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Abstract

Independent component analysis (ICA) is used for separating a set of mixed

signals into statistically independent additive subcomponents. The method-

ology extracts as many independent components as there are dimensions or

features in the original dataset. Since not all of these components may be of

importance, a few solutions have been proposed to reduce the dimension of

the data using ICA. However, most of these solutions rely on prior knowl-

edge or estimation of the number of independent components that are to

be used in the model. This work proposes a methodology that addresses

the problem of selecting fewer components than the original dimension of

the data that best approximate the original dataset without prior knowl-

edge or estimation of their number. The trade off between the number of

independent components retained in the model and the loss of information

is explored. This work presents mathematical foundations of the proposed

methodology as well as the results of its application to a business psychology

dataset.
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Chapter 1

Overview

This chapter contains a brief overview of the Independent Component Anal-

ysis methodology used in this work and a detailed description of the dataset

used for the application.

1.1 Introduction

One of the fundamental problems in multivariate data analysis is finding

a convenient representation of random vectors for a particular application.

It is customary to use linear transformations of the original data for the

reasons of simplicity and computational efficiency [13]. Examples of such

approaches are Principal Component Analysis, Factor Analysis and projec-

tion pursuit. My research is focused on Independent Component Analysis

(ICA), a recently-developed tool [11], the goal of which is to find a linear rep-

resentation of the non-gaussian data such that the resulting components are

statistically independent, or as statistically independent as possible. Note

that uncorrelated components are not necessarily statistically independent

unless gaussian distribution is assumed.

Albeit being a relatively new methodology, ICA has been used in nu-

merous disciplines and applications, including feature extraction and signal

processing. A non-extensive list of applications includes:

• Blind source separation with applications to watermarking and au-

dio sources [23] [16], ECG (Bell & Sejnowski [3]; Barros et al. [1],

McSharry et al. [20]), EEG (Mackeig et al. [19] [14]);

• Signal and image denoising (Hyvärinen [9]), application in fMRI (Hansen

[7])
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1.1. Introduction

• Modeling of the hippocampus and visual cortex (Lorincz, Hyvarinen

[18]);

• Feature extraction and clustering, (Marni Bartlett, Girolami, Kolenda

[2]);

• Compression and redundancy reduction (Girolami, Kolenda, Ben-Shalom

[4]).

ICA is particularly useful in a setup where the data can be assumed to

be generated by several independent processes, such as in “cocktail party

problem”. This problem constitutes identifying a particular source signal in

a mixture of signals, and, possibly, noise, where little or no prior information

is available about the signals forming the mixture or the mixing process. A

widely used example of such problem is trying to separate one person’s

speech in a noisy setting, in other words, identifying a particular speech

signal in a mixture of several speakers and some background noise. In my

thesis, I apply the ICA methodology to the business psychology survey data

in order to identify the independent components that drive patterns in the

survey responses.

Applying the ICA methodology to the business survey data is motivated

by the fact that since the entire survey is tailored to assess team productivity,

all the questions will have highly correlated responses. This happens because

all of the survey questions represent different approaches to measuring the

same indicator. It is important to identify the driving forces behind the

team’s productivity, in particular, to assess how many independent sources

affect the team’s performance. Independent Component Analysis is a nat-

ural tool to use for such inquiries. Since the survey contains quite a few

questions, we are additionally interested in finding out whether it is possible

to reduce the dimensionality of the data with as little information loss as

possible. Thus, my research focuses on the dimension reduction using ICA

with an application to the business psychology survey data.

Some methodologies used for finding a convenient representation of mul-

tivariate data, along with Independent Component Analysis (ICA), include

2



1.2. Data description

Principal Component Analysis (PCA) and Factor Analysis (FA) . The key

difference of ICA from PCA and FA is that ICA aims for the statistical

independence of the resulting components, while the components obtained

using PCA and FA are only linearly independent (uncorrelated), which in

general does not imply statistical independence. There are other technical

differences in the assumptions made in each case, which I will cover in detail

in the following chapter.

1.2 Data description

The dataset used in this work consists of accumulated survey responses gath-

ered by VIVO Team Development over the course of their business. VIVO

Team Development is an organization that performs consulting services for

other companies aimed at improving the companies’ staff productivity. In

particular, VIVO offers a data-driven approach to identifying productivity

flaws as well as training for personnel to repair dysfunctional and improve

moderately-functional teams. Productivity assessment is done via analyz-

ing the team’s responses to a survey composed by VIVO and calculating

the six key team performance indicators. If the training is done to improve

the clients’ team’s performance, subsequent surveys are conducted to assess

the progress and track changes in the team productivity with training. This

section contains details on the survey as well as the productivity indicators

that are measured using the survey.

The Vital Statistics Survey designed by VIVO team development is

aimed at a comprehensive assessment of a team’s productivity level. The

initial survey is conducted before any training takes place to identify the

team’s strengths and areas for improvement. The survey is taken by each

member of the team as well as the team’s leader. In case training is done

by the team, the subsequent surveys follow after 3 months in training and

at conclusion of the training, which can take from 6 months to a year. All

the team members take the initial survey as well as the subsequent ones.

Some of the VIVO’s clients choose to not do training, hence only the initial

survey results are recorded for these companies.

3



1.2. Data description

The survey consists of over 50 questions, each of which is aimed at as-

sessing the team productivity. Each question asks the responder to choose

a degree to which they agree or disagree with a statement based on a scale

from 1 to 10, where 1 indicates complete disagreement and 10 – full agree-

ment. Therefore, on each test occasion the response for each team member

is a vector with the same length as the number of questions, each entry being

an integer from 1 to 10. The responses to each question are then combined

to calculate the six key productivity indicators and the three sub-indicators

of each key indicator, forming eighteen values. These values represent each

team member’s perception of the team productivity. These 18 indicators of

productivity will be used in this work as the variables of interest. By the

nature of the data, all the 18 variables of interest are measured in the same

units.

The team members’ responses are summarized team-wise to form the

average perception of productivity and these results are reported to the

client and used for choosing the training plan in case of the initial survey

or for tracking the team’s progress in case of the subsequent surveys. For

the purposes of the independent components extraction, individual responses

were used as opposed to the aggregated team-wise data. Also, no distinction

was made between the initial and the subsequent surveys.

The dataset used for the analysis in this project contains the individual

responses to the Vital Statistics Survey gathered by VIVO Team Devel-

opment over the course of their business. The latest survey version was

introduced in the middle of 2015 and since then has been used for more

than 15 companies to assess and improve the performance of over 30 teams,

which overall amounts to over 270 individual responses.
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Chapter 2

Independent Component

analysis

This chapter focuses on the methodology of Independent Component Anal-

ysis and the approaches to defining ICA proposed in the existing literature.

First, the motivation and intuition behind the method is explained, followed

by the rigorous definition and mathematical properties.

2.1 Motivation

Independent Component Analysis is closely related to what is known as

a “blind source separation” problem in signal processing [10]. This prob-

lem deals with the separation of the original (source) signals from a mixed

data with little or no information about the source signals or the mixing

process. The problem can be formulated as follows: a set of original unob-

served signals recorded in time s(t) = (s1(t), . . . , sp(t))
t is mixed into the

observed signals x(t) = (x1(t), . . . xk(t))t with an unknown mixing matrix

A = {aij}k×p:

x(t) = As(t). (2.1)

Note that the number of the original signals k is usually assumed to be

equal to the number of the observed signals p. In case k > p linear unmixing

can be used, while if p > k, one must use the non-linear methods to derive

the source signals from the mixtures. Blind source separation aims to find

the unmixing matrix W = {wij}p×k to recover (or approximate) the source
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2.1. Motivation

signals from the mixture, as

y(t) = Wx(t), (2.2)

where y(t) is an approximation of s(t). The methods for blind source sep-

aration aim at estimating the unmixing matrix utilizing the assumptions

made about the source signals or the mixing process.

An example of blind source separation problem is a well-known “cocktail-

party problem”. I will be using this example to motivate ICA, following

Hyvärinen and Oja [11]. Assume that there are two speakers speaking si-

multaneously in a room as well as two microphones recording both speakers.

The locations of the microphones are unknown and each microphone records

a mixture of the speakers’ speech signals. If we denote the recorded signals

as x1(t) and x2(t), where t is the time index, and s1(t) and s2(t) as the

respective speakers’ speech signals, we can write a linear equation:

x1(t) = a11s1(t) + a12s2(t)

x2(t) = a21s1(t) + a22s2(t)

Blind source separation in this case refers to estimating the original

speech signals s1(t) and s2(t) using only the recorded signals x1(t) and x2(t),

assuming that the mixing parameters a11, a12, a21 and a22 are also unknown.

ICA attempts to solve this problem by estimating the mixing coefficients

using statistical properties of the signals si(t). In particular, one can esti-

mate the parameters aij using the assumption of statistical independence of

the original signals si(t) and their non-gaussian distributions. Other meth-

ods rely on different assumptions about the signals or the mixing process.

For example, if one is using Principal Component Analysis to identify the

independent signals, one should assume that the original signals, and hence

the mixtures, follow multivariate gaussian distribution. Such assumption

needs to be made because the components extracted by PCA are linearly

independent (uncorrelated), which in general does not imply statistical in-
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2.2. Definition and mathematical notation

dependence unless the variables follow a multivariate gaussian distribution.

Hence, if one aims for extraction of statistically independent signals, a mul-

tivariate gaussian distribution must be assumed. In a wide range of applica-

tions the signals are not necessarily gaussian, which provides an additional

motivation for ICA.

In my work I use ICA for separating the independent components re-

lated to team productivity using the key productivity indicators as mixed

signals. It is not unreasonable to assume that the team productivity is

driven by several independent sources or components, which are measured

in the productivity survey, but not necessarily separated from one another.

Since all the survey questions are intended to measure productivity, one can

assume that the answers to all questions are driven by combinations of these

independent sources.

In the following section I state the rigorous definitions of ICA given in

the literature and also describe some ambiguities related to this method,

which will be of importance in this research.

2.2 Definition and mathematical notation

In order to define ICA more rigorously we use a statistical “latent vari-

ables” model. Assume we are observing k linear mixtures of k independent

components. Dropping the time index t we now have:

xi = ai1s1 + ai2s2 + · · ·+ aiksk, i = 1, . . . , k.

We assume that each component sj is a random variable , j = 1, . . . , k.

Hence, each mixture xi is also a random variable i = 1, . . . , k. Also, with-

out loss of generality we assume that all the mixtures as well as all the

independent components have zero mean.

For convenience, vector-matrix notation is often used. Let x be a random

vector of the observed mixtures, thus x = (x1, . . . , xk)t and s = (s1, . . . , sk)t

– a vector of independent components. Additionally, define A as a k × k
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2.2. Definition and mathematical notation

mixing matrix with elements {aij}. Now we can write the ICA model as

x = As. (2.3)

This model is generative, which means that it describes how the observed

data is generated via mixing the independent components s, which are the

non-observed latent variables. Our goal is to estimate both the independent

components s and the mixing matrix A using the observed values of x under

as general assumptions as possible.

Note that the definition of independent components in equation (2.3)

implies two ambiguities of the method [11]:

1. The variances of the independent components cannot be determined.

This is because since both A and s are unknown, we can scale any ele-

ment of s by a constant and divide the corresponding column of A by

the same constant to achieve the same multiplication result as before

scaling. Thus, in practice we fix the magnitude of the components to

be 1 (V ar(sj) = 1 for all j = 1, . . . , k) and adjust the matrix A accord-

ingly. This still leaves the ambiguity of the sign, which fortunately is

not a big problem in our application.

2. The order of the independent components cannot be determined. We

cannot determine the order of the components because for any (invert-

ible) permutation matrix P we can write As = AP−1P s, where P s are

the same independent components, just in a different order. This am-

biguity will be important later since each run of the ICA algorithm

produces independent components in a different order.

The starting point of ICA is assuming that all components of s are sta-

tistically independent. This means that their joint densities are factorisable

into a product of k densities. Note that statistical independence implies

linear independence for random variables with finite second moments, thus

the independent components produced by ICA will be uncorrelated. Fur-

thermore, since uncorrelated variables are not independent unless gaussian

distribution is assumed, the principal components obtained using PCA will
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2.2. Definition and mathematical notation

not necessarily be statistically independent if the original data is not multi-

variate gaussian.

This assumption also implies a property of independent random vari-

ables, namely that if we have functions h1, . . . , hk then

E[h1(s1)× · · · × hk(sk)] = E[h1(s1)]× · · · × E[hk(sk)]

Note that if the functions h1(·), . . . , hk(·) are linear in s1, . . . , sk, this

property holds for uncorrelated or linearly independent variables s1, . . . , sk.

For statistically independent variables this property will hold for a more

general class for functions h1(·), . . . , hk(·), such as power functions of the

form h(s) = sp, where p ∈ R, polynomials and others.

For ICA we must assume that the independent components s are non-

gaussian. The reason behind the nongaussianity assumption is that any or-

thogonal transformation of a gaussian random vector has exactly the same

distribution as the original random vector (taking into account the zero-

mean constraint), therefore in case of gaussian components we can esti-

mate the matrix A only up to an orthogonal transformation, which makes

the matrix unidentifiable. In case only one of the components is gaussian,

the independent components could still be estimated [11], which makes the

methodology useful for a mixture of several signals and a gaussian noise.

However, we do not assume the distributions of the components known.

For simplicity, we also assume that the matrix A is square, though this

assumption is non-essential and can be relaxed. In Chapter 3 I will describe

the methods useful for dealing with non-square mixing matrices.

Note that in most applications of ICA the algorithms first estimate the

“inverse” of the mixing matrix A, denoted as W , which can then be used to

compute the extracted independent components s as:

s = Wx. (2.4)

The formula above raises the question of whether the assumption that

the mixing matrix A is invertible needs to be made. Here we discuss the pre-

9



2.3. Pre-processing data

processing steps usually performed on the dataset before the ICA methodol-

ogy is applied to it, that, among other benefits, provide the invertible mixing

matrix without making additional assumptions.

2.3 Pre-processing data

Customarily, several pre-processing steps are performed on the data before

the ICA methodology is applied to it. These steps include centering and

whitening (or sphering) of the original data and could be performed using

multiple approaches. Here a few methods are outlined and the benefits of

the preprocessing procedures are explained.

1. Centering. This is a simple procedure aimed at making x a zero-

mean vector, thus, if we denote E(x) = m setting x′ = x−m. In practice,

where one is working with a dataset consisting of n realizations of the random

vector x, thus a data matrix X = (xij)n×k, the sample means are subtracted.

Hence, we obtain X ′ = (x′ij)n×k, where

x′ij = xij −
1

n

n∑
l=1

xlj .

This step is made solely for simplification of the ICA algorithm, as it

makes both the original data and, by relation (2.4), the independent com-

ponents, centered. This does not imply that the mean of s cannot be esti-

mated. In fact, after the mixing matrix is estimated with the centered data,

one can translate the centered estimates of s to the original scale by adding

Wm, which, because of (2.4) serves as the estimate of the mean of s.

2. Whitening (or sphering). Whitening is a linear transformation

of the centered data x′, which makes the resulting data z have an iden-

tity covariance matrix. Thus, each component of z is uncorrelated with the

rest and has unit variance. There are numerous ways to perform a whiten-

ing transform, among which most researchers use a PCA-type transform

through eigenvalue decomposition (or singular value decomposition) of the

covariance matrix of the centered data E(x′(x′)t). Note that as the covari-
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2.3. Pre-processing data

ance matrix is by definition symmetric, the eigenvalue and the singular value

decompositions provide the same result. In particular, we decompose the

covariance matrix as E(x′(x′)t) = V DV t, were V is the k × k orthonormal

matrix, the columns of which are the eigenvectors of E(x′(x′)t) and D is the

diagonal matrix of its k eigenvalues. We assign

x̃ = V D−
1
2V tx′.

It is easy to see that this transformation indeed “whitens” the data as

follows:

E(x̃x̃t) = V D−
1
2V tE(x′(x′)t)V D−

1
2V t

= V D−
1
2V tV DV tV D−

1
2V t

= V D−
1
2DD−

1
2V t

= V V t = I.

This step is performed for reducing the number of parameters to be

estimated as well as for simplification of the ICA algorithm. In case of the

whitened original data, the mixing matrix A will always be orthogonal. To

see this, we consider:

E(x̃x̃t) = AE(sst)At = AIAt = I.

The primary goal of this step is reducing the number of the parameters to

be estimated from k2 to k(k−1) as the degrees of freedom of the orthogonal

square matrix A are k(k − 1). Additionally, as A is now orthogonal, it is

implicitly invertible with At being the inverse.

An additional step performed in some applications is discarding the

eigenvalues of the covariance matrix that are too small and working with the

reduced dimension dataset. This step, similar to PCA, offers the benefits

of reducing noise and preventing over-learning. In this work, I discuss the
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2.4. ICA with negentropy maximization

dimension reduction after the ICA algorithm has been performed, thus I do

not discard the low eigenvalues at this step.

It can be added that whitening techniques are simple and plentiful and a

whitening transformation can be found for any data. Thus, it is advisable to

perform the data whitening before any ICA algorithm to reduce the problem

complexity.

2.4 ICA with negentropy maximization

Most of existing algorithms for ICA aim to maximize the non-gaussianity

of the independent components, that is, maximize the departure of the in-

dividual independent component distributions from a gaussian distribution.

To see how this principle works first assume we have a vector x distributed

as in equation (2.3). We would like to estimate one of the independent

components as a linear combination of the observed variables with some co-

efficients y = wtx. Ideally, we would like wt to be equal to one of the rows

of W , the inverse of A.

Making a change of variables z = Atw we have (since x = As (2.3)) :

y = wtAs = zts

Hence y is a linear combination of sj with coefficients zj , j = 1, . . . k. For

simplicity assume that all the sj have the same distribution. Since by CLT

any linear combination of independent variables is going to be “more gaus-

sian” than the original variables, then by maximizing the non-gaussianity of

y we arrive at the solution with only one non-zero zj , corresponding to one

of the sj , j = 1, . . . k (since identical distributions of the sj are assumed).

The vector w such that the non-gaussianity of y = wtx is maximized will

provide us with one of the independent components.

The optimization landscape for the non-gaussianity of the k-dimensional

space of vectors w has 2k local maxima, each corresponding to one of the sj

or −sj (recall the ambiguities of ICA). Finding all of these local maxima is

not very challenging since the independent components are uncorrelated. A
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stepwise procedure can be devised, where to estimate the next component,

or the next w, we restrict the space to all vectors that are orthogonal to

the vectors w which provided the independent components in the previous

steps. This othogonalization step will further explained in section 2.5.

We determined that to estimate the independent components we need

to maximize the non-gaussianity of y = wtx. Now we review the existing

measures of non-gaussianity and choose the one most useful for our purposes.

There are several measures of non-gaussianity, such as kurtosis. Kurtosis

of a random variable y is a measure of the “tailedness” of its distribution, i.e.

how many extreme observations does the distribution of y produce. Kurtosis

is defined as:

Kurt(y) =
E(y − E(y))4

E[(y − E(y))2]2

In general, the further the kurtosis is from the value of 3, which is the

kurtosis value for any univariate gaussian distribution, the further the distri-

bution is from a gaussian distribution. The distributions with the kurtosis

value greater than 3 (supergaussian) tend to produce more extreme observa-

tions than gaussian distributions, while the kurtosis values less than 3 (sub-

gaussian) generally indicate less heavy tails than in gaussian case. Strictly

speaking, a kurtosis value of 3 is not unique to the gaussian distributions,

other distributions with specific parameters can have such a kurtosis value as

well. An example is the binomial distribution with p = 1
2±
√

1
12 . However, it

is difficult to find such distributions and such specific values of parameters.

Gaussian distributions have kurtosis value of 3 regardless of the parameter

values, which is why kurtosis in customarily used to assess the gaussianity

of a distribution. However, lately kurtosis is mostly not used in applications

because it may not be defined for heavy-tailed distributions [15]. Among

all other possible non-gaussainity measures most of the ICA methods use

negentropy.

Entropy is one of the basic concepts of information theory and can be

interpreted as a measure of deviation from uniformity of a distribution of a

13
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random variable. For continuous random variables and vectors we calculate

differential entropy. For example, a random vector y with a density fy(t)

has entropy:

Hy = −
∫
· · ·
∫
fy(t) log fy(t)dt

It is useful to note that if all the components of y are mutually inde-

pendent then we can calculate the entropy for this vector as a sum of the

entropies of its components. This can be seen as follows:

Hy = −
∫
fy(t) log fy(t)dt

= −
∫
· · ·
∫
fy(t1, . . . , tk) log fy(t1, . . . , tk)dt1 . . . dtk

= −
∫
· · ·
∫
fy1(t1) . . . fyk(tk)

k∑
j=1

log fyj (tj)dt1 . . . dtk

= −
k∑

j=1

∫
· · ·
∫
fy1(t1) . . . fyk(tk) log fyj (tj)dt1 . . . dtk

= −
k∑

j=1

∫
fyj (tj) log(fyj (tj))dtj

=

k∑
j=1

Hyj .

One of the fundamental results of information theory is that the gaussian

distribution parametrized as N(µ, σ2) has the maximum entropy among all

distributions with mean µ and variance σ2 [11],[6].

The concept of negentropy (or negative entropy) can be introduced and

used to measure the departure from gaussianity. Negentropy for a random

vector y can be calculated as
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Jy = Hygauss −Hy (2.5)

Here ygauss denotes a gaussian random vector with the same mean and

covariance matrix as the vector y. Maximizing negentropy to achieve the

maximum departure from gaussianity is well-justified by statistical theory

and negentropy is considered to be an optimal measure of non-gaussianity

as far as statistical properties are concerned [11]. Alternatively, one can

minimize the entropy Hy to achieve the same results.

Unfortunately, entropy is hard to calculate due to the need to numerically

approximate the density. Therefore, several less computationally expensive

approximations for negentropy as a distance measure from a guassian distri-

bution have been proposed in the literature. Among others I will mention

logcosh and exponential approaches shown in [8], since these are the most

widely used approximations for ICA implemented in most software packages

(R, Matlab, etc.).

In general, both logcosh and exponential approximations have the fol-

lowing form:

Jy ≈
k∑

j=1

[E(G(yj))− E(G(ygaussj ))]2 (2.6)

Here ygaussj is a gaussian random variable of the same mean and variance

as yj and G(·) is some non-quadratic function. Since we assume that all

independent components have zero mean and unit variance, all ygaussj have

a standard normal distribution. Since the second addendum in the equation

above is constant, in order to maximize negentropy, one must maximize

E(G(yj)). Logcosh and exponential approaches correspond respectively to
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the following choices of the function G:

Glogcosh(u) =
1

a
log cosh au (2.7)

Gexp(u) = − exp(−u
2

2
) (2.8)

Here a is some parameter between 1 and 2.

There are several existing algorithms for performing ICA on a given

dataset. Most efficient and widely-used algorithm is FastICA. FastICA uses

negentropy to measure non-gaussianity and offers a choice of logcosh and

exponential approaches to the approximation of negentropy. Both of these

approaches represent more robust estimations than kurtosis, since kurtosis

is very sensitive to extreme observations because of the fourth moment used

in its calculation. The comparison of the three approaches is presented in

Figure 2.1.

Figure 2.1: The comparison of different approaches to negentropy approx-
imation: kurtosis (based on the 4th degree) is given by the dashed line,
logcosh approach with α = 1 is represented by the solid red line and expo-
nential – by the dash-dotted blue curve.
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2.5. FastICA algorithm

2.5 FastICA algorithm

Here I present the FastICA algorithm, which is used to extract the indepen-

dent components in this work.

FastICA focuses on finding a matrix W , or a set of k vectors w1, . . . ,wk

that correspond to the k independent components by maximizing the non-

gaussianity of wt
jx, j = 1, . . . , k. This section contains a summary of the

mathematical justification and derivation of this algorithm, for further de-

tails please refer to [11]. Assume that we are working with the pre-processed

data x, thus E(x) = 0 and E(xxt) = I. For details on the pre-processing

steps refer to section 2.3.

Our goal is to maximize negentropy of wjx for all j. Independent of

which approximation for negentropy is used, we want to maximize an ex-

pression of form:

k∑
j=1

E(G(yj)) =
k∑

j=1

E(G(wt
jx)),

where wt
j is the j-th row vector of the matrix W . Now we write this maxi-

mization problem for a particular wj dropping the index, in form of Lagrange

multipliers, denoting the objective function with O:

O(w) = E(G(wtx))− β

2
(wtw − 1).

The second term is needed because for the pre-whitened data the rows

and the columns of matrix W , the inverse of the mixing matrix A, are

normalized. We take a derivative of the objective function and set it to

zero, getting:

D(w) =
∂O(w)

∂w
= E(xg(wtx))− βw = 0. (2.9)
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Here g(·) is a non-linear function, which is the derivative ofG(·) discussed

in the previous section. Hence for the logcosh and exponential approaches

respectively:

glogcosh(u) = tanh(au), (2.10)

gexp(u) = u exp(−u
2

2
). (2.11)

The system of equations in (2.9) can be iteratively solved by the Newton-

Raphson method, setting each next estimate of w as

w← w − J−1D (w)D(w),

where the Jacobian function has the form:

JD(w) = E(xxtg′(wtx))− βI.

We can simplify the first term by approximating E(xxtg′(wtx)) ≈
E(xxt)E(g′(wtx)) = IE(g′(wtx)) because of the pre-whitening step. With

this approximation the Jabobian matrix becomes diagonal, thus can be eas-

ily inverted to obtain the following update formula:

w← w − 1

E(g′(wtx))− β
(E(xg(wtx))− βw)

Multiplying both sides by a scalar β−E(g′(wtx)), we get a simple update

step:

w← E{xg(wtx)− E{g′(wtx)w}} (2.12)

Note that w on the left side is multiplied by a scalar, thus renormal-

ization is needed at every step of the iterative algorithm. Also, since the
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independent components need to be uncorrelated, when estimating multiple

w1, . . . ,wk one needs to perform orthogonalization of the estimated matrix

W at every step, otherwise some wj ’s risk to converge to the same value.

The orthogonalization of W can be performed using matrix square roots:

W ← (WW t)−1/2W. (2.13)

The matrix square root shown in equation (2.13) is defined using eigen-

value decomposition of WW t. Let WW t = UDU t, where U is the orthonor-

mal matrix of the eigenvectors of WW t and D is the diagonal matrix of its

eigenvalues. We define (WW t)−1/2 = UD−1/2U t, where the inverse and the

square root of the diagonal matrix D is applied element-wise to the eigen-

values on the main diagonal. The orthogonalization shown in (2.13) will

indeed make W orthonormal as:

WW t = ((WW t)−1/2W )((WW t)−1/2W )t

= (WW t)−1/2WW t(WW t)−1/2

= UD−1/2U tUDU tUD−1/2U t

= UD−1/2DD−1/2U t

= UU t = I.

Notice that the procedure described above (Gram-Schmidt orthogonal-

ization) is not the only way orthogonalization can be performed. Alter-

natively, Cholesky decomposition, Householder transformation and Givens

rotation could be used. A few approximate methods also exist for high-

dimensional problems.

With all the required steps outlined above, we are ready to write the

FastICA algorithm.
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2.6. Other approaches to Independent Component Analysis

Data: The initial data x, the number of independent components k,

initial guess for W as W0 = (w1, . . . ,wk)t

Whiten x as described in section 2.2;

repeat

for j = 1 to k do

Update wj ← E{xg(wt
jx)− E{g′(wt

jx)wj}}, where g(·) is of

form (2.10) or (2.11);

end

Perform the symmetric orthogonalization of W = (w1, . . . ,wk)t

by (2.13);

until convergence;
Algorithm 1: Pseudo-code for the parallel FastICA algorithm.

Note that the algorithm above could be easily extended to a dataset

consisting of n realizations of the random vector x, thus a data matrix

X = (xij)n×p. In this case, the expected values in the algorithm above

are calculated as sample means (the averages of the rows of the resulting

matrices). To simplify the algorithm and decrease computation time when

working with large datasets, one can take sample means of randomly chosen

subsets of the data.

The convergence here is defined by two subsequent estimates of W being

sufficiently close together. Hence, no computation of negentropy or approx-

imations of densities are needed. This is one of the reasons the FastICA

algorithm is very efficient.

2.6 Other approaches to Independent

Component Analysis

A few other approaches for Independent Component Analysis have been

proposed in the literature. Likelihood may seem like a natural tool to use

for ICA, especially since deriving the likelihood for the model is not very

mathematically challenging. However, there are a few drawbacks to using

this approach. First of all, it requires the estimation of the densities of the

independent components, which is a difficult task. The solutions proposed
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include either using prior information about the independent component

densities or restricting the densities of all components to a finite-parameter

family. This option leads to another potential drawback: usually the densi-

ties of the subgaussian and supergaussian independent components need to

be modeled separately because they belong to different distribution families.

Another approach is the minimization of mutual information. Mutual

information of a random vector is defined as

I(y1, . . . , yk) =
k∑

j=1

H(yj)−H(y)

and is a natural measure of dependence between the components of the

vector. A small difference of this approach with maximizing negentropy

is that by maximizing non-gaussianity one restricts the components to be

uncorrelated, while in case of mutual information minimization this does

not necessarily have to be the case.

Another approach to estimating the unmixing matrix in ICA discussed

by K. Nordhausen et al. in [22] relies on scatter matrices with the so-called

“independent property”. The essence of this method relies on using scatter

matrices other than the sample covariance matrix to whiten the data as

described in section 2.3. A matrix-valued functional of a random vector x

with CDF Fx is called a scatter matrix if it is positive-definite, symmetric

and affine invariant. A sample covariance matrix is an example of a scatter

matrix, however there are numerous alternative techniques to constructing

those, for example M-functionals, S-functionals and etc. A scatter matrix

is said to have the independent components property if S(Fx) is a diagonal

matrix for all random vectors x with mutually independent components. A

covariance matrix is an example of scatter matrix with this property. M-

functionals and S-functionals do not generally have this property but can be

symmetrized to possess the independent components property. Using two of

scatter matrices with the independent components property yields an esti-

mate of an unmixing matrix that will depend on which scatter matrices are

used to construct it. Nordhausen et al. [22] recommend using robust options
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2.6. Other approaches to Independent Component Analysis

for both scatter matrices, which yields favorable estimates of the unmixing

matrix in case of symmetrically distributed independent components. The

procedure is however computationally costly and known to produce poorer

results for asymmetric independent components.

A few other methods include tensorial methods proposed by L. De Lath-

auwer [17], nonlinear ICA reviewed in [5] and Bayesian approach to Inde-

pendent Component Analysis recently revisited by Mohammad-Djafari [21].
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Chapter 3

Component selection

One of the assumptions made in ICA is that the mixing matrix A is square,

therefore, there are as many independent components as there are the recorded

mixed signals. In order to relax this assumption, a few methods have been

proposed, most of which require the researcher to choose or estimate the

number of components to be extracted prior to the application. For exam-

ple, one can use a Factor Analysis-type model of form

x = As + ε,

where A is a k-by-p real matrix, x is a k-dimensional random vector of the

original data and s is a p-dimensional vector of the independent components.

For noiseless ICA ε is assumed to be a k-dimensional deterministic vector of

zeros.

My research is concerned with using fewer independent components than

the dimensionality of the original data. That is, finding a way to choose the

most “useful” components out of the ones extracted in case the number of

components is not specified prior to the application. In this chapter I will

first briefly introduce some existing approaches to extracting less compo-

nents than the number of features in the original dataset and then discuss

the proposed approach and its mathematical basis.

3.1 Existing approaches

There is little literature available on the topic of dimensionality reduction

using ICA because ICA was not originally developed for that purpose [24].
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One method for producing fewer independent components than the di-

mensionality of the original data proposed in [11] suggests to reduce the

dimension of the problem while performing the pre-processing (whitening)

of the data. Recall, data whitening is often performed with a Principal

Components-type procedure, where the eigenvector decomposition of the

covariance matrix is used as follows: E(xxt) = V DV t, where D is the diag-

onal matrix of eigenvalues of the covariance matrix and V is the orthonormal

matrix, the columns of which are the eigenvectors. The whitened data are

then computed as:

z = V D−
1
2V tx′,

where x′ is the centered version of x and the inverse and the square root

are applied element-wise to the main diagonal of D. It is possible to re-

duce dimensions to a pre-determined value p by discarding the smallest

k − p eigenvalues from D and the corresponding eigenvectors from V . The

whitened data with the reduced dimensions is then fed to the ICA model,

which produces p independent components. This assumes prior knowledge

of the number of independent components that should be retained in the

model. Furthermore, the independent components will be estimated on the

whitened dataset, with some features excluded when dropping the small

eigenvalues, which may be undesirable and complicate the interpretability

of the results.

Another recently proposed approach in [24] uses virtual dimensionality

to determine the number of components to be retained in the model. Virtual

dimensionality is an approach to estimating the number of sources present

in a signal/image processing context. This estimate in convolution with a

prioritization mechanism is then utilized to choose which components are

to be retained. The prioritization mechanism mentioned above is based on

the sample skewness and kurtosis of the extracted independent components.

Another approach proposed in the same paper suggests running ICA mul-

tiple times starting at various initial values and comparing the components
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received on each run. The independent components that are output by

the algorithm often for various starting points are then deemed statistically

important and retained in the analysis, while the components that appear

rarely are discarded. The last two approaches were developed in application

to hyperspectral image analysis.

3.2 Proposed approach

The approach developed in course of my research focuses on a different

way to address the dimension reduction using ICA. When there is no prior

knowledge about the number of independent components that should be

retained, it may be prudent to perform ICA keeping the original dimensions

of the data. After obtaining the independent components, one can choose the

components that should be retained and discard the unneeded components.

This choice could be made by comparing the predictive power of different

combinations and numbers of the retained components or in another way as

suits the application goals. An example of a situation, where this method

could be applicable, is a multivariate dataset, where each variable is a mix

of several signals as smooth functions of time, and noise, or several sources

of noise. As long as the condition of independence of the noise from the

signal is met, ICA will be able to separate the source signals, among which

the noise will be easily identifiable. Once the sources are separated, one

can proceed with choosing the components that one is interested in. My

research focuses on whether or not there is a meaningful way to choose the

components to be retained as well as exploring the trade-off between the

retained number of components and the amount of information lost when

reducing dimensions in such way.

Assume we are working with a dataset, where each observation has k

features and there are n observations overall. Assume here that n > k. Let

us denote the vector of reduced (or truncated) independent components as

si, where out of original k components, p have been retained, i = 1, . . . , n. Of

course, in practice, for each p there are

(
k

p

)
possibilities of si (the choice of
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the retained components is assumed to be consistent across the i = 1, . . . , n).

Ideally, we would like to solve the equations:

xi = A∗si, i = 1, . . . , n (3.1)

for the mixing matrix A∗k×p in order to fully reconstruct the original data

without any information loss using only p out of the k independent compo-

nents.

As explained in section 2.3, customarily the data is pre-processed, i.e.

centered, scaled and whitened, before the application of ICA. Denote the

pre-processed data zi, where zi for i = 1, . . . , n can be written as:

zi = V D−
1
2V t(xi − µ) (3.2)

Here µ is the vector of expected values of xi, D is the diagonal matrix of

the eigenvalues of the covariance matrix 1
n

∑n
i=1 xix

t
i and V is the matrix,

whose columns are the eigenvectors. Hence, E(z) = 0 and 1
n

∑n
i=1 ziz

t
i =

Ik×k.

We assume that independent components si have mean zero and covari-

ance matrix Ip×p. Therefore, for (3.1) to be satisfied we need:

Ik×k =
1

n

n∑
i=1

ziz
t
i =

1

n

n∑
i=1

A∗sis
t
i(A
∗)t = A∗Ip×p(A

∗)t = A∗(A∗)t

Thus, we would need the rank of A∗ to be k, but since A∗ is a k× p matrix,

where p < k, this situation cannot occur.

We have shown that an exact reconstruction of the data is not possible

using fewer than the original number of components. Now, consider the case

that we want to get the best possible approximation to the original data by

using the reduced independent components extracted from that data. We

can measure the quality of approximation by the square of the L2 norm of

the difference between the original (or the whitened) data and the estimated

values, obtained by reconstruction using the reduced independent compo-

nents. For now we are working with the whitened data zi, i = 1, . . . , n. In
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order to minimize the information loss, thus getting the best approximation

of the original data, we need to obtain a mixing matrix which minimizes the

following target function:

F(A) =
n∑

i=1

‖zi −Asi‖22 (3.3)

Note the si vectors here are obtained from the whitened data as described

in Chapter 2. Additionally, please notice that our target function is a square

of Euclidean norm. We need to find:

min
A
F(A) = min

A

n∑
i=1

k∑
j=1

(
zij −

p∑
l=1

Ajl × sil
)2

(3.4)

This is a problem of a function minimization on a manifold of non-square

matrices. In order to solve the problem in (3.4) we compute the Frechet

derivative of the L2-norm in (3.3) as a function of a k × p matrix A.

Frechet derivative is a generalization of a derivative of real-valued func-

tion of a single variable to (possibly) vector-valued function of multiple real

variables. It is defined as follows. Let W and V be Banach spaces and

U ⊂ V be an open subset of V . A function F : U → W is called Frechet

differentiable at A ⊂ U if there exists a bounded linear operator Df(A,H)

such that

lim
‖H‖V→0

‖f(A+H)− f(A)−Df(A,H)‖W
‖H‖V

= 0 (3.5)

Frechet derivative is defined on Banach spaces, which include matrix

manifolds. In our case, space W is the real line and space V is a matrix

manifold of p × k real-valued matrices, while H is a p × k real matrix (the

direction matrix). Hence the function F : Rp×k → R defined in (3.3) could

be Frechet differentiable. The limit in the equation above is a usual limit

of a function defined on a metric space, thus the expression in (3.5) is a

function of H in V , hence the first-order expansion holds. We attempt to

find the linear operator DF(A,H) using this first-order expansion:
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F(A+H) = F(A) +DF(A,H) + o(‖H‖) (3.6)

We apply the definition given in equation (3.6) to the minimization prob-

lem in (3.4) to get the expression for the Frechet derivative. H(1) denotes

the direction matrix for the first order derivative.

F(A+H(1)) =
n∑

i=1

k∑
j=1

(
zij −

p∑
l=1

(Ajl +H
(1)
jl )× sil

)2
=

n∑
i=1

k∑
j=1

(
(zij −

p∑
l=1

Ajl × sil)−
p∑

l=1

H
(1)
jl × sil

)2
=

n∑
i=1

k∑
j=1

(
(zij −

p∑
l=1

Ajl × sil)2 − 2(zij −
p∑

l=1

Ajl × sil)(
p∑

l=1

H
(1)
jl × sil)

+ [

p∑
l=1

H
(1)
jl × sil]

2
)

=
n∑

i=1

k∑
j=1

(zij −
p∑

l=1

Ajl × sil)2 − 2
n∑

i=1

k∑
j=1

(zij −
p∑

l=1

Ajl × sil)(
p∑

l=1

H
(1)
jl × sil)

+
n∑

i=1

k∑
j=1

[

p∑
l=1

H
(1)
jl × sil]

2

= F(A) +DF(A,H(1)) + o(‖H(1)‖)

Thereby, the Frechet derivative of the cost function in (3.3) has the form:

DF(A,H(1)) = −2
n∑

i=1

p∑
j=1

(zij −
k∑

l=1

Ajl × sil)(
k∑

l=1

H
(1)
jl × sil)

In order for A0 to solve the minimization problem in (3.4) we need two

conditions to hold:

1. DF(A,H(1)) = 0 for all H(1);
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2. There exists an a > 0 such that D2F(A,H(2), H(2))) ≥ a‖H(2)‖ for all

H(2).

We would like to find such A0 that both conditions above are satisfied.

We propose A0 as:

A0 =
1

n

n∑
i=1

zi(si)
t. (3.7)

This is a k× p matrix as zi is a k-dimensional vector of the original data for

all i = 1, . . . n and si is a p-dimensional truncated vector of the independent

components. We need to show that this choice of A0 satisfies the condition

1 above, or DF(A0, H
(1)) = 0 for all choices of H(1). First, we notice that:

DF(A,H(1)) = −2
n∑

i=1

k∑
j=1

(zij − (Asi)j)(H
(1)si)j

= 2
n∑

i=1

k∑
j=1

(zi −Asi)j(H(1)si)j

= −2

n∑
i=1

(zi −Asi)tH(1)si.

Further, rewriting the product above as a trace and using the properties

of independent components we have:
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DF(A0, H
(1)) = −2

n∑
i=1

(zi −A0si)
tH(1)si

= −2
n∑

i=1

tr
(
(zi −A0si)

tH(1)si
)

= −2
n∑

i=1

tr
(
si(zi −A0si)

tH(1)
)

using the cyclic invariance of the trace

= −2

n∑
i=1

tr
(
(siz

t
i − sis

t
iA

t
0)H

(1)
)

using the transposition properties

= −2n× tr

(
(
1

n

n∑
i=1

siz
t
i − [

1

n

n∑
i=1

sis
t
i]A

t
0)H

(1)

)
= −2n× tr

(
(At

0 − Ip×pAt
0)H

(1)
)

= 0 using the independence of si.

We have shown that A0 satisfies the condition 1 above. Now we would

like to show that the condition 2 also holds for our choice of A0. In fact, the

condition is a definition of a strongly convex (or α-convex) function. Recall,

that our target function is a square of L2 norm (Euclidean norm). We can

prove the strong convexity of our function by first noticing that F can be

rewritten as:

F(A) =

n∑
i=1

k∑
j=1

‖zij −Ajsi‖22, (3.8)

where Aj denotes the j-th row of A, Aj ∈ Rp, j = 1, . . . k. As F can be

written as a sum of nk squares of L2 norms of affine functions of Aj , it is

enough to show that the square of L2 norm of a vector is a strongly convex

function and then use the property that the sum of strongly convex functions

is still strongly convex.

One of the forms of definition of a strongly convex function f with pa-

rameter α is that for all k-dimensional real-valued vectors x and y and for

t ∈ [0, 1] is:
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f(tx + (1− t)y)− tf(x)− (1− t)f(y) ≤ −1

2
αt(1− t)‖x− y‖22 (3.9)

In our case f(x) = ‖x‖22. Let x and y be p-dimensional vectors, let 〈x,y〉
denote the inner product of x and y. We expand the definition above to

get:

f(tx + (1− t)y)− tf(x)− (1− t)f(y)

= t2‖x‖22 + 2t(1− t)〈x,y〉+ (1− t)2‖y‖22 − t‖x‖22 − (1− t)‖y‖22
= t(t− 1)‖x‖22 − t(1− t)‖y‖22 + 2t(1− t)〈x,y〉

= −t(1− t)
(
‖x‖22 − 2〈x,y〉+ ‖y‖22

)
= −t(1− t)‖x− y‖22

≤ −1

2
t(1− t)‖x− y‖22 as t(1− t)‖x− y‖22 ≥ 0

We have shown that a square of an L2-norm of a vector is strongly convex

with α = 1. As the function F defined in (3.3) is a sum of nk squares of

L2 norms of affine functions of p-dimensional vectors, hence it is strongly

convex with the same parameter α = 1.

We have shown that our choice of A0 satisfies the necessary and the

sufficient conditions for the global minimum, solving the problem in (3.4).

Let us write zi as rows of matrix Zn×k and si as rows of matrix Sn×p.

Thus, we get:

A0 =
1

n

n∑
i=1

zis
t
i =

1

n
ZtS (3.10)

It turns out that the matrix A0 chosen as in (3.10) satisfies At
0A0 = Ip×p.

In order to show this, first we assume without loss of generality that the

independent components retained are the first p out of the k independent

components. Hence, we can write Sn×p = S̃n×kPk×p, where S̃ is the full
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matrix of independent components, thus S̃n×k, and P is a matrix that allows

us to choose first p components of S̃, which can be written as:

P =

(
Ip×p

0(k−p)×p

)
, (3.11)

where 0(k−p)×p is a (k − p)× p matrix of zeros. Therefore, P tP = Ip×p. We

need to remember that si are the independent components that satisfy Z =

SA for a k × k mixing matrix A, furthermore, Ik×k = 1
nZ

tZ = 1
nA

tStSA =

AtA, therefore, by the normality of orthogonal matrices, AAt = Ik×k. Now,

At
0A0 = (

1

n
ZtSP )t(

1

n
ZtSP )

=
1

n2
P tStZZtSP

=
1

n2
P tStSAAtStSP

= P t 1

n
StSAAt 1

n
StSP

= P tIk×kAA
tIk×kP = Ip×p.

Hence, At
0 is the left inverse to A0, and tr(At

0A0) = p. Notice that we can

rewrite the cost function defined in (3.3) as:
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F(A) =
n∑

i=1

p∑
j=1

(
zij −

k∑
l=1

Ajl ∗ sil
)2

=
n∑

i=1

p∑
j=1

(zij − (Asi)j)(zij − (Asi)j)

=
n∑

i=1

p∑
j=1

(zi − (Asi))j(zi − (Asi))j

=

n∑
i=1

(zi − (Asi))
t(zi − (Asi))

=

n∑
i=1

tr
(
(zi −Asi)t(zi −Asi)

)
.

Now, we evaluate the loss function (3.3) at A0:

F(A0) =

n∑
i=1

tr
(
(zi −A0si)

t(zi −A0si)
)

=

n∑
i=1

tr
(
zti − stiA

t
0)(zi −A0si)

)
=

n∑
i=1

tr
(
ztizi − stiA

t
0zi − ztiA0si + stiA

t
oA0si

)
= n

(
tr(

1

n

n∑
i=1

ztizi)− tr(
1

n

n∑
i=1

stiA
t
0zi)− tr(

1

n

n∑
i=1

ztiA0si) + tr(
1

n

n∑
i=1

stiA
t
0A0si)

)
= n

(
tr(

1

n

n∑
i=1

ztizi)− tr(At
0

1

n

n∑
i=1

stizi)− tr(A0
1

n

n∑
i=1

siz
t
i) + tr(At

0A0
1

n

n∑
i=1

sis
t
i)
)

= n
(
k − tr(At

0A0)), recall that tr(At
0A0) = p

= n(k − p).

This result holds no matter which p independent components out of

the original k are retained in the truncated vectors s. So, working on the

whitened data, the information loss depends only on the number of compo-
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nents that are excluded from the model and not on which components these

are.

Fortunately, when we return to the original scale of the data, i.e. do the

reverse transformation to (3.2), we see that which components are selected

does make a difference.

For the minimization results above to hold the data does not have to

be whitened, it can just be scaled. Denote yi as the original data that has

been centered and scaled, but not whitened. i.e yi = K−1(xi − µ), where

K is a diagonal matrix of the standard deviations of each components of

xi. The covariance matrix of yi here will have ones on the main diagonal

but does not have to have zero off-diagonal elements (the correlations of the

components of x remain unchanged). In the exact same way it can be shown

that in order to minimize the loss function

F(A) =

n∑
i=1

‖yi −Asi‖22 (3.12)

One should choose A as A0 = 1
n

∑n
i=1 yis

t
i. The results for the mini-

mization will still hold, but A0 will no longer be semi-orthogonal and left-

invertible, also the value of F(A0) will change.

Overall, we conclude that given si as the truncated independent compo-

nents and xi as the original data, one can find a matrix A0 that will minimize

the loss function F(A) in equation (3.12) as A0 = 1
n

∑n
i=1 yis

t
i, where yi are

the scaled non-whitened original data. After the optimal weighting matrix is

found for the particular (truncated) subset of the independent components,

the subset can be updated and the process can be repeated. Also, we found

out that which components we choose does not change the loss in case of the

whitened data, but does change it if the data is only centered and scaled.

The methodology shown here allows to perform the dimensionality reduc-

tion and components selection without any prior knowledge of the number

of independent components to be retained. First, we extract the full set of

independent components. Then, for every possible combination and number
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of components to be retained, we can easily compute the information loss as

defined in (3.12), using the optimal non-square weighting matrix A0. Once

this is done, the researcher can choose the number and the combination of

the independent components to be retained in the model in accordance to

his or her tolerance of the information loss, thus modeling the data with

fewer variables than are present in the original dataset.

3.2.1 Similarity to multivariate multiple regression

One can view the minimization problem in (3.4) as finding a Least Squares

solution to a multivariate multiple linear regression problem, that can be

written as:

Z = S ×A+ ε (3.13)

Here Z is the n × k matrix of the whitened data, S is the n × p matrix of

the reduced independent components, A is the k × p non-square weighting

matrix and ε is the k-dimensional vector of errors. Or, similarly, replacing

Z with Y , where Y is the matrix of centered and scaled, but not whitened

data. The Least Squares solution to this problem is given as [12]:

Â = (StS)−1StZ =
1

n
StZ = At

0. (3.14)

Similarly, for the correlated data, the least squares estimate is:

Â = (StS)−1StY =
1

n
StY. (3.15)

This fact provides additional confidence that our chosen solution in fact

minimizes the loss function in (3.3).

The rest of this thesis focuses on the application of the results above to

the data obtained from VIVO Team Development and observing how the

choice of the number of components retained in the model influences the

amount of loss when reconstructing the original data.
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Chapter 4

Component selection

implementation and results

This chapter focuses on the implementation of the methodology described

in the previous chapter. The techniques are applied to the VIVO Team

Development data, described in Chapter 1. First, some exploratory analysis

results are presented. Then, some standard dimension reduction techniques

are applied to the dataset. Next, some issues with the implementation of

the existing ICA algorithms are discussed. Following this, I show the results

of implementation of the findings from Chapter 3 and the comparison of

this method to an existing method of dimensionality reduction using ICA.

Finally, I present some findings about the components that tend to be chosen

by the algorithm and contrast them with some practices that are currently

employed.

4.1 Some exploratory analysis results

Before proceeding with implementation of the method discussed in Chapter

3, I present some results of the exploratory analysis of the data. The dataset

X ∈ Rn×k for the ICA algorithm is assumed to contain n independent and

identically distributed (i.i.d.) observations of the random vector x ∈ Rk. In

case of the VIVO data, the number of features is k = 18, while the number

of observations is n = 278. As mentioned in Chapter 1, each of the values

in the dataset is measured on the same scale from 3 to 30, as each of the

18 variables is calculated as a sum of the scores for three survey questions,

where the score for every question is an integer between 1 and 10.

In this section I will be working with the centered and scaled, but not
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4.1. Some exploratory analysis results

whitened data. It is obtained from the original dataset as follows:

Y = (X −m)K−1

Here m is the vector of sample means of the columns of X and K is the

matrix, the diagonal elements of which are the sample standard deviations

of the columns of X and the off-diagonal elements are zero.

First, I present the estimated densities of the components of Y . In Fig-

ure 4.1 we can see that the original densities of the 18 variables are unimodal

and mostly slightly left-skewed. The distributions exhibit no extreme obser-

vations, which is due to the nature of the data.

Figure 4.1: Estimated densities of the original variables (centered and
scaled).

A correlation matrix is an important part of descriptive analysis of mul-

tivariate data. The correlation matrix of Pearson pairwise correlations for

the VIVO data is presented in Figure 4.2. All the variables in the dataset are

highly correlated, which is often a feature of survey datasets. In our case, all

the survey questions are aimed at evaluating different sides of productivity,

which are interrelated.

In the next section, we will apply Principal Component Analysis and
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4.2. Principal Component Analysis and Factor Analysis

Figure 4.2: Pearson Correlation coefficients between the original variables.
The colors indicate the strength of linear correlations.

Factor Analysis, widely used dimension reduction methods to the VIVO

dataset and briefly discuss the results and the number of components each

method indicates fit for the data.

4.2 Principal Component Analysis and Factor

Analysis

In this section I show the application of “traditional”, in a sense of popular

and widely used, dimensionality reduction techniques.

First, we apply Principal Component Analysis to the VIVO data. This

technique uses an orthogonal rotation to convert the correlated multivariate

data into a set of uncorrelated principal components. The first principal

component is chosen in such way that it has the highest possible variance,

the subsequent components have the highest variance under the constraint of

being orthogonal to the previously computed components. Dimensionality

reduction using PCA refers to keeping fewer principal components than the

original dimension of the data, which in our case is 18. The number of

components to be kept can be decided, among other options, based on the
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4.2. Principal Component Analysis and Factor Analysis

eigenvalues of the sample correlation matrix of the data or on how much

variance of the data the selected number of components captures.

Table 4.1 shows the variance percentage attributable to each of the prin-

cipal components (up to the 9th principal component). In our case, the first

component holds 69% of the variance and clearly dominates over the other

components, that contain less than 5% each.

Component Standard dev Proportion of Var Cumulative Proportion

PC1 3.51 0.69 0.69
PC2 0.89 0.04 0.73
PC3 0.81 0.04 0.77
PC4 0.79 0.03 0.80
PC5 0.72 0.03 0.83
PC6 0.70 0.03 0.86
PC7 0.64 0.02 0.88
PC8 0.54 0.02 0.90
PC9 0.52 0.01 0.91

Table 4.1: The standard deviations, the proportion of variance and the cu-
mulative proportions of variance associated with the principal components.

Figure 4.3 shows the loadings associated with the first three principal

components. It can be observed that the first principal component has

approximately equal loadings associated with each of the original variables,

thus can be interpreted as a total questionnaire score. The signs of the

principal components are non-unique, hence the negative loadings could be

viewed as positive ones. The second and the third principal components have

little variance associated with them and have distinct loadings for several

of the original variables. They can be interpreted as contrasts, which is

always the case when the first principal component includes all the original

variables with the same sign.

Overall, Principal Component Analysis shows one dominating compo-

nent, which includes all the original variables with approximately equal

weights and accounts for 69% of the variance of the data.

After applying PCA, the natural extension is to apply Factor Analysis

to the VIVO data. Factor analysis is a method that attempts to describe a
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Figure 4.3: The loadings associated with the first three principal compo-
nents.

multivariate dataset of correlated variables in terms of a set of unobserved

orthogonal factors, the number of which is potentially smaller than the di-

mension of the original dataset. Exploratory Factor Analysis differs from

PCA in the sense that it includes error term in the model and thus regards

the PCA eigenvalues as inflated by errors. Unlike PCA, estimating the fac-

tors is an optimization procedure, aiming for the highest joint variance of

the factors. Factor analysis aims to find a generative model for the data,

while PCA simply chooses an orthogonal rotation that maximizes each of

the principal components variances one after another.

Under the framework of factor analysis, Chi-square test is performed to

test for ideal model fit. In other words, it tests the null hypothesis that

the number of factors included in the model is sufficient. In case of the

VIVO data, we fail to reject the ideal fit hypothesis starting from 7 factors.

Together these 7 factors capture 80.5% of the variance of the data. Table

4.2 illustrates the percentage of variance associated with each of the factors.

Another option to determine the sufficient number of factors is using

fit statistics to compare the observed correlation matrix and the structured

correlation matrix based on p factors, p = 1, 2, . . . , k.

We see that the first 5 factors each account for over 10% of the data
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Factor SS loadings Proportion of Var Cumulative Proportion

1 2.69 0.15 0.15
2 2.60 0.15 0.30
3 2.25 0.13 0.42
4 2.03 0.11 0.53
5 2.02 0.11 0.64
6 1.59 0.09 0.73
7 1.31 0.07 0.81

Table 4.2: The sums of squares, the proportions of variance and the cumu-
lative proportions of variance associated with the factors.

variance and the percentages do not decrease as drastically as they do in

case of PCA. The individual loadings of the first six factors are displayed

in Figure 4.4. All of the factors include all of the original variables with

non-zero weights.

Figure 4.4: The loadings associated with the first six factors extracted
using factor analysis.

In this section we applied the standard dimension reduction tools to the

VIVO dataset, namely Principal Component Analysis and Factor Analysis.

PCA indicates the presence of one dominating component, which includes

all of the original variables with approximately equal weights. FA, in turn,
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4.3. Choosing a suitable negentropy approximation

identifies that the data may be a contaminated mixture of at least 7 orthog-

onal factors, each of which include all of the original variables with non-zero

(but non-equal) weights.

In the remainder of the chapter, I will apply dimensionality reduction

using ICA, the method described in Chapter 3 of this thesis.

4.3 Choosing a suitable negentropy

approximation

Before performing the component selection and dimension reduction, one

needs to run the ICA algorithm to extract the independent components

from the dataset.

The dataset X ∈ Rn×k for the ICA algorithm is assumed to contain n

i.i.d. realizations of the random vector x ∈ Rk. The data is assumed to be

preprocessed as described in section 2.3 to form the input matrix Z as:

Z = X ′V D−1/2V t, (4.1)

where X ′ = (x′ij)n×k and x′ij = xij − 1
n

∑n
i=1 xij is the centered data ma-

trix. D in equation (4.1) is the diagonal matrix of the eigenvalues of the

sample covariance matrix computed as 1
n(X ′)tX ′ and V is the matrix of its

eigenvectors.

As discussed in the previous chapter, for now we retain as many com-

ponents as there are features in the original dataset, thus, by making the

reverse transformation Z = S̃At we are able to reconstruct the original data

perfectly. Here S̃ is the full matrix of the estimated independent components

, S̃ ∈ Rn×k and A is the square independent components loadings matrix,

A ∈ Rk×k.

I used the FastICA algorithm to extract the independent components

from the VIVO survey data. This algorithm looks for an orthogonal ro-

tation of the data that maximizes statistical independence of the resulting

components. Note that maximizing statistical independence here in achieved
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by maximizing non-gaussianity as described in Chapter 2, i.e. the algorithm

maximizes a measure of non-gaussianity for each of the resulting compo-

nents. As mentioned in Chapter 2, this algorithm provides two choices of

negentropy approximation as measured of non-gaussianity, exponential and

logcosh. This section discusses which approximation is better suited for

the VIVO dataset, and, additionally, reviews some of the properties of the

FastICA algorithm, that came to light while running this analysis.

The FastICA algorithm works by updating the orthogonal rotations of

the data, so that the resulting components show the highest negentropy.

That is, the algorithm iteratively estimates the matrix W in (2.4), which

is the inverse of A in equation (2.3), the independent components loadings

matrix. Given the iterative procedure of the FastICA algorithm, an initial

point for W needs to be specified. Usually the the starting W is chosen at

random (in this work, rnorm was used to generate the initial values). Notice

that the initial guess for W does not have to be orthogonal as Gram-Schmidt

orthogonalization is performed at every step of the FastICA algorithm, as

described in section 2.5.

If two subsequent values for W are close enough, then the algorithm

converges and uses the output estimate of W to compute the full matrix of

independent components as:

S̃ = ZW t. (4.2)

The algorithm implemented in the R fastIca package by default con-

tains no convergence checks at the output, which means that an inverse

loadings matrix will be output every time the algorithm is run. The algo-

rithm stops in the following cases:

• If two subsequent values of W are close enough, i.e. if the norm of

their difference is below the pre-specified tolerance level. In this case

the algorithm converges and the latest value of W is output;

• If the number of iterations reached the pre-specified maximum number

of iterations provided by the user. In this case, the algorithm outputs
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W value from the last iteration.

I built in a simple convergence indicator into the existing fastICA function,

which checks whether the output value of W was produced on the maximum

iteration or prior to that. The algorithm is assumed to converge if the output

value of W was achieved before the maximum iteration. Then I investigated

which negentropy approximation provided convergence in most cases for the

VIVO dataset. It can be seen in Figure 4.5, in the case of the VIVO data,

logcosh algorithm with the parameter α = 1 showed the best convergence

results.

Figure 4.5: Percentage of the converged cases of the FastICA algorithm in
application to the VIVO data obtained on 500 runs starting from random
initial values. The first point shows the percentage of converged cases for
exponential negentropy approximation, all other — logcosh approximation
with varying values of the parameter α.

The FastICA algorithm is very sensitive to the starting point, which

means that the returned estimates of the matrix W will vary depending

on the initial guess. This holds true even when the algorithm converges

with extremely low tolerance levels. Since different initial values provide

different output estimates of W , the estimated S̃ will vary (4.2). When all

the independent components are retained, this fact is not important, because

the variations in S̃ will correspond to the variations in A and Z = S̃At
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will still hold. This happens because, as both A and S̃ are estimated, any

change in the estimate of S̃ will be compensated by a change in the estimate

of A. However, the loss incurred when retaining only several independent

components will vary depending on the initial guess. The following section

will show, among other results the magnitude of this variance.

4.4 Implementation results

This section states the main results of implementation of the method dis-

cussed in Chapter 3. The dataset obtained from VIVO Team Develop-

ment contains 18 variables measured 278 times. We denote this dataset

as X ∈ R278×18. The implementation of the methodology consists of the

following steps:

1. Center the dataset, i.e. compute X ′ = (x′ij)278×18 by subtracting the

sample means of each column of X as x′ij = xij − 1
n

∑n
l=1 xlj . Record

the column means of X as m;

2. Standardize the dataset, i.e. compute Y = X ′K−1, where K is the

diagonal matrix of sample standard deviations of the columns of X ′.

Note that this step is not compulsory for the FastICA procedure, but

the output matrix Y is used in step 6;

3. Whiten the dataset, computing Z = X ′V D−
1
2V t, where D is the di-

agonal matrix of the eigenvalues of the sample covariance matrix com-

puted as 1
n(X ′)tX ′ and V is the matrix, the columns of which are the

eigenvectors of the sample covariance matrix;

4. Run the FastICA algorithm on Z, keeping all the 18 variables. The

initial guess for the matrix W is 18×18 matrix of independent random

draws from a standard normal distribution;

5. Check whether the fastICA algorithm converged and, if so, use the

output matrix W to compute an estimate of the full matrix of inde-

pendent components as S̃ = ZW t, thereby obtaining S̃ ∈ R278×18, the

estimates of the 18 independent components;
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6. For each p from 2 to 18:

• Compute

(
18

p

)
possible reduced (truncated) matrices S, and,

consequently A0 = 1
nY

tS for each of the possible S matrices;

• Compute the estimates of Ŷ based on all possible truncated ma-

trices S as Ŷ = SAt
0;

• Return to the original scale of the data by X̂ = Ŷ K+ µ̂ and com-

pute the loss values F =
∑n

i=1 ‖X̂i −Xi‖22, where X̂i represents

the i-th row of X̂ and Xi stands for the i-th row of X. For each

p,

(
18

p

)
of the loss values should be computed;

• Record the combination of the independent components that pro-

vides the lowest value of loss and the value of loss at that combi-

nation, then proceed for the next p;

7. As output, for each possible number of the retained components, dis-

play the combination of the independent components that provided

lowest value of loss and the value of the loss function with only the

retained components included.

The steps above produce a vector of minimum losses across the combina-

tions of components when retaining any number from 2 to 18 independent

components for each random starting point. The value of loss decreases as

the amount of independent components retained increases and the loss is

zero when all of the 18 components are retained in the model. Such vector

obtained for a single run of the procedure above can be seen in Figure 4.6.

Figure 4.7 shows mean squared error (MSE) for the dataset reconstructed

using different numbers of retained components corresponding to the losses

shown in Figure 4.6. The mean squared error is computed as:

MSE =
1

n

1

k

n∑
i=1

k∑
j=1

‖xij − x̂ij‖22. (4.3)
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Figure 4.6: The minimum of the loss function across all possible retained
independent components for each number of independent components re-
tained in the model.

Here xij is the j-th element of the i-th row of the original dataset and x̂ij

is the j-th element of the i-th row of the reconstructed dataset obtained as

described in the point 6 of the list above.

Figure 4.7 provides the reader with a chance to access the magnitude of

MSE compared to the sale of the original data. Each value in the original

dataset is on a scale from 3 to 30.

As was mentioned in the previous section, the FastICA methodology

is sensitive to the initial value for W . Therefore, different starting points

provide different loss and MSE values. Figure 4.8 displays the boxplots of

MSE values based on varying initial values (in case of my implementation,

varying seeds). I used pseudo-random number generator seeds from 2001 to

2030. On the seed 2003 the FastICA algorithm failed to converge, therefore

this point has been excluded. The variation of the mean squared errors is

high when only a few components are included and decreases as the number

of components to be retained increases.

Additionally, Figure 4.9 displays the lines representing the mean squared
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Figure 4.7: The minimum MSE across all possible combinations of the
retained independent components for each number of independent compo-
nents retained in the model. Each value in the original dataset is on a scale
from 3 to 30.

errors for each starting point. This visual gives the reader a chance to

assess whether some starting points provide the independent components

estimates that are consistently better in terms of data reconstruction, no

matter how many components are retained in the model. For example,

seed 2029 seems to consistently produce the highest MSE values, while seed

2020 often corresponds to the lowest MSE. The detailed comparison of the

components extracted starting from these two seeds is discussed in the next

section.

As mentioned in Chapter 3, an existing method of dimensionality reduc-

tion includes first using Principal Component Analysis to select a number of

linear combinations of the original variables and then implementing ICA on

the retained principal components as described in section 2.3. The results

of this method are shown in Figure 4.10 compared to the method explored

in my research. The comparability of these approaches may be hindered by

the fact that, while in my approach ICA is run once for each seed and the

independent components from this run are then used to evaluate the losses,
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4.4. Implementation results

Figure 4.8: The minimum MSE values for each number of the retained
components achieved on various starting points for the 29 seeds.

Figure 4.9: The minimum MSE values for each number of components
retained achieved on various starting points for the 29 seeds shown by the
seed number.

in case of PCA prior to ICA, ICA has to be run for each number of retained
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4.4. Implementation results

components separately and there is no guarantee that each of these runs will

converge. To obtain a more comparable plot, I used the same seeds as for

the method discussed in this work. It is clear from Figure 4.10 that the use

of PCA before applying ICA to the data reduces the losses incurred when

reconstructing the data by approximately a half for any number of retained

components (except when all the components are retained). This may be

explained by the fact that, while discarding several principal components

corresponding to the smallest eigenvalues generates some information loss,

building a full ICA model on the retained principal components means that

we can reconstruct those principal components perfectly with the inverse

transformation (recall, no information is lost when the dimensionality of

the components matches the dimensionality of the data). Hence, the entire

amount of information lost in case of using PCA corresponds to discarding

the lowest eigenvalues. PCA by definition gives the best L2 approximation

on linear transformations from the original data. This is also the reason

behind the fact that the losses for PCA prior to ICA method do not vary

depending on the starting point. Any change in the estimated values of

independent components is balanced with the change in the corresponding

elements of the weighting matrix A, which means we can reconstruct the

principal components perfectly, thus the losses in this method only include

the deterministic portion that appears when discarding the small eigenvalues

at the PCA stage.

To summarize the application outcomes, the results obtained when us-

ing the method developed in course of my research highly depend on the

starting point and provide reasonable loss values that decrease faster than

the number of independent components retained in the model increases.

Because the results differ so much based on the starting point, I concen-

trated on the foundations and conceptual applications of the methodology

and not the interpretation relative to the VIVO dataset. In principle, the

inverse loadings of the independent components that are found to produce

the smallest loss when retained in the model could be interpreted as the

loadings of the 18 measurements derived from the VIVO questionnaire.
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Figure 4.10: The comparison of the mean squared errors obtained by the
method discussed in this thesis (boxplots) and MSEs obtained using an
existing approach of first applying PCA. In case of PCA application the
losses do not differ depending on the starting point.

4.5 Observations about the retained components

This section includes some observations about the components retained in

the model by using the method discussed in this thesis. I will not go into

detail concerning these observations, but they may be relevant to possible

future research on the ICA methodology.

As mentioned in the previous sections, the estimates of the indepen-

dent components vary with the initial guess of the inverse loadings matrix.

Thereby, different random starts produce different estimates of the indepen-

dent components. The densities of the extracted components starting at

different points are compared in the figures below. The plots display the

extreme cases, that is, the random starts with the highest and the lowest

average MSE across the number of components retained in the model.

Figure 4.11 shows the estimated densities of the independent components

for seed number 2029, which provided the highest loss estimates for most

numbers of components retained in the model across the 29 seeds that the

algorithm was run for.
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4.5. Observations about the retained components

Figure 4.11: Estimated densities of the 18 independent component drawn
from the VIVO data, seed 2029.

Figure 4.12 shows the estimated densities for components for the seed

2020, which provided the lowest loss values for most numbers of compo-

nents retained in the model. As mentioned in Chapter 2, the order of the

components is somewhat ambiguous, thus changes with every initial guess.

However, in Figure 4.12 we see that the distributions of some of the inde-

pendent components have no analog in Figure 4.11. For example, the com-

ponent S2 seems to have no counterpart. The ambiguities of ICA described

in Chapter 2 state that one cannot determine the order of the components

and their sign. None of these ambiguities should affect the distribution of

the components.

As discussed in Chapter 2, the FastICA algorithm aims to maximize

the statistical independence of the output components by maximizing their

non-gaussianity. One measure of non-gaussianity is kurtosis, which is non-

robust in general, but can nevertheless serve as an indicator. Since neither

the initial data (because of the nature of survey data) nor the independent

components exhibit extreme observations, we can use kurtosis, defined in

section 2.4, to compare the components obtained starting from random seeds
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4.5. Observations about the retained components

Figure 4.12: Estimated densities of the 18 independent component drawn
from the VIVO data, seed 2020.

2020 and 2029, as shown in Table 4.3, which is an extract from Table A.1

given in Appendix A, showing the loss and kurtosis values for all seeds:

Seed Minimum
Kurtosis

MSE 2
components

Average MSE

2020 2.16 9.66 3.77
2029 4.74 15.19 5.67

Table 4.3: The comparison of the minimum kurtosis, the MSE incurred
when retaining only 2 independent components out of the original 18 and
the average MSE across the possible number of retained components for
seeds 2020 and 2029.

If we consider the minimum sample kurtosis among the extracted com-

ponents (among the columns of S̃) for each of the 29 seed used in my ap-

plication, shown in Appendix A, we see that roughly in half of the cases

the minimum kurtosis value is below 3, which means that at least one of

the components is subgaussian (we will refer to these cases as subgaussian),

while in other cases, the minimum kurtosis value is above 3, which means

all the extracted components are supergaussian (these cases are referred to

later as supergaussian). Note that subgaussian distributions are character-
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ized by a low peak compared to gaussian distributions and a strong tail

decay property, which means their tails decay at least as fast as the tails of

gaussian distributions. Supergaussian distributions, on the contrary, have

higher density at the peak compared to gaussian family and often heavier

tails. Density plots depicting examples of both types of distributions in

comparison to a gaussian distribution are shown in Figure 4.13.

Figure 4.13: An example of a supergassian component S13 (left) and a
subgaussian component S2 (right) in the seed 2020.

If we plot the mean squared error obtained when reconstructing the

dataset retaining only 2 of the 18 components against the minimum kurto-

sis value of the independent components, we notice an interesting tendency.

The runs where at least one of the independent components is subgaussian

produce lower MSE values than those where all the components are super-

gaussian, as shown in Figure 4.14. I do not have a clear explanation for

why this tendency is taking place or whether it is specific to the dataset I

am using or persists across different datasets, this may be a potential area

of future research.

Another observation is that the subgaussian cases produce significantly

lower loss values for the numbers of components retained in the model up to

14, after which the differences are no longer statistically significant. I per-
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4.5. Observations about the retained components

Figure 4.14: Mean squared errors when 2 components are retained out of
the original 18 plotted against the minimum kurtosis of the independent
components for each seed number. The points are labeled with the corre-
sponding seed numbers.

formed two-sample t tests comparing the mean losses for the subgaussian

cases and the supergaussian cases across the number of retained components.

The p-values of the tests can be seen in Figure 4.15. The plot shows the

cutoff value at 0.05, which does not take into account the multiple compar-

isons issue, but even with the conservative Bonferroni correction, the results

are significant up to 12 components retained in the model.

The observations described in this section persist even when the ICA

algorithm converges at a very low tolerance level. Hence, these observations

may be indicating a tendency that is characteristic to the component se-

lection method described in this thesis. Possibly, the ICA solution is not

unique in case of the VIVO data. As mentioned in Chapter 2 the solutions

are not unique for multivariate Gaussian initial data, thus it may be possible

that the VIVO data resembles a multivariate gaussian distribution enough

for multiple solutions to exist.

Another possible conclusion from these observations is that while larger

kurtosis indicates more departure from gaussianity, which is interesting in

many applications [11], this approach does not provide the best selection of
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4.5. Observations about the retained components

Figure 4.15: The p-values of 2-sample t tests comparing the total square
loss incurred for the subgaussian and supergaussian cases averaged across
the number of components retained in the model.

the independent components in terms of recreating the original data when

retaining fewer components than the original dimensions of the data. Some

other criteria may need to be used for the purpose of dimensionality re-

duction with ICA. One possible criteria is choosing the components that

minimize information loss described in this thesis.
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Chapter 5

Conclusion

This document provides the mathematical foundation to an approach to the

component selection and dimension reduction using Independent Compo-

nent Analysis. This method is applicable when the number of components

to be retained in the model is not known prior to implementation and allows

to choose the number of components to be retained based on the tolerance

level for the information loss. The method focuses on choosing fewer com-

ponents than the original dimension of the data that best approximate the

initial dataset in terms of a squared Euclidean norm. Also the method offers

a closed-from solution for estimating the optimal weighting matrix when not

all of the independent components are retained in the model.

The methodology was applied to a business psychology dataset and the

results have been provided and discussed. The results of proposed methodol-

ogy have been compared to an existing method, the benefits and drawbacks

of each method have been reviewed. Additionally, a few observations have

been made about the independent components extracted from the data us-

ing different initial values. These observations may serve as a starting point

for further research and development of theoretical and practical sides to

dimension reduction using Independent Component Analysis.
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Appendix A

Table of loss values and

lowest kurtosis values for

various initial guesses

Seed Minimum

Kurtosis

MSE 2

components

Average MSE

2001 2.16 10.67 3.96

2002 2.21 11.87 4.41

2004 2.19 11.78 4.27

2005 2.29 12.73 4.86

2006 2.17 10.64 3.95

2007 4.78 15.01 5.56

2008 4.59 15.28 5.29

2009 2.17 10.65 3.96

2010 2.17 10.70 4.00

2011 4.51 14.28 5.18

2012 4.54 14.55 5.06

2013 2.29 12.76 4.89

2014 2.16 11.22 4.17

2015 2.17 10.63 3.96

2016 2.28 12.49 4.68

2017 2.25 13.29 4.66

2018 2.17 10.64 3.96

2019 4.74 14.89 5.53

2020 2.16 9.66 3.77
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Appendix A. Table of loss values and lowest kurtosis values for various initial guesses

Seed Minimum

Kurtosis

MSE 2

components

Average MSE

2021 2.28 11.68 4.08

2022 2.16 10.71 4.01

2023 2.20 10.02 4.06

2024 2.16 9.85 3.81

2025 2.16 10.78 4.01

2026 2.22 11.87 4.41

2027 2.17 10.71 4.02

2028 4.74 14.89 5.53

2029 4.74 15.19 5.67

2030 4.67 14.94 5.27

Table A.1: The comparison of the minimum kurtosis, the

MSE incurred when retaining only 2 independent components

out of the original 18 and the average MSE across the possible

number of retained components for all 29 seeds.
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