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ABSTRACT 

The consequences of predation have become a central focus of marine ecological research. 

Numerous studies have emphasized the importance of apex predators in structuring assemblages 

at various organisational levels and in determining how ecosystems function. However, less 

appreciated currently is the fact that predators display multiple foraging behaviours, thereby 

allowing them to overcome problems associated with unpredictability of food resources in space 

and time. The primary goal of this dissertation is to contribute to growing understanding of the 

ecological causes and consequences of foraging plasticity displayed by Greater Flamingo 

Phoenicopterus ruber roseus in intertidal sandflat ecosystems in Langebaan Lagoon, South Africa. 

P. roseus feeds by either (1) creating pits, which involves flamingos stirring up deep sediments

with their feet or (2) creating channels, in which their inverted bills are swept from side-to-side on 

the sediment surface. The first objective of the study was to quantify the ecological drivers of 

decisions made by flamingos to feed, and to implement either pit- or channel-foraging strategies. 

The latter was achieved through RandomForest modelling techniques that identified the prominent 

ecological drivers from a suite of biotic and abiotic variables. Results indicate that biotic variables, 

i.e. those associated with flamingo prey assemblages, were key in driving choices made by

flamingos to forage and to implement either pit- or channel-foraging strategies. The second aim of 

this dissertation was to quantify the repercussions of the two different foraging behaviours on 

benthic assemblages. Comparisons of benthic assemblages in flamingo foraging structures (pits 

and channels) with adjacent non-foraged sediments (controls) indicated differential effects of both 

flamingo foraging methods on benthic communities, with channel-foraging eliciting a greater 

negative impact compared to pit-foraging, for which impacts were negligible. Abundance of 
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macrofauna and surface-dwelling taxa such as micro-algae and the amphipod Urothoe grimaldii 

were all negatively impacted by channel-foraging. Sizes of channels constructed by flamingos 

were inversely related to their impacts, with impacts on macrofaunal abundance being greater in 

smaller channels. Overall, this study has shed light on the differential effects of foraging plasticity 

on prey assemblages and its importance in enhancing spatio-temporal heterogeneity in intertidal 

sandflats. The study also emphasizes the need to incorporate foraging plasticity into current 

thinking and conceptual models of predation in marine soft sediments, in order to appreciate the 

full spectrum of predation effects on assemblages. 
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CHAPTER 1: INTRODUCTION 

1.1 Predation 

Understanding processes that are responsible for structuring ecological assemblages is one 

of the major goals of ecology (Miller 2002; Molles 2015). Organismal interactions have been 

shown to be particularly important and powerful determinants of spatio-temporal patterns in biotic 

assemblages in various ecosystem types (Ricklefs 2008; Wisz et al. 2013). The major type of 

organismal interaction that has often been cited as a key driver of community structure is predation 

(Paine 1971; Putman & Wratten 1984; Glassom & Branch 1997). A wealth of research has 

demonstrated the various impacts of predators through consumptive and non-consumptive 

pathways that span different spatial scales and ecological organisational levels as illustrated in 

Figure 1. 

The lowest class at which predators influence assemblages is at the individual level in the 

form of sub-lethal predation (Zajac 1985; Harvell & Suchanek 1987, Figure 1). The latter involves 

partial consumption by a predator in which prey lose part of their body tissue but survive 

encounters with predators (Wilson 1990; Lawrence & Vasquez 1996; Pape-Lindstrom et al. 1997). 

Loss of organismal tissue can have significant effects on individuals, with reductions in growth 

(Smith 1990; Kamermans & Huitema 1994), feeding (Woodin 1984; Lawrence & Vasquez 1996) 

and reproductive fitness being commonly reported (Zajac 1985). In the long-term, sub-lethal 

predation can be critical in regulating population size (Harris 1989).  
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Figure 1: Conceptual diagram illustrating the consumptive and non-consumptive effects of predators on different ecological 

organisational levels.
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While consumptive effects of predators have been well researched in many ecosystems 

(Lima 1998), behaviourally induced non-consumptive effects of predators also have the potential 

to impact ecological systems and should therefore not be ignored (Lima 1998). The mere presence 

of predators induces alterations to prey behaviour in ways that fundamentally reduce the risk of 

predation and prolong their survival (Lima 1998, Figure 1), but with important fitness 

consequences for prey. The majority of studies in aquatic systems suggest that prey undergo 

reductions in growth rates, due to predator avoidance behaviour indirectly reducing feeding 

activities (Skelly & Werner 1990) or causing spatial shifts from resource rich (but perilous) to 

poorer (but safer) habitats (Werner et al. 1983; Persson & Eklov 1995). Ultimately, predator 

avoidance behaviour can reduce prey reproductive output due to reductions in foraging rate 

(Peckarsky et al. 1993; Scrimgeour & Culp 1994; Lima 1998).  

At the population level, predators directly interact with prey and cause mortality through 

direct consumption (Paine 1966; Connell 1975; Sih et al. 1985; Preisser et al. 2005), resulting in 

reductions of prey population sizes (Sih et al. 1985). Various studies in marine systems have 

demonstrated reductions in prey population sizes by predation increasing post-settlement mortality 

(Hixon 1991; Sweatman 1993; Carr & Hixon 1995; Albins & Hixon 2008, Figure 1). Predators 

consuming newly settled recruits, juveniles and adults can severely shrink population sizes to a 

level where other ecological processes such as resource limitation and competition are inhibited 

and become negligible in structuring populations (Hixon 1991). Consequences of predation on 

post-settlement recruits can potentially have large ecosystem impacts if predators remove 

ecologically important species (Williams & Polunin 2001; Mumby et al. 2006).
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Despite the negative effects of predators on newly settled recruits at the population level, 

these effects can also induce indirect positive effects for other recruit populations (Figure 1). In 

marine soft-sediment ecosystems, epibenthic predators displace or increase mortality of residents, 

or alter colonization patterns, by providing resources through alterations of sediment properties 

while feeding (Thrush et al. 1991). In addition, the presence of predators can facilitate recruitment 

of sympatric species by providing settlement cues (Raimondi 1988). 

The presence of apex predators has impacts that extend beyond the population level, with 

effects being able to influence community structure and spatio-temporal dynamics (Paine 1980; 

Carpenter et al. 1985; Power 1992; Menge 1995; Estes et al. 2001; Baum & Worm 2009, Figure 

1). Apex predators exert top-down control on intermediate consumers (usually herbivores) through 

direct consumption, resulting in indirect positive effects on lower trophic levels (usually plants). 

This positive indirect effect of apex predators mediated through changes in herbivore density are 

generally referred to as a density-mediated indirect interaction (DMII, Abrams 1995; Werner & 

Peacor 2003). However, ecologists have also recognized another class of indirect interaction 

initiated by engineers mediated by predator altering prey behaviour, which commonly results in 

reduced feeding activities (Abrams 1992); greater investment in defensive strategies (Preisser et 

al. 2005) or spatial shifts to safer, low quality habitats (Power et al. 1985; McIntosh & Townsend 

1996; Turner et al. 1999). Overall, these predator induced effects lower foraging rates and 

intermediate consumer impacts on primary producers. Such effects are broadly known as a trait-

mediated indirect interaction (TMII, Kerfoot & Sih 1987; Abrams 1995; Werner & Peacor 2003). 

Studies have shown that trophic-level effects of predators can span a spectrum of positive 

and negative effects, and are contingent on many factors, including environmental contexts 
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(Schmitz et al. 2004), resource abundance (Abrams 1991; Peacor 2002), predator foraging 

behaviour (Preisser et al. 2007), prey traits and life history characteristics (Abrams 1991) as well 

as the spatial and temporal scales at which these interactions are quantified (Peacor & Werner 

2004; Abrams 2008). The role predators play in regulating community structure also influences 

ecosystem functioning and resilience (Paine 1969; Duffy 2002; Heithaus et al. 2008) by indirectly 

impacting the ecological functions provided by prey assemblages. 

Predator effects can also influence competitive interactions between species (Figure 1), as 

demonstrated in Paine’s (1974) study of sea star Pisaster ochraceous predation on California 

mussels Mytilus californianus. This classical work highlighted the ability of predatory species to 

prevent competitively dominant mussels from monopolising primary space (which is a limiting 

resource in the ecosystem), thereby indirectly allowing weaker competitors to co-exist. Subsequent 

studies have highlighted the ability of predators to prevent competitive exclusion in both terrestrial 

and freshwater ecosystems (Inouye et al. 1980; Morin 1983; Hambäck 1998).  

The loss of predators can also elicit cascading changes to food webs (Figure 1). Estes & 

Palmisano (1974) showed that human overexploitation of sea otters in Alaska led to an increase in 

abundance of sea urchins (otter prey), which in turn reduced the biomass of kelp forests due to 

overgrazing. This cascading effect resulted in a shift in productivity and local assemblage 

structure. The ecosystem returned to its original state once sea otter populations had recovered 

over time (Estes & Duggins 1995). Such cascading effects of predator removals and introductions 

have been quantified in several ecosystem types, suggesting that these processes are ubiquitous 

(Power 1990; Pace et al. 1999; Menge 2000; Halaj & Wise 2001; Myers et al. 2007; Carpenter et 

al. 2010). 
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While there is substantial evidence of predators influencing ecological communities by 

regulating food webs (Wootton & Emmerson 2005; Dobson et al. 2006), research has also revealed 

the potential for predatory impacts to alter ecosystem level processes, such as resource flows 

(Costanza et al. 1997; Dobson et al. 2006, Figure 1). For example, studies have shown that 

anadromous fish in fresh water are a vital trophic resource for predators (Hansen 1987; Willson 

1993; Willson & Halupka 1995) and serve as an ecologically significant link between freshwater 

and terrestrial ecosystems (Willson & Halupka 1995). However, marine predators hunting these 

fish during their migrations (Fiscus 1980) effectively lower trophic transfers to terrestrial 

ecosystems, causing a weakening of bottom-up interactions, and altering terrestrial productivity 

and biodiversity (Willson & Halupka 1995). Similarly, studies have demonstrated the ability of 

predators to negatively impact guano inputs into ecosystems by consuming prey, thereby lowering 

productivity and altering community structure (Croll et al. 2005; Fukami et al. 2006). Non-

consumptive effects of predators can also generate key impacts at the ecosystem scale. By inducing 

foraging behaviour shifts in prey, predators indirectly alter producer nutrient levels (Schmitz et al. 

2010, Figure 1), which ultimately alters nutrient availability in ecosystems (Schmitz 2006).  

1.2 Predator foraging plasticity 

Ecosystems often experience changes to biotic and abiotic processes (Putman & Wratten 

1984; Molles 2015). Such effects enhance spatial and temporal variability in the distribution and 

abundance of resident organisms (Pettex et al. 2012), which in turn poses significant problems for 

predators, by effectively reducing the predictability of food resources available in space and time 

(Bell 1991). Studies have shown that consumers dedicate a significant proportion of their activity 

budgets to foraging (Drent & Daan 1980), in order to acquire sufficient nutritional and energetic 
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resources to maintain or improve reproductive fitness (Lemon 1991). Due to the latter, and the 

need to overcome constraints associated with variable habitat conditions and the unpredictability 

of food resources, several predators have evolved plastic phenotypes (Paiva et al. 2010; Pettex et 

al. 2012; Cherel et al. 2014). A summary of studies reporting plastic foraging strategies employed 

by consumers is reported in Table 1. More specifically, predators have evolved multiple foraging 

behaviours that are adaptable to rapid environmental changes, allowing them to overcome 

variability in prey distribution, quality and quantity (Paiva et al. 2010). Foraging plasticity 

therefore allows predators to broaden their dietary niches based on profitability of prey resources, 

thereby reducing fitness costs associated with modifications in resource availability (Greeff & 

Whiting 2000).  

Despite the widespread use of plastic foraging strategies in nature (Miner et al. 2005), little 

is known about this aspect of predation, particularly in marine ecosystems. The majority of the 

studies on predation have focused generally on quantifying the effects of predators across different 

trophic positions (Pace et al. 1999; Silliman & Bertness 2002). Studies have also investigated the 

subtleties of predator-prey relationships, in the form of trait-mediated indirect interactions (indirect 

interactions transmitted by predators modifying prey behaviour) and density-mediated indirect 

interactions (indirect interactions transmitted by predators modifying prey densities through 

consumption) in driving trophic cascades (Grabowski 2004; Siddon & Witman 2004). While 

predator impacts on prey assemblages have been well researched in marine ecosystems, the 

consequences of plastic foraging strategies employed by predators have rarely been quantified. 

Studies that have dealt with foraging plasticity have focused more on the factors that drive 

consumers to switch between foraging behaviours (McCafferty et al. 1998; Hamer et al. 2007; 

Paiva et al. 2010). 
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Table 1: Summary of studies showing varying degrees of foraging plasticity employed by consumers. 

  Reference           Consumer    Location         Foraging plasticity      

Duval et al. 1984 Cuttlefish  

(Sepia officinalis) 
Luc-sur-Mer, 

France 

(1) Capture small crabs by ejection of tentacles

(2) Capture large crabs by jumping on prey

Peterson & Skilleter 1994 Baltic clam  

(Macoma balthica) 

Neuse River estuary, 

North Carolina 

(1) Deposit feeds when current flow decreases

(2) Suspension feeds when current flow increases or

when siphon-cropping fish present

Craig et al. 1996 Golden silk spider 

(Nephila clavipe) 

Barro Colorado Island, 

Panama 

(1) Spin webs that appear golden to attract insects in

bright light

(2) Spin webs that appear white in dim light for

camouflage

Sutherland et al. 2000 Western sandpiper 

(Calidris mauri) 

Fraser River estuary, 
British Columbia 

(1) Pecking for epibenthic copepods and cumaceans

(2) Probing for large infaunal polychaetes

Bowen et al. 2002 Harbour seal  

(Phoca vitulina) 

Sable Island, Canada (1) Digging/cruising in sand bottom for cryptic prey

(2) High speed pursuit of conspicuous schools of prey

Tso et al. 2007 Giant wood spider 

(Nephila pilipes) 

Forests of central 

Taiwan 

(1) Stiffer webs when feeding on crickets

(2) Limp webs when feeding on flies

Paiva et al. 2010 Cory’s shearwater  

(Calonectris diomedea) 

4 archipelagos, 

North Atlantic 

(1) Shallower and shorter dives in productive neritic areas

(2) Deeper and longer dives in less productive pelagic

areas
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Prior research has revealed a growing appreciation of the ecological consequences of 

phenotypic plasticity, including effects on direct and indirect interactions between organisms and 

their surrounding environments in ways that can influence local biodiversity and ecosystem 

functioning (Miner et al. 2005). Miner et al. 2005 highlighted the need for further research in 

understanding the consequences of plasticity for community structuring and fundamental 

ecological processes. Although a few studies have demonstrated that shifts in predator foraging 

behaviour can alter the outcome of predator-prey interactions, the quality and distribution of food 

resources within a community (Otto et al. 2008), the strength of competition (Relyea 2000), 

facilitation (Sih et al. 1998) and trophic cascades (Katano 2011), such knowledge is limited for 

marine soft-sediment ecosystems, despite the fact that many foragers in marine soft-sediments do 

actually employ multiple foraging behaviours in response to variable ecosystem conditions (Hall 

et al. 1991; Thrush et al. 1991; Johnson & Cézilly 2007). 

1.3 Flamingos and plastic foraging 

Flamingos are well known shorebird predators that are highly adaptable to environmental 

changes, allowing them to exploit a large diversity of trophic resources. These charismatic 

predators are well known for executing a wide range of feeding behaviours (Brown et al. 2005), 

allowing them to feed on a variety of habitats including land, water surfaces, water column and 

benthic sands/muds (Allen 1956; Jenkin 1957). Numerous studies have demonstrated flamingos 

altering their foraging behaviour in order to consume prey with varying distribution in aquatic 

environments (Arengo & Baldassarre 1999; Brown et al. 2005; Johnson & Cézilly 2007).  

The Greater Flamingo Phoenicopterus ruber roseus which commonly occurs in coastal and 

estuarine zones (Rodríguez-Pérez et al. 2007), is the primary subject of investigation in this study, 
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which focuses specifically on understanding the ecological causes and consequences of foraging 

plasticity employed by Greater Flamingos in Langebaan Lagoon, on the west coast of South 

Africa. P. roseus are filter feeders, feeding off small-invertebrates through different foraging 

techniques. In Langebaan Lagoon, two major behaviours have been observed. The first involves 

P. roseus sweeping their inverted bills in a semi-circular arc as they walk, creating a channel-like

structure in the sediment (Figure 2A). The second behaviour involves flamingos retaining their 

inverted bills in a central position near the substrate, while stamping in a circular motion around 

it. This behaviour creates a pit-like foraging structure with a sediment mound in the centre (Figure 

2B, Glassom & Branch 1997; Brown et al. 2005; Johnson & Cézilly 2007). 

Flamingos are colonial shorebirds that can occur at high densities in marine sedimentary  

habitats and can therefore exert considerable impacts on these systems (Glassom & Branch 1997; 

Rodríguez-Pérez et al. 2007). A few studies have quantified the impact of flamingo predation on 

macrofaunal community structure via exclusion experiments. Hurlbert and Chang (1983) 

conducted one of the first field experiments quantifying flamingo impacts and demonstrated an 

increase in micro-organism biomass following exclusion of Andean Flamingo Phoenicoparrus 

andinus. Glassom and Branch (1997) also recorded an increase in macrofaunal abundance and 

altered sediment properties when excluding the Greater Flamingo from two lagoons in Namibia. 

Rodríguez-Pérez et al. (2007) found that Greater Flamingos significantly reduced chironomid 

abundance and increased the density of larger larvae in an ephemeral marsh ecosystem. Apart from 

these quantitative studies, the majority of research on flamingos has been descriptive and 

observational, resulting in little attention being paid to understanding the ecological role flamingos 

play in marine soft-sediment ecosystems (Glassom & Branch 1997; Bildstein et al. 2000).  
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Figure 2: Foraging structures (A: channel, B: pit) produced by Greater Flamingos. Photos taken 

at low tide, Oesterwal, Langebaan Lagoon.  

A 

B 

58cm 

1.2m 



Chapter 1: Introduction   12 

Given the calls for greater understanding of phenotypic plasticity in driving ecological 

processes (Miner et al. 2005) and the scarcity of quantified data on flamingo foraging, the central 

goal of this study was to contribute to growing understanding of the causes and consequences of 

plastic foraging strategies employed by Greater Flamingos in intertidal soft-sediments. The 

investigation consisted of two main components, an outline of which is summarised, overleaf in 

Figure 3. The first utilised modelling techniques to identify ecological factors that drive decisions 

made by flamingos to initiate foraging or to execute pit- or channel-foraging. The second 

component focused on quantifying the effects of flamingo foraging plasticity (channel- or pit-

foraging) on benthic assemblages. For the first component, it was hypothesized that biotic factors 

(prey characteristics) would be the main drivers of flamingo foraging plasticity. Three hypotheses 

were tested for the second component. The first was that foraging plasticity would generate 

differential impacts on benthic assemblages. The second was that the magnitude of predation 

impact would be greater when flamingos undertake pit-foraging relative to channel-foraging. It 

was reasoned that since pit-foraging involved disturbance of sediments to greater depths, this 

technique should impose a greater fitness cost (compared to channel-foraging) and would thus 

need to be compensated for by the energy gained from this foraging method (Pyke et al. 1997). 

Lastly, it was hypothesized that increasing sizes of flamingo foraging structures (pits or channels) 

would result in a greater predation impact on prey assemblages relative to non-foraged sediments, 

based on the rationale presented in the previous hypothesis. 
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This dissertation consists of four Chapters. Following this introductory chapter, Chapter 2 

outlines the methods employed to test the hypotheses that were highlighted above. Chapter 3 

presents the findings of the two main components of the study (Figure 3), which are then discussed 

critically in Chapter 4.  

 

Figure 3: Diagram illustrating the two central components carried out in the investigation. 

Component 1 uses modeling techniques to identify the ecological drivers of flamingo decisions to 

(1) feed or not feed, (2) employ pit- or channel-foraging and (3) create foraging structures of

different sizes. Component 2 tests the consequences of flamingo foraging plasticity (in the form 

of different structure types (pits or channels) and their sizes) on benthic assemblages.   

Component 1: Ecological drivers of flamingo 

foraging 

 Foraging vs non-foraging

 Pit-foraging vs non-foraging

 Channel-foraging vs non-foraging

 Size of foraging structures (pits and channels)

Component 2: Impacts of flamingo 

foraging 

 Channels vs channel controls

 Pits vs pit controls

 Size of foraging structures (pits and channels)

Flamingo Foraging 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Study area 

Langebaan Lagoon (located between 33°11’27’’S, 18°07’37’’E and 33°03’54’’S, 

17°58’07’’E, Figure 4) is a marine-dominated lagoonal system located on the west coast of South 

Africa (Pillay et al. 2011). The lagoon is 15km long and 4km wide with a connection to the Atlantic 

Ocean via a narrow tidal inlet passing through Saldanha Bay (Flemming 1977; Compton 2001). 

Langebaan Lagoon receives minimal freshwater runoff (Siebert & Branch 2005) and experiences 

an average spring tidal range of 1.8m and 1.5m at the mouth and head of the system (Day 1959; 

Flemming 1977). Langebaan experiences a Mediterranean, semi-arid climate with hot and dry 

summers, winter rainfall and an annual precipitation below 300mm (Day 1959; Flemming 1977). 

The ecosystem supports a rich diversity of marine invertebrates that potentially exceeds all other 

lagoonal and estuarine systems in South Africa (Day 1959; Christie & Moldan 1977). BirdLife 

International has also classified Langebaan Lagoon as an Important Bird Area (Pillay et al. 2010), 

due to it supporting  approximately 37 500 birds in summer and 10 500 in winter, with flamingos 

comprising approximately 1% of the total bird population in summer, rising to 40% in winter 

(Underhill 1987). Management authorities divided this ecosystem into three recreational zones as 

a conservation measure. The first is a multi-purpose recreational area (Zone A) used for fishing, 

bait collection and water sports. Zone B is a limited recreational zone where bait collection is 

prohibited, however non-destructive recreational activities are allowed. Lastly, there is a marine 

sanctuary (Zone C) which is a prohibited area that is closed off to public use and all activities are 

ceased (Hanekom et al. 2009). 
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Figure 4: Map of Langebaan Lagoon, with its geographical position, sampling sites and park 

zones on the South African coastline. LWS: low water spring (adapted from Pillay et al. 2010). 
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2.2 Sampling design 

A nested hierarchical sampling design was employed for the study. Samples were collected 

in the middle of winter (middle of flamingo season) during spring low tide across three sites, 

between Oesterwaal and Bottelary (Figure 5). At each of the three sites, three shore positions (high-

, mid- and low-water mark) were sampled, with each shore position sample comprising six 

quadrats (10m x 10m) with three covering areas where flamingos fed and three where they did not 

feed. Feeding quadrats were chosen with areas that were abundant of flamingo foraging structures 

(pits or channels). Non-feeding quadrats were positioned where sediments were undisturbed to 

flamingo predation (no foraging structures present). A minimum of three and maximum of five 

foraging structures were sampled per feeding quadrat along with an equivalent number of controls. 

Control samples were collected between 0.5 -1m from foraged structures to reduce variability. Pit 

- and channel-foraging structures were spatially segregated (0.5m – 1m) thereby preventing any

overlap between these foraging structures and their controls. In addition, five non-feeding controls 

(substantial feeding-free spaces with no evidence of flamingo foraging) were sampled per non-

feeding quadrat. Only freshly created pit- and channel-foraging structures (within 24 hours of 

foraging activity) were sampled in the study to avoid confounding foraging effects with structure 

age.
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2.3 Standardizing structure age 

A preliminary field study was undertaken one month before final sampling in order to 

identify newly created flamingo foraging structures in Langebaan Lagoon. Two plots (25m2; at the 

high- and mid-water mark, Site 1) of sediment were raked during low tide to smooth out any 

existing flamingo foraging structures. After a tidal cycle, freshly (within 24 hours) formed 

flamingo foraging structures were marked and photographed. Marked foraging structures were 

photographed again 24 hours later. Photographs were used to generate a photographic library 

(Figure 6) of appearances of newly formed channels and pits and their subsequent changes after 

24 hours in response to wave action.   
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Figure 5:  Schematic overview of nested sampling design used in the study. Three sites were sampled (Sites 1-3), comprising high-, 

mid- and low- water samples. Three feeding (Q1-3) and non-feeding quadrats (Q4-6) were sampled per shore position.  
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Figure 6: Photos of flamingo foraging structures within 24 (A: channel, C: pits) and 48 hours (B: channel, D: pits) of foraging. Photos 

taken at low tide, Oesterwal, Langebaan Lagoon.
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2.4 Abundance and size of foraging structures 

Prior to sampling, the abundance of every foraging structure within each feeding quadrat 

was counted. Photographs were only taken of the freshly created foraging structures that were 

going to be sampled using a digital camera (Canon IXUS 130). All photographs were taken from 

a standard distance (1m) perpendicular to structures. ImageJ (version 1.48, 2014) was used to 

quantify the area of each foraging structure. 

2.5 Macrofauna 

For macrofauna samples, three cylindrical sediment cores (depth = 15cm, diameter = 10cm) 

were collected and pooled from each of the foraging structures, their controls and non-feeding 

controls. For pit-foraging structures, a single core was collected from the central mound and two 

cores collected from the depression on either side. In the case of channels, three cores were 

collected across the length of the structure. Cores were then churned in a bucket before being 

sieved through a 500µm mesh. This procedure was repeated five times before being sieved in a 

2mm mesh, and retained material preserved in 70% ethanol with Rose Bengal for staining. 

Macrofauna were counted and identified to the lowest taxonomic level possible in the laboratory. 

The biomass of individual species within samples were calculated using two different approaches. 

For large macrofaunal organisms (e.g. sandprawns, mudprawns, crabs), ten individuals were 

weighed (wet weight) on a Sartorius balance (5 decimal places) after blotting on tissue paper for 

one minute; and a mean individual biomass was calculated per species. Secondly, for smaller 

organisms (e.g. amphipods, polychaetes, isopods), thirty individuals were weighed and a mean 

generated. For molluscs (mainly gastropods and bivalves), organisms were removed from shells 
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prior to weighing. To estimate biomass per species per sample, mean biomass for each species was 

multiplied by their abundance. 

2.6 Micro-algal biomass 

Chlorophyll-a (chl-a) was extracted from sediment cores (diameter = 2cm, depth = 1cm; n 

= 3 per foraging structure/control and non-feeding control) and placed in 20ml 90% acetone. Cores 

were kept in darkness in a refrigerator for 24 hours. A sub-sample of the homogenised acetone 

sample was analysed using a fluorometer (Turner Designs Trilogy) to determine chl-a 

concentration, which served as a proxy for micro-algal biomass.  

2.7 Soil moisture content & sediment particle size 

To quantify soil moisture content, a single sediment core (20ml vial) was collected per 

feeding and non-feeding quadrat and frozen. After defrosting, the weight of individual sediment 

cores was measured (to the nearest 0.0001g), then dried at 105ºC for 24 hours and re-weighed. 

Soil moisture content was expressed as the difference in initial and final mass of sediment samples 

divided by the final mass of dry sediment. In addition, these dry sediment samples were also 

analysed with a Malvern Analyser (Mastersizer 2000), in which laser diffraction calculated 

sediment particle size (µm) at a 50% cumulative distribution per sample.  

2.8 Statistical analyses 

The package RandomForest was utilized in R (Liaw & Wiener 2002; James et al. 2013) to 

quantify ecological factors determining flamingo decisions to 1) feed or not feed (by comparing 

foraging vs non-foraging samples) and 2) using channels or pits to forage. Regression analyses 
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were undertaken using RandomForest to identify key determinants of sizes of pits and channels 

created by flamingos. Predictor variables were obtained from biological data from non-feeding 

controls and foraging structure controls and consisted of community metrics (macrofaunal 

abundance, species richness and biomass), abundance and biomass of dominant macrofaunal 

species and chl-a concentrations. For community biomass, data with and without sandprawn 

Callichirus kraussi biomass were used as predictor variables in order to assess whether C. kraussi 

biomass disproportionately affected statistical outcomes. Macrofaunal species were classified into 

three functional groups (surface feeders (0-5cm), infauna (5-10cm) and deep burrowing feeders 

(>10cm)) based on their depth distribution sediments (Branch et al. 2010). Soil moisture content 

and sediment particle size were only used as predictor variables when assessing factors driving 

flamingo foraging/non-foraging. Each of the RandomForest analyses consisted of a model with 

500 classification trees. Accuracy was evaluated based on the out-of-bag estimation of error 

(classification analysis) and the percentage of variance explained in a given dataset (regression 

analysis, Liaw & Wiener 2002). Variable importance plots were extracted from the models to 

identify the top ranked predictor variables. Partial dependence plots were created from the 

important variables identified, in order to model the predictions of interest (James et al. 2013). 

Multivariate analyses were performed on unstandardized and transformed (fourth root) 

abundance data in PRIMER v.6.1.5 (Plymouth Routines in Multivariate Ecological Research; 

Clarke and Gorley 2006). Non-metric multidimensional scaling (MDS) ordinations (based on 

resemblance matrices generated from Bray-Curtis similarities) were used to visually assess 

macrofaunal community structure between flamingo foraging structures and their controls. 

PERMANOVA (Permutational Analysis of Variance, nesting hierarchy: Site, Shore Position(Site), 

Quadrat(Shore Position)) was used to determine whether macrofaunal community structure 
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differed between flamingo foraging structures and their controls, with pair-wise tests being used 

to identify significant within-treatment differences per site and tidal position. W-statistics were 

calculated for each foraging structure and their controls in order to numerically quantify the 

magnitude of difference in community biomass and abundance using the Cumulative Abundance-

Biomass Curve function. The DIVERSE function was utilised to calculate macrofaunal abundance 

(N) and species richness (total number of S) per feeding structure, feeding structure control and

non-feeding control. SIMPER (similarity percentage analysis) was used to identify dominant 

species that accounted for 90% of overall community abundance and biomass structure in pits, 

channels and their corresponding controls per tidal position per site. 

Univariate analyses and parametric tests were conducted in SPSS (Statistical Package for 

Social Sciences) v 21. Levene’s and Kolmogorov-Smirnov tests were used to test for normality 

and homogeneity of variance in data. In cases where data did not meet the required assumptions 

for parametric testing, data were transformed (ln(x + 1)). A nested analysis of variance (ANOVA) 

with post-hoc Tukey tests were applied to determine whether macrofaunal community measures 

differed between 1) flamingo foraging structure controls and non-feeding controls, 2) flamingo 

foraging structures and their controls. Nested ANOVA and post-hoc Tukey tests were also applied 

to determine whether the abundance and size of flamingo foraging structures differed spatially 

across sites and tidal positions. 

A linear mixed-model analysis (LMM) was conducted in R (package lme4) in order to 

investigate the strength of the relationship between the size of the flamingo foraging structures and 

the impacts on macrofaunal community measures along with dominant macrofaunal species. 

Flamingo impact was expressed as the difference in macrofaunal community measures or 
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abundance of dominant species between foraging structures and respective controls. A nested 

hierarchical structuring was employed in the linear mixed model, with shore position nested in site 

and quadrat nested in shore position as random effects. Size of the foraging structures (pits and 

channels) remained as fixed effects and were standardized (see equation 1 below). Response 

variables were transformed (L(x) = sign(x) * log(|x| + 1): where x = data point) in order to 

normalize the data (John & Draper 1980). The package MuMIn was utilized to calculate the 

coefficient of determination (R2) for linear mixed models. 

x´ =
x − µ

σ

x´= new data point 

x = original data point 

µ = mean of data set 

σ = standard deviation of data set

(1)
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CHAPTER 3: RESULTS 

3.1 Spatial variation in the abundance and size of flamingo foraging structures 

Shore position was the only spatial variable to significantly affect the size (F1,47 = 6.57, p 

= 0.01, Table 2) and abundance (F2,8 = 6.72, p = 0.02) of channel-foraging structures. Sizes of 

channel-foraging structures appeared to decline from the high- to the low-water mark at Site 3 

(Figure 7A). On the other hand, abundance of channel-foraging structures increased from the high- 

to low-water mark at Site 2 (Figure 7B). The size of pit-foraging structures varied significantly 

among quadrats (F2,33 = 3.67, p = 0.04, Table 2). Channel-foraging structures ranged from 380.64 

- 6096.57cm2, with an average size of 2756.24 ± 159.93cm2. Pits ranged from 2254.76 -

6329.93cm2, with an average size of 4112.38 ± 186.36cm2. 

Table 2: Results of nested ANOVA testing for differences in the abundance and size of flamingo 

foraging structures between spatial levels. Degrees of freedom are indicated in brackets below 

the F- value.  * = significant difference; - = no statistic computed. 

Factor 
Channel 

Abundance 
Pit Abundance Channel Size Pit Size 

F p F p F p F p 

Site 
0.44 
(2,2) 

0.70 - - 
0.13 
(2,1) 

0.89 - - 

Shore Position 
6.72 
(2,8) 

0.02* - - 
6.57 
(1.47) 

0.01* - - 

Quadrat 
0.63 
(4,8) 

0.66 
0.47 

(2,4) 
0.66 

1.84 
(4,47) 

0.14 
3.67 

(2,33) 
0.04* 
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Figure 7: Differences in (A: size, B: abundance) of flamingo pit (    ) and channel (    ) foraging structures across the three sites and 

shore positions (H: high, M: mid, L: low). Different letters denote significant differences between shore positions. Means ± 1SE are 

shown. 
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3.2 Part A: Drivers of flamingo foraging 

3.2.1 Foraging vs non-foraging 

RandomForest modelling revealed that species richness and macrofaunal biomass 

excluding Callichirus kraussi along with the abundance of infauna, were the primary predictors of 

flamingo foraging (Figure 8). For richness, the probability of feeding was high when richness was 

between six and eight, but then declined followed by an increase. The probability of feeding was 

greatest when macrofaunal biomass was low between 0.0 and 0.05g, but thereafter decreased as 

the biomass increased. For infauna, the probability of feeding was low when infauna was between 

0 and 20; but then increased rapidly before reaching a steady state after 23. 

 

Figure 8: Best predictors (A: Species Richness, B: Macrofaunal Biomass (excl. C. kraussi), C: 

Infaunal Abundance) of flamingo foraging.  
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Visual trends in variables identified by RandomForest modelling to drive flamingo feeding 

are illustrated in Figures 9-11. Macrofaunal richness did not vary among flamingo foraging 

treatments (Nested ANOVA: F3,39 = 1.85, p = 0.15, Figure 9) nor did infaunal abundance (Nested 

ANOVA: F3,39 = 2.06, p = 0.12, Figure 11).  

Macrofaunal biomass excluding C. kraussi was significantly affected by flamingo foraging 

treatment (Nested ANOVA: F3,39 = 6.48, p = 0.001). Feeding quadrats generally held a lower 

biomass than non-feeding quadrats across the sites, of which two out of eight comparisons were 

statistically supported (Figure 10).  
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Figure 9: Differences in macrofaunal richness between feeding (  ) and non-feeding quadrats      

(  ) across the three sites and shore positions (H: high, M: mid, L: low). Means ± 1SE are shown. 
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Figure 10: Differences in macrofaunal biomass (excl. C. kraussi) between feeding (     ) and non-

feeding quadrats (      ) across the three sites and shore positions (H: high, M: mid, L: low). Different 

letters denote significant differences of biomass between treatments within a shore position. Means 

± 1SE are shown.  
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Figure 11: Differences in infaunal abundance between feeding (  ) and non-feeding quadrats     

(  ) across the three sites and shore positions (H: high, M: mid, L: low). Means ± 1SE are shown. 
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3.2.2 Pit-foraging vs non-foraging 

Chl-a concentrations, total biomass of macrofauna (including C. kraussi) and biomass of 

surface feeders were identified as the primary drivers of pit-foraging by flamingos (Figure 12). 

The chl-a model predicted low probabilities of pit-foraging between 0.2 and 0.4 mg L-1, but 

thereafter probability increased steadily as chl-a concentrations increased. On the other hand, 

probability of pit-foraging was predicted to be related to both biomass of macrofauna and surface 

feeders in an inversely exponential relationship, with pit-feeding being likely to occur when both 

predictor variables are low in magnitude.  

 

Figure 12: Best predictor variables (A: Chl-a Biomass, B: Macrofaunal Biomass (incl. C. kraussi), 

C: Surface Feeder Biomass) of flamingo pit-foraging.  
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Spatial patterns of the predictor variables identified by RandomForest in driving flamingo 

pit-foraging activities are illustrated in Figures 13-15.  Concentration of chl-a differed statistically 

between pit-foraging controls and non-feeding controls (Nested ANOVA: F3,156 = 4.08, p = 0.01) 

with values in pit controls generally being higher than non-feeding controls, with two out of four 

comparisons being statistically supported (Figure 13).  

Biomass of surface feeders varied significantly among flamingo pit-foraging treatments 

(Nested ANOVA: F3,156 = 5.00, p = 0.002). Generally, pit-foraging controls were lower in biomass 

compared to non-feeding controls, with one out of four comparisons being statistically significant 

at the high-water mark of Site 1 (ANOVA Post - hoc Tukey: p = 0.001, Figure 14). 

Total biomass of macrofauna including C. kraussi differed statistically across flamingo 

foraging treatments (Nested ANOVA: F6,211 = 3.10, p = 0.01, also mentioned in section 3.2.3). Pit-

foraging controls were generally lower in biomass compared to non-feeding controls, however 

none of these comparisons were significant (Figure 15). Channel-foraging controls also revealed 

similar patterns in comparison to non-feeding controls, however, only one out of seven 

comparisons were statistically supported at the low-water mark of Site 2 (ANOVA Post Hoc 

Tukey: p = < 0.001).  
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Figure 13: Differences in chl-a concentrations between flamingo pit-foraging controls (    ) and 

non-feeding controls (   ) across the three sites and shore positions (H: high, M: mid, L: low). 

Different letters denote significant differences of chl-a between pit-foraging controls and non-

feeding controls within a shore position. Means ± 1SE are shown.  
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Figure 14: Differences in surface feeder biomass between flamingo pit-foraging controls (     ) and 

non-feeding controls (   ) across the three sites and shore positions (H: high, M: mid, L: low). 

Different letters denote significant differences between pit-foraging controls and non-feeding 

controls within a shore position. Means ± 1SE are shown.   
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Figure 15: Differences in macrofaunal biomass (incl. C. kraussi) between flamingo foraging 

structure controls (channels:    , pits:  ) and non-feeding controls (    ) across the three sites and 

shore positions (H: high, M: mid, L: low). Different letters denote significant differences of 

biomass between a foraging structure control and non-feeding control within a shore position. 

Means ± 1SE are shown. 
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3.2.3 Channel-foraging vs non-foraging 

Abundance of all macrofauna, infauna and surface feeders along with macrofaunal biomass 

(including C. kraussi) were the main determinants of flamingo channel-foraging (Figure 16). 

Models predicted high probabilities of channel-foraging when biomass of macrofauna was low, 

followed by a decline that reached a steady state as biomass increased. Probability of channel- 

foraging was predicted to be related to abundances of macrofauna, infauna and surface feeders in 

a sigmoidal relationship. The latter initially had low probabilities at low abundance values before 

reaching a threshold beyond which likelihood of channel-foraging increased rapidly before 

reaching a steady state. 

Figure 16: Best predictor variables (A: Macrofaunal Abundance, B: Infaunal Abundance, C: 

Surface Feeder Abundance, D: Macrofaunal Biomass (incl. C. kraussi)) of flamingo channel-

foraging.  
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Visual trends in predictor variables to drive flamingo channel-foraging are illustrated in 

Figures 17-19. Abundance of macrofauna was significantly affected by flamingo channel-foraging 

treatment (Nested ANOVA: F3,175 = 6.79, p < 0.001). Channel controls were significantly greater 

than non-feeding controls, with four out of seven comparisons being statistically validated, with 

the exception being the high-water mark of Site 2, where channel controls were significantly lower 

than non-feeding controls (ANOVA Post Hoc Tukey: p = 0.004, Figure 17).  

Surface feeder abundance varied significantly among flamingo channel-foraging 

treatments (Nested ANOVA: F3,175 = 5.44, p = 0.001), with surface feeder abundance generally 

being greater in channel-foraging controls compared to non-feeding controls, with two out of seven 

comparisons being statistically supported (Figure 18). However, there was one comparison of 

abundance being significantly lower in channel-foraging controls than non-feeding controls at the 

high-water mark of Site 2 (ANOVA Post Hoc Tukey: p = 0.003). 

Infaunal abundance was significantly affected by flamingo channel-foraging treatments 

(Nested ANOVA: F3,175 = 6.34, p = < 0.001), where channel-foraging structure controls had greater 

infaunal abundances than non-feeding controls, with three out of seven comparisons being 

statistically supported (Figure 19).  

For macrofaunal biomass (incl. C. kraussi) refer to section 3.2.2 and Figure 15
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Figure 17: Differences in macrofaunal abundance between flamingo channel-foraging controls     

(    ) and non-feeding controls (  ) across the three sites and shore positions (H: high, M: mid, L: 

low). Different letters denote significant differences of abundance between channel-foraging 

controls and non-feeding controls within a shore position. Means ± 1SE are shown 
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Figure 18: Differences in surface feeder abundance between flamingo channel-foraging controls    

(    ) and non-feeding controls (    ) across the three sites and shore positions (H: high, M: mid, L: 

low). Different letters denote significant differences of abundance between channel-foraging 

controls and non-feeding controls within a shore position. Means ± 1SE are shown. 

0

50

100

150

200

250

H M LS
u

rf
a
c
e
 F

e
e
d

e
r 

A
b

u
n

d
a
n

c
e

(3
 c

o
re

s
-1

)

Site 2 

b 

a 
b 

a 
a 

a 

0

50

100

150

200

250

H M L

Shore Position

Site 3 

L 

b 

a a 
a 

a 
a 

0

50

100

150

200

250

H M L

Site 1 

a 
a 



Chapter 3: Results  41 

Figure 19: Differences in infaunal abundance between flamingo foraging structure controls 

(channels:    , pits:     ) and non-feeding controls (  )  across the three sites and shore positions (H: 

high, M: mid, L: low). Different letters denote significant differences of abundance between a 

foraging structure control and non-feeding control within a shore position. Means ± 1SE are 

shown. 
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3.2.4 Variability in sizes of flamingo foraging structures 

The abundance of Urothoe grimaldii (Amphipoda) and Notomastus latericeus (Polychaeta) 

were the only variables driving variability in sizes of pits created by flamingos (Figure 20). Pit 

sizes were predicted by inversely exponential relationships for both species, with large pit sizes 

being predicted at low abundances. Thereafter, the pit sizes are predicted to drop rapidly with 

increasing abundances of the latter two species.  

RandomForest did not produce a model for the size of channel-foraging structures, as there 

was a low percentage of variation explained in the data. Thus, none of the variables were 

recognized as predictors of channel sizes.  

 

 

 

 

Figure 20: The abundance of (A: Urothoe grimaldii, B: Notomastus latericeus) were the best 

predictor variables in driving the size variability of flamingo pit-foraging structures. 
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3.3 Part B: Impacts of flamingo foraging plasticity on benthic assemblages 

3.3.1 Micro-algal biomass 

Chl-a concentrations differed significantly among quadrats (Nested ANOVA: F3,172 = 2.79, 

p = 0.04, Table 3) and flamingo foraging treatments (Nested ANOVA: F8,172 = 12.31, p < 0.001). 

At Site 2, chl-a concentrations decreased from the high- to both the mid- and low-water mark as 

well as from the low- to the mid-water mark (Figure 21). Chl-a levels were generally lower in 

channels relative to their controls, and were statistically supported at the mid- and low-water marks 

across all sites. However, pits and their controls had similar chl-a levels. 

Table 3: Nested ANOVA results testing for differences in macrofaunal community metrics and 

chl-a biomass between flamingo foraging structures and controls. * = significant difference. 

Factor Chl-a 
Macrofaunal 

Abundance 

Species 

Richness 

Macrofaunal 

Biomass 

W - 

statistics 

Degrees 

of 

freedom 

F p F p F p F p F p 

Site 2,33 3.08 0.19 3.45 0.17 5.61 0.10 2.73 0.21 3.50 0.16 

Shore 

Position 
3,172 8.74 

<0.001

* 
9.11 <0.001* 7.27 <0.001* 2.53 0.06 7.19 

<0.001

* 

Quadrat 3,172 2.79 0.04* 0.08 0.97 1.19 0.32 0.99 0.40 2.23 0.09 

Treatment 8,172 12.31 
<0.001

* 
9.35 <0.001* 1.12 0.35 0.83 0.58 6.33 

<0.001

*
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Figure 21: Differences in chl-a concentrations between flamingo foraging structures (channels:     

, pits:  ) and controls (channel controls:  , pit controls:  ) across the three sites and shore 

positions (H: high, M: mid, L: low).  Different letters denote significant differences of total chl-a 

biomass between shore positions (in uppercase) and between a feeding structure and its control 

within a shore position (in lowercase). Means ± 1SE are shown. 
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3.3.2 Macrofaunal community structure 

PERMANOVA indicated that macrofaunal community structure was significantly affected 

by shore position (F5,193 = 8.90, p = 0.001) and flamingo foraging treatments (F26,193 = 2.17, p = 

0.001), but not by site (F2,193 = 1.70, p = 0.188) nor quadrat (F16,193 = 0.97, p = 0.538). Pair-wise 

tests generally indicated differences in community structure between flamingo channels and their 

controls, with seven out of eight comparisons being statistically supported; but no differences were 

evident between pits and controls. MDS visually confirmed differences in community structure 

between flamingo channels and controls (Figure 22) as well as similarities between pits and their 

controls (Figure 23).  
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Figure 22: MDS ordinations showing differences in macrofaunal community structure between channels (    ) and channel controls (    ) 

across the three sites and shore positions. Pair-wise testing with p values provided. 
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Figure 23: MDS ordinations showing differences in macrofaunal community structure between pits (  ) and pit controls (    ) across 

the three sites at the high-and mid-shore position. Pair-wise testing with p values provided.
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3.3.3 Macrofaunal community metrics 

Nested ANOVA revealed that all macrofaunal community metrics (except total biomass) 

differed statistically across shore position (p < 0.001, Table 3) but not sites (p > 0.1).  Differences 

between flamingo foraging treatments were only evident for macrofaunal abundance (Nested 

ANOVA: F8,172 = 9.35, p < 0.001, Table 3) and not for species richness (Nested ANOVA: F8,172 = 

1.12, p = 0.35, Table 3) or total biomass (Nested ANOVA: F8,172 = 0.83, p = 0.58, Table 3, Figure 

26). Macrofaunal abundance was lower at the high- compared to the mid-water mark at Site 1 

(Figure 24). At Site 2, both the high- and low- were lower than the mid-water mark; whereas at 

Site 3, the high- and mid- were lower than the low-water mark. Abundance was lower in flamingo 

channels relative to their controls with five out of seven comparisons being statistically significant, 

but not between pits and their controls, with the exception being the high-shore position of Site 1 

(ANOVA Post - hoc Tukey: p = 0.025). Macrofaunal richness was higher at the mid- compared to 

the high-water mark at Site 1 (ANOVA Post – hoc Tukey: p = < 0.001, Figure 25). W-statistics 

were significantly affected by flamingo foraging treatment (Nested ANOVA: F8,172 = 6.33, p = < 

0.001, Table 3). W-statistics were consistently greater in flamingo channels relative to their 

controls with four out of seven comparisons being statistically upheld (Figure 27). None of the 

comparisons of W-statistics between pits and their controls were statistically significant.  
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Figure 24: Differences in macrofaunal abundance between flamingo foraging structures 

(channels:     , pits:     ) and controls (channel controls:     , pit controls:     )  across the three sites 

and shore positions (H: high, M: mid, L: low). Different letters denote significant differences of 

total abundance between shore positions (in uppercase) and between a feeding structure and its 

control within a shore position (in lowercase). Means ± 1SE are shown. 
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Figure 25: Differences in macrofaunal richness between flamingo foraging structures (channels:    

, pits :    ) and controls (channel controls:     , pit controls:     )  across the three sites and shore 

positions (H: high, M: mid, L: low). Different letters denote significant differences of total richness 

between shore positions (in uppercase). Means ± 1SE are shown. 
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Figure 26: Differences in macrofaunal biomass between flamingo foraging structures (channels:   

, pits :    ) and controls (channel controls:     , pit controls:     )  across the three sites and shore 

positions (H: high, M: mid, L: low). Means ± 1SE are shown.  
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Figure 27: Differences in W-statistics between flamingo foraging structures (channels: , 

pits:   ) and controls (channel controls:  , pit controls:  )  across the three sites and shore 

positions (H: high, M: mid, L: low). Different letters denote significant differences of total W-

statistics between shore positions (in uppercase) and between a feeding structure and its control 

within a shore position (in lowercase). Means ± 1SE are shown. 
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3.3.4 Dominant macrofaunal species 

Of the 43 species identified from samples, 21 were identified by SIMPER to distinguish 

flamingo foraging structures from their controls based on the abundance data (Table 4). The most 

dominant macrofaunal species, which was the amphipod Urothoe grimaldii, was reduced in pits 

by 20% and in channels by 63%, indicating that this species is likely one of the main prey items 

of flamingos. Calanoid copepods, Notomastus latericeus, Eurydice kensleyi, Orbinia 

angrapequensis, Hymenosoma orbiculare, Leucothoe spinicarpa, Heterocuma africanum and 

Griffithsia latipes were additional species that were generally significantly reduced in abundance 

in channels relative to their controls. Callichirus kraussi was the only macrofaunal species to 

increase in abundance in channels relative to their controls at the mid-shore position of Site 1 and 

the low-shore position of Site 2 (Table 4). The polychaete Perinereis nuntia vallata, the crab 

Paratylodiplax blephariskios and C. kraussi showed similar response patterns, with their 

abundances being reduced significantly in pits relative to their controls at the high shore position 

of Site 1 (Table 4). SIMPER analyses based on biomass data identified 14 species that 

distinguished flamingo foraging structures from their controls (Table 5). However, only four 

species (U. grimaldii, E. kensleyi, H. orbiculare and O. angrapequensis) had their biomasses 

significantly reduced in channels compared to their controls (Table 5). The biomass of C. kraussi 

was significantly higher in channels than controls at the low-shore position of Site 2. 



Chapter 3: Results  54 

Taxon Species Site 1 Site 2 Site 3 

High Mid High Mid Low High Mid Low 

P PC P PC C CC P PC C CC C CC C CC P PC C CC C CC C CC 

Amphipoda Urothoe grimaldii 0.13 0.33 23.3 36 10.1
a

38.9
b 28.3 32.4 19.3 20.25 24.6

a
65.8

b
20.47

a
41.8

b 24.3 26.5 18.2
a

45.8
b

15.89
a

41.67
b

14.29
a

77.71
b

Copepoda Calanoid copepods 11.4 13.73 4.25 9 4.63
a

16
b 9.1 10 7.75 15.75 45.4 23.1 22.33

a
31.47

b 21.1 26.7 13.6 22.6 16.56 23.33 21.86 58.71 

Polychaeta Notomastus latericeus 0 0.07 2.5 6.5 4.63 3.5 7.9 6.3 5.75 6 7.4 6.9 2.4 3.4 2.6 3.4 7
a

15.6
b 16.89 15.67 12.71 18.71 

Thalassinidea Callichirus kraussi  0.67
a 

1.4
b 1.5 2.5 4

a 
1.63

b 2.9 2.4 2.75 2 2.2 2 1.53
a 

0.27
b 2.6 3 3.2 4 3.56 3.78 3.43 5 

Polychaeta Ceratonereis erythraeensis 0.33 0.33 3.25 6.75 1.75 2.75 0.8 0.6 3 2.25 2.5 3.1 1.6 1.73 7.5 7.8 0.6 0.8 0 0 0 0.11 

Isopoda Eurydice kensleyi 0.8 0.73 1.25 0.25 0.5 2.5 5.9 10 1.5 2.75 1 0.9 0.8 0.73 1.2 1.7 1.8
a

4.6
b 2.11 3 0.86

a
0.14

b

Polychaeta Marphysa elitueni 0.4 0.53 2 1 1.75 1.63 1.9 3 1.75 1.75 1.1 1.2 0.73 1 0.1 0.4 2.4 1.6 2.56 3.11 3.29 4 

Polychaeta Orbinia angrapequensis 0 0 0.75 0.75 0 0.25 1.6 0.9 3 1 1.4 2 3.67
a

10.47
b 1.8 0.9 0.8 2.4 0.22 0.11 1.29 2.43 

Brachyura Hymenosoma orbiculare  0 0 0 0 0.25 0 0.1 0.2 0.25 0 0 0 0.53
a 

3.33
b 0.9 1.5 1.4 3 1.56

a 
3.22

b 2.57 4.43 

Amphipoda Leucothoe spinicarpa 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0 0 0 0.67 0.78 2.86
a

16.29
b

Cumacea Heterocuma africanum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.4 0.2 0.2 0.89 3 1.29
a

11
b

Gastropoda Assiminea globulus 3.6 6.07 0 0.5 0.5 0 0.6 0.2 0 0.25 0 0 0 0 0.7 2.2 0.2 0.6 0.11 0.44 0 0 

Gastropoda Hydrobia spp 0.6 0.6 0.75 0.25 0 0.13 0.9 0 0.25 1.75 0 0 0 0 0.4 0.7 1.2 1.2 0.56 0.33 0 0 

Amphipoda Griffithsia latipes 0 0.07 0.25 0.5 0.88
a

3
b 0.2 0 0.75 0 0.8 0.9 0 0.07 0 0 0

a
0.40

b 0.44 0.11 0.29 0.57 

Polychaeta Perinereis nuntia vallata 0.93
a

2.47
b 0.25 0 0.13 0 0.4 0.1 0 0 0 0 0 0 1.2 1.7 0 0 0 0 0 0 

Polychaeta Thelepus spp 0.47 0.2 0 0.25 0.63 0.13 0 0 0 0 0 0.1 0.47 0.47 0.9 1 0.4 0.6 0.11 0.78 0 0.29 

Polychaeta Cirriformia capensis 1.67 1.67 0 0 0 0 0 0 0 0 0 0 0.13 0 0.2 0.4 0.2 0.2 1 0 0 0 

Isopoda Paridotea ungulate 0.07 0.13 0 0 0.25 2 0.3 0.6 0.5 1 0.3 0 0 0.07 0 0.1 0 0 0 0 0 0 

Brachyura Paratylodiplax blephariskios 0.13
a 

0.8
b 0.25 1.25 0 0.375 0.1 0 0 0 0 0.2 0 0 0.2 0.1 0 0.4 0 0 0 0.14 

Bivalvia Macoma spp 0.07 0.33 0 0 0 0 0 0 0 0 0 0 0 0.07 0.1 0 2.4 0 0 0 0 0 

Bivalvia Tellimya trigona 0.07 0.47 0 0 1.25 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 4: Abundance of macrofaunal species that cumulatively accounted for 90% of community structure in flamingo foraging structures (P = pits, 

C =channels) and controls (PC = pit controls, CC = channels controls). Different superscript letters denote significant differences.  
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Table 5: Biomass of macrofaunal species that cumulatively accounted for 90% of community structure in flamingo foraging structures (P = pits, C 

=channels) and controls (PC = pit controls, CC = channels controls). Different superscript letters denote significant differences. 

Taxon Species Site 1 Site 2 Site 3 

High Mid High Mid Low High Mid Low 

P PC P PC C CC P PC C CC C CC C CC P PC C CC C CC C CC 

Thalassinidea Callichirus  kraussi 0.146 0.374 0.159 0.266 0.496 0.314 0.308 0.311 0.292 0.213 0.459 0.269 0.238
a 

0.028
b 0.276 0.319 0.34 0.425 0.441 0.589 0.525 0.531 

Amphipoda Urothoe grimaldii <0.001 <0.001 0.007 0.011 0.003
a

0.012
b 0.009 0.010 0.006 0.006 0.007

a
0.020

b
0.006

a
0.013

b 0.007 0.008 0.006
a

0.014
b

0.005
a

0.013
b

0.004
a

0.023
b

Isopoda Cirolana hirtipes 0 0 0.041 0 0 0.041 0 0 0 0 0.016 0.016 0 0 0 0 0 0 0 0 0 0 

Brachyura Hymenosoma orbiculare 0 0 0 0 0.0006 0 <0.001 0.001 0.001 0 0 0 0.001
a 

0.009
b 0.02 0.004 0.004 0.008 0.004

a 
0.008

b 0.034 0.011 

Polychaeta Marphysa elitueni 0.001 0.002 0.006 0.003 0.005 0.005 0.005 0.008 0.005 0.005 0.003 0.003 0.002 0.003 <0.001 0.001 0.007 0.005 0.009 0.011 0.007 0.009 

Isopoda Eurydice kensleyi 0.002 0.002 0.003 0.001 0.001 0.006 0.014 0.014 0.004 0.007 0.002 0.002 0.002 0.002 0.003 0.004 0.004
a

0.011
b 0.005 0.007 0.002

a
<0.001

b

Brachyura Paratylodiplax blephariskios  0.002 0.0311 0.003 0.016 0 0.015 0.001 0 0 0 0 0.003 0 0 0.003 0.001 0 0.005 0 0 0 0.013 

Polychaeta Thelepus spp 0.006 0.003 0 0.003 0.008 0.002 0 0 0 0 0 0.001 0.006 0.006 0.011 0.013 0.005 0.008 0.001 0.010 0 0.004 

Polychaeta Ceratonereis erythraeensis 0.001 0.001 0.006 0.012 0.003 0.005 0.001 0.001 0.005 0.004 0.004 0.005 0.003 0.003 0.013 0.013 0.001 0.001 0 <0.001 0 0 

Polychaeta Cirriformia capensis 0.015 0.015 0 0 0 0 0 0 0 0 0 0 0.001 0 0.002 0.004 0.002 0.002 0.009 0 0 0 

Brachyura Spiroplax spiralis  0 0 0 0.007 0.003 0 0 0.005 0.003 0.003 0 0.001 0.005 0.001 0 0.001 0.005 0 0 0 0 0 

Eumalacostraca Betaeus jucundus 0.003 0.005 0 0 0.002 0.005 0 0.001 0 0 0.003 0 0.001 0 0.003 0.004 0 0 0.006 0 0 0 

Polychaeta Orbinia angrapequensis 0 0 0.001 0.001 0 <0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002
a

0.006
b 0.001 0.001 0.001 0.002 <0.001 <0.001 0.0008 0.0015 

Polychaeta Euclymene spp 0 0 0 0 0 0 0 0 0 0 0 0 0.021 0 0 0 0 0 0 0 0 0 



Chapter 3: Results  56 

3.3.5 Size of foraging structures in relation to flamingo predation impact 

Linear mixed models revealed that the impact of flamingo foraging on macrofaunal 

abundance was negatively related to the size of channels (t = -2.605, p = 0.012, R2 = 0.507, Table 

6), suggesting that smaller channels induce greater impacts on macrofaunal abundance. There was 

evidence that the abundance of the polychaete N. latericeus also displayed a negative relationship 

with channel size, although the latter was marginally non-significant (t = -1.762, p = 0.084, R2 = 

0.440). There were no significant relationships with the impacts of flamingo foraging on the 

community variables in relation to the size of pits.  

Table 6: Results of linear mixed effects modelling testing the effects of sizes of flamingo foraging 

structures against various community metrics. * = significant effect. 

Response variable         Pits           Channels 

R2 Slope p R2  Slope p 

Macrofaunal Abundance 0.207 1.895 0.588 0.507 -17.95 0.012* 

Species Richness 0.207 0.122 0.813 0.085 -0.033 0.547 

Chl-a 0.014 0.003 0.917 0.158 0.031 0.231 

Macrofaunal Biomass 0.065 0.105 0.114 0.089 0.019 0.764 

Urothoe grimaldii 0.001 -0.032 0.816 0.453 -4.440 0.173 

Notomastus latericeus 0.267 0.017 0.855 0.440 -1.330 0.084 

Ceratonereis erythraeensis 0.304 -0.547 0.296 0.042 0.310 0.208 

Eurydice kensleyi 0.019 0.066 0.412 0.297 0.048 0.343 

Callichirus  kraussi  0.042 0.291 0.301 0.225 0.264 0.437 
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CHAPTER 4: DISCUSSION 

The overarching goal of this study was to contribute to expanding knowledge of the causes 

and consequences of the plastic foraging strategies employed by Greater Flamingos in Langebaan 

Lagoon. Results of statistical modelling indicated that biotic variables were the main determinants 

of flamingo foraging, and that different aspects of prey assemblages influenced choices made by 

flamingos to employ particular foraging methods. Results also indicate that the various strategies 

employed by flamingos when foraging result in differential impacts on soft sediment assemblages. 

However, contrary to the hypothesis made, pit-foraging did not result in a greater impact on prey 

assemblages relative to channel-foraging. Taken collectively, the results obtained broaden the 

understanding of foraging plasticity displayed by predators in marine soft-sediment ecosystems, 

which to date, have been rarely investigated.  

4.1 Ecological determinants of flamingo foraging 

A summary of variables predicting flamingo foraging is presented in Table 7. Macrofaunal 

richness was identified as one of the primary variables driving flamingo decisions to feed. High 

probabilities of feeding were predicted when richness was between six and eight species. This was 

followed by a decline in predicted foraging as richness approached ten species, and an increase 

when richness approached eleven species. Although few studies have demonstrated the link 

between prey richness and consumer foraging choices, inferences on the latter have been made 

based on the consumer foraging behaviour. For example, Mori et al. (2005), using dive profile 

data, showed that Weddell seals foraged for longer when prey index, a proxy for prey richness, 

was high. This suggests that prey richness may be an important driver of seal feeding behaviour, 
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resulting in increased foraging effort when prey diversity is high. Similar trends have been reported 

for herbivores. Wang et al. (2010) demonstrated that increases in plant species richness, through 

field and indoor experiments, resulted in sheep increasing their time spent foraging, resulting in a 

greater protein and energy intake. 

Table 7: Summary of the ecological factors predicting flamingo foraging behaviour. 

Flamingo foraging 

behavior 
Predictor Relationship 

Foraging vs non-foraging 

1. Macrofaunal Richness

2. Macrofaunal Biomass

(excl. C. kraussi)

3. Infaunal Abundance

1. Bimodal (High probabilities of feeding

between 6-8 and 11-12 species)

2. Exponential decay (High probabilities of

feeding between 0 and 0.05g)

3. Sigmoidal (High probabilities of feeding

after 23 counts of infauna)

Pit-foraging vs non-

foraging 

1. Chl-a biomass

2. Macrofaunal Biomass

(incl. C. kraussi)

3. Surface Feeder Biomass

1. Linear (High probabilities of pit-foraging

with increases in chl-a concentrations after

0.4 mg L-1)

2. Exponential decay (High probabilities of

pit-foraging between 0 and 0.25g)

3. Exponential decay (High probabilities of

pit-foraging when biomass is < 0.01g)

Channel-foraging vs non-

foraging 

1. Macrofaunal Abundance

2. Infaunal Abundance

3. Surface Feeder Abundance

4. Macrofaunal Biomass

(incl. C. kraussi)

1. Sigmoidal (High probabilities of channel-

foraging after 150 counts of macrofauna)

2. Sigmoidal (High probabilities of channel-

foraging after 23 counts of infauna)

3. Sigmoidal (High probabilities of channel-

foraging after 110 counts of surface

feeders)

4. Exponential decay (High probabilities of

channel-foraging when biomass is < 0.1g)
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It must be noted that in the present study, models did not identify a linear relationship 

between richness and probability of feeding; models instead predicted a bimodal response. A 

possible reason for the latter was that it reflects spatial variability in richness among the sampling 

sites. For example, at Sites 1 and 2, feeding patches consisted on average seven to eight species 

(which may correspond to the first peak predicted by models; Figure 8), whereas at Site 3, 

macrofaunal richness increased to approximately ten. Another reason for the models producing a 

bimodal response was that flamingo feeding comprised of pooled data for both pit- and channel-

foraging. The first predicted peak of foraging could therefore reflect pit-foraging, whereas the 

second predicted peak may correspond to channel-foraging or vice-versa. While modelling 

techniques did identify macrofaunal richness as a predictor of flamingo foraging, the fact that 

predicted foraging increased only by 7% across the ranges of richness observed, suggests that 

richness may not be a very strong determinant of foraging. The latter is supported by results 

showing that no significant differences were detected between flamingo feeding and non-feeding 

patches.  

The biomass of macrofauna, either including or excluding Callichirus kraussi, was 

consistently identified as an important driver of choices made by flamingos to feed and implement 

either pit- or channel-foraging (Table 7). All three feeding models predicted an exponential decline 

in probability of flamingo feeding/pit- or channel-foraging with increasing macrofaunal biomass. 

Interestingly, similar patterns were predicted for surface feeder biomass, which was identified as 

a predictor of pit-foraging. Collectively, the models highlighted above would suggest that 

flamingos preferentially target prey with low biomass for consumption. Greater Flamingos have 

been shown to feed optimally on prey between 2-4mm in size (Zweers et al. 1995), which supports 

the idea that flamingos may target smaller organisms when feeding. The latter is also supported by 
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(1) low macrofaunal biomass recorded in feeding patches and channel structure controls and (2)

low surface feeder biomass in pit controls in comparison to the non-feeding controls. The above 

findings suggest that areas foraged by flamingos in the field have lower biomass than areas where 

no feeding occurs. Therefore, statistical models reveal that irrespective of the feeding strategy 

employed by Greater Flamingos, these shorebird predators target smaller prey for consumption. 

Models predicted that increases in surface feeder, macrofaunal and infaunal abundances 

would lead to greater probabilities of flamingos employing channel-foraging (Table 7). Holme 

(1964) pointed out that the majority of benthic fauna resides within the top 10cm of sediment. In 

addition, many infaunal species are found in the upper 15cm (Johnson 1967) whereas amphipods, 

crustaceans and isopods are generally found in the upper 5cm sediment layer (Hines & Comtois 

1985). Taxa that were sampled in the present study were collected from a depth of 15cm and their 

abundances were significantly higher in channel controls compared to non-feeding controls within 

particular shore positions. Therefore, the likelihood of creating channels are greatest when surface-

associated prey is available. This is intuitive given that this foraging method essentially involves 

the bill being swept from side-to-side on the surface of sediments (Glassom & Branch 1997; 

Johnson & Cézilly 2007). Surface feeders contributed approximately 80% to overall macrofaunal 

abundance in channel-foraging controls and non-feeding controls, which may explain why 

macrofaunal abundance was highlighted as a predictor of channel-foraging. The greater probability 

of channel-foraging with increasing macrofaunal abundance may be a reflection of flamingos 

employing channel-foraging behaviour to target surface organisms.  
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Infaunal abundance was also identified as a primary predictor of flamingo feeding (Table 

7), with increases in infaunal abundance leading to increases in probabilities of feeding. However, 

significant differences in infaunal abundances were detected only between channel controls and 

non-feeding controls and not between feeding and non-feeding quadrats. It is important to note 

that of the 97 structures sampled in the study, 60% were channels. Thus, the selection of infaunal 

abundance as an ecological driver of flamingo feeding may be due to a disproportionate number 

of data points for channel-foraging in the data set. At the same time, the pooling of pit- and 

channel-foraging samples into one feeding dataset for ANOVA analysis, potentially lowered the 

statistical power of the test due to the large biological variance in the feeding data. This lead to 

comparisons between feeding and non-feeding treatments being statistically insignificant. Studies 

have raised awareness of the potential problems associated with analysing pooled datasets 

statistically, particularly that large variances in datasets were potentially hidden, resulting in false 

confidence in rejecting a true null hypothesis (Machlis et al. 1985; Zhang & Gant 2005). In my 

study, I had to pool data from all quadrats spanning different foraging methods in order to 

differentiate probabilities of foraging and not foraging.  

Micro-algal biomass (chl-a) was highlighted as a predictor of pit-foraging by flamingos, 

with increases in this trophic resource predicted to increase probabilities of flamingos employing 

pit-foraging (Table 7). This model prediction was supported by chl-a being significantly greater 

in pit controls than non-feeding controls. However, considering this feeding technique involves 

flamingos using their feet to dig up prey items from deep sediments (Glassom & Branch 1997; 

Johnson & Cézilly 2007), it would not be intuitive for this feeding strategy to be employed to 

target benthic micro-algae, which are generally found on the surface sediment layer (MacIntyre et 

al. 1996). Although few studies have demonstrated Greater Flamingos feeding on algae and plant 
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material (Johnson 1997), the flamingo species Phoenicoparrus andinus, P. jamesi, and 

Phoeniconaias minor specialize in algal diets. This is due to fine lamellae in their beaks allowing 

them to strain finer organisms (Jenkin 1957; Vareschi 1978; Hurlbert & Chang 1983). In contrast, 

members of the genus Phoenicopterus have coarser lamellae to filter comparatively larger items, 

thus allowing them to have a broader diet breadth (Jenkin 1957). Based on the latter, micro-algal 

biomass may not necessarily be a direct driver of Greater Flamingo pit-foraging.  Given that pit-

foraging behaviour was predicted when biomass of both macrofauna and surface feeders were low, 

and the suggestion that Greater Flamingos target smaller macrofaunal prey when employing this 

feeding method, the selection of micro-algal biomass as a driver of pit-foraging may thus be a 

consequence of small consumers being removed by flamingo pit-foraging facilitating micro-algal 

biomass. This idea is supported by several field experiments conducted in marine systems that 

have demonstrated stimulation of blooms of algal biomass following reductions in mesograzers 

(Whalen et al. 2013; Ebrahim et al. 2014; Reynolds et al. 2014; Duffy et al. 2015).  

Unexpectedly, the abundances of the amphipod Urothoe grimaldii and the polychaete 

Notomastus latericeus were the main determinants of the sizes of pit-foraging structures. The 

model predicted an increase in pit size with decreasing abundances of the two species listed above, 

indicating that when these prey were rare, the pits were bigger. Several studies have documented 

various consumers increasing their foraging effort as well their time spent foraging during periods 

of low prey abundance (Boyd et al. 1994; Monaghan et al. 1994; Suryan et al. 2000; Ronconi & 

Burger 2008). Based on the above, it is plausible that Greater Flamingos exert greater effort in 

foraging (larger pit size) when U. grimaldii and N. latericeus are rare. The latter could indicate 

that these species are targeted while pit-foraging, although, this is not intuitive since (1) both 

species have been recorded in the upper sediment layers of various sandflats (Christie 1976; 
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Pienkowski 1983; Desroy et al. 2002) and (2) deeper-dwelling prey items would have been 

expected to better predict pit-foraging given that the strategy was thought to target deep-dwelling 

organisms (Glassom & Branch 1997; Johnson & Cézilly 2007). This paradox of surface-dwelling 

taxa predicting the variability in the size of pit-foraging structures is possibly due to these taxa 

being consumed incidentally while targeting deeper-dwelling prey.  

The inability of RandomForest modelling to identify drivers of variability of flamingo 

channel sizes may be due to the predictor variables not being fully informative in explaining 

channel size. Although RandomForest can handle a large number of input variables (de Edelenyi 

et al. 2008), variable selection ultimately reduces the statistical noise emerging from uninformative 

variables, allowing more informative variables to be identified (de Edelenyi et al. 2008; Touw et 

al. 2012).  However, since the same predictor variables were input for pit size, and RandomForest 

did successfully identify the most informative variables, the other possibility was that there was a 

greater variance in the channel size data compared to the pit size data, hindering the detection of 

the underlying relationship between channel size and the predictor variables (Abu-Mostafa et al. 

2012).  The low proportion of variation explained in the channel size data does suggest a poor fit 

to the dataset leading to the model becoming unpredictable.  

4.2 Differential effects of flamingo foraging plasticity 

As is evident in Table 8, the different foraging strategies employed by flamingos generated 

contrasting impacts on benthic assemblages. The differential impacts of pit- and channel-foraging 

behaviours on benthic assemblages were likely to be driven by each of these feeding strategies 

serving distinct foraging functions (Brown et al. 2005). Based on visual observations of how each 

foraging strategy was executed, channel-foraging was likely to be a strategy aimed at consuming  
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Table 8: Summary of differences in macrofaunal community structure, community metrics, chl-a 

biomass and dominant species between flamingo foraging structures and controls. 

Response variable Impact 

Pits vs Pit controls Channels vs Channel controls 

Macrofaunal community 

structure 
No difference 

Significant difference 

(6/7 comparisons supported) 

Chl-a No difference 

Significant difference 

(lower in channels relative to controls 

with 5/7 comparisons supported) 

Macrofaunal Abundance 

Significant difference (lower in pits 

relative to controls with 1/4 

comparisons supported) 

Significant difference 

(lower in channels relative to controls 

with 5/7 comparisons supported) 

Macrofaunal Richness No difference No difference 

Macrofaunal Biomass No difference No difference 

W-statistics No difference 

Significant difference 

(higher in channels relative to controls 

with 4/7 comparisons supported) 

Dominant macrofaunal species 

(abundance) 

3 species significantly lower in pits 

relative to controls 

 9 species significantly lower in

channels relative to controls

 1 species significantly higher in

channels relative to controls

Dominant macrofaunal species 

(biomass) 
No difference 

 4 species significantly lower in

channels relative to controls

 1 species significantly higher in

channels relative to controls
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organisms associated with the sediment surface; whereas pit-foraging may be a strategy aimed at 

acquiring deeper-dwelling prey. Therefore, the differential impacts on benthic assemblages 

observed in this investigation was likely reflective of each of these foraging methods targeting 

prey from different depth strata in the benthos. This may explain the greater impact of channel-

foraging on micro-algae (chl-a), which are surface-associated organisms (MacIntyre et al. 1996). 

In addition, the negative effect of channel-foraging on the amphipod, U. grimaldii (Christie 1976), 

along with other species identified by SIMPER that were largely surface feeders and upper surface 

infauna, support the idea of channel-foraging impacting predominantly surface-associated fauna. 

Lastly, the results of modelling have shown that channel-foraging was predicted when the 

abundance of infauna and surface feeders increases, which provides further support of channel-

foraging being associated with surface-dwelling taxa. Given that U. grimaldii was the most 

numerically dominant macrofaunal species in the study, contributing roughly 39% to total 

macrofaunal abundance, the strong negative impact of this channel-foraging on overall 

macrofaunal abundance may be a reflection of flamingos targeting U. grimaldii and potentially 

other surface-dwelling organisms while channel-foraging. 

It could be argued that pit-foraging by flamingos could be more energetically costly than 

channel-foraging, given that flamingos use their feet to dig into sediment to greater depths than 

channel-foraging. Therefore, the expectation would be that the fitness cost involved may need to 

be offset by foraging on larger organisms with greater energetic value than smaller surface-

dwelling taxa. Taxa that fulfil the latter in Langebaan Lagoon are bivalves. Given that bivalves are 

often found deep within benthic substrates (Puttick 1977; Hines & Comtois 1985), they are 

potentially the targets of flamingos when employing pit-foraging. In addition, these prey items 

could potentially compensate for the energy invested by flamingos, as large amounts of tissue are 
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found in bivalves in comparison to other macrofaunal taxa such as polychaetes (Blanchard & 

Knowlton 2013). In addition, various studies have shown bivalves to have a greater calorific 

content relative to other benthic organisms (Stoker 1978; Wilt et al. 2014). The present data 

revealed patterns of some bivalve species (Macoma spp and Tellimya trigona) being reduced in 

pits relative to pit controls, but these were weak and statistically insignificant. The latter trend 

however could be due to the low abundance of bivalves in the study site – a trend commonly 

reported in South African systems (Day 1951).  

Another possible reason for pit-foraging not eliciting a greater impact on prey assemblages 

is that this method may target a trophic resource different to benthic macrofauna. Johnson & 

Cézilly (2007) describe Greater Flamingos using pit-foraging to either feed on buried invertebrates 

or mud that they sieve from pits. By swallowing the finer mud particles, flamingos can extract fine 

organic matter (Jenkin 1957; Johnson & Cézilly 2007). Thus, the extraction of fine organic 

material could be a secondary resource that flamingos target while pit-foraging, a variable that was 

not measured in this study.  

It is also possible that pit-foraging may not be a primary method of feeding for flamingos. 

Schmitz & Baldassarre (1992) reported a high frequency of pit-foraging activities in American 

Flamingos following a hurricane, and argued that the switch from channel- to pit-feeding was 

driven by the reduction of primary resources (gastropods) and submerged vegetation. It was argued 

that flamingos would need to feed on secondary resources (seeds and tubercles) in bottom 

sediments following the hurricane, which were most likely to be obtained by pit-foraging. In this 

investigation, it is likely that channel-foraging is the primary method of feeding employed by 

Greater Flamingos, with pit-foraging fulfilling a secondary role. This was supported by data 
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showing that channels occurred predominantly across mid- and low-shore positions, whereas pits, 

in contrast, were recorded mainly in high-shore positions (see Figure 7B).  

In contrast to the negative effects of channel-foraging by flamingos on macrofaunal 

abundance, there were no significant effects of either channel- or pit-foraging on macrofaunal 

richness (Table 8). The similarity in richness across foraging treatments would suggest that Greater 

Flamingos were selecting a narrow spectrum of the prey available for consumption and that they 

were potentially targeting particular prey items. It is well known that flamingos have the ability to 

switch between foraging strategies in response to changes in habitat conditions (Brown et al. 

2005). However, these shorebird predators are also capable of searching and consuming preferred 

prey items (Jenkin 1957; Zweers et al. 1995). Studies have shown that flamingos can select 

particular food items within desired size ranges by adjusting the distances between their bill 

lamellae. Favourable prey sizes are retained in the mesh and consumed, whereas prey sizes that 

are too small or large are rejected and returned to the sediment (Jenkin 1957; Zweers et al. 1995). 

The lack of statistically significant effects of flamingo foraging on macrofaunal biomass (Table 8) 

also suggests that flamingos were targeting a very narrow spectrum of available prey for 

consumption.   

There were no significant reductions in micro-algal biomass in pits relative to their 

controls, whereas channel-foraging generated a strong impact on this trophic resource (Table 8). 

Interestingly though, micro-algal biomass was similar in both pit- and channel-foraging structure 

controls within particular shore positions. Two possible mechanisms may explain pit-foraging not 

eliciting a greater impact on benthic micro-algal biomass. Firstly, if flamingos were intending to 

select large, deep-dwelling organisms through pit-foraging, they would need to increase the 
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distances between their bill lamellae (Zweers et al. 1995). A consequence of the latter would be 

that fine particles such as micro-algal cells would pass through the mesh and be returned to the 

sediment. Secondly, pit-foraging may generate net positive feedbacks on surface micro-algae by 

stimulatory effects of this foraging technique countering consumptive impacts. Several studies 

have highlighted the effects of bioturbation (sediment reworking, Meysman et al. 2006; Pillay & 

Branch 2011) in increasing fluxes of nutrients from deep sediment layers and indirectly promoting 

productivity at the sediment-water interface (Ziebis et al. 1996; Lohrer et al. 2004; Mermillod-

Blondin et al. 2004; D’Andrea & DeWitt 2009). A study by Comin et al. (1997) revealed that 

flamingos, through their prolonged stamping behaviour, have the potential to release nutrients 

from the sediment into the water column. Therefore, the upward-conveyer belt bioturbation 

(Francois et al. 2001) employed by flamingos during pit-foraging may elicit a positive effect on 

nutrient fluxes and productivity, thereby enhancing micro-algal biomass. The latter could 

potentially explain why chl-a concentration was chosen as a predictor variable for pit-foraging, as 

areas surrounding pit-foraging structures generally had greater micro-algal biomass.  

W-statistics (obtained from abundance-biomass comparison curves) revealed overall that

species ranked biomass was greater than abundance in channel-foraging structures compared to 

their controls, with four out of seven comparisons being statistically upheld. The greater species 

ranked biomass in channels in comparison to controls relative to pits and their controls, is most 

likely due to flamingos selectively removing smaller organisms for consumption and avoiding 

larger ones. The greater impact of flamingo channel-foraging on the small, surface-dwelling 

amphipods U. grimaldii, Griffithsia latipes, Leucothoe spinicarpa; along with the isopod Eurydice 

kensleyi supports the idea of selective removal of smaller prey by flamingos during channel-

foraging. The latter was also corroborated by all flamingo feeding models predicting that 
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flamingos were most likely to feed (pit- and channel-forage) when prey biomass was low. The 

greater abundance and biomass of the sandprawn C. kraussi in some channels relative to controls 

may also provide support for the latter. Considering that sandprawns can grow up to 60mm in 

length (head to tail; Branch et al. 2010), they fall beyond the preferred prey size spectrum for 

flamingos (Zweers et al. 1995) and are therefore most likely rejected from the bill and returned to 

the sediment. The greater abundance of C. kraussi in channels could also indicate active selection 

by flamingos for sediments with dense aggregates of C. kraussi, given the various studies 

demonstrating the potential for engineering effects of burrowing sandprawns to elevate 

abundances of various organisms (Branch & Pringle 1987; Siebert & Branch 2005; Pillay & 

Branch 2011). 

It was hypothesized that increasing sizes of flamingo foraging structures would increase 

impacts on prey assemblages relative to non-foraged sediments. However, none of the response 

variables were significantly affected by the size of pit-foraging structures. In contrast, size of 

channels was inversely related to impacts on macrofaunal abundance. Results also indicated that 

channel size was significantly affected by shore position, where at Site 3, channel size reduced 

significantly from the high- to low-water mark (see Figure 7A). Generally, there was also a decline 

of macrofaunal abundance from the high- to low-water mark at Site 3 (see Figure 24). The 

difference in channel size across the shore positions may be an indication of the different levels of 

food available for flamingos to feed on. An increase in prey abundance can alter a predator’s 

response to increase or decrease its foraging effort, depending on the constraints imposed by 

changes in food availability (Abrahams & Dill 1989). Lubin & Henschel (1996) experimentally 

demonstrated that desert spiders decreased their foraging activity (reduced the dimensions of their 

prey capture web) when their food supply increased as prey-handling costs (digestive constraints) 
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prevented spiders from fully utilizing the prey available. Therefore, it can be argued that flamingos 

create smaller channels in abundantly rich areas to maximize their prey intake, but reserve energy 

devoted to handling prey (Johnson & Cézilly 2007). This may explain why there was a greater 

impact on macrofaunal abundance with small channels.  

Given the wealth of literature documenting the patchy distributions of organisms dwelling 

in marine sediments (Barry & Dayton 1991; McIntosh 1991; Thrush 1991; Ólafsson 1992; 

Legendre et al. 1997), the possibility exists that if preferred prey items (potentially U. grimaldii) 

were distributed in small patches, Greater Flamingos could increase their foraging rate and 

intensity to maximise prey capture from these patches. This results in smaller channels having 

greater impacts on prey. Santos et al. (2009) demonstrated that waders rely on probing techniques 

rather than visual cues to detect enriched patches of buried prey. A single contact with a prey 

would induce further probing, eventually leading to patch recognition. Therefore, the low impact 

of larger channels made by flamingos could be a consequence of larger structures being created 

during random probing behaviour, and not as part of a feeding event.  

4.3 Methodological considerations 

While this study has provided important insights on the role of flamingo foraging plasticity in 

intertidal sedimentary systems, it is important to acknowledge the limitations inherent in this study. 

The main limitation was that the study was based on field measurements and relied on a correlative 

approach to understand causal relationships. As such, there was significant potential for external 

factors to influence findings. In this study, it was assumed that foraging structure controls 

represented un-impacted states and were unaffected by flamingo feeding at the time of sampling. 

This was based largely on visual indications of no foraging activity within the immediate vicinity 
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of foraging controls. However, the possibility does exist that flamingos may have disturbed these 

controls at some point in time, or that controls may have been impacted by other disturbances in 

the past. In addition, it was also assumed that the sedimentary environment between feeding 

structures and controls was homogenous, though it is possible for habitat characteristics to vary 

even at the relatively small spatial scales (1meter). The points raised above would suggest that 

future studies of this nature would benefit, by rigorously standardising comparisons between 

foraging structures and controls. A second point worth noting is that in a field study of the type I 

conducted, direct and indirect effects cannot be explicitly quantified directly, suggesting that 

drivers highlighted through statistical testing may not be ultimate drivers. For example, sediment 

characteristics were not identified to be drivers of flamingo foraging plasticity; prey traits were 

apparently stronger predictors. However, it is possible for sediment traits to directly determine 

prey abundance and distribution, thereby indirectly influencing flamingo foraging plasticity.  

4.4 Implications of the study for marine ecology: Flamingo foraging plasticity – a key 

driver of heterogeneity in marine sediments 

One of the primary ramifications of the study was that the differential effects of flamingo foraging 

plasticity can act as key sources of spatio-temporal heterogeneity in intertidal sandflats, by 

essentially creating patches that are dissimilar to non-foraged sediments at the community level. 

Findings indicate that communities in pit-foraging structures were similar to surrounding 

environments; whereas channels in contrast, were highly dissimilar to non-foraged sediments. 

Additionally, smaller channels, exerted a greater impact on macrofaunal abundance; which in turn 

may amplify over time and enhance heterogeneity. The differing degrees to which flamingos 

remove consumers from sediments will most likely determine the rate at which basal resources 
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accumulate in structures over time. Several studies have documented the effects of top-down 

control exerted by various predators on intermediate consumers in marine sediments, which 

collectively influence the recovery and accumulation of basal trophic resources (Van Blaricom 

1982; Thrush et al. 1991; Lewis & Anderson 2012). Therefore, based on the latter, the greater 

impact of flamingos on consumers from smaller channels, will most likely allow resources to 

increase at a relatively high rate compared to larger channels, potentially exceeding levels 

occurring in pre-foraged sediments. However, the latter may be less prominent in pits.  If the latter 

hypothesis is validated, positive feedbacks will most likely occur where the dissimilarity in 

channels (of different sizes) against pits in relation to non-foraged sediments will strengthen over 

time. The accumulation of basal resources such as bacterial assemblages are vital elements for 

ecosystem functioning (Blackburn 1987; Deming & Baross 1993), along with release of micro-

algae and carbohydrate matrices that serve as important attractants for sediment recruitment (Pillay 

et al. 2007), resulting in short-term increases in community metrics. In addition to spatial 

heterogeneity, flamingo foraging can also drive temporal variability in benthic assemblages over 

seasonal time scales, given that flamingo predation is probably greatest in winter due to the larger 

over-wintering flamingo populations (Underhill 1987). Taken collectively, continual impacts of 

flamingo foraging and associated successional change over multiple time-scales (days, weeks and 

seasons) can therefore create a mosaic of patches that are at different stages of succession 

depending on the type and size of the structure created.  
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CONCLUSION 

Overall, the study has provided insight on the ecological roles played by a charismatic and 

iconic shorebird predator that has received little attention in marine systems (Glassom & Branch 

1997; Bildstein et al. 2000). The study has shed light on the importance of biotic drivers of 

flamingo foraging behaviour, which in turn determines the strength of flamingo impacts on prey 

assemblages. The latter is particularly important and highlights the need to incorporate foraging 

plasticity into broader conceptual models of predation in marine systems. Furthermore, the feeding 

structures produced by Greater Flamingos have differential effects on macrofaunal communities, 

altering spatio-temporal heterogeneity in soft-sediment ecosystems at various scales. Based on the 

above, predation impact cannot be assumed to be uniform across habitats since subtle changes in 

foraging behaviour can determine the strength of top-down control exerted by predators. Future 

predation studies need to focus more on quantifying factors that drive predator foraging behaviours 

as the strength of predation is tightly linked to foraging behaviour.  
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