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Abstract 

Returning to play following a sports related concussion remains a controversial process 

due to the emphasis placed on subjective symptom reporting. The development of an objective 

measure capable of assessing cortical recovery remains elusive, however EEG has shown 

promise with its ability to record during exercise. The objective of this pilot study was to 

examine the association between EEG metrics and behavioural changes in healthy young adults.  

The study involved 13 participants who performed a novel graded working memory task, 

a graded exercise session and a task combining the two together while EEG was recorded over 3 

separate sessions. The tasks consisted of 5 levels of increasing difficulty and each participant 

performed the tasks in a randomized order. Participant heart rate, perceived exertion and 

accuracy were recorded between levels and tasks. EEG analysis applied power spectrum analysis 

and graph theoretical analysis to identify cortical activity and cortical networks changes.  

When graded exercise and cognition were combined, there was a significant change in 

behaviour and neural activity compared to when each task was completed individually. The 

combined task led to significant changes in brain and behavior as seen in EEG activation pattern, 

power output and frontal functional connectivity measures.  

 These results suggest that following sports-related concussion individuals would require 

increased neural resources to complete a combined cognitive and exercise task. Following injury, 

these additional resources may not be available and result in a decrease in task performance. This 

data has the potential to be used in addition to existing concussion recovery tests in assuring full 

recovery prior to the return to play.   
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Chapter 1: Overview of Sport-Related Concussion and Recovery 

1.1 Sports-Related Concussions 

Sports-related concussions (SRC) are prevalent in all age groups and sports. Classified as 

a mild form of traumatic brain injury (TBI), sport related concussions (SRC) are caused by linear 

and/or rotational forces exerted on the brain and are defined as temporarily disturbed brain 

function resulting from a traumatic force [1]. TBI is a serious condition that ranges in severity, 

from mild to severe and is classified based on the length of time spent unconscious, post-injury 

amnesia, and the Glasgow Coma Scale in addition to the information derived from neuroimaging 

[2]. Concussion and mild TBI are both viewed as being on the mild side of the TBI spectrum, 

and are often presented as one and the same.  However, there are significant differences in the 

classification of these injuries. Mild TBI is classified based on a loss of consciousness for no 

more than 30 minutes or amnesia, and a Glasgow Coma Score of 13 to 15 (Ref: American 

Congress of Rehabilitation Medicine and the Centers for Disease Control). A concussion 

meanwhile, is classified as an alteration of mental status that does not necessarily involve loss of 

consciousness (American Academy of Neurology). Clinical diagnosis of SRC is based on a 

combination of subjective symptom reporting, balance testing, neuropsychological testing and 

clinical exam. Concussion often presents with a diverse number of signs and symptoms, the most 

common of which being headache and dizziness [3]. Other concussion symptoms include nausea, 

vomiting, balance problems, fatigue, sensitivity to light or noise, dazed, trouble concentrating, 

trouble paying attention, forgetfulness, confusion, irritability, increased emotions, drowsiness, 

increased sleep, difficulty falling asleep and difficulty staying asleep [4]. These symptoms are 

often grouped into physical, cognitive/emotional and sleep categories and the number and 
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severity of the symptoms vary greatly by individual [5]. The signs and symptoms of concussion 

can be subtle and present immediately following the injury or in the hours and days to follow. In 

most cases, symptoms resolve within the first 7-10 days, however in some cases symptoms can 

persist for weeks to months [6, 7].  

Currently a large component of SRC diagnosis and recovery management is based on 

subjective symptom reporting. In order to improve diagnosis and care following concussion there 

is a need to develop reliable objective measures for clinical application. Prichep and colleagues 

(2013) developed an EEG-based discriminant index, to act as an objective measure for 

concussion recovery and identification, which has shown to be sensitive to the presence of 

concussion as well as severity [7]. The index was capable of distinguishing concussed 

individuals even after clinical symptoms and neuropsychological testing scores had recovered. 

This supports the finding from other studies, which suggests that clinical symptoms and 

cognitive function are not directly related to brain function[8, 9]. Further research is needed to 

identify which neurophysiological measures are most sensitive in assessing cognitive function 

and the impact concussion has on these processes. 

1.2 Behavioural And Cognitive Impact Of Concussions 

 Concussion identification and management relies on a combination of subjective 

symptom reporting and neurocognitive testing, as neuroimaging has shown difficulties in 

identifying changes following concussion. Multiple tests have been developed to assess a wide 

range of cognitive functions and have been suggested to aid in tracking the recovery of the 

athlete prior to return to play. Concussion has been found to influence a wide range of cognitive 

functions that include attention and concentration, processing speed, learning, working memory, 

executive function and verbal fluency [10]. As each concussion is unique, the cognitive domain 
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impacted by the injury can vary greatly both between individuals and between concussions 

within the same individual. When used to track concussion recovery, neurocognitive testing has 

shown varying results. A study by McCrea and colleagues (2003) identified impaired cognitive 

processing and verbal memory in concussed athletes two days following concussion, which 

along with their reported symptoms had returned to normal by day 7 in the majority of the 

participants [6]. Fazio and colleagues (2007) found that individuals who were asymptomatic 

continued to have impaired cognitive function compared to healthy controls [11]. The conflicting 

results between symptom reporting and neurocognitive testing show the need for more research 

and the potential role for neuroimaging in the assessment of concussion recovery. A recent 

systematic review of neurocognitive testing following concussion found a large number of 

neurocognitive tests, however there were a limited number of studies. The authors stated 

concerns regarding the adoption of neurocognitive tests into clinical practice while validity and 

reliability of the tests remain questionable. The authors stressed the importance of being familiar 

with factors that can influence performance of the tests and considering them in their 

interpretation [12].  The authors also noted the worrisome trend for athletes to “sandbag” their 

baseline tests in order to decrease their chance of missing playing time if they suffer a SRC. The 

incorporation of neuroimaging alongside the neurocognitive testing provides an increased level 

of objectivity in assessing SRC recovery.  

1.3 Neurometabolic Impact Of SRC 

 Initial concussion models used to comprehend the neurophysiological basis of the injury 

originated from experimental animal studies. These studies showed that following a concussive 

injury there is an indiscriminate release of excitatory neurotransmitter glutamate, in addition to a 

large depolarization of neurons through a sodium and potassium ionic shift [13]. In order to 
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return the system to homeostasis, a large amount of ATP (adenosince triphosphate) is required 

and results in an increase in cerebral glucose metabolism [14]. The period of hyperglycolysis can 

persist for days following injury, with the duration found to be linked to the severity of the injury 

[15]. These changes require increased cerebral blood flow and if this need is unmet, can result 

long-term damage to brain cells [16]. Following the hyperacute phase of increased glucose 

metabolism, there is a prolonged period of metabolic depression that can last 7 – 10 days in adult 

rats, which prevents the brain from functioning normally and places the brain in a vulnerable 

state for a secondary injury [17]. In terms of cortical activity, animal studies have shown an 

immediate suppression of cortical activity following injury. This widespread suppression 

persisted between seconds and minutes, and was followed by a period of slowed activity that 

gradually returned to baseline levels within the hour [18].  

The neurophysiological response to concussion has been similarly reported in humans, 

showing the increased release of glutamate and potassium, as well as the changes in glucose 

metabolism [19]. Using positron emission tomography (PET), changes in glucose metabolism 

have been recorded in vivo in patients following both TBI and concussion [20]. The 

neurophysiological changes in the brain post-SRC follow a similar timeframe as the symptom 

reporting and some neurocognitive studies, suggesting a potential link between the cellular 

alterations and observable symptom and cognitive results. However, how these 

neurophysiological changes influence the structural and functional state of the brain remains 

underexplore and could provide more information regarding any acute damage to the brain and 

the recovery process following SRC.  
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1.4 Brain Structure And Function Changes Following SRC 

Structurally, studies incorporating DTI have shown anterior regions of the brain to be 

more vulnerable to injury [21], while functionally, fMRI studies consistently find decreased 

activation in frontal regions such as right medial frontal gyrus (MFG), anterior cingulate cortex 

(ACC) and right precentral gyrus [22]. A bilateral decrease in dorsal lateral prefrontal cortex 

(DLPFC) activation has also been recorded in multiple studies [23-25]. These structural and 

functional changes occur in regions associated with executive function and working memory 

performance, and correspond with significant decreases in executive function and working 

memory task performance.  

Another neuroimaging technique, Electroencephalography (EEG) has shown early 

promise in identifying changes following TBI and concussion. An overall decrease in EEG 

power has been shown across all frequency bands following concussion [26]. This could be a 

potential physiological underpinning for the impaired cognitive function seen following 

concussion. Other changes associated with concussion include increase in hemispherical power 

asymmetry, decreases in hemisphere coherence [27], reduction of low frequency power and 

increase in higher beta power around medial frontal brain areas [28], and changes in local 

connectivity networks in the prefrontal cortex [29]. These changes suggest that following 

concussion the connections in the brain are altered, moving away from short, densely connected 

networks to more widespread networks. These new networks properties require increased effort 

and energy, potentially increasing the vulnerability of the brain to a secondary injury.  

1.5 Summary Of Changes In Brain And Behaviour Following Concussion. 

Concussion is often viewed through the reported cognitive and physical symptoms that 

present following the injury and often recover within 7 – 10 days. The injury is much more 
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complex and causes a series of cognitive, behavioural, neurometabolic changes, and alterations 

to the connectivity of the brain. Cognitively, SRCs most commonly cause impaired memory and 

verbal fluency, with a wide range of other cognitive processes often affected. The connectivity 

changes within the brain show the frontal brain regions to be more sensitive to injury following 

SRC.  Accurate understanding of the various impacts concussion and SRC have on the brain is 

critical for the development of effective treatment and management plans.  

1.6 SRC Management 

Following sport-related concussions, the current guidelines for recovery include rest until 

acute symptoms resolve [30]. However, there is debate in the literature regarding the length of 

rest for optimal recovery. A recent study by Thomas and colleagues (2015) found that strict rest 

following concussion had no benefit and led to increased number of symptoms and delayed 

resolution [31]. Current recommendations are that individuals should rest for 3 days prior to a 

gradual return to pre-injury activities [32]. A review by Brolinson (2014) attempted to assess the 

evidence available for management of sports-related concussion and concluded that the evidence 

was so poor that they could not form a conclusion in regard to the benefit of rest, or exercise in 

improving recovery [33]. While optimal management of SRC is still in need of study there is 

reliable evidence supporting the implementation of a graduated return to play protocol.  

 

1.7 Return To Play Protocol 

The return to activity and sport following a SRC has been regulated through the return-to-

play (RTP) protocol, originally created by the Concussion in Sport Group [34] and widely 

adopted, both in the following consensus statements and in practice around the world. Safe RTP 
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is of critical importance due to the potential risk of both short-term [35, 36] and long-term 

damage [37]. The graduated RTP protocol consists of six progressive stages of incremental tasks 

related to sport performance (Table 1 – 1). The protocol begins with no activity during the 

recovery stage, followed by light aerobic exercise and gradually progresses to sport specific 

activities. Following each stage, the athlete is assessed for concussion symptoms, if none 

reappear; they are permitted to move to the next stage. Upon completion of the six stages and 

receiving medical clearance, the athlete is deemed ready to return to play. The current RTP 

protocol relies heavily on subjective symptom reporting.  

Table 1 – 1 Example of the graduate return to play protocol for concussion recovery 

Rehabilitation Stage Objective of Stage 
No Activity Recovery 
Light aerobic exercise Increase heart rate 
Sport-specific exercise Add movement 
Non-contact training drills Exercise, coordination and cognitive load 
Full-contact practice  Restore athlete’s confidence; coaching staff 

assesses functional skills 
Return to play  

 

The RTP protocol relies on subjective symptom reporting, using the post-concussion 

scale (PCS). While the PCS has been shown to be reliable [38], the validity of using symptoms is 

highly questionable as concussed athletes presenting with no symptoms continued to show 

deficits in neurocognitive testing [11]. In addition, athletes are known to underreport symptoms 

in order to return to play [39], decreasing the validity the testing. Furthermore, concussion 

assessments often occur immediately following the incident or the stage of exercise, this is 

critical, as the literature shows that exercise can result in post concussion-like symptoms in 

healthy individuals [40-42]. There remains a need for an objective measure to reliably track 
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concussion recovery and provide accurate assessment of brain recovery within the return to play 

protocol. The results from this thesis provide preliminary objective measures of healthy brain 

activity in healthy young adults during graded exercise and cognitive tasks. These results can be 

used in future studies to determine changes in individuals recovering from concussion. 

 

1.8 Effect Of Cognition And Exercise On SRC Recovery 
Sports are a complex combination of physical activity and cognitive function. Therefore 

when testing for recovery, both exercise and cognition should be assessed. Lee and colleagues 

(2015) incorporated a cognitive task into a standardized exercise protocol in order to investigate 

if this would provoke a greater number or severity of symptoms in healthy individuals [40]. 

Although no increase in symptom reporting was reported with the addition of the cognitive task, 

the researchers noted that changes in exercise intensity and cognitive task difficulty could 

influence these results. When recently concussed athletes were tested following exercise, a 

significant difference was found in neurocognitive testing. McGrath and colleagues (2013) had 

athletes who were asymptomatic at rest and returned to baseline on the ImPACT (a commercially 

available neurocognitive test) complete an exercise session and repeat the neurocognitive testing. 

They found 27.7% of athletes showed a post-exertion decline in neurocognitive function that was 

not attribute to overall performance but specifically in memory ability [43]. 

The introduction and application of objective measures such as EEG is critical for the 

continuation to develop the understanding of the concussed brain and the recovery process. 

Advancements in EEG software and hardware has allowed for recording of brain activity during 

more strenuous exercise. This provides an exciting opportunity to identify neurophysiological 

underpinnings of the brain involved during exercise and cognition, with the goal of potentially 
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discovering new biomarkers of concussion. In order to accurately characterize the concussed and 

recovering brain, it is imperative to first fully understand how the healthy brain is influenced by 

cognition and exercise. 

1.9 Purpose Of Thesis 

When the brain is injured or in a vulnerable state such as following a SRC, the brain will 

react differently as it completes the tasks. Understanding the neurophysiological impact of load 

on the healthy brain is of critical importance as it can then be used as a baseline for pathological 

populations. This thesis set out to explore and identify the characteristics of the healthy brains 

response to multi modal loading.  

1.10 Objective And Aims  

The objective of the current study was to examine the association between EEG metrics 

and behavioural changes in healthy normal adults as a foundation for evaluating individuals with 

concussion.  

The aims of this study are: 

1. To evaluate the association between EEG power and functional connectivity metrics and 

performance during cognitive loading. 

2. To evaluate the association between EEG power and performance during physical 

loading.  

3. To evaluate the association between EEG power and functional connectivity metrics and 

performance during a combination of cognitive and physical loading.  
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4. To compare EEG power and functional connectivity metrics between the types of 

loading.  

1.11 Hypotheses 

1. Increased cognitive load will result in a decrease in task accuracy.  

2. Cognitive load will result in significantly increased power in all frequency bands.  

3. A positive load dependent relationship will emerge between the working memory task 

and local connectivity measures (degree, clustering coefficient, betweenness) within the 

frontal brain regions.  

4. The combined cognitive – exercise task will be associated with a significantly greater 

increase in frontal activity than either task individually.  

In Chapter 2, I cover the basics of EEG and the traditional methods of analysis, followed 

by detailed explanation of the analyses incorporated in this work. This includes source analysis, 

power spectrum analysis, and functional connectivity through graph theoretical analysis. In 

Chapter 3, there is a literature review exploring the current understanding of cognitive, physical 

and combined loading and it’s affect on behaviour and neurophysiological measures. The 

methods of my study will be discussed in Chapter 4, detailing the study design, data analysis 

techniques used, and the statistical analyses. 

In order to understand how the healthy brain is affected by multi-modal loading, I present 

the findings of my research in Chapter 5, which utilized a repeated measure design to compare 

brain activation during a cognitive task, an exercise task, and a combined cognitive-exercise task. 

Thirteen healthy young participants (22.5 years old ± 0.65) completed the three tasks on three 
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separate days in a randomized order. During all conditions, brain activity was collected through 

EEG, along with behavioural measures. This adds to the current literature on the effect cognition, 

exercise and a combination of the two influence the neurophysiological features of the brain and 

provides healthy control data for future studies to assess individuals recovering from SRC.  
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Chapter 2: Basic Principles Of EEG And Analysis 

2.1 What Is EEG? 

Electroencephalography (EEG) has been used to measure human brain signal for almost a 

century. Discovered by Hans Berger in 1924, the German psychiatrist was able to successfully 

measure brain activity in humans during various states including: sleep, wakefulness, and 

focused attention [44]. EEG is a graphic representation of voltage changes between two cortical 

locations plotted over time [45]. The voltage changes, or signal, are the postsynaptic potentials of 

the cortical neurons. Or in other terms, the EEG measures voltage changes on the skull at all 

electrodes [46]. The electrical potential of a single neuron is much too small to be recorded 

through EEG and therefore in order to be measured, a large group of neurons (i.e. 107 neurons 

[47]) must activate simultaneously to produce a strong enough signal. The electrical potentials 

created by neurons also form an electric field. When large groups of neurons activate 

simultaneously the sum of the activity creates a local field potential. Local field potentials 

(LFPs) can be open or closed depending on their orientation. Open LFPs are orientated 

perpendicular to the scalp while Closed LFPs run parallel, as such surface EEG is only capable 

of measuring Open LFPs [48].  

All regions of the brain produce local field potentials, however due to the layers that 

surround the brain: the cerebrospinal fluid (CSF), the skull, and the scalp; the signal is greatly 

attenuated by the time it reaches the surface [44]. The main source of EEG signal originates from 

the cerebral cortex, as a limitation of EEG is its inability to measure deeper cortical structures. 

While the EEG has low spatial resolution, it is one of the only neuroimaging techniques with 

sufficient temporal resolution to record the fast dynamic changes of cortical activity. EEG can be 

recorded between 250 and 2000 Hz or samples per second.  



    
	

13	

2.2 Traditional EEG Analysis 

Early studies using EEG aimed to examine the raw signal to identify changes due to a 

specific task or stimuli.  As the technique advanced, studies began taking advantage of averaging 

the signal. This led to the development of the event-related potential (ERP) technique and 

became the primary analysis of EEG in cognitive neuroscience. ERPs are time-locked to a 

specific stimulus and as such have allowed for the observation of many specific aspects of 

cognitive function including task preparation, stimuli identification and cognitive function [46]. 

The ERP waveform is composed of peaks and dips that allow for the visualization of neural 

processing throughout the trial (Figure 2-1). The peaks and dips of the ERP are known as 

components and are defined by their polarity (negative or positive), timing, scalp distribution and 

sensitivity to task changes [46].  

 

Figure 2 – 1. Example of how an average ERP waveform is created. 
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Over the years many components of the waveform have been identified and attributed to 

specific functions. For example, P1 and N1 are indicative of information processing in the visual 

cortex and perceptual analysis, respectively [49, 50]. Further along the waveform is another 

component known as P3, which is attributed to working memory encoding and maintenance. 

Advances in EEG methodology have made it possible to record brain activity from a large 

number of electrodes over the entire head. This had led to very dense ERP data sets that can be 

cumbersome and difficult to interpret. New analysis techniques have emerged to discern 

additional information not fully reflected within the ERP waveforms.  

 

2.3 Source Analysis 

The LFPs mentioned above are in the form of dipoles, with both positive and negative 

charges. An important aspect of EEG is the location, strength and orientation of the dipoles as 

these measures can greatly influence the recorded signal. For example in Figure 2-2 a single 

dipole is shown near the central electrode (Cz). On the left, the dipole is orientated towards the 

scalp and this is where the max activity will be found. On the right, the dipole is orientated 

tangential to the scalp. This results in a change of the signal and almost no activity is present 

above the dipole.  
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Figure 2 – 2 Example of the effect orientation has on a single dipole positioned at electrode 

position Cz [48].  

The influence of dipole orientation and the effect on EEG activity stresses the importance 

of understanding the cortical source of EEG activity, which is one of the major limitations with 

using EEG. Therefore extensive work has been done in attempts to develop methods capable of 

localizing the activity to a particular cortical source. There are two methods used to approach this 

issue: (1) investigate which cortical region is responsible for the recorded EEG signal, or (2) 

investigate how particular brain regions contribute to the recorded brain activity. The first 

method is addressed through source localization being applied to the signal to determine the 

location of the dipoles. Source localization is a signal processing technique that takes the voltage 

potentials at the various scalp locations and estimates the current sources inside the brain that 

best fit this data [51]. This requires solving the inverse problem. That is, each electrical potential 
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measured at the scalp can be explained by activity of an infinite number of cortical 

configurations. This problem can only be solved by applying multiple a priori assumptions 

regarding the generation of the EEG signal [52]. Many source localization algorithms exist, each 

attempting to optimally explain the scalp activity by cortical sources.   

An alternative method in understanding the cortical source of the scalp activity is through 

the application of source montages, a type of virtual montage. This digital EEG reconstruction 

calculates the topography of the signal using all the recorded electrodes. The signal is then 

reconstructed at each recorded electrode site as well as any ‘virtual’ electrode located on the 

scalp. This allows for the construction of standard EEG montages such as the reference free, 10-

10 and 10-20 systems (Figure 2-3).  
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Figure 2 – 3 Virtual electrode placement in 10-10 Average montage. 
 

Virtual montages are excellent at recording radial activity underneath each electrode, but 

have shown to be less sensitive to tangential activity and require the addition of whole-head 

spherical spline maps to reflect cortical source activity [53]. Once a source montage is applied 

the resulting traces can be viewed as large virtual electrodes that are roughly 3-4 cm in diameter 

placed on the cortical area it is supposed to be modeling. Source montages reconstruct 

approximate source waveforms, which are calculated using the generalized montage, previous 

knowledge on scalp topographies results from the EEG recording, and linear algebra. For a more 

detailed description of the creation of source montages refer to the review by Scherg and 

colleagues [53]. These source waveforms are an estimate of the magnitude of the activity of each 

region over time and allow for a simple representation of the cortical activity.  The source 
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montage used in this thesis consisted of 15 sources created to best estimate cortical activity of the 

entire brain (Figure 2 – 4).  

 

Figure 2 – 4 Location of Sources in the Virtual Source Montage. Transverse, Coronal and 
Sagittal 2D views and 3D views for better visualization of region distribution.  

 

2.4 Power Spectrum Analysis 

In order to understand EEG signals, interest has developed in analyzing specific 

frequency bands, as they have been shown to represent specific neurological processes [54]. 

When recorded from the scalp, the EEG signal is the culmination of all the frequency bands 
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together. In order to assess the individual frequency bands, a fast Fourier transform (FFT) is 

used. The algorithm works by taking the EEG data, collected in the time domain, and transforms 

it into the frequency domain allowing for the frequency bands to be divided for separate analysis. 

The FFT is an algorithm that rapidly converts a signal from the time domain into a representation 

in the frequency domain using the discrete Fourier transform (DFT). The DFT creates a voltage 

by frequency spectral graph known as a “power spectrum”, where power is equal to EEG 

magnitude squared. EEG power represents the distribution of signal power over frequency and 

has been reliably shown to relate to cortical activity. When combined with blood oxygen level-

dependent (BOLD) signal in fMRI, results show a frequency dependent relationship with low 

frequency EEG being negatively correlated and higher frequencies being positively correlated 

[55, 56].   

2.4.1 EEG Frequency Bands 

Following the FFT, the EEG signal is transformed from a single signal into multiple 

signals with various frequencies. The EEG signal is commonly composed of frequencies 

between 1 – 50 Hz. The frequencies are grouped into the following 5 bands ranging from slow 

(delta) to fast (gamma).  

§ Delta (0.5 – 3.5 Hz): Composed of the slowest frequencies, delta waves are the dominant 

frequency during early developmental stages [57], and sleep in adults [54]. In addition, 

delta is associated with learning, motivation and the brain reward system [58]. In terms of 

cognition, delta found to be linked to the P3 ERP component in various cognitive tasks. 

This connection is theorized to be related to motivation, with delta activity seeming to 

help motivate the brain to pay attention to the stimuli for task completion [58]. 
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§ Theta (3.5 – 7.5 Hz): Associated with working memory and inhibitory control. Theta and 

particularly in frontal midline is thought to have an active role in the maintenance phase 

of memory [58, 59], which coincides with its recorded connection to the hippocampus 

[60].  

§ Alpha (7.5 – 12.5 Hz): Appear spontaneously during wakefulness, relaxed states and 

mental inactivity or resting state. Most pronounced within the occipital lobe during eyes 

closed conditions [54], while also linked to working memory and short-term memory 

functions [61].  

§ Beta (12.5 – 30 Hz): Historically linked to motor functions, more recent research 

suggests beta frequency involved in maintaining the status quo within the sensorimotor 

system [62]. Further studies have indicated elevated beta activity during the delay phase 

in working memory tasks [63]. 

§ Gamma (30 – 60 Hz): Highest frequency band shown to be involved in wide variety of 

actions including stimulus selection, attention, arousal, object recognition, memory 

formation [64, 65]. Gamma activity often found to be locked with slower frequencies 

indicating a potential interaction required for proper memory function [65]. 

Cognitive functions involve oscillations from multiple frequency bands as many brain regions 

must interact and communicate for successful functioning. Oscillations of different frequencies 

are indicative of global state changes in the brain [62]. Higher frequency oscillations are 

indicative of arousal and more distinct activation patterns, whereas low frequency waves are 

present in of low arousal and global state changes. 
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2.4.2 External Factors 

The various frequency bands have well identified cognitive functions and are often used to 

assess cortical activity in response to a particular task. When there is an increase in a specific 

frequency it is interpreted to be the result of the task. It is important to note that there are several 

external factors that can influence cortical activity as measured through EEG. Drugs can have a 

large influence on EEG activity that can confound results and cause in accurate interpretation if 

not taken into account. Antidepressants such as selective serotonin reuptake inhibitors (SSRIs), 

have shown to significantly impact frontal theta power, alpha and beta frequencies [66]. 

Antipsychotic drugs, such as Clozapine, have been linked to increased delta and theta power in 

frontal brain regions as well as decreased alpha and beta. Mood stabilizers have shown to lead to 

increased delta and theta wave activity, decreased alpha activity and varying effects on beta 

depending on the medication. Stimulants, such as caffeine, are shown to acutely increase 

attention, alertness, and restore performance due to fatigue [67]. However, studies show caffeine 

to lead to a significant decrease in EEG power across the spectrum in fronto-parieto-occipital and 

central electrodes [68]. 

Other common external factors that can influence EEG activity include depression, anxiety, 

and attention-deficit hyperactivity disorder (ADHD). Depression has been shown to cause 

significant increase in absolute beta power, in addition to an overall shift to faster frequencies 

across the spectrum [69].  Meanwhile, anxiety is linked to an increase in global alpha power in 

both males and females [70]. ADHD, a neurodevelopmental disorder, has been shown to cause 

an increase in theta power and decrease in beta power when compared to controls [71]. These 

changes that result form medication, or neurological disorders stress the importance of proper 

screening and identification of potential factors that can influence EEG signal. This ensures that 
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the interpretations of the resulting changes in EEG are in response to the task and not from any 

other cause.  

2.5 Functional Connectivity 

 The ability of the human brain for higher cognitive function is theorized to be the result 

of structural and functional connections forming complex networks between widespread brain 

regions. These networks have been proposed to represent the physiological basis for information 

processing and mental representation [72-74]. A variety of methods and imaging modalities have 

been used to characterize the many structural and functional networks that allow for the 

integration and segregation required for information processing[75]. Graph theoretical analysis 

(or Graph theory) is an analysis technique that allows for noninvasive mapping of these 

structural and functional networks and their properties. It begins by modeling the brain as a 

series of complex networks and identifies the many topological properties of these brain 

networks [75]. Both structural and functional brain networks can be constructed using the 

following four steps provided by Bullmore and Sporns [76] (see Figure 2 - 5.): 

1. Define the nodes of the network. These can be defined by electroencephalography 

electrodes or alternatively as anatomically defined regions (MRI, DTI).  

2. Estimate a continuous measure of association between nodes. This is possible through a 

variety of ways, including spectral coherence, Granger causality or through conditional 

dependence and independence between any two regions based on all other brain regions.  

3. Generate association matrix by calculating all pairwise associations between nodes and 

apply a threshold each element to produce a binary adjacency matrix. This matrix is 

composed of the number of edges between each pair of nodes. In most cases, this is 

binary, 1 (edge present) or 0 (no edge between nodes).  
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4. Calculate network parameters of interest for this graphical model of brain network and 

proceed to compare against a series of random networks with the same number of nodes.   

A network in graph theory is stated to be composed of a series of nodes and edges. The 

topological properties of these networks can be defined by a variety of measures. While not 

exhaustive, below is a list of measures commonly applied to explain structural and functional 

brain networks:  

Node Degree  

A critical measure for the network, degree represents the number of connections or edges each 

particular node has. Individual node degree denotes the importance of the node to the network. 

Degree is also a measure centrality, in that a node with high degree interacts with many other 

nodes in the network [74].  

Clustering Coefficient 

Another important measure of connectivity, if a node’s nearest neighbors are also connected to 

each other, the graph forms a cluster. Clustering coefficient represents the local connectivity of a 

graph. Small-world networks, like the brain, have high clustering and small path lengths [77]. 

Path Length And Efficiency  

Path length is the minimum number of edges needed to go from one node to another and 

represents the level of global integration of the network. The average shortest path of a network 

is the average of all shortest paths between all pairs of nodes. Global efficiency is the inverse of 

the average shortest path. Local efficiency of an individual node is the inverse of the average 

shortest path connecting to that node. Global and local efficiency measure the ability of a 

network to transmit information at the global and local levels [76-78].  
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Figure 2 - 5. Representation of process to create structural and functional connectivity networks using graph theoretical analysis.



    
	

25	

Modularity 

Modularity is a measure of structural networks tendency to form modules. Modules are a group 

of nodes that are strongly connected to each other but not to other nodes. Modules play an 

important role in complex networks as they often have different functional roles within the 

network [76, 77].  

Centrality And Hubs 

Centrality is a measure of how many shortest paths between other nodes pass through a 

particular node. High centrality reflects that nodes importance to the network. A hub is a node 

with high degree or centrality.  If considered in conjunction with modularity, there are two types 

of hubs: provincial (hubs connected to vertices in the same module) and connector hubs (hubs 

connected to nodes in other modules) [76, 77] (See Figure 2 - 6). 

 

 

 

 

 

 

 
 
 
 
 

 

Figure 2 - 6. Graphical representation of network measures. 
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By utilizing graph theoretical analysis of brain connectivity it is possible to get a complete and 

thorough description of the structural and functional networks within the brain, providing critical 

information for both research and clinical applications.  

 



    
	

27	

Chapter 3 Literature Review Of Cognitive Function And Exercise 

3.1 Cognitive Function 

 Executive function (EF) is a general term that includes task switching, planning, 

attention, working memory, and inhibitory control among others. The prefrontal cortex (PFC) is 

known to play a crucial role in all executive function processes, however the PFC is a 

heterogeneous neuro-anatomical region and different areas have been proposed to be responsible 

for separate cognitive functions [79]. The DLPFC, ventrolateral PFC (VLPFC) and ACC have all 

been identified as regions involved in two sub-processes of EF: response inhibition and working 

memory.  

The ability to inhibit external distracting stimuli and focus on a specific task is a crucial 

component of everyday life and an important component of executive function. Common 

inhibitory control tasks include the Stroop task, the trail making test, and the anti-saccade task. 

The anti-saccade task [80] has been used extensively to examine visual attention, reflexive 

inhibition, and neurophysiological status [81]. This task involves looking away from a peripheral 

target by suppressing the automatic response to look at the target and then create a voluntary 

motor command to look away [82]. The task requires input from many subcortical structures, 

including the pontine and midbrain nuclei, as well as cortical structures such as the PFC and 

ACC [83, 84].  

Working memory (WM) is a term that describes a cognitive function that can hold and 

manipulate information within the brain for a limited amount of time, for the purpose of a 

specific cognitive activity or task.  It also includes sustained attention and focus on particular 

information, while rejecting distractors [85].  WM is required for complex cognitive tasks such 
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as comprehension, reasoning, planning, learning and mental arithmetic [86, 87]. Baddeley and 

Hitch [88] first defined working memory in 1974, wherein they proposed a multicomponent 

model that had separate verbal and visual systems, under the control of a central executive. 

Extensive animal and human studies have demonstrated that the prefrontal cortex (PFC) is a key 

area involved in working memory [86]. In particular, the DLPFC, VLPFC and ACC [89] have 

been associated with working memory. Their specific roles are still debated but the DLPFC and 

ACC are active during retention of information. ACC activity also seems to be particularly 

influenced by task difficulty [90, 91]. 

3.1.1 EEG Measures Of Cognitive Function 

Neuroimaging is critical to understanding the brain regions involved in EF and its sub-

processes. EEG is sensitive to changes in brain activation at rest and during cognitive tasks. As a 

non-intrusive imaging modality with high temporal resolution, EEG is an optimal neuroimaging 

modality to study EF. Findings with EEG suggest the presence of a load effect, wherein 

increasing cognitive load through working memory task difficulty, elicits a greater response in 

brain activity in frontal brain regions [55, 92-95]. However, this finding has shown to be 

frequency dependent as well as location specific.  

Frequency of the EEG oscillations are important as they can control the timing of 

neuronal firing and coordinate information transfer between different brain regions [62]. This 

study focused on theta, alpha, beta, and gamma frequency bands as these have shown to be 

particularly sensitive to working memory and exercise. 

Theta activity has been reliably shown to have a major role in working memory [95]. In 

particular, theta activity has been linked to encoding and retention of information. Multiple 
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studies incorporated a modified Sternberg task to test working memory and theta activity. These 

studies found with increasing WM load there was a corresponding increase in frontal midline 

(FM) theta activity [55, 93, 94]. Maurer and colleagues also found that the increase in FM theta 

was correlated with accuracy: the larger the increase in theta, the greater the decrease in accuracy 

[93]. This effect is not task specific as Ku and colleagues found similar relationship with FM 

Theta using both a visual and auditory mental addition task [92]. Through the application of 

intracranial EEG and source localization, the medial PFC and ACC have been identified as the 

cortical origin of the FM theta activity [91, 93, 96].  

Activity in the alpha frequency band has traditionally been linked to steady state or idling 

activity with amplitude suppressed by eye opening and visual stimuli.  Recently, high resting 

alpha power has been linked to increased WM performance as well as successful saccadic 

control [84]. Alpha is suggested to play an important role in saccadic control network circuits 

and top-down control of suppressing external saccades [84]. Other studies show alpha power 

involved in working memory and mental arithmetic [92] suggesting that alpha is an active 

contributor in attention and consciousness. During WM tasks, alpha activity is reduced and 

negatively correlated with cognitive load [93, 97, 98]. The alpha frequency is often separated 

into low (8-10 Hz) and high (10-13 Hz) bands due to their varying sources of origin and activity. 

Low alpha is found over parietal, temporal and superior frontal regions and is shown to be more 

sensitive to load and decreases with increasing WM load [93, 98, 99]. High alpha on the other 

hand originates from occipital and occipital-parietal regions and is sensitive to visuospatial 

factors, and to a lesser extent cognitive load [85, 93]. Successful WM performance is also linked 

to high resting alpha power, which is thought to correlate with successful saccadic performance.  
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Activity in beta has been linked to a variety of cognitive processes including movement 

related, sensory, cognitive and emotional stimuli. Studies have identified its role in sensorimotor 

functions [62] and been associated with sensory processing [100]. For WM performance, there 

have been mixed findings as some studies show increased beta activity while others show a 

decrease [101, 102]. Guntekin and colleagues (2013) identified the presence of a physical 

response to be the cause of the result variations. When no physical response is required, beta 

power increases during WM tasks and is sensitive to cognitive load [103].   

Gamma activity has been linked to a wide range of cognitive processes including 

movement preparation, attention, sensorimotor integration and memory formation [62]. A critical 

component of WM is the maintenance phase, where the stimulus is no longer present and the 

information must be temporarily stored prior to the required manipulation to complete the task. 

Increased gamma synchronization has been reported during attention and maintenance phase of 

WM [104]. Gamma activation found to be partially location specific, depending on the type of 

cognitive task. Auditory processing regions such as the putative auditory dorsal and ventral 

processing streams found to have increased gamma activation following auditory WM tasks 

[104, 105]. Visual WM tasks such as the delayed-matching-to-sample task used by Tallon-

Baudry and colleagues [106], caused increased gamma activation at occipital and temporal EEG 

electrodes during the maintenance phase. Gamma activation is also shown to be linearly 

correlated with WM load [107].  

WM requires well-organized communication between various brain regions. This 

communication occurs along the WM networks where groups of neurons activate at the same 

frequency cycle. By measuring the connectivity of the network it is possible to determine how 

distant brain regions cooperate and transmit information [108]. Various neuroimaging modalities 



    
	

31	

have been used to identify WM networks, regions that are activated during visual WM tasks, 

composed of frontal, temporal, parietal and occipital lobes. When assessing neuronal interaction 

and communication, oscillatory phase synchrony is important as each frequency band can have a 

specific role [109]. Payne and Kounios used a Sternberg Recognition task and found an increase 

in theta coherence between frontal midline and temporal-parietal regions and alpha coherence in 

midline parietal and left temporal-parietal [110]. Furthermore, a MEG/EEG study found inter-

area phase synchrony was strengthened with increase WM load, particularly in fronto-parietal 

regions in alpha, beta and gamma bands [111]. Using graph theoretical analysis, visual WM 

networks have been described, indicating connection density to be load dependent in alpha (10-

13 Hz), beta (18-24 Hz) and gamma (30-40 Hz) within the fronto-parietal and visual areas [112]. 

Other graph theory components can provide more information about the visual WM functional 

networks. Clustering coefficient and path lengths have been found to be WM load dependent. Li 

and colleagues (2011) showed variance in changes depending on the hemisphere of the task. 

Clustering coefficient significantly increased with load in alpha, beta and gamma bands in the 

left visual field and all the bands in the right visual field. Path length was also influenced by load 

but in fewer frequency bands (Left: theta, beta and gamma; Right: beta). These results suggest 

that WM load changes the local connectedness of the brain networks [113].  

Recently, Zhang and colleagues (2016) found load dependent connectivity changes in 

theta along frontal midline areas. The curve of the connection strength increased from loads 1 – 4 

before decreasing. The accuracy of the task also decreased with load [108]. This data supports 

the concept of WM capacity, which is the amount of information that can be temporarily stored 

and manipulated. Behavioural studies have suggested that WM has a capacity of holding up to 

four items before faltering [114, 115]. The connectivity results suggest that once WM exceeds 
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capacity there is a decrease in efficiency and activity within the WM network that leads to a 

decrease in accuracy.  

 

3.2 The Brain And Exercise 

Exercise is known have many health benefits including improved cognitive learning, 

executive function and even protection from age related decline [116]. Through animal models, 

the mechanisms responsible for these benefits have been studied extensively. They include: 

improved plasticity and neurogenesis within the hippocampus (particularly the dentate gyrus 

[117]) and increased levels of synaptic proteins [118] and glutamate receptors (NR2b and 

GluR5) [119]. Exercise is also responsible for increased availability of growth factors, such as 

brain derived neurotrophic factor (BDNF) and insulin growth factor 1 (IGF-1) [120, 121]. 

Exercise also contains neuroprotective properties aiding in both recovery and reducing the 

severity of many types of injuries and illnesses including depression [116]. These benefits have 

primarily been reported as a result of exercise sustained over an extended period of time (3-12 

months) [122-125]. While research has shown benefits from acute exercise, these studies 

primarily focus on immediately following exercise completion and not during the exercise 

session. The specific influences exerted on the frontal brain regions during acute exercise remain 

to be fully explored.  

Motor skills such as those involved in sport participation, require the integration of 

information from a wide range of areas including peripheral sensors, spinal locomotor networks 

as well as motor and premotor cortices [126]. Due to the temporal resolution that EEG provides, 

it is possible to study the neural control of movement. As mentioned above, by studying the 

oscillatory components of the EEG signal, it is possible to investigate neuronal interactions and 
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communications.  With exercise, theta, alpha, beta and low gamma frequencies have shown to be 

of interest and reflect different aspects of motor planning, execution and control [127, 128].  

During sport specific activities, increases in frontal midline theta power was linked to 

improved performance in expert golfers [129] , and rifle shooters [130]. The source of theta FM 

has been localized to the medial frontal cortex and the ACC, areas important for focused 

attention. Furthermore, along with playing a major role in cognition, learning, and memory; theta 

oscillations have been proposed to be involved in the integration of sensory and motor 

information during sensorimotor actions [131]. A recent study by Cruikshank (2012) found 

increased theta power during a sensorimotor task in motor areas (C3 and C4) [132]. Similarly, 

theta power was found to increase during movement onset of upper limb ballistic movements in 

contralateral motor cortices [133].  

During and immediately following large body movement such as treadmill walking and 

cycling, studies have shown EEG activity to increase across frequency ranges [134, 135]. Bailey 

and colleagues (2008) found increased activity across EEG frequencies, including theta, during a 

graded cycling session to fatigue. This increase in activity was shown to occur at multiple 

electrode sites, leading the authors to question if peripheral physiology was the driver of the EEG 

activity [135]. Alpha activity in response to exercise has been difficult to quantify reliably, as 

studies show both increased power [135, 136] and decreased power [126, 137]. An important 

distinction to take under consideration is the time of cortical recording in relation to the exercise. 

Kubitz & Mott (1996) recorded EEG during a 15-minute (three 5-minute stages) session 

of progressively more intense exercise (50 to approximately 150 W) on a cycle ergometer. They 

found an exercise related decrease in alpha activity and corresponding increase in Beta activity 

over baseline values at each exercise load. The activity returned to baseline after completion of 
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the exercise [137].  More recently, Enders and colleagues recorded EEG during high intensity 

cycling and found increase in alpha, beta and gamma activity over the left frontal cortex. This 

increase in activity corresponded with fatigue, specifically for the alpha and beta frequency 

bands. The gamma activity was unchanged with fatigue. They proposed that their results indicate 

involvement of the cerebral cortex during cycling in an executive control and motor planning 

capacity.  

When cortical activity is measured following exercise completion there is a similar 

activation pattern [126], however, the frequency band and region of activation is dependent on 

exercise type and familiarity with the modality. Brummer and colleagues (2011) had experienced 

runners perform treadmill running, cycling on an ergometer, arm crank, and isokinetic movement 

at 50% and 80% intensity and recorded EEG prior and following the exercise. Following 

moderate intensity exercise, alpha activity showed an increase with all exercise modalities, while 

beta increased over the parietal cortex during the bicycle trial only. In contrast, during high 

intensity exercise alpha activity had modality dependent changes. Cycling and hand crank 

resulted in no change in activity; treadmill running had decreased alpha activation and isokinetic 

trials showed increased alpha activity.  Beta activity meanwhile showed a decrease in activation 

in frontal brain regions for the treadmill trial [138]. Another study meanwhile found increased 

absolute power in beta following a graded cycling test [139]. These results suggest that exercise 

type and intensity alters cortical activation and that the region of activation is related to 

participant familiarity with the modality.  

A meta-analysis by Crabbe and Dishman (2004) assessed the literature on EEG changes 

during and immediately following exercise. They concluded that EEG activity in delta, theta, and 

beta frequencies increased both during and immediately following exercise. Activity in alpha 
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showed changes in absolute power, but not in terms of relative power to the other frequencies. 

The authors also noted that the changes in activity were widespread and not grouped to specific 

cortical sites [134].  

Few studies have attempted to assess the impact of acute exercise on functional 

connectivity measures. The sparse existing literature suggests that immediately following 

exercise there is an increase in functional connectivity in sensorimotor areas, while no impact 

has been reported in frontal regions [140].  

3.3 Combining Cognition And Exercise  

The incorporation of a cognitive task with the graduated exercise for the RTP protocol 

strives to increase the load on the brain in order to elicit symptoms from the post-concussed 

brain. The hypofrontality theory proposed by Dietrich (2003) suggests that during exercise there 

is a high level of activation within the motor and sensory cortexes which leads to a re-allocation 

of the limited resources normally needed for information processing [141]. This results in an 

inhibition of neural networks not involved in exercise. Therefore if an individual attempts to 

perform a task using the PFC, a brain region not heavily involved with exercise, it is much more 

difficult and requires increased effort. Davranche and McMorris (2009) assessed cognitive 

function during steady state cycling at individual lactate thresholds and found improvement in 

RT during trials of the Simon task but impaired function in response inhibition [142]. A similar 

study had participants cycling at 30%, 50% and 80% of their heart rate reserve (HRR) while 

performing the Wisconsin Card Sorting Test [143]. They found significant impairment in 

performance during high-intensity exercise but not moderate or low intensity [144]. They 

concluded that their results lent support for the hypofrontality theory. Recent meta-analyses on 

the effect of acute exercise on cognition found that exercise has a consistent positive effect on 
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cognitive tasks completed following exercise completion [145, 146]. When cognition is assessed 

during exercise, the results are less conclusive. The variations in results were proposed to be 

methodological, as Chang and colleagues included a wider range of studies and participants, 

resulting in a small positive effect on cognition [145], whereas Lambourne and Tomporowski 

incorporated a narrow scope of studies, only including healthy young participants and a negative 

effect. The meta-analyses identified moderators that were found to influence the outcome of 

studies that included exercise intensity, time of cognitive testing and duration, cognitive task 

type, and fitness of participants. Following a meta-analysis on the effect of walking on cognition, 

Al-Yahya and colleagues found working memory and executive function tasks to be the most 

consistently and strongly influenced by exercise [147].  

Neuroimaging provides an opportunity to understand the cortical origination of the 

changes in cognition with exercise. A study by Li and colleagues (2014) had participants 

complete an N-back test following rest and immediately following a 20-minute cycle at 60-70% 

HR Max. The authors found that behaviorally, the exercise did not influence the accuracy of the 

task but did have a significant effect on brain activation during the most difficult level of the N-

back. Brain activation was increased in the right middle prefrontal gyrus, the right lingual gyrus, 

and left fusiform gyrus, areas involved in executive function. Decrease activation was noted in 

the anterior cingulate cortexes, left inferior frontal gyrus and the right paracentral lobule [148], 

which the authors implied was a transition to a default mode status and compensatory 

mechanism for executive processes.  

EEG remains sparsely used for exploring cognition during exercise. One study had 

participants cycle at 60% of the HR max and found that as difficulty increased, in a modified 

flanker task, accuracy decreased and cortical activation increased [149]. Specifically, they found 
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increased amplitude in the time-locked EEG signal in frontal brain regions. The authors 

suggested that the increased activation and decreased accuracy are indicative of increased 

inefficiency of the neuroelectric system. This leads to an increase in effort and resources to 

perform the task. Another, more recent paper by Olson and colleagues (2016) supported these 

results, as they reported a decrease in accuracy and corresponding increase in EEG activity at 

both 40% and 60% exercise intensity during a modified flanker task [150]. This increase in effort 

to complete the cognitive task was further supported by a study with adolescents that had 

participants exercise for 20 minutes at 60% of their HR max and complete a cognitive task 

composed of an Eriksen flanker task and Go No-Go task [151]. Using coherence analysis, which 

explores the synchrony of brain oscillations across different scalp locations, they found unfit 

adolescents showed increased coherence in Alpha and Beta frequencies. Increase coherence is 

suggested to represent increased effort. These results support two meta-analyses that identified 

fitness level to be a moderator that influences cognition during exercise [145, 146].  

Overall, the results from the behavioural and neuroimaging studies support the theory of 

transient hypofrontality [141], in that with exercise there is a decrease in cognitive task accuracy 

and increase in cortical activity. This increase represents more resources being required to 

perform the task. The results from the neuroimaging studies suggest a decrease in neural 

efficiency during combined cognition and exercise. Graph theoretical analysis has the potential 

to provide more insight into how the various attributes of the functional networks are impacted 

by this paradigm design. 
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Chapter 4: Methods 
 

The present study has received approval from UBC’s Clinical Research Ethics Board (H15-

02714). All participants independently provided written and verbal informed consent, in 

accordance with the principles outlined by the Declaration of Helsinki.  

4.1 Participant Information 

All interested participants were required to meet the following inclusion criteria:  

o 18-25 years old 

o Right handed 

o No history of prior concussion or head injury  

o No history of drug or alcohol abuse  

o No diagnosis of learning disability or other neurological disorders; 

In addition, interested individuals were screened over the phone using the Godin Leisure 

Questionnaire (see Appendix A). In order to participate, individuals had to be moderately active 

or a score of greater than 14 on the questionnaire. This was selected as familiarity with exercise 

and fitness level is known to influence the effect of exercise on cortical activity [145, 151].  

All participants were recruited from the University of British Columbia and surrounding area 

through flyers (Appendix B) and word of mouth.  

4.2 Anti-Saccade Serial Addition Task (ASAT) 

The Anti-Saccade Serial Addition Task is a novel task that is comprised of two (2) well 

established tests: the Anti-Saccade Task and the Paced Serial Addition Task. The Anti-Saccade 
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task is a classic test used to assess cognitive control and requires participants to inhibit a 

reflexive saccade [80]. The task is composed of two steps. First the participant must suppress the 

reflex to look at the stimulus and then create a voluntary motor command to look away from the 

target. The task requires a range of cognitive processes including inhibitory control, attention, 

working memory, and decision-making [152]. Extensive neuroimaging has been done using the 

Anti-Saccade task, identifying the frontal eye fields (FEF), supplementary eye fields (SEF), 

ACC, and DLPFC to be involved in the completion of this task [83, 153].  

The Paced Auditory Serial Addition Task (PASAT) was originally developed for 

individuals with TBI [154]. Since then it has been used in many clinical populations including 

MS, whiplash, chronic fatigue syndrome and depression [154]. The test is a validated measure 

used to evaluate attention, executive control, working memory, and information processing speed 

[154]. Although shown to be valid and sensitive to many clinical conditions, the PASAT is very 

difficult and often causes extreme frustration and anxiety in participants [155]. The Paced Visual 

Serial Addition Task (PVSAT) was developed as an alternative to the PASAT and is moderately 

correlated at all difficulty levels [155]. Clear differences exist between the two in terms of 

difficulty, with the PVSAT being significantly easier and correspondingly a possible ceiling 

effect has been reported.  One benefit of the visual version is that it solves the input-output 

interference problem with the PASAT [155]. The cortical regions involved in the PVSAT are 

mainly in the frontal and parietal lobes (superior and inferior parietal lobe bilaterally, superior 

frontal gyrus bilaterally, left medial frontal gyrus, left inferior frontal gyrus, and adjacent part of 

the insula, anterior part of the cingulate gyrus and some cerebellar areas [156]. 
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4.3 EEG Data Collection 

Electroencephalographic data was recorded using a 32 channels EEG ASAlab system 

with Waveguard Technology cap (Advanced Neuro Technology, Enschede, Netherlands). This 

system is supplied with shielded wires to make recordings less susceptible to external noise and 

movements. EEG data was continuously recorded using a 500 Hz sampling frequency. The 

ground electrode (AFz) and common average reference was positioned between Fpz and Fz to 

ensure low impedance values (generally < 5 KΩ). The 32 electrodes were distributed along the 

scalp according to the 10/5 system [157]. The cap was fixed with a chinstrap to prevent shifting 

during the exercise trials and was permeable to air in order to prevent an increase in heat during 

exercise. Each electrode was filled with OneStep EEG-Gel (H + H Medizinprodukte GbR, 

Münster, Germany) for improved signal transduction. To ensure consistent cap placement, the 

vertex (Cz) electrode was placed midway between ears, and midway between the nasion and 

inion. On the first day, the participants were asked to sit still with their eyes closed for 5 minutes 

to collect resting state data.  

4.4 EEG Data Analysis 

Analysis of the EEG signal was completed offline after each participant completed all of 

his or her visits. The EEG data was exported from the collection device and brought into Brain 

Electrical Source Analysis® Research (BESA) for analysis. The EEG signals were first filtered 

using a band-pass filter (4 – 50 Hz) and notch filter (60 Hz) to remove signal drift, line noise and 

motion artifacts. Independent Component Analysis (ICA) was used to decompose the signal and 

identify eye blinks, which were then removed from analysis, as were channels with excessive 

noise. An automated artifact scan was performed to check signal for noise. Participant data was 

included in analysis as long as 70% of trials were clean of artifacts. The task sent triggers to the 
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EEG system allowing for the identification of each stimuli presentation. Using the accuracy data, 

all trials in which the participant responded incorrectly, were removed from further analysis. The 

data from all accurate trials for each task and block were then averaged using 1.24 seconds epoch 

(-0.24 – 1000 ms).  A 10-10 average virtual montage was applied to the data, resulting in 27 

channels. This data was then exported into MATLAB (Version R2013b, The Mathworks, Inc., 

Natick, MA, USA)). Within MATLAB, using scripts developed in the lab, the average signal 

from each participant was averaged together to form a single “Grand Average” signal that 

represented the group’s ERP in response to the task. The data was plotted (Figure 5 – 3) to allow 

for visualization of the ERP over the entire scalp. Using this plot, the signal was visually 

evaluated and regions that showed significant peaks of activation were highlighted. The brain 

regions of interest for this study were chosen a priori and this process was used to confirm that 

the chosen regions were in fact involved in the tasks. The visual inspection of the data confirmed 

our chosen areas of interest with the left, central, and right frontal regions and occipital midline 

undergoing further analysis. 

4.4.1 Power Spectrum Analysis 

In BESA, a virtual source montage was applied to the signal. This montage, as discussed 

in Chapter 2, reconstructs approximate source waveforms that can be used to represent cortical 

activity. Fast Fourier Transforms (FFT) was then applied to EEG signal, which transforms the 

data from the time domain to the frequency domain. This allows for the calculation of power at 

each frequency band. For this study, the data was segmented into theta (4-8 Hz), low alpha (8-10 

Hz), high alpha (10-13 Hz), beta (13 - 30 Hz) and gamma (30 – 45 Hz). The output of the FFT 

was absolute power (nAm2) and these values were used for statistical analyses. 
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4.4.2 Brain Connectivity Network Modeling 

The data was exported to MATLAB once more under the Virtual Source montage. A 

local script was used to segment the signal into theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) 

and gamma (30-45 Hz). EEG signal in each frequency band was then run through the 

connectivity analysis. To compute the brain connectivity networks, the PC controlled false 

discovery rate (PCFDR) algorithm was used[158]. PCFDR is a computational method based on 

the error rate criterion of the discovered network. Partial correlation is used to evaluate the 

conditional independence, which estimates the directed interactions between any two-brain 

regions after removing the effects of all other brain areas. The PC algorithm starts from a 

complete graph and tests for conditional independence in an efficient way. The PCFDR 

algorithm asymptotically controls the false discovery rate (FDR) below the predefined levels, 

which evaluates the proportion between the connections that are falsely detected to all those 

detected. Compared to the traditional Type-1 and Type-2 error rates, FDR has more conservative 

error rate criteria for modeling brain connectivity due to its direct relation to the uncertainty of 

the networks of interest. The PCFDR algorithm and pseudo-code are described in details in 

[159]. The FDR threshold was set at the 5% level. The learned connectivity networks are binary 

undirected graph with the inferred connections at the 5% significance level. The binary 

undirected networks were computed for each individual for all frequencies, task conditions and 

blocks independently.   

4.4.3 Graph Theoretical Analysis 

Graph theoretical analysis was used to extract structural network features from the 

learned networks [76]. Traditional graph theoretical measures were used to characterize the 

network features in terms of density, global efficiency, clustering coefficient, and modularity. 
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The definitions of these measures can be reviewed in Chapter 2. The Brain Connectivity Toolbox 

[74] was used to perfrom the graph theoretical analysis. For the network, each of the 15 virtual 

source montage sources represented a brain region within the network.  

4.5 Experimental Protocol 

This study employed a single group randomized repeated measures design. Interested 

participants were appropriately screened by a phone interview to ensure they met all of the stated 

inclusion criteria. Participants deemed eligible were invited to visit the Djavad Mowafaghian 

Centre for Brain Health (CBH) at the University of British Columbia. Participants were asked to 

come in to CBH on three (3) different days within a 7-day period, at the same time of day, in 

order to account for the effect of circadian rhythm on cognition [160]. On the testing days the 

participants performed one of the three tasks: ASAT, Exercise or ASAT-Exercise dual task. The 

order of the tasks was randomized to account for any order effect. After initial telephone 

screening, each participant had his or her task order randomized prior to his or her first visit.   

During the first visit to the Centre for Brain Health, each participant was met by the 

research coordinator and asked to review a written consent form (see Appendix C), as well as 

encouraged to ask questions as they arose. Physical activity level was quantified using the 

Recent Physical Activity Questionnaire (RPAQ), which has undergone extensive reliability and 

validity testing [161]. The RPAQ consists of questions across three (3) different activity domains 

to determine the individuals’ average activity level over the last four (4) weeks (Appendix D). 

The participant then completed the ASAT task training. This included two decomposed 

proponents of the task. The total learning period took 30 minutes. Following the task training, the 

EEG cap was placed on the participants’ head, after which they were instructed to sit still for 5 

minutes, while keeping their mind clear to allow for the collection of resting state brain activity.  
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The study procedure was composed of the three testing conditions. The order was 

randomly assigned immediately following acceptance into the study. After the EEG cap was 

placed on his or her head, the participants were instructed to sit on the stationary bicycle 

(Zhejiang Everbright Industry, Inc, Taichung City, Taiwan). Participants were asked to adjust the 

seat to ensure optimal pedal distance and the bike was then adjusted to keep the wall mounted 

screen a set distance based off of their height in order to maintain the correct angles for the anti-

saccade component of the ASAT. The participants were then instructed to complete one of the 

three (3) task conditions. 

4.5.1 Cognitive Task: ASAT 

The task began with a fixation point in the middle of the screen, followed by a distractor 

stimulus (red dot) being shown for 100 ms at a fixed distance to the left or right of the centre (in 

random sequence). In the opposite direction to the distractor stimulus, the target stimulus (single 

digit) was presented for 200 ms (Figure 4 – 1). The task required the participant to mentally track 

and verbally add the sequentially presented digits. The participants also had to ignore the 

distractor stimulus, or else they would miss the target stimulus as a result of the time cost 

attributed to the erroneous pro-saccade. The ASAT was presented using a commercially 

available stimulus presentation software (E-Prime 2.0, Psychology Software Tools). The task 

consisted of 5 blocks, with each block increasing in difficulty through changes in the anti-

saccade angle, the inter-stimulus interval and number of trials (Table 4 - 1). Participants were 

instructed to respond verbally as quickly as possible following each stimulus.  

 

Table 4 – 1. Block progressions for the Anti-Saccade Serial Addition Task and Exercise 
Intensities. 
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 Block 1 Block 2 Block 3 Block 4 Block 5 
ASAT inter-stimulus interval (sec) 3.0 2.5 2.0 1.5 1.0 

ASAT distractor off-set (degrees) 5 7.5 10 12.5 15 

Heart rate reserve (%) 30 40 50 60 70 

 

4.5.2 Exercise 

The participants were asked to change into comfortable clothing for exercise. At this time 

they were asked to put on a Polar Heart rate monitor band (Polar Electro, Oy, Kempele, Finland). 

The participant was then asked to sit quietly for 5 minutes in order to measure their resting HR. 

Using their age, their max HR was calculated using equation 1. Their target HR was then 

calculated using Equation 2.  

     !"!"# = 208− 0.7 × !"#                                      (1) 

    !"!" = !"!"# −  !"!"#$  ×%+ !"!"#$    (2) 

The exercise task was divided into 5 separate blocks of increasing intensity (Table 4 - 1). 

Based off of the target HR calculated using equation (2) the participant was asked to begin 

biking at 30% of their heart rate reserve. The research coordinator monitored the participant’s 

heart rate and modulated the intensity of the exercise appropriately by increasing or decreasing 

the resistance, as the participant was asked to maintain a steady RPM of 60 throughout the task. 

Once a steady state HR was obtained, the participant continued for 5 minutes. After 5 minutes 

the participant increased their intensity to 40% and repeated for 50%, 60% and finally 70%. 

Steady state HR was defined as within +/- 5 beats per minute and was constantly monitored by 

the research administrator to ensure compliance and adjust the necessary settings.   
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During the last 30 seconds of each exercise block the participants were shown a Borg 

intensity scale (Appendix E) and asked to identify their perceived exertion using the scale. 

Following the final exercise block the participants were instructed to cool down for 5 minutes.  

4.5.3 ASAT-Exercise Dual Task  

Participants changed into comfortable clothing for exercising and placed the Polar Heart 

Rate monitor band under their clothing. The participants were asked to sit on the exercise bike 

while the cap was placed on their head. Once the cap was firmly placed on their head the 

participants was asked to begin pedaling at 30% of their HRR. Once reaching steady state the 

ASAT began. At each increase of exercise intensity, a corresponding increase in ASAT difficulty 

occurred, reaching a max difficulty at the end (Table 1). During the final 30 seconds of each 

exercise block the participants was shown a Borg intensity scale and asked to identify their 

perceived exertion on the scale.  

 

Figure 4 – 1. An example of a single ASAT task trial. 
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4.6 Outcome Measures 

4.6.1 Rated Perceived Exertion 

The participants’ rated perceived exertion was recorded during each block of the Exercise 

– only and Combined Cog-Ex tasks using the Borg scale.  

4.6.2 ASAT Accuracy 

Participant responses were recorded using an electronic recording device. All responses 

were then input into a database for analysis. The main outcome variable of interest for the ASAT 

task was response accuracy (%). Accuracy was determined for each block by calculating the 

correct number of responses and dividing the sum by the total number of trials.  

4.6.3 Power Spectrum Analysis 

The main outcome variable for the EEG Power spectrum analysis was absolute power, a 

measure that has been shown to be more responsive to change in exercise studies [134]. Absolute 

power was compared across tasks (3), loads (5) and brain regions for each frequency.  

4.6.4 Functional Connectivity 

Based on prior research in our lab, two graph theoretical measures were chosen a priori 

as the main outcome measures for assessing the networks during the various tasks. These critical 

measures of network connectivity included degree, betweenness centrality, and clustering 

coefficient.   
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4.7 Statistical Analysis 

4.7.1 Experimental Outcome Measures 

The dependent variables for this study included accuracy, absolute power, and the 

connectivity measures. All statistical tests were performed using IBM SPSS Statistics (Version 

23.0.0.0, IBM Corporation, Armonk, New York, USA). A statistician was consulted to ensure 

appropriate analyses were run to test each of the hypotheses. 

A linear mixed model (LMM) was used to model the effect of task condition, levels, 

regions, and interactions had on the task accuracy and the EEG measures. A LMM was used as it 

offered more flexibility and a better fit for the data than traditional analyses such as repeated 

measure ANOVA, ANCOVA, and regression models. Using a mixed model allows for the 

incorporation of each participant’s variability by computing a random slope and a random 

intercept for each participant, which takes into account the participant differences at each level.  

For the behavioural statistical analysis, the model was used to identify differences in task 

accuracy during the Cognitive-only and Combined Cog-Ex tasks, as well as between difficulty 

levels. Since the study design had multiple conditions within a single subject, correlation within 

subject data had to be accounted for. 

For the EEG data, the model had Task, Level and Region as fixed effects. Participant and 

Task type were used as random effects. Task type was considered a random effect as participants 

performed each task on a separate day. Day to day differences within each of the participants 

was thereby accounted for within the model. 

The model used for most of the analysis was the following: 
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! =  ! + !!!"#$ +  !!!"#"$ +  !!!"#$%& + !! + !!!"#$ + !!!"#$%&%'"($ + ∈  

In this model, Y is the dependent variable, either power amplitude or graph theory 

measure of the EEG signal. α represents the average dependent variable baseline value. 

!!!"#$, !!!"#"$, and !!!"#$%& represent the average task, level, and region effects on the 

slope of the model. !! , !!!"#$,!"# !!!"#$%&%!!"# represent the random variation in the 

intercept and slope of the model. � represents the residuals of the model. Residuals from the 

model were tested for symmetry. A reference for substantial departure from normality was 

suggested to be an absolute skew of 2 [162]. If the residuals surpassed the skew threshold the 

data underwent a logarithmic transformation and re-run through the model. Only significant 

main effects and interactions present in both models are reported. Significance was set at 0.05 

and all significant pairwise comparisons were corrected for multiple comparisons through a 

Bonferroni correction.  
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Chapter 5: Results 

5.1 Participant Characteristics 

Due to the extremely limited time available with the EEG cap and system, thirteen (13) 

participants were recruited to participate in the study. Of this group, eight (8) were males and the 

remaining five (5) were females. The mean age of the participants was 22.5 years (0.65).  The 

mean years of education was 16.4 years. The average total leisure activity score was 48.0 (5.6) 

from the Godin Leisure-Time Exercise Questionnaire, indicating the group was very active. 

[163]. The participants’ physical activity level was confirmed by the RPAQ, which revealed a 

mean of 1.38 hours (0.22) of moderate to vigorous active per day. Table 5-1 provides a summary 

view of the participant characteristics. 

 

Table 5-1 Participant Characteristics including Age, Gender, Godin Total Leisure Activity 
score and RPAQ scores. 

ID Age Gender 
Godin Total Leisure 

Activity Score RPAQ  
P001 22 M 71 3.7 
P002 20 F 21 1.4 
P003 18 F 64 1.1 
P004 21 F 74 1.0 
P005 24 M 27 0.9 
P006 19 F 34 1.5 
P007 25 M 66 1.4 
P008 24 M 77 1.5 
P009 24 M 44 1.4 
P010 23 M 28 1.3 
P011 24 F 39 0.9 
P012 24 M 50 1.6 
P013 25 M 29 0.3 

AVERAGE 22.5 M = 8/F=5 48.0 1.38 
SME 0.65 

 
5.6 0.22 
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5.2 Behavioural Results 

5.2.1 Heart Rate And RPE 

Mean Heart Rate and RPE are presented in Figure 5-1 for the Exercise – only and Combined 

Cog-Ex tasks at each level. Both HR and RPE show no significant effect of task condition, with 

values being almost identical throughout the levels. The LMM identified a significant effect on 

Level for both HR and RPE, F (17.9, 107) = 1143.5, p = < .001, F (52.7, 95.05) = 165.88, p = < 

.001. Post hoc analyses using Bonferroni correction for multiple comparisons revealed 

significant increase in HR and RPE between each level (p < .001) as both values gradually 

increased from Block A to Block E.  

 

Figure 5 – 1 HR and RPE for the Exercise and Combined Cog-Ex Tasks. 
Participant Heart Rate (HR) (Left) showed significant increases between each of the levels in 
both conditions (p < .001). Rated perceived exertion (RPE) showed a similar pattern, with 
increased ratings every block (p < .001). Both HR and RPE showed no significant differences 
between conditions.  
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5.2.2 Accuracy Of Anti-Saccade Serial Addition Task.   

Mean ASAT accuracy was compared between the Cognitive only task and Combined 

Cog-Ex task, showing that the Combined Cog-Ex task had a lower combined accuracy than the 

Cognitive-only task although this did not reach significance F (30.5, 55.35) = 3.71, p = .078 

(Figure 5 – 2 A). Both task conditions were then combined to assess changes by level of 

difficulty and are presented in Figure 5 – 2 B. There was a significant main effect for Level, F 

(30.5, 95.3) = 63.7, p < .001.  Post hoc analysis revealed Accuracy was stable during Blocks A – 

C and showed a significant decrease in the final two blocks.  

 

 
 

Figure 5 – 2 Working memory task accuracy. 
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(A) Accuracy differences between task, although not significant (p = .078), the 
Combined Cog-Ex task showed a lower accuracy overall. (B) Combined accuracy (%) 
of both tasks for each block. There was a significant decrease in accuracy in Blocks D 
and E (p < .001). 
* Indicates significance (p < .05) 

 

5.3 EEG Results 

5.3.1 ERP 

The grand averaged ERP was calculated using the 10-10 montage for all blocks for each 

condition. The frontal regions (F3, Fz, F4) and occipital midline (Oz) were selected a priori as 

regions of interest due to the task design. Figure 5 – 3 illustrates large peaks in activation in these 

regions during both the Cognitive-only and Combined Cog-Ex tasks, with both tasks showing 

very similar patterns of activation.  
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Figure 5 – 3 Visualization of ERP signal over the entire scalp.  
Each box represents the ERP signal for that corresponding electrode within the 10-10 
montage. Cognitive – only (Blue) and Combined Cog-Ex (Green) show no significant 
differences in activation pattern. Regions of interest: F3, Fz, F4, O2, Oz, O1 show the 
expected increase in amplitude during the tasks.  

Cognitive	–	only	
Combined 
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The ERP data was used to confirm the regions of interest and their activation during the 

various tasks. As a result, the data was evaluated strictly qualitatively and no statistical analyses 

were performed, as the ERP were not the variables of interest in this study. Figure 5 – 4 shows 

the changes in the grand average ERP at each block for the regions of interest. Compared to rest, 

there is an increase in peak amplitude during the first found blocks of the tasks, with all frontal 

electrodes showing a similar pattern of activation. The occipital region showed a different pattern 

with less of a significant peak and a more continuous pattern of activation throughout the trial.  

Within the frontal electrodes there is a change in pattern of the EEG response during the 

final block, moving from a large singular peak of activation to a pattern with decreased 

amplitude but more continuous activation throughout the task. 
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Figure 5 – 4 Group Average ERP during rest and all difficulty blocks. 
 A clear ERP is discernable from all task conditions compared to the Resting state. For all of 
the frontal electrodes (F3, Fz, F4) there is little change in activation throughout the first 4 
blocks (A-D) before a substantially different signal in Block E. The ERP in Oz is different 
from the frontal electrodes and shows a signal with increased latency throughout the blocks.     
 

5.3.2 Power Spectrum Analysis 

The power spectrum analysis separated the EEG signal into five (5) different frequencies: Theta, 

low Alpha, high Alpha, Beta and Gamma. Each frequency was run separately through the LMM 

and will be presented by main effect followed by interactions. 

Main Effect: Condition 
Figure 5 – 5 shows a significant Main Effect for Condition was found for Theta, F (268.2, 359.7) 

= 10.68, p = .001. Post hoc analysis revealed Theta power was significantly higher during the 
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Exercise – only (p < .001) and Combined Cog-Ex (p = .042) tasks compared to the Cognitive – 

only task condition. 

 

Figure 5 – 5 Absolute Power of the EEG signal for each frequency band. 
Minimal fluctuations were seen in most frequency bands. Theta power showed significant 
differences between conditions, with increased power in both Exercise-only and Combined Cog-
Ex tasks over the Cognitive-only condition.  
* Indicates significance (p < .05) 

Main Effect: Region 
A significant main effect of region for theta F (268.2, 665) = 399.55, p < .001 was observed 

(Figure 5 – 6). Post hoc analysis revealed significantly higher power in OpM compared to all 

frontal regions (p < .001) and lower power in FM (p < .001).  

A significant main effect of region for low alpha power F (219.0, 665) = 148.27, p < .001 was 

reported (Figure 5 – 6). Post hoc analysis revealed significantly higher power in OpM compared 

to all frontal regions (p < .001).  
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A significant main effect of region for high alpha power F (331.0, 665) = 428.69, p < .001 was 

reported (Figure 5 – 6). Post hoc analysis revealed significantly higher power in OpM compared 

to all frontal regions (p < .001) and lower power in FM compared to all other regions (p ≤ .001). 

A significant main effect of region for beta power (F (226.5, 665) = 214.7, p < .001) was 

reported (Figure 5 – 6). Post hoc analyses revealed significantly higher beta power in OpM and 

significantly lower in FM compared to other regions (p < .001). 

A significant main effect of region for gamma power (F (242.4, 665) = 148.6, p < .001) was 

reported (Figure 5 – 6). Post hoc analyses revealed significantly higher gamma power in OpM (p 

< .001) and significantly lower in FM compared to other regions (p < .05). 

 

Figure 5 – 6 Absolute Power of the EEG signal from each frequency band by Region. 
With all tasks combined, power in OpM was significantly higher than any other region for all 
frequency bands. FM was significantly lower than the other frontal regions and OpM in every 
frequency except low alpha.  
* Indicates significance (p < .05) 
 

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

Theta	 L-Alpha	 H-Alpha	 Beta	 Gamma	

Ab
so
lu
te
	P
ow

er
	(n
Am

2)
	

FL	

FM	

FR	

OpM	

							
*	

												
*	

					
*						

*	

					
*	

				*	
				*	

					
*	 				*	



    
	

59	

Main Effect: Level  
 

Figure 5 – 7 shows a significant main effect for level was found for beta, F (226.5, 665) = 4.46, p 

= .001.  Post hoc analysis revealed beta power was significantly higher in Block E (p < .005) 

compared to Blocks B and C when all tasks were considered together. 

A significant main effect for level was found for gamma, F (242.4, 665) = 5.87, p < .001 (Figure 

5 – 7). Post hoc analysis revealed gamma power was significantly higher in Block E (p < .005) 

compared to Blocks A, B and C (p ≤ .001) and approached significance in Block D (p = .066) 

when all tasks were considered together. 
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Figure 5 – 7 Absolute Power of EEG signal throughout the blocks. 
When tasks and regions are combined, there is a significant increase in Absolute power in the 
final block (E) in Beta (Blue, top) and Gamma (Red, bottom) frequencies (p < .005). 
* Indicates significance (p < .05) 
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5.3.3 Functional Connectivity 

Global Connectivity 

Changes in global functional connectivity were explored using graph theoretical measures and 

showed no significant changes in density, global efficiency, clustering coefficient, or modularity. 

The analysis then focused on more localized changes through connectivity between regions.  

Local Connectivity 

The local connectivity analysis was focused entirely on the frontal brain regions, frontal left 

(FL), frontal midline (FM) and frontal right (FR), as this was the area primarily expected to be 

involved in the task.  

Main Effect: Task 
 

A significant main effect for task was reported for beta Degree, F (12, 348) = 6.09, p = .014 

(Figure 5 – 8). Post hoc analysis revealed a significantly higher value of degree in the Cognitive 

– only task –keep terms consistent between task and condition compared to the Combined Cog-

Ex condition (p = .014).  

 
Figure 5 – 8 Changes in graph theoretical measures between the two cognitive tasks. 
Beta Degree is significantly lower during the Combined Cog-Ex task than the Cognitive-only 
task (p < .014). 
* Indicates significance (p < .05) 
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Main Effect: Level  

Figure 5 – 9 shows a significant main effect for level with theta Clustering Coefficient, F (12, 

336) = 2.59, p = .037. Post hoc analysis revealed Block D to be significantly lower than Blocks 

B (p = .011) and C (p = .005).  

 

Figure 5 – 9 Changes in Theta Clustering Coefficient through levels. 
With both tasks combined, theta clustering coefficient is significantly lower in Block D 
compared to Blocks B and C.  
* Indicates significance (p < .05) 
 

Interaction: Region X Task 
A significant Interaction was found for theta Degree, F (12, 348) = 4.18, p = .016 (Figure 5 – 

10). Post hoc analysis revealed a significantly higher value of theta Degree in the Cognitive – 

only task at FM compared to the Combined Cog-Ex condition (p = .029).  
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Figure 5 – 10 Theta Degree Region X Task Interactions. 
Theta Degree presented with significantly lower values during the Combined Cog-Ex task 
compared to the Cognitive –only task in FM only (p = .03). The Frontal left and right regions did 
have the same pattern.  
* Indicates significance (p < .05) 
 
 
There was a significant Region by Task interaction for beta Betweeness, F (360,360) = 3.87, p = 

.021 (Figure 5 – 11). Post hoc analysis revealed a significantly higher value of beta Betweenness 

in the Cognitive – only task at FL compared to the Combined Cog-Ex task (p = .007). 
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Figure 5 – 11 Beta Betweeness Region X Task Interaction 
Beta Betweeness presented with significantly lower values during the Combined Cog-Ex task 
compared to the Cognitive – only task in FL only (p = .007). 
* Indicates significance (p < .05) 
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Chapter 6: Discussion 

The objective of the current study was to examine the association between EEG metrics 

and behavioural changes in healthy normal adults as a foundation for evaluating individuals with 

concussion.  In order to accomplish this objective, healthy and physically active participants 

were asked to complete three tasks: a challenging graded cognitive task, a graded cycling 

session, and a combined task that had the participants complete both tasks simultaneously. 

Regarding the exercise paradigm, this study employed a paradigm that forced participants’ to 

place priority on the exercise, by maintaining a speed of 60 rpm throughout the levels and 

keeping HR within the set level. This forced priority had an influence on the results, as 

participants were not able to decide themselves on which task to prioritize. This study design was 

used to reduce the variability in the results and to match the existing literature, which utilized 

similar paradigms [143, 144, 149, 150]. Our results suggest the graded levels of exercise induced 

significant changes in both the perceived exertion and heart rate, with both values increasing at 

each progressive level. This result was seen in both the Exercise-only and Combined Cog-Ex 

task and suggests that the stepwise progressions were large enough to induce a significant change 

in the physiological and perceived exertion response.  

Between the Cognitive-only and Combined Cog-Ex task there were no statistically 

significant differences in the accuracy of the task, however there were significant differences in 

the neural activity. Specifically, theta absolute power was found to be modulated by the task 

condition. The Combined Cog-Ex task condition elicited significantly greater activity in the 

frontal brain regions within the theta frequency band compared to the Cognitive-only condition. 

These results suggest that when exercise is added to the cognitive task, greater attentional 

resources are required in order to maintain accuracy. Multiple studies have identified theta 
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activity to be positively correlated with cognitive load and accuracy of the task [92, 93, 95]. This 

result contributes to the current literature regarding theta‘s active role in cognition.  

Consistent with literature using cognitive tasks, as the ASAT increased in difficulty, there 

was a significant decrease in the accuracy. Specifically, a significant decrease was noted in the 

final two levels (Blocks D and E), while no significant changes were recorded in the first three 

blocks. These results suggest that only tasks with a high level of cognitive difficulty result in a 

decrease in accuracy. The addition of the EEG data allows for the exploration of the impact task 

type and cognitive load has on neural activity as well as the relationship between the behavioural 

and neural levels of measurement.  

Between the tasks levels there were significant changes in activity within the beta and 

gamma frequency bands. In particular, a significant increase was found during the final level of 

the tasks in both frequencies, coinciding with the largest decrease in accuracy. Beta and gamma 

activity has previously been identified to be involved in many aspects of cognition, including 

working memory. Beta activity has shown to be sensitive to working memory load, especially 

during tasks requiring no physical response, as physical movement attenuates activity in this 

frequency band [103]. Gamma activity meanwhile, is associated with attention and memory 

formation. Within working memory, gamma has shown to be involved in the maintenance phase 

of the task and increase almost linearly with load [104, 107]. The reported increased beta and 

gamma power as the cognitive task increased in difficulty suggests that increased activation was 

required to complete the task. Furthermore, there was a change in the pattern of activation of the 

EEG signal within the frontal brain regions during the hardest level of the cognitive task. The 

signal pattern went from a single, easily identified peak to a more continuous activation 

throughout the trial. These two results suggest the brain utilizes two strategies to manage the 
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increase in difficulty – increases activity in frequency bands involved with cognition and alters 

the pattern of activation from a singular peak to a more continuous level of activation. This 

results in an overall increase in neural activity, which extends over a longer period of time.  

During the Combined Cog-Ex task there were changes in connectivity within the frontal 

brain regions. In particular, beta degree was significantly lower during the combined Cog-Ex 

task condition compared to the Cognitive-only condition. Degree is a measure of network 

connectedness and nodal importance to the network. The higher the value of degree of a 

particular node, the more central and important the node is to the network as a whole. The 

reported decrease in degree during the Combined Cog-Ex task suggests that with the addition of 

exercise, the frontal network becomes less central, or important, to the performance of the task. 

Future studies should explore how the network changes and which regions become more 

involved during the combined task condition by including a greater number of nodes in a variety 

of brain regions. 

 As with the behavioural and earlier neural measures, there was a significant load effect 

within the functional connectivity measures. Theta clustering coefficient was shown to decrease 

as the cognitive load increased. Clustering coefficient is an important measure of local 

connectivity, as it measures the network being composed of small local clusters of connections. 

Healthy brain networks are characterized as being a small-world network, meaning it has short 

path lengths and high levels of clustering coefficient. During WM tasks clustering coefficient has 

been shown to be load dependent, increasing with high cognitive load [113]. The results from 

this study contrast with this consensus as clustering coefficient was found to decrease with 

increasing difficulty. A possible explanation for this contrasting result is the fact that both the 

Cognitive – only and Combined Cog-Ex task conditions were assessed together. Due to the small 
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sample size, it was not feasible to assess the conditions individually.  It is possible that the 

current results suggest that as the task increases in difficulty, the frontal brain regions shift from 

an efficient and densely connected network to a larger, less efficient and less exclusive network 

involving other nodes outside of the frontal brain regions. Another possible explanation is that 

when the added exercise component reaches a certain level of difficulty, the neural activity shifts 

to accommodate the exercise, thereby altering the network away from a frontally centered 

network. Future studies should explore this possibility by increasing the sample size and 

assessing the two conditions individually.  

6.1 Limitations 

Several limitations are present in this pilot study exploring the association between EEG 

metrics and behavioural changes in healthy normal adults during various sources of load. As note 

previously, the statistical power was limited in this study due to a small sample size, further 

research should be done using a larger sample as well as a group with concussion history. 

Although significant differences were noted between tasks, a larger group would be beneficial in 

assessing the differences between levels as well as the Task X Level interactions.  

This study utilized a novel task that has not been compared directly to similar tasks. A 

study incorporating this new task along with the PASAT or PVSAT could be beneficial and 

allow for an improved comparison between the scores as we noted large differences in accuracy 

scores between the ASAT and the PASAT/PVSAT in similar populations. Future studies should 

include both tasks to elucidate how comparable the tasks truly are. 

A final limitation of this study was the small number of nodes used in the analysis. This 

greatly limited the ability to assess the cortical changes caused by the various sources of load. 



    
	

69	

Future studies should include areas outside the PFC to get a better understanding of the impact 

on the whole brain. The functional connectivity analysis was particularly limited in this study as 

we were unable to identify how the connectivity was influenced by the exercise.   

6.2 Applications For Sports Related Concussion 

This study provides the framework for future studies to investigate the differences in 

neural activation between healthy individuals and those recently recovered from sports-related 

concussion. The results imply that the addition of exercise has a measurable impact on neural 

activity and individuals recovering from SRCs would require greater neural resources that may 

not be available following injury. This would result in a measurable decrease in accuracy during 

a cognitive and exercise combined task condition. This information could be used in addition to 

symptom reporting to aid in identifying when athletes are able to return to play safely. To the 

author’s knowledge this is the first study to explore brain activation using power spectrum 

analysis and graph theoretical analysis during a combination of exercise and cognitive function 

and the relationship with behavioural scores. Future research should consider larger sample sizes 

in addition to including both healthy and concussed groups.  
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Chapter 7: Conclusion 
 

This study explored the cortical activity associated with the completion of a novel 

working memory cognitive task, an exercise task and a combined task in healthy young adults. 

Our results indicate that combining graded exercise and cognition results in significant changes 

in both behaviour and cortical activity. When compared to either the Exercise - only or Cognitive 

– only task condition, the Combined Cog-Ex condition results in significant overall changes in 

brain and behaviour that is observable in EEG signal pattern, EEG power output, and in local 

functional connectivity metrics within the frontal regions of the brain. These results provide new 

information regarding the impact exercise has on neural activity and could have applications in 

future studies involved in concussion recovery.  
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Appendix B: Study Recruitment Flyer 
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Appendix C: Study Consent Form 
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Appendix D: Recent Physical Activity Questionnaire (RPAQ) 
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Appendix E: Borg Scale 

 

Rating Description 

  

6 NO EXERTION AT ALL 

7  

8 EXTREMELY LIGHT 

9  

10 VERY LIGHT 

11  

12 LIGHT 

13  

14 SOMEWHAT HARD 

15  

16 HARD (HEAVY) 

17  

18 VERY HARD 

19 EXTREMELY HARD 

20 MAXIMAL EXERTION 

  

 


