific design property checks and assertions to check and verify the

produced RTL-code. By using assertions and property checkers, the design procedure

is under constant observation design checking-wise. The main reason for using

assertions and property checks along the RTL-coding is to reduce the overall design

time.[18]

The assertion can be implemented directly to the RTL-code as an immediate

assertion for example to check certain randomization casting values or used as a

separate assertion module where concurrent assertions are used to check any variation

of single or multiple signal behavior.[16][18][22]

Using assertions to check the design during RTL-coding helps the design engineers

to make pre-verification testing in order to ensure that the RTL-code produced meets

the given specification. The RTL-code is basically tested while it is written because

the use of assertions makes the designer to follow his/her interpretation of the design

specification to the full. This means that if the designer writes an assertion that he/she

knows to fail every time, there has to be a fault in the original RTL-code and vice

versa.[16][18][22]

The assertion-based methodology has proven to be a very useful tool for the design

engineers to make good code. The problem, however, has been that although the

methodology is recognized to be useful the verbosity has been the most negative key

feature for the designers to adapt the methodology in broader use. This has been

identified by the EDA-vendors and has been addressed by means of simplifying the

syntax for example in SystemVerilog. An example can be presented to clarify this

situation. The three following RTL examples have the same functionality but the

verbosity is lessened with every subsequent example. The property statement evaluates

sequential expressions that are to be asserted true or false.[18][22]

21

In this example, the lines were reduced significantly and the verbosity lessened

considerably. Even this improvement has shown to be insufficient from the designer’s

point of view so the assertions can be presented as macros, hence the verbosity is set

to almost minimum.

After initializing the macro where sampling signals “if and only if”-expressions are

stated the use of assertions is made quite easy syntax-wice. The structure of the

assertions is however present and to be solved by the designer. The macro can then be

utilized with multiple assertions.

property A1;

@(sampling_signal) disable iff (expression)

property_sequence_or_expression

endproperty

assert property (A1) optional_action_block;

Example

property A1;

@(posedge sclk) disable iff (!rst_n)

a |-> ##1 b |-> ##1 a

endproperty

assert property (A1)

else $error(“Wrong sequence %h did not follow %h in given time or %h did

not follow %h in given time”, b, a, a, b);

 ERROR_b_did_not_follow_a_or_a_did_not_follow_b:

assert property (@(posedge sclk) disable iff (!rst_n)

(a |-> ##1 b |-> ##1 a));

`define assert_clk(arg) \

assert property (@(posedge sclk) disable iff (!rst_n) arg)

ERROR_b_did_not_follow_a_or_a_did_not_follow_b:

`assert_clk(a |-> ##1 b |-> ##1 a);

ERROR_a_did_not_follow_c_or_b_did_not_follow_a:

`assert_clk(c |-> ##1 a |-> ##1 b);

22

After defining the macro, the number of lines is not actually reduced so much but

the syntax is simpler and number of characters is less than in the previous example. It

is worth mentioning that the designer has less concern about the use of brackets in this

last example.[22]

Using assertions makes it easy for the designer to follow any possible faults inside

the design if the labeling or optional assertion action block is stated properly. This is a

very useful way of using assertions since after error has occurred most EDA-vendors

provide an option to follow the signals in their waveform displays. If the previous

syntax is used, all the signals stated in the assertion will be visible and no tracing is

needed outside the context, an example of this is shown in Figure 12.

Figure 12. An example from assertion signal dependency visibility in a simulator

waveform generator. The assertion length is shown after the zero label as

blue lines.

 Since the assertions and property checkers are used mainly in simulation

environment, it is advisable to use them in a separate module that can be implemented

to the design via bind-statement. It can be said that every minute used to make

assertions for a new design is gained back in manifold during the verification.[18]

The same principle is utilized by the EDA-vendors in their component libraries.

Quite recently the vendors have released AIP’s (Assertion based Intellectual Property

checker) that use property checks and assertions to verify that the used bus protocols

behavior is as desired. These AIP’s (Assertion based Intellectual Property checker) are

UVM based instances that use assertions and property checks to verify that the used

buses follow all the given specifications and that their behavior is as desired.

23

4. DEVELOPMENT OF THE MULTIPURPOSE

VERIFICATION SYSTEM

In this chapter it is explained what where the stepping points in this thesis project while

choosing the approach angle to the final design. The original problem and the initial

solution for this problem are also elaborated.

4.1. Ground Zero

A fundamental question can arise when testing a new DUT against a VIP that has not

been verified, namely, whether the failed test is caused by the DUT or by the VIP. This

can be the situation in pre-verification when new modules are implemented to

immature design. Every new driver and DUT has to be tested and verified before they

can be implemented to the design.

If the situation is as mentioned previously, it is impossible to determine where the

problem is if the designer is using the assumption that he or she is using a valid DUT

with valid configuration against a valid VIP. In a case like this the designer has to

detect if the DUT, the configuration or the VIP is faulty or any combination of these.

An example can be presented using simple SPI-bus protocol read operation between a

SPI-master-component (which can be interpreted to act as a DUT in a simulation) and

a SPI-slave-component (which can be interpreted to act as a VIP in a simulation) as

shown in the waveform in Figure 13.

Figure 13. A fault in the initial handshake between the SPI-master- and SPI-slave-

component.

Without examining the datasheets of the SPI-master and SPI-slave, the waveform

above cannot be unambiguously explained. In this case, the SPI-master is trying to

make a one byte read operation using little-endian where the LSB is sent first.

However, the SPI-slave is using big-endian, where the MSB is sent first, so the SPI-

slave is translating the transmitted data as write function request of three byte-length

to a certain address. In a way both components are functioning completely correct

however, the result is unwanted.

The scenario above is made by mimicking real components but in pre-verification

state, the components are created in a simulator from RTL-code. The problem is that

these RTL-generated components do not have documentation ready that specify their

behavior and functionality, but are merely constructed by applying architectural

guidelines and design specifications. If there are any mismatches between the

documents and the RTL, there is a great risk that the design does not work as it should.

When facing a situation where the system is not working as it is presumed, the

designer has to pinpoint the origin of error in order to fix the problem and to get the

desired functionality to the system. If the designer is confident, that he or she has done

24

everything right with the DUT configuration and that the DUT is constructed right, it

is easy to point the finger towards the VIP. But how to be sure that the VIP is

constructed wrongly? Alternatively, is the origin of error inside the DUT or in the

configuration? To understand the behavior of some particular instance, the designer

would have to have access to the RTL source code and further-more have the

knowledge how to interpret that code.

4.2. Multipurpose Verification System

As a result to the problem manifested in the previous section, a concept of

Multipurpose Verification System (MVS) was introduced. It seemed that this concept

could have answers for the questions about the bus protocol current state. It would also

use assertions and property checks to monitor the transmitted data from the DUT. A

general configuration of this system is shown in Figure 14.

DUT

MVS

-Property checks

-Assertions

-Data sampling

TX

TESTBENCH

Figure 14. Conceptual model of the multipurpose verification system.

The concept was drafted based on the problems faced while testing similar system.

The idea was based only on the fact that the bus protocol has to be checked before

making any further changes to the test environment. The MVS would make property

checks that would further on be asserted. The system would also hold some additional

properties such as data sampling. The concept also holds the idea about the

synthesizability and the use of SystemVerilog as the design language. The

synthesizability would also grant possibility to make initial testing locally, with partial

design in a single FPGA, instead of using the whole design with multiple FPGA’s.

After initial evaluation the MVS was supposed to be a monitoring unit where

transmitted data was evaluated and based on that evaluation, the user was to be

informed of how the transmitted data was seen from the receiving part point-of-view.

This manner of approach seemed to be quite straightforward and hold only one part of

the interaction between two instances.

More studies about the subject had to take place in this point. Further discussions

about the subject revealed also that mere monitoring was not sufficient for the designer

25

needs. The multipurpose verification system needed more functionality in order to be

useful. This lead to a situation where the concept had to be revised.

4.3. Hardware versus Software

The project was started from the hardware designer point-of-view. Even though this

approach would have been sufficient for some fields, the overall benefit was not

comprehensive enough. Where the hardware designer could examine one particular IP

module, a SPI-master module, in this context, as a DUT, the software designer needed

a more complex design as a DUT, in order to get the system tested see Figure 15.

PROCESSOR

CORE

CACHE

DOWN SIZER

INTERCONNECT

MAIN CPU

MEMORY CROSSBAR

AMBA CROSSBAR

PERIPHERAL

INTERFACES

IP
 M

O
D

U
L

E

IP
 M

O
D

U
L

E

IP
 M

O
D

U
L

E

IP
 M

O
D

U
L

E

IP
 M

O
D

U
L

E

DUT

AMBA BUS

AMBA BUS

AMBA BUS

SPI BUS

Figure 15. The module block for software designers DUT

In order to test a driver for peripheral interfaces the software designer needs to

utilize the main Central Processing Unit (CPU) and all the intermediate instances,

AMBA-buses (Advanced Microcontroller Bus Architecture) and AMBA-crossbars,

before reaching the final IP to be tested. This makes the testbench bigger in a sense of

26

the number of gates used. The size would inevitably limit the usage of it in laboratory

facilities due to the mere size of the design. The premeditated FPGA board would hold

4 million ASIC gates but if the needed design size would exceed that number, the near

personal workstation usage would be highly limited.

Whereas the software designer would treat the peripheral interface as a black-box

and the only interest is the output from that instance, the hardware designer would treat

that same instance as a white-box where the interest is in the functionality of that

particular instance. In both cases, there is a need for a data logger that would enable

the inspection of the output later in time. At this point the idea of a command logger

was born. This idea contained a concept where output data would be analyzed so that

the designer would have a clear view of the commands that he or she had written.

Instead of, from waveforms, binaries or hexadecimals the designer could read the

created command list in a text form.

To transform the data into readable form includes recording the DUT’s output data,

processing the data, comparing processed data to Look up Table (LUT) or alike and

finally creating a text file. The task would be a straightforward procedure if there were

only a few instances that the RAM would have to mimic, however the number of

instances would be far greater. Furthermore, if this concept needed to be scalable, the

system would have to be constructed with even more functionality than the latest

iteration implied at the beginning.

4.4. General Purpose Model and Softcore

The idea was to divide the multipurpose verification system into smaller separate

sections so that the design could be more controllable and generic. Instead of adding

all the functionality to one module, the design would be sectioned into generic register

bank section and to more detailed softcore section, a microprocessor implemented

using logic circuits, where the data from the registers could be processed as shown in

Figure 16.

PC

-Testpatterns

-Softcore Data

Analysis

T
R

A
N

S
A

C
T

O
R

DUT
Peripheral

Interface IP

Module

VIP
General

Purpose

Model

Softcore
-Data

Processing

FPGA ENVIRONMENT

Figure 16. The multipurpose verification system in FPGA environment.

27

The general-purpose model, referred to as VIP in Figure 16, would act as a counter

part for the DUT. As the SPI-bus protocol is constructed from sequential read and

write operations, this section doesn’t need to have any complex logic build inside it. If

simplified, it needs only to have configurable shift registers, register banks and

decoding logic. If functionality is needed, a look up table can be added in order to

mimic functionality of a SPI-slave.

By applying softcore to the system it is possible to make the system more flexible

to future changes to the system. If the arithmetic part of the design is separate from the

rest of the system, it is more easily configurable. The softcore can be driven through a

transactor if some particular functions are needed from the design and it can be

reconfigured at run time.

After this approach was chosen, a check was started of what are the options for

using the softcore as a part of this particular design. If the softcore was to be

implemented to the design, it had to be compatible to the used FPGA-family. This

would initially limit the use of the available softcores.[23][24] After starting the

survey, an idea arose that the logic inside the design could be brought out from the

design. All the data could be processed outside of the system since no real time

processing would be used. One of the possibilities was to use scripting language to

analyze and process the available data. This would mean that instead of using softcore,

the design would be implemented with a monitoring unit that could be accessed via a

transactor or even skip the monitoring unit and access the registers directly.[25]

Using this approach would minimize the area used for the synthesis. Instead of

using any logic inside the synthesized design, the system would be created so that the

use of hardware was as minimal as possible. This would eventually make the design

more flexible for future development.

4.5. Final Approach

In order to minimize the synthesizable area and to maximize the flexibility the design

was reorganized once more. As the need for the softcore was compromised, it was

removed from the final version. The decision was made to utilize Object Oriented

Programming (OOP) for the data analysis and driving the system. The OOP would

enable fast data processing and test data generation. Using the OOP would also benefit

from both software and hardware testing and verification, by giving them the same

accessibility to the test platform. The synthesizable section was to be made as small

and simple as possible and as much as possible of the functionality was to be

transferred out of the system to be processed with OOP.

The use of an EDA-tools component library would enable to generate most of the

instances inside the design automatically. This would mean that the main task was to

design an instance that would act as a MVS. The instance should be as generic as

possible. In order to achieve this goal, a configuration register would be needed. Using

this approach makes it possible to build an instance that could be used in various tasks

without making major changes to its base functionality. The block diagram of this

instance is presented in Figure 17. [26] To simplify the diagram, only a four wire SPI-

system with optional input signals is presented. The speed- and quad-SPI-mode are

excluded.

28

SPI TRANSMIT

BUFFER

TXBUF[X:0]

SHIFT REGISTER

SHIFT_REG[X:0]

SERIAL INPUT

BUFFER

RXBUF[X:0]

REG_0

REG_1

REG_N

REG_N-1

READ

DECODE

LOGIC

FRAME

DECODE

LOGIC

WRITE

DECODE

LOGIC

SCLK

CS

TXDATA

WRITE_EN

DATA[X:0]

ADD[X:0]

MEMORY BANK

READ_EN

DATA[X:0]

MOSI

MISO

CONTROL

SIGNAL

CONTROL

SIGNAL

SPI INSTANCE X

ADD[X:0]

Figure 17. SPI-module block diagram.

The system had to be constructed in a fashion that would enable it to be used in

different environments. This meant in practise that certain modules would be

implemented to the design. These modules make it possible to use data gathered from

the top level designs capture points or from the testbench and synchronize the use of

the data. The synchronization is handled by adding binary counter and pulse generator

to the system. Bus crossbars and bus bridges are configurable, which makes it possible

to change the I/O-ports to suit the DUT. The MVS is reconfigurable via the register

bank that hold the information for the parametrized instantiations inside the MVS as

well as other configurations for the system. The MVS is integrated into a unique closed

loop configuration. The generated memory block is accessible for both the MVS and

the master entity via a separate data access point. This enables the master entity to

make a comparison between the intended and actual actions through the testbench

instances such as DUT, transactor, crossbar, et cetera. In other words, a comparison

can be made whether the intended action, stimulus, reaches the MVS in correct form.

Since this is a conceptual approach, the more detailed information about the system is

not vital. The system level module block diagram is shown in Figure 18.

29

M
A

S
T

E
R

 E
N

T
IT

Y

T
O

P
 L

E
V

E
L

BUS CROSSBAR BUS BRIDGE DUT

MVS

BINARY

COUNTER

PULSE

GENERATOR

REGISTER BANK

CONFIGURATION AND PARAMETERS

A B
GENERATED

MEMORY BLOCK

MEMORY

CONTROL

BUS

ENABLE

CONTROL

SIGNAL
PARAM

CONF

FEEDBACK

SYSTEM MODULE

Figure 18. The system level module block diagram.

4.6. Related Solutions

The use of a commercial verification system was considered [27]. Many of the EDA

vendors had verification intellectual property products in their portfolio that could be

utilized in this project that could enable an alternative approach for the construction

[28][29][30][31]. It would be possible to use these instances as black boxes inside the

system.

By studying further this subject, the advantage of using these products was that the

products were already verified by the providing EDA vendor. All the available

assertion and verification IP’s are monitoring the functionality of a bus protocol and

giving indication if an error occurs during transmissions. A drawback in this solution

was that the provided VIP’s and AIP’s were suitable only in certain types of

environments i.e. in simulators and emulators. This was mainly due to the fact that

these instances were UVM-based. Nevertheless, these instances could be used to test

them in simulations that could help to evaluate them for further use.

Since there was possibility to use a ready-made environment created for the FPGA,

using commercial verification products seemed appealing. Negotiations were started

with the vendor to use their instances also in the synthesized environment. The vendor

would have to create an assertion and verification instance that could be synthesized.

It would be possible to reduce the amount of work to create a working system if the

vendor could provide the needed modules. The possibility to monitor the internal

signals for the VIP and AIP would also be highly appreciated and useful since it would

allow using the assertions via SVA bind-statement.

The preliminary testing for the commercial VIP and AIP would be done by utilizing

a SystemVerilog testbench with a small amount of write and read operations. If the

30

result would be promising, these instances were to be implemented to the existing

environment mentioned earlier. The benefit to use the commercial products is that the

product support would be left to the vendor.

Further studies regarding this subject were not done due to the workload for making

an evaluation that is more detailed to be included in this thesis, proved too great. This

meant that the preceding stage was going to be the platform for the coming

SystemVerilog-model.

In the following chapter it is explained how the models shown in Figure 17 and

Figure 18 were crafted into a synthesized models.

31

5. SYNTHESIZING AND FPGA PROTOTYPING

This chapter explains how the main principles and guidelines were adopted to the

creation of the design in hand. In addition, some key issues about the problems that

arose during this stage of the project are addressed as well.

5.1. Declaring the Designs Main and Submodules

The design had to be self-built from the very beginning, this meant that there were no

specifications or design rules that could be used as guidelines for the design. The

earlier research, documented in Chapter 2, had given some clues as to how to approach

the situation. Based on the developed block level model, presented in section 4.5, a

RTL-model had to be created for simulation and synthesis purposes.

One of the key issues was to decide whether to use the SPI-masters clock signal as

the designs main clock or choose a faster clock signal for the designed SPI-instance.

In the very beginning, the former alternative was chosen due to the properties that

some of the SPI-instances have as mentioned in Chapter 2. This decision made the

design to take a step towards being a product specific model rather than a general

purpose model.

The design was almost completed using only the SPI-master clock as the design

clock but the problems with dummy clock cycles needed for the data decoding and

register transfers led using a faster clock as the design clock would be more

advantageous. After the decision about the faster clock was made the base

functionality from the previous design was adopted to the new design with minor

changes. It was clear that some additional signals and finite state machines were

needed due to the faster clock.

The design was originally constructed under a single module but the need of

integrating this design into the existing modules, provided by numerous EDA vendors,

the design was split into three main parts shown in Figure 19.

32

SPI CONTROL

UNIT

SPI MASTER

CLOCK PHASE

DETECTION

MEMORY BLOCK

AXI4-LITE BUS

INTERFACEQSPI BUS

INTERFACE

GLOBAL

CLOCK AND

RESET

QSPI

AXI4-

LITE

AXI4-

LITE

CUSTOM

INTERCE

SPI MASTER

CLOCK

MVS

Figure 19. The module level schematics of the designed multipurpose verification

system instance.

The spi_control_unit-module would hold all the logic needed for the decoding and

signal processing where the phase_detection-module would handle the timing

regarding the SPI-master clock and the memory_block-module would act as a register

bank for the design. The lastly presented module would eventually be replaced with

another instance and therefore the functionality of this module was reduced to the

minimum and would hold only a limited address space. The design holds also a

SystemVerilog-file that enables the reconfiguring of the module via defining the

parameter values inside the SPI-module.

The memory_block was to be replaced with a register bank made with a specified

macro provided by the EDA vendor. This meant that the access interface was to be

modified to use the AXI4-lite interface instead of a custom interface used during the

preliminary configuration. The use of AXI4-lite interface would enable the designer

to change a memory block without making major changes to the RTL. Since there was

only read and write operations between the SPI-instance and the generated register

bank, the AXI4-lite interface did not hold all the functionality it possesses by default,

but the interfaces were to be customized to meet the specification needed for the

operations mentioned earlier.

33

The original design was modified so that it holds all the necessary signals for it to

be used as a master AXI4-lite-instance memory access-wise. The main principles for

these changes were obtained by following the guidelines in the AMBA® AXI® and

ACE® Protocol Specification provided by ARM®. [32] A BRAM-module (Block

Random Access Memory) with AXI4-lite-slave-interface was generated with IP-

generator in order to test the system in a simulator environment to the reasonable

extent. The conversion from the SPI-protocol to the AXI4-lite-protocol proved to be a

time-consuming process, however. This was because the conversion to this direction

was unorthodox. The variable parametrization was also a concern due to the big

differences between these two bus protocols. As an example, the data width used in

the SPI bus was eight bits whereas the AXI4-lite had fixed 32 bit data width. This

resulted in the fact that the used address space would have unused data storage. This

actually proved be a beneficial attribute because the SPI bus data width could be

adjusted without compromising the use of the fixed data width in AXI4-lite bus

because the data width in the SPI bus would not exceed the 32 bit.

5.2. Verification

The design had to be tested and verified before implementing it to FPGA-environment.

The simulations were run simultaneously using directed test randomization with two

different simulators, i.e. Mentor Graphics’ QuestaSim and Synopsys’ VCS. This was

done because it was shown that the simulators used different a kind of algorithms while

compiling the RTL. In a very early stage, there was a clear mismatch between

waveforms generated by these simulators. Each of the waveforms is shown in

Appendices Appendix 1 and Appendix 2. Thus, both were used in order to pre-verify

the RTL before applying a lint checker.

The RTL coding was generated following the basic guidelines of SystemVerilog

[8]. The design of the Finite State Machines (FSM) was the most time consuming part

of this work. In order to build the FSM functionality properly, all the documentation

for the used bus protocols had to be carefully familiarized. While debugging FSMs it

was shown that a minor error in document interpretation caused major faults in the

results. An example is shown in Appendix 3 in order to clarify the one hot FSM coding

style.

The SPI-bus uses a serial interface, whereas the AXI4-lite has a parallel bus

interface. This resulted in the fact that the SPI-bus would be the more limiting interface

and all the timing issues had to be addressed accordingly. The system was verified

using multiple sequential write and read operations that would give evidence that the

system is functioning as desired. The clocking frequencies ratios were also variated in

order to check whether to system can tolerate changes in the frequencies used. This

was one of the critical paths in design verification. The waveforms from these

operations are shown in Figure 20 and in Figure 21, respectively. A signal level AXI4-

lite write operation is explained in more details in Appendix 4.

By examining the waveforms, it was shown that the system had the desired

functionality. After lint checking, it was tested for the synthesizability.

34

Figure 20. SPI to AXI4-lite write operation.

Figure 21. SPI to AXI4-lite read operation.

35

5.3. Synthesis

As the goal for this thesis was to create a system that could be used in synthesis, the

design had to be checked for synthesizability. The design was checked using Xilinx’s

EDA tool Vivado. The design was checked as a stand-alone instance. The

synthetization report can be seen in Appendix 5. The synthesis report shows that the

design is synthesizable and it could be used in a FPGA platform.

After the synthesis, the design could be analyzed. The reports show that the design

used only parts of mil compared to the complete synthesizable area. The design uses

only a few hundreds of flip-flops and IO-buffers. This analysis does not take into

account the parts that are consumed by the register bank. The size of the register bank

is configurable and it is yet to be decided what is the optimal size and is there for not

addressed.

As in this state, the system is using up to 330 mW with medium confidence level.

As the setup and hold time restrictions were not defined the timing summary is only

partially examined. There were no timing violations present and for the system clock

overall slack, it could be stated to be 56% smaller than needed. As said earlier this

statement lacks some of the vital parameters needed for a conclusive analysis. The

MVS can be implemented to FPGA without having issues with used clock frequencies

nor used area. The physical level optimization of the design is out of the scope of this

thesis and is to be addressed in a future development state.

The scope for this study had been fulfilled at this point. Due to the nature of this

thesis the study was frozen. The future development would be to make the design

usable in the testbench library as a separate IP that could be implemented to any

suitable testbench. The configuration was introduced in section 4.5. All the needed

components would be implemented using available library components to the design

in hand.

36

6. DISCUSSION

This thesis focuses on the problem that arose when observing SPI-bus where the

stimulus provided towards the SPI-slave-component did not result in the desired

response. While examining the bus signals, it appeared that the stimulus was correct

but there was no clear way to confirm this assumption. The question, after this was

how to verify the SPI-bus protocol with the tools available?

The goal was to study what were the options to get a solution to this problem.

Preceding this thesis, a study was made that showed there were not tools available that

could be applied to complete this thesis. This study was vital for avoiding the situation

where a ready commercial system would already have been available but not utilized.

During this study, it was found out that there are multiple solutions for a designer to

test a bus protocol. There are commercial solutions that can be utilized in a simulator,

emulator or FPGA environment. All these solutions were, however, more or less

platform specific and cannot be used as such as a generic tool. This issue has been

introduced to the EDA vendors.

The use of a commercial product has clearly many benefits such as usability,

controllability and product support. At this point, if there is a need for a multipurpose

SPI verification system, it has to be manufactured locally.

This thesis focuses on the problem where the solution has to be made locally. At the

starting point, there was no documentation what-so-ever that could be used to create

an instance that could provide all the functionality desired. This meant in practise that

it had to be studied how this could be done and all the solutions had to be self-made.

To clarify this further, there was no guidance how to build this specific IP but all the

steps had to be studied and implemented during this thesis.

Before this thesis work was started, the original problem was faced by the thesis

worker and based on this problem, a conceptual idea was introduced to the employer.

The conceptual idea was then taken into closer evaluation. The evaluation resulted in

the final requirements for the thesis. This idea was then carefully studied and after

several iterations and side roads, the final approach was decided. As a result, a

multipurpose verification system was created. The specifications for the MVS were

created alongside the thesis, as they were not academically available.

The creation of MVS showed that a synthesizable IP is a good solution for a problem

in hand. The MVS holds enough functionality to be a stand-alone IP against a DUT. It

is not directly a specific verification tool, which can verify the full functionality of a

design, but can be used in pre-verification in a good level of confidence. To get better

confidence level the MVS has to be verified more thoroughly using more a complex

testbench with randomized stimuli and timing. This could be done for example using

UVM. The goal would be pointing out corner cases and possible issues with timing.

The SystemVerilog enables using functional modules in FPGA-synthesis. The

synthesis of the MVS showed that the memory bank excluded, it took only parts of per

mil from the total synthesis board area. The MVS was constructed using only a few

hundreds of flip-flops and IO-buffers and it was a relatively simple design. The

clocking issues should be negligible since the SPI-bus uses relatively low clocking

frequencies and is asynchronous compared to the system clock. [10]

This study proved that creating an instance like the MVS could help the designer to

test parts of a design without having a specific verification tool. The need of a

verification system is still present and the MVS cannot replace it in a final verifications

process. The use of the MVS or alike is highly recommended when applying

37

prototyping since it is a white box-type system and can be monitored and used with

ease.

The downside for using the MVS is the need for in-house support that would

inevitably affect the used resources. A good documentation helps in this situation and

version control should be applied according to the company policy.

After evaluating the results and how they compared with the requirements, a

conclusion could be made that all essential goals were met during this thesis.

The future development idea is to implement the MVS to a more complex

configuration where it can be used as a company component library IP. This

configuration was introduced in Figure 18. This would enable the company research

and development to re-use this IP in their current and future projects. As an example,

the functionality if a new driver can be tested using MVS as corresponding instance or

in signal level testing with multiple SPI-slave SPI-configuration could be mentioned

here.

The MVS functionality can be enhanced in the future by applying separate ID

checkers, status registers, assertions and property checkers via bind statement and

additional register banks in order to make it mimic specified instances.

It can be also considered if this concept can be applied with other smaller data bus

protocols such as Controller Area Network (CAN) or I2C.

38

7. SUMMARY

The thesis focus is on a problem, where a reliable verification component is needed to

be used with an unverified DUT in different stages of SoC-development. While SPI-

bus protocol is used, the bus protocol can be observed but there is a possibility that the

end-point functionality and visibility cannot be unveiled.

The solution was to create a system that could be used to monitor, analyze and verify

the used SPI-protocol with a reasonable level of confidence. The solution would have

to be able to be used in simulation, emulation and FPGA-prototype. The use of

SystemVerilog as RTL-language would enable the solution to be used in any of these

platforms.

There were no specifications or guidelines that could be followed in order get a

solution for the problem. This resulted in a study of multiple solutions via iterations of

the original conceptual idea. The final solution was to create a Multipurpose

Verification System that could be used as a stand-alone instance in any suitable

testbench. The MVS was constructed using SystemVerilog. The MVS was constructed

as a closed loop and was to be used with SPI for transactions and for monitoring and

analyzing the transactions AXI4-lite interface backdoor was created.

The MVS was verified using Mentor Graphics’ QuestaSim and Synopsys’ VCS

simulators. While observing the simulation results it was shown that the MVS could

be used in this context with a reasonable level of confidence. After lint checks with

Synopsys’ Spyglass the MVS was tested for synthesizability with Xilinx’s Vivado.

The synthesis reports showed that the MVS could be synthesized and therefore used

in FPGA environment.

This thesis proved that a synthesizable verification system can be created using

SystemVerilog. In its current form, the MVS holds all the required functionality and

transparency. The MVS needs to be fine-tuned before it can be implemented into the

company component library. After the fine-tuning, the MVS can be used as a stand-

alone pre-verification or verification tool. This asset benefits the company in testing

and verification processes.

The MVS functionality can be enhanced in the future by applying separate ID

checkers, status registers, assertions and property checkers via bind statement and

additional register banks in order to make it mimic specified instances. The future tasks

include testing the MVS in FPGA- and emulator-environments. The MVS is scalable

memory bank size-wise, but in its current form, the memory resizing has to be done

by hand. This feature could be automated in the future.

39

8. REFERENCES

[1] Mollick, E. (2006). Establishing Moore's Law. IEEE Annals of the History

of Computing, 28(3), 14 p.

[2] Bamford , N. et al (2006). Challenges in System on Chip Verification.

Seventh International Workshop on Microprocessor Test and Verification

(MTV'06) (p. 52-60). Austin, Texas: IEEE.

[3] Mencken, H. L. (1949). A Mencken chrestomathy. Michigan: A. A. Knopf.

[4] Sutherland, S., & Mills, D. (2013). Synthesizing SystemVerilog Busting the

Myth that SystemVerilog is only for Verification. http://www.sutherland-

hdl.com/papers/2013-SNUG-SV_Synthesizable-SystemVerilog_paper.pdf,

45 p.

[5] International Standard. (2007). IEEE 1800™-2005 Standard for

SytemVerilog - Unified Hardware Design, Specification, and Verification

Language. New York: The Institute of Electrical and Electronics Engineers,

Inc, 668 p.

[6] IEEE Computer Society. (2005). 1364™-2005 - IEEE Standard for

Verilog® Hardware Descrition Language. New York: Design Automation

Standards Committee, 590 p.

[7] IEEE Computer Society. (2009). IEEE Standard 1800™-2009 for

SystemVerilog - Unified Hardware Design, Spcification, and Verification

Language. New York: IEEE, 1285 p.

[8] IEEE Computer Society and the IEEE Standards Association Corporate

Advisory Group. (2012). IEEE Std 1800™-2012: IEEE Standard for

SystemVerilog - Unified Hardware Design, Specification, and Verification

Language. New York: IEEE, 1315 p.

[9] Leens, F. (2009). An introduction to I2C and SPI protocols. IEEE

Instrumentation & Measurement Magazine, ss. 8-13.

[10] Motorola, Inc. (Accessed 14.7.2016). Motorola’s Spi Block Guide V04.01.

Retrieved from www.nxp.com: http://www.nxp.com/files/microcontrollers

/doc/ref_manual/S12SPIV4.pdf.

[11] Micron. (Accessed 4.11.2016). Micron Serial NOR Flash Memory N25Q.

Retrieved from https://www.micron.com: https://www.micron.com/

products/datasheets/df5e85a8-35ef-42b5-882d-1f632ed53e4a.

[12] Prasad, M. (Accessed 9.6.2016). Serial Pheripheral Interface - SPI Basics.

Retrieved from www.maxEmbedded.com: http://maxembedded.com/2013/

11/serial-peripheral-interface-spi-basics/.

http://www.nxp.com/files/microcontrollers%20/doc/ref_manual/S12SPIV4.pdf
http://www.nxp.com/files/microcontrollers%20/doc/ref_manual/S12SPIV4.pdf
https://www.micron.com/%20products/datasheets/df5e85a8-35ef-42b5-882d-1f632ed53e4a
https://www.micron.com/%20products/datasheets/df5e85a8-35ef-42b5-882d-1f632ed53e4a
http://maxembedded.com/2013/11/serial-peripheral-interface-spi-basics/
http://maxembedded.com/2013/11/serial-peripheral-interface-spi-basics/

40

[13] Byte Paradigm sprl. (Accessed 8.11.2016). Introduction to I²C and SPI

protocols. Retrieved from www.byteparadigm.com:

http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-

protocols/.

[14] IEEE Computer Society. (Accessed 10.11.2016). www.computer.org.

Retrieved from Software Engineering Code of Ethics:

https://www.computer.org/web/education/code-of-ethics.

[15] Esteve, E. (Accessed 10.11.2016). Semiconductor IP would be nothing

without VIP…. Retrieved from www.semiwiki.com:

https://www.semiwiki.com/forum/content/404-semiconductor-ip-would-

nothing-without-vip%C2%85.html.

[16] Lahti, J. (2016). Digitaalitekniikka 3.(in Finnish) Oulu: University of Oulu,

170 p.

[17] Verification Academy. (2013). UVM Cookbook - Testbench Guide. Online

publication: Mentor Graphics, 53 p.

[18] Foster, H. D.;& Krolnik, A. C. (2008). Creating Assertion-Based IP. New

York: Springer Science+Business Media, LLC, 328 p.

[19] Amos, D.;Lesea, A.;& Richter, R. (2011). FPGA-Based Prototyping

Methdology Manual. Mountain View, California: Synopsys, Inc.

[20] Xilinx, Inc. (Accessed 11.11.2016). Integrated Logic Analyzer v6.1

LogiCORE IP Product Guide. Retrieved from www.xilinx.com:

http://www.xilinx.com

/support/documentation/ip_documentation/ila/v6_1/pg172-ila.pdf.

[21] Synopsys, Inc. (2016). HAPS® ProtoCompiler Debugger User Guide.

Mountain View, California: Synopsys, Inc.

[22] Cummings, C. E. (2010). SystemVerilog Assertions Design Tricks and SVA

Bind Files. Sunburst Design SystemVerilog Assertion Techniques, 71.

Beaverton, Oregon, USA: Sunburst Design.

[23] https://en.wikipedia.org/wiki/Soft_microprocessor Accessed October 2016.

[24] https://en.wikipedia.org/wiki/List_of_HDL_simulators Accessed October

2016.

[25] Asanovic, K. (2007). Transactors for Parallel Hardware and Software Co-

Design. IEEE International High Level Design Validation and Test

Workshop (ss. 140-142). Irvine, CA: IEEE.

[26] Shah, A. K. (2015). High Speed SPI Slave Implementation in FPGA using

Verilog HDL. International Journal of Advanced Research in Computer

Engineering & Technology (IJARCET), Volume 4(Issue 12), 4365-4369.

http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-protocols/
http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-protocols/
https://www.computer.org/web/education/code-of-ethics
https://www.semiwiki.com/forum/content/404-semiconductor-ip-would-nothing-without-vip%C2%85.html
https://www.semiwiki.com/forum/content/404-semiconductor-ip-would-nothing-without-vip%C2%85.html
https://en.wikipedia.org/wiki/Soft_microprocessor
https://en.wikipedia.org/wiki/List_of_HDL_simulators

41

[27] Cerny, E.;Bergeron, J.;Thottaseri, M. K.;Anderson, T.;& Synopsys Inc.

(Accessed 30.11.2016). Design of SystemVerilog Assertion IP. Retrieved

from Desing&Resuse: http://www.design-reuse.com/articles/9875/design-

of-systemverilog-assertion-ip.html.

[28] Cadence Inc. (Accessed 26.11.2016). Assertion-Based Verification IP.

Retrieved from Candence : https://www.cadence.com/content/cadence-

www/global/ en_US/home/tools/system-design-and-verification/formal-

and-static-verification/jasper-gold-verification-platform/assertion-based-

verification-ip.html.

[29] Synopsys Inc. (2016). VC Formal Verification, Version L-2016.06-SP2.

Mountain View, CA: Synopsys Inc.

[30] Yeung, P. (2015). The Four Pillars of Assertion-Based Verification.

Wilsonville, Oregon: Mentor Graphics.

[31] Xilinx Inc. (2016). AXI Protocol Checker. San Jose: Xilinx Inc.

[32] ARM. (Accessed 10.11.2016). AMBA specification. Retrieved from

www.arm.com: https://www.arm.com/products/system-ip/amba-

specifications.

http://www.design-reuse.com/articles/9875/design-of-systemverilog-assertion-ip.html
http://www.design-reuse.com/articles/9875/design-of-systemverilog-assertion-ip.html
https://www.cadence.com/content/cadence-www/global/%20en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/assertion-based-verification-ip.html
https://www.cadence.com/content/cadence-www/global/%20en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/assertion-based-verification-ip.html
https://www.cadence.com/content/cadence-www/global/%20en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/assertion-based-verification-ip.html
https://www.cadence.com/content/cadence-www/global/%20en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/assertion-based-verification-ip.html
https://www.arm.com/products/system-ip/amba-specifications
https://www.arm.com/products/system-ip/amba-specifications

42

9. APPENDICES

Appendix 1. An example of the waveforms generated with QuestaSim

Appendix 2. An example of the waveforms generated with VCS

Appendix 3. An example of an one hot FSM coding style

Appendix 4. A signal level AXI4-lite write operation explained

Appendix 5. The synthesis report from Vivado

43

Appendix 1. An example of the waveforms generated with QuestaSim

44

Appendix 2. An example of the waveforms generated with VCS

45

Appendix 3. An example of an one hot FSM coding style

enum logic[1:0] {BANK_IDLE = 2'b01, BANK_READ = 2'b10} bank_logic_r,

bank_logic_next;

 always_ff@(posedge clk or negedge rst_n)

 begin

 if(!rst_n)

 begin

 temp_bank <= 0;

 bank_logic_r <= BANK_IDLE;

 end

 else

 begin

 temp_bank <= temp_bank_next;

 bank_logic_r <= bank_logic_next;

 end

 end

 always_comb

 begin:reg_bank_fsm

 temp_bank_next = temp_bank;

 bank_logic_next = BANK_IDLE;

 case(bank_logic_r)

 BANK_IDLE:

 begin

 if(cs == 1'b1)

 begin

 bank_logic_next = BANK_IDLE;

 end

 else

 begin

 if(shift_ctr == BYTE_LENGTH-2 && byte_ctr >= 0 &&

counter_event == 1'b1)

 begin

 bank_logic_next = BANK_READ;

 end

 else

 begin

 bank_logic_next = BANK_IDLE;

 end

 end

 end

 BANK_READ:

 begin

 bank_logic_next = BANK_IDLE;

 temp_bank_next = shift_reg;

 end

 endcase

 end

46

Appendix 4. A signal level AXI4-lite write operation explained

The AXI4-lite signals have dependencies that affect to their behavior. Basically the

states for the signals are either ACTIVE (high) or IDLE (low) and the signals in

ACTIVE state are further on allocated as WAIT or ASSERTED. The dependencies,

the transaction handshake, in a write action between signals are shown in a graph

below.

AWVALID

AWREADY

WVALID

WREADY

BVALID

BREADY

The single headed arrow points to signals that can be asserted before or after the

signal at start of the arrow. The double-headed arrows point to signals that must be

asserted only after assertion of the start of the arrow. Some exclusions exists such as

the BREADY that can be set to HIGH as default in AXI4-lite since there are only one

master- and slave-instances related to this transaction.[32]

47

Appendix 5. The synthesis report from Vivado

Copyright 1986-2016 Xilinx, Inc. All Rights Reserved.

--

| Tool Version : Vivado v.2016.2 (lin64) Build 1577090 Thu Jun 2

16:32:35 MDT 2016

| Date : Thu Dec 1 14:23:09 2016

| Host : quagmire3 running 64-bit Red Hat Enterprise

Linux Server release 7.2 (Maipo)

| Command : report_utilization -file

spi_slave_utilization_synth.rpt -pb

spi_slave_utilization_synth.pb

| Design : spi_slave

| Device : 7vx690tffg1930-2

| Design State : Synthesized

--

Utilization Design Information

Table of Contents

1. Slice Logic

1.1 Summary of Registers by Type

2. Memory

3. DSP

4. IO and GT Specific

5. Clocking

6. Specific Feature

7. Primitives

8. Black Boxes

9. Instantiated Netlists

1. Slice Logic

+-------------------------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+-------------------------+------+-------+-----------+-------+

| Slice LUTs* | 152 | 0 | 433200 | 0.04 |

| LUT as Logic | 152 | 0 | 433200 | 0.04 |

| LUT as Memory | 0 | 0 | 174200 | 0.00 |

| Slice Registers | 118 | 0 | 866400 | 0.01 |

| Register as Flip Flop | 118 | 0 | 866400 | 0.01 |

| Register as Latch | 0 | 0 | 866400 | 0.00 |

| F7 Muxes | 0 | 0 | 216600 | 0.00 |

| F8 Muxes | 0 | 0 | 108300 | 0.00 |

+-------------------------+------+-------+-----------+-------+

* Warning! The Final LUT count, after physical optimizations and

full implementation, is typically lower. Run opt_design after

synthesis, if not already completed, for a more realistic count.

48

1.1 Summary of Registers by Type

+-------+--------------+-------------+--------------+

| Total | Clock Enable | Synchronous | Asynchronous |

+-------+--------------+-------------+--------------+

| 0 | _ | - | - |

| 0 | _ | - | Set |

| 0 | _ | - | Reset |

| 0 | _ | Set | - |

| 0 | _ | Reset | - |

| 0 | Yes | - | - |

| 4 | Yes | - | Set |

| 113 | Yes | - | Reset |

| 0 | Yes | Set | - |

| 1 | Yes | Reset | - |

+-------+--------------+-------------+--------------+

2. Memory

+----------------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+----------------+------+-------+-----------+-------+

| Block RAM Tile | 0 | 0 | 1470 | 0.00 |

| RAMB36/FIFO* | 0 | 0 | 1470 | 0.00 |

| RAMB18 | 0 | 0 | 2940 | 0.00 |

+----------------+------+-------+-----------+-------+

* Note: Each Block RAM Tile only has one FIFO logic available and

therefore can accommodate only one FIFO36E1 or one FIFO18E1.

However, if a FIFO18E1 occupies a Block RAM Tile, that tile can

still accommodate a RAMB18E1

3. DSP

+-----------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+-----------+------+-------+-----------+-------+

| DSPs | 0 | 0 | 3600 | 0.00 |

+-----------+------+-------+-----------+-------+

4. IO and GT Specific

+-----------------------------+------+-------+-----------+-------

+

| Site Type | Used | Fixed | Available | Util%

|

+-----------------------------+------+-------+-----------+-------

+

| Bonded IOB | 27 | 0 | 1000 | 2.70

|

49

| Bonded IPADs | 0 | 0 | 74 | 0.00

|

| Bonded OPADs | 0 | 0 | 48 | 0.00

|

| PHY_CONTROL | 0 | 0 | 20 | 0.00

|

| PHASER_REF | 0 | 0 | 20 | 0.00

|

| OUT_FIFO | 0 | 0 | 80 | 0.00

|

| IN_FIFO | 0 | 0 | 80 | 0.00

|

| IDELAYCTRL | 0 | 0 | 20 | 0.00

|

| IBUFDS | 0 | 0 | 960 | 0.00

|

| GTHE2_CHANNEL | 0 | 0 | 24 | 0.00

|

| PHASER_OUT/PHASER_OUT_PHY | 0 | 0 | 80 | 0.00

|

| PHASER_IN/PHASER_IN_PHY | 0 | 0 | 80 | 0.00

|

| IDELAYE2/IDELAYE2_FINEDELAY | 0 | 0 | 1000 | 0.00

|

| ODELAYE2/ODELAYE2_FINEDELAY | 0 | 0 | 1000 | 0.00

|

| IBUFDS_GTE2 | 0 | 0 | 12 | 0.00

|

| ILOGIC | 0 | 0 | 1000 | 0.00

|

| OLOGIC | 0 | 0 | 1000 | 0.00

|

+-----------------------------+------+-------+-----------+-------

+

5. Clocking

+------------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+------------+------+-------+-----------+-------+

| BUFGCTRL | 1 | 0 | 32 | 3.13 |

| BUFIO | 0 | 0 | 80 | 0.00 |

| MMCME2_ADV | 0 | 0 | 20 | 0.00 |

| PLLE2_ADV | 0 | 0 | 20 | 0.00 |

| BUFMRCE | 0 | 0 | 40 | 0.00 |

| BUFHCE | 0 | 0 | 240 | 0.00 |

| BUFR | 0 | 0 | 80 | 0.00 |

+------------+------+-------+-----------+-------+

50

6. Specific Feature

+-------------+------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+-------------+------+-------+-----------+-------+

| BSCANE2 | 0 | 0 | 4 | 0.00 |

| CAPTUREE2 | 0 | 0 | 1 | 0.00 |

| DNA_PORT | 0 | 0 | 1 | 0.00 |

| EFUSE_USR | 0 | 0 | 1 | 0.00 |

| FRAME_ECCE2 | 0 | 0 | 1 | 0.00 |

| ICAPE2 | 0 | 0 | 2 | 0.00 |

| PCIE_3_0 | 0 | 0 | 3 | 0.00 |

| STARTUPE2 | 0 | 0 | 1 | 0.00 |

| XADC | 0 | 0 | 1 | 0.00 |

+-------------+------+-------+-----------+-------+

7. Primitives

+----------+------+---------------------+

| Ref Name | Used | Functional Category |

+----------+------+---------------------+

| FDCE | 113 | Flop & Latch |

| LUT6 | 56 | LUT |

| LUT5 | 42 | LUT |

| LUT4 | 36 | LUT |

| LUT2 | 30 | LUT |

| LUT3 | 27 | LUT |

| OBUF | 22 | IO |

| IBUF | 5 | IO |

| FDPE | 4 | Flop & Latch |

| LUT1 | 2 | LUT |

| FDRE | 1 | Flop & Latch |

| BUFG | 1 | Clock |

+----------+------+---------------------+

8. Black Boxes

+-----------------+------+

| Ref Name | Used |

+-----------------+------+

| axi_bram_ctrl_0 | 1 |

+-----------------+------+

9. Instantiated Netlists

+----------+------+

| Ref Name | Used |

+----------+------+

