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Abstract

Parameter and state estimation for groundwater models within a coupled hydrogeophysical

framework has become common in the last few years as it has been shown that such

estimates are usually better than those from a single data inversion. Different approaches

have been suggested in literature to combine the essentially two different modalities in order

to obtain better estimates for groundwater models, and improve monitoring of processes

such as solute transport. However, the coupled approaches usually come at a price of

higher computational cost and difficulties in coupling the geophysical and groundwater

inverse problems.

Unlike in other studies, we developed both the groundwater and geophysical models

in the same computational environment in order to test different minimization strategies.

When solving the coupled inverse problem, the objective function consists of data misfit and

regularization terms as well as a coupling term that relates groundwater and geophysical

states. We present a novel approach to solve the inverse problem using an Alternating

Direction Method of Multipliers (ADMM) to minimize the coupled objective function.

ADMM enables us to treat the groundwater and geophysical part separately and thus use

existing software with minor changes.

However, ADMM as well as many other coupled approaches relies on implementing

some petrophysical relationship to couple the groundwater and geophysical variable. Such

relationships are usually uncertain and hard to parametrize for a large region and can

potentially produce solute mass errors in the final model estimates. Therefore, in this thesis

we examine coupled approaches that replace the fixed petrophysical relationship by a more

loose structure similarity constraint. Besides, we propose efficient computational methods

to minimize the objective function when there is no explicit petrophysical constraint.

All approaches were tested on 3D synthetic examples. In the solute tracer test we es-

timated hydraulic conductivity or solute distribution using a structure coupled inversion,
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and were able to reduce the errors compared to a single data inversion alone. For a more

complex example of seawater intrusion we implemented the ADMM method, and obtained

better estimates for the solute distribution compared to just considering each data sepa-

rately, or solving the problem with a simple coupled approach.
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Preface

This dissertation is my original work made under supervision of Dr. Haber during the

study program at the University of British Columbia.

The first three chapters review the current modeling practices and state of the art in

hydrogeophysics. Chapter 4 presents new ideas for the joint inversion minimization and

structure coupled inversion which came from conversations with Dr. Haber.

The code implementation and numerical experiments were carried out by myself with

Dr. Haber’s support and advice, and form the Chapter 5. The results in the first section

of chapter 5 were published in [91], and the results in the second section are part of the

manuscript, which is currently under review [90].
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Chapter 1

Introduction

Many different processes in groundwater hydrology can be labeled as solute transport,

comprising different scales and both natural and human affected processes. At a small scale

we can think of fertilizers moving through the root zone, a contaminant plume observed

in a few wells can already affect an area of watershed size, or seawater intrusions that

can affect large regions along the coastal zones. While all these examples evolve from

different applications, they have a few important commonalities. In all these cases we

need a groundwater flow model to determine the flow field in the subsurface and a solute

transport model, to describe, and ideally also to predict the fate of the solute.

Theoretically, we do have a groundwater flow and solute transport model specifically

tailored for each different process; however, conceptualizing from the real environment

to a mathematical model brings a lots of uncertainty. The soil and porous media are

rarely homogeneous, and processes such as dispersion and diffusion are hard to upscale

from the real scale heterogeneity to the actual model resolution. Furthermore, we need to

make decisions regarding the boundary and initial conditions, which are sometimes fairly

straightforward, but in more complex situations the particular choice can substantially

impact the model outcomes.

From the numerical point of view, the modeling challenges arise in solving the governing

equations, which are a system of two partial differential equations for flow and solute mass
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balance:

∂ (φρ)

∂t
+∇ · (ρq) = ρQgw (1.1)

∂(φ ρω)

∂t
+∇ · (φ ρD∇ω)−∇ · (ρω q) = Qsω, (1.2)

where ρ is the fluid density, ω is the solute mass fraction, φ porosity, D represents the hydro-

dynamic dispersion, t time and Qsω and Qgw the external fluxes of solute and groundwater.

These two equations are coupled via groundwater flux q;

q = −k
µ

(∇p+ ρg∇z), (1.3)

where k is permeability of the porous media, p fluid pressure, µ fluid viscozity, z is downward

depth coordinate and g gravity acceleration. Hence, if the fluid density does not change, we

can basically decouple the system and the groundwater flow is essentially governed by the

pressure gradient, ∇p, only. For flow of variable density though, the governing equations

are strongly coupled and weakly nonlinear. Any 3D simulation is therefore computationally

costly especially when considering the inverse problem.

To overcome the challenge of conceptualization, i.e. simplifying the real world into

a representative physical model, we need to have enough data to properly calibrate the

groundwater model, and hence reduce the uncertainty regarding parameters and initial

or boundary conditions. However, data availability is usually somewhat limited for a few

reasons.

Obtaining measurements via groundwater sampling can be costly and difficult. Direct

groundwater data are usually obtained from boreholes or wells, which even with multiple

screening intervals provide only a few data points information for groundwater states, such

as solute concentration or hydraulic head. Moreover, for variable density flow models addi-

tional density data has to be obtained next to standard head measurements. The density

information can come from concentration data (respectively electrical conductivity of water

samples), but this is prone to error due to the difference between resident and flow concen-

tration (i.e. the collected samples might not represent well the surrounding environment

[15]). Besides, parameters like dispersivities or permeability can not be measured directly

at the field scale and we thus have to rely on indirect data and laboratory samples.

In many cases, where the complexity of the solute transport process is high, the avail-
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able groundwater data is too scarce for a successful calibration and good predictability

of the underlying models. In these cases, some of the properties such as fluid conductiv-

ity, saturation or porosity, can be well captured by geophysical methods sensitive to these

properties. Indeed, as we show in this work, geophysical methods provide an attractive

option to add more information for groundwater model calibration, and improve the solute

transport monitoring and predictions.

1.1 Geophysical data in hydrology

Recent advances in geophysical instrumentation as well as computational software have

made many geophysical techniques more accessible for environmentally oriented surveys

[53]. In groundwater hydrology geophysical methods have already became standard tech-

niques to map the bedrock topography, the geology, estimate hydraulic conductivities by

salt tracer tests, and for monitoring seawater intrusions. A new discipline, hydrogeophysics,

developed focusing on the use of geophysical measurements for mapping subsurface features,

estimating properties and monitoring processes that are important to hydrological studies

[84].

For example, Direct Current (DC) resistivity methods found a broad application across

different areas of hydrology. In DC experiments a current is injected into the ground cre-

ating an electrical potential, which is then measured using pairs of electrodes - receivers

placed on the surface or in boreholes (Figure 1.1). The DC method was successfully applied

in many hydrogeophysical studies for solute transport, such as tracer tests and seawater

intrusions ([47], [32],[45],[44],[20],[51] or [49]) but also to investigate unsaturated zone trans-

port, such as soil salinization [52], or hyporheic flow transport [98]. The conductivity of

saltwater is a few orders higher than that of freshwater in the pore spaces. Hence, saltwater

intrusion increases the soil bulk electrical conductivity, which makes it an excellent target

for electromagnetic and electrical resistivity methods. DC surveys were also successfully

used to identify clay lenses, which have higher conductivity compared to other geological

materials, and to determine variable moisture content [12, 73].

Electromagnetic methods (EM) are based on the electromagnetic induction effect, and

are also sensitive to changes in subsurface conductivity; however, the different physical

process of charging conductive bodies in the subsurface can make these methods better

for recovering the soil bulk conductivity. Depending on the type of survey one can collect

1D data, so called EM soundings, with possible large depth investigation or target shallow

3



Figure 1.1: A simple dipole - dipole survey with one receiver pair and one source pair, from
[73].

depths with shorter offsets and obtain two and 3D data. In airborne surveys, a helicopter

carrying transmitter and receiver coils can easily map large areas. EM applications in

groundwater hydrology are similar to those of DC methods, but for large scale studies EM

surveys are usually preferred due to easier, though more expensive, data acquisition. For

example in [77] they collected airborne electromagnetic data in the Red River basin of

Texas to estimate the volume of water intruded by saline water, capturing an area of 34

km2. Other examples of seawater intrusion monitoring via EM methods can be found in

[72],[93] or [14].

Ground penetrating radar is another non-invasive geophysical technique used by hy-

drologists, which is sensitive to changes in dielectric permittivity. The reflection depth can

give information about location of lower density plumes [22] or geological structures such

as fluvial deposits [24], which can then help in estimating the hydraulic conductivity of

the aquifer. Seismic or nuclear magnetic resonance methods have also been used to study

hydrological problems [21, 40, 96].

The main advantage of geophysical methods lies in their non-invasive character and

ability to map a large subsurface area. As opposed to groundwater sampling methods that

give only point wise observations, geophysical methods can provide extensive 3D data sets
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in a relatively short time for a large and heterogeneous area. Many geophysical methods

are available, which together with different experimental designs offer large to small scale

investigation of the subsurface. However, the main caveat of geophysical methods is that the

collected data, regardless the chosen method, are indirect. Therefore, an inverse problem

has to be solved to recover the subsurface geophysical property field. This inverse problem is

usually ill-posed leading to non-unique solutions dependent on some “a priori” information.

Furthermore, the groundwater property of interest is linked to the geophysical property via

some petrophysical relationship, which is based on empirical laws and has to be calibrated

for specific field conditions. The parametrization for this relationship then brings another

source of uncertainty when “incorporating” the geophysical information into groundwater

estimates. Geophysical data thus come with a price of solving an inverse problem and

determining the link between the geophysical and groundwater variables.

1.2 Hydrogeophysics: different approaches to couple the
modalities

Combining the geophysical and hydrological data increases the amount of data about the

flow in subsurface and hopefully can help to overcome some of the caveats of each specific,

individual type of data. Ideally, we want to keep the advantages of both types of data

and improve the estimates of groundwater states and parameters. We should keep in

mind though that both the geophysical and groundwater inverse problems are ill-posed;

with limited data we want to recover the 3D subsurface properties. Hence, both inverse

problems need some form of regularization (a-priori information), that would steer the

estimates towards physically realistic ones.

As Figure 1.2 shows, each inverse problem can be treated separately, we can add some

regularization and solve it for one type of data only. The geophysical estimate can then

be converted to a groundwater variable via some petrophysical relationship allowing geo-

physical and hydrogeological computations to stay independent. The advantage of such an

uncoupled framework is that the hydrogeological and geophysical models run independently.

However, this also means that the a-priori information from hydrology is not integrated into

the geophysical inversion. Since geophysical inverse problems are ill-posed and require a

regularization term, or a prior (if Bayesian methods are used), ignoring hydrogeology data

can severely deteriorate the quality of the geophysical inversion estimates.

Another option is to include the coupling term which represents the link between the
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Figure 1.2: Coupled hydrogeophysical problem: each problem can be treated separately
(blue and orange loop) or the petrophysical relationship can be added and both models
updated in some coupled fashion (yellow loop).

groundwater and geophysical variables in the inversion. This is usually referred to as a

coupled approach. The coupling term can be the previously mentioned petrophysical rela-

tionship, which is usually empirical (e.g. Archie’s law which relates soil bulk conductivity

and fluid conductivity) or it can be set more loosely by only imposing a structure similarity,

between the groundwater and geophysical models.

For the actual coupling, if we have an explicit relationship, the geophysical variable

(estimate) can be transformed into a groundwater variable or the other way around. Thus,

beside evaluating the similarity between the two models, one can also use one of the es-

timates as a reference model, and possibly also as an initial guess for solving the other

inverse problem. Another option is “data extraction” [8], where we use the petrophysical

relationship to convert the geophysical estimates into groundwater states and create some

additional data for groundwater model inversion. For the actual inversion, some approaches

invert only one type of data, however, both data misfits are evaluated with respect to the

updated estimate ([45],[5]).

The different ways that the two types of data are combined and solved leads to vari-

ous approaches in hydrogeophysical studies and therefore terminology vary among authors.

However, in all coupled approaches, the geophysical and groundwater models are linked

together during the inversion. The hydrological state estimates are then guaranteed to be

physically realistic and fewer a-priori assumptions need to be entered into the geophys-

ical inversion implicitly. Due to this fact, coupled approaches were repeatedly found to

give better results ([44], [49] or [47]). However, coupled approaches are computationally
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more intensive and possible errors introduced by the coupling term, may map from the

groundwater to geophysical estimate and vice versa and need to be considered.

The joint approach can be considered as a specific type of a coupled approach, where

both data misfits are minimized together. Since both models behave differently in terms

of convergence, weighting the two different data misfits next to regularization and coupling

term in one objective function can be a challenging task. Each of the problems can be

difficult to solve by itself due to governing equations, which are partial differential equations,

and solving them in a coupled manner can create even more computational complexity.

Moreover, the forward and inverse simulations for the geophysical and groundwater models

are commonly solved by separate codes, possibly “black-box”, which further complicates

the joint inversion. Therefore, in most literature we find applications of coupled approaches

rather than an actual joint minimization.

1.3 Coupled hydrogeophysical inversion: The state of art

Before reviewing some of the work on coupled hydrogeophysical inversions, we should recall

that the groundwater (GW) forward problem alone may require solving a system of two

strongly coupled and nonlinear partial differential equations, and thus any 3D simulation is

costly when solving the inverse problem, where multiple forward simulations are necessary.

To decrease the amount of estimated parameters and make the inverse problem solvable,

usually some a-priori information based on geology is considered to reduce the size of the

problem. One option is to apply some geostatistical constraints when estimating the GW

parameters [46, 51, 80]. The actual minimization is then often directed by some general

inverse software such as PEST [25] or UCODE [78] where the sensitivities are derived by a

perturbation approach.

In the last decade, numerous studies have investigated the potential of coupled inversion

and the resulting improvement in parameter estimation when compared to the inversion of

a single data type. For example in [47] the authors tested the coupled versus uncoupled

approaches for an infiltration event on synthetic data by joining HYDRUS1D model and

ERT data simulations to estimate the soil properties. The authors confirmed the benefits of

the coupled approach, although the results show that model estimates are highly dependent

on how well the hydrologic model represents the real system.

The study of [44] also examined different approaches for coupling groundwater and geo-

physical data. In their synthetic study a simple cross-sectional groundwater model was
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coupled with TDEM (1D soundings) and a real field dataset coupled a Modflow ground-

water model with 1D ERT data. Both sequential and joint approaches were tested. In

the sequential approach the geophysical inversion was independent, but the subsequent

groundwater model inversion used the geophysical estimates, while in the joint approach

the geophysical and groundwater models were updated simultaneously. Geometric and

petrophysical constraints were used in this study to couple the GW model and geophysical

data by relating a particular layer resistivity to its hydraulic conductivity. For the joint

approach, the authors employed a petrophysical constraint as an additional regularization

term. They observed that the joint approach increases the computational time compared

to the sequential approach, with no significant improvement of the groundwater parameter

estimates in the case of a real dataset.

The first joint hydrogeophysical inversion to estimate the hydraulic conductivity appears

in [79] for a synthetic 2D experiment; the authors combined the temporal moments of

electric potential perturbations with hydraulic head data. Later, the same approach was

tested using a real data set from a sandbox laboratory experiment [80]. The fully coupled

approach managed to successfully recover the solute transport and preferential pathways,

the hydraulic conductivity fields were smoothed out but contained the main heterogeneous

features.

In the study of Irving and Singha [49] the authors also jointly inverted geophysical

ERT and groundwater concentration data for a saline tracer test; however they introduced

a stochastic approach for this type of application. The pilot points technique was used

to generate possible hydraulic conductivity fields in 2D and a Markov chain Monte Carlo

sampling algorithm was implemented within the joint inversion. In [51] they expanded on

this work by adding self potential data. The synthetic case results for their 2D profile

showed improved estimates when combined data were used compared to an inversion of

each type of data independently. The authors noted the necessity to parallelize the code to

reduce computation time, if applied to 3D problems.

For seawater intrusions (SWI), with variable density flow modeling, the situation is

usually more complex in terms of time scale and heterogeneity compared to solute tracer

experiments. However, similar ideas were implemented in the calibration of underlying

solute transport models, leading to a high diversity of approaches when solving the hydro-

geophysical inverse problem. In most cases groundwater and geophysical data are inverted

separately and the coupling happens via a petrophysical relationship.

In the study by [8] the authors investigated a sequential approach to estimate hydraulic
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conductivity and dispersivity parameters, which they tested on two synthetic benchmark

problems representing pumping experiments in a coastal aquifer in 2D. The ERT derived

conductivities were transformed via Archie’s law to salt mass fraction. These estimates

were then filtered using a cumulative sensitivity based on the squared Jacobian and served

as data in the hydrogeological parameter estimation next to the “collected” salt mass

fraction data. The inversion was performed with PEST using a gradient based method.

The geophysical ERT data did improve the SWI model calibration.

The calibration of a seawater intrusion model using geophysical data can be also found

in [45]. In this work the GW model is used to interpret the data and guide the geophysical

inversion. Saltwater concentrations based on the 2D SEAWAT model were converted with

Archie’s law to electrical resistivity and the forward modeled response of a TDEM sounding

were calculated and compared with observed data. The TDEM data sets (1D soundings)

were collected in Santa Cruz County, California. In total, six parameters were estimated

for both the groundwater and TDEM model using the PEST optimization system. The

authors concluded that the coupled approach provided a significant improvement in spatial

resolution which would be hard to obtain with standard geophysical inversions.

Large scale hydrogeophysical problems are the focus of the recent work by [18]. The

authors improved the inversion framework of iTOUGH2 to enable parallel computing and

merge it with a parallel geophysical simulator for electromagnetic data, creating a general

framework they can apply to a wide range of processes in multiphase flow and solute

transport. The sensitivities with respect to parameters were evaluated by a perturbation

approach, and the high computational burden of this approach was balanced by the fact

that the perturbed model simulations could be run independently.

Compared to other synthetic studies and applications, we set up both models in the

same computational environment in order to test different minimization schemes using a

joint approach, which is one of the goals of this thesis. For the joint approach we propose

a couple of methods that can split the minimization into two subproblems and thus ease

the computational burden of the coupled problem.

1.3.1 Structure - coupled inversion

Most of coupled inversions and even inversion of geophysical data alone, involve some kind of

petrophysical relationships that relate the two different physical properties. The petrophys-

ical relationship represents an explicit way to impose a similar structure on two different
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models. In environments with well mapped geology and well calibrated parameters it is

feasible to generate a petrophysical map that links groundwater and geophysical parame-

ters or states, yet such information is generally not available. Some authors question the

validity of the petrophysical relationships (i.e. knowledge of the porosity distribution). In

some cases researchers are able calibrate it in the field, but often this petrophysical relation

is accepted just by applying some fixed empirical parameters for either synthetic or field

datasets. If incorrectly assigned this direct link may cause significant errors in the solute

content estimates or enforce the coincidence of the two models, when there is none. This

naturally leads to the idea of replacing the fixed petrophysical relationship by a more loose

structural constraint.

In the structure-coupled inversion the two or more different models are not linked by an

explicit petrophysical relationship but instead, some similarity is assumed, such that the

two different models exhibit changes in the same regions. This similarity is imposed by a

structural constraint in the minimization procedure leading to model estimates of different

properties that share the same “structure”.

The idea of a structure-coupled inversion to image the subsurface using geophysical

methods has been studied over two decades [34, 39, 64]. Typically, indirect data are collected

by multiple methods, but due to the different physical phenomena of each method, the

model estimates often vary [35]. Moreover, each set of data might have a very different

resolution and be contaminated by different measurement errors. Still, inverting these

datasets in some coupled fashion is desired if all data are related to the same geological

feature. Examples of structure-coupled inversions with geophysical data can be found in

[34, 48, 63, 69]. Joint total variation is particularly popular method for this type of joint

geophysical inversion.

Similarly, when coupling the hydrological and geophysical inversions, different ap-

proaches exist that alleviate the need of the fixed petrophysical relationship. For example

in the work of [13] the authors assumed that the parameter of interest was mainly affected

by geological facies and used a level set method to minimize the coupled objective function.

The same method could be expanded for joint inversion with groundwater and geophysical

data using the same level set parametrization (geological facies distribution). In [54], the

authors replaced the petrophysical relationship by an assumption of a strong correlation

between the fluid and soil bulk electrical conductivity. In particular, for their synthetic

study with a solute tracer test, they used ERT time lapse data together with groundwater

head and fluid conductivity data to determine hydraulic conductivity.
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To our knowledge, the first work applying a structural constraint in hydrogeophysi-

cal inverse problem is the study of Lochbuhler et al.[65]. The authors combine ground-

penetrating radar data with hydraulic tomography or tracer mean arrival times to estimate

hydraulic conductivity. As a structural constraint they applied a cross-gradient field prod-

uct. In this thesis we further expand on the ideas of [65], but implement a full 3D inversion

and jointly invert geophysical and hydrological data that are not directly dependent on the

property of interest.

1.4 Thesis objectives and research contributions

The motivation for this thesis was to improve estimates for modeling of solute transport

processes by combining hydrogeological and geophysical data. This objective was conquered

in few different steps, which can be summarized as follows:

• Developping the groundwater and geophysical models in conjunction with

analytically derived data sensitivities

Joint approaches were reported to improve the groundwater estimates. However,

the forward and inverse simulations for the geophysical and groundwater models are

commonly solved separately to take advantage of each inversion code and forward

model. In the joint approach both data misfits are minimized together, which of course

brings computational complexity by implementing the coupled framework, solving a

larger problem and weighting the two different data misfits next to regularization and

coupling term in the objective function.

In order to overcome some of these issues, we developed both models in the same com-

putational environment, so that we can test different minimization schemes for a joint

inversion of hydrological and geophysical data. The common framework also simplifies the

coupling implementation between the physically different models. We derived the sensitiv-

ities of data with respect to parameters or states analytically, using a closed form formula.

Unlike the perturbation approach, the analytical derivation of sensitivities significantly re-

duces the computation burden, and thus enables us to solve problems in 3D. We tested

both models against benchmark problems or by tests using artificial sources.

• Propose computationally efficient inversion scheme

For the sake of simplicity and testing the approaches themselves, the hydrogeophysi-

cal inversions are often either of a small size or applying 2D data only. However, in
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the field we can rather expect large domain and dataset, especially in case of geo-

physical data. In this thesis we therefore proposed a computationally efficient scheme,

which can handle large datasets (e.g. discretization with more than 200 cells in each

direction)

Specifically, we introduced a version of the alternating direction method of multipliers

(ADMM), which allows us to efficiently split the objective function of the coupled inverse

problem. ADMM was introduced in early 70’s and has recently gained popularity for many

inverse problems. It is a natural choice for multiphysics problems [11], due to its strong

convergence properties [36]. ADMM is suitable for cases where the constraint (here the

petrophysical relationship) can be considered as exact, in practice having low uncertainties

usually suffices. A successful hydrological application can be found in Wohlberg et al. [99],

where ADMM was applied to solve the inverse problem to estimate the piece-wise smooth

hydraulic conductivity fields. Many more applications can be found in machine learning or

statistical modeling.

In addition to ADMM we also examined other minimization techniques such as the

Block Coordinate descent method (BCDM), which also splits the minimization onto two

subproblems and a standard Gauss-Newton method, that updates both models at each

iteration. Both Block coordinate descent and ADMM have a major advantage over the

Gauss-Newton method. First, by splitting up the objective function into geophysical and

groundwater part, we do not need to weight two different data misfits with respect to

regularization and coupling term at each iteration. There are almost no criteria for setting

two parameters during the iterative minimization process when each data misfit has a

different speed of convergence. Second, the multiplication of Jacobians and data misfit can

have a very different computational cost for each model and hence make each iteration very

unbalanced and difficult to parallelize.

The ADMM method was tested on a seawater intrusion scenario, we jointly inverted the

solute mass fraction data together with either DC resistivity or TDEM data to estimate

the groundwater states.

• Structure-coupled inversion

Another limitation of the joint hydrogeophysical inversion is the knowledge of the

petrophysical relationship. Despite its abundant use, this empirical relationship is

hard to properly parametrize in field conditions and adds uncertainty to the coupled
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inversion estimates. In this thesis we further explored the potential of joint hydrogeo-

physical inversion when the parameters for petrophysical relationships are unknown

and implemented structural constraints such as the cross-gradient field product and

joint total variation instead, so that the hydrological and geophysical data can be still

inverted in a joint approach.

The coupling via structural constraints usually evaluates the gradient fields of each

property rather than the actual values and thus encourage the two models to change in the

same location. Therefore, it is a good alternative to a petrophysical link, as it does not

enforce an exact linear mapping between soil bulk conductivity and solute content when

there is none.

We tested the structure coupled inversion on a synthetic test of solute tracer to estimate

the initial conditions for solute content and hydraulic conductivity field. Groundwater

solute concentration and hydraulic head data were jointly inverted with DC resistivity

data.

In the following chapter we elaborate on both groundwater and geophysical models

used in this work, their governing equations, our chosen discretization and our approach

for the solution of the forward problem. In chapter 3 we show a general scheme for the

minimization of a single type of data, which has crucial importance when building up more

advanced joint inversion schemes. The actual coupled inversion is detailed in chapter 4,

where we also expand on coupling options such as petrophysical relationships and structure

similarity constraints, and introduce the ADMM method together with other methods for

joint inversion. Applications of all proposed methods are documented in chapter 5; section

5.1 is devoted to the seawater intrusion scenario (results of this experiment were published

in [91]) and section 5.2 shows a structure-coupled inversion for a solute tracer test (the

manuscript is under review). In the last chapter we summarize our findings.

13



Chapter 2

Forward modeling

In this chapter we present the models that we developed to test different minimization

schemes in the hydrogeophysical inversion. For solute transport we have two models that

can simulate solute tracer tests and seawater intrusions scenarios. Both of them are based

on solute and fluid mass balance equations. For the geophysical modeling, direct current

resistivity and time domain electromagnetic data were simulated. For each model we discuss

the governing equations, applied assumptions, discretization and solution of the equations

and present the results of some model verification tests.

2.1 Groundwater model

Models of solute transport can range from simplistic to fairly complex representations of the

real world. The choice often depends on the application, required accuracy and available

data for model parametrization. In solute tracer tests or plume monitoring, the time scale

is often short, and density variation effects do not need to be considered. However, in

applications such as seawater intrusions a full variable density flow model is desirable to

improve the accuracy of forecasts.

In our study, we developed two groundwater models, both consist of the fluid and solute

mass balance equation, where each one is represented by a partial differential equation in
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time and space:

∂ (φρ)

∂t
+∇ · (ρq) = ρQgw (2.1)

∂(φ ρω)

∂t
+∇ · (ρω q)−∇ · (φ ρD∇ω) = Qsω (2.2)

The system above is a pressure - solute mass fraction formulation [57], where ρ is the

fluid density, ω is the solute mass fraction, φ is porosity, D represents the hydrodynamic

dispersion, t is time and Qsω and Qgw are the external fluxes of solute and groundwater

respectively. The two governing equations are coupled via groundwater flux q (sometimes

referred to as specific discharge), which, taking the general formulation for Darcy’s law [7],

can be written as

q = −k
µ

(∇p+ ρg∇z), (2.3)

where p is the hydraulic pressure, k is the permeability of the porous media, µ is the fluid

viscosity, g is the gravitational acceleration and z is an upward coordinate direction.

Depending on the problem we want to model, we need to add further assumptions or

simplify the system above. If the fluid density changes across the model domain due to

the solute content dynamic, the system becomes nonlinear and one needs to complete it

with state equations which define the dependence of density ρ and other porous media

parameters on the solute mass fraction. However, if the solute dynamic does not effect the

density we can simplify the system by taking the density ρ out of the brackets. Furthermore,

for steady state conditions, the velocity term q does not change and the two PDEs can be

solved separately.

In the next two sections we describe the specifics of a simple solute tracer model and a

variable density flow model, and elaborate on the methods applied to solve the discretized

systems of equations.

2.1.1 Modeling of solute tracer movement

For the solute tracer model we assume fluid of a uniform density, therefore, we can rearrange

equation (2.3) (Darcy’s law), and use the formulation with hydraulic head and conductivity

instead. Hydraulic head is essentially the sum of pressure and elevation head (potential)
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and in unconfined aquifers it corresponds to the water level in the well:

h =
p

ρg
+ z. (2.4)

After taking the density term ρg out of the brackets in Eq.(2.3) we obtain:

q = −kρg
µ

(∇ p

ρg
+∇z) = −K ∇h, (2.5)

where K is hydraulic conductivity, which is equal to kρg
µ and has length per time units,

[L/t], unlike the permeability k which has [L2] units and is related to the architecture of

the porous media only.

In this application we assumed steady state conditions. This assumption can not be

generally applied, however, if we look closer at the time dependent term and consider the

fluid to be compressible, we can apply chain rule and rewrite the time dependent term as:

∂(φρ)

∂t
= φ

∂ρ(p)

∂t
+ ρ

∂φ(p)

∂t
= φ

∂ρ

∂p

∂p

∂t
+ ρ

∂φ

∂p

∂p

∂t
=

(
φ
∂ρ

∂p
+ ρ

∂φ

∂p

)
∂p

∂t
. (2.6)

Letting α be the coefficient of (rock) matrix compressibility, α = ∂φ
∂p , and β, the coefficient

of fluid compressibility, β = 1
ρ
∂ρ
∂p ; the specific storativity is then Ss = ρg(φβ + α) [6] and

we can write the time dependent term for hydraulic head as(
φ
∂ρ

∂p
+ ρ

∂φ

∂p

)
∂p

∂t
= ρS

∂h

∂t
=

1

g
Ss
∂p

∂t
= ρSs

∂h

∂t
. (2.7)

Ss, specific storativity, is the volume released (or added) from or to a unit volume of storage

due to a unit decline (increase) in hydraulic head. The units are [L−1].

Since the solute tracer model is for flow of uniform density, after dropping out the

density term and substituting (2.5) in (2.1) we obtain:

Ss
∂h

∂t
−∇ · (K ∇h) = Qgw (2.8)

In confined aquifers specific storativity has fairly low values of order 10−3 or lower [92]. We

can therefore neglect the time dependent term Ss
∂h
∂t , when

∣∣Ss ∂h∂t ∣∣ << |Qgw|, i.e. the exter-

nal sources representing pumping rates or boundary effects are much larger than changes

due to hydraulic head decline (rise). This will be mostly the case for a short time scale and
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confined aquifers with pumping tests.

The steady state fluid mass balance equation (2.8) thus becomes

−∇ ·K∇h = Qgw (2.9)

Appropriate boundary conditions need to be defined, here we use Neumann and Dirichlet

boundary conditions

h = hBC at ΓD,
−→n ·K∇h = 0 at ΓN . (2.10)

hBC is the fixed head along the boundary ΓD, and a no-flux boundary is set for ΓN . The

groundwater linear velocity v, which is the velocity of solute moving in the subsurface, is

defined as

v =
1

φ
q = − 1

φ
K∇h. (2.11)

Now we can rearrange the solute mass balance equation (2.2), and take the density

term out of brackets, which leads to a standard advection-diffusion equation for solute

concentration c (replacing the ρω term). Assuming, that porosity φ does not change in

time or vanish we obtain the following time dependent partial differential equation for c

with groundwater velocity v:

∂c

∂t
+∇ · (c v)−∇ · (D∇c) = Qsw. (2.12)

This is a standard advection-diffusion equation. Even though that in aquifer systems

the groundwater velocity is fairly small, for the scenarios we consider (and model) in this

work, it is the dominant process compared to dispersion.

Discretization and solution of the solute tracer model

Both governing equations (2.9) and (2.12) are discretized on staggered grids, with c and

h placed in the cell centers and fluxes at the cell faces (see in Figure 2.1). The velocity

field (specific discharge) q is computed at the cell faces to avoid long differences when

computing the spatial gradient of h and improve accuracy of the discretization scheme.

The cell faces values of porous media properties such as dispersion, hydraulic conductivity

K or porosity, that are necessary to calculate the velocity v, are obtained in our model by

harmonic averaging from the values in cell centers.

Discretization of the spacial derivatives is done using a finite volume approach. For
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Figure 2.1: A single cell in the staggered grid of the discretized groundwater model, hy-
draulic head h and solute concentration c live in the cell centers, fluxes are computed
at the cell faces.

time integration we use operator splitting, where we first solve the advective part with a

Semi-Lagrangian integrator and then parabolic part with an implicit Euler method (for

details see [37]). The discretized system for the solute tracer groundwater model is then:

A(K) h = qgw (2.13)

cn+1 − S(v)cn

∆t
= A(D) cn+1 + qsc, (2.14)

where A(K) = −Div Av(K)Grad, A(D) = Div Av(D) Grad

The matrices Div and Grad represent the divergence and gradient operators and Av(·)
harmonically averages the values of a model property in the x, y and z direction from cell

centers onto cell faces. S(v) represents the Lagrangian push forward operator moving the

solute along the flow lines given by velocity v (discussed in the next paragraph), ∆t is the

time step size and external flux qgw accounts for the pumping rates and also the fixed head

boundary effects. Similarly qsc represent the sink/source term for the solute.

The solution of fluid mass balance is straightforward; the hydraulic head h from Eq.

2.13 is simply obtained as

h = A(K)−1qgw, (2.15)

which can be solved directly or by Conjugate Gradient method for large scale problems.

The solute mass balance equation (2.14) is solved by operator splitting. The choice of

a Semi-Lagrangian method here for the advection part is motivated by the ability to take

an arbitrary large time step which is especially important for inverse problems, where the
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velocity field may not be known. Standard explicit techniques may require changing the

time step during the inversion process which could lead to instabilities in the computation

of the gradient.

Our Semi-Lagrangian method belongs to the family of modified methods of charac-

teristic (MMOC) first introduced in [26]. The main advantages are in the alleviation of

the Courant number restriction due to the Lagrangian advection step [16] and mass con-

servation. The Eulerian - Lagrangian scheme is also effective in overcoming numerical

dispersion for advection dominated problems [89]. Similar approaches are taken for ex-

ample by codes such as the MOC3D model for solute transport [58], or later MT3DMS

for variable density flow in connection with Modflow [60, 62]. In the context of review

on Eulerian-Lagrangian localized adjoint methods (ELLAM)[85] our approach is a finite

difference Eulerian-Lagrangian type, where we do not solve the solute transport equation

using an integral equation but instead use a projection matrix.

In our implementation, particles are placed at the cell centers at each time step and

tracked forward. The solute content of each transported particle is interpolated to its

neighboring cells yielding the solution at the next time step (see in Figure 2.2). The

Lagrangian push forward operator S(v) is thus formed at each time step by coefficients

that interpolate the transported particles (cell centers) onto the neighboring cells.

Figure 2.2: Visualization of the Semi-Lagrangian scheme in 2D: Interpolation of solute mass
xt+∆t which was advected from the cell center at xt to surrounding cells. We track
the particles (cell centers) forward along the flowlines.
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Afterward, we can add the dispersion step using Euler’s method and equation (2.14)

can be solved recursively in time as:

cn+1 = (I −∆tA(D))−1 (S(v)cn + ∆tqsc) . (2.16)

Insight for Lagrangian methods
The basic idea behind Semi-Lagrangian methods can be well explained using a 1D advection equation with
a fixed velocity:

∂c

∂t
+ v

∂c

∂x
= 0

The analytical solution is c(x, t) = c0(x− vt). Suppose we have a discretization over a uniform mesh where
xi = iδx and tn = nδt, the Lagrangian methods use this analytic solution to find c at time tn+1 as:

c(xi, t
n+1) = c0(xi − v (n+ 1)δt) = c0(xi − vδt− vnδt) = c(xi − vδt, tn)

Similarly for
c(xi, t

n) = c0(xi − v nδt) = c0(xi + vδt− v nδt) = c(xi + vδt, tn+1)

For the Lagrangian methods we can therefore obtain an exact solution; however, at each time step we would
have to change the mesh. The Semi - Lagrangian methods approximate instead the value based on the
neighboring points using some interpolation technique. For 1D linear interpolation we can simply write
cn+1
i as:

cn+1
i = αcni−k−1 + (1− α)cni−k

where

v
δt

δx
= k + α, k =

⌊
v
δt

δx

⌋
.

For a 3D case we can proceed similarly, using trilinear interpolation, where the coefficients α and 1−α will
create the matrix S and we can compute c at the next time step as

cn+1 = S cn.

For a 3D domain with n cells in each direction, S is n3 x n3 matrix containing the interpolation coefficients
calculated using some interpolation procedure (e.g. linear interpolation leads to first order accuracy). The
overall accuracy of the advection step depends on the chosen interpolation method when deriving the
coefficients for the S matrix.

For the advection case a straightforward connection exist to the so called upwind scheme which is
defined as:

cn+1
i = cni − v

δt

δx

{
(cni+1 − cni ), v < 0
(cni − cni−1), v ≥ 0

with the stability region |v| δt
δx
≤ 1. Thus for |v| δt

δx
≤ 1 the upwind scheme is the same as Semi-Lagrangian

scheme above.
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2.1.2 Variable density flow (VDF) model

The modeling of variable density flow (VDF) has various applications including contaminant

transport, saline lakes hydrology, brine migration or nuclear waste disposal monitoring and

any processes, where the fluid density changes with solute concentration or temperature.

The physics of VDF can follow two very different processes. First, if the density of the fluid

decreases with depth, or significantly denser fluid enters the system above lighter fluid, it

may lead to unstable mixing processes (so called fingering) and for such cases the governing

equations for VDF become highly nonlinear. On the other hand if the density increases

with depth the process of mixing and flow is stable. This is the case for most groundwater

systems where the density differs laterally but usually increases with depth [95]. In some

case, for example salt tracer tests, the density changes are small enough not to effect the

flow field and a standard solute transport model can be used instead.

VDF models are used in this study for seawater intrusion simulations, where the differ-

ence between freshwater and saltwater density is relatively small; however, the changes in

the flow field due to solute dynamic still require the governing equations to be solved in a

coupled manner.

For the variable density flow the situation time dependent term is a bit different than

in the case of solute tracer model. We can again assume that porosity changes only with

pressure, but the density now changes with both solute mass fraction and pressure, following

the chain rule the term ∂(φρ)
∂t can be written as

∂(φρ)

∂t
= φ

∂ρ(p, ω)

∂t
+ ρ

∂φ(p)

∂t
= φ

∂ρ

∂ω

∂ω

∂t
+ φ

∂ρ

∂p

∂p

∂t
+ ρ

∂φ

∂p

∂p

∂t
(2.17)

= φ
∂ρ

∂ω

∂ω

∂t
+

(
φ
∂ρ

∂p
+ ρ

∂φ

∂p

)
∂p

∂t
. (2.18)

Similarly as in section 2.1.1 we can rewrite the fluid mass balance equation (2.1) using

specific mass storativity Smp = ρ(α+ φβ) = 1
gS as [6]:

φ
∂ρ

∂ω

∂ω

∂t
+ Smp

∂p

∂t
+∇ · (ρq) = ρQgw (2.19)

For confined aquifers we can expect
∣∣∣Smp ∂p

∂t

∣∣∣ << |ρQgw|. The first term is equal to φργ ∂ω∂t ,

where γ is introduced in the state equation bellow (Eq.(2.22)) and for saltwater-freshwater

density difference it is usually bellow 0.025. Therefore in many cases
∣∣φργ ∂ω∂t ∣∣ will be much
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smaller than |ρQgw| and the steady state assumption can be justified.

The governing equations for variable density flow, with steady state assumption for

pressure, are then

∇ · (ρq) = ρQgw, with q(ρ) = −k
µ

(∇p+ ρg∇z), (2.20)

∂(φ ρω)

∂t
+∇ · (ρω q)−∇ · (φ ρD∇ω) = Qsω. (2.21)

We complete the system with the linearized state equation between fluid density ρ and

solute mass fraction ω:

ρ = ρF (1 + γω) with γ =
ρS − ρF
ρF

, (2.22)

where ρF is the freshwater and ρS the saltwater density.

Additional state equations can be considered for modeling VDF, the effect of pressure

and temperature changes on density or the effect of solute content on viscosity µ. However,

for our application and under isothermal conditions, the viscosity changes can be neglected

and the solute content dynamic will have a much higher effect on density than pressure

changes. Another simplification of our model involves keeping the hydrodynamic disper-

sion tensor D fixed, i.e. not dependent on Darcy’s velocity q, which slightly reduces the

computational burden, when solving the coupled governing PDEs iteratively. Still, using a

full variable density flow model, as for example in [57], would not change the approaches

described in the following chapters regarding solving the coupled inverse problem.

The two PDEs (2.20) and (2.21) are coupled via the velocity term q which is dependent

on density ρ, respectively the solute mass fraction ω. The forward VDF model is therefore

nonlinear and both equations need to be solved together. We can again apply a finite

volume approach for spatial derivatives; averaging, gradient and divergence operators to

discretize the fluid mass balance equation, which becomes:

Div RKM (Grad pn + (Avρ
n)� g) = ρn � Qgw (2.23)

where RKM = diag

(
k� Av

(
µ

ρ

)−1
)
, g = −g Grad z.

We use the Hadamard product a � b for the element wise product of two vectors and Av

matrix operator for harmonic averaging from cell centers onto cell faces. The ad-script n
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stands for the corresponding hydrological state at the n − th time step. For now, assume

that we know the density ρ at the nth time step, the pressure pn can be then solved directly

pn = (−Div RKMGrad)−1 (Div RKM (Avρ
n)� g − ρn � Qgw) , (2.24)

by using Cholesky decomposition for matrix −Div RKMGrad.

Given the pressure pn we can compute the groundwater linear velocity vn at the cell

faces:

vn = −diag

(
Av

(
µφ

k

))−1

(Grad pn + (Avρ
n)� g) . (2.25)

For the solute mass balance equation (2.21) we can again apply operator splitting;

however, it is not the solute concentration c this time but the mass of the particle ρω which

is tracked forward during the advective step. The discretized form is then

(ρ� ω)n+1 − Sn(ρ� ω)n

∆t
= Div A(D,ρn+1) Grad ωn+1 + Qsω (2.26)

with A(D,ρn+1) = diag

(
Av

1

D� ρ(ωn+1)

)−1

.

Here again Sn represent the Semi-Lagrangian operator, containing the interpolation weights

based on velocity field vn. First, we integrate the advection step explicitly, obtaining some

temporary solute mass (ρ� ω)∗:

(ρ� ω)∗ = Sn(ρ� ω)n (2.27)

Using the state equation (2.22), we can solve a local quadratic equation for ω∗, noting that

only one root of the equation makes physical sense. Having the solution ω∗, we can now

integrate the diffusion part, starting from ω∗ with an implicit Euler method as:

(ρ� ω)n+1 = (ρ� ω)∗ + ∆tDiv A(D,ρn+1) Grad ωn+1 + Qsω (2.28)

The implicit diffusion step is nonlinear and is solved using a Picard iteration [2], updating

the velocity field vn and corresponding ω∗. For variable density flow with seawater, the

density difference between the two fluids is fairly small, decreasing the nonlinearity of the

coupled system and the number of Picard iterations (see the Algorithm 1). Even though

the time step can be large given the stability of the Semi - Lagrangian method, care must
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be taken with respect to the coupling with the flow equation [81]. Too large of a step would

lead to a weak coupling and possibly erroneous calculations.

Algorithm 1 Picard scheme

Initialize ωn+1
1 = ωn,ρn+1

1 = ρn

For k = 1 to itermax

• Calculate of pressure field: pn+1
k = f(ωn+1

k );.
• Update velocity field: vn+1

k+1 = − k
µ(∇pn+1

k + ρn+1
k g∇z))

• Advection step: (ρ� ω)∗ = Sn(ρ� ω)n

• Dispersion step: (ρ� ω)n+1
k+1 = (ρ� ω)∗ + ∆tDiv A(D,ρ∗) Grad ωn+1

k+1 + Qsω.

• Update pressure field given the new solute mass fraction: pn+1
k+1 = f(ωn+1

k+1)

• Check the error:
∥∥pn+1

k+1 − pn+1
k

∥∥ < tol break else Step1

2.1.3 Testing the GW models

To verify the developed groundwater models, we first tested numerically the discretization

errors. We computed the first and second derivatives for a known solution, which was then

compared with the model result for a decreasing grid size. From the hydrogeological point

of view we tested our model simulations against a classical benchmark problem for VDF

and known solutions for a 1D advection diffusion equation in case of solute transport.

If we fix the velocity field for the system of equations in the solute tracer model, ana-

lytical solutions exist for the solute mass balance equation (2.12), either for advection only

or with some specific initial conditions also for advection-diffusion process. Therefore, we

can compare our model results with this analytical solution and also evaluate the accu-

racy of Semi-Lagrangian method against the Lax-Friedrich scheme. In a simple experiment

we set the hydraulic head boundary conditions to be Dirichlet for the inflow and outflow,

implying a uniform velocity field along the x axis. With such a setup the solute with a

fixed concentration equal to 1 at the inflow moves with a steady velocity from left to right,

and without any dispersion we would have a sharp interface. We solved this essential 1D

advection problem with our 3D model for different time steps using both Semi-Lagrangian

and Lax-Friedrich methods. The results (profiles of the concentration profiles) are shown

in Figure 2.3, confirming the stability and lower numerical diffusion of the Semi-Lagrangian

method.

To test the VDF model, we run our code for the Henry problem [43] which is a clas-

sical benchmark problem for VDF in 2D representing a simplified seawater intrusion case.
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Figure 2.3: Test against analytical solution for advective transport: Semi-Lagrangian
method (left) vs Lax-Friedrich implicit scheme (right). Simulations were run for three
different time steps, from top to bottom, t = 15, 40 and 80 days, corresponding to
Courant number 0.33, 1 and 1.33. The solid line is the modeled break through curve
and the dashed one is the analytic solution.
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The boundary conditions are set as impermeable on the top and bottom of the domain,

the inland boundary is set as fixed freshwater inflow, and the seaside boundary is fixed

hydrostatic pressure based on the seawater interface (see in Figure 2.4). We used the di-

mensionless parameters a = 0.3214 and b = 0.1 as in [1], and obtained similar results as in

their study for a diffusive case of the Henry problem, i.e. when only molecular diffusion is

consider with a fixed value for D and transverse and longitudinal dispersivities being zero

(see in Figure 2.5).

Figure 2.4: The boundary conditions setup for a Henry’s benchmark problem, seawater
boundary is on right, freshwater inflow on the left.

Figure 2.5: Contour plots for two cases of testing the Henry’s benchmark problem repre-
senting the steady state solutions for solute mass fraction. Left: the dimensionless
parameters a = 0.33, b = 0.01; right: a = 0.33, b = 0.1, which correspond to the
solutions in [1]
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2.2 Geophysical modeling

2.2.1 Direct current resistivity survey

In order to estimate the physical properties of the porous media, we choose direct current

(DC) resistivity, also referred to as Electrical Resistance Tomography (ERT). DC resistivity

is sensitive to the electrical conductivity of the media. Since the conductivity of saltwater is

a few orders of magnitude larger than that of freshwater, the DC resistivity method is often

a natural choice, where the fluid conductivity changes as a result of the solute dynamic.

Moreover, DC has several advantages when compared to other electromagnetic methods:

relatively easy and inexpensive data acquisition and minimal computational effort.

In DC experiments, a current is injected into the ground creating an electrical potential

distribution, which is then measured using pairs of electrodes placed on or under the surface

(Figure 2.6). Multiple receiver and source electrodes can be utilized in a surface survey,

creating many options for the experimental design scheme, with the goal of capturing the

variability of the 3D subsurface conductivity distribution.

To model this process, we used the steady state form of Maxwell’s equations:

∇ · (−σ∇ϕ) = I(δ(r− rs+)− δ(r− rs−)) (2.29)

n · ∇ϕ = 0 on Γnc

where σ represents the media’s electrical conductivity, ϕ is the electric potential, I is the

current source, δ is a Dirac delta function and rs+,s− stands for the location of positive

and negative current electrodes. The boundary conditions were set as no flux across the

boundaries, Γnc. When solving the forward problem, the electrical conductivity model, σ,

is known and potentials everywhere can be calculated using a finite volume approach on a

3D grid. Since the discretized DC equation is essentially the same type of equation (Poisson

equation) as the flow equation (2.13), we follow the same procedure to solve it as it has

already been described in section 2.1.1. The cell-centered finite volume approach for the

discretization of the problem leads to a linear system of equations:

A(σ)u = q (2.30)

where A(σ) = −Div diag

(
1

(Avσ−1)

)
Grad.
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The electrical conductivity σ is averaged harmonically from the cell centers onto cell faces

(via matrix operator Av), q is the source term and u represents the potentials. The for-

ward model solves for the potential everywhere given a conductivity model. Using a data

projection matrix Qe, we obtain observed data

de = Qeu (2.31)

measured at the receivers.

Figure 2.6: DC survey scheme for a single source and receiver.

2.2.2 Time domain electromagnetic survey (TDEM)

All electromagnetic surveys employ the induction effect that creates magnetic field due to

changes in electric field and vice versa. The way how the changes are initiated and the

data are recorded give different type of surveys, here though, we focus just on one specific

type that leads to a particular set of governing equations and following discretization of

the electromagnetic process.

In our experiments, a direct current runs through the transmitter loop to create a

steady-state magnetic field. The current is then abruptly shutoff, causing a rapid change

in magnetic field, which induces so called eddy currents that flow in electrically conductive

bodies in the subsurface. These eddy currents will generate secondary magnetic fields that

can be measured by receivers at the earth surface. Similarly as DC resistivity, TDEM

survey is thus sensitive to changes in electrical conductivity of the subsurface.

Maxwell’s equations for the electric field e and magnetic density b, where we already
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substitute in the constitutive relations, can be written as:

∇× e+
∂b

∂t
= 0 (2.32)

∇× µ−1b− σe− ε∂e
∂t

= sr(t) (2.33)

and BC:

~n× b = 0, b(0, x) = b0, e(0, x) = 0 (2.34)

where e is the electric field, b is the magnetic flux, µ represents the magnetic permeability,

σ is the electrical conductivity, ε electrical permittivity and sr is the source current. The

first equation is often referred to as Maxwell’s Faraday equation, and the second one as

Ampere’s law.

We can apply the quasi static approximation here due to the initial shutoff of the source.

Since the permittivity ε is very low and we can assume small changes of electric field e, the

term ε∂e∂t can be dropped out and for t > 0 (after the current shutoff) we can simplify the

equation (2.33) to:

∇× µ−1b− σe = 0 (2.35)

Discretization and solving the forward model

After elimination of b in Eq.(2.35) by substituting e from Eq.(2.32), we can write:

∇× µ−1∇× e− σ∂e
∂t

= 0, (2.36)

where the only unknown is the electric field e.

Using a staggered grid, the disretized form of the governing equations (2.32) and (2.36)

in time is then:

C en + α(bn − bn−1) = 0 (2.37)

C> M(µ)−1C en + αM(σ)en = αM(σ)en−1 (2.38)

where M(µ) = diag
(
Afµ

−1
)

M(σ) = diag (Avσ) .

The electric field is placed on the edges and the magnetic density occurs on the cell faces

(see in Figure 2.7). C is the curl matrix operator, α(i) is 1
δt and Ae,Av correspond to

averaging matrix operators from cell centers onto edges and cell faces respectively.
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Figure 2.7: Staggered discretization for the TDEM model, properties such as permeability
µ and electrical conductivity σ are at the cell centers, magnetic field b is computed at
the cell face and electric field e on edges.

In order to proceed with the forward calculation in time, we need to know the initial

field e0 and magnetic flux b0. The initial magnetic field is calculated using the Biot-Savart

law and integrating over the current ellipse (loop). Substituting into Eq.(2.35) we obtain

the initial electric field as

e0 = M(σ)−1(C>M(µ)b0).

Once we have the initial fields, we need to solve the time dependent Eq.(2.38) for e, at each

time step we thus solve the following system for ei+1:(
C> M(µ) C + αiM(σ)

)
ei+1 = αiM(σ)ei

This system is solved with the Conjugate Gradient method, for which we implemented the

A-phi preconditioner [37]. The magnetic density at i + 1the time step is obtained directly

from Eq.(2.37) as

bi+1 = bi − 1

αi
C>ei+1.

The “measured data”, changes in magnetic field are then:

di = Q C ei+1, (2.39)

where the projection matrix Q interpolates the data from the cell faces onto receivers
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locations.

Both geophysical models were tested using artificial sources. These were analytically

derived based on known conductivity fields, which could be then compared against model

solutions.
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Chapter 3

Inverse problem for a single model

The focus of this work is on the joint inversion of two different data sets. However, before we

start to explore the beauty of joint inversion, it is worthwhile to at least briefly summarize

solving the inverse problem for a single data set since it is a building block for any coupled

minimization scheme. We restrict the two following sections to a general solution of an

inverse problem for a single model, but leave some space to discuss specifics related to

each, groundwater and geophysical, type of data. In the last section of this chapter we

derive the data sensitivities, which are necessary if we want to proceed with any type of

Newton method for a single or coupled inversion.

3.1 Ill-posedness and regularization

Usually the data we collect provide some indirect, less often direct, information about the

model we are trying to recover. One could try to estimate this model by considering only

the data alone and minimize the norm of the data residuals:

min
m

Φ =
1

2
‖Q F(m)− dobs‖2 , (3.1)

where F(m) is some forward model operator, e.g. mapping the model m to hydrological

states or geophysical potentials (and most likely involving some inverse matrix computa-

tion), matrix Q projects the simulated groundwater or geophysical states onto the data

locations and the vector dobs represents the observed data for some groundwater or geo-

physical states which are dependent on the model m that we are trying to recover. Lets

assume a linear case, where we can write Am = QF m, the least square solution of Eq. (3.1)
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would then give m̂ [66]:

m̂ = (A>A)−1A>dobs (3.2)

If the data are coming from some physical experiment, are scarce and contain measurement

errors, the minimization will rarely lead to success. Moreover, the forward operator F(m)

can behave well for a simple groundwater model but it is rarely well behaved for geophysical

modeling. With indirect data for m, the matrix (A>A) may not be invertible. Even if we

obtain direct GW data, for example solute concentration, the Q operator has nonzero

entries only for few data location points in the observation wells, making the recovery of a

full 3D model difficult (i.e. nonunique solution).

Both groundwater and geophysical data provide only a limited “picture” of the sub-

surface, whereas we want to recover a full 3D model, whether it is solute concentration or

soil bulk conductivity. Therefore, we need to add some a-priori information to limit the

solutions to physically realistic estimates, which are hopefully close to the true ones.This

can be achieved using regularization. The inverse problems are usually regularized by as-

suming that the model (estimate) should be close to some reference model, which can be

simply an initial guess or derived from geological information. Clearly, the way we choose

our a-priori information and incorporate it in the regularization will have a huge impact on

the final estimate.

If we set R(·) to be some regularization operator and Σ to be the covariance matrix

based on measurement errors and the norm ‖r‖2Σ−1 = r>Σ−1r, we can obtain the maximum-

a-posteriori estimate of the model m by minimizing the following functional:

min
m

Φ =
1

2
‖Q F(m)− dobs‖2Σ−1 + αR(m), (3.3)

The regularization parameter, α, should be chosen in such a way that the inversion is guided

by the data misfit term. In other words, we prefer the data to be the steering mechanism

in the minimization rather than the a-priori information, which may be biased or incorrect.

The parameter α can be set by a trial and error or by Cross-Validation [37].

Since the model to be estimated in our application is based on differing fluid conductivity

we do not expect to have sharp boundaries due to dispersion in porous media. Therefore,

for our application, L2 quadratic regularization turned out to be a good choice, as it favors
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smooth solutions. After discretization the quadratic R(m) gives

R(m) =
1

2
‖L(m−mref )‖2 , (3.4)

where L is the gradient operator, and mref is the reference model. The matrix operator

L consists of gradient fields in x, y and z directions; L = [αxGradx αyGrady αzGradz]
>,

and each of the components can be proportionally decreased or increased if one expects

more smoothness in a particular direction. For example, in the case of seawater intrusions

with solute coming from the seaward boundary, the variation along this boundary can

be penalized more than other directions. The selection of the reference model is up to

personal preference, in geophysics a uniform model is a popular option, unless we have

more information about the geology. The reference model can be also updated during the

iterative minimization process.

An important thing to note here is that often we do not estimate the conductivity

or solute concentration directly but rather estimate some function of m. For example

f(m) = exp(m) ensures that the resulting field attain only positive values. In the case of

seawater intrusion modeling the tanh(x) function turned out to be useful to parametrize

the solute concentration. The electrical conductivity, resp. solute fraction, was modeled as

σ = 1− tanh(m),

where mref varies only along x coordinate (flow direction) and is bounded so that σ stays

attains only positive values. In Figure 3.1 we show a slice through the reference model

along the x axis, the reference model mref increases gradually along the x direction, while

the resulting σref mimics the seawater intrusion expected profile (i.e. solute coming from

the left seaward boundary).

3.2 Gauss-Newton method

Let us recall the objective function in equation (3.3), after substituting the quadratic reg-

ularization for m we have:

Φ(m) =
1

2
‖Q F(m)− dobs‖2Σ−1 +

α

2
‖L(m−mref )‖2 ,
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Figure 3.1: The reference model for SWI inverse problem. The resulting conductivity σref
has high solute mass fraction along the seaward boundary on the left, as expected in
real conditions.

which can be minimized by a Gauss-Newton method. The gradient of Φ(m) is then

gm = J>W>W (F(m)− dobs) + α L>L (m−mref) , (3.5)

where J represents the sensitivity of data with respect to model m, J = ∂F (m)
∂m , and W =

diag
(
σ̂−1

)
Q. The Hessian can be approximated by

Hm = J>W>WJ + α L>L. (3.6)

The computation of the sensitivities J is the subject of the following section.
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At each iteration we update the estimate mk by a step in the direction:

sk = −H−1
m gm, (3.7)

which is solved using a preconditioned conjugate gradient (CG) method. The advantage of

a CG method is that it does not require computing the gradient or Hessian explicitly, only

matrix vector products need to be computed. The CG method thus eases the computational

burden especially for large scale problems or when solving the problem on a fine scale. For

further acceleration of the iterative process it is wise to choose a good preconditioner; for

a single type of data we used an approximation of the inverse of ∂2R(m)
∂m2 , the regularization

part in Hessian. The step size µ is determined afterward using an Armijo line search [75]

giving the update for m as:

mk+1 = mk + µsk. (3.8)

The number of iterations differs for groundwater and geophysical data, as the problems

have different convergence behavior.

3.3 Sensitivities

To apply any type of Newton method, we need to know the sensitivities, or so called

Jacobians, of collected data with respect to parameters or states of interest. In this section

we show how to derive them analytically based on the discretized systems of equations,

using a closed form formula. Such analytically derived sensitivities enable us to speed up

the inversion process and ease the computational burden.

For the solute transport model (the system of governing equations was presented in the

section 2.1.1) we need to compute the groundwater data sensitivities: ∂c
∂m and ∂h

∂m , where

m represents either hydraulic conductivity K or initial solute concentration c0.

The derivation of sensitivities of hydraulic heads h w.r.t. hydraulic conductivity K is

quite straightforward, the fluid mass balance in Eq.(2.13) can be rewritten as F(K, h) = 0

and differentiating w.r.t. K we obtain

∂F

∂K
+
∂F

∂h

∂h

∂K
= 0.
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Rearranging, we have

∂h

∂K
= −

(
∂F

∂h

)−1 ∂F

∂K
= −A(K)−1Div diag (Grad h)Av. (3.9)

The sensitivities of solute concentration data w.r.t. initial solute c0 can be solved

recursively from the discretized equation (2.14):

∂cn+1

∂c0
= (I −∆tA(D))−1 S

∂cn

∂c0
. (3.10)

Jacobian w.r.t to the initial conditions, c0, is therefore solved as a by-product when per-

forming the forward calculations. The adjoint can be solved similarly by a backward time

stepping process.

It is important to note that by using Krylov subspace methods (CG in particular) for

solving the direction update in Gauss-Newton method (Eq.(3.7)), we do not need to store

the explicit sensitivity matrix J and can instead work only with matrix-vector products: Jv

and adjoint JTw.

In particular, for a given vector v and sensitivity ∂cn

∂c0
, at each kth step we first calculate

S∂ck−1

∂c0
v, then we solve a linear system (I −∆tA(D)) x = S∂cn

∂c0
v for x at each time step,

and the solution x at the last time step gives Jv. Similarly for the adjoint product J>w,

we start from the last time step and solve system (I −∆tA(D))> y = w, and then multiply

the solution y by S>. After all backward time stepping we obtain J>w. Therefore, for the

sensitivity computation we only need to solve a linear system corresponding to the size of

vector cn.

For the variable density flow model (section 2.1.2) the system of governing equations is

nonlinear, which complicates the sensitivity derivation. One way to look at it is that during

the forward simulation we solve the system of two partial differential equations, and at the

end of each time step the pressure pn is given by the solute distribution and boundary

conditions. The groundwater velocity vn can be therefore expressed as a function of ωn

and pn only and the system thus reduces to the second equation for solute transport (2.26).

For the sake of simplicity, lets proceed using the solute mass fraction formulation alone,

the time stepping process in equation (2.26) can be then written as

(I−∆tA(D))ωn − Sn−1ωn−1 −∆t qn−1
BC,ex = 0. (3.11)
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Due to the operator splitting approach, we can explicitly derive the sensitivity of the mass

ωn+1 at each time step with respect to ωn, the solute fraction at the previous time step.

This is a two step calculation, step 1 being the advection part and step 2 being the diffusion

part. The sensitivity of the final solute fraction can therefore be calculated recursively dur-

ing the forward groundwater model run. However, unlike in the solute transport case, the

Semi-Lagrangian matrix operator Sn is now dependent on velocity vn, which is dependent

on ωn. This extra term makes the derivation more tedious.

Let Tn be the sensitivity of Sn(ρω)n with respect to spatial coordinates:

Tn =
∂(Sn(ρω)fixed,n)

∂xi
.

The sensitivity of the advected mass w.r.t ω0 can be then expressed as

∂(ρω)n+1,ad

∂ω0
= Sn

∂(ρω)n

∂ω0
+ ∆t Tn

∂vn

∂ω0
. (3.12)

The sensitivity of ∂vn

∂ω0 can also be (after some work) expressed as linearly dependent on
∂(ρω)n

∂ω0 since vn is a function of pressure pn and density ρn and thus the term ∂(ρω)n+1,ad

∂ω0

can be solved recursively.

More generally, we can also consider all time steps together:

F(ω) =


I −∆t A(D)

−S1 I −∆t A(D)

−S2 I −∆t A(D)

...

−Sn−1 I −∆t A(D)




ω1

ω2

..

..

ωn

−


S0

0

..

..

0

ω0 −∆t


q1BC,ex

q2BC,ex

..

..

qnBC,ex

 = 0,

We can then write the forward model in a compact form as

ATSω − B0ω0 − q̂ = 0, (3.13)

where ATS is the time stepping matrix that is block bidiagonal and B0 is the matrix that

multiplies ω0. The vector q̂ involves the boundary conditions and sources and vector ω is

set here as ω = [ω>1 , . . . ,ω
>
n ]>.
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Differentiating F with respect to ω0 we obtain that

∂F(ω,ω0)

∂ω

∂ω

∂ω0
+
∂F(ω,ω0)

∂ω0
= 0, (3.14)

and therefore
∂ω

∂ω0
= −∂F(ω,ω0)

∂ω

−1∂F(ω,ω0)

∂ω0
. (3.15)

Using (3.13) we see that sensitivity J is

∂ω

∂ω0
= A−1

TSB0. (3.16)

Since in our synthetic examples we collect data only for the last time step, we compute

the sensitivities recursively during the forward simulation.

In a similar way, the sensitivities of magnetic flux changes with respect to the con-

ductivity σ are solved recursively during the time stepping process. Differentiating the

first governing equation (2.37) for the time domain electromagnetic modeling (which is not

directly dependent on σ) we can write:

C
∂en

∂σ
+ α

(
∂(bn − bn−1)

∂σ

)
= 0. (3.17)

Afterward, if we differentiate the second governing equation (2.38) for the electric field and

move some of the terms on the right hand side we obtain:

C> M(µ)−1C
∂en

∂σ
+αM(σ)

∂en

∂σ
= α

∂M(σ)en−1,fixed

∂σ
+αM(σ)

∂en−1

∂σ
−α∂M(σ)en,fixed

∂σ
(3.18)

The left side has the same matrix multiplication as the original equation (2.37), except that

now we are solving for ∂en

∂σ and the right hand side is dependent only on σ, ∂en−1

∂σ and en.

Therefore, to compute ∂ei+1

∂σ we can just apply the same TDEM forward problem solver,

but with a different right hand side. The sensitivity of magnetic flux data with respect to

σ is then:
∂d

∂σ
= Q C

∂ei+1

∂σ
. (3.19)

The adjoint product is solved recursively with backward time stepping.

The sensitivities of the potentials measured by DC resistivity method, ∂ϕ
∂σ , follow the
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same lines as the sensitivity of hydraulic head with respect to hydraulic conductivity in

equation (3.9), since in both cases a Poisson type of equation is discretized. Again, only

matrix-vector products are calculated.
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Chapter 4

Coupled inverse problem

The idea of jointly evaluating different data goes back as far as 1975, when Vozoff and

Jupp [97] jointly inverted two different kinds of geophysical measurements (DC resistivity

and magnetotelluric data) by considering a simple three layer model. Inverting jointly hy-

drological and geophysical data has much more recent history, first studies were published

about a decade ago and focused on unsaturated zone, as for example in [59], where the

authors tested the joint inversion approach on two synthetic examples, combining GPR

data with water saturation data. There are two main reasons for a relatively recent his-

tory of joint hydrogeophysical inversion. First, while in geophysics often both types of

data relate to the same physical property, in hydrogeophysics this is usually not the case

and a relationship between the groundwater and geophysical variable of interest has to be

established. This gives ample space to create a framework for coupling geophysical and

groundwater data, but the particular coupling can also be potentially the main source of

error when jointly inverting these two datasets. Second, the groundwater and geophysical

data are usually collected and analysed by two different research communities, with limited

communication in between. Here, we bridge this gap by implementing both models within

one computational framework. First, in section 4.1, we describe different approaches to

couple the groundwater and geophysical variables, in section 4.2 we formulate the coupled

inverse problem, and finally in the sections 4.3 and 4.4 we show different approaches to

solve the coupled inverse problem.
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4.1 Coupling the GW and geophysical variables

The necessary condition to proceed with any coupled inversion is that both the geophysical

and groundwater data, directly or indirectly, relate to the same physical property, whether

it is fluid conductivity, porosity, fluid saturation etc. The actual relation is then commonly

defined by some empirical petrophysical relationships that couples the geophysical and

hydrological states or parameters, for example electrical conductivity with solute content

or seismic velocity with porosity, fluid conductivity or geological facies location. Such

petrophysical relationships have to be either calibrated in the field or can be estimated

from the laboratory analysis.

An alternative to a petrophysical relationship is applying a structural constraint in

the minimization that has a preference for structure similarity between the two models,

however, the two models do not need to coincide. The consistency between the models

ideally results from the data and not from the assumed petrophysical relations.

In the next two sections we therefore discuss both approaches to couple the geophysical

and groundwater variables; petrophysical relationships and structure similarity. Both of

these options are later applied in our synthetic examples.

4.1.1 Petrophysical relationships

Petrophysical relationships represent the simplest and probably the most common way to

couple the two different models. Widely used Archie’s law was introduced already in 1942 [3]

and provides a link between electrical conductivity, σb, and fluid conductivity σw. Another

example of petrophysical relationship is the link between the hydraulic conductivity and

charge density when measuring the self-potentials [50]. In saturated porous media the fluid

has usually the major effect on the overall soil bulk electrical conductivity. At the same

time, the fluid conductivity is often directly related to the amount of solutes in groundwater,

which is our quantity of interest. Therefore, in the context of this work, the Archie’s law

relating fluid and soil bulk conductivity is the most relevant petrophysical relationship and

is the subject of the next paragraph.

Coupling the salt mass fraction and electrical conductivity

The soil bulk electrical conductivity of a porous media is dependent on fluid conductivity,

rock/soil porosity, permeability, saturation, temperature and also mineral composition [56].

In the saturated sediments of coastal aquifers, soil bulk conductivity is usually mainly
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affected by the fluid (groundwater) salinity, though if the groundwater composition does not

change then surface conductivity of fluid-grain interfaces, porosity or amount of saturation

can be the main factors influencing the overall soil bulk conductivity. For fully saturated

sediments the Archie’s law can be written as:

σb =
1

α
σwφ

n, (4.1)

where σb is the bulk electrical conductivity, σw is the fluid electrical conductivity and φ

porosity. α and n are empirical parameters related to a geological material, which can be

calibrated based on soil core samples, a field survey or recommended values from geological

characterization. In this form of Archie’s law the surface conductivity is neglected, which

is a valid assumption for most of clay free sand and gravel aquifers, however, not for

environments with a high clay content [56]. In many cases though, the differences in

conductivity due to the variation in geological material are negligible compared to the

increase in conductivity due to solute dynamic in groundwater.

The fluid conductivity in natural waters increases with the amount of dissolved solids

and ions [42]. Linear relationships can be found for a fixed temperature between total

dissolved solids (TDS) and fluid electrical conductivity. For example the seawater is usually

dominated by sodium chloride ions and we can assume a linear relationship between salt

mass fraction and fluid conductivity as

σw = b ω + σF , (4.2)

where σF is conductivity of freshwater, b is a constant and ω is salt mass fraction. The

electrical conductivity of seawater is approximately two orders of magnitude higher than

that of freshwater. After substituting into Archie’s law, we have

σb =
1

α
(bω + σF )φn. (4.3)

In this petrophysical relationship one assumes that the bulk conductivity is affected only by

the electrical conductivity of the fluid in the porous matrix, the variations in temperature

are small, and that the surface conductivity of porous material is negligible.

Equation (4.3) is used to generate electrical conductivity models based on the salt mass

fraction from groundwater model simulations in the synthetic examples in section 5.1. For

field applications it is more common to record the fluid conductivity σw of groundwater
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samples, and only later by using a linear relationship to transform it to an actual solute

mass fraction or concentration. However, this linear relationship is different from the general

petrophysical relationship, having a different error and lower uncertainty. Therefore, in this

work, we prefer to relate the solute fraction (or concentration) and soil bulk conductivity.

4.1.2 Structure-based coupling

As it has been pointed out in [70], most petrophysical relationships were originally de-

fined for a scale of a representative elementary volume and therefore it is generally hard

to determine and properly parametrize them for the field conditions. Another caveat of

applying the petrophysical relations is the assumption that the properties such as porosity

or saturation are homogeneous or known, a fixed parameter setting is then unlikely to be

valid over the entire domain in environments with different geological units.

To avoid applying the petrophysical relationship one can assume instead that the two

models have a common interface, or lithological units [70]; however, for such an assumption

we need to have a good a-priori knowledge about the geology of the area, which may not be

readily available, especially if we are about to model the processes in 3D. Application of this

approach can be found in [13]. Another way to alleviate the need of explicit petrophysical

link is by assuming a strong correlation between the groundwater and geophysical variables

[54].

A more robust structure similarity measure seems like a good alternative to imposing a

strict dependence by a petrophysical link, assuming a correlation or defining a-priori some

fixed geological model. We consider two models m1 and m2 to have a similar structure if

they change in the same locations (their transition zones coincide) [38]. The sign of change

does not need to be the same; however, for the models of soil bulk electrical conductivity

and solute content this is the case. The review paper of [35] provides different examples of

applying the structure similarity measures in multiphysics geophysical imaging, where most

of them involve computation of spatial gradients of the two different models (variables).

The gradients can be normalized as in [27], serve to detect edge locations [39] via some

model curvature function or become an input for a cross-gradient function or joint total

variation.
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The edge detection idea [39] lies in defining a polynomial with some threshold τ1, τ2:

S(m) =


0 if

∣∣∇2m
∣∣ < τ1

P5(
∣∣∇2m

∣∣) τ1 ≤
∣∣∇2m

∣∣ ≤ τ2

1 if τ2 ≤
∣∣∇2m

∣∣ (4.4)

This give smooth operator S(m), fifth degree polynomial, which is also twice differentiable

and thus convenient for Gauss-Newton type of minimization.

Joint total variation (JTV) of the two gradient fields is becoming popular in multimodal

geophysical inversion and is based on the idea of sparse signal joint recovery. It encourages

the two gradients to occur at the same location. For multiple geophysical data it has been

applied in [38] or [28], though the idea originates in processing of the color images [10, 88].

For two models m1 and m2 it is

ΦJTV (m1,m2) =

∫ √
|∇m1|2 + |∇m2|2dx,

where m1 and m2 represent the two, possibly different, models with a similar structure.

Computing the cross-gradient field product (CGP) is another convenient option to eval-

uate structure similarity between two models:

ΦCGP (m1,m2) =

∫
|∇m1 ×∇m2|2 dx.

In geophysics it was introduced by [33] to jointly invert seismic and DC resistivity data and

in [65] it was first applied for hydrological and geophysical data inversion.

Both JTV and CGP similarity measures can be differentiated with respect to both

models and JTV is also convex. One thing to note is that if one of the models is flat, (i.e.

having a single value everywhere) then its gradient field is equal to zero. The ΦJTV then

changes to standard total variation regularization operator for the other model, but in case

of ΦCGP the overall similarity term goes to zero.

This is important to keep in mind when evaluating the coupled objective function. If

the gradient |∇m1| ≈ 0, the other model m2 will not be penalized for any variations as

φCGP goes to zero. Additional L2 smooth regularization can reduce these variations but

will be in conflict with creating a “structure”. Therefore, in [38] it was proposed to add
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another term in φCGP to stabilize the problem in areas where |∇m1| ≈ 0, which is∫
|∇m2|χθ (|∇m1|) dx, where χθ(t) =

1

2
(tanh(θt) + 1) . (4.5)

The parameter θ is chosen so that the value of θ |∇m1| is large enough, where we consider

∇m1 to be significant.

In this work we tested Cross Gradient product and Joint Total variation as structure

similarity measures. Both of them are easy to implement and can be also differentiated.

4.1.3 Discretization of the coupling terms

Lets start with the petrophysical relationship, which as a part of the objective function will

change to

ΦPR = ‖σ(ω)− σ‖2 , (4.6)

in other words we will minimize the norm of the difference between the soil bulk con-

ductivity, and the soil bulk conductivity given by the solute mass fraction. We need to

differentiate it with respect to both models and thus obtain the gradients with respect to

σ and ω. These sensitivities can be easily derived as:

∇σ ΦPR = −(σ(ω)− σ), ∇ω ΦPR =
∂σ(ω)

∂ω
(σ(ω)− σ) =

b

α
φm(σ(ω)− σ). (4.7)

And the second derivatives are as follows

∇2
σ ΦPR = −I, ∇2

ω ΦPR = (
b

α
φm)2I, (4.8)

with I being the identity matrix.

The discretization of the JTV term is quite straightforward as well, we just need to keep

in mind that the gradient fields occur at the cell faces and need to be averaged back on the

cell centers values. Let Grad be the gradient operator and Af averaging matrix operator

(from cell faces onto cell centers), the discretized JTV for the two models m1 and m2 is

then:

ΦJTV (m1,m2) = vT
√

M, (4.9)

where M = Af

(
(Grad m1)2 + (Grad m2)2

)
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and v is a vector corresponding to the cell sizes of the domain and sums up the term under

the square root.

We can twice differentiate ΦJTV with respect to m1 and m2, which is necessary to solve

the inverse problem by Gauss-Newton method. The gradient w.r.t. m1 is:

∇m1 ΦJTV = GradTdiag (Grad m1) Af
T M−

1
2 (4.10)

and the Hessian is:

∇2
m1

ΦJTV = GradTdiag (Af
TM−

1
2 ) Grad

−GradT diag (Grad m1)Af
T M−

3
2 Af diag (Grad m1)Grad (4.11)

For practical calculations the first term in (4.11) is semi-positive definite and therefore a

good approximation to Hessian.

We could also directly discretize the cross-gradient field product (CGP), but that is

generally numerically unstable due to the long differences that are needed to discretize the

cross product. Therefore, we avoid the direct discretization of the cross product, and use

the Lagrange’s identity in a vector form instead and write φCGP as:

φCGP (m1,m2) =

∫
|∇m1 ×∇m2|2 dx =

∫
|∇m1|2 |∇m2|2 −

∣∣(∇m1)T∇m2

∣∣2 dx. (4.12)

In this case only dot products are used, derivatives along the same directions are multiplied

and ΦCGP term can be then discretized as

ΦCGP (m1,m2) =

1

2
vT
(

Af (Grad m1)2 � Af (Grad m2)2 − (Af(Grad m1)� Af(Grad m2))2
)
, (4.13)

where again v is a vector corresponding to the cell sizes of the domain and Af is averaging

matrix operator (from cell faces onto cell centers).

Following the equation (4.13), the gradient w.r.t. m1 for cross-gradient field product is

∇m1 ΦCGP = vTdiag (AfGrad m2) Afdiag (Grad m1) Grad

−vTdiag (Af(Grad m1)� (Grad m2)) Afdiag (Grad m1)Grad, (4.14)
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and the Hessian is

∇2
m1

ΦCGP = GradTdiag (AfGrad m2) Af
Tdiag (v) Grad

−GradTdiag
(

(Grad m2) Af
Tdiag (v)diag (Grad m2)

)
Afdiag (Grad m2)Grad. (4.15)

Both terms were implemented in our inversion code for the Hessian calculation.

4.2 Formulation of the coupled problem

Up to now we have described how to discretize and solve both groundwater and geophysical

forward models, how to solve a single inverse problem including necessary regularization

and also two different options for coupling the groundwater and geophysical variables. We

are thus in a good shape to proceed to a coupled problem and solve it with a joint approach.

To keep the discussion general, we can assume that we are interested in some GW

state or parameter (model) m which can represent the hydraulic conductivity K or initial

conditions for solute content (or also external fluxes, dispersion or other parameters). The

groundwater data are dependent on model m, with s(·) representing some hydrological

state (solute concentration or hydraulic head). The geophysical model to be estimated is

the soil bulk electrical conductivity, σ, that is affected mainly by the fluid conductivity and

therefore is expected to have a similar structure as groundwater solute distribution.

Assume now that we have obtained both types of data at a single time, that is we have

de = Qeu(σ) + εe (4.16)

df = Qfs(m) + εf (4.17)

where Qe and Qf are sparse matrices that project the geophysical states, u(σ), and the

hydrological states, s(m), onto their measurement locations, respectively. Let εe and εf

be vectors with the errors associated with each measurement, which are assumed to be

Gaussian, independent and identically distributed with covariance matrices Σe and Σf .

We now develop a procedure to estimate the groundwater model m and the electrical

conductivity σ by the regularized maximum likelihood estimate [30, 37, 67]. This leads to
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the following constrained optimization problem

min
σ,m

1

2
‖de − Qeu(σ)‖2

Σ−1
e

+ αeR(σ) + δ
1

2
‖df − Qfs(m)‖2

Σ−1
f

+ αfR(m) (4.18)

s.t ΦS(s(m),σ) ≤ τ (4.19)

Here R is the regularization operator (discussed in section 3.4) and αe, αf and δ are regu-

larization parameters. δ specifically weights the contributions of two different data misfits.

The constraint (4.19) here represents either petrophysical relationship (Archie’s law) or

some structure similarity constraint between hydrological state s(m) and soil bulk con-

ductivity σ. The choice of τ , representing the error bound for the similarity constraint,

depends on the particular similarity coupling, if it is set to zero, we impose an exact simi-

larity between groundwater and geophysical model. In the next few sections we will discuss

possible ways of minimizing this functional.

4.3 Minimization with an explicit petrophysical constraint

Lets first assume we do know the explicit petrophysical relationship between the two models,

σ = η s(m) + σfb = p(m), (4.20)

which is based on the Archie’s law introduced in the equation (4.3), and therefore s(m)

refers here to solute mass fraction. We lumped a few parameters into η = c
αφ

n, and σfb

corresponds to the conductivity of porous media with freshwater only (or without any

solute) and is equal to σfb = 1
αφ

nσF . To recall, the objective function for the coupled

inverse problem (equation (4.18)) is then:

min
σ,m

1

2
‖de − Qeu(σ)‖2

Σ−1
e

+ αeR(σ) + δ
1

2
‖df − Qfs(m)‖2

Σ−1
f

+ αfR(m) (4.21)

s.t σ − p(m) = 0 (4.22)

A number of different approaches may be taken to solve the optimization problem above.

One possibility is a direct substitution of p(m) for σ and work with m alone. In such case

we solve the problem with an exact constraint and the objective function (where we omit
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the extra regularization term for σ) is

Φ(m) = δe
1

2
‖de − Qeu (p(m))‖2Σ−1

e
+ δf

1

2
‖df − Qfs(m)‖2

Σ−1
f

+ R(m). (4.23)

This approach has the advantage of solving a smaller problem, however, it complicates

other aspects of the inversion. First, we are required to choose two weights, δe and δf , for

the data misfits with respect to regularization term at each iteration. Despite abundant

research on choosing one regularization parameter, there are almost no criteria for setting

two parameters during the iterative minimization process when each data misfit has a

different speed of convergence. A more detailed discussion can be found in [17], where the

authors used magnetotelluric data together with controlled source EM data. Even though

both data sets can be modeled by changes in conductivity, non-trivial weighting was needed

in order to jointly invert them. Second, the multiplication of Jacobians and data misfit can

have a very different computational cost for each data misfit, which can make each iteration

very unbalanced and does not favor parallelization. Finally, if the relationships between σ

and p(m) are inexact, forcing them may lead to inversion artifacts. Therefore, rather than

solving the problem “all at once” we decided to apply the alternating direction method of

multipliers (ADMM) to minimize this coupled objective function.

4.3.1 ADMM

The main advantage of ADMM is that the groundwater and geophysical parts can be solved

separately, that is, we do not need to weight the two different data misfits in one objective

function, but instead we split the minimization into two subproblems. This enables us to

use existing inversion methodologies and even software packages only with minor changes.

It also takes the advantage of the existing parallelization for an inversion of a single model

(discussed in the previous chapter) and therefore substantially increase the efficiency when

solving large scale problems. Furthermore, since the petrophysics is enforced as a constraint,

it is not applied exactly throughout the path of optimization which yields additional degrees

of freedom to the optimization algorithm.

Following the ADMM approach, the augmented Lagrangian for (4.21) is

L(σ,m,y) =
1

2
‖de − Qeu(σ)‖2

Σ−1
e

+ αeR(σ) +
1

2
‖df − Qfs(m)‖2

Σ−1
f

+ αfR(m)

+y>(σ − p(m)) +
ρ

2
‖σ − p(m)‖2 (4.24)
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Here y is a Lagrange multiplier and ρ is a parameter that can be chosen somewhat arbi-

trarily. The kth iteration of ADMM is summarized in Algorithm 2.

Algorithm 2 ADMM

• Approximately minimize the augmented Lagrangian with respect to σ.
• Approximately minimize the augmented Lagrangian with respect to m.
• Update the Lagrange multiplier yk+1 = yk + ρ(σk+1 − p(mk+1)).

We now discuss the solution of each subproblem and show that by using small modifi-

cations to existing inversion codes, the ADMM iteration can be carried out efficiently.

Geophysical imaging block descent

At each step of minimizing the augmented Lagrangian with respect to σ, we approximately

solve:

min
σ

Φ(σ) =
1

2
‖de − Qeu(σ)‖2

Σ−1
e

+ αeR(σ) + y>(σ − p(m)) +
ρ

2
‖σ − p(m)‖2 (4.25)

The objective function consists of a data misfit and a regularization part, as in usual inverse

problems, and coupling terms involving also m, the groundwater variable. We can proceed

using the Gauss-Newton method to minimize (4.25) with respect to σ. Compared to a

standard inverse problem, we need to know also the derivatives of the coupling terms with

respect to σ, however, these are, in this case, straightforward since m is fixed and were

already derived in section 4.1.3.

If we set Je = ∂u(σ)
∂σ and assume for simplicity that Σe = I, the derivative ∂Φ

∂σ is

∂Φ

∂σ
= Je

TQe
T (Qeu(σ)− de) + αeL

TL(σ − σref ) + y + ρ(σ − p(ω)) = 0 (4.26)

and the search direction at each time step is

∆σ = −
(
Je
TQe

TQe Je + αeL
TL + ρI

)−1 ∂Φ

∂σ
. (4.27)

The model is then updated by a “soft” Armijo line search [75], σk+1 = σk+µ∆σ, similarly

as for a standard inverse problem described in section 3.2. The parameter µ is adjusted to

ensure sufficient decrease of Φ, where k refers to kth iteration of the geophysical descent. We

take a small fixed number of Gauss-Newton steps, and as has been already mentioned in 3.4,
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we do not search directly for the electrical conductivity σ model m, where σ = 1−tanh(m).

Groundwater model block descent

Similarly, the objective function for the augmented Lagrangian with respect to groundwater

model m, can be written as:

min
m

Φ(m) =
1

2
‖df − Qfs(m)‖2

Σ−1
f

+ αfR(m) + y>(σ − p(m)) +
ρ

2
‖σ − p(m)‖2 (4.28)

Now the geophysical variable σ is fixed and the derivatives of the coupling terms with

respect to m involve the sensitivity Jf = ∂s(m)
∂m , which were derived in section 3.3.

Again, we assume a quadratic regularization for m , which gives the gradient of Φ(m)

as

∂Φ

∂m
= Jf

>Qf
> (df − Qfs(m)) + αfL>L(m−mref )− ηJf

>y + ρηJf
>(σ − p(m)) = 0. (4.29)

The groundwater model minimization follows the same Gauss-Newton approach as has been

described above for geophysical imaging.

ADMM stopping criteria

The ADMM algorithm is stopped when the norm of the residual rk, i.e. the constraint

given by the petrophysical relationship rk = σ − p(m) , is sufficiently small or the changes

in ‖rk‖ between the last few iterations are bellow some threshold value. At this point,

we have the capability of fitting both the geophysical and groundwater data such that the

geophysical and groundwater model agree.

It has been shown that ADMM has a linear rate of convergence1, where for some appli-

cations the desired precision can be reached in a relatively small amount of steps/descents

[11]. The penalty term ρ has an effect on the speed of convergence [23, 36]; however, under

mild conditions any positive value of ρ will lead to convergence [36], both in terms of the

residual rk → 0 and finding an optimal solution for both models. In our study we set up

ρ by a trial and error procedure, where ρ ∈ [0.1, 1] provided similar results. In some cases

better rate of convergence can be achieved by so called Over-relaxed ADMM, or by adding

1Note that Gauss-Newton has a linear rate of convergence as well although the constant in Gauss-Newton
may be better than the ADMM constant.
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a scaling parameter for the Lagrangian multiplier, the work of [74] provides actual rate

bounds based on the parameter choices.

4.4 Minimization without an explicit petrophysical
constraint

As we already elaborated on in section 4.1.2, the petrophysical relationship used in ADMM

minimization is often not known a-priori, its parametrization is uncertain or has to be cali-

brated. If we instead apply some structure similarity measure ΦS , we can again change the

constrained formulation of the coupled objective function in Eq.(4.18) to the unconstrained

one and obtain:

min Φ(m,σ) =
1

2
‖Qeu(σ)− de‖2Σ−1

e
+ αe ‖Le(σ − σref )‖+

δ
1

2
‖Qfs(m)− df‖2Σ−1

f
+ αf ‖Lg(m−mref )‖+ βΦS(s(m),σ)(4.30)

We can apply a Gauss - Newton method and minimize Φ(m,σ) simultaneously for both

models, the soil bulk conductivity σ and groundwater model m. However, care has to

be taken with regard to a different convergence speed and data misfit magnitudes of the

groundwater and geophysical models. An alternative is to apply a Block Coordinate Descent

Method (BCDM), which, similarly as ADMM, splits the coupled objective function into

two subproblems, and treats each separately with a Gauss-Newton method.

4.4.1 BCDM

Block Coordinate Descent method minimizes each subproblem with respect to one of the

models and hence we do not need to readjust weights during minimization to accommodate

the different speed of convergence of the two models. Additionally, both inversion codes

are altered only by adding the similarity term to the original inversion for a single type

of data. The drawback of the block descent is slower convergence (linear) towards the

optimal solution. This method is sometimes referred to as a Block Gauss-Seidel method.

The algorithm is as follows:

Following the Eq.(4.30), letting the Jacobians Je = ∂u(σ)
∂σ and Jf = ∂s(m)

∂m , and for simple

notation consider the measurement error matrices Σ−1
e and Σ−1

f to be unity, the GW and

geophysical descents can be summarized as
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Algorithm 3 BCDM

Approximately minimize Φ with respect to σ
Approximately minimize Φ with respect to m
Update σ, s(m), if ∆m ≤ const. terminate

DC descent step

∇σΦ = Je
TQe

> (Qeu(σ)− de) + αeL
>L(σ − σref) + β∇σΦS(s(m),σ)

∇σ2Φ = Je
>Qe

>QeJe + αeL
>L + β∇2ΦS(s(m),σ)

∆σ = −
(
∇σ2Φ−1

)
∇σΦ

σk+1 = σk + µ∆σ (4.31)

GW descent step

∇mΦ = Jf
>Qf

> (Qfs(m)− df ) + αfL>L(m−mref) + βJf
>∇mΦS(s(m),σ)

∇m
2Φ = Jf

>Qf
>QfJf + αfL>L + βJf

>∇2ΦS(s(m),σ)Jf

∆m = −
(
∇m

2Φ−1
)
∇mΦ

mk+1 = mk + µ∆m (4.32)

We still need to assign the weights α and β to balance the contribution of regularization

and similarity term. Weights α were set the same as for single data inversions and weights

β were readjusted during the inversion process based on the data misfit Φd and ΦS :

β = w
Φd

ΦS
where w ∈ [0, 1]. (4.33)

The parameter µ, determining the size of the update for a given direction, is searched via

soft Armijo line search [75]. The convergence of BCDM where each block is not solved

exactly has been a subject of [83], more about the general convergence and conditions for

the sublinear rate can be found in [9].

BCDM can be also applied if we know the petrophysical relationship, in such case the

similarity term ΦS would be simply replaced by the petrophysical constraint. However, in

such case, the ADMM is expected to converge faster towards optimal solution than BCDM,

and would be thus the preferred method.
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4.4.2 Joint Gauss-Newton method (JGN)

In the context of this work, by Joint Gauss-Newton method we refer here to solving the

coupled problem jointly, updating both the groundwater and geophysical variable during

each iteration. This means that all the terms of the objective function in Equation (4.30)

are evaluated together. Hence compared to the BCDM discussed above, we keep both

data misfit terms together in one objective function, i.e. no splitting to groundwater and

geophysical subproblems occurs. The advantage of this approach is overall lesser number of

iterations; however, we are now solving a larger system. Additionally, we need to determine

all weights in equation (4.30) to balance the contribution of the different data misfits and

the regularization and coupling terms.

At each Gauss-Newton step we then update the vector v that contains both conductivity

σ and groundwater parameter m, v = (m,σ)>:(
∆m

∆σ

)
= −

(
∇σ2Φ ∇σ∇mΦ

∇m∇σΦ ∇m
2Φ

)−1(
∇mΦ

∇σΦ

)
. (4.34)

The sensitivities with respect to m and σ, which are in fact implemented as matrix times

vector routines, are likely to have a different computational time; however, in this setup

can not be solved in parallel. Therefore, despite the over all lower number of iterations the

computational time for JGN might not be significantly better than for BCDM minimization.

The off-diagonal terms of the Hessian matrix are coming from the structure similarity

term ΦS only, since we do not have an explicit petrophysical relationship and need to be

derived analytically.

∇σ∇mΦ = ∇σ
(

Jf
>Qf

> (Qfs(m)− df ) + αfL>L(m−mref) + βJf
>∇mΦS(s(m),σ)

)
= ∇σ

(
βJf
>∇mΦS(s(m),σ)

)
∇m∇σΦ = ∇m (β∇σΦS(s(m),σ)) (4.35)

Schemes for both of the methods are depicted in Figure 4.1.
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Figure 4.1: Comparison of the JGN and BCDM scheme. Left: The scheme for a single
iteration of the Joint Gauss - Newton minimization, the two data misfit terms ΦD,
regularization terms ΦR and a similarity term ΦS are computed for the initial estimates
of m and σ, both models are then updated via a Gauss-Newton iteration (Eq.(4.34)).
Right: BCDM minimization starts with the Gauss-Newton descent for the groundwater
model m only (Eq.(4.32)) involving also the similarity term, the new GW model mk+1

serves as an input for the geophysical Gauss-Newton descent (Eq.(4.31)), leading to an
update for the geophysical model, σk+1, the next BCDM iteration starts with mk+1

and σk+1.
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Chapter 5

Applications - synthetic examples

5.1 Seawater intrusion - state estimation with ADMM

The first synthetic example follows a seawater intrusion scenario, where the variable density

flow brings more complexity to groundwater modeling, but due to the increased conductivity

of seawater it is also an ideal target for most of the electromagnetic methods. Therefore,

both groundwater and geophysical data are often collected to monitor seawater intrusions.

Seawater intrusion (SWI) is a complex process that occurs naturally due to small dif-

ferences in density between freshwater and saltwater. Depending on the hydrogeological

setting, seawater can enter the coastal aquifers through preferential flow pathways far into

the interior, or remain in a close proximity to the coast [4]. Increased groundwater ex-

traction, reduced recharge into aquifers, and other human activities can cause the SWI to

propagate further inland (Figure 5.1). To monitor the SWI and manage coastal aquifers,

representative groundwater models need to be developed. Such models can then provide

explanations for saltwater origin in the area, and can be used to validate different pump-

ing scenarios to manage the saltwater front propagation and future freshwater demands

([29, 55, 61] or [87]).

Numerous research studies have been published regarding mapping the seawater intru-

sions progress by geophysical methods, especially large scale surveys are convenient for SWI

delineation ([19, 31, 72, 93] or [68]). Due to the complex character or governing equations

for seawater intrusion process, the groundwater and geophysical model usually stay sepa-

rate in most of the studies. Hence, in the coupled approaches the information is exchanged

only via some extra data or reference models.
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Figure 5.1: Effect of increased pumping on the propagation of the SWI front. Source: A.D.
Wenner, P.E. Jacobsen, L.K. Morgan - Understanding seawater intrusions [poster].
2013

For example, in the work of Herckenrath et al.[45], the geophysical estimates from 1D

TDEM soundings served as extra observations for the GW model (after transforming via

petrophysical relationship - Archie’s law). In their coupled approach the GW model is used

to interpret the data and guide the geophysical inversion. A different way of transforming

the information from geophysical estimates was introduced in Beaujean et al.[8]. The ERT

derived conductivities were transformed via Archie’s law to salt mass fraction estimates.

These estimates were then filtered using a cumulative sensitivity based on squared Jacobians

and served as extra data for hydrological inversion next to groundwater salt mass fraction

data. The inversion was performed with PEST using a gradient based method, and therefore

it was not applicable to large scale problems.

In the following synthetic example, we solve the inverse problem by minimizing both

types of data, and assume the knowledge of the petrophysical relationship, which provides

the constraint in the minimization. We use groundwater and geophysical data (well salinity

data end electrical potentials) collected only for a single instance in time, and we estimate

the unknown current and initial solute distribution based on this data. Since in this case we

assume to know the petrophysical relationship, we can apply ADMM method for the joint

minimization. Besides, we also show results for the direct substitution approach discussed

at the beginning of section 4.3.

The fact that we solve for the solute content-electrical conductivity only, with the

assumption of at least an approximate knowledge of other GW parameters can be regarded

as naive; however, the same framework can be established for GW parameters such as

hydraulic permeability, external fluxes and other GW variables as long as appropriate
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sensitivities are derived. We do not try here to estimate all of these parameters at once,

since despite having two different sets of data, the inverse problem is essentially highly

ill-posed, and most of these parameters vary over the entire domain. However, to test the

robustness of the proposed minimization scheme we alter the “known” GW parameters

used in the inversion such as hydraulic permeability and dispersion values, to see the effect

on estimates.

First, in section 5.1.1 we introduce the two cases of seawater intrusion scenarios, both

of them have a similar boundary conditions setup, but different permeability and thus

lead to different SWI fronts. We also describe both groundwater and geophysical data

survey designs. In section 5.1.2 we present the results of ADMM joint minimization and

the errors of the salinity estimates for a specific groundwater data survey; besides, we run

multiple inversions to see how the change of GW data locations affects the estimate errors.

The results for altering the true GW parameters during the inversion are also presented in

section 5.1.3. In the last section we discuss and summarize all findings from the quantitative

and qualitative point of views.

5.1.1 Parametrization for the synthetic scenarios

We created two different model problems in 3D representing seawater intrusion; one with

a homogeneous permeability field (Case 1) and one with heterogeneous permeability field

(Case 2). The heterogeneous case is based on the field study at the Kidd2 site in the Fraser

River Delta in Richmond, BC [71], where the delta slope deposits confine the sandy deltaic

deposits and a seawater wedge enters from the river. In both cases the boundary condi-

tions followed the Henry’s benchmark problem with hydrostatic pressure for the seaward

boundary and freshwater inflow rate for the inland boundary. The actual parameter values

are presented in the Table 5.6 including the external fluxes representing the pumping rates.

For the initial “unknown” solute mass fraction distribution at time t0 we let the GW

model run forward up to a certain time. During this simulation, a pumping well is placed

in the southwest part of the area. Afterward, we altered the external fluxes, and a single

pumping well was placed in the north-east area while the freshwater inflow flux was de-

creased. The GW simulation then ran from the initial state at t0 up to time t1 for 300

days, with a time step 15 days. The “true” initial and final solute distributions for both

cases can be seen in Figure 5.3. The external fluxes are changed at time t0 so that the GW
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GW model Heterogeneous case Homogeneous case
Grid 44x32x12 cells 44x32x12 cells

Cell size 1 x 1 x 1 m 1 x 1 x 1 m
Permeability k

Silty sand kx = 2× 10−12m2, ky = 4.4× 10−11, kz = 2× 10−14m2 kx = 4.4× 10−11m2,
Fine and medium sand kx = 4.4× 10−11m2, ky = 4.4× 10−11, kz = 4.4× 10−12m2 ky = 2.4× 10−11,

Silty clay (Fig. 5.2) kx = 10−14m2, ky = 4.4× 10−11, kz = 10−17m2 kz = 1× 10−12m2

Porosity φ 0.35 0.35
Dispersion D 0.0032 m2/year 0.0032 m2/year

Viscosity 0.001 0.001
Freshwater density 1000 kg/m3 1000 kg/m3

Saltwater density 1025 kg/m3 1025 kg/m3

QGW , pumping rate up to t0 [x,y] = [8,14], 0.16 d−1 [x,y] = [8,14], 0.16 d−1

QGW , pumping rate up to t1 [x,y] = [26,26], 0.13 d−1y [x,y] = [26,32], 0.13 d−1

Geophysical model
Grid 50 x 38 x 12 cells

Cell size 1 to 4 m
Arhie’s law m 1.7
Background σ 0.0065 S/m

Table 5.1: Parametrization for the seawater intrusion Cases 1 and 2.

Figure 5.2: The geological layers for the heterogeneous case based on Kidd2 site in Fraser
River delta [71], schema for kz field.

model, used in the coupled inversion, could not simulate the initial solute content from a

zero distribution. Moreover, changes to external fluxes (such as different pumping schemes

or reduced discharge) are also likely to happen in real conditions.

We collect both types of data only at time t1. For the GW sampling we have two

transects of wells (with spacing of 7 m) and 3 depth samples collected (depth = 4, 7 and

11 m) in Case 1, and two depth samples (z = 5 and 9 m) for the heterogeneous Case

2. The position of the transects was later altered to test different experimental designs,

however, here we present in detail the case with west-east locations x = 16 m and x = 24 m,

see in Figure 5.4. Gaussian random noise with standard deviation 0.05 was added to all

measured solute fraction values. No hydraulic head or pressure data were used in the
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Figure 5.3: Seawater intrusion scenario: Upper left and right: True models for initial and
final solute distribution for Case 1; Bottom left and right: True models for initial and
final solute distribution for Case 2. Isosurfaces at ω = 0.25, 0.5 and 0.75 are displayed.

coupled inversion.

For the geophysical data, the simulated solute fraction at time t1 was converted through

Archie’s law into bulk electrical conductivity, and potentials were solved through the DC

forward model described in Section 2.2.1. There are many different options for the electrode

layout and measurement scheme; the following one was chosen based on the sensitivities of

measured data, while trying to maximize the depth resolution for data collected only at the

surface. The electrode layout corresponds to a regular grid with spacing 3m in x direction

and 4m in y direction, giving in total 72 electrodes. A positive electrode was fixed close

to the seaward boundary (west) and the negative charge was moving along the x profile,
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towards east. For each source pair (72 in total) potential differences were measured on all

receivers, where one of the receiver couples was always fixed and placed in the north west

corner (see Figure 5.4). 3% Gaussian random noise was added to the measured potentials.

Figure 5.4: Data collection. Left: Experimental design for the DC survey: Dark blue points
represent the electrodes on the surface placed on a regular grid, saltwater is coming in
from the west boundary. Right: GW wells locations, 8 wells in total are placed along
two transects at x = 16 m and x = 24 m distance, later labeled as b and c, other
experimental designs for GW data are plotted in Figure 5.10.

5.1.2 Joint inversion with ADMM

The ADMM minimization starts with the GW model descent and continues as long as

the constraint residual rk decreases (or up to 5 runs of GW and geophysical descent).

The residual rk represents the difference between bulk electrical conductivity and electrical

conductivity derived from the GW model via Archie’s law. Since this is a synthetic example

we can record the actual initial and final errors next to the data misfits for both the

groundwater and geophysical data during the minimization. By actual error we mean the

norm ε(ωk) = ‖ωk − ωtrue‖. Due to the ADMM approach we do not need to weight the

two different data misfits, however, weights still need to be assigned for the regularization

term α and the so called penalty term, ρ (see the augmented Lagrangian formulation in

(4.24)). The choice of the regularization parameter α has already been largely discussed

in the literature (see [41, 94] and reference within), and can be determined either based

on initial values for φD, φS and φR, or by a trial and error procedure. The choice of the

penalty parameter ρ was discussed in the section 4.3.1. A particular set of weights were

applied to obtain all results presented here in; αe = 10−3, αf = 5 × 10−3 and ρ = 0.4.
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The number of Gauss-Newton iterations (within each ADMM descent) was 3-4 for the GW

block descent, and between 6 to 10 for the geophysical block descent.

In the Figure 5.5, the actual errors scaled against the error of initial estimates are

plotted together with the residual rk as they decrease during the minimization. Initial

estimates are based on the forward simulation starting with the GW reference model. Both

rk and εk decrease during the ADMM minimization. The estimates of ω0 can be seen in

the contour profiles in Figure 5.6, resp. Figure 5.7 for x = 10 and x = 20 m or their 3D

plots in Figure 5.8.

Case 1 Case 2

Figure 5.5: The error and residual decrease during the ADMM descents: Green triangles
represent the scaled error for the final solute fraction ωf , orange stars correspond to
updated rk values, where rk = σf (k) − p(ωf (k)). The GW wells in this case were
placed along x = 16 m and x = 24 m

For comparison, we also solved the inverse problem with a simpler coupled approach

and by a Gauss-Newton method with a direct substitution (equation (4.23)). In the simple

coupled approach both models can run independently. We first solve the inverse problem

for GW data only and then apply Archie’s law to transform the estimate to electrical

conductivity at t1. This estimate then constrains the geophysical inversion as a reference

and initial model, and as such it is computationally easier to implement with no extra

coupling terms in any of the objective functions. The actual errors of solute mass fraction

at t0 and t1 and final data misfits for the ADMM and the coupled approach are presented

in Table 5.2. In Table 5.2 we recorded for the coupled approach the lower error from GW

or geophysical inversion. With the ADMM approach we decreased the error for the final

solute fraction ωf by roughly 50% compared to the coupled approach, and also decreased
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Figure 5.6: ADMM estimates for Case 1: Contour profiles at x = 10 and x = 20. The
dashed lines are estimates from the joint inversion (ADMM), and the full contour
lines are the actual locations corresponding to ω = 0.25 (blue), ω = 0.5 (green) and
ω = 0.75 (red).

Figure 5.7: ADMM estimates for Case 2: Contour profiles at x = 10 and x = 20. The
dashed lines are the estimates from the joint inversion (ADMM), and the full contour
lines are for true locations corresponding to ω = 0.25 (blue), ω = 0.5 (green) and ω
= 0.75(red).

the error for the initial estimate ω0.

Direct substitution

The Gauss-Newton minimization with a direct substitution for σ follows the objective func-

tion in equation (4.23). We run the Gauss-Newton minimization applying three different

strategies of adjusting the weights and summarized the results for Case 1 in Table 5.3. In
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Figure 5.8: ADMM estimates. Upper left and right: Estimates for initial and final solute
distribution for Case 1. Bottom left and right: Estimates for initial and final solute
distribution for Case 2. Isosurfaces at ω = 0.25, 0.5 and 0.75 are displayed. The true
models are plotted in Figure 5.3

Case 1 ε(ωf ) ε(ω0) φGW (ρω) φDC(u(σ))
Initially 14.2 22.6 14.4 1046
Coupled 6.28 13.56 4.6 1.6
ADMM 3.1 10 1.1 1.4

Case 2
Initially 9.3 16.8 7.4 1940
Coupled 6.6 13.8 3.4 1.0
ADMM 2.8 11.5 0.8 0.9

Table 5.2: Errors, ε(ωk) = ‖ωk − ωtrue‖, for the solute content at time t0 and t1 for the two
different cases.
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the first option we initially fixed both δe and δf to make the initial data misfit magnitudes

equal. In the second option we fixed the geophysical data misfit weight δe, and adjust the

groundwater data misfit weight δf at each iteration as δf =
φD,e
φD,f

. In the third option we

were adjusting the geophysical weight δe instead, at each iteration as δe =
φD,f
φD,e

. Since the

estimates by substitution approach were worse than computationally much simpler coupled

approach described above, we left the substitution approach out of further comparison.

Case 1 ε(ωf ) ε(ω0) φGW φDC
Initially 14.2 22.6 974 1046

Fixed δe, δf 10.8 27.4 7.97 43.74
Adjusted δf 8.49 21.3 1.78 144.24
Adjusted δe 7.07 20.6 3.2 71.12

Table 5.3: Errors, ε(ωk) = ‖ωk − ωtrue‖, for the solute content at time t0 and t1 for Gauss-
Newton method with the substitution of σ; 1. The weights were fixed throughout the
minimization based on the initial data misfits; 2. δf was adjusted as δf =

φD,e

φD,f
at each

iteration; 3. δe was adjusted as δe =
φD,f

φD,e
at each iteration. GN inversion run up to 10

iterations.

Different GW experimental designs

Additionally, we tested the ADMM and the coupled approach for different locations of

GW wells without changing the DC survey design. The scaled errors are plotted for all

simulations in Figure 5.9. The different transects of wells are plotted in Figure 5.10. We

did not use the same combinations of transects for Case 1 and 2, as the final SWI front

reached further in the Case 2 compared to Case 1. In most of simulations we managed to

substantially reduced the error for final solute mass fraction ωf (about 25% of the initial

error for homogeneous Case 1 and 35% for the heterogeneous Case 2). The errors for initial

solute estimate were fairly consistent and satisfactory for the homogeneous Case 1 (50%

reduction), less so for the Case 2 (60 to 80%).

5.1.3 Joint inversion by ADMM with inexact GW parameters

In order to test our method for the case, where the reservoir parameters are not known

exactly or only approximately, we solve the problem for an inaccurate permeability field and

dispersion. In the first test, we used the original GW model parameters, but decreased the

homogeneous permeability field and dispersion to 70% when running the ADMM or coupled
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Case 1 Case 2

Figure 5.9: The relative error decrease for five different GW sampling designs; the dotted
line is for the ω0 relative error, the full line for the ωf relative error decrease. In all
cases the error decrease slows down with further iterations. The plotted results are
based on different transects of wells plotted in Figure 5.10.

Figure 5.10: The transects along x and y axis in plan view. For the homogeneous Case1
the sampling depths were z = [3, 7, 11], and for the heterogeneous Case 2 z = [5, 9].
each design had two vertical or horizontal transects.
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approach. The ADMM joint approach converged, but the actual errors were higher then

when the correct GW parameters are used. In Figure 5.11 you can see the error evolutions

for both the ADMM with correct and incorrect GW parameters, also the error ε(ωf ) from

the coupled approach (a single value), Table 5.4 provides the summary of errors for both

methods.

In the second test, we used the homogeneous Case 1 and altered the permeability field by

adding a 3D random Gaussian field to the original one (see in Figure 5.12). The addition of

the Gaussian random field thus changed the original anisotropic homogenous permeability

field to a heterogenous field, which leads to a differing solute distribution. The ratio of

change in the observed solute fraction data due to different permeability compared to

original data was 18%. GW data based on this simulation where used in ADMM inversion,

but leaving the permeability field homogeneous as in the previous calculations for Case 1.

For comparison we again ran the coupled approach with the same input as used in ADMM.

The scaled errors and residual rk are plotted in Figure 5.13 for both correct and incorrect

GW parameters.

Figure 5.11: Altering the GW parameters: Errors decrease for ωf estimate and residual rk
when correct and altered GW parameters (D, k) are used in ADMM. The errors for
ωf for the coupled approach are plotted as well with a dashed line, it is just a single
value.
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Figure 5.12: Altering the GW parameters: The true permeability field in x direction kx in
the second test. For solving the inverse problem a fixed value kx = 4.4−11 was used
instead, while the true field is shown in this figure. The true ky and kz were altered
similarly when simulating GW data.

Figure 5.13: Altering the GW parameters: Errors decrease for ωf estimate and residual rk
when correct and altered GW permeability is used in ADMM. The errors for ωf for
the coupled approach are plotted with a dashed line.
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Test 1 ε(ωf ) ε(ω0) φGW (ρω) φDC(u(σ))
Initially 12.2 20.7 63 1150
Coupled 7.35 16.2 3.64 2.18
ADMM 3.85 10.4 2.04 1.57

Test 2
Initially 17 22.6 17.2 1140
Coupled 6.92 13.1 4.0 1.95
ADMM 4.32 9.26 1.7 1.48

Table 5.4: Errors, ε(ωk) = ‖ωk − ωtrue‖, for the solute content at time t0 and t1 when
different from true GW parameters are used in the ADMM inversion or coupled ap-
proach. Test 1 - change in permeability field. Test 2 - 70% reduction in permeability
and dispersion values.
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5.1.4 Summary

We can conclude that the ADMM approach proved to be advantageous compared to the

simple coupled approach, direct substitution of the constraint or the separate groundwater

and geophysical inversions. In all tested examples, the joint inversion with ADMM achieved

a lower error for both the initial and final solute fraction distributions compared to the

simple coupled approach.

More particularly:

• Based on the different examples presented herein the error for ωf estimate by ADMM

was roughly 50% of the error by a coupled approach in homogeneous case, and 60%

for the heterogeneous case. For the initial solute fraction ω0 the improvement by

ADMM was 60% and 70% respectively.

• The estimates for the final solute distribution were generally better than for the

initial solute mass fraction due to the fact that the DC data were collected at the

final time, and also the coupling constraint between ωf , solute fraction, and σf ,

electrical conductivity was enforced for the final time t1.

• In all cases the ADMM converged to minimum, though it shows some of its typical

aspects: a relatively quick drop during the first few iterations and a slow decrease to-

wards the end. However, for the case of groundwater modeling applications, the initial

decrease in error might be sufficient. Our synthetic study confirmed the theoretical

results about the convergence of this method.

Of course, the ADMM comes at a higher computation cost compared to the simple

coupled approach, which is due to the repeated computation of the GW and geophysical

descent, for four or five times. For example, using the simple coupled approach for the Case

1, we ran the forward GW model 10 times, while the ADMM required 57 forward model

runs. Similarly, the coupled approach required 7 DC forward model runs as opposed to 32

runs by ADMM. In the Table 5.5 we summarized the computation cost in terms of forward

geophysical and groundwater model runs and the actual running time; we also included the

time scale of the Gauss-Newton method with a direct substitution.

Note that, when the relative weighting and regularization parameters are unknown, the

ADMM can be easily faster than the Gauss-Newton optimization (with substitution for

ω0), which also needs to be solved a number of times due to testing different regulariza-

tion parameters, however, unlike ADMM, where each iteration consists of solving a single
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physical model, the fully coupled Gauss-Newton method requires solving both problems for

each weighting and regularization parameters.

Method GW f.m. runs DC f.m. runs time [min]
Substitution (8 iterations) 20 18 59

Coupled (4 and 7 iterations) 10 7 27
ADMM (5 descents x 3 and 6 iterations) 57 32 113

Table 5.5: Computational cost overview for the forward model (f.m.) runs and actual run
time of the inversion; all results displayed were executed on a desktop with Intel(R)
Core(TM)i7-2860 QM processor and 16GB RAM. Parameters for line search procedure
were the same for all methods, amount of iteration counts is displayed in the brackets
next to each method.

For the first set of simulations with Case 1 and Case 2 we assumed the GW model

parameters were known, excluding the initial solute content. This can be regarded as an

overly simplifying approach, but is justified for testing the feasibility of the joint inversion

strategy. To demonstrate the robustness of the ADMM method with respect to variations

in GW parameter values, we altered the GW model parameters in the inversion process.

As expected, this led to estimates with higher error compared to solving the problem with

the correct parameters. Nevertheless, the ADMM converged to estimates with lower error

than the simple coupled approach (see in Figure 5.11), as it could be partially “corrected”

by information from geophysical data. We are aware that further increasing of the error in

the GW model parametrization would also lead to worse estimates, but in that case any

coupled approach will not be able to provide a more accurate estimates.
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5.2 Solute tracer test - Parameter and state estimation
without an explicit petrophysical relationship

The solute tracer test provides a relatively simple case, on which we can test using implicit

structure similarity measures. Abundant research has been published on the hydrogeophys-

ical inversion for solute tracer tests, for both field and synthetic studies; however, only few

studies have been published which did not use an explicit petrophysical link.

For example in [13] authors implemented a level set method in the objective function

and assumed the parameter of interest is mainly affected by geological facies. The approach

was tested with seismic and hydrological tomography data on a synthetic example. Due

to the level set method there was no need for a direct link between seismic velocity and

hydraulic conductivity; however, in this application the structure similarity was enforced

by the a priori assumption, i.e. the knowledge of geological facies location, and could be

applied only due to the fact that both geophysical and hydrological data were directly

dependent on the same geological property.

A different way to alleviate the need of petrophysical relationship is to assume a strong

correlation between the variables of interest, in the study of [54] between the solute concen-

tration and soil bulk conductivity. In particular in their synthetic study for a solute tracer

test, the authors used ERT time lapse sampling together with groundwater head and fluid

conductivity data to determine the hydraulic conductivity. In their approach they maxi-

mized the correlation between transient changes in the fluid and soil bulk conductivity and

thus avoid solving the ERT inversion; the input for the ERT forward model were fluid con-

ductivity changes alone. The correlation “coupling” term was then added when solving the

standard groundwater inverse problem to estimate hydraulic conductivity. The hydraulic

head and fluid conductivity sensitivities were solved by perturbation method in parallel

and hydraulic conductivity was parametrized by Pilot points method with a linear interpo-

lation; a high performance cluster was necessary to run the inverse problem. The presented

example showed that even indirect geophysical information can improve the estimates for

hydraulic conductivity.

To our knowledge, the first work applying a structural constraint in hydrogeophysical

inverse problem is the study of Lochbuhler et al.[65]. The authors combined two datasets,

ground-penetrating radar data with hydraulic tomography or tracer mean arrival times, to

estimate hydraulic conductivity. A cross product of the spatial gradients of the geophysical

and groundwater models was implemented as a structural constraint, creating a penalty
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in the coupled objective function. Their study tested the structural coupled approach on

2D synthetic case as well as field data from the Widen gravel aquifer in Switzerland. The

recovered models did indeed displayed similar structure, though not following a simple linear

petrophysical relationship, and the hydraulic conductivity estimates were in accordance

with previous field studies.

In our synthetic case, we implemented a full 3D inversion and jointly inverted the geo-

physical and hydrological data that are not directly dependent on the property of interest.

We used the Cross Gradient field product as a structure similarity coupling term in the

objective function in Eq. 4.30 and solved the inverse problem for either initial solute state

or hydraulic conductivity field. Two computationally different methods, Block Coordinate

Descent (section 4.4.1) and Joint Gauss Newton (section 4.4.2) were tested and compared

with the results of separate geophysical and groundwater inversions.

5.2.1 Parametrization

We set up two different concentration plumes, first one is initially a standard Gaussian

plume (Example 1), and the second one has a more complex shape (Example 2). For

the first two examples we estimate the initial conditions for solute concentration, c0, in

the last case (Example 3) we used the same initial concentration as in Example 1 but

estimate the hydraulic conductivity K instead. For each case, the boundary conditions are

set either no flow or fixed head boundary, such that the natural hydraulic head gradient

is along the x coordinate. Injection and pumping wells are placed in the domain to create

flow pathways also along the y and z axis. The solute plume moved from time t0 to

time t1, and the solute content at t1 was then transformed via Archie’s law to create an

electrical conductivity model, and as such used in the Example 1. To imitate more realistic

cases, in the subsequent examples the electrical conductivity model was altered by adding

a heterogeneous spatially correlated field of more conductive material (see in Figure 5.14)

than background. The actual parameters for both the groundwater and geophysical models

can be found in Table 5.6.

Both groundwater and geophysical data were collected at a single instance of time, t1,

though multiple time collection would not change computationally the algorithms presented

in chapter 4. The groundwater measurements were collected from a few nested wells, to

obtain solute concentration data. For the Example 3 we also recorded the hydraulic head

data.
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Table 5.6: Parametrization for the solute tracer Examples 1, 2 and 3.

GW model
Grid 42x32x16 cells

Cell size 1 x 1 x 1 m
Hydraulic conductivity K

Example 1,2 kx = 1m/d, ky = 0.6m/d, kz = 0.4m/d
Example 3 kx,y,z , log(µ) = −1.8m/d, σ = 1, lx,y,z = (60, 40, 10)

Dirichlet BC along x h(x = 0) = 21.6 m, h(x = 42) = 20 m
Porosity φ 0.35

Dispersion D 0.02 m2/d
QGW , injection rate [x,y] = [8,8], 4 d−1

QGW , pumping rate [x,y] = [34,18], 3.3 d−1

Geophysical model
Grid 50 x 38 x 16 cells

Cell size 1 to 4 m
Arhie’s law m 1.7
Background σ 0.0065 S/m

Figure 5.14: Solute tracer test. Left: A scheme for the GW survey design with two
transect of wells, applied in Example 1 and 2. Right: A scheme for DC survey
with receivers on surface only, in the background is the electrical conductivity
model applied in Example 2 which spatially correlated more conductive field
than background.

The placing of the wells has a huge impact on the inverse problem solution and it

is generally hard to design without the actual knowledge of the solute plume location;

therefore, we ran all the examples for different groundwater experimental designs, with

wells randomly chosen from a regular grid of 4 x 5 sampling locations. All different GW

surveys wells locations are plotted in Figure 5.15.

For the geophysical survey, the potentials were measured using surface electrodes only.

A regular grid spacing was 4 m and 3m along the x and y coordinate. The source electrode

couple was moved along x (north - south) coordinate and for each source the potentials
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Figure 5.15: Different GW surveys for solute tracer test. Ex 1,2 - des1: Two transects of
wells at x = 14 and 18m applied in Example 1 and 2. Ex 1,2 - grid: 4 x 5 grid of
wells from which 8 locations was chosen randomly for each run. Ex3-des1: 3 x 3
grid of wells locations for results presented in Table 5.11. Ex3-grid: Regular grid of
well from which 10 wells were randomly chosen, corresponding results summarized
in Table 5.12

GW model Geophysical model
Weights α 1e− 3 1e− 4

β0 27 27

β 0.5 φD/φS 0.5 φD/φS
Iterations separate inversion 4 6

BCDM, GW / DC max 3 4
JGN, 7 7

Conjugate gradient 8 8

Table 5.7: Minimization parameters for the inverse problem

were measured by all receivers with one electrode being fixed and located in the south-east

corner. The design follows the one already used in the seawater intrusion example.

For all tested scenarios we first ran separate inversion for groundwater and geophysical

data alone, and afterward, we apply two computational approaches for the joint inversion,

Gauss-Newton method (JGN) to update both the groundwater and geophysical models at

once, and BCDM with up to four groundwater or geophysical descents. Each inversion

was stopped when the data misfit dropped bellow expected error or when the maximum of

iterations was reached. The iterations and weights setup are summarized in Table 5.7.

To compare the different methods for parameter or state estimation, we computed

the norm of errors (since the true parameters are known) for the initial and final solute
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estimates, soil bulk electrical conductivity and in the last example also for the hydraulic

head and conductivity estimates. We also evaluated the Cross Gradient similarity term

before and after the structure coupled minimization. The visual comparison is somewhat

limited as all the examples are in 3D, however, vertical and horizontal slices are presented.

5.2.2 Example 1 and 2: Estimation for initial state c0

Figure 5.16: Solute tracer test. The true models for the initial solute concentration
in Example 1 (left) and Example 2 (right), isosurfaces displayed at c0 =
0.2, 0.4, 0.6 and 0.8.

First, we applied the inversion framework to a simple case of a solute tracer test where

the initial solute plume has a Gaussian shape (see in Figure 5.16). The true solute content cn

is related to electrical conductivity σ via Archie’s law. Solute concentration and geophysical

potentials were collected at time tn. In the Table 5.8 we summarized the results of separate

inversions and joint inversion with block coordinate method (BCDM) and direct Gauss-

Newton method (JGN) for a particular placing of the GW wells (marked in Figure 5.15 as

Ex1,2-des1). We recorded the final error estimates, data misfits and a drop in the similarity

penalty term, cross gradient product φCGP . These errors are visualized in the bar plot in

Figure 5.17, the separate (GW data only) inversion decreased the initial error of cn to 60%

while BCDM decreased the error to 45%. The joint inversion solved with JGN had worse

performance, with 55% error decrease only. The errors for the estimate of initial solute

differed less among the applied methods, separate inversion had 72%, BCDM 65% and

JGN 70%. Although all results were computed in 3D, in the Figure 5.18 we show the 2D

contour plots of solute estimates for cn along y = 16 and depth slices at z = 8, the initial
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solute estimates are plotted for z = 8.

Method ε(cn) ε(c0) φD(cn) ε(σ) φ(σ) ΦCGP (ĉn, σ) ΦCGP (cn, σ̂)
GWI 5.20 7.06 2.71 - - 24.9 -
DCI - - - 4.93 2.16 - 34.0

JHI (GNm) with φCGP 4.81 6.88 8.12 4.18 7.95 19.03 2.88
BCDM with φCGP 3.94 6.35 1.15 4.32 16.9 17.05 1.46

Table 5.8: Example 1: Summary of the errors for the solute distribution and electrical
conductivity estimates, the data misfits and the cross-gradient coupling terms (between
the estimate and the true field) by either separate inversion or joint inversion with
cross-gradient product.

Figure 5.17: Example 1 and Example 2: Bar plots for the error estimates by different
methods, the actual values are in Table 5.8, Table 5.10 respectively.

Error ĉn ĉ0 σ̂
Example 1 mean (εJGN/εGWI/DC) 0.88 1.25 0.98

Example 1 mean (εBCDM/εGWI/DC) 0.84 0.91 1.00
Example 2 mean (εJGN/εGWI) 0.91 0.99 1.1

Example 2 mean (εBCDM/εGWI) 0.78 0.84 1.11

Table 5.9: Example 1 and 2: Summary of the relative errors (joint inversion vs GW (or DC)
data only) for the solute distribution and electrical conductivity estimates based on the
results from 10 different GW survey designs.

For the Example 2 we altered the true initial solute distribution by adding a spatially

correlated field of higher conductivity (see in Figure 5.16). Unlike in the previous example,

the corresponding soil bulk conductivity is therefore not linearly dependent on solute con-

centration model. The summary of the estimate errors by different methods can be found

in Table 5.10 and the slices of the actual estimates are plotted in Figure 5.19 for a particular
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Figure 5.18: Example 1: The true models vs the estimates by GW data inversion and
structure-coupled inversion, contours at z = 8 and y = 18 for final and initial solute
cn, c0 are plotted.

well placing. Similarly as in Example 1, BCDM had lower errors than JGN, decreasing the

initial error to 43% for the solute content cn, and to 54% for c0. The separate inversion with

GW data only decreased the error to 58% for cn, respectively 70% for c0. The estimates for

electrical conductivity were comparable regardless the method, only BCDM with Archie’s

law lead to significant estimate error reduction.

Afterward, we ran both Example 1 and 2 for different GW survey designs; each time

eight wells locations were randomly picked from a regular grid covering the area of plume

movement. In Table 5.9 we summarized the results of these experiments, the actual errors

for each run of Example 2 setting are plotted in Figure 5.20. On average, BCDM reduces

the error of the final solute content by 16 % in Example 1, and by 22 % in Example 2
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compared to GW data inversion alone. For the initial solute the drop was 9% and 21%

respectively. JGN also reduced the final cn estimate errors, but has not improved the initial

solute estimate compared to GW data inversion.

Method ε(cn) ε(c0) φD(cn) ε(σ) φ(σ) ΦCGP (ĉn, σ) ΦCGP (cn, σ̂)
GWI 7.03 9.43 0.9 - - 108.3
DCI - - - 6.85 6.4 - 32.6

JHI (GNm) with φCGR 6.29 8.53 6.8 7.04 7.1 73.9 9.4
BCDM with φCGR 5.18 7.29 0.9 6.93 7.3 32.6 6.9

Table 5.10: Example 2: Summary of the errors for the solute distribution and electrical con-
ductivity estimates, the data misfits and the cross-gradient coupling terms (between
the estimate and the true field) by either separate inversion or joint inversion with
cross-gradient product.

5.2.3 Example 3: Estimation for hydraulic conductivity K

The 3D variable hydraulic conductivity K is usually parametrized so that its dimension

is reduced. Multiple approaches, which can be generally cast as a linear combination of

some M basis vectors (where M is usually much smaller than the mesh size) can represent

the hydraulic conductivity K [76]. The simplest case is a zonation technique, where these

basis vectors are constant over a part of the domain and zero everywhere else. Another

common option is a pilot point technique; the hydraulic conductivity values are fixed at

some points and the rest of the domain is determined by krigging interpolation. The choice

of the locations of these points, or adding additional ones during the minimization leads to

different approaches, examples can be found in [82, 86].

For Example 3 we assumed that the hydraulic conductivity field is log-normally dis-

tributed with some average value µ and covariance C.

ln(K) ≈ N(µ,C)

The covariance C is usually derived assuming Gaussian or exponential correlation lengths

in the x, y and z direction and some known variance (sometimes referred to as a semi-

variogram). The semivariogram values are mostly obtained from geology borehole logs or

other available data. Such geostatistical conceptualization is widely used, for example in

[51] or [79]. Given this geostatistical interpretation, it is possible to apply Karhunen-Loeve
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Figure 5.19: Example 2: The true models vs the estimates by GW data inversion and
structure-coupled inversion, contours at z = 8 and y = 18 for final and initial solute
cn, c0 are plotted.

decomposition and write the covariance for the discrete hydraulic conductivity field as

C =
N∑
j=1

λjvjv
>
j , (5.1)

where C is an N × N discretization of the covariance operator, C, the vectors, vj are its

eigenvectors, that is, v>i vj = 0 if i 6= j and 1 otherwise and λj are the (positive) eigenvalues.

When solving the inverse problem, we do not need to work with a full decomposition

of the covariance matrix and rather replace it with the first M basis vectors,

ln(K) = µ+
M∑
j=1

wjmj = µ+ Vm (5.2)
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Figure 5.20: Example 2: The estimates for 10 different experimental designs, altering loca-
tion of 8 wells from Ex 1,2 - grid design.

where wj =
√
λjvj and V = [w1, . . . ,wM]. M should be large enough to capture the

heterogeneity of the conductivity field K. This significantly reduces the size of the inverse

problem to estimating the weights of these M basis functions, stored in the vector m;

however, the drawback is that we limit any solution to a Gaussian random field given by

the covariance matrix C.

The unknown conductivity field K was thus parametrized as

K = exp(µ+ Vm), (5.3)

and the covariance matrix in this example was computed based on Gaussian exponential

model:

Ci,j = −1

2
σ2 exp

(
(xi − xj)

2

υ

)
, (5.4)

where υ corresponds to correlation lengths in the x, y or z direction, σ is variance and

(xi − xj) is the distance between the two points. The values of vector υ and σ2 are later

used to numerically solve the Karhunen - Loeve expansion of the covariance matrix C up
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to the first M vectors.

The number M can be estimated from the plot of eigenvalues, and verified by simply

solving a linear least square problem with the actual data for ln(K):

m̂ = (W>W)−1(W>ln(K)),

where W is the matrix containing the basis vectors from the covariance matrix decompo-

sition and a unit vector e representing the mean µ; W = [e V]. The “reduced”hydraulic

conductivity K(m̂) can be then compared against the true hydraulic conductivity K. In

our case M ranged in the interval (30,60) to sufficiently describe the heterogeneity of the

hydraulic conductivity, however this number is strongly dependent on the vector of correla-

tion lengths υ. The decomposition of the matrix C was solved numerically using Cholesky

factorization with Matlab built-in routines. Lancozs algorithm would be an alternative for

large scale problems.

The setup of Example 3 is the same as in previous cases except that now we have a

heterogeneous hydraulic conductivity K and hydraulic head data were collected next to

the solute concentration data, providing indirect information about hydraulic conductiv-

ity. First, we placed nine wells in regular spacing (see in Figure 5.15) and the inversion

parameters were initially set as zero for the m weights, and initial mean value µ0 = −1

and M = 35. We again recorded the estimate errors for final solute content and electrical

conductivity, but this time also for hydraulic head, µ and ln(K) in the Table 5.11.

Afterward, we run the inversions for different groundwater sampling designs, choosing

randomly 10 wells from the well points grid (5.15). The summary of these results can be

found in Table 5.12 and the actual errors are plotted in the Figure 5.23. For all results the

vector m was set initially as zero vector, and the initial mean value as µ0 = −1.

In summary, the closer was the initial µ estimate to the true value, the better estimates

(lower actual error) of solute distribution were obtained. The errors of the estimates of

hydraulic conductivity and also final solute cn were lower for BCDM and JGN compared

to GW data inversion alone, however not in all cases BCDM outperformed uncoupled

inversion and in some cases the final estimates were fairly comparable. On average JGN

did not manage to minimize the hydraulic head data misfit, and BCDM had therefore

overall better performance.
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Method ε(cn) ε(h) ε(σ) ε(K) µ̂ C(ĉn, σ) C(cn, σ̂)
GWI 5.18 36.8 - 78.9 -2.26 50.41 -
DCI - - 3.37 - - - 6.32

JHI (GNm) with φCGR 4.41 38.7 4.56 68.6 -1.54 26.99 4.32
BCDM with φCGR 3.52 20.1 3.64 63.6 -1.93 35.23 0.85

Table 5.11: Example 3: Estimation of hydraulic conductivity with KL expansion
parametrization: Summary of the errors for the solute distribution, electrical conduc-
tivity and hydraulic conductivity estimates (and also the estimate for µ = mean(K),
the true value was mu = −1.8) by either separate inversion or joint inversion with
cross-gradient product. A final cross-gradient product between cn and σ is displayed
too.

Figure 5.21: Example 3 : Bar plot for the errors by different methods, the actual values are
in Table 5.11

Error ĉn ĥ ln(K̂)
Example 3 mean (εJGN/εGWI) 0.88 2.15 0.86

Example 3 mean (εBCDM/εGWI) 0.77 0.92 0.8

Table 5.12: Example 3: Summary of the relative errors (joint inversion vs GW data only) for
the solute distribution at cn, hydraulic head h and logarithm of errors for conductivity
K based the results from 10 different GW survey designs.
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Figure 5.22: Example 3: The true models vs GW data and structure-coupled inversion
estimates for the final solute concentration, contours at z = 8 and y = 16 are plotted
and hydraulic head at y = 24.
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Figure 5.23: Example 3: The estimates for 10 experimental designs by different methods,
altering the location of 10 wells in Ex3-grid design.

86



Figure 5.24: Example 3: The true field and estimates of hydraulic conductivity K by GW
data only and JGN and BCDM.
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5.2.4 Summary

Both methods, separate data inversion and joint approaches, were able to minimize the

data misfits and provide physically realistic estimates for both hydrological and geophysical

models. The coupled framework (joint inversion) reached better estimates for both initial

solute content and hydraulic conductivity in most of the scenarios presented above and

thus gave a promising improvement without a need for an explicit petrophysical link.

In particular, from evaluating the numerical results and comparing the actual estimates

we can conclude the following points:

State estimation (Examples 1,2)

• BCDM had the lowest errors for both the initial and final solute estimate;

• JGN had lower errors for the final solute estimate in all cases compared to GW data

inversion alone, however, for most experimental designs the initial solute estimate

was worse than in GW data inversion alone;

• Soil bulk conductivity estimates were not improved by the joint inversion (both JGN

and BCDM);

• The more complex Example 2 (no linear relationship between soil conductivity and

solute content) lead to improvements for both BCDM and JGN methods compared

to GW data inversion alone.

Parameter estimation (Example 3)

• JGN and BCDM provided comparable results in terms of ε(K) and ε(c);

• The initial estimate for µ does influence the final errors;

• In the hydraulic head estimation JGN performed worse than both GW data inversion

and BCDM;

• The main features of the heterogeneous hydraulic conductivity K were captured by

both coupled and uncoupled inversion framework, however GW data inversion con-

verged towards higher contrast in K.
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• To our knowledge, no structural inversion have been done using a parametric ap-

proach. Here, we explore the use of parametric approach together with a structural

coupling.

The GW inversion is mainly limited by the scarce groundwater data, and as such it could

not provide better results without implementing some smooth regularization, however, in

that case, “a-priori” information needs to be introduced, which can not be always justified.

Adding a coupling term in a form of structure similarity measure better constrains the ill-

posed GW inverse problem and complements the GW data. This observation also partially

explains why in Example 2 BCDM provided on average better estimates than in Example

1. Example 1 was set as a simple Gaussian plume, and thus standard L2 regularization

within GW inversion alone gave satisfying results, however, if more complexity is added

(Example 2), then, the geophysical contribution within the CGP term contained sufficient

information to constrain the estimates.

Both JGN and BCDM were easier to implement for the state estimation of the solute

content c0, due to easier derivation of the data sensitivities. The coupled approach for state

estimation had better results when compared with the coupled approach for parameter

estimation. This stems from the fact that the similarity measure term is coupling the

solute content c with the electrical conductivity σ. Other GW parameters such as hydraulic

conductivity or, say, boundary fluxes are related to solute content c via the GW flow model

only and this dependency has then a major effect on the success of parameter estimation.
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5.3 Joint inversion with electromagnetic loop survey

The presented results follow the seawater intrusion example, except that now we have

TDEM data instead of DC resistivity data. The details of this example were already

described in section 5.1, and here we want to test the robustness of the ADMM approach if

the geophysical data are altered. The groundwater model boundary conditions and forward

simulations are identical, and again we estimate the initial and final solute distribution for

the two cases with the homogeneous and heterogeneous permeability field, Case 1 and Case

2 (see Table 5.6).

To model geophysical electromagnetic data we placed a transmitter loop at the center

of the area on surface. The current was initially shut down to produce changes in magnetic

field, which were then recorded by receiver coils placed in a uniform grid on surface (see

Figure 5.25 for the experimental design scheme). 3% Gaussian random noise was added to

the measured data.

Figure 5.25: The experimental design for EM survey: Loop (transmitter) is placed in the
center on surface, the receiver coils are placed on surface in an uniform grid.

For the GW experimental survey we again used the two transects at x = 16 m and

x = 24 m, with four wells each, to collect solute mass fraction data from three depth

samples.

90



5.3.1 Joint inversion with ADMM

The ADMM starts with a groundwater descent, and continues as long as the constraint

residual rk decreases. The weights were set as αe = 10−9, αf = 5 × 10−3 and ρ = 0.4.

The summary of results for the case with well transects along x = 16 m and x = 24 m is

in Table 5.13, Figure 5.26 shows the scaled errors (εk/ε0) and the residuals rk during each

descent of ADMM method for this particular survey. Similarly as the results in section 5.1

showed for DC resistivity data, also when coupling groundwater with electromagnetic data

the ADMM had the lowest errors for both initial and final solute mass fraction estimates.

Case 1 ε(ωf ) ε(ω0) φGW (ρω) φDC(u(σ))
Initially 14.2 22.6 14.4 1.2 e5
Coupled 6.1 15.3 5.1 70.8
ADMM 2.6 13 2 69

Case 2
Initially 9.3 16.8 7.4 7.1 e5
Coupled 5.2 14.1 2.9 75.7
ADMM 2.0 10.4 1.8 71.3

Table 5.13: Errors for the initial and final solute content at time t0 and t1 for the two
different Cases 1 and 2.

Case 1 Case 2

Figure 5.26: The error and residual decrease during the ADMM descents: Green triangles
represent the scaled error for the final solute fraction ωf , orange stars correspond to
updated rk values, where rk = σf (k) − p(ωf (k)). The GW wells in this case were
placed along x = 16 m and x = 24 m

The profiles of initial and final solute mass fraction estimates versus the true models

are plotted for Case1 and Case 2 in Figure 5.27, Figure 5.28 respectively.

91



Figure 5.27: ADMM estimates for Case 1: Contour profiles at x = 10 and x = 20. The
dashed lines are estimates from the joint inversion (ADMM), and the full contour
lines are the actual locations corresponding to ω = 0.25 (blue), ω = 0.5 (green) and
ω = 0.75 (red).

Figure 5.28: ADMM estimates for Case 2: Contour profiles at x = 10 and x = 20. The
dashed lines are estimates from the joint inversion (ADMM), and the full contour
lines are the actual locations corresponding to ω = 0.25 (blue), ω = 0.5 (green) and
ω = 0.75 (red).

Different GW experimental designs

Afterward, we run the joint inversion for different locations of GW data. We used the same

combinations of transects as before, plotted in Figure 5.10, and recorded the scaled error

decrease for the initial and final solute fraction estimates for each design (in Figure 5.30).

Compared to coupling with DC resistivity data, in the heterogeneous Case 2 we obtained

on average lower errors for the final solute estimates, in the homogeneous Case 1 though,

the error of initial solute estimates were higher. In both cases the error decrease for the

final estimate was fairly similar regardless the GW design.
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Figure 5.29: ADMM estimates. Upper left and right: Estimates for initial and final solute
distribution for Case 1. Bottom left and right: Estimates for initial and final solute
distribution for Case 2. Isosurfaces at ω = 0.25, 0.5 and 0.75 are displayed. The true
models are plotted in Figure 5.3

5.3.2 Summary

ADMM method applied to joint inversion with EM data lead to similar conclusions as when

applied to seawater intrusion example in section 5.1 with DC resistivity data. The joint

inversion with ADMM decreased the estimate errors in all cases compared to a simpler cou-

pled approach only or a separate inversion. In the heterogeneous case, the ADMM approach

managed to improve the estimates consistently even for different designs of groundwater

data locations.

The main difference compared to coupling with DC resistivity data is thus increasing
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Case 1 Case 2

Figure 5.30: The relative error decrease for different GW sampling designs; the dotted line
is for the ω0 relative error, the full line for the ωf relative error decrease. The plotted
results are based on different transects of wells plotted in Figure 5.10.

the computational time due to the TDEM forward and inverse model. On the other hand,

during our tests and implementation of the ADMM for EM data we could observe that the

joint inversion is converging to a minimum, though possibly in more iterations, regardless

the initial guess or particular weights setup. Coupling with TDEM data therefore seemed

to be more robust, compared to coupling with DC resistivity data.
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Chapter 6

Conclusions

Joint hydrogeophysical inversion is an attractive option to improve parameter and state

estimates for groundwater models and to better monitor and predict solute transport pro-

cesses. However, when evaluating the hydrological and geophysical data, simpler coupled

approaches which use existing codes for groundwater or geophysical models are often pre-

ferred. In this thesis we developed both models in the same computational environment

and derived the sensitivities analytically to reduce the computational burden of solving the

inverse problem. With such a setup we were able to test different joint inversion schemes

for problems in 3D, which was one of the goals of this thesis.

In chapter two, we introduced the groundwater models developed for this study. The

first one enables solute transport calculations, such as salt tracer tests, and the second one

is used to model more complex processes such as seawater intrusions by enabling variable

density flow. For geophysical modeling we implemented DC resistivity and time domain

electromagnetic surveys, which are both sensitive to changes in subsurface electrical con-

ductivity (and thus also fluid conductivity). DC resistivity is a popular technique among

hydrogeologists, since, compared to some other geophysical methods, it represents a rela-

tively cheap method with easy data collection.

In most coupled approaches, the groundwater and geophysical properties are linked via

an empirical petrophysical relationship, whose parameters need to be determined. For lab-

oratory experiments, e.g. sand box with homogeneous soil, the parameter values can be

easily calibrated, but in the field conditions the parameters are uncertain at best. There-

fore, when coupling the groundwater and geophysical data, we need to consider two different

situations: first, when the petrophysical relationship is known and second, when its param-
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eters are unknown and we only assume some structure similarity between solute content

and electrical conductivity. In both cases though, we minimize an objective function which

contains the two data misfit terms, regularization terms and the coupling term coming

from the petrophysical relationship or a structural constraint. The minimization can be

computationally challenging due to the different speeds of convergence for the groundwa-

ter and geophysical models. In this work we propose computationally efficient strategies

to minimize this objective function, which we tested for multiple synthetic examples, and

compared with more standard approaches.

For the joint inversion with a known petrophysical constraint, we proposed here an

alternating direction method of multipliers (ADMM), which splits the minimization into

two subproblems; the GW and geophysical part. This is advantageous as the two different

data misfits do not need to be weighted in one objective function, and we can still proceed

with the joint minimization. We tested the ADMM approach on a seawater intrusion ex-

ample, where we estimated the initial and final saltwater distribution, while assuming the

knowledge of other groundwater model parameters. In addition to ADMM, we examined a

simpler coupled approach, where the result of a groundwater data inversion served as the

reference model for the geophysical inverse problem. ADMM reduced the estimate errors

by roughly a half for the final solute estimates and to about 60% for the initial solute

compared to a simpler coupled approach errors. Similar quantitative results were obtained

when coupling the GW model with both DC resistivity and TDEM data. Moreover, alter-

ing the GW parameters used in the inversion from the true ones, still lead to significant

improvement of ADMM estimates.

For the joint inversion without a known petrophysical constraint, we implemented the

cross gradient field product and joint total variation as structure similarity measures and

tested the joint inversion on synthetic examples with solute tracer. To minimize the ob-

jective function we applied two methods; the block coordinate descent method (BCDM),

which also splits the minimization onto groundwater and geophysical part, and the joint

Gauss-Newton (JGN) method that minimizes both models simultaneously. Both methods

were compared to a single data inversion for groundwater data.

BCDM in all cases improved or at least provided equal estimates. In the case of joint

Gauss-Newton minimization we need to set three different weights in the objective func-

tion, which is rather difficult, hence, the success in this task varies and so do the errors

of estimates. Overall, the joint Gauss-Newton method was a less robust and reliable min-
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imization technique. In terms of structure similarity measures, the coupled inversion with

a cross gradient field product decreased the errors of state estimates compared to a single

data inversion. However, using Joint total variation as a structure similarity measure did

not improve the error of estimates regardless the chosen minimization method. The poor

performance of Joint total variation can probably be attributed to the scarce groundwater

sampling data we had in our study.

The structure coupled inversion was also applied to solve the inverse problem for pa-

rameter estimation, specifically to estimate the hydraulic conductivity K. We adopted the

reduced parametrization via the Karhunen-Loeve expansion for the covariance matrix of

the conductivity field, which was assumed to be lognormal. To our knowledge, no structural

inversion has been done using a parametric approach. The improvement in terms of error

was relatively small compared to the groundwater data inversion alone; however, the joint

inversion led to lower heterogeneity contrast estimates of the conductivity K, which were

closer to the true field.

In summary, based on all the synthetic studies conducted, we can confirm that the

joint inversion approach leads to better estimates of states or parameters for GW models.

The goodness of estimates was largely determined by the quality and amount of data

available, which plays a key role in the success of solving any inverse problem. Different

data sampling locations result in differing final estimate errors. Increasing the amount of

groundwater data led to small improvements of the joint approach estimates compared to

the coupled approach or single data inversion alone. Results also show that, if the amount

of groundwater data samples was reduced, the joint approaches were still able to give

reasonable estimates with lower errors, indicating that the joint approach is less sensitive

to the amount of GW data samples.

However, the fact that the joint inversion improves the estimates of GW parameters

and states is not surprising or new, many coupled approaches have been documented to

improve the estimates by previous research studies. The main contribution of this work

therefore lies in introducing the minimization techniques that can handle the joint inversion

for 3D inverse problems.

To our knowledge, neither ADMM or BCDM have been applied to solve hydrogeophys-

ical inversion problems before. In this work we implemented both methods, including the

implicit computation of sensitivities and complex time stepping techniques, and showed that

we can solve the inverse problems in 3D in a relatively short time. Moreover, the proposed
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methods can also be applied to large scale problems, since they enable parallelization.

Structure coupled inversion in hydrogeophysics is still unexplored area, therefore, we

picked a rather simple scenario to test the feasibility of such an approach. The results

are promising, with some improvement even for the estimation of heterogeneous hydraulic

conductivity. For future research in this area, it would be worthwhile to test the structure

coupled inversion on more complex examples and with different types of geophysical data.

However, without the knowledge of the petrophysical relationship, we have less information

about the system and can not expect as much improvement as in the situation where a

valid petrophysical relationship is implemented.
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