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Abstract

Mesh quality plays an important role in improving the accuracy of the numerical simulation.

There are different quality metrics for specific numerical cases. A regular mesh consisting of

the equilateral triangles is one of them and is expected to improve the error performance. In this

study, Engwirda’s frontal-Delaunay scheme and Marcum’s advancing front local reconnection

scheme are described along with the conventional Delaunay triangulation. They are shown

to improve the mesh regularity effectively. Even though several numerical test cases show

that more regular meshes barely improve the error performance, the time cost in the solver

of regular meshes is smaller than the Delaunay mesh. The time cost decrease in the solver

pays off the additional cost in the mesh generation stage. For simple test cases, more regular

meshes obtain lower errors than conventional Delaunay meshes with similar time costs. For

more complicated cases, the improvement in errors is small but regular meshes can save time,

especially for a high order solver. Generally speaking, a regular mesh does not improve the

error performance as much as we expect, but it is worth generating.
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Chapter 1

Introduction

Computational Fluid Dynamics, or CFD, is one of the three major methods in the study of flu-

ids, along with theoretical and experimental analysis. CFD simulates the physical phenomena

in the flow of fluids numerically [21]. These phenomena, such as shockwaves and the turbu-

lence around a wing, are governed by the Navier-Stokes equations. In most cases, the models

of interest are non-linear and have no analytical solutions. CFD allows an alternative for the

understanding of complex flows via numerical simulations instead of physical experiments.

Compared to experimental and theoretical fluid analysis, CFD is young and dramatically grow-

ing [2]. In the 1960s, digital computers began to be available, which made possible numerical

simulations. In the following 50 years, CFD has grown with the development of more pow-

erful computers and algorithms. Now, CFD has been applied to multiple disciplines such as

fluid mechanics, electrical and electronic engineering, meteorology, biomedical engineering

and more.

The complete CFD process contains three major steps: pre-processing, flow solution and

post-processing.

Pre-Processing: This stage prepares all the information the flow solver needs. Given a partic-

ular problem, we choose a sufficient and representative model of the physics. Different

models have different approximations. The approximation introduces physical modeling

error, which means the flow of interest is not analyzed perfectly.

The geometry of the computational domain usually is defined by computer aided de-

sign (CAD) software. Then the domain is divided into finite non-overlapping cells or

control volumes. This division process is known as mesh generation. It is also the focus

1



Chapter 1. Introduction

(a) Structured mesh (b) Unstructured mesh

Figure 1.1: Meshes around a circular cylinder (Near View)

of this study. Generally speaking, the more cells there are in the domain, the more ac-

curate the solution will be. However, finer meshes also require higher computational re-

sources. Besides the size of the mesh, the connectivity and the shape of the cells also have

impacts on the accuracy. Based on how the cells are connected, as illustrated in Fig. 1.1,

meshes can be classified as structured and unstructured meshes. The connectivity of the

structured mesh is predictable. As shown in Fig. 1.1a, the cell (i, j) always has adjacent

cells marked as (i± 1, j± 1). This regular connectivity makes structured meshes easier

to deal with in the flow solver. It works well in simple geometries. However, when it

comes to complicated geometries, it is not always possible to generate structured meshes

automatically. Therefore, unstructured meshes are more widely used in CFD for compli-

cated geometries. Though the connectivity must be stored explicitly in the flow solver,

which makes the codes more complicated and challenging to write, current high-order

accurate algorithms make it worthwhile to adopt unstructured meshes on complicated

2



1.1. Motivation

geometries. The mesh generation software used in the study is GRUMMP (Generation

and Refinement of Unstructured, Mixed-Element Meshes in Parallel) [27].

Flow Solution: In the pre-processing stage, we choose the mathematical governing equa-

tions which, in fluid dynamics, are partial differential equations with some algebraic

constraints. To solve these equations numerically, we need to discretize the mathemat-

ical equations into algebraic equations within each cell. After decades of development,

the current three major families of discretization schemes are finite-difference [21, 1],

finite-element [30], and finite-volume schemes [37]. The finite-volume scheme is used

in this study because of its advantages both in conservation of physics quantities and its

easy application on unstructured meshes [21]. The algebraic equations will be solved

numerically instead of the original mathematical equations. The approximation in the

discretization both in space and time introduces truncation errors. The solver stops when

the residual of the discrete equation is close to zero. The difference between the numer-

ical solution and the exact solution is known as discretization error. In this study, we use

our in-house code ANSLib (Advanced Numerical Simulation Library) [26] as the flow

solver.

Post-Processing: This stage is the visualization and analysis of the numerical solution ob-

tained from the flow solution stage, which includes geometry and mesh display, vector

and contour plots, error estimation on the variables of interest and more. Visualization is

usually completed with the help of plotting tools like Paraview [3], MATLAB [23], and

gnuplot [38].

1.1 Motivation

As mentioned in the previous section, the accuracy of CFD is evaluated by how we control the

physical modeling error and the numerical error. The latter is the target in this study. Usually,

the more cells in the mesh, the more accurate we expect the solution to be. However, finer

3



1.1. Motivation

Figure 1.2: Simple 1-D example

meshes introduce larger costs. The cell shape also influences the solution accuracy. We take

the one-dimensional case as a simple example to illustrate the concept. The governing equation

for steady heat conduction is
d2T
dx2 = 0. (1.1)

Integrating the governing equation in cell i and applying Gauss’s theorem, we get

1
hi

(
dT
dx

∣∣∣∣
i+ 1

2

− dT
dx

∣∣∣∣
i− 1

2

)
= 0. (1.2)

The solution in cell i is represented by a reconstruction polynomial

T (x) = Ti +(x− xi)
dT
dx

∣∣∣∣
i
+

(x− xi)
2

2
d2T
dx2

∣∣∣∣
i
+

(x− xi)
3

6
d3T
dx3

∣∣∣∣
i
+ · · · , (1.3)

where xi indicates the location of the cell reference point. As shown in Fig. 1.2, if we choose

the cell center of the control volume (CV) i as the cell reference point and integrate the recon-

struction over the cells, the cell averages are,

T i =
1
hi

ˆ
CVi

T (x)dx = T |i +
h2

i
24

d2T
dx2

∣∣∣∣
i
+O(h4

i )
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1.1. Motivation

T i+1 =
1

hi+1

ˆ
CVi+1

T (x)dx

= T |i +
(

1
2

hi +
1
2

hi+1

)
dT
dx

∣∣∣∣
i
+

(
1
8

h2
i +

1
4

hihi+1 +
1
6

h2
i+1

)
d2T
dx2

∣∣∣∣
i
+(

1
48

h3
i +

1
16

h2
i hi+1 +

1
12

hih2
i+1 +

1
24

h3
i+1

)
d3T
dx3

∣∣∣∣
i
+O(h4

i )

T i−1 =
1

hi−1

ˆ
CVi−1

T (x)dx

= T |i +
(
−1

2
hi−

1
2

hi−1

)
dT
dx

∣∣∣∣
i
+

(
1
8

h2
i +

1
4

hihi−1 +
1
6

h2
i−1

)
d2T
dx2

∣∣∣∣
i
+(

− 1
48

h3
i −

1
16

h2
i hi−1−

1
12

hih2
i−1−

1
24

h3
i−1

)
d3T
dx3

∣∣∣∣
i
+O(h4

i ).

The first order surface gradients are,

dT
dx

∣∣∣∣
i+ 1

2

=
T i+1−T i

hi+1+hi
2

(1.4)

dT
dx

∣∣∣∣
i− 1

2

=
T i−T i−1

hi−1+hi
2

. (1.5)

Substitute Eqn. 1.4 and Eqn. 1.5 into Eqn. 1.3,

1
hi

(
dT
dx

∣∣∣∣
i+ 1

2

− dT
dx

∣∣∣∣
i− 1

2

)
=

d2T
dx2 +

hi+1−2hi +hi−1

3hi

d2T
dx2 + (1.6)

−hihi−1 +hihi+1−h2
i−1 +h2

i+1

12hi

d3T
dx3 +O(h2).

Comparing Eqn. 1.6 to Eqn. 1.1, we see that our discretization is not exact. This error, called

the truncation error, is zeroth-order for arbitrary choices of cell sizes. On the other hand, if the

mesh is regular, or hi+1 = hi = hi−1, the truncation error is second-order. Smooth variations of

h also lead to second-order truncation error. Juretić and Gosman proved that the cell shape also

affects the truncation error in 2-D and 3-D cases [19]. The prediction of error in the solution,

or the discretization error, and the relations between truncation and discretization errors are

5



1.1. Motivation

complex [32, 7].

Katz et al. [20] showed that mesh regularity affects truncation and discretization errors.

The truncation error obtained from the regular mesh is higher order than those from perturbed

meshes. As for the solution error, the advantage in the order of accuracy is only observed in

inviscid fluxes. The viscous fluxes are not sensitive to mesh regularity in the sense of having an

effect on solution error. Diskin et al. [8] also found that the relations between mesh character-

istics and the solution accuracy are complicated. Mesh irregularities affect gradient errors and

discretization errors in different ways. The viscosity affects the sensitivity to mesh regularity,

as does the solution reconstruction method. For isotropic meshes, mesh regularity does not

affect gradient error much if the unweighted least squares method is used. However, if using

the Green-Gauss method, the regular quadrilateral mesh offers a higher order of accuracy than

others in his test. In addition, Jalali et al [16, 18] and Yan et al [39] investigated the accuracy of

different discretization schemes on a wide range of meshes from perfect to perturbed meshes

for cell-centered and vertex-centered control volumes respectively. The degradation on the or-

der of accuracy for truncation errors on perturbed meshes is observed in their research. They

found that a particular discretization scheme may minimize the truncation error for a certain

kind of mesh.

Most research on mesh regularity and errors are applied for perfect meshes and their per-

turbations for simple geometric domains. This study focuses on how regular meshes can be

automatically generated for more complicated geometries, and how that affects the truncation

and discretization errors. In particular, this thesis seeks to answer the following questions:

1. How regular a triangular mesh can we generate for realistic cases?

2. What is the additional cost to generate such a mesh?

3. Considering that the cell shape affects the accuracy greatly, can we expect small dis-

cretization error using unstructured regular meshes?

4. Can a coarse regular mesh offer the same accuracy as a finer irregular mesh with lower

6



1.2. Outline

costs in the flow solver?

1.2 Outline

In the next chapter, we will recall some background information on both mesh generation

techniques and unstructured mesh finite volume schemes. The Delaunay mesh refinement

algorithm is discussed. We will also introduce post-processing techniques for mesh generation

such as smoothing and swapping.

In Chapter 3 and 4, the methodology to generate more regular meshes in this study is

described. Two mesh generation techniques are used in the study: Engwirda’s frontal-Delaunay

algorithm and Marcum’s advancing front local reconnection algorithm. Both are proven to

improve the mesh regularity dramatically. Several changes are made in these two schemes to

work on our current GRUMMP framework.

In Chapter 5, several numerical test cases are applied. In each case, the meshes generated

by different mesh generation techniques are shown and discussed first. The comparison of the

mesh regularity shows the advantage of new mesh generation techniques. The truncation error

and discretization error are also visualized to illustrate the effects of the mesh regularity. The

cost is shown at last to discuss whether it is worth it to generate more regular meshes.

In Chapter 6, the thesis concludes with the summary of this research.

7



Chapter 2

Background

Delaunay mesh refinement is chosen as a base-line mesh generation scheme because of its

theoretical guarantees and its practical performance. It will be introduced in Section 2.1. Post-

processing techniques such as edge swapping and vertex smoothing, which help improve the

mesh quality, will be discussed in Section 2.2. Section 2.3 provides a brief review of the finite-

volume method.

2.1 Delaunay mesh refinement

In two dimensions, a triangulation is a set of triangles that connect all given vertices. Triangles

cannot intersect each other and all triangles collectively must fill the polygonal boundary of the

domain. A Delaunay triangulation is the triangulation in which all triangles have empty cir-

cumcircles, which means that there are no vertices lying inside circumcircles1 but the vertices

are allowed to be located on circumcircles. Fig. 2.1 shows a simple example of a Delaunay

triangulation. All the circumcircles (dashed lines) are empty. If no four vertices lie on the

same circle, the Delaunay triangulation is guaranteed to be a unique triangulation. The proof

can be found in Reference [6, 9]. However, a Delaunay triangulation may break the domain

boundary in some cases. As shown in Fig. 2.2, the boundary is marked with bold lines. Be-

cause one boundary point fails to meet the empty circumcircle criterion (left), the Delaunay

triangulation (right) of these vertices changes the domain boundary. To solve this problem, the

constrained Delaunay triangulation was proposed [5]. Unlike the Delaunay triangulation which

1The circumcircle is a triangle’s circumscribed circle. It is the unique circle that passes through all the tri-
angle’s three vertices. The center of the circumcircle is called the circumcenter, and its radius is called the
circumradius.
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2.1. Delaunay mesh refinement

Figure 2.1: Delaunay Triangulation

Figure 2.2: Delaunay Triangulation breaks the boundary
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2.1. Delaunay mesh refinement

(a) PSLG (Eight points and one segment) (b) Constrained Delaunay Triangulation (Boundary
Protected)

Figure 2.3: Constrained Delaunay

starts with a set of vertices, the constrained Delaunay triangulation starts with a planar straight

line graph (PSLG). The PSLG contains both vertices and segments, as shown in Fig. 2.3a. Ev-

ery endpoint of the segments must be among the vertices in this PSLG. The segments are only

permitted to intersect at endpoints. In a constrained Delaunay triangulation, the segments in

PSLG serve as edges of the triangles. Only vertices that are visible to a triangle are considered

when checking empty circumcircles. Visibility means that no input segment stands between

the vertex and the triangle. By setting boundary edges as segments in the PSLG, we can pro-

tect them from breaking by the Delaunay triangulation. Fig. 2.3b illustrates how a constrained

Delaunay triangulation conserves boundaries. The red vertex is located inside the circumcircle

of a triangle. However, the segment in the PSLG (marked as bold line) separates the vertex

from that triangle. Therefore the red vertex is not visible to the triangle whose circumcircle

contains it. This is not regarded as a violation of the empty circumcircle rule so the boundary

is conserved.

The algorithm used in GRUMMP to generate guaranteed-quality triangular meshes [4, 28]

is based on Ruppert’s scheme [33]. Ruppert’s scheme starts with the constrained Delaunay tri-

angulation. The Delaunay triangulation maximizes the minimum angles in meshes but usually,

bad quality triangles still exist. The quality of the triangulation is improved by inserting points

into the constrained Delaunay triangulation. Ruppert’s scheme inserts circumcenters of the bad

10



2.1. Delaunay mesh refinement

30° 30
°

Figure 2.4: Diametral circle (dotted line) and diametral lens (dashed line)

quality triangles into the mesh unless the circumcenters encroach boundaries. Encroachment

happens when a point is located inside a circle with a boundary edge as its diameter. Ruppert

showed that the algorithm terminates with the minimum angle in the mesh larger than 20.7◦.

Shewchuk showed that when using diametral lenses instead of diametral circles to determine

encroachment, the minimum angle in the mesh is greater than 25.7◦ [34]. The difference be-

tween diametral lenses and diametral circles is illustrated in Fig. 2.4.

To generate a guaranteed-quality triangular mesh, both element size and shape need to be

considered. The size is controlled by length scales. If the circumradius of a triangle is less

than the average length scales of its three vertices, that triangle satisfies the size constraint.

GRUMMP uses a user controlled refinement parameter R to determine how small the elements

are. Small triangles are usually not required everywhere in the mesh. In the far field or the

areas where variables of interest tend to be constant, triangles are permitted to be much larger.

Therefore, a grading parameter G is introduced to control how fast the edge length grows over

distance. The length scale (LS) for point p is defined with these two parameters,

LS(p) = min
(

lfs(p)
R

, min
neighbours qi

LS(qi)+
1
G
|qi− p|

)
. (2.1)

11



2.1. Delaunay mesh refinement

Figure 2.5: Local feature size

qi denotes the neighbour points to point p. In Fig. 2.5, local feature sizes (lfs) for points (red

points) are the radii of those circles. The lfs is defined as the radius of the smallest circle

centered at point p that touches two disjoint parts (vertices or edges) of the domain boundary.

A large value of R reduces the target edge length while a larger value of G leads to a slower

increase in element size over the same distance. As mentioned before, the minimum angle in

constrained Delaunay triangulation is guaranteed to be larger than 25.7◦ if the diametral lens is

used for encroachment. A triangle is regarded as good in shape when the minimum angle of it

is larger than 25.7◦. In GRUMMP, we use the normalized shortest edge length to circumradius

ratio to evaluate the shape. The shape quality ρ is

ρ =
`m√
3r

.

The quality varies from 0 to 1. An equilateral triangle enjoy the maximum shape quality 1

and a degenerate triangle has minimum shape quality 0. According to the law of sines, the

minimum edge length `m, the minimum angle αm, and the circumradius r have the relationship

12



2.1. Delaunay mesh refinement

below,
`m

sin(αm)
= 2r.

Therefore the shape quality can also be expressed as

ρ = 2sin(αm)/
√

3. (2.2)

When the diametrial lens is used for encroachment, the minimum shape quality allowed in the

mesh is:

ρ =
2sin(25.7◦)√

3
≈ 0.5.

If the diametral circle is used instead, the minimum shape quality is about 0.4. Only those

triangles which satisfy both size and shape constraints are considered as good quality elements.

The process of inserting vertices into an initial constrained Delaunay triangulation to im-

prove the mesh quality is called mesh refinement. In GRUMMP, all bad triangles in the mesh

are queued initially. The triangle with the worst quality comes at the top of the queue. The

insertion procedure grabs the top triangle in the queue and calculates the circumcenter of that

bad triangle as the location for a new vertex to insert. If the newly inserted vertex encroaches

boundaries, the vertex is rejected and instead, the encroached boundary edge is divided in half,

as shown in Fig. 2.6. If not, we use Watson’s method [31] to insert the vertex into the mesh.

All triangles whose circumcircles contain that newly inserted vertex are deleted, leaving a hull

with that new vertex in it. Connecting faces of the hull with the newly inserted vertex forms

several new triangles. New triangles with bad quality need to be queued for later splitting while

good ones do not. The refinement procedure terminates when the queue is empty. Fig. 2.7 illus-

trates Watson insertion when a new vertex does not encroach boundaries. The gray triangle in

Fig. 2.7a is the bad one to be refined, whose circumcenter is marked as red. The triangles with

bold lines are those whose circumcircles contain that red vertex. The hull and the triangulation

after Watson insertion are shown in Fig. 2.7b and Fig. 2.7c.

The priority queue often plays an important role in the mesh quality. In GRUMMP, badly

13



2.1. Delaunay mesh refinement

(a) The newly inserted vertex encroaches the bound-
ary (bold line)

(b) The boundary is split in half

Figure 2.6: Boundary Encroachment

(a) The circumcenter of the bad tri-
angle is calculated

(b) Deleting the triangles leaving the
hull

(c) New triangles generated

Figure 2.7: Watson Insertion
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2.1. Delaunay mesh refinement

Algorithm 2.1 Initial Queuing algorithm
i = 0
while i <number of triangles in the mesh do

if Triangle Ti is still in the mesh and fails quality test then
Input Ti with priority from quality test into the queue

end if
i = i+1

end while

Algorithm 2.2 Quality Test
Calculate the circumradius R
Calculate the average length scale l̄ of three vertices in T
Find the shortest edge length lmin
if R > l̄ then

Quality =−R
l̄

else
Quality = lmin√

3R
if Quality > WorstShapeAllowable then

Quality = NeverQueue
end if

end if

sized elements, the ones with the large circumradius to averaged length scale ratio, come before

badly shaped elements, largest first. If triangles satisfy the size constraint, the shape quality

is considered. The triangle with the smallest shape quality comes at the top of the queue.

Algorithm 2.1 and Algorithm 2.2 illustrate how we deal with the priority queue in GRUMMP.

Triangles with “NeverQueue” quality will not added to the queue. Other details such as how

to handle small angles in the domain can be found in Reference [4]. The flow chart for this

scheme is shown in Fig. 2.8.
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Constrained Delaunay 
triangulation with well 

represented boundaries 

 

 Queue all cells 

 
Pick the first cell in the 

queue 

 

Does the 
circumcenter 

encroach 
boundaries? 

Split the boundary and 
connect new triangles 

Watson insertion 

Queue new triangles 

Empty queue? 

The End 

Yes No 

Yes 

No 

Figure 2.8: Flow chart for refinement algorithm
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2.1. Delaunay mesh refinement

Mesh generation for domains whose boundaries are straight lines is straightforward. Bound-

aries can be simply split into edges with the user-controlled size. The constrained Delaunay

triangulation with the boundary discretized serves as the starting triangulation of the refine-

ment algorithm discussed before. However, the discretization of curved boundaries is more

challenging. As illustrated in Fig. 2.9, for high curvature curves, they should be discretized

into more edges locally to capture local curvature features. However, the fine discretization is

not required for the low curvature parts on curves. The algorithm for discretizing both parts in

different ways automatically is not straightforward. In GRUMMP, the technique is based on a

total variation of tangent angles (TVT). The details can be found in Reference [4]. The TVT

boundary discretization scheme starts with a very coarse discretization. Fig. 2.10 shows the

starting boundary edges in blue lines while the actual geometry curve is marked as red. After

queueing all the starting boundary edges, pick the first one in the queue and split it if the edge

length is larger than the local length scale. If the local curvature is small, the edge is split at the

geometric average location. Otherwise the split location is calculated based on TVT so that the

change in normal direction is divided equally between the two new segments. The length scale

for a point p on a curved boundary is calculated by Eqn. 2.1, where local feature size should

be modified with curvature,

lfsc(p) = min(ρ(p), lfs(p)).

ρ denotes to the radius of curvature. The boundary discretization based on this approach is

shown in Fig. 2.11. The TVT split scheme successfully uses more edges around the leading

edge to capture high curvature curve. The local feature size at the trailing edge is large in the

starting triangulation. Therefore there is not much for the TVT split scheme to do. The very

coarse discretization around the trailing edge is not good news because it may fail to capture

rapidly changing solution features. This can be fixed by manually setting a small length scale

at the trailing edge but there is still a problem. Usually, the curvature is nearly constant around

the trailing edge so boundary edges are simply split in half. In this scheme, there are some

transition areas where the length of one edge is twice as large as the adjacent one. This makes
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2.1. Delaunay mesh refinement

Figure 2.9: Boundary discretization

Figure 2.10: Constrained Delaunay trianglulation before boundary recovery
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2.1. Delaunay mesh refinement

Figure 2.11: Boundary discretization based on TVT split

it difficult to generate equilateral triangles.

The improved boundary discretization algorithm is introduced to deal with trailing edges

of airfoils [40]. The new scheme starts at end point of an airfoil, which is usually the trailing

edge. Given a parametric curve, C(t), the length at parameter t is marked as `(t). We denote

total curve length as ¯̀. The average length scale is easily calculated as

LS(t) =
¯̀

Rb
,

where Rb is the refinement parameter to decide how fine the boundary would be discretized.

Approximately, it denotes the number of edges along the curve. Boundary grading parameter

Gb is also needed to determine the boundary edge length growth rate. Gb is the ratio of the

largest boundary edge length to the smallest one. A large value of Gb results in a small length

scale at trailing edge. Based on the average length scale, we would expect length scales are

smaller near end points or parts with high curvature. For airfoils, these would be trailing edges

and leading edges. Within a certain fraction (In this study, α = 0.25) of total length distance to
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2.2. Post-processing

end points, which denotes the region of trailing edges,

min(`(t), ¯̀− `(t))< `end = α ¯̀ α ∈ (0,0.5),

smaller length scales are applied,

LS(t) =
1
2

( ¯̀

Rb
− 1

Gb

¯̀

Rb

)(
sin
(

π
`(t)
`end
−π/2

)
+1
)
+

1
Gb

¯̀

Rb
.

This also makes the edge length growth near the trailing edge more smooth to fix the problem

that one edge length is twice large as the adjacent one in the previous scheme. Near the leading

edge, if ρ(t)< ¯̀
Rb

, it is regarded as a high curvature area. The smaller length scale for this area

is

LS(t) = max
(

ρ(t),
¯̀

Rb

1
Gb

)
.

Instead of dividing current edges recursively as used in the TVT boundary discretization scheme,

the new algorithm discretizes the boundary by marching from one end to another. The starting

parameter is 0. Insert the point P1 with a distance LS(0) = ¯̀/(Rb ·Gb) from the end point P0

on a curve. The parameter t1 of this distance is obtained from the parametric curve. Point P2 is

inserted with a distance LS(t1) from P1. The first two insertions are shown in Fig. 2.12. Keep

inserting points until the point to be inserted is too close to the other end point. In my study,

distance less than 0.5LS(tmax) is regarded as the termination of the insertion. Fig. 2.13 shows a

smooth boundary discretization with this new scheme. Both the leading edge and trailing edge

are treated properly.

2.2 Post-processing

After the refinement, when all triangles have good shapes and sizes, post-processing procedures

such as swapping and smoothing are applied to improve mesh quality.

20



2.2. Post-processing

Figure 2.12: New boundary discretization (after second insertion)

Figure 2.13: New boundary discretization
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2.2. Post-processing

Figure 2.14: Uniform-degree edge swapping

Algorithm 2.3 Uniform degree swapping
1: Queue all faces
2: while The queue is not empty do
3: Grab the first face in the queue and its two adjacent triangles
4: Find degrees of four vertices and calculate their variance from six
5: Calculate the variance after swapping
6: Remove the face from the queue
7: if The variance after swapping is smaller then
8: Do swapping
9: Add the new diagonal to the queue

10: end if
11: end while

2.2.1 Swapping

In the triangular mesh, two adjacent triangles have four different vertices. If they form a convex

quadrilateral, there are two possible configurations. Based on a certain criterion, if the other

configuration is better than the current one, it can be easily acquired by changing the diagonal.

A regular mesh consists of equilateral triangles, where all vertices have six incident cells.

Therefore in this study, we use uniform-degree edge swapping where the degree of a vertex

is the number of incident cells as shown in Fig. 2.14. The total variance of degree for six is

used as the criterion. The optimal variance is zero when all four vertices have six neighbours.

The pseudo code for uniform degree swapping is shown in Algorithm 2.3. In Fig. 2.14, the

variance before swapping is 4. After the swapping, all vertex degrees are six and the variance

is 0, which is smaller than before swapping. Therefore the swap is performed.
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2.2. Post-processing

2.2.2 Smoothing

A number of smoothing methods have been used to improve mesh quality. These approaches

can be classified as local and global smoothing techniques. A local method adjusts the geomet-

ric location of one vertex at a time to achieve the optimal shape quality in a neighborhood. The

overall mesh quality improves by applying the local smoothing for every adjustable vertex in

the mesh. It is efficient if each local adjustment is inexpensive. The global smoothing method

adjusts all vertex locations in the same time. It needs to solve an optimization problem as large

as the number of vertices in a mesh, which is computationally expensive.

One of the commonly-used local smoothing techniques is Laplacian smoothing [11]. It

relocates the free vertex to the arithmetic mean location of its incident vertices,

xfree =
∑

i=N
i=0 xi

N
yfree =

∑
i=N
i=0 yi

N
.

N refers to the number of incident vertices to the free vertex and x, y are the spatial coordinates.

This method is computationally inexpensive, but it does not guarantee any improvement in the

element quality. Actually, it is possible to produce inverted elements which have negative

volume.

In GRUMMP, we use the optimization-based local smoothing technique proposed by Fre-

itag et al. [12]. Optimization techniques use functions and their gradients to find the position

where the functions obtain optimal values. Only a brief review of this method is shown here

and the details can be found in Reference [13, 14]. To get a regular triangular mesh, we con-

sider the optimal location for a free vertex to be where the minimum sine value is maximized.

The challenge is that the function to be optimized as shown in Fig. 2.15,

φ(x,y) = min
i∈S

fi(x,y) = min
i∈S

sin(θi(x,y)),

is only piecewise smooth and therefore is not differentiable everywhere. In this case, a simple
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Figure 2.15: The minimum sine value φ(x,y)

Figure 2.16: Contours of φ(x,y)
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2.3. Finite-volume solver

(a) Starting location (b) Two angles in the active set

Figure 2.17: The active set

regular hexagon topology as shown in Fig. 2.16 is used to facilitate the illustration. We denote

the active set A as the set of minimum angles when the point is located at (x,y). For example,

in Fig. 2.17a, only one angle is in the active set, in other words, there is only one angle has

the smallest sine value in this case. The first search step attempts to find the location where

more than one angles are in the active set as shown in Fig. 2.17b. For this simple case, the two

active angles set the trajectory straight up. The next step stops where the active set changes.

The approximate route is shown in Fig. 2.16.

2.3 Finite-volume solver

The finite-volume solver starts with the conservative form of the governing equations, which

can be cast into a generic form [2]

∂U
∂ t

+∇ ·F = S (2.3)

where U denotes the solution vector, F the flux vector, and S the source term.

Integrating Eqn. 2.3 over an arbitrary control volume (CV) i and applying Gauss’s theorem,

we obtain ¨
CVi

∂U
∂ t

dA+

˛
∂CVi

F · n̂ds =
¨

CVi

SdA. (2.4)
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2.3. Finite-volume solver

Assuming the discretized physical domain to be constant, Eqn. 2.4 can be further simplified as

dU i

dt
+

1
Ai

˛
∂CVi

F · n̂ds =
1
Ai

¨
CVi

SdA (2.5)

where Ai denotes the area of the control volume, U i =
1
Ai

˜
CVi

UdA the control volume average,

and n̂ the outward unit normal vector.

The general finite-volume numerical method can be summarized in the following stages [21]:

1. Approximate U(x,y,z) in each control volume with a polynomial U i(x,y,z)=Ui+
∂U i
∂x (x−

xi)+
∂U i
∂y (y− yi)+

∂U i
∂ z (z− zi)+ · · · . Given the value of U i for each control volume, per-

form solution reconstruction to obtain the polynomial coefficients (Ui,∂U i
∂x , ∂U i

∂y , ∂U i
∂ z , · · · ).

Using this polynomial approximation of U , find U at the control volume boundary, and

evaluate flux F at the boundary.

2. Since there is a distinct approximation in each control volume, two distinct values of

the flux are generally obtained at the boundary between two control volumes. Apply

some strategy for resolving the discontinuity in the flux at the control volume boundary

to produce a single value of the flux.

3. Integrate the flux along the control volume boundary.

4. Advance the solution in time to obtain new values of U .

In this section, the solution reconstruction is further discussed. The details of other algorithms

such as flux evaluation and flux integration can be found in Reference [2, 29].

A two-dimensional solution reconstruction is used as an illustration. The reconstructed

solution Ũi(x,y) is obtained by a Taylor expansion

Ũi(x,y) =U |i +
∂U
∂x

∣∣∣∣
i
(x− xi)+

∂U
∂y

∣∣∣∣
i
(y− yi)

+
∂ 2U
∂x2

∣∣∣∣
i

(x− xi)
2

2
+

∂ 2U
∂x∂y

∣∣∣∣
i
(x− xi)(y− yi)+

∂ 2U
∂y2

∣∣∣∣
i

(y− yi)
2

2
+ · · · (2.6)
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2.3. Finite-volume solver

where xi and yi denote the locations of the reference point of the control volume i.

Conservation of the mean within the control volume i requires that

Ui =

¨
CVi

Ũi(x,y)dA. (2.7)

Substituting Eqn. 2.6 into Eqn. 2.7, we get that

U i =U |i +
∂U
∂x

∣∣∣∣
i
xi +

∂U
∂y

∣∣∣∣
i
yi +

∂ 2U
∂x2

∣∣∣∣
i

x2i

2
+

∂ 2U
∂x∂y

∣∣∣∣
i
xy+

∂ 2U
∂y2

∣∣∣∣
i

y2
i

2
+ · · · (2.8)

where the geometric moments are represented as

xmyn
i =

1
Ai

¨
Vi

(x− xi)
m(y− yi)

ndA (2.9)

Accuracy of the reconstruction is determined by the number of derivatives evaluated in the

polynomial. To make it k-exact, or (k+ 1)-order accurate, the polynomial has to be degree k.

For instance, a second-order accurate reconstruction,

Ũi(x,y) =U |i +
∂U
∂x

∣∣∣∣
i
(x− xi)+

∂U
∂y

∣∣∣∣
i
(y− yi)+O(∆x2,∆y2),

requires U |i, ∂U
∂x

∣∣∣
i
, and ∂U

∂y

∣∣∣
i

to be evaluated.

To compute these derivatives, we seek to minimize the error in predicting the mean value

of the function for neighbouring control volumes. The mean value for the control volume CVj

is,

1
A j

¨
CV j

ŨidA = U |i +
∂U
∂x

∣∣∣∣
i

1
A j

ˆ
CV j

(x − xi)dA +
∂U
∂y

∣∣∣∣
i

1
A j

ˆ
CV j

(y − yi)dA + · · · . (2.10)

To avoid computing moments of each control volume, we replace x− xi with x− x j + x j− xi
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Figure 2.18: Neighboring CV stencil

and y− yi with y− y j + y j− yi. Eqn. 2.10 can be represented as

1
A j

¨
CV j

ŨidA =U |i +
∂U
∂x

∣∣∣∣
i
x̂i j +

∂U
∂y

∣∣∣∣
i
ŷi j + · · · (2.11)

with

x̂myni j =
1
A j

¨
CV j

((x− x j)+(x j− xi))
m · ((y− y j)+(y j− yi))

ndA

=
n

∑
l=0

m

∑
k=0

n!
l!(n− l)!

m!
k!(m− k)!

(x j− xi)
k · (y j− yi)

l · xm−kyn−l
j

The minimum number of neighbouring control volumes in the stencil is equal to the number

of derivatives to be evaluated. In practice, we choose three neighbors for the second-order

accuracy and nine for the third-order, as shown in Fig. 2.18. The least-squares system for
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2.3. Finite-volume solver

evaluating derivatives is,



1 x̄i ȳi x2i xyi y2
i · · ·

wi1 wi1x̂i1 wi1ŷi1 wi1x̂2i1 wi1x̂yi1 wi1ŷ2
i1 · · ·

wi2 wi2x̂i2 wi2ŷi2 wi2x̂2i2 wi2x̂yi2 wi2ŷ2
i2 · · ·

wi3 wi3x̂i3 wi3ŷi3 wi3x̂2i3 wi3x̂yi3 wi3ŷ2
i3 · · ·

...
...

...
...

...
... . . .

wiN wiN x̂iN wiN ŷiN wiN x̂2iN wiN x̂yiN wiN ŷ2
iN · · ·





U

∂U
∂x

∂U
∂y

∂ 2U
2∂x2

∂ 2U
∂x∂y

∂ 2U
2∂y2

...


i

=



Ūi

wi1Ū1

wi2Ū2

wi2Ū2

...

wiNŪN



where geometric weights wi j are used to specify the relative importance of good prediction for

neighboring control volumes. The weights are based on the distance between control volume

reference points, wi j =
1

|xi−x j| . The first row of this least-squares system is the mean con-

straint as in Eqn. 2.8. It is eliminated by Gaussian elimination resulting in an unconstrained

least-squares system which is then solved for every control volume using the Singular-Value-

Decomposition (SVD) method. After the derivatives are evaluated, the flux evaluation and

integral [29, 36] are performed.
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Chapter 3

Frontal-Delaunay triangulation

The regularity of the mesh obtained from the Delaunay triangulation is not satisfying enough.

Even with the help of swapping and smoothing, there are still lots of triangles that are far from

equilateral in the mesh, as shown in Fig. 3.1.

Another competing two-dimensional unstructured mesh generation scheme, the advancing-

front method, begins with a discretization of boundaries. The boundary edges form the initial

front. A particular edge from the front is selected as the base edge, and a new triangle is created

with this base edge and a newly created vertex or an existing vertex. The new vertex is inserted

to make an optimal triangle. After insertion, the base edge is removed from the front since it

is obscured by the new triangle, and the newly generated edges are either added to or removed

from the front based on their visibility. This procedure terminates when the front is closed.

Fig. 3.2 gives a simple illustration of the advancing-front scheme. The front is marked by the

solid lines in the figures. As shown in Fig. 3.2a, the first triangle is generated. Two newly

generated edges are added to the front while the boundary edge on that triangle is removed

from the front because it is no longer visible for other edges in the front. Fig. 3.2b shows the

first case when the insertion is not valid. The optimal triangle to be generated is marked as

red but the new edges are intersected with the existing ones. Therefore the scheme connects

the red edge in Fig. 3.2a with the nearby existing vertex, resulting in the blue triangle. With

the insertion continuing, the optimal triangle may require insertion of a vertex too close to an

existing vertex as shown in Fig. 3.2c. If the optimal triangle is generated nevertheless, a very

short edge will be the side-effect. Therefore, the nearby existing vertex rather than the optimal

vertex is connected with the base edge, forming the blue triangle in Fig. 3.2d. The advancing-
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Chapter 3. Frontal-Delaunay triangulation

Figure 3.1: Delaunay triangulation

front scheme terminates when the front is empty. Fig. 3.2e shows what the front (solid lines)

looks like after the final insertion. If we choose any edge from the front, the new optimal

triangle will either intersect with or be too close to the existing triangles. Therefore, the blue

edge in Fig. 3.2f is applied to close the front.

Frontal-Delaunay algorithms [31, 24, 25] are the hybridization of Delaunay-refinement and

advancing-front techniques, in which the Delaunay triangulation is used to define the topol-

ogy of a mesh while new points are inserted in a manner consistent with the advancing-front

method. Engwirda’s frontal-Delaunay method [10, 9] is applied in this study because it im-

proves the mesh quality compared to the Delaunay triangulation, as shown in Fig. 3.3.

Engwirda’s frontal-Delaunay method is similar in execution to the classic Delaunay re-

finement algorithm, but uses different queuing and point placement strategies. The priority

queue for bad triangles is sorted by radius-edge ratio, the shape quality (Eqn. 2.2) introduced

in Delaunay-refinement triangulation. Only bad triangles whose shortest edges are smaller

than 1.5 times the local feature sizes are added to the queue. This constraint ensures refine-
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Chapter 3. Frontal-Delaunay triangulation

(a) After the first insertion (b) Rejection due to intersections

(c) Rejection due to being too close to existing
vertex

(d) Connecting existing vertex

(e) The front after the last insertion (f) Final mesh

Figure 3.2: Advancing-front illustration
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Chapter 3. Frontal-Delaunay triangulation

Figure 3.3: Engwirda’s frontal-Delaunay triangulation

ment occurs in a frontal fashion, because the triangle to be refined is guaranteed to be adjacent

to a boundary or to a triangle that meets the quality criterion. Two new types of vertices to be

inserted are used by Engwirda: the shape-optimal vertex and the size-optimal vertex. Both are

off-centers proposed by Üngor [35], which are located on the Voronoi diagram of the corre-

sponding Delaunay triangulation.

The shape-optimal vertex c′, as shown in Fig. 3.4, is placed so that 4ABc′ is the largest

isosceles triangle that satisfies the bound on the minimum allowable angle αmin. c denotes the

circumcenter and the gray line denotes the Voronoi edge associated with the base edge (the

shortest edge of the bad triangle). The altitude of the new vertex to the base edge is calculated

as

h′ =
||emin||

2
1

tan(αmin/2)
,

where ||emin|| denotes the minimum edge length. By positioning the new vertex at c′, the newly

generated triangle just satisfies the minimum shape constraint.

The size-optimal vertex c′′ generates a triangle satisfying the local size constraint. The
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Chapter 3. Frontal-Delaunay triangulation

Figure 3.4: shape-optimal vertex

Figure 3.5: Size-optimal vertex

queuing algorithm of Engwirda’s frontal-Delaunay scheme guarantees that only the triangles

with their shortest edges satisfying size constraints are considered. Therefore, when calculating

the position of c′′, only the two newly created edges need to be compared with the local feature

sizes. An iterative bisection method is used to find the position of the new vertex. Take edge e1

in Fig. 3.5 as an example. Pick the circumcenter and the middle point of the base edge as the

starting points c0, c1. Then calculate the local length scales of these starting points by Eqn. 2.1.

Define

Si = ||e1||−
1
2
(lfs(v1)− lfs(ci)).
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v1

v2

cemin c''
c'

Figure 3.6: Choosing between the three kinds of vertices

If S0 and S1 have the same sign, the size-optimal point is farther than the circumcenter, and

its location is irrelevant as we will see. Otherwise choose the middle point of edge c0c1 as

c2. Determine S2 and choose the interval [c0,c2] or [c2,c1] so that there is a zero inside the

interval. Iterate this procedure until Sn < 10−4||emin||. Next, repeat this algorithm for the edge

e2. Choose the point closer to the base edge between this two vertices as the size-optimal vertex

c′′. All three edges in the newly generated triangle4v1v2c′′ will satisfy the size constraint.

Overall, we compare three candidate vertices: the circumcenter c, the shape-optimal vertex

c′, and the size-optimal vertex c′′. Each of them will form a new triangle with the same shortest

edge emin as the bad triangle. Of c, c′, and c′′, the one closest to the shortest edge is chosen

for insertion. Fig. 3.6 shows an example of which vertex should be inserted. In this case, size-

optimal vertex c′′ is closer to the shortest edge than shape-optimal c′. Therefore, by choosing

c′′ as the off-center, both the shape and size constraints are satisfied. Since the off-center has

to be on the Voronoi edge, the circumcenter is chosen if it is closer to the base edge than the

off-center. Otherwise, one of the off-centers is chosen, which is the case in Fig. 3.6.
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Chapter 3. Frontal-Delaunay triangulation

With the Steiner vertex calculation method in mind, the basic algorithm of Engwirda’s

frontal-Delaunay method is shown in Algorithm 3.1. Rejection for a vertex too close to exist-

ing ones in original advancing-front scheme is not required here. A proper quality bound is

sufficient to deal with this problem. In this techniques, if an unwanted small triangle is gen-

erated, it will be regared as good sized triangle as in Algorithm 3.3. It will not be added to

the queue. Even if it is a badly shaped triangle, usually the next splitting will make it pass the

quality test with the help of a carefully chosen Steiner vertex. Therefore a vertex inserted close

to existing ones is permitted and will not blow up the algorithm globally.

Algorithm 3.1 Engwirda’s frontal-Delaunay scheme
1: Starting with a constrained Delaunay triangulation
2: for Every triangle in the mesh do
3: Queue triangle
4: end for
5: while The queue is not empty do
6: Take the top triangle in the queue
7: if Triangle is not in the mesh then
8: Continue
9: else

10: Calculate the location of the new vertex
11: Use Watson insertion to insert the new vertex
12: Queue the newly generated triangles
13: end if
14: end while

Algorithm 3.2 Engwirda’s frontal-Delaunay Queuing scheme
1: procedure QUEUE(Triangle)
2: if QualityTest(Triangle) == BAD then
3: Find the minimum edge length of that triangle
4: if Minimum edge length < 1.5× local feature size then
5: Calculate the normalized shape quality
6: Add the triangle into the queue with shape quality as priority
7: end if
8: end if
9: end procedure

A simple example is used to illustrate the procedure of Engwirda’s frontal-Delaunay method.

The geometry is a 20×20 square, we set the local feature size to 5 everywhere at the begining.
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Algorithm 3.3 Quality Test
1: procedure QUALITY TEST(Triangle)
2: if Average length of three edges on that triangle > 1.5× local feature size then
3: BadSizeTriangle
4: else
5: GoodSizeTriangle
6: end if
7: if Shape quality of the triangle < minimum allowable value then
8: BadShapeTriangle
9: else

10: GoodShapeTriangle
11: end if
12: if BadSizeTriangle or BadShapeTriangle then
13: return BAD
14: else
15: return GOOD
16: end if
17: end procedure

The minimum angle allowed in the mesh is 33◦. Therefore, in this mesh, any triangle with

minimum angle smaller than 33◦ or average edge length greater than 7.5 would be regarded

as a bad triangle. Also, only the triangles whose minimum edge lengths are smaller than 7.5

are allowed to be added to the queue. To simplify the illustration, the size-optimal vertex is

always chosen as the insertion point, which means the newly generated triangles are equilateral

triangles. The refinement scheme starts with a constrained Delaunay triangulation as shown in

Fig. 2.10. All the boundary edge lengths are 5. Several triangles in the mesh are colored red

or blue. Red triangles denote that they are badly shaped triangles while blue triangles denote

they are badly sized triangles. At this stage, only the red triangles are added into the queue

because the minimum edge lengths of the blue triangles are too large to be queued. All the red

triangles have the same shape quality. They are all on the top of the queue. In the next step, any

triangle could be the one to be refined. In Fig. 3.7b, the hatched triangle is the newly generated

one. Watson insertion is applied. After connecting the new vertex to all the edges on the empty

hull, several new triangles are generated. Only triangles in the updated queue are shown in the

figure. Darker red indicates it has worse shape quality, therefore it has higher priority to be
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Chapter 3. Frontal-Delaunay triangulation

refined. After several insertion, we come to a stage where there are only a few triangles in the

queue, as shown in Fig. 3.7c. After the last insertion, as shown in Fig. 3.7d, all the triangles

in the mesh satisfy both the size constraint and shape constraint. The queue is empty and the

scheme terminates. There are still several triangles that are far from equilateral. Increasing the

quality bound will help (Fig, 3.7e). However, it comes with the risk of generating unnecessary

small cells or even termination problems, as shown in Fig, 3.7f.

38



Chapter 3. Frontal-Delaunay triangulation

(a) Constrained Delaunay triangulation (b) After the first insertion

(c) The mesh just before final insertion (d) Final mesh

(e) Increase the quality bound (f) Generating unnecessary small triangles

Figure 3.7: Illustration of Engwirda’s frontal-Delauany method
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Advancing-front local reconnection

method

Marcum’s advancing-front local reconnection (AFLR) method is also proven to generate high

quality meshes [22]. In this chapter, a similar annulus domain as the one in Marcum’s paper

is used as an example to illustrate this AFLR scheme. The inner circle is radius 1 while the

outer circle is radius 4. The circles are divided into 16 edges, as shown in Fig. 4.1a. First, the

local feature sizes (lfs) are calculated. To simplify the illustration, all the vertices on the inner

circle have the same lfs 2π/16≈ 0.4. The lfs on the outer circle is 8π/16≈ 1.6. The gradient

parameter g is set to 2.5 to make the lfs equation (Eqn. 2.1) valid. Set the center of both circles

at (0,0), then the lfs in this domain can be simplified as

lfs(r,θ) = 0.4+ r−1
2.5 , 1≤ r ≤ 4 .

In Marcum’s scheme, the active/off flags are applied to all the triangles to indicate whether

they are good or bad in a size criterion. If the length of each edge on a triangle is less than the

1.5 times average length scale of the two end vertices of that edge, the triangle is regarded as

good triangle and applied the off flag. The off flag means that this triangle is turned off and

currently not to be refined. Otherwise, the active flag is applied. As shown in Fig, 4.1a, all

the boundary edges are exactly equal to the average length scales. As for the edges connecting

two boundaries, the allowable lengths are 1.5× (1.6+0.4)
2 = 1.5. Since the radius difference

of the two circles is 3, all these edges fail the size quality test. Therefore all the triangles in

constrained Delaunay triangulation are marked as active. The insertion points are calculated
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Chapter 4. Advancing-front local reconnection method

(a) Starting constrained Delaunay triangulation (b) The points to be inserted

(c) Remove all triangles and reconnect (d) After local reconnection

(e) Insertion vertices (f) Final mesh

Figure 4.1: Marcum’s original scheme
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Chapter 4. Advancing-front local reconnection method

for all the active triangles. In this scheme, the new point will form a equilateral triangle with

the shortest edge of the active triangle. In Fig. 4.1b, all the new vertices are shown in blue

dots. Then, the triangles who contains the new vertices need to be removed and reconnected

with the new vertices, which means every triangle for this case. Fig. 4.1c shows the mesh after

the first insertion. A local reconnection scheme is applied to maximize the minimum angles in

the mesh, as shown in Fig. 4.1d. The active/off flags are applied to the new triangles. All the

active triangles are shadowed in Fig. 4.1d. All the vertices to be inserted are calculated once

again. In Fig. 4.1e, the green dots are generated from edges closer to the center while red dots

are from the outer circle. Some of these are too close to each other. Therefore, a rejection test

is applied. In Marcum’s scheme, if the distance between two vertices is smaller than 0.7 times

the larger lfs between the two, the vertex with larger lfs is rejected. In Fig. 4.1e, all the green

vertices are rejected from the mesh. After the local reconnection, the final mesh is shown in

Fig. 4.1f.

Because of the difficulty of implementing Marcum’s method into GRUMMP’s framework,

a few necessary modifications are made. It gives comparable results as Marcum’s algorithm,

as shown in Fig. 4.2 . Instead of only considering the size constraint in Marcum’s scheme, I

also take the shape quality (Eqn. 2.2) into consideration. A triangle is set to be off, or in other

words, marked as a good triangle only if it satisfies both constraints. To be consistent with the

previous two algorithms, the modified algorithm still uses Watson’s insertion to improve the

local topology. The front and active/off flags, or quality tests, are updated after each insertion,

rather than updating after all the points are inserted into the active elements as introduced in

Marcum’s scheme. A new denotation, layer index, is introduced to make sure the refinement is

marching layer-wise as in Marcum’s method. The layer index indicates which layer the edge is

on. Starting with the constrained Delaunay mesh, the inner boundary edges are marked as layer

index 0 and all other edges are marked as layer index ∞, as shown in Fig. 4.3a. When using

Watson insertion, an empty hull (Fig. 4.3b) is obtained. The minimum layer index is found

among all the edges on the hull. In this circumstance, it is 0. After the insertion, the layer
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Chapter 4. Advancing-front local reconnection method

Figure 4.2: AFLR mesh

index of all newly created edges is the minimum layer index +1. As shown in Fig. 4.3c, the

newly inserted edges are all marked as layer index 1. The local reconnection is omitted in our

method because we are using Watson’s insertion, which guarantees a local max-min (maximize

the minimum angles) criterion. The elements in the queue are edges instead of triangles as in

the other schemes. The queue priority scheme will be discussed later.

Another big difference from Marcum’s scheme is the calculator for vertices to be inserted.

In Fig. 4.4, c, c′, and c′′ are the circumcentre, the shape-optimal vertex and the size-optimal

Layer Index

0

(a) Layer index before the inser-
tion

Layer Index

0

(b) Empty hull

Layer Index

0
1

(c) Layer index after the insertion

Figure 4.3: Layer index

43



Chapter 4. Advancing-front local reconnection method

v1

v2

cemin c''
c'

ce

Figure 4.4: Four potential vertices

vertex respectively, as discussed in Chapter 3. ce denotes the vertex generating an equilateral

triangle with shortest edge emin. The vertex nearest to emin among the four vertices is chosen

for insertion.

The brief procedure of the modified AFLR scheme is illustrated by the same annulus ex-

ample. In this case, the inner circle is set as layer index 0 at the beginning. Other edges in the

mesh are set as layer index ∞. The triangles in Fig. 4.5 are colored by the layer index. Since

the layer index is only applied to edges, the cell layer index is introduced as:

Cell Layer Index =
3

max
i=1

(LayerIndex(ei))+0.1×
3

min
i=1

(LayerIndex(ei)) . (4.1)

This is shown in Fig. 4.5b. After the first insertion, the newly generated triangle has two new

edges with layer index 1 and a layer index 0 boundary edge. Therefore, its cell layer index is

1+0.1×0 = 1.

The general procedure is outlined as follows:
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(a) Constrained Delaunay triangulation (b) The first insertion

(c) First layer finished (d) Final mesh

Figure 4.5: Illustration of modified AFLR scheme
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1. Start with the constrained Delaunay triangulation (Fig. 4.5a).

2. Initialize the data structure. For each triangle, if its each edge length is smaller than 1.5

times the averaged lengthscale and its radius-edge ratio is larger than the threshold value,

this triangle is treated as a good triangle. Otherwise, it is treated as bad.

Example In the annulus case, all the triangles are bad. In Fig. 4.5a, the blue triangles

have minimum angles less than 29◦, which is the threshold value in this case. Be-

sides that, all the triangles fail the size constraint test as discussed in Marcum’s

original scheme.

3. Queue boundary edges with bad adjacent triangles and interior edges which have a good

adjacent cell on one side and a bad adjacent cell on the other side.

Example In Fig. 4.5a, only the boundary edges are queued because they all have bad

adjacent triangles. All the interior edges are shared by bad triangles, therefore they

are not queued. In Fig. 4.5b, after the first insertion, a good triangle is generated.

The boundary edge on it is removed from the queue. Then the two newly generated

interior edges are queued because now they have a good triangle on one side and a

bad one on the other side.

4. The queue priority is calculated by the sum of layer index, edge length, and shape quality

of the adjacent bad triangle. The smaller the sum is, the higher priority the edge has.

Example

Priority = Layer Index+ ||e||+ ||emin||√
3r

r denotes the circumradius of the adjacent bad triangle. The layer index is an in-

teger ranging in [0,∞]. The shape quality ||emin||√
3r

ranges in [0,1] and ||e|| is usually

much smaller than 1 (not in this example). The layer index is dominant in priority.

Therefore when comparing two similar edges, the one with a lower layer index has
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Chapter 4. Advancing-front local reconnection method

a higher priority. This ensures the scheme works in a layer-wise marching pattern.

When the layer index is the same, the shape quality is dominant. This means that

when comparing two edges on the same layer, the one adjacent to a worse triangle

has a higher priority, which is consistent to Engwirda’s frontal-Delaunay scheme

that the worst shaped triangle is refined first. If these two values are exactly the

same, the shorter edge jumps ahead. The small edge or triangle may locate in the

area of interest, where we want regular triangles.

5. Choose the first edge from the queue and find the bad triangle adjacent to it. Calculate

four kinds of points: the size-optimal vertex and shape-optimal vertex mentioned in the

previous algorithm, the point generating an exact equilateral triangle and the circumcen-

ter. Choose the point that is nearest to the base edge.

Example This is illustrated in Fig. 4.4.

6. Reject the candidate point if the insertion generates an edge shorter than 0.7 times the

base edge length.

Example This rejection is inherited from Marcum’s original scheme, preventing unnec-

essary small triangles being generated.

7. Use Watson insertion to insert the new point. The new edges created by the insertion are

added to the queue if they satisfy the criteria in step 3.

8. Remove the edge from the queue regardless of whether the point is rejected or accepted.

9. Repeat steps 5-8 until the queue is empty.

Example Take the same annulus case, thanks to the layer index dominant priority, all

the boundary edges on the inner circle has the highest priority. The first layer is

generated based on boundaries as shown in yellow segments in Fig. 4.5c. In this
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circumstance, these edges form a slightly larger circle, or front. They are queued

because sharing by good triangles and bad ones. Those edges between the inner

circle and these yellow fronts are removed from the queue because they have good

triangles on both sides. After layer-wise insertions, the scheme terminates under

conditions like those in Fig. 4.5d. All triangles in the mesh are good ones, which

also means all the edges are adjacent to good triangles. In other words, no more

edges are queued.
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Chapter 5

Numerical results

The mesh regularity, truncation error, discretization error, and time costs for several numerical

test cases are discussed in this chapter to answer the questions posed in Section 1.1.

5.1 Poisson equation on a square domain

5.1.1 Mesh regularity

Three different mesh refinement schemes are applied to a square domain, of which the edge

length is 1. Starting from the same constrained Delaunay triangulation, shown in Fig. 5.1a, the

three schemes generate different meshes. Delauany refinement, as shown in Fig. 5.1b, does

not generate any obvious chunks of equilateral triangles. In Fig. 5.1c, Engwirda’s algorithm

uses a different priority queue and different insertion points from Delaunay refinement. Only

the triangles whose shortest edges satisfy the local length scales can be added to the queue.

This ensures the newly created triangles are based on the existing good triangles. As shown

in Fig. 5.2, Engwirda’s scheme introduces a “snake” pattern. It turns into the area where the

worst triangles exist. It generates several large chunks of equilateral triangles in the middle.

However, badly shaped triangles emerge when the scheme tries to fill the gaps between these

chunks because they are not perfectly aligned. Marcum’s AFLR scheme refines the mesh in

a different way. It starts from the boundary and marches into the interior layer by layer. As

shown in Fig. 5.3, each layer consists of nearly equilateral triangles along the boundaries and

a few badly shaped ones at the corners. In the end, the mesh is almost perfect except the cross

shown in Fig. 5.1d.
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5.1. Poisson equation on a square domain

(a) Starting Delaunay Triangulation (b) Delaunay Refinement

(c) Engwirda frontal-Delaunay (d) Marcum’s AFLR

Figure 5.1: Meshes generated on a square domain
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5.1. Poisson equation on a square domain

(a) After 100 insertions (b) After 500 insertions

(c) After 1000 insertions (d) After 1500 insertions

Figure 5.2: The process of Engwirda’s scheme
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5.1. Poisson equation on a square domain

(a) After the first layer (b) After the fifth layer

Figure 5.3: The process of AFLR scheme

Delaunay refinement uses circumcenters as Steiner points. The badly sized triangles are

refined first. Inserting a circumcenter into a badly sized triangle does not guarantee the new

triangle satisfies the shape constraint. Therefore, a bad triangle may be refined several times to

satisfy the size and shape criterions. Because both the AFLR scheme and Engwirda’s frontal-

Delaunay scheme select Steiner points more cleverly, the newly created triangle will satisfy

the size and shape constraints. Generally speaking, the sizes of meshes obtained from AFLR

scheme and frontal-Delaunay scheme are smaller than those from Delaunay refinement under

the same constraints. They both improve the regularity of the meshes, but which scheme gen-

erates the most equilateral triangles for this case? As illustrated in Fig. 5.4, the AFLR mesh

has about 70 percent of all the angles between 55◦ and 65◦, while Engwirda’s frontal-Delaunay

mesh is only 5 percent behind. The traditional Delauany method generates the worst mesh for

this regularity comparison.

5.1.2 Truncation error and discretization error

The first test case for the relationship between errors and mesh regularity is solving the Poisson

equation,
∂ 2T
∂x2 +

∂ 2T
∂y2 = S, (5.1)
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Figure 5.4: Angle distribution for meshes on square domain

on a square domain. Substitute the manufactured solution shown in Fig. 5.5,

T = π
sin(πx)sin(πy)

8
,

into the Poisson equation 5.1, then the source term S can be obtained easily,

S =−π
3 sin(πx)sin(πy)

4
.

A second order finite-volume discretization and least-squares reconstruction are used[36,

15]. Setting the control volume averages of the manufactured solution as the initial condition,

the flux integral at the first step,

1
ACV

[
−
ˆ

CV
SdA+

˛
∂CV

(∇T ) ·~nds
]
,
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5.1. Poisson equation on a square domain

Figure 5.5: Sinusoidal manufactured solution of the Poisson equation

is the truncation error. The converged numerical solution is used to compute the discretization

error with the control volume averages of the manufactured solution. In Fig. 5.6, we can

observe that in the areas consisting of nearly equilateral triangles, the magnitudes of truncation

error and discretization error tend to be very near zero, relative to the error where the mesh is

less regular. Even in the Delaunay mesh, where most triangles are far from equilateral ones,

we can still find a few well shaped control volumes which have very small error magnitudes.

In the meshes obtained from Engwirda’s frontal-Delaunay and Marcum’s AFLR schemes, this

pattern is much more obvious. The areas marked as red in the left-most figures in Fig. 5.6

indicate chunks of nearly equilateral triangles. In the same areas, we can expect nearly zero

truncation errors. However, the discretization error seems more sensitive to the mesh regularity.

As we can see, nearly zero discretization error only occurs at the perfect equilateral triangles.

Therefore when we compare the L2 norm of the errors, shown in Fig. 5.7, a large decrease

in the magnitude of the truncation error can be found in more regular meshes, along with an

increase in the order of accuracy. For the discretization error, on the other hand, the order of

accuracy for all three kinds of meshes tends to be the same. A small magnitude decrease can

still be observed in the two more regular meshes.
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5.1. Poisson equation on a square domain

(a) Delaunay Mesh Regularity (b) Delaunay Truncation Error (c) Delaunay Discretization Error

(d) Frontal-Delaunay Mesh Regularity (e) Frontal-Delaunay Truncation Error (f) Frontal-Delaunay Discretization Error

(g) AFLR Mesh Regularity (h) AFLR Truncation Error (i) AFLR Discretization Error

Figure 5.6: Mesh regularity, truncation error, and discretization error (second order)
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(b) Discretization Error

Figure 5.7: Order of Accuracy for Second Order Discretization
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Figure 5.8: Order of Accuracy for the Fourth Order Discretization

The fourth order discretization scheme [17, 29] is employed to show whether high order

reconstruction and flux integral will affect the relationship between errors and the mesh regu-

larity. Fig. 5.8 shows the convergence when performing the fourth order discretization. For the

truncation error, the advantage of regular meshes for the order of accuracy disappears. They all

converge at 2.5th order. But a regular mesh still gives lower magnitude of the error. When it

comes to the discretization error, the AFLR mesh, which has most equilateral triangles, reduces

the error magnitude dramatically, and increases the order of accuracy. The size of Marcum’s

AFLR mesh can be 1/16 of the Delaunay mesh while the error magnitude is about the same.
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5.1. Poisson equation on a square domain

Method Number of Vertices in mesh Total Time(s) Time per insertion(s)
Delaunay 1915 0.957 4.997×10−4

Engwirda 1597 0.965 6.043×10−4

AFLR 1188 1.507 1.269×10−3

Table 5.1: Mesh Generation Time Cost

5.1.3 Time cost

The two mesh generation schemes which generate more regular meshes take more time for each

insertion because they calculate multiple possible Steiner points, and then reject some of them.

However, they may require fewer cells to fill up the domain than the Delaunay triangulation.

In Table 5.1, we see that Engwirda’s frontal-Delaunay mesh generation scheme only takes a

little longer than Delaunay triangulation in each insertion. With the help of fewer vertices in

the mesh, the time cost in mesh generation is nearly the same. Marcum’s AFLR scheme is the

best scheme in terms of regularity, but checking whether a candidate vertex is too close to the

existing ones takes a lot of time for each insertion. Even though it has the smallest mesh size,

the time cost for AFLR is around twice that of the other two schemes. The difference in the

time cost between the two new schemes and Delauany triangulation grows larger as the size of

mesh increases, as shown in Fig. 5.9.

Considering that the regularity of mesh can reduce the error magnitude, the two new

schemes have smaller time costs for a given error when combining both the mesh generation

cost and the solver cost together. Fig. 5.10 shows the combined time cost. For the second order

discretization, it is not worth waiting for the most regular AFLR mesh. In that case, Engwirda’s

frontal-Delaunay scheme is the optimal one, in that it reaches a certain error magnitude fastest.

For the fourth order discretization, the advantage of Marcum’s AFLR scheme is obvious. Even

though it takes much longer time in mesh generation, the smaller mesh size saves a lot of time

in the solver and produces much lower error for a given target edge length in the mesh. This

pays off the large difference in mesh generation time cost when the mesh gets larger. In prac-

tice, usually the mesh generation code is run once and the mesh can be solved several times. In
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5.1. Poisson equation on a square domain
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Figure 5.9: Mesh generation time on a square domain
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Figure 5.10: Time cost of the mesh generation and the solver
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5.2. Advection-diffusion equation in a channel

that case, the regular mesh is definitely worth waiting for.

5.2 Advection-diffusion equation in a channel

The second test case is solving the advection-diffusion equation in a channel.

5.2.1 Mesh regularity

The geometry is a rectangular channel with height H = 1 and length L = 3. As shown in

Fig. 5.11, similar results as meshes on a square domain can be observed. The mesh from

AFLR scheme has a strikingly large area of equilateral triangles. The only exceptions are the

inlet, outlet, and a few cells in the middle. In this case, only the upper and lower boundaries are

set to be layer index 0 at the beginning. The inlet and outlet have ∞ layer index. The refinement

is marched from upper and lower boundaries into the middle. Similar to the square case, the

right angles make this scheme fail to generate perfect layers. This is why the inlet and outlet

have bad cells adjacent to them. Engwirda’s frontal-Delaunay scheme does not improve the

triangles near the boundaries. However it has several large chunks of perfect triangles in the

interior domain. The Delaunay refinement still does not guarantee any equilateral triangles.

The angle distribution shown in Fig. 5.12 also confirms the mesh qualities are similar to the

previous square domain case.

The AFLR scheme has its limit. The finest mesh obtained from Marcum’s AFLR scheme

is discussed here to show where the AFLR scheme fails. The equilateral triangles layers have

the limit. In Fig. 5.13, the triangles are colored by the cell layer index (Eqn. 4.1). In this

figure, the maximum layer index is 59.3. There are about 50 layers in the mesh. The first

20 layers are almost perfect. However, at the transient layer where the perfect pattern breaks,

there are several triangles that barely passed the local quality test. They make the edge lengths

in the next layer vary a lot and result in the perfect layers terminating. If the minimum

angle allowed in the mesh is set higher than 28◦, the hatched triangle shown in Fig. 5.14a is
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5.2. Advection-diffusion equation in a channel

(a) Delaunay triangulation (1652 vertices)

(b) Engwirda’s frontal-Delaunay (1401 vertices)

(c) Marcum’s AFLR (1689 vertices)

Figure 5.11: Meshes in a channel
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5.2. Advection-diffusion equation in a channel
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Figure 5.12: Angle distribution of meshes in a channel

Figure 5.13: Bad AFLR mesh
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5.2. Advection-diffusion equation in a channel

(a) The normal pattern
(b) AFLR fails circumstance

Figure 5.14: AFLR scheme failure

Figure 5.15: Near view of the transition area
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5.2. Advection-diffusion equation in a channel

refined. This generates another three almost equilateral triangles, keeping this layer complete

and regular. However, if angles less than or equal to 28◦ are allowed in the mesh, the triangle

to be refined would be the hatched one in Fig. 5.14b. This leads to two adjacent edges with

very different edge lengths. The triangles generated are also irregular. Because there is no

smoothing technique performed in the middle of refinement, in the next layer, the triangles

around this area will be worse, as shown in Fig. 5.15. The point P is generated in the pattern

from Fig. 5.14b. Slight misallignment is made on the layer and after two more layers, the

perfect pattern blows up. One obvious amendment for this case is to increase the quality bound

to make each layer perfect. But not all geometries can be meshed perfectly. Increasing the

quality bound is highly likely to introduce problems with robustness.

5.2.2 Truncation error and discretization error

The 2D advection-diffusion equation

~u ·∇φ = α∇
2
φ

is solved in this case. A manufactured exact solution (shown in Fig. 5.16) is provided:

φ =

(
eR1xR2eR2L− eR2xR1eR1L

R2eR2L−R1eR1L

)
sin(πy),

where R1 =
H
2α

+
√

H2

4α2 +π2 and R2 =
H
2α
−
√

H2

4α2 +π2. The coefficient of diffusion α is set

as 0.01. The boundary conditions for both upper and lower boundaries are enforced by φ = 0,

whereas at the outlet, the gradient is set as zero. For the inlet boundary, the boundary condition

is set as the exact solution φ = sin(πy). Notice that φ changes in the y-direction more than

the x-direction. The AFLR mesh is more regular than Engwirda’s frontal-Delaunay mesh in

the y-direction, so we expect the truncation error on the AFLR mesh will be much less than

Engwirda’s mesh. Both more regular meshes can be expected to give smaller truncation error
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5.2. Advection-diffusion equation in a channel

Figure 5.16: Exact solution for advection-diffusion equation
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Figure 5.17: Order of Accuracy for second order discretization

than traditional Delaunay refinement.

The convergence of truncation errors is shown in Fig. 5.17a. The Delaunay mesh converges

at first order, while the other two more regular meshes can achieve second-order for coarse

meshes. As the mesh becomes finer, they become about first order. The large truncation error

occurs at the area where irregular triangles exist. When we refine the mesh, the truncation error

for the perfect control volumes decreases at second order whereas the bad control volumes are

only about 0.25th order. On the very coarse mesh, the magnitudes of truncation error for regular

and irregular control volumes are comparable, so they tend to get a higher order of accuracy

globally. However, when the mesh is refined, the truncation errors for badly shaped control

64



5.2. Advection-diffusion equation in a channel
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Figure 5.18: Order of Accuracy for fourth order discretization

volumes can be hundreds of times larger than the global average. This large error magnitude

is dominant, which lowers the global order of accuracy. For the discretization error, shown in

Fig. 5.17b, the improvement is not obvious. Similar to the previous Poisson equation test case,

the relation between truncation error and discretization error is complicated. Small truncation

error does not guarantee small discretization error.

Fourth order discretization is also applied for this case. Again, a decrease in the magnitude

of truncation error can be observed but for the discretization error, the improvement is small.

5.2.3 Time cost

Since the discretization error is not improved as we expected, the time cost is compared to

see if it is worthwhile to generate regular meshes. In Table 5.2, the mesh generation time

cost is comparable to the second order solving time cost. The AFLR mesh has very long

mesh generation time and it is not worth waiting since it does not decrease time cost in solver

and discretization errors. It takes nearly the same time to generate the Delaunay mesh and

Engwirda’s frontal-Delaunay mesh. With the help of the smaller frontal-Delaunay mesh size,

it takes a shorter time for Engwirda’s frontal-Delaunay mesh to converge. The decrease in time

cost is not large but it does no harm to generate Engwirda’s frontal-Delaunay mesh. As for the

fourth order solver shown in Table 5.3, the time cost decrease for Engwirda’s mesh is larger.
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5.3. Potential flow around a circular cylinder

Mesh Size Delaunay Engwirda AFLR
Mesh Solver Mesh Solver Mesh Solver

~400 0.28 0.29 0.28 0.31 0.55 0.31
~1600 0.75 0.81 0.71 0.63 2.03 0.87
~6400 2.65 3.01 2.60 2.42 8.52 3.16

~25000 10.28 13.59 10.86 11.20 33.00 14.68

Table 5.2: Time cost in mesh generation and second order solver

Mesh Size Delaunay Engwirda AFLR
Mesh Solver Mesh Solver Mesh Solver

~400 0.28 0.60 0.28 0.59 0.55 0.82
~1600 0.75 2.60 0.71 1.89 2.03 2.54
~6400 2.65 9.52 2.60 8.76 8.52 10.98

~25000 10.28 43.02 10.86 32.18 33.00 39.79

Table 5.3: Time cost in mesh generation and fourth order solver

Considering the slightly better error performance, Engwirda’s mesh is definitely recommended

for high order solver in this test case.

5.3 Potential flow around a circular cylinder

The incompressible flow is solved in ANSLib’s compressible flow solver with some modifica-

tions.

5.3.1 Mesh regularity

The domain is bounded by two circles. The inner circle denotes a circular cylinder whose

radius is 1. The wall boundary condition is set for the circular cylinder. The outer circle

denotes the far field boundary. The radius is 50. Three different mesh generation schemes

are applied to generate meshes in which cell sizes increase gradually with the distance from

the circular cylinder. Fig. 5.19 shows that in the mesh obtained from the AFLR scheme,

most triangles have minimum angles about 50◦. The circle is a good geometry for a layer-wise

marching method. Even though they are not nearly equilateral triangles, they grow in a smooth
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5.3. Potential flow around a circular cylinder

(a) Delaunay mesh

(b) Engwirda’s frontal-Delauany

(c) Marcum’s AFLR

Figure 5.19: Meshes around a circular cylinder
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5.3. Potential flow around a circular cylinder
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Figure 5.20: Angle distribution of meshes around a circular cylinder

variation. The AFLR scheme usually fails to generate beautiful triangles everywhere because

bad triangles are kept in the mesh as discussed in the previous section. In this case it only

happens in the far field. It will not affect the overall error improvement since the flow varies

little in that area. Engwirda’s frontal-Delaunay scheme also generates many triangles whose

minimum angles are above 50◦. The Delaunay mesh still is the worst in terms of the regularity,

as shown in Fig. 5.20.

5.3.2 Truncation error and discretization error

In this case, the Euler equations are solved

∂

∂ t



ρ

ρu

ρv

E


+

∂

∂x



ρu

ρu2 +P

ρuv

u(E +P)


+

∂

∂y



ρv

ρuv

ρv2 +P

v(E +P)


= 0, (5.2)
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5.3. Potential flow around a circular cylinder

where the energy E = P/(γ − 1) + ρ(u2 + v2)/2. The analytic solution is available for the

incompressible potential flow around a circular cylinder. We consider the case where the center

of the cylinder is (0,0). There is no circulation and the far field flow is in the x-direction. The

complex conjugate velocity W = u− iv is :

W =V∞−
V∞R2

z2

where z = x+ iy and V∞ is the free stream velocity. In our in-house code, the equations are

solved in non-dimensional form, so the non-dimensional Mach number M∞ = 0.3 is used as

V∞. The radius R = 1. For this test case, the incompressible solution can be simplified to

ρ = 1

W = M∞−M∞ ·
1

(x+ iy)2 ,

u = real(W ) and v =−imag(W ). The pressure is calculated by Bernoulli’s equation

p = p∗− 1
2

ρ
(
u2 + v2) ,

where p∗ = 1
γ
·
(

1+ γ−1
2 M2

∞

) γ

γ−1 .

The analytic solution shown in Fig. 5.21 is for an incompressible solver. To use this as

a manufactured solution for compressible Euler equation 5.2, the source term calculated by

substituting the analytic solution into Eqn. 5.2 needs to be added.

∂

∂ t



ρ

ρu

ρv

E


+

∂

∂x



ρu

ρu2 +P

ρuv

u(E +P)


+

∂

∂y



ρv

ρuv

ρv2 +P

v(E +P)


=



0

0

0

S


,
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5.3. Potential flow around a circular cylinder

Figure 5.21: Exact solution for the non-dimensional pressure around a circular cylinder

Only the energy equation has a source term:

S =
∂

∂x

(
u ·
(

γ p
γ−1

+
u2 + v2

2

))
+

∂

∂y

(
v ·
(

γ p
γ−1

+
u2 + v2

2

))
.

With the help of the complex conjugate velocity W , the source term can be evaluated in S(x,y).

The truncation error is estimated by the flux integral when setting the manufactured solu-

tion as the initial solution. As shown in Fig. 5.22a, the magnitude of truncation error in the

AFLR mesh is reduced compared to the other two meshes. The Engwirda’s frontal-Delaunay

mesh also decreases the truncation error magnitude. As for the discretization error, shown in

Fig. 5.23a, Marcum’s AFLR method improves the magnitude of the error. All the three meshes

achieve second-order accuracy on discretization error, which is consistent to the discretization

scheme in use. When the fourth order discretization scheme is applied, similar results can be

observed in Fig. 5.22b for the truncation errors. The discretization error shown in Fig. 5.23b

illustrate that the AFLR mesh improves both error magnitude and the order of accuracy. In

the fourth order solver, the finest Delaunay mesh and Engwirda’s frontal-Delaunay mesh fail

to converge. This is because that we are solving the incompressible flow in a compressible
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5.3. Potential flow around a circular cylinder
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Figure 5.22: Truncation error for the energy equation
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Figure 5.23: Discretization error for the pressure
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5.3. Potential flow around a circular cylinder

100 101 102

Time cost in seconds

10-5

10-4

10-3

10-2

L
2
 n

o
rm

 o
f 

d
is

c
re

ti
z
a

ti
o

n
 e

rr
o

r

Delaunay

Engwirda

AFLR

Figure 5.24: Time cost for both mesh generator and solver (fourth order)

flow solver. The solver tries to work against the source term. The lack of dissipation in the

high order solver makes it more sensible to the errors. The AFLR mesh is the best in error

magnitude but the time cost must be checked since the Euler equations are harder to solve than

the Poisson equation and the advection-diffusion equation.

5.3.3 Time cost

The advantage of the AFLR scheme in the mesh regularity also contributes to time savings. As

shown in Fig. 5.24, AFLR is definitely the best mesh generation scheme for this potential flow

around a cylinder case as measured by combined time to a given solution error. Note that the

mesh generation time cost for AFLR scheme is about twice as high as the other two (Table 5.4).

But the smaller size and the mesh regularity help to reduce the time cost in the high order solver.

The number of non-linear iterations required by the AFLR mesh is the smallest, which contains

the time demanding tasks such as the Jacobian calculation and factorization.

For solving the potential flow around a circular cylinder, Marcum’s AFLR scheme is obvi-
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5.4. NACA-0012 airfoil

Mesh Size Delaunay-refinement Engwirda’s frontal-Delaunay Marcum’s AFLR
~300 0.2687 0.2433 0.3647

~1,000 0.7430 0.7026 1.0411
~4,000 2.8018 2.9261 4.6033

~20,000 12.5435 11.5693 20.3652

Table 5.4: Time cost in mesh generation (seconds)

Delaunay Engwirda AFLR
Mesh size 6405 5675 3840

Non-linear iteration (NLI) 9 10 6
Linear iteration (LI) 78 234 37

Time cost (s) 65.90 67.17 26.24

Table 5.5: Fourth order solver time cost

ous the best choice in both reducing errors and saving time.

5.4 NACA-0012 airfoil

In this test case, the compressible inviscid flow around the NACA-0012 airfoil is solved. The

Mach number is 0.5 and different angles of attack (α) are applied.

5.4.1 Mesh regularity

Similar to the cylinder case, Engwirda’s frontal-Delaunay scheme and Marcum’s AFLR scheme

improve the mesh regularity in different ways. As shown in Fig. 5.25b, in Engwirda’s mesh,

large areas of dark red are always expected but at the same time, they lack continuity. A perfect

equilateral triangle is not necessarily adjacent to another equilateral triangle or nearly equilat-

eral triangle. On the other hand, in the mesh obtained from Marcum’s AFLR scheme, the

first few layers around the boundary usually contain lots of equilateral triangles. As shown in

Fig. 5.25c, the areas around the leading edge and trailing edge are filled with nearly equilateral

triangles. They also show a continuous pattern thanks to the layer-wise marching pattern. In

this case, the triangles around the airfoil in the AFLR meshes are not all nearly equilateral
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5.4. NACA-0012 airfoil

triangles. Several of them have the minimum angle of 45◦. As shown in Fig. 5.26, the AFLR

scheme generates fewer nearly 60◦ angles than Engwirda’s frontal-Delaunay scheme. But both

of them are still quite good when compared with the Delaunay mesh.

5.4.2 Errors

The exact solution of this case is not available, therefore the truncation error is omitted for

this case. In Fig. 5.27, the lift coefficient and drag coefficient are estimated when the angle of

attack is 2◦. Fig. 5.27a shows the convergence of the lift coefficient. The solid lines are for the

second order discretization and dashed lines denote the fourth order discretization. For the sec-

ond order discretization, the AFLR mesh, which has the best mesh quality around the airfoil,

converges slightly faster than Engwirda’s mesh. The Delaunay mesh has a different conver-

gence pattern, with a slightly different grid-converged value. For higher order discretization,

the AFLR mesh and Engwirda’s frontal-Delaunay mesh perform consistently with second or-

der scheme. As for the Delaunay mesh, the convergence pattern is similar to the other two

meshes. But it still gets a different value. As shown in Fig. 5.27b, the convergence of the drag

coefficient is almost exactly the same for all three meshes. Generally speaking, mesh regular-

ity does not lead to significant improvement on lift coefficients and drag coefficients. For the

second order scheme, mesh regularity helps to converge faster to an acceptable solution. But

when it comes to higher order, the improvement is not significant.

The numerical tests are re-run for the same meshes when setting the angle of attack as 4◦.

Similar results can be observed in Fig. 5.28. Again, mesh regularity does not help in this case.
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5.4. NACA-0012 airfoil

(a) Delaunay mesh

(b) Engwirda mesh

(c) AFLR mesh

Figure 5.25: Regularity for meshes around NACA-0012 airfoil
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5.4. NACA-0012 airfoil
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Figure 5.26: Angle distribution of meshes around NACA-0012 airfoil
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Figure 5.27: NACA-0012 airfoil with angle of attack 2◦
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5.4. NACA-0012 airfoil
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Figure 5.28: NACA-0012 airfoil with angle of attack 4◦

5.4.3 Time cost

Since mesh regularity does not help to get an accurate solution on a coarser mesh as expected,

it is doubtful whether it reduces the total time cost. As shown in Fig. 5.29, the improvements

in time cost for both second order and fourth order scheme are not obvious. Table 5.6 shows

the time cost for the total of mesh generation and solving with 2◦ angle of attack and the

fourth order scheme. We can observe that the time cost in the solver is much higher than that

in the mesh generator. Therefore in this case, the additional time cost of Marcum’s AFLR

scheme can be neglected. The advantage of the mesh regularity shortening the solving process

is only observed for fine meshes. The time cost of Engwirda’s mesh is about half of the one

of Delaunay mesh. Marcum’s mesh also decreases time cost by about 25 percent. When

running the cases several times, more regular meshes are recommended to reduce the time

Mesh Size Delaunay Engwirda AFLR
Mesh Solver Mesh Solver Mesh Solver

~1000 0.48 5.85 0.55 5.49 0.52 5.64
~4000 1.77 25.54 1.85 22.40 4.01 23.83

~16000 8.42 146.52 8.41 126.68 22.60 122.24
~64000 30.66 1251.67 27.14 685.97 79.90 919.58

Table 5.6: Comparison of time cost in mesh generation and the fourth order solver (α = 2◦)
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Figure 5.29: Time cost of mesh generation and solver in total

Delaunay Engwirda AFLR
Mesh Size 54341 47613 51683

NLI 22 15 16
LI 156 134 177

Time Cost 1251.67 686.97 919.58
(a) AoA 2◦

Delaunay Engwirda AFLR
Mesh Size 54341 47613 51683

NLI 24 16 13
LI 198 140 176

Time Cost 1245.98 733.67 671.33
(b) AoA 4◦

Table 5.7: Time cost in the fourth order solver
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Figure 5.30: Time cost in the fourth order solver for AoA 4◦

cost. For 4◦ angle of attack, similar results (Fig. 5.30) can be obtained: the AFLR mesh and

Engwirda’s frontal-Delaunay mesh helps to decrease the time cost in the solver. Similar to the

circular cylinder case, mesh regularity helps reduce the mesh size and the number of non-linear

iteration required. As shown in Table 5.7b, even though the AFLR mesh is a bit larger than

Engwirda’s frontal-Delaunay mesh, the smaller number of non-linear iterations required helps

to reduce the time cost. Again, the Delaunay mesh is worse than the other two in terms of

the number of non-linear iterations. Notice that this improvement is only observed with a high

order discretization scheme. The decrease in time cost for the second order scheme is very

limited as shown in Fig. 5.31.
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Figure 5.31: Time cost in the second order solver for AoA 2◦
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Chapter 6

Conclusions

The previous research on mesh regularity is completed on structured triangular meshes [8, 20].

However, the impact of unstructured mesh regularity on errors is missing. In my thesis, I

increased the unstructured mesh regularity with Engwirda’s frontal-Delaunay algorithm and

Marcum’s AFLR algorithm. The impact of that on errors is a supplement to the previous

research. Besides, the impact of mesh regularity on time costs in both mesh generation and the

flow solver is also considered in this thesis, which is another missing part from the previous

research. The unstructured mesh regularity reduces the time cost in the solver, especially in the

high order solver, which is not expected before this study.

Marcum’s AFLR algorithm works well in terms of the unstructured mesh regularity. The

original scheme is not consistent with the Delaunay refinement framework, which brings dif-

ficulties to implement this algorithm. In my thesis, I made several necessary modifications

to implement this algorithm in the Delaunay refinement framework. The layer index intro-

duced in Chapter 4 works well to achieve the layer-wise pattern in the Delaunay refinement

framework. The point selection method in Marcum’s algorithm is supplemented with the off-

centres. The improved boundary discretization technique is introduced in Section 2.1. It is

specially designed for airfoils. It discretizes the boundary in a smooth way. This smoothness

of the boundary edge length helps the modified AFLR algorithm perform better in that the

abrupt change of edge lengths will break the layer-wise pattern. With the help of these modi-

fications, the modified AFLR algorithm works well and I can reproduce the similar results as

those from Marcum’s algorithm.

After introducing the three different mesh generation schemes and several numerical test
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Chapter 6. Conclusions

cases, the questions posed in Section 1.1 can now be answered.

1. How regular a triangular mesh can we generate for realistic cases?

Depends on geometries. For simple geometries such as a square or annulus, almost

70% of triangles in the most regular mesh we generated have minimum angles

above 55◦. For more realistic cases like airfoils, the ratio decreases to 30%.

2. What is the additional cost to generate such a mesh?

Point calculation and rejection. In my implementation, both Engwirda’s frontal-Delaunay

and Marcum’s AFLR scheme use similar vertex location calculators, which calcu-

late two or three more possible vertex locations than Delaunay triangulation. The

size-optimal vertices even require iterative bisection method to complete. Mar-

cum’s AFLR method also adopts a rejection scheme. When it rejects a vertex to

be inserted, all the calculation time cost for this vertex is in vain. Both the point

location calculator and the rejection scheme increase the time costs at every step.

The rejection scheme is dominant. Considering that the regular mesh size is usu-

ally smaller than the Delaunay mesh, Engwirda’s frontal-Delaunay scheme, which

only costs a little more because of the location calculator every step, can get similar

time cost as Delauany mesh. The AFLR mesh costs much more than the other two,

especially for very fine meshes.

3. Considering that cell shape affects the accuracy greatly, can we expect small discretiza-

tion error using unstructured regular meshes?

Not really. In my numerical tests, regular meshes did not consistently produce lower

error.

4. Can a coarse regular mesh offer the same accuracy as a finer irregular mesh with lower

costs in the flow solver?
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Chapter 6. Conclusions

Kind of. As answered in the previous question, the solution accuracy is not much im-

proved by the regularity. It is not likely that a coarse regular mesh achieves the

same error magnitude as the double-sized irregular mesh. Although regularity fails

to reduce discretization error, it still helps to decrease time costs in the solver. The

smaller mesh sizes and faster convergence in the solver both contribute to this.

However, for the second order solver, this improvement is not significant. For

higher order solvers, the smaller time cost on the regular mesh is an advantage.

Engwirda’s frontal-Deluany scheme and Marcum’s AFLR scheme both generate more regu-

lar meshes than Delaunay meshes. For some simple geometries like an annulus or a square,

AFLR scheme is able to generate almost perfect equilateral triangles everywhere. It is a good

choice since it gives smallest truncation error and discretization error with reasonable addi-

tional time cost in mesh generation. For more complicated numerical cases, especially for the

high-order solver, Engwirda’s frontal-Delaunay is optimal because of its good regularity, good

error performance, and decrease in time cost.
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