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Abstract

As social websites like Twitter greatly influence people’s digital life, un-
structured social streams become prevalent, which are fast surging textual
post streams without formal structure or schema between posts or inside
the post content. Modeling and mining unstructured social streams in Twit-
ter become a challenging and fundamental problem in social web analysis,
which leads to numerous applications, e.g., recommending social feeds like
“what’s happening right now?” or “what are related stories?”. Current social
stream analysis in response to queries merely return an overwhelming list of
posts, with little aggregation or semantics. The design of the next genera-
tion social stream mining algorithms faces various challenges, especially, the
effective organization of meaningful information from noisy, unstructured,
and streaming social content.

The goal of this dissertation is to address the most critical challenges
in social stream mining using graph-based techniques. We model a social
stream as a post network, and use “event” and “story” to capture a group of
aggregated social posts presenting similar content in different granularities,
where an event may contain a series of stories. We highlight our contributions
on social stream mining from a structural perspective as follows. We first
model a story as a quasi-clique, which is cohesion-persistent regardless of the
story size, and propose two solutions, DIM and SUM, to search the largest
story containing given query posts, by deterministic and stochastic means,
respectively. To detect all stories in the time window of a social stream and
support the context-aware story-telling, we propose CAST, which defines a
story as a (k, d)-Core in post network and tracks the relatedness between
stories. We propose Incremental Cluster Evolution Tracking (ICET), which
is an incremental computation framework for event evolution on evolving
post networks, with the ability to track evolution patterns of social events as
time rolls on. Approaches in this dissertation are based on two hypotheses:
users prefer correlated posts to individual posts in post stream modeling,
and a structural approach is better than frequency/LDA-based approaches
in event and story modeling. We verify these hypotheses by crowdsourcing
based user studies.
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Chapter 1

Introduction

As social streaming websites like Twitter become popular and gradually dom-
inate people’s digital life, the current Web is in the social age. The informa-
tion propagation channel in the social web age can be viewed as post streams
along the timeline, where each post is a tweet in Twitter. We call these post
streams as unstructured social streams, since there is no formal structure
or schema between these posts or inside a post. Modeling and mining the
unstructured social streams becomes a fundamental problem in social web
analysis, which leads to numerous applications [48, 55, 66, 77], e.g., answer-
ing “what’s happening now?” on Twitter. In this chapter, we first provide an
overview on the modeling of unstructured social streams. Then, we discuss
the opportunities, challenges, and our contributions in various mining tasks
of unstructured social streams.

1.1 Unstructured Social Streams

In this section, we first scope out the definition and position of unstructured
social streams in the framework architecture of a social website, and then, we
briefly introduce the modeling of a social stream as a post network. Following
that, we discuss the major tasks and challenges in social stream mining, and
provide a reasoning on why we adopt structural approach rather than other
social stream mining approaches, like content or frequency based approaches.

1.1.1 Concept and Modeling

Social Website Components. While a precise and widely recognized
definition of social streams is still missing in the literature, we try to refine
its scope in the context of social website. Here, a social website generally
refers to a website that supports the interaction among people in a social
network, in which they create and share information. Twitter and Weibo
are two typical social websites, where users are connected in virtual online
communities, and short textual posts are created and shared among them.

1



1.1. Unstructured Social Streams

Figure 1.1: The illustration of major components in a social website.

In Figure 1.1, we decompose a social website into two major components:
post stream and interactions. Each of them is explained below.
• Post Stream. In social websites, posts are the atomic form of the content

created by users and propagated across social networks. The length
of each post is usually very short, e.g., a tweet only has at most 140
characters. Post streams are also unstructured, since the majority of
posts do not have any relationships between them and there is no schema
for the content of a post. In most popular social websites, the volume of
posts surges very quickly, e.g., Twtter reached a peak of 143,199 tweets
per second1 on August 3, 2013.
• Interactions. The interactions in a social website may happen between

different types of objects. The typical interaction happens between the
user and a post, e.g., a user creates a post. Interactions may also happen
between a post and a post. For example, the “reply” refers to the in-
teraction between two posts, and two posts without “reply” relationship
may be semantically interacted if they tell the same story.

Unstructured Social Streams. Conceptually, we call the textual post
streams, e.g., daily updates, on a social website as social streams. We de-
scribe a social post by three types of information: author, text content and
creatioin time. We define a social stream as a first-in-first-out queue of posts
ordered by time of creation, in which each post is associated with the text
content and a timestamp. An illustration of the social stream in a time
window can be found in Figure 1.2. Mining social streams is highly chal-
lenging, with the difficulties originating from two important properties of
social streams:

1https://blog.twitter.com/2013/new-tweets-per-second-record-and-how

2



1.1. Unstructured Social Streams

Time Window

Fr
eq

ue
nc

y

Social Streams Post Network

Extract

Figure 1.2: The similarity between posts in a time window of social streams
is captured by a post network. Each story or event in social streams can be
modeled as a specifically defined subgraph in post network.

• Unstructured. The unstructured nature of social streams has two as-
pects. First, the text content inside a post is unstructured. Social
posts such as tweets are usually written in an informal way with lots of
grammatical errors, and even worse, a correctly written post may have
no significance and be just noise. The design of a processing strategy
that can quickly judge what a post talks about is a challenging prob-
lem. Second, the relationship between posts is usually unstructured.
Our statistics on Twitter Tech-Full data set (described in Chapter 5.5)
shows that only 5% tweets are retweets or replies, making the majority
of tweets independent with each other, even though they may talk about
similar events or stories in the social website. The effective organiza-
tion of these unstructured posts in social streams is a very challenging
problem.
• Streaming. The streaming nature of social streams also poses two chal-

lenges. First, in popular social websites, new posts emerge quickly in ev-
ery second, e.g., Twitter generates thousands of tweets per second. The
design of social stream mining algorithms should be efficient enough to
handle the quick surge of new posts in a timely manner, e.g., it should
use a single-scan algorithm with linear scalability. Second, since it is im-
possible and unnecessary to process all historical posts, old posts should
be naturally outdated as the time rolls on. The design of a time window
with proper time-decay effect is essential to handle the streaming data.
This time window can be regarded as the window of observation.

Modeling Social Stream as Post Network. In this thesis, we propose an
innovative approach to quickly transform an unstructured social stream into

3



1.1. Unstructured Social Streams

a well-defined structure, called post network. As illustrated in Figure 1.2,
we monitor social streams using a sliding time window with length Len. At
any moment t, all posts generated in the time window [max{t − Len, 0}, t]
constitute the snapshot of current social streams. We transform a social
stream into a post network by the following rule: a post network at moment
t can be defined as a graph Gt(Vt, Et), where each node p ∈ Vt is a post in the
snapshot, and an edge (pi, pj) ∈ Et is constructed if the similarity S(pi, pj)
between pi and pj is higher than a given threshold ε. As the time window
moves forward, new posts flow in and old posts fade out, and then Gt(Vt, Et)
will be dynamically updated at each moment, with new nodes/edges added
and old nodes/edges removed. As we can see, this transformation will make
Gt(Vt, Et) an evolving network as time rolls on.

The key challenge to construct the post network is how to compute
S(pi, pj) effectively and efficiently. Traditional similarity measures such as
TF-IDF based cosine similarity, Jaccard Coefficient and Pearson Correlation
[53] only consider the post content. However, time stamps should play an
important role in determining post similarity, since posts created closer to-
gether in time are more likely to discuss the same story than posts created
at very different moments. We define the similarity between a pair of posts
pi and pj by combing both content similarity and temporal proximity. The
exact form of the similarity function will be discussed in Chapter 3. The sim-
ilarity score S(pi, pj) will fall into the interval [0, 1]. The similarity threshold
ε will be empirically set, where 0 < ε < 1.

1.1.2 Mining Unstructured Social Streams

Major Tasks. People easily feel overwhelmed by the information deluge
coming from social streams which flow in from channels like Twitter, Face-
book/LinkedIn, forums, blog websites and email-lists. There is thus an ur-
gent need for tools which can automatically extract and summarize signifi-
cant information from highly dynamic social streams, e.g., report emerging
bursty events, or track the evolution of one or more specific events in a given
time span. Imagine that a user called Bob follows a few news media (e.g., the
CNN Breaking News channel), which feed him a social stream consisting of
thousands of tweets per day. Bob does not have time to digest these tweets
one-by-one, but he wants to keep synced up with the new emerging stories
diffused on these information channels. The major tasks of social stream
mining, can be viewed as answering the following typical queries on social
streams:
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• What’s trending now? Every morning at breakfast, Bob wants to keep
updated on the new events or stories emerging in his social streams. He
got thousands of new tweets pushed from his followees during last night
and he does not have the time or interest to read so many short and
informally-written posts.
• Tell me related news. One day morning in 2014, Bob is reading a break-

ing news about “Annexation of Crimea by the Russian”. Bob is unclear
about the context of this story and wants to check more related stories.
• How’re things going? Bob has an interest in the event “Ukraine Crisis”

and follows this event for several months. Every week, there are some
new stories happening related to the Ukraine crisis. In January 2014,
Bob is on vocation and does not follow this event any more. When he
is back from his vocation, Bob wants to know how the Ukraine crisis
event evolved in the past month.
The answering of these key queries needs to scope out two questions: (1)

how to effectively organize these meaningful information in posts? (2) How to
capture the behaviors of these meaningful information in social streams? For
the first question, we define story and event as two structures to organize
meaningful information in posts. For the second question, we introduce
cohesion, context and evolution to capture the evolution behaviors of events
and stories. They are elaborated below.

Story and Event. Before the development of some highly intelligent al-
gorithms to answer these queries, we need to define several basic concepts
that support the query. In this dissertation, story and event are two ba-
sic concepts we use to aggregate and organize posts in social streams with
similar meaningful information together. In related work [55, 66, 67], there
are many different definitions for story and event, and some studies even
use these two terms interchangeably, without proper distinction. In the fol-
lowing, we clearly distinguish them and define story and event from the
conceptual level.
• Story. A story is a set of posts that talk about very similar information

in a short time span. Usually, the information carried by a story can
be described by a few sentences or a small set of keywords. Since posts
in social streams are usually very short, we consider a post describes at
most a story in most cases. However, a story can be described by many
posts, e.g., two posts “Crimea was annexed by the Russian Federation”
and “Crimea voted on 6 March to formally accede as part of the Russian
Federation” are talking about the same story about the annexation of
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emerge

grow decay

Figure 1.3: An illustration of an event and its included stories. This event
is about “MH370 Search” and has a clear evolution history, i.e., emerge,
grow and decay, in a time span of three months. This event includes several
stories which are related.

Crimea by the Russian Federation in March 2014.
• Event. A event is a post cluster which contains many highly related

stories, where the relatedness between stories is measured on both the
content similarity and the time closeness. Typically, an event has a rela-
tively long time span and follows clear evolution patterns, e.g., emerging,
growing and decaying. A typical event contains lots of details and can-
not be described by a short post. For example, “Ukrainian crisis” is an
event, which consists of a series of related stories, e.g., “Crimean Crisis”,
“War in Donbass”, “Ukraine President Elections”, etc.
Since a social stream can be modeled as a post network, stories and events

correspond to subgraphs in the post network. As illustrated in Figure 1.3,
we show the relationship between an event and its included stories, where
stories are related with each other. Notice that in this section, stories and
events are defined on the conceptual level. The detailed technical definitions
for events and stories on the post network will be given in Chapter 3.

Cohesion, Context and Evolution. To capture the behaviors of events
and stories, we briefly introduce story cohesion, story context and event
evolution, as explained below. The detailed studies on them will be scattered
in Chapter 4, Chapter 5 and Chapter 6.
• Story Cohesion. Given a set of posts which may correspond to a story,
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the cohesion of this post set measures the likelihood of this post set
telling the same story. Since we can measure the similarity between any
two posts, the cohesion of a post set can be computed by aggregating
the pairwise post similarity inside this post set. For example, a common
way to define the cohesion is the ratio between the minimum degree of
a post in the story and the story size. We only treat a post set with
enough high cohesion as a story. Obviously, cohesion is an intrinsic
feature of a story.
• Story Context. In contrast to the cohesion, story context is an extrin-

sic feature that is between stories. Story context tries to measure how
strongly two given stories are related. Since we can compute the simi-
larity between two posts in different stories, a natural way to measure
the relatedness between two stories is by assessing the post similarity
between them, potentially normalized by the sizes of stories.
• Event Evolution. An event usually consists of a series of stories, which

allow a relatively-long time span (e.g., weeks or even months) with evo-
lution pattens. Event evolution tries to capture the evolution path of
an event, and typical evolution patterns include emerge, grow, decay,
disappear, etc.

Difficulties in Social Stream Mining. Social stream mining is a category
of difficult data mining problems. The aim of social stream mining is to fulfill
people’s information seeking needs on social streams. Typical social stream
mining tasks include detecting new stories, searching for related stories and
tracking the evolution of trending events. The design of social stream mining
algorithms faces the following difficulties:
• Dynamics. The quick surge of social post streams makes the data up-

dated very frequently, so the social stream mining algorithms should be
able to handle the dynamic nature of the social streams effectively and
efficiently.
• Quality. A large number of posts in social streams are noise or redun-

dant. An effective social stream mining algorithm should be able to
combat noise, condense redundant content and aggregate small pieces
of information conveyed by each short post together.
• Scalability. The huge amount of posts generated by users every day

raises huge challenges on the scalability of the social stream mining
algorithms.
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1.2 Opportunities and Challenges

Unstructured social streams are the primary data source for information
exchange in social websites. It is noisy and surges quickly, with meaningful
information hidden deeply inside the informally writing text content. In
this section, we discuss the opportunities and challenges in the mining of
unstructured social streams. First, we define a story as a cohesion-persistent
subgraph in post network, which makes sure all social posts in the same
story are highly related with each other. We then propose the story context
search to find related stories of a given story, which allows us to build the
relatedness between stories in social streams. An event is defined as a post
cluster which contains many highly-related stories. The tracking of event
evolution patterns is an interesting problem and we discuss the challenges
to perform event evolution tracking in social streams. These approaches are
supported by two hypotheses: users prefer correlated results to individual
results in social stream modeling, and structural approach is better than
frequency/LDA-based approaches in event and story modeling. We discuss
the challenges in user studies to verify these hypotheses.

1.2.1 Cohesion-Persistent Story Search

Since a post in social streams can be modeled as a node and two posts with
high similarity will be connected by an edge, a social stream can be trans-
formed into a post network. As a result, a story in social streams corresponds
to a connected subgraph in the post network. In the post network, we define
a story as a connected subgraph Gi(Vi, Ei) with enough high cohesion, where
the cohesion C(Gi) is defined as the ratio between the minimum degree and
the maximum possible degree in Gi. Supposing deg(v,Gi) is the degree of
node v in Gi, we have C(Gi) = min deg(v,Gi)

|Vi|−1 for any node v ∈ Vi.
There are several reasons why we use cohesion to define a story. The root

cause is similar posts are connected together in the post network. If two posts
are similar with each other in both the text content and the creation time,
it is likely that these two posts are telling the same story, and they will be
connected by an edge in the post network. A story in a social stream is a
subgraph in the post network. If nodes in a subgraph are highly connected
with each other, it is very likely that the posts corresponding to this subgraph
are telling the same story. We argue that, cohesion is an effective way to
guarantee every post in the story is similar to the majority of posts in the
same story, regardless of the story size.

Clearly, a story is a special kind of dense subgraph. In related work, there
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are many definitions for dense subgraphs, e.g., quasi-clique, k-Plex, k-Core
[47] and k-Truss [34]. Supposing N(p) is the neighbor set of node p ∈ Vi in
Gi(Vi, Ei), these dense subgraphs are defined as:
• Quasi-clique: |N(p)| ≥ λ(|Vi| − 1) for any post p ∈ Vi and 0 < λ ≤ 1 ;
• k-Plex: |N(p)| ≥ |Vi| − k for every post p ∈ Vi;
• k-Core: |N(p)| ≥ k for every post p ∈ Vi;
• k-Truss: for every edge (pi, pj) ∈ Ei, |N(pi) ∩N(pj)| ≥ k.
The cohesion of a k-Plex can be very low if its size is very close to k.

The cohesion of a k-Core can be also very low if its size is very larger than k,
similarly for k-Truss. Out of them, only for λ-quasi-cliques, the cohesion is
always at least λ as the subgraph size changes. The intuition of a cohesion-
persistent story is best captured by a λ-quasi-clique, as the degree of nodes
grows with the node size in a quasi-clique. Given several posts already
read by the user as the input, the finding of the cohesion-persistent story
containing these posts is called the cohesion-persistent story search problem.
On the post network, the cohesion-persistent story search problem is actually
the query-driven quasi-clique search problem.

To the best of our knowledge, there is no existing studies on the query-
driven quasi-clique search problem. existing studies on quasi-clique maxi-
mization (without any query) are mainly based on local search [15, 33, 62],
in which a solution moves to the best neighboring solution iteratively, up-
dated node-by-node. To apply local search on the query-driven quasi-clique
search problem, we face two challenges: (1) the efficient finding of an initial
solution, (2) efficient iterative maximization approaches for searching better
neighboring solutions. In addition, existing local search methods are usually
based on deterministic heuristics, which may easily trap the optimization
process into a local maximum. Thus, we face new challenges of developing
randomized algorithms to find the largest query-driven quasi-cliques.

1.2.2 Story Context Mining

There are many previous studies [48, 55, 66, 77] on detecting new emerging
stories from social streams. Since these stories detected by previous studies
are not cohesion-persistent, we proposed cohesion-persistent story in Section
1.2.1. However, all these story detection approaches only serve the need for
answering “what’s happening now? ” in social streams, and are not able to
find the relatedness between stories. In reality, stories usually do not happen
in isolation, and the recommendation of related stories will greatly enhance
the user’s experience and improve the participation. For example, “Crimea
votes to join Russia” (on May 6, 2014) and “President Yanukovych signs
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compromise” (on February 21, 2014) are two separate stories, but they are
actually highly related under the same event “Ukraine Crisis”. The context-
aware story-telling for streaming social content not merely detects trending
stories in a given time window of observation, but also builds the “context”
of each story by measuring its relatedness with other stories on the fly. As
a result, context-aware story-telling has advantages on answering advanced
user queries like “tell me related stories”, which is crucial to help digest large
volume social streams. Context-aware story-telling on social streams raises
the following challenges:
• Identification of transient stories from time window. Story detection

should be robust to noisy posts and efficient enough to support single-
pass tracking, which is essential in the streaming environment.
• Story context search on the fly. Story relatedness computation should

be efficient to find related stories of a given story, and interpretable to
build a story graph that supports the story-telling to users.
To the best of our knowledge, there is no publicly available training data

set for the context-aware story-telling on social streams, which makes the
existing studies [59, 68] on Story Link Detection (SLD) not applicable, be-
cause SLD is trained on well-written news articles. Furthermore, we cannot
apply topic tracking techniques (e.g., [32]) to story context search, because
topic tracking is usually formulated as a classification problem [4], with an
assumption that topics are predefined before tracking, which is unrealistic
for story context search on social streams. All these constraints make the
mining of story contexts on social streams an extremely challenging problem.

1.2.3 Event Evolution Tracking

People easily feel overwhelmed by the information deluge coming from highly
dynamic social streams. There is thus an urgent need to provide users with
tools which can automatically extract and summarize significant information
from social streams, e.g., report emerging bursty events, or track the evolu-
tion of one or more specific events in a given time span. In this thesis, an
event is defined as a group of posts that contains many related stories. There
are several previous studies [10, 26, 48, 55, 66, 67] on detecting new emerg-
ing events from text streams, designed to answer simple queries like “what’s
trending now? ”. However, in many scenarios, users are dissatisfied with only
providing them new emerging events. Instead, users may want to know the
evolution history of an event and like to issue advanced queries like “how’re
things going? ”. The ideal answer of such a query would be a “panoramic view”
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of the event, which improves user experience greatly. Here, the panoramic
view of an event means the whole evolution life cycle of an event, including
primitive operations like emerge, grow, decay and disappear and composite
operations like merge and split. Technically, we can model social streams
as dynamically evolving post networks and model events as clusters in these
networks, obtained by means of a clustering approach that is robust to the
large amount of noise present in social streams. Accordingly, we consider the
above kind of queries as an instance of the event evolution tracking problem,
which aims to track the evolution patterns of events at each moment in such
dynamic post networks.

In many scenarios, social streams are of large scale and evolve quickly.
There are several major challenges in event evolution tracking:
• The first challenge is the effective design of incremental computation

framework for event evolution tracking. Traditional approaches (e.g.,
[38]) based on decomposing a dynamic network into snapshots and pro-
cessing each snapshot independently from scratch are prohibitively ex-
pensive. An efficient single-pass incremental computation framework is
essential for event evolution tracking over social streams that exhibit
very large throughput rates. To our knowledge, the event evolution
problem has not yet been studied.
• The second challenge is the formalization and tracking of event evolu-

tion operations under an incremental computation framework, as the
network evolves. Most related work reports event activity by volume
over the time dimension [48, 55]. While certainly useful, this is just not
capable of showing the composite evolution behaviors about how events
split or merge, for instance.
• The third challenge is the handling of bulk updates. Since dynamic post

networks may change rapidly, a node-by-node approach to incremen-
tal updating will lead to poor performance. A subgraph-by-subgraph
approach to incremental updating is critical for achieving good per-
formance over very large, fast-evolving dynamic networks such as post
networks. But this in turn brings the challenge of incremental cluster
maintenance against bulk updates on dynamic networks.

1.2.4 Evaluation of Mining Tasks

The approaches proposed in this dissertation are based on two hypotheses:
users prefer related results to individual results in social stream modeling,
and structural approach is better than frequency/LDA-based approaches in
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event and story modeling. User study is an effective way to verify a hypoth-
esis about user preferences and satisfaction. Traditional user study involves
lots of human labor work. With the rising of the Internet, crowdsourcing
has recently become a popular mechanism behind user studies. Amazon Me-
chanical Turk (MTurk) is the most popular crowdsourcing marketplace. As
recorded in 20142, there are over 500,000 workers from over 190 countries.
Besides the normal MTurk workers, it is a well-known fact that there are
lots of spammers and bots among Amazon workers.

In this user study, we try to perform hypotheses verification for the social
stream mining through crowdsourcing tasks on Amazon Mechanical Turk
(MTurk). Given the fact that there are a large number of bots and spammers
on MTurk, the most critical challenge is the quality control in crowdsourcing.
Existing techniques on quality control includes majority voting, minimum
time constraint, etc. However, none of them can solve the “smart spammer”
problem, in which workers pass the qualification test but perform like a
spammer simply to get the reward with minimal work. Especially, since
these smart spammers are still qualified workers for crowdsourcing tasks,
none of existing approaches can detect them effectively. All these facts make
the user quality control in crowdsoucing a very challenging problem.

1.3 Contributions and Research Plan

Section 1.2 explained the challenges in cohesion-persistent story search, story
context mining, event evolution tracking and quality control in user studies.
In this section, we briefly introduce the main ideas behind the solutions we
propose to conquer these challenges, and summarize the contributions we
made in this dissertation.

1.3.1 Query-Driven Quasi-Clique Maximization

As discussed in Section 1.2.2, the cohesion of a k-Plex can be very low if
its size is very close to k, and the cohesion of a k-Core or k-Truss can be
also very low if its size is very larger than k. Thus, λ-quasi-clique is the best
definition for cohesion-persistent stories in the post network, since every post
in a λ-quasi-clique is similar to at least a portion λ (e.g., λ = 0.9) of other
posts. Recall that two posts are similar if they are talking about similar
content and generated in close time moments. Given a query S which is a
set of posts, the problem of finding the largest cohesion-persistent story that

2http://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/OverviewofMturk.html
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contains the query S is formalized as the query-driven maximum quasi-clique
(QMQ) search, which aims to find the largest λ-quasi-clique containing S.
The QMQ search problem is a new graph mining problem that is not studied
before, and this problem is proved to be NP-Hard and inapproximable. To
solve this problem, we propose the notion of core tree to organize dense sub-
graphs recursively, which reduces the search space and effectively helps find
the solution within a few tree traversals. To optimize a currently available
solution to a better solution, we introduce three maximization operations:
Add, Remove and Swap. We propose two iterative maximization algorithms,
DIM and SUM, to approach QMQ by deterministic and stochastic means re-
spectively. With extensive experiments on real datasets, we demonstrate
that our algorithms significantly outperform the state of the art algorithms
in running time and/or the quality.

We make the following contributions:
• We define the problem of query-driven maximum quasi-clique search, a

novel cohesive subgraph query not studied before, to solve the cohesion-
persistent story search problem.
• We propose core tree as a recursive representation of a graph, which

helps quickly find a tentative solution to the QMQ search problem within
a few tree traversals by greatly reducing the solution search space.
• We introduce Add, Remove and Swap to search for new solutions and

efficiently optimize a tentative solution to a better neighboring solu-
tion. Building on this, we propose deterministic and stochastic iterative
maximization algorithms for QMQ search – DIM and SUM.
• We perform an extensive experimental study on three real datasets,

which demonstrates that our algorithms significantly outperform several
baselines in running time and/or the quality.
We will discuss the details of the QMQ search in Chapter 4.

1.3.2 Context-Aware Story-Telling

Mining transient stories and their relatedness implicit in social streams is a
challenging task, since these streams are noisy and surge quickly. To address
the challenges discussed in Section 1.2.2, we propose CAST [43], which
is a Context-Aware Story-Teller specifically designed for streaming social
content. CAST takes a noisy social stream as the input, and outputs a
“story vein”, which is a human digestible and evolving summarization graph
by linking highly related stories together. More precisely, we model the social
stream as a post network, and define stories by a new cohesive subgraph
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type called (k, d)-Core in the post network, in which every node should
have at least k neighbors and two end nodes of every edge should have at
least d common neighbors. (k, d)-Core is more compact than k-Core, and
thus a better definition for stories than k-Core. Unlike quasi-cliques whose
decision problem is NP-Hard, (k, d)-Core can be detected in polynomial time.
We propose deterministic and randomized context search to support the
iceberg query, which builds the relatedness between stories as social streams
flow. We call the relatedness graph between stories as a story vein. We
perform detailed experimental study on real Twitter streams and the results
demonstrate the creativity and value of our approach.

The main contributions of CAST are summarized below:
• We define a new cohesive subgraph called (k, d)-Core to represent tran-

sient stories and propose two efficient algorithms, Zigzag and Node-
First, to identify maximal (k, d)-Cores from the post network;
• Given a story, we propose deterministic and randomized context search

to support the iceberg query for highly related stories, which builds the
story vein on the fly;
• Our experimental study on real Twitter streams shows that story vein

can be digested and effectively help build an expressive context-aware
story-teller on streaming social content.
We will discuss the details of CAST in Chapter 5.

1.3.3 Incremental Event Evolution Tracking

In this thesis, an event is a post cluster which may contain many related
stories. Since an event usually has a relatively long (e.g., weeks or even
months) life cycle, the tracking of event evolution patterns in social streams
can greatly help understand and summarize the event over the time. To
implement the event evolution tracking, we propose Incremental Cluster
Evolution Tracking (ICET, [44]), which focuses on tracking the evolution
patterns of clusters in highly dynamic networks. There are several previous
works on data stream clustering using a node-by-node approach for main-
taining clusters. However, handling of bulk updates, i.e., a subgraph at a
time, is critical for achieving acceptable performance over very large highly
dynamic networks. We propose a subgraph-by-subgraph incremental track-
ing framework for cluster evolution in this thesis. To effectively illustrate
the techniques in our framework, we consider the event evolution tracking
task in social streams as an application, where a social stream and an event
are modeled as a dynamic post network and a dynamic cluster respectively.
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By monitoring through a fading time window, we introduce a skeletal graph
to summarize the information in the dynamic network, and formalize clus-
ter evolution patterns using a group of primitive evolution operations and
their algebra. Two incremental computation algorithms are developed to
maintain clusters and track evolution patterns as time rolls on and the net-
work evolves. Our detailed experimental evaluation on large Twitter datasets
demonstrates that our framework can effectively track the complete set of
cluster evolution patterns from highly dynamic networks on the fly.

In summary, the problem we study is captured by the following questions:
how to incrementally and efficiently track the evolution behaviors of clusters
in large-scale networks, which are noisy and highly dynamic? Our main
contributions are the following:
• We propose an incremental computation framework for cluster evolution

on highly dynamic networks;
• We filter out noise by introducing a skeletal graph, based on which we

define a group of primitive evolution operations for nodes and clusters,
and introduce their algebra for incremental tracking;
• We leverage the incremental computation by proposing two algorithms

based on bulk updating: ICM for the incremental cluster maintenance
and eTrack for the cluster evolution tracking;
• Our application on event evolution tracking in large Twitter streams

demonstrates that our framework can effectively track all kinds of cluster
evolution patterns from highly dynamic networks in real time.
The details of ICET will be discussed in Chapter 6.

1.3.4 Targeted Crowdsourcing

The approaches proposed in this dissertation are based on two hypotheses:
users prefer correlated posts to individual posts in social stream modeling,
and structural approach is better than frequency/LDA-based approaches in
event and story modeling. We use crowdsourcing-based user studies to verify
these two hypotheses. To make sure the crowdsourcing-based user studies
have a high quality, we use multiple techniques to control the quality of
workers, as explained below.
• In the beginning, we set the Minimum Time Constraint and Approval

Rate Constraint to filter out the MTurk workers who provide answers
within a very short time and have a very low historical approval rate.
Most of bots and spammers will be removed after this step.
• For the remaining workers, we perform the qualification test, which is
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a series of questions with known answers. These qualification questions
will be treated as the golden standard and worker’s qualification will be
measured in terms of the ratio of questions answered correctly. If the
ratio is higher than a predefined threshold, this worker will be treated
as a qualified worker.
• All qualified workers will submit their work on the real crowdsourcing

tasks. Since there is no known answer for the crowdsourcing tasks, the
quality of workers will be measured by cross-comparison with peers in
an iterative way, which is captured by Expectation-Maximization with
Qualification (EMQ). EMQ is capable of measuring user’s quality in
crowdsourcing and punishing Smart Spammers from among all quali-
fied workers, by assigning low quality scores to them. By understanding
these probabilities as users’ quality scores, EMQ achieves a better per-
formance than other competing approaches.
The details of targeted crowdsourcing will be explained in Chapter 7.

1.4 Thesis Outline

The rest of this dissertation is structured as follows. Chapter 2 explores the
related work. In Chapter 3, we introduce the preprocessing techniques on
social streams and the modeling of a social stream as a post network. Chap-
ter 4 studies the cohesion-persistent story search problem in social streams.
Chapter 5 discusses the context-aware story-telling for streaming social con-
tent. In Chapter 6, we propose the incremental clustering evolution tracking,
which is an incremental computation framework for event evolution tracking
on social streams. Chapter 7 performs targeted crowdsourcing for ground-
truth finding and hypothesis verification, with an extensive discussion on
user quality control. In Chapter 8, we summarize this dissertation and list
possible directions for future research in social stream mining.

16



Chapter 2

Related Work

Related work on mining unstructured social streams can be classified into
three categories: (1) Graph mining, including graph clustering, community
detection, dense subgraph mining, etc.; (2) Social media analytics, especially,
event detection in Twitter streams; (3) Topic detection and tracking, which
is traditionally studied on news articles and recently applied to social media
data. In this chapter, we introduce the related work in each category.

2.1 Graph Mining

Graphs are seemingly ubiquitous to model the relationship between objects
in many applications. When modeling an unstructured social stream as an
evolving network of posts, graph mining becomes a powerful way to detect
and track meaningful patterns in social streams. Related work of this dis-
sertation in graph mining falls into one of the following topics: (1) Graph
clustering; (2) Community detection and search; (3) Dense subgraph mining
and (4) Subgraph relatedness computation. They are discussed below.

2.1.1 Graph Clustering

DBSCAN [30] is a density-based clustering method, which groups together
points that are closely packed together. Compared with partitioning-based
approaches (e.g., K-Means [30]) and hierarchical approaches (e.g., BIRCH
[30]), density-based clustering (e.g., DBSCAN [30]) is effective in finding
arbitrarily-shaped clusters, and is robust to noise. Application of these clus-
tering approaches to a network that is changing with the time is a very
challenging problem. CluStream [3] is a framework that divides the cluster-
ing process into an online component which periodically generates detailed
summary statistics for nodes and an offline component which uses only the
summary statistics for clustering. However, CluStream is based on K-Means
only. DenStream [17] presents a new approach for discovering clusters in an
evolving data stream by extending DBSCAN. DStream [18] uses an online
component which maps each input data record into a grid and an offline
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component which generates grid clusters based on the density. Another re-
lated work is by Kim et al. [38], which first clusters individual snapshots
into quasi-cliques and then maps them over time by looking at the density
of bipartite graphs between quasi-cliques in adjacent snapshots. Although
[38] can handle birth/growth/decay/death of clusters, it is not incremental
and the split and merge patterns are not supported. In contrast, our event
tracking approach on dynamic post networks is incremental and is able to
track composite behaviors like merging and splitting.

2.1.2 Community Detection and Search

Communities in graphs can be defined from global or local perspectives [25].
A community in global sense is a dense subgraph with very few ties to the
outside of this subgraph, which is measured by “modularity”, a function which
evaluates the goodness of graph partitioning. Louvain method [14], based
on modularity optimization, is the state-of-the-art community detection ap-
proach which outperforms others. However, Louvain method is not robust
to combat noises, such as the meaningless posts like “Good night :)” in so-
cial streams. Local definitions of communities focus on the subgraph under
study, but neglecting the rest of the graph. Clique is a very strict definition
of community, where a member is a friend of every other member. However,
finding cliques in a graph is an NP-complete problem. It is possible to relax
the notion of clique, by defining a community as clique-like structures, as we
will discuss further in related work of dense subgraph mining.

On the application level, our query-driven quasi-clique search shares some
similar intuitions with the community search ([19, 71]), which is finding the
communties containing the querying set of people. However, since the defi-
nitions of communities in [71] and [19] are very different from a quasi-clique,
the comparison between them and our query-driven quasi-clique search is
not applicable.

2.1.3 Dense Subgraph Mining

Typical dense subgraphs studied in the literature include densest subgraph
[73], clique, k-Plex, quasi-clique and k-Core [47]. Densest subgraph is a
subgraph that maximizes the average degree. The densest subgraph can be
found in polynomial time by solving a parametric maximum-flow problem
[73], while finding the densest subgraph with a fixed size is known to be
NP-Hard [7]. The maximum clique problem is a well-known NP-Hard prob-
lem. In real applications, the clique definition is too strict making it less
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likely for large cliques to exist in practical graphs. E.g., there may be a large
subgraph where most but not all node pairs are adjacent. This has moti-
vated relaxations to cliques, some popular examples of which include k-Plex,
quasi-clique, and k-Core. Since the degree constraints of k-Plex and quasi-
clique are correlated with the size |Vi|, the NP-Hardness of the maximum
clique problem carries over to k-Plexes and quasi-cliques [8]. In contrast, the
complexity of the k-Core generation is in polynomial time [47]. However, if
the size of a k-Core is distinctly larger than k, the average edge degree of this
k-Core may be very low, and in this case, k-Core is not compact enough to
describe a story. In this dissertation, we define a new dense subgraph called
(k, d)-Core to overcome these challenges.

Maximal/Maximum Quasi-clique Detection. By definition, a maximal
quasi-clique is a quasi-clique that cannot be a subgraph of any other quasi-
cliques in the given graph. The maximum quasi-clique is the quasi-clique
that has the largest number of nodes, out of all quasi-cliques in the given
graph. The size of a maximal quasi-clique may be much smaller than the
size of the maximum quasi-clique.

A negative breakthrough result by Arora et al. [6] together with results
of Feige et al. [23], and more recently Hastad [31], shows that no polynomial
time algorithm can approximate the maximum clique problem within a factor
of n1−ε(ε > 0), unless P = NP. Thus, it is very unlikely that general heuristic
algorithms can provide results with guaranteed optimality to the maximum
clique problem. Related prior work on the maximal/maximum quasi-clique
detection is typically based on local search ([1, 15, 33, 50, 61, 62]). Espe-
cially, Abello et al. [1] developed efficient semi-external memory algorithms
for GRASP [64] to extract maximal quasi-cliques. Brunato et al. [15] ex-
tended two existing stochastic local search algorithms used for the classi-
cal maximum clique problem to the maximal quasi-clique problem. Pat-
tillo et al. [62] established several fundamental properties of the maximum
quasi-clique problem, but their quasi-clique is defined using edge density:
D(Gi) = 2|Ei|

|Vi|(|Vi|−1) ≥ λ. Based on depth-first search, Liu et al. [50] pro-
posed an efficient algorithm called Quick to find maximal quasi-cliques using
several pruning techniques, and Uno et al. [74] proposed a reverse search
method to enumerate all quasi-cliques. However, none of them studied the
query-driven quasi-clique problem as defined in Chapter 4. To the best of
our knowledge, this thesis is the first study on the query-driven quasi-clique
search problem.

Notice that there is another definition for the quasi-clique based on edge
density: D(Gi) = 2|Ei|

|Vi|(|Vi|−1) ≥ λ, studied in [1, 61, 74]. We do not adopt
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this definition because it has the potential to introduce undesired low degree
nodes into quasi-cliques: a quasi-clique has edge density D(Gi) ≥ λ can-
not prevent the occurrence of a node in Gi which has very low degree. In
contrast, we use the definition that every node in a quasi-clique should have
degree higher than λ ·(|Vi|−1). It is easy to show that a λ-quasi-clique under
our node degree definition is at least a λ-quasi-clique under the edge density
definition, but the converse is invalid. Thus, our definition is stronger than
the edge density-based definition. Besides, Tsourakakis et al. [73] proposed
a new dense subgraph called optimal quasi-clique, and defined constrained
optimal quasi-clique problem to find the optimal quasi-clique containing a
given node. However, their optimal quasi-cliques (Problem 2 in [73]) is de-
fined as the subgraph Gi(Vi, Ei) that maximizes |Ei| − λ|Vi|(|Vi|−1)

2 , which is
a fundamentally different problem from popular definitions of quasi-cliques
based on edge density or node degree.

2.1.4 Subgraph Relatedness Computation

In this thesis, we model a story as a dense subgraph of posts, and the related-
ness between stories can be measured by the relatedness between subgraphs.
The relatedness between nodes in a graph is a well-studied problem, with
popular algorithms such as HITS, Katz and Personalized PageRank [11]. For
the relatedness between dense subgraphs, traditional measures like Jaccard
coefficient, Cosine similarity and Pearson’s Correlation [53] are not effective if
these dense subgraphs have no overlap on node sets. Recently, a propagation
and aggregation process was used to simulate the information flow between
nodes, which was studied in the context of top-k structural similarity search
in [45] and authority ranking in [49].

2.2 Social Media Analytics

In related work, there are two main research directions on social media anal-
ysis. The first direction is the frequency-based approaches, which treat each
social post as a statistical unit and use histogram-based analysis to mine
the patterns in social media, e.g., bursty events. The second direction is the
entity based approach, which extracts entities from each social posts and
builds a network of entities from social media for event identification. They
are introduced below separately.
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2.2.1 Frequency Based Peak Detection

Most previous works detect events by discovering topic bursts from a docu-
ment stream. Their major techniques either detect the frequency peaks of
event-indicating phrases over time in a histogram, or monitor the formation
of a cluster from a structure perspective. A feature-pivot clustering is pro-
posed by Fung et al. [26] to detect bursty events from text streams. Sarma
et al. [67] design efficient algorithms to discover events from a large graph
of dynamic relationships. Weng et al. [77] build signals for individual words
and apply wavelet analysis on the frequency of words to detect events from
Twitter. A framework for tracking short, distinctive phrases (called “memes”)
that travel relatively intact through on-line text was developed by Leskovec
et al. [48]. Twitinfo [55] represents an event it discovers from Twitter by a
timeline of related tweets. Marcus et al. [54] presents TweeQL, a stream-
ing SQL-like interface to the Twitter API, making common tweet processing
tasks simpler. Sakaki et al. [66] investigated the real-time interaction of
events such as earthquakes in Twitter and proposed an algorithm to monitor
tweets and to detect a target event based on classifiers.

2.2.2 Entity Network Based Approaches

Recently, Agarwal et al. [2] discover events that are unraveling in microblog
streams, by modeling events as correlated keyword graphs. Angel et al. [5]
study the maintenance of dense subgraphs with size smaller than a thresh-
old (e.g., 5) under streaming edge weight updates. Both [2] and [5] model
the social stream as an evolving entity graph, but suffer from certain draw-
backs: (1) many posts are ignored in the entity recognition phase and post
attributes like time; (2) author of the post cannot be integrated; (3) they can-
not handle subgraph-by-subgraph bulk updates, which are key to efficiency.
In contrast, these drawbacks are addressed in the post network defined in
this dissertation.

2.3 Topic Detection and Tracking

Topic detection and tracking is an extensively studied field [51], with the
most common approaches based on Latent Dirichlet Allocation (LDA) [13].
Techniques for topic detection and tracking cannot be applied to story re-
latedness tracking, because they are usually formulated as a classification
problem [4], with an assumption that topics are predefined before tracking,
which is unrealistic for social streams. Recent works (e.g., [32]) suffer from
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this problem. Besides, the lack of training data set for story relatedness
tracking on noisy social streams renders the existing works [59, 68] on Story
Link Detection (SLD) inapplicable, because SLD is trained on well-written
news articles. Jin et al. [37] present Topic Initiator Detection (TID) to
automatically find which web document initiated the topic on the Web. In
text streams, Hierarchical Dirichlet Processes (HDP, [27]) is proposed to
track and connect topics incrementally. Since HDP is computed based on
the document-word matrix, it is difficult to integrate HDP-based approaches
with other signals, e.g., time stamps, GPS, authors, etc.

There is less work on evolution tracking. A framework for tracking short,
distinctive phrases (called “memes”) that travel relatively intact through on-
line text was developed in [48]. The evolution of communities in dynamic
social networks is tracked in [79]. However, these existing works cannot track
composite evolution patterns of communities, e.g., merging or splitting of
communities. Moreover, all existing works have to re-compute communities
from each network snapshot, which is time-consuming and results in lots of
redundant computation. Unlike them, we focus on the incremental tracking
of cluster evolution patterns in highly dynamic networks, where we maintain
each cluster by gradually adding or removing nodes from it.
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Chapter 3

Modeling Unstructured Social
Streams

This chapter focuses on the modeling of social streams, which is the first
step in social stream mining. We introduce the social stream preprocessing
techniques in Section 3.2. The construction of the post network from a social
stream is discussed in Section 3.3. We define stories and events, from both
the social stream perspective and the post network perspective, in Section
3.4. We provide a comparison between the structural modeling used in this
dissertation and other modeling methods in Section 3.6.

3.1 Motivation

Social websites like Twitter have a great impact on many people’s digital
lives. As the social content streams fast, it may easily lead to “informa-
tion anxiety”, which is the gap between the information we receive and the
information we are able to digest [40]. The current generation of information-
seeking on social media works just like the traditional search on web pages,
in which users input several keywords and the output will be a long list of
tweets or posts with keywords contained, ranked by time freshness. For in-
stance, Twitter Search3 returns a huge list of posts to a given keyword query,
with little aggregation or semantics, and leaves it to the users to sift through
the large collection of results to figure out the very small portion of useful
information. Since a post like a tweet only contains a small piece of infor-
mation, users are required to manually aggregate and digest search results,
which is time-consuming and painful. The noisy and redundant nature of
social streams degrades user’s experience further.

On the other hand, since a post like tweet only conveys a very small
piece of information, it would be ideal if we can group the posts talking
about the same information together. In this dissertation, we define “story”
and “event” as two kinds of post structures that organize the posts telling

3https://twitter.com/search-home
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similar information together. We are aiming to build the next generation
social stream mining technologies, which provide users an organized and
summarized view of what’s happening in the social world. Instead of showing
users a long list of posts, our new social stream mining technologies try to
present users with well-organized stories and events.

3.2 Social Stream Preprocessing

In a social media like Twitter, new posts emerge quickly in every second and
old posts will be naturally outdated as the time rolls. Posts in social streams
such as tweets are usually written in an informal way. To design a processing
strategy that can quickly and robustly extract the meaningful information of
a post, we focus on the entity words contained in a post, since entities depict
the topic. For example, given a tweet “iPad 3 battery pointing to thinner,
lighter tablet?”, the entities are “iPad”, “battery” and “tablet”. However,
traditional Named Entity Recognition tools [21] only support a narrow range
of entities like Locations, Persons and Organizations. [5] reported that only
about 5% of tweets has more than one named entity. NLP parser based
approaches [39] are not appropriate due to the informal writing style of
posts and the need for high processing speed. To broaden the applicability,
we treat each noun in the post text as a candidate entity. Technically, we
obtain nouns from a post text using a Part-Of-Speech Tagger4, and if a
noun is plural (POS tag “NNS” or “NNPS”), we obtain its singular form.
In practice, we find this preprocessing technique to be robust and efficient.
In the Twitter dataset we used in experiments (see Section 6.7), each tweet
contains 4.9 entities on average. We describe a post p as a triple (L, τ, u),
where pL is the list of entities, pτ is the time stamp, and pu is the author.
We formally define a post and a post stream as follows.

Definition 1 (Post). A post p is a triple (L, τ, u), where L is the list of
entities in the post, τ is the time stamp when this post is generated, and u is
the user who created it.

We let pL denote L in the post p for simplicity, and analogously for pτ

and pu. We use |pL| to denote the number of entities in p.

Definition 2 (Social Stream) A social stream is a first-in-first-out queue
of posts ordered by time of arrival, in which each post p is represented as a
triple (L, τ, u) as defined in Definition 1.

4POS Tagger, http://nlp.stanford.edu/software/tagger.shtml
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3.3 Post Network Construction

Our modeling method for social streams in this dissertation is based on con-
structing a network of posts and maintaining the network over a moving time
window, as posts stream in and fade out. This network is used for subse-
quent analysis. Essentially, our modeling method is based on the hypothesis
that the correlation between posts should be considered, and grouped posts
provide a better user experience than individual posts. In this section, we
describe the construction of post network based on post correlations.

3.3.1 Post Similarity Computation

Our initial data analysis shows that post topics do not have a strong corre-
lation with authors in Twitter. In other words, a typical Twitter user may
create posts with different topics at different time moments. Fortunately, we
found that post topics are highly correlated with entities and time moments,
i.e., posts talking about the same topic typically have similar entities and
very close time stamps.

Traditional similarity measures such as TF-IDF based cosine similarity,
Jaccard Coefficient and Pearson Correlation [53] only consider the post con-
tent. However, clearly time stamps should play an important role in deter-
mining post similarity, since posts created closer together in time are more
likely to discuss the same event. We introduce the notion of fading similarity
to capture both content similarity and time proximity. For example, with
Jaccard coefficient as the underlying content similarity measure, the fading
similarity is defied as

SF (pi, pj) =
|pLi ∩ pLj |

|pLi ∪ pLj | · e
|pτi−pτj |

(3.1)

We use an exponential function to incorporate the decaying effect of time
lapse between the posts. The unit of time difference is ∆t, typically in hours.
It is trivial to see that 0 ≤ SF (pi, pj) ≤ 1 and that SF (pi, pj) is symmetric.

Post similarity measures the similarity between two posts p1 and p2 by a
score between 0 and 1, which is assessed by considering both the post content
and time. That is to say, if two posts share many common entities and their
posting time is very close, they will be similar.

3.3.2 Post Network

To find the correlation between posts, we build a post network G(V,E) based
on the following rule: if the fading similarity between two posts (pi, pj) is
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higher than a given threshold λ, we create an edge e(pi, pj) between them
and set the edge similarity s(pi, pj) = SF (pi, pj). Obviously, a lower λ
retains more semantic similarities but results in much higher computation
cost, and we set λ = 0.3 empirically on Twitter streams to gain a balance
between edge sparsity and information richness. Consider a time window
of observation and consider the post network at the beginning. While we
move forward in time and new posts appear and old posts fade out, G(V,E)
is dynamically updated at each moment, with new nodes/edges added and
old nodes/edges removed. On the scale of Twitter streams with millions of
tweets per hour, G(V,E) is truly a large and fast dynamic network. The
formal definition for the post network is given below.

Definition 3 (Post Network) Given two posts pi, pj in a social stream Q
and a threshold ε (0 < ε < 1), there is an edge between pi and pj if the post
similarity s(pi, pj) ≥ ε. The post network corresponding to Q is denoted as
G(V,E), where each node p ∈ V is a post in Q, and each edge (pi, pj) ∈ E
is constructed if the similarity s(pi, pj) ≥ ε.

Intuitively, an edge in the post network connects two posts if they are
similar enough. The post network can be viewed as a structural represen-
tation of the original unstructured social stream, by organizing meaningful
information from noisy buzzes. Specifically, posts with very few edges can
be essentially treated as noise and ignored.

3.3.3 Linkage Search

Removing a node and associated edges from G(V,E) is an easy operation.
In contrast, when a new post pi appear, it is impractical to compare pi with
each node pj in Vt to verify the satisfaction of SF (pi, pj) > λ, since the
node size |Vt| can easily go up to millions. To solve this problem, first we
construct a post-entity bipartite graph, and then perform a two-step random
walk process to get the hitting counts. The main idea of linkage search is to
let a random surfer start from post node pi and walk to any entity node in pLi
on the first step, and continue to walk back to posts except pi on the second
step. All the posts visited on the second step form the candidates of pi’s
neighbors. Supposing the average number of entities in each post is d1 and
the average number of posts mentioning each entity is d2, then linkage search
can find the neighbor set of a given post in time O(d1d2). In our Twitter
dataset, d1 and d2 are usually below 10, which supports the construction of
a post network on the fly.
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3.4 Stories and Events

Story and event are two concepts we use in this disseration to aggregate and
organize posts with similar meaningful information together. In related work,
there are many different definitions for story and event, and some studies
even use these two terms interchangeably, without proper distinguishing. In
this section, we distinguish and define stories and events dually on two levels:
social streams level and post network level, as explained below.

3.4.1 Stories and Events in Social Streams

In social streams, both a story and an event are a set of posts talking about
very similar information. Their main difference is on the granularity of in-
formation they carry: a story is assumed to only talk about a single thing,
while an event is assumed to talk about many things with high relatedness.
Thus, we can say that an event contains many highly related stories. For
example, we consider “Ukrainian crisis” is an event happening from Novem-
ber 2013 to May 2014, which contains lots of stories like “the annexation of
Crimea by the Russian Federation” and “War in Donbass” in March 2014. In
the following, we give the definitions of stories and events in social streams.

Definition 4 (Story in Social Stream) A story is a set of posts that talk
about a single topic in a short time span.

Definition 5 (Event in Social Stream) An event is a set of posts that
talk about a series of highly related topics.

Usually, the information carried by a story can be described by a few
sentences or a small set of keywords. Since posts in social streams are usually
very short, we consider a post describes at most one story in most cases.
However, a story can be described by many posts, e.g., two posts “Crimea
was annexed by the Russian Federation” and “Crimea voted on 6 March
to formally accede as part of the Russian Federation” are talking about
the same story. An event is a post cluster which contains many highly
related stories, where the relatedness between stories is measured on both
the content similarity and the time closeness. Typically, an event has a
relatively long time span and follows clear evolution patterns, e.g., emerging,
growing and decaying. A typical event contains lots of details and cannot
be described by a short post. For example, “Ukrainian crisis” is an event,
which consists of a series of related stories, e.g., “Crimean Crisis”, “War in
Donbass”, “Ukraine President Elections”, etc.
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Definition 4 and 5 are given on the conceptual level. There are several
open questions for these two definitions, some of which are listed below:
• Given a set of posts, how to determine whether these posts talking about

a story, an event, or none of them?
• How to quantify the relatedness of two stories?
• How to measure the evolution patterns of an event?
Since social streams are unstructured and difficult to analyze, the answers

of these questions depend on the modeling of social streams. In previous
sections, we discussed the modeling of a social stream as a post network. In
the following, we explain stories and events with reference to a post network.

3.4.2 Stories and Events in Post Network

In Section 3.3, we discussed the construction of a post network from a social
stream: a post in social stream is modeled as a node and two posts with
high similarity are connected by an edge. As a result, a story or an event in
social streams corresponds to a subgraph in the post network. This subgraph
corresponding to a story or an event should be connected, since we assume
posts in a story or an event carry very similar information.

Cohesion. Let’s start from the definition of a story in the post network.
Given a connected subgraph Gi(Vi, Ei) of the post network, how can we
determine whether this subgraph corresponds to a story or not? The answer
is to make use of a measure called “cohesion”, as defined below.

Definition 6 (Cohesion) Given a connected subgraph Gi(Vi, Ei), its co-
hesion C(Gi) is defined as the ratio between the minimum degree and the
maximum possible degree in Gi. Supposing deg(v,Gi) is the degree of node
v in Gi, we have

C(Gi) =

min
v∈Vi

deg(v,Gi)

|Vi| − 1
(3.2)

Why the cohesion is so important for defining a story? The reason is
similar posts are connected together in the post network. If two posts are
similar with each other in both the text content and the creation time, it
is likely that these two posts are telling the same story, and they will be
connected by an edge in the post network. A story in a social stream is a
subgraph in the post network. If nodes in a subgraph are highly connected
with each other, it is very likely that the posts corresponding to this subgraph
are telling the same story. To guarantee that posts in the same story are
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similar to each other, we consider coreness, edge density and cohesion of this
post subgraph. Among these three, cohesion defined in Eq. (3.2) is most
effective in ensuring that every post in the story is similar to the majority
of posts in the same story. Compared with coreness K(Gi) in k-Core where
K(Gi) ≥ k and edge density D(Gi) = 2|Ei|

|Vi|(|Vi|−1) , cohesion can make sure a
node connects to the majority of other nodes, regardless of the story size,
while K(Gi) and D(Gi) cannot guaranttee that.

Cohesion-Persistent Story. The first instantiation is defining a story as a
connected subgraph Gi(Vi, Ei) with enough high cohesion. Clearly, a story is
a special kind of dense subgraphs. In related work, there are many definitions
for dense subgraphs, e.g., quasi-clique, k-Plex, k-Core [47] and k-Truss [34].
Supposing deg(v,Gi) is the degree of node v in Gi, these dense subgraphs
are defined as:
• Quasi-clique: |deg(v,Gi)| ≥ λ(|Vi|−1) for any node v ∈ Vi and λ ∈ (0, 1];
• k-Plex: |deg(v,Gi)| ≥ |Vi| − k for every node v ∈ Vi;
• k-Core: |deg(v,Gi)| ≥ k for every node v ∈ Vi;
• k-Truss: for every edge (vi, vj) ∈ Ei, |N(vi) ∩N(vj)| ≥ k.
Out of them, only for λ-quasi-cliques, the cohesion is always at least λ

as the subgraph size changes. The intuition of a cohesion-persistent story is
best captured by a λ-quasi-clique, as the degree of nodes grows with the node
size in a quasi-clique. Given several posts already read by the user as the
input, the finding of the cohesion-persistent story containing these posts is
called the cohesion-persistent story search problem, as discussed in Chapter
4. Formally, we introduce the cohesion-persistent story, as defined below.

Definition 7 (Cohesion-Persistent Story) A cohesion-persistent story
Gi(Vi, Ei) in a post network G(V,E) is defined as a λ-quasi-clique, where
0 < λ ≤ 1 and for any node v ∈ Vi, we have |deg(v,Gi)| ≥ λ(|Vi| − 1).

(k, d)-Core Story. Definition 7 provides a theoretically ideal way to define a
story. However, notice that finding the maximum clique or quasi-cliques from
a graph is an NP-Hard problem [8, 15]. Even worse, [31] proved that there
are no polynomial algorithms that provide any reasonable approximation
to the maximum clique problem. Since a clique is a special case of quasi-
clique or k-Plex, these hardness results carry over to maximum quasi-clique
and maximum k-Plex problems. There are a lot of heuristic algorithms that
provide no theoretical guarantee on the quality [1, 8, 15]. Since most of them
are based on local search [15], they do not scale to large networks, because
local search involves the optimization of solutions by iteratively moving to a
better neighbor solution in an exponential search space.
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Although quasi-cliques are theoretically ideal to instantiate a story, the
intractable performance of quasi-clique computation brings difficulty to ap-
ply this definition on the real-world large post network. In Chapter 4, we will
discuss the cohesion-persistent story search problem, which aims to approach
the maximum quasi-clique containing given nodes using heuristic rules. How-
ever, due to the performance, this approach cannot solve the problem of
finding all stories in the post network. These challenges motivate us to seek
an alternative instantiation of a story, which is cohesive enough and efficient
to compute on real-world post networks.

The good news is that k-Cores can be exactly found in polynomial time.
By adjusting k, we can generate k-Cores with any desired cohesion score
k/(|VS | − 1). For example, increasing k will improve the cohesion because
the minimal edge degree is increased and |VS | is decreased in the same time.
However, k-Cores are not always capable of capturing our intuition on sto-
ries: although each post has at least k neighbors, the fact that two posts are
connected by a single capillary may be not a strong enough evidence to prove
that they tell the same story. Sometimes, posts only share some common
words but discuss different stories, e.g., “Google acquires Motorola Mobility”
and “Bell Mobility acquires Virgin Mobile”. To address this challenge, we
make a key observation that the existence of more common neighbors be-
tween two connected posts suggests a stronger commonality in story-telling.
Supposing pi and pj are connected by an edge, N(pi) and N(pj) are neighbor
sets of pi and pj respectively, if there exists post pl ∈ N(pi)∩N(pj), then we
call pl a witness for the post similarity s(pi, pj). We capture this intuition
in the following definition, where we formalize a story as a (k, d)-Core.

Definition 8 ((k, d)-Core Story) A (k, d)-Core story in the given post net-
work G(V,E) is defined by a maximal (k, d)-Core Gi(Vi, Ei), where k, d are
numbers with k > d > 0 and
• Gi(Vi, Ei) is a connected subgraph;
• For every post p ∈ Vi, |N(p)| ≥ k;
• For every edge (pi, pj) ∈ Ei, |N(pi) ∩N(pj)| ≥ d.

Density-Based Event. An event tries to organize a set of posts talking
about many related things together. Especially, an event may include mul-
tiple related stories. In the post network, an event is also modeled as a
connected subgraph. Unfortunately, the various cohesive subgraph options
we discussed in story modeling are not suitable for defining an event, since
these cohesive subgraphs have a clear center and are designed to talk about

30



3.5. Context and Evolution

mainly a single thing. An ideal definition of events should allow multiple
centers, and these centers should be highly related.

In this dissertation, we consider a graph cluster (or called partition) is
the best way to define an event. The intuition is that, since post network
is constructed by pairwise post similarity, a graph cluster with high internal
connectivity and low external connectivity indicates that posts inside the
cluster talk about very related things. Various clustering approaches can be
applied on a post network to extract clusters, and among them, we choose
density-based clustering [30] as the best modeling for events. In density-
based clustering (e.g., DBSCAN [20]), the threshold MinPts is used as the
minimum number of nodes in an ε-neighborhood, required to form a cluster.
We adapt this and use a weight threshold δ as the minimum total weight of
neighboring nodes, required to form a cluster. The reason we choose density-
based approaches is that, compared with partitioning-based approaches (e.g.,
K-Means [30]) and hierarchical approaches (e.g., BIRCH [30]), density-based
methods such as DBSCAN define clusters as areas of higher density than
the remainder of the data set, which is effective in finding arbitrarily-shaped
clusters and is robust to noise. Moreover, density-based approaches are easy
to adapt to support single-pass clustering. In the post network, we consider
ε to be a similarity threshold to decide the connectivity, which can be used to
define the weight of a post in density-based clustering. According to density-
based clustering, nodes in the post network are distinguished into three types:
core posts, border posts and noisy posts, by a threshold δ applied on the post
weight. Formally, we define an event on post network below.

Definition 9 (Density-Based Event) An event in the post network G(V,E)
is a cluster C obtained by density-based clustering using density parameters
ε and δ, where ε is a similarity threshold to remove the edge if its similarity
is lower than ε, and δ is the minimum weight of a core node.

The details of density-based clustering for event identification can be
found in Section 6.4.1.

3.5 Context and Evolution

As discussed in Chapter 1, detecting stories with high cohesion, tracking
story context and event evolution patterns are the most important problems
we focus on in this dissertation. The notion of cohesion has been defined in
Definition 6. In this section, we introduce context for stories and evolution
for events respectively.
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Story Context. Transient stories that we identified from the post network
may be highly related, e.g., two stories “the launch of Blackberry 10” and
“BlackBerry Super Bowl ad” are highly related. We try to exploit and inte-
grate signals from different perspectives (e.g., content or time) to compute
the relatedness between stories. Here, we introduce different types of related-
ness dimensions, which capture the story relatedness from three perspectives,
and quantify the relatedness by a value in [0, 1].
• Content Similarity. By viewing a story as a document and a post

entity as a term, existing document similarity measures can be used to
assess the story relatedness. However, TF-IDF based Cosine similarity
fail to be effective, since TF vectors of stories tend to be very sparse.
• Temporal Proximity. Stories that happen closer in time are more

likely to correlate together.
• Edge Connectivity. Edges associated with posts of two stories can be

used to determine the story relatedness. This approach calculates the
strength of edge connectivity between posts of two stories. These edges
serve as the bridge between two stories, and the connectivity strength
can be measured by various ways, e.g., the Jaccard Coefficient.
Story context search aims at finding the neighboring stories of a given

story in the post network efficiently. In database research literature, we use
iceberg query to describe a kind of queries which aims to find results with
scores above a given threshold. We introduce story context search, which is
a kind of iceberg query on stories, as stated below.

Definition 10 (Story Context Search) Given a set of stories S, a thresh-
old γ (0 < γ < 1) and a story S, the story context search for S is to
find the subset of stories S′ ⊆ S, where for each S′ ∈ S′, the relatedness
Cor(S, S′) ≥ γ.

The computation of Cor(S, S′) will be discussed in Chapter 5.

Event Evolution. Event evolution happens when the time window moves
on social streams. We use E to denote an event and e is a snapshot of E
at a specific moment. For simplicity, if we talk about event e, it actually
means event E at moment t. Let St denote the set of events at moment t. We
analyze the evolutionary process of events at each moment and abstract them
into four primitive patterns and two composite patterns. The four primitive
patterns are emerge, disappear, grow and decay. The two composite patterns
are merge and split, which can be decomposed into a series of emerge and
disappear patterns. From moment t to t+ 1, they are defined below.
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Cases Add Remove
If p is a noise post - -
If p is a border post to the
neighboring event e grow decay
If p is a core post without
neighboring event emerge disappear
If p is a core post to exactly one
neighboring event e grow decay
If p is a core post to multiple
neighboring events {e1, e2, · · · , en}

merge split

Table 3.1: Event evolution patterns

• emerge: add event e to the event set St;
• disappear: remove event e from the event set St;
• grow: increase the size of e by adding new posts;
• decay: decrease the size of e by removing old posts;
• merge: remove a list of events {e1, e2, · · · , en} from St and add a new

event e, where e = e1 + e2 + · · ·+ en;
• split: remove an old event e from St and add a list of events {e1, e2, · · · , en},

where e = e1 + e2 + · · ·+ en.
Compared with primitive patterns, merge and split are not very common

in event evolution. To a specific event, emerge/disappear or merge/split can
only happen once, but grow/decay may happen at each moment.

In the following, we explain how to track event evolution incrementally
as the post network gets updated. Conceptually, we call a post a core post
if this post is similar to lots of other posts. Suppose a post p is added
into the post network. If p is a noise post, we simply ignore p. If p is a
border post to the neighboring event e, grow e. If p is a core post without
neighboring event, a new event emerges. If p is a core post that is a neighbor
of exactly one event e, grow e. If p is a core post that is a neighbor of
multiple events {e1, e2, · · · , en}, merge them into a new event. The analysis
of event evolution patterns for removing a post p from post network is very
similar. We show evolution patterns of various cases in Table 3.1.

3.6 Comparing with Other Modeling Methods

In this thesis, we view each post as a node, and the relationship between
posts as an edge. By this way, a post stream can be transformed into a
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network evolving with the time, which is called a post network. Events
and stories can be viewed as substructures in this post network. However,
in related work, there are other alternative perspectives for social media
search, in which content and frequency based approaches are major players
[13, 48]. In this section, we briefly compare them, and show the advantages
of the structure based approach. Notice that the experimental study of
the structural perspective versus content and frequency perspectives will be
extensively discussed in Chapter 5 and 6.
• Structure vs. LDA Approaches. In content perspective, topic de-

tection and tracking is an extensively studied field [51], with the most
common approaches based on Latent Dirichlet Allocation (LDA) [13].
Techniques on topic tracking are usually formulated as a classification
problem [4], with an assumption that topics are predefined before track-
ing, which is unrealistic for social streams. Recent works [27, 32] fall
prey to this problem. The lack of training data set for story relatedness
tracking on noisy social streams renders the existing works [59, 68] on
Story Link Detection (SLD) inapplicable, because SLD is trained on
well-written news articles. In text streams, Hierarchical Dirichlet Pro-
cesses (HDP, [27]) was proposed to track and connect topics incremen-
tally. However, since HDP is computed based on the document-word
matrix, it is difficult to integrate HDP-based approaches with other sig-
nals, e.g., time stamps, GPS signals, authors, etc.
• Structure vs. Frequency. In related work, frequency based ap-

proaches are commonly used in story and event detection. Weng et al.
[77] build signals for individual words by applying wavelet analysis on
the frequency based signals of words to detect events from Twitter. A
framework for tracking short, distinctive phrases (called “memes”) that
travel relatively intact through on-line text was developed in [48]. Twit-
info [55] represents an event it discovers from Twitter by a timeline of
related tweets. [66] investigated the real-time interaction of events such
as earthquakes in Twitter and proposed an algorithm to monitor tweets
and to detect a target event based on classifiers. To summarize, the
common technique behind the above is detecting popular items based
on the ranking of frequency, and these items are typically terms, hash-
tags or short phrases. Compared with frequency based approaches, our
structural approach represents a story as a cohesive subgraph in post
network, which has a compact internal structure to describe the story,
and contains rich information. For example, frequency based approaches
cannot track the merge or split of two events, while structural approach
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is capable to track, by capturing the merge or split of two events as the
merge or split of the underlying subgraphs in post network.
We also perform a detailed user study to verify the hypothesis that struc-

tural method is better than content and frequency based methods using
crowdsourcing in Chapter 7.

3.7 Discussion and Conclusion

Our modeling method for social streams in this dissertation is based on
constructing a network of posts and maintaining the network over a moving
time window. To track stories and events from social streams, our modeling
method contains following steps:
• Post information extraction, in which we extract post text content and

time stamps from social streams;
• Entity extraction, where entities in post content are extracted using

NLP tools;
• Post similarity computation based on entities and time stamps;
• Graph based algorithms to mine social patterns like stories and events.
The limitations of this modeling work flow is that we ignore some infor-

mation on each step. For example, in post information extraction, we ignore
the author of a post, and in entity extraction, we use entities to represent
post content. However, based on data analysis, we ensure the information
we ignored is less meaningful than the information we kept. For example, we
ignore authors because data analysis shows post topics of an author on Twit-
ter are roughly random. We use entities to represent post content, rather
than keywords or hashtags, because we found that keywords will generate
post networks with too many edges (i.e., too high edge density) and hashtags
will generate post network which is too sparse.

One drawback of our post similarity computation is that we ignore the
word ambiguity problem. For example, “apple” may mean the Apple com-
pany or a kind of fruit; “Microsoft” and “MSFT” may mean the same thing.
Distinguishing word ambiguity in informally written tweets is a very hard
problem in the NLP community and we consider the deep analysis on this
problem beyond the research scope of this dissertation.

There are still some space for the improvement. First, currently the
entities returned by Stanford NLP tools are mostly nouns, which indicates
better entity recognition approaches may be proposed to generate entities
with higher quality. E.g., emotions and sentiments can be extracted as at-
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tributes of entities and provide more input to the similarity function. Sec-
ond, deep analysis of sentence structure of tweets may result in a better
post content similarity computation method. Third, since the current post
similarity computation only combines content similarity and time proximity,
better similarity functions may be proposed to incorporate more meaningful
information into consideration. Fourth, it is possible to combine structural
approaches with frequency or LDA-based approaches, which may result in a
better hybrid approach than pure structural approaches.
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Chapter 4

Cohesion-Persistent Story
Search

A cohesion-persistent subgraph is a subgraph with its cohesion higher than
a given threshold λ (0 < λ ≤ 1). Recall that cohesion is defined as the ratio
between the minimum degree and the maximum possible degree in a given
subgraph (Definition 6). By this definition, a cohesion-persistent subgraph
with threshold λ is a λ-quasi-clique. The quasi-clique is an appealing way
to model a story in the post network, due to the benefit that the cohesion
of a λ-quasi-clique is always higher than λ (0 < λ ≤ 1), regardless of the
size of the story. We call the story defined by a quasi-clique as a cohesion-
persistent story. In this chapter, we are interested in the search problem of
cohesion-persistent stories, where given a query set of posts, we try to find the
maximum quasi-clique that contains this query set of posts. In applications,
the query can be posts liked or found interesting/userful by the user, and
the answer will be the most popular story related to the querying posts.

4.1 Introduction

Just like any real-world networks, it is common for the post network to
have a skewed degree distribution, with the result that they feature “dense
subgraphs”. Since we model a social stream as a post network, finding dense
subgraphs of the post network corresponds to the story detection problem on
social streams. While several alternative definitions have been proposed for
dense subgraphs (e.g., see [25, 47]), quasi-cliques constitute an appealing way
to model a story, since its cohesion is guaranteed to above a given threshold.
Specifically, a λ-quasi-clique is defined as a connected subgraph in which
the ratio between the degree of each node and the highest possible degree
is at least λ, where λ ∈ (0, 1]. There has been some prior work on finding
quasi-cliques from graphs [15, 62, 63]. However, none of them can handle
the quasi-clique search problem, which is not studied before, and has many
applications in the real-world, especially, the cohesion-persistent story search
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on social streams. In particular, we focus on a new graph mining problem
in this chapter, namely query-driven maximum quasi-clique search. Given a
graph G(V,E), a set of query nodes S ⊆ V , and a parameter λ ∈ (0, 1], we
are interested in the problem of finding the largest λ-quasi-clique containing
the node set S.

The conceptual definition of a story is a set of posts telling the same
thing. On the post network, this requires that every node has a sufficiently
high connection strength with other nodes in the same subgraph. To help
determine a post set tells the same thing or not, we use the notion “cohesion”
to describe the ratio between the minimum degree and the highest possible
degree in a connected subgraph. Clearly, the ideal definition of a story
requires the cohesion to be persistent, or robust, regardless of the size of
the subgraph. There are many definitions for dense subgraphs, e.g., densest
subgraph [73], k-Plex, quasi-clique, k-Core [47] and k-Truss [34]. Of these,
only for λ-quasi-cliques, the cohesion is always at least λ as the subgraph size
changes. The finding of the largest cohesion-persistent subgraph containing a
given node set can be modeled as the Query-driven Maximum Quasi-clique
(QMQ) search problem. Since the maximum clique problem is NP-Hard
[61] and no polynomial time algorithm can approximate it within a factor
of n1−ε (ε > 0) [31], it is not surprising that finding the maximum quasi-
clique is also NP-Hard and not approximable in polynomial time. As for
heuristic approaches, existing studies on quasi-clique maximization (without
any query) are mainly based on local search [15, 33, 62], in which a solution
moves to the best neighboring solution iteratively, updated node-by-node.
However, none of the existing approaches are designed for quasi-clique search
and can efficiently handle the QMQ problem. A detailed comparison with
these and other related works appears in Section 2.1.3.

Challenges. To the best of our knowledge, this chapter is the first study
on the quasi-clique search problem. Solving this difficult problem raises the
following challenges:
• Given a set of query nodes S, how to find a λ-quasi-clique containing S

as efficiently as possible?
• How can we design an effective and uniform objective function for solu-

tions that guides the maximization of λ-quasi-clique containing S?
• Given a solution, how to devise efficient iterative maximization tech-

niques to search for a better solution?
• As the iterative maximization is a local search process, how can we

prevent the algorithm being trapped into a local maximum?
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Main Idea. In this chapter, we propose an efficient framework for the
QMQ search problem, which has two components: an offline component that
builds a tree representation T of the given graph G, and an online component
which responds to the maximum quasi-clique search for a given set of query
nodes S. In the offline component, we propose core tree, a tactfully designed
hierarchical structure to help find a pre-solution to the QMQ search problem
in a few tree traversal operations, where the pre-solution is a maximal k-
Core for some k, which contains the query nodes S and whose cohesion is
very close to λ. The idea is that a λ-quasi-clique can be obtained from
the pre-solution very quickly. The notion of k-Core, as defined in [47], is
a connected subgraph in which every node has degree at least k. In our
proposed core tree, G is the root and each tree node is a maximal k-Core,
for some k; if a tree node Ti is a subgraph of another tree node Tj , we say
Ti is a child of Tj . The core tree can be built recursively and efficiently, and
the pre-solution can be quickly retrieved from the core tree.

In the online component, we introduce three maximization operations:
Add, Remove and Swap. By scheduling these operations using different
strategies, we propose two iterative maximization algorithms for the QMQ
search, called Deterministic Iterative Maximization (DIM) and Stochasti-
cally Updated Maximization (SUM). Of these, DIM is a deterministic ap-
proach that, in each iteration, greedily moves from the current solution to the
best available neighboring solution. SUM, on the other hand, is a stochastic
approach, which moves from the current solution to one of its good neigh-
boring solutions with a probability proportional to the “marginal gain” as-
sociated with such a move. Intuitively, SUM has the potential to break the
limitation of getting trapped in a local maximum and thus find better re-
sults than DIM, at the expense of potentially longer iteration steps than
DIM. Both DIM and SUM are efficient, specifically DIM takes O(Tn) time
while SUM takes O(Tn2) time for each simulation, where T is the total
number of iterations, and n is the average solution size on each iteration.

Contributions. We make the following contributions in this chapter:
• We define the problem of query-driven maximum quasi-clique search, a

novel cohesive subgraph query with many real-world applications (Sec-
tion 4.2).
• We propose core tree as a recursive representation of a graph, which

helps quickly find a pre-solution to the QMQ search problem within a
few tree traversals by reducing the solution search space (Section 4.3).
• We introduce Add, Remove and Swap to search for new solutions and
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G(V,E) the given network
S the query node set

Gi(Vi, Ei) a connected subgraph of G
QλS(VQ, EQ) a query-driven quasi-clique
Q
λ
S(V Q, EQ) the query-driven maximum quasi-clique
T,Ti core tree, tree node

deg(v,Gi) Degree of node v in subgraph Gi
F(Gi) objective function for subgraph Gi

Table 4.1: Notation.

efficiently optimize a pre-solution to a λ-quasi-clique as well as the cur-
rent solution to a better neighboring solution. Building on this, we
propose deterministic and stochastic iterative maximization algorithms
for QMQ search – DIM and SUM (Section 4.4).
• We perform an extensive experimental study on three real datasets,

which demonstrates that our algorithms significantly outperform several
baselines in running time and/or the quality. (Section 4.5).
Section 4.6 concludes this chapter. Major notations used are listed in

Table 6.1.

4.2 Problem Overview

Problem. Given a set of query nodes S, we define a query-driven quasi-
clique w.r.t. S as a quasi-clique that contains all nodes in S. The formal
definition follows, where for a subgraph Gi ⊆ G and a node v in Gi, we use
deg(v,Gi) to denote the degree of v in Gi.

Definition 11 (Query-Driven Quasi-Clique). Given an undirected graph
G(V,E), a set of query nodes S ⊆ V , and a parameter 0 < λ ≤ 1, a query-
driven quasi-clique w.r.t. S and λ is a subgraph QλS(VQ, EQ) of G, such
that:
• QλS is connected and S ⊆ VQ ⊆ V ;
• For every node v ∈ VQ, deg(v,QλS) ≥ λ · (|VQ| − 1).

For simplicity, we use QλS and Q interchangeably. The problem of query-
driven maximum quasi-clique search is to find the largest λ-quasi-clique con-
taining the query nodes S, as formalized below.
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n

Figure 4.1: The query S is marked by solid nodes, with λ = 0.5. A maximal
quasi-clique and the query-driven maximum quasi-clique (QMQ) are circled
by a dotted ellipse and a solid ellipse, respectively.

Problem 1 Given an undirected graph G(V,E), a set of query nodes S ⊆ V
and a parameter 0 < λ ≤ 1, find the subgraph QλS(V Q, EQ) in G(V,E), such
that

Q
λ
S(V Q, EQ) = arg max

Q
{|VQ| | Q = QλS(VQ, EQ)} (4.1)

We denote byQλS(V Q, EQ) the query-driven maximum quasi-clique (QMQ)
for the query S and parameter λ. Notice that it is possible that there is no
qualified λ-quasi-clique containing all nodes in S, and in this case we return
NULL.

Hardness. It is well-known that the problem of finding the maximum clique
is NP-Hard [61]. Even worse, a negative breakthrough result by Arora et
al. [6] together with results of Feige et al. [23], and more recently Hastad
[31], imply that there is unlikely to be any polynomial time approximation
algorithm for this problem within a factor of n1−ε (ε > 0). According to
Abello et al. [1], general heuristics which provide answers with guaranteed
approximation to the maximum clique are unlikely to exist. Since a clique
is a special case of a quasi-clique, these hardness results carry over to the
maximum quasi-clique problem [62]. In particular, the query-driven maxi-
mum quasi-clique (QMQ) search is also NP-Hard and inapproximable, since
when S = ∅, QMQ search reduces to the traditional maximum quasi-clique
problem.

Maximum vs. Maximal Quasi-Cliques. The QMQ search problem
should not be confused with the extensively studied maximal quasi-clique
problem. A maximal λ-quasi-clique cannot be the subset of any other λ-
quasi-clique. However, its size may be arbitrarily smaller than that of the
maximum quasi-clique. Fig. 4.1 illustrates these ideas with an example of a
maximal λ-quasi-clique and the QMQ, both containing the query set S.

Solution Overview. The hardness of the QMQ search problem indicates
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that polynomial-time algorithms which provide answers with guaranteed op-
timality to QMQ unlikely exist. The hardness and inapproximability results
for QMQ naturally motivate the quest for good heuristics to solve the prob-
lem. In related work, most algorithms for finding maximum as well as maxi-
mal quasi-cliques are based on local search [15, 33, 62]. However, traditional
local search does not scale to large networks, because the search space of
neighboring solutions in the iterative optimization increases exponentially
with the network size. Thus, using traditional approaches, it is difficult to
quickly find an initial solution corresponding to a quasi-clique containing S.

To address these challenges, in this chapter, we propose an efficient frame-
work for the QMQ search problem on large-scale networks. The architecture
of this framework is illustrated in Fig. 4.2. There are two major compo-
nents: an offline component which recursively identifies and organizes dense
subgraphs in the given network, and an online component which responds
to the QMQ search for query nodes S. The offline component, discussed
in Section 4.3, transforms the network G into a dense subgraph (DSG) tree
to support efficient retrieval of query-driven quasi-cliques. The online com-
ponent quickly locates the tree node with the closest cohesion to λ (called
pre-solution) on the DSG tree for query nodes S and starts the iterative
maximization process to approach the QMQ, as discussed in Section 4.4. In
case no qualified solution is found, the algorithm will return NULL.

To simplify the presentation, we assume throughout the chapter that
S 6= ∅, i.e., the query nodes are non-empty. This assumption does not result
in any loss of generality. For the special case S = ∅, we can augment the
graph G = (V,E) to a new graph G′ by adding a new node v into G with
edges connecting v to every node in G. Let S′ = {v}. Then QλS is a λ-quasi-
clique in G iff QλS′ is a λ-quasi clique in G′, where QλS′ = QλS + {v}.

4.3 Pre-solution on Core Tree

In this section, we propose core tree, a convenient representation of a graph
where each tree node is a certain dense subgraph. As we will see in Sec-
tion 4.3.2, core tree facilitates the quick look-up of pre-solution, which is a
connected subgraph containing query set S and has cohesion very close to
λ. Meanwhile, we are able to confine the size of the QMQ to a small range
between the size of a tree node and its parent, which accelerates the QMQ
search process.
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G V E

S

Figure 4.2: Architecture of the efficient query-driven maximum quasi-clique
search by DSG tree.

4.3.1 Core Tree: Definition and Properties

In the following, we calibrate a dense subgraph using three measures and
define the core tree for a given graph.

Measures. As remarked earlier, degree distributions of real-world networks
tend to be skewed, making it common for such networks to have embedded
dense subgraphs. Several notions of dense subgraphs have been proposed
in the literature, including densest subgraphs, k-cores, k-plexes, and quasi-
cliques [47, 73]. In principle, we could have defined a “dense subgraph (DSG)
tree” representation of a graph using any of the above notions of dense sub-
graphs. We provide the rationale for using k-Cores for defining our DSG
tree later in this section. To quantify the properties of a dense subgraph, we
make use of the CCD measure, namely Coreness, Cohesion and Density, as
defined below.

Definition 12 (CCD Measure). Given a connected subgraph Gi(Vi, Ei),
the CCD measure of Gi is defined as
• Coreness: K(Gi) = min

v∈Vi
deg(v,Gi);

• Cohesion: C(Gi) = K(Gi)
|Vi|−1 ;

• Density: D(Gi) = |Ei|(
|Vi|
2

) = 2|Ei|
|Vi|(|Vi|−1) .

Cohesion is the ratio between the minimum degree and the maximum
possible degree. Clearly, a λ-quasi-clique is a connected subgraph with co-
hesion at least λ. Density, also called local clustering coefficient [76], can be

43



4.3. Pre-solution on Core Tree

G G

G

G
G

(a)

G

G

G

G G

k

k

k

k

(b)

Figure 4.3: A graph G with k-Cores identified recursively in (a) and its
corresponding core tree in (b).

viewed as the ratio between the average degree and the maximum possible
degree. Both cohesion and density fall in the range [0, 1].

Definition. Conceptually, a core tree is a representation of the given graph
as a recursively inclusive tree structure. Each tree node in a core tree is a
maximal k-Core.

Definition 13 (Maximal k-Core). A maximal k-Core is a connected sub-
graph Gi(Vi, Ei) such that:
• K(Gi) ≥ k;
• Gi is not a subgraph of any other k-Core.

Definition 14 (Core Tree). Given an undirected graph G(V,E), the core
tree of G is a tree T whose nodes correspond to maximal k-Cores of G, for
some k, such that:
• Root: The root of T corresponds to G and has depth 0;
• Parent-Child: Whenever Ti is a tree node of T at depth k corresponding
to a maximal k-Core Gi, and Gj is a maximal (k + 1)-Core which is
a subgraph of Gi, then Ti has a child Tj corresponding to Gj; Tj has
depth k + 1.

We show an example in Fig. 4.3 to illustrate the core tree. When k = 1,
isolated nodes are removed. As k increases, the size of k-Core decreases
along the path from the root, making the cohesion monotone increasing.

Note that G is trivially a maximal 0-core. It follows that every node of
T at depth k is a maximal k-core. It is possible that multiple tree nodes
of T may correspond to the same subgraph of G. E.g., suppose G has no
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isolated nodes. Then G is a maximal 0-core as well as a maximal 1-core.
The apparent redundancy in the core tree can be eliminated by a concise
storage, as introduced below.

Concise Storage. The height of a core tree T is the largest k for which
G has a k-core (called degeneracy in [47]). This is usually a small number
(e.g., below 100) for real world large graphs [28]. Conceptually, since a tree
node is a subgraph of its parent, a subgraph may appear repeatedly in mul-
tiple levels and bring redundancy. However, there is no need to materialize
any subgraphs. Instead, we can represent a tree node Ti corresponding to
Gi(Vi, Ei) by the format:

Ti = (k, Vi, parent, children, leftover)

where k is the depth of Ti, parent and children respectively denote the ID
and set of IDs of the parent and children of the tree node Ti, Vi is the set of
nodes in the subgraph of G that Ti corresponds to, and leftover is the set
of nodes that are in Vi but not in any child.

We can always induce Gi from G by Vi, and for simplicity, we use Ti and
Gi interchangeably. In addition, as an inverted index, for every node v in G,
we also remember the ID of the tree node Ti with highest k that contains v.

Properties. Core trees enjoy many desirable properties by virtue of ef-
fectively organizing dense subgraphs at different granularity levels. These
properties facilitate efficient search for QMQ. We state and establish these
properties below.

Proposition 1 If Ti and Tj are siblings on the core tree T, then Vi∩Vj = ∅.
Proof: Since Ti and Tj are siblings, their corresponding subgraphs Gi and

Gj are both maximal k-Cores. Suppose Vi ∩ Vj 6= ∅ and Gk(Vk, Ek) is the
union of Gi and Gj, i.e., Vk = Vi ∪ Vj, Ek = Ei ∪ Ej. Then Gk satisfies
the definition of a k-Core, which contradicts the maximality of Gi and Gj,
so Vi ∩ Vj = ∅. 2

Proposition 2 Cohesion of a tree node is non-decreasing along any root-to-
leaf path on the core tree.

Proof: Based on Def. 14, K(Gi) is non-decreasing and |Vi| is non-
increasing, so cohesion is non-decreasing. 2

Proposition 3 Given any two nodes Ti and Tj on the core tree, if Vi∩Vj 6= ∅
and |Vi| ≤ |Vj |, then Vi ⊆ Vj.

Proof: Since Vi ∩ Vj 6= ∅, Ti and Tj are on the same path from the root
to a leaf. Since |Vi| ≤ |Vj |, Gi should be a subgraph of Gj, so Vi ⊆ Vj. 2
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Prop. 1 indicates the disjointness property, which is useful to help prune
the search space: once we find the query set S is contained in a tree node
Ti, we can reduce the search space to the branch of Ti and safely ignore
other tree nodes in different root-to-leaf paths. Prop. 2 shows the monotone
increasing property of cohesion on the path from the root to a leaf in the
core tree. Prop. 3 presents the inclusion property: if two tree nodes share
common graph nodes, they must be on the same root-to-leaf path. Both
Prop. 2 and 3 are essential for quasi-clique maximization.

Why Core Trees? Popular dense subgraph definitions include densest
subgraph, k-Plex, clique, quasi-clique, k-Core and k-Truss ([34, 47, 73]).
In the following, we briefly discuss each of them, and argue why k-Core
is the best fit for instantiating a dense subgraph (DSG) tree. First, the
monotone property of Cohesion shown in Prop. 2 is crucial for the fast search
of the QMQ. Densest subgraph is a subgraph that maximizes the average
degree, and cohesion of densest subgraphs is not necessarily monotone as
the average degree increases. k-Plex is defined as a subgraph Gi = (Vi, Ei),
with K(Gi) ≥ |Vi| − k, and C(Gi) = |Vi|−k

|Vi|−1 = 1 − k−1
|Vi|−1 . A natural way

to define a k-Plex tree is to start with G as the root with k = |V |, the
number of nodes in G. When we decrease k, the resulting (k − 1)-Plexes
are guaranteed to be subgraphs of the subgraph corresponding to the given
k-Plex. However, in general, depending on the size of the (k−1)-Plexes, the
cohesion may be more or less than that of the parent. Specifically, consider
a k-Plex H with n nodes and a (k− 1)-Plex subgraph H ′ with n′ nodes. We
can show that C(H ′) ≥ C(H) iff n′ ≤ 1 + k−2

k−1(n− 1). In general, there is no
guarantee on the value of n′ and so cohesion is not monotone on a root to
leaf path of a DSG tree defined using k-Plexes. Clique and quasi-clique are
special cases of query-driven quasi-cliques with S = ∅, so we cannot assume
they are already available. Moreover, all the aforementioned dense subgraph
problems are NP-Hard, and are hard to approximate. In contrast, maximal
k-Cores can be exactly found in polynomial time [57], so the construction
cost of core tree is very cheap. k-Truss [34] is a special kind of (k− 1)-Core,
which has the added constraint that every edge should be contained in at
least (k − 2) triangles. The time complexity of k-Truss detection is much
higher than the k-Core detection – O(|V | · |E|) vs. O(|V |+ |E|) – and it has
no distinct advantages over k-Cores for the QMQ search. We thus conclude
that k-Cores are the ideal choice for instantiating a DSG tree.

Algorithm. Given a graph G(V,E), the procedure for generating a core
tree from G is shown in Algorithm 1. Specifically, given a k-Core Gi, we
generate all (k + 1)-Cores by recursively removing nodes with degree less
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Algorithm 1: Core Tree Generation
Input: G(V,E)
Output: Core tree T

1 set G as the root of T;
2 Set = {(G, 0)};
3 while Set 6= ∅ do
4 get (Gi, k) from Set and remove from Set;
5 recursively remove nodes from Gi if degree less than k + 1;
6 for each connected component Gj in the remaining graph of Gi do
7 set Gj as a child of Gi in T;
8 add (Gj , k + 1) into Set;

than k + 1, and these (k + 1)-Cores will be added as the children of Gi in
core tree T. Since the highest k is the degeneracy of G, the time complexity
of core tree generation is O(|E| + |V |), similarly to the graph degeneracy
computation [56].

4.3.2 Search for Pre-Solution

Henceforth, by a solution, we mean a λ-quasi-clique containing the query
nodes S. By a pre-solution, we mean a maximal k-core containing S whose
cohesion is closest to that of a λ-quasi-clique. It may fall shy of the required
cohesion to be a solution, hence the term pre-solution. A graph G may or
may not have a λ-quasi-clique containing S. If it does, it can be obtained
efficiently from the pre-solution. Below, we give the formal definition of a
pre-solution.

Definition 15 (Pre-Solution). Given a core tree T, λ and a query set S,
the pre-solution for the QMQ Q

λ
S is a tree node Ti with a set of graph nodes

Vi, such that

PreSolution(λ, S) = arg min{|C(Ti)− λ| | S ⊆ Vi} (4.2)

Core trees offer two benefits for accelerating QMQ search: (1) given a
query node set S and parameter λ, the pre-solution for the QMQ search can
be generated efficiently by traversing the core tree; (2) given the pre-solution
or the current solution for the QMQ, we can find a better neighboring solu-
tion efficiently, by reducing the search space, exploiting the core tree. We use
the term graph node and tree node to distinguish between nodes of G and
nodes of core tree T. Recall that each tree node corresponds to a subgraph
of G which is a maximal k-core, for some k.
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Main Idea. Given a graph G, λ, and S, let T be the corresponding core
tree. Here are the major steps in the search for a pre-solution, which we
denote by TQ:

1. For each graph node s ∈ S, find the tree node Ts that contains s and
has the largest depth in T. Let TS denote the lowest common ancestor
in T, of the set of the tree nodes {Ts|s ∈ S};

2. If TS is not a λ-quasi-clique, the pre-solution is simply TS , i.e., TQ =
TS .

3. If TS is a λ-quasi-clique, we climb up the core tree T from TS until we
find an ancestor Tl which is a λ-quasi-clique but its parent Tu is not a
λ-quasi-clique.

4. If |C(Tl) − λ| ≤ |C(Tu) − λ|, set the pre-solution TQ = Tl; otherwise,
set TQ = Tu.

Notice that TQ is sometimes a λ-quasi-clique (i.e., a solution) and some-
times not (a non-solution). Notice also that Ts is not necessarily a leaf node.
For example, in Fig. 4.3, supposing s is a node in G1 but not in G2, Ts is
G1. From the leaf to the root, let {Ts|s ∈ S} be the set of those tree nodes
having the first appearance of query nodes. These are the maximal k-cores
with the highest k containing the query nodes. Since the root of core tree
T is the whole graph G, given query S, the lowest common ancestor TS for
tree node set {Ts|s ∈ S} always exists. If TS is not a λ-quasi-clique, it is still
possible to find a subgraph of TS which is a query-driven λ-quasi-clique for
S. In this case, we let TQ = Tu = TS and jump to the optimization phase to
be discussed in Section 4.4. Otherwise, TS is a λ-quasi-clique, and we climb
up the core tree from TS and find an ancestor Tl, which is a λ-quasi-clique
but whose parent Tu is not. According to Prop. 2, such a tree node pair Tl
and Tu always exists for given TS and λ. In the extreme case that Tl = Root
and Tu = NULL, we return G as the final solution directly. Otherwise, the
pre-solution TQ is chosen from Tl and Tu, depending on which tree node
has a closer cohesion with λ. Pre-solution TQ is the start of the iterative
optimization discussed in Section 4.4.

Lower/Upper Bounds of QMQ. By leveraging core tree, we can confine
the size of the QMQ Q

λ
S to a small range. Prop. 4 reveals the relationship

between Tl,Tu and QλS .
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Figure 4.4: (a) A small graph shown and (b) its corresponding core tree,
showing deepest tree nodes containing graph nodes v1, · · · , v5; G5 and G6 in
(b) are annotated by dotted circles in (a).

Proposition 4 Given tree nodes Tl and Tu on core tree corresponding to
subgraphs Gl and Gu, both containing the query S, if C(Gl) ≥ λ ≥ C(Gu),
then the QMQ Q

λ
S(V Q, EQ) for S and λ satisfies:

|Vl| ≤ |V Q| ≤ |Vu| (4.3)

Proof: Since Gl contains S and C(Gl) ≥ λ, Gl is a query-driven λ-quasi-
clique for S; so Q

λ
S(V Q, EQ), being a maximal λ-quasi-clique for given S

and λ, satisfies |Vl| ≤ |V Q|. Notice that C(QλS) ≥ C(Gu), so supposing
|V Q| > |Vu|, we get that the minimum degree K(Q

λ
S) > K(Gu). This implies

Q
λ
S is a K(Q

λ
S)-Core, and given that V Q ∩ Vu ⊇ S 6= ∅, QλS should be a

subgraph of Gu. This contradicts the assumption that |V Q| > |Vu|, so we
have |V Q| ≤ |Gu|. 2

Prop. 4 indicates that the size of the QMQ is bounded by the size
of Gl and Gu. Although in general, the QMQ Q

λ
S shares many common

graph nodes with Gl and Gu, Q
λ
S is not necessarily a supergraph of Gl or

a subgraph of Gu. E.g., in Fig. 4.4(a), for S = {v2, v4, v5} and λ = 0.4,
the 4-Core G5 containing S has cohesion 2/3, the QMQ (denoted by hollow
nodes) has cohesion 3/7, and the former is not a subgraph of the latter.
However, as a maximal k-Core containing S with a very close cohesion to λ,
the pre-solution picked from Gl and Gu serves as an ideal candidate for the
iterative maximization towards QλS .

Example. The search for pre-solution is illustrated in Fig. 4.4. Suppose
λ = 0.2 and S = {v1, v2}. Then G5 is the lowest common ancestor TS .
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Then we climb up the core tree to find Gl = G3 and Gu = G2 that satisfy
C(Gl) ≥ λ ≥ C(Gu). According to Prop. 4, the QMQ will be a subgraph of
G whose size is “sandwiched” between those of G3 and G2. The pre-solution
TQ is set to G2 or G3, depending on whichever has a cohesion closer to λ. As
another example, suppose λ = 0.5 and S = {v1, v3}. We then get TS = G2,
which is not a λ-quasi-clique. In this case, we set the pre-solution TQ = G2

and the iterative maximization process will check the existence of the QMQ
inside G2.

4.4 Query-Driven Quasi-Clique Maximization

In this section, we discuss our iterative maximization techniques for searching
for a QMQ based on a given pre-solution.

4.4.1 Objective and Operations

Objective. Let Gi(Vi, Ei) be any connected subgraph of G, with S ⊆ Vi.
Gi may or may not be a λ-quasi-clique. For convenience, if Gi is a λ-quasi-
clique, we call Gi a solution; otherwise, we call Gi a non-solution. Recall
that a pre-solution may be a solution or a non-solution. Our objective, given
such a graph Gi, is to find a solution and maximize its node size. In order
to facilitate our search, we propose a new objective function below. Recall,
D(Gi) denotes the density of Gi (see Def. 12).

F(Gi) =

{
|Vi|+D(Gi) if Gi is a λ-quasi-clique
C(Gi) otherwise (4.4)

F(Gi) is designed tactfully and has the following benefits:
• When Gi is a λ-quasi-clique, since 0 ≤ D(Gi) ≤ 1, the term |Vi| domi-

nates the objective function F(Gi) and F(Gi) > 1. Thus, maximizing
F(Gi) prefers a solution with higher size. On the other hand, the density
part D(Gi) encourages preferring the subgraph with a higher density,
among those with the same cardinality. Clearly, a subgraph with a
higher density has a higher potential to attract more nodes. In this
case, F(Gi) is optimized to make the size of Gi as large as possible.
• When Gi is not a λ-quasi-clique, the cohesion C(Gi) stimulates the op-

timization process by rewarding subgraphs with a higher cohesion. In
this case, F(Gi) < λ ≤ 1 and F(Gi) is designed to transform Gi from a
non-solution to a solution as soon as possible.
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Operation Explanation

Add:
G′i = Gi + {v}

add a new node v into a λ-quasi-
clique Gi such that F(G′i) > F(Gi)
Goal: increase the cardinality |Vi|

Remove:
G′i = Gi − {v}

remove an existing node v (v 6∈ S)
from Gi such that F(G′i) > F(Gi)
Goal: increase the cohesion C(Gi)

Swap:
G′i = Gi+{v1}−
{v2}

add a new node v1 into a λ-quasi-
clique Gi and remove another node
v2 (v2 6∈ S) such that F(G′i) >
F(Gi)
Goal: increase the density D(Gi)

Table 4.2: Three Maximization Operations.

• As another benefit, the maximization of F(Gi) naturally prevents the
cycling of quasi-cliques, i.e., a previous quasi-clique appearing again
after a series of add and remove operations (defined in the next para-
graph). To appreciate this point, in related work, specifically, Reactive
Local Search (RLS, [9]) relies on an extra parameter T to prevent cy-
cling: every time a node is added or removed from their current solution,
it cannot be considered for removal or addition for the next T iterations,
where T needs to be tuned for different graphs, a tedious process.

Operations. The QMQ search can be viewed as a process of maximizing the
objective function F(Gi) where Gi is initialized to TQ, where the pre-solution
TQ may be a λ-quasi-clique or not. We introduce three operations: Add,
Remove and Swap defined in Table 4.2 and explained below.
• Add: G′i = Gi + {v}. Add operation is applied when both Gi and G′i

are λ-quasi-cliques.
• Remove: G′i = Gi−{v}. If Gi is not a λ-quasi-clique, Remove operation

is applied to improve the cohesion. To make F(G′i) > F(Gi), we need to
ensure K(G′i) ≥ K(Gi), i.e., we cannot remove a node v that decreases
the coreness.
• Swap: G′i = Gi + {v1} − {v2}. Swap is applied when adding a node v1

makes Gi lose the λ-quasi-clique property, but removing another node
v2 at the same time restores the property. Instead of viewing Swap as
a combination of Add and Remove, we view swap as an atomic oper-
ation since that allows us to move from one λ-quasi-clique to another.
The motivation for swapping nodes is that the node swapped in may
increase the density. Note that edges associated with a node are added
or removed automatically with the node.
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If the pre-solution TQ = Gl, which is a λ-quasi-clique, to ensure F(G′i) >
F(Gi), Add and Swap will be used in the iterative maximization. If the
pre-solution TQ = Gu, since C(Gu) < λ, on each iteration before C(Gi) ≥ λ
is satisfied, Gi should be a subgraph of Gu with coreness K(Gi) ≥ K(Gu).
Prop. 5 explains this case and shows that Add cannot help improve the
F(Gi) score, and similarly for Swap. Thus, when the optimization process
starts from Gu, we can only use Remove to improve the F(Gi) score until
Gi becomes a λ-quasi-clique.

Proposition 5 Suppose the iterative optimization starts from TQ = Gu and
the current state Gi is a non-solution, obtained by zero or more Remove
operations to Gu. Then adding a node v to Gi cannot make F(Gi + {v}) >
F(Gi).

Proof: Recall that a Remove operation is applied to a current state Gi
only when the resulting F score does not decrease. We prove the result by
induction on the number of Remove operations applied to TQ = Gu.
Base Case: Zero Remove operations are applied to Gu. Then since Gi = Gu
is a maximal k-Core, adding a node into Gu will decrease the coreness and
make F(Gi + {v}) < F(Gi).
Induction: Suppose Gi is a non-solution obtained from Gu after m Remove
operations. Notice that if any of the predecessors of Gi obtained during the
Remove sequence is Gl, we could not have applied Remove to it while keeping
the F score non-decreasing. From this, it follows that Gi cannot be a subgraph
of Gl. By the rule for applying the Remove operation, K(Gi) ≥ K(Gu). Let
G′i = Gi + {v}. By Eq. (4.4), since Gi is not a λ-quasi-clique, we have
F(Gi) = C(Gi) = K(Gi)

|Vi|−1 . To make F(G′i) =
K(G′

i)
|Vi| > K(Gi)

|Vi|−1 , we have to make
K(G′i) > K(Gi). Since K(Gl) = K(Gu) + 1, we have K(G′i) ≥ K(Gl). Notice
that G′i and Gl share the node set S, we conclude by Proposition 1 that G′i
should be a subgraph of Gl. This conflicts with our inference that Gi is not
a subgraph of Gl, so F(Gi + {v}) > F(Gi) does not hold for any v. 2

4.4.2 Efficient Solution Search and Rank

Given a connected subgraph Gi which may be a solution or a non-solution
containing S, in this section, we discuss efficient techniques for identifying
neighboring subgraphs of Gi with better F score, using three search oper-
ations. According to Eq. (4.4), if Gi is not a λ-quasi-clique, improving its
F score amounts to improving its cohesion. If it is, then improving its F
score amounts to increasing the size, and, if the size cannot be increased,
improving the density.
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We let E(V1, V2) denote the set of edges connecting the node sets V1 and
V2. Below, we discuss the solution search using Add, Swap and Remove
respectively.

Search by Add. Add is designed to increase the existing quasi-clique size.
The solution set for Add is

Add(Gi) = {v|F(G′i) > F(Gi) > 1, G′i = Gi + {v}} (4.5)

That is, Add(Gi) is the set of single nodes that could be added to Gi
to improve its F score. According to Eq. (4.4) and Def. 12, since |V ′i | =
|Vi|+1 is fixed, The only thing that discriminates between different candidate
nodes v ∈ Add(Gi) in terms of F score is |E′i|. Thus, we can start from Gi
and rank neighboring nodes v 6∈ Vi by the edge size |E(Gi, {v})|, provided
G′i is still a λ-quasi-clique. The node v with the highest |E(Gi, {v})| and
satisfying C(Gi + {v}) ≥ λ produces the best solution G′i with the highest
F score. Notice that we do not need to check every neighboring node of
Gi to find out the best solution: since Gi is the subgraph of some tree
node TI with K(TI) ≤ K(Gi), if there is a graph node v in TI but not
in Gi with |E(Gi, {v})| ≥ K(TI), then for any graph node v′ not in TI ,
we have |E(Gi, {v′})| < |E(Gi, {v})|. Otherwise, if |E(Gi, {v′})| ≥ K(TI),
then |E(TI , {v′})| ≥ |E(Gi, {v′})| ≥ K(TI), making TI + {v′} a K(TI)-core,
violating its maximality. For example, in Fig. 4.4(b), supposing Gi is the
subgraph of the tree node G3, if there is a graph node v in G3 but not in
Gi having |E(Gi, {v})| ≥ 3, then we cannot find a node v′ outside G3 but
having |E(Gi, {v′})| ≥ |E(Gi, {v})|. Thus, starting from the deepest tree
node that contains Gi, we can climb up the core tree level by level to check
whether in that tree node TI we can find a graph node v not in Gi but
with |E(Gi, {v})| ≥ K(TI). Once found, we stop the solution search and
the current best solution is guaranteed to be the best solution out of all
solutions in G(V,E). This approach can be extended to find exact top n
solutions (shown in Alg. 3). With guaranteed quality, since we do not need
to check every neighbor of Gi, the search space of Add is distinctly smaller
than that of existing approaches [1, 15].

Search by Swap. Let G′i = Gi + {v1}−{v2} and G′′i = Gi + {v1}. Swap is
designed to improve the density when G′′i is not a λ-quasi-clique, but both
Gi and G′i are. The solution set of Swap is

Swap(Gi) = {(v1, v2)|F(G′i) > F(Gi) > 1 ≥ λ > F(G′′i ),

G′i = Gi + {v1} − {v2},
G′′i = Gi + {v1}}

(4.6)
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Swap indicates deg(v2, Gi) ≥ λ(|Vi| − 1), deg(v2, G
′′
i ) < λ(|Vi|) and

deg(v1, G
′
i) > deg(v2, Gi). In practice, if Add(Gi) = ∅ and there is a

node v2 (v2 6∈ S) in Gi satisfying deg(v2, G
′′
i ) < λ(|Vi|) and deg(v1, G

′
i) >

deg(v2, Gi), the swap operation may happen. We rank the node pair (v1, v2)
by deg(v1, G

′
i)− deg(v2, Gi) for Swap solutions.

Search by Remove. Remove is designed to improve the cohesion of a
non-solution Gi. We define the neighboring (solution or non-solution) set of
Remove as

Remove(Gi) = {v|F(G′i) > F(Gi),F(Gi) < λ ≤ 1,

G′i = Gi − {v}}
(4.7)

Clearly, v is a node in Gi. We can rank candidate v in Gi by the coreness
change ∆K = K(G′i)−K(Gi) resulting from removing v from Gi. If ∆K < 0,
then v 6∈ Remove(Gi), since the F score decreases. Thus, we cannot simply
remove the node with the minimum degree inside Gi: suppose v1 and v2
both have the minimum degree in Gi and they are connected; then removing
of v1 will make the coreness of the remaining graph lower than before, which
results in a lower F score. If multiple candidate nodes have the same coreness
change ∆K, we rank them further by their degree in Gi. Removing the node
with the highest ∆K and lowest degree in Gi maximizes the gain on F and
density, while a higher density has a higher potential to increase the cohesion.

4.4.3 Iterative Maximization Algorithms

Since the maximum clique problem is NP-Hard and is inapproximable within
a factor of n1−ε ([6, 23, 31]), the design of heuristic algorithms for QMQ
search with a guaranteed quality is unrealistic. In this section, we pro-
pose two iterative maximization algorithms, DIM and SUM, to approach
the QMQ. DIM (Deterministic Iterative Maximization) is a deterministic ap-
proach which greedily moves to the best neighboring solution or non-solution
on each iteration. In contrast, SUM (Stochastically Updated Maximization)
is a stochastic approach which moves to one of several good neighboring so-
lutions or non-solutions with a probability, which has the potential to find
better results than DIM. Both DIM and SUM are based on local search on
core tree. In practice, we find that both of them find solutions with high
quality, if a QMQ containing the query nodes exists.

If the current state Gi is a non-solution, according to Prop. 5, both
DIM and SUM will try to remove nodes from Gi and make it become a
solution (i.e., a λ-quasi-clique containing S). Once Gi is a solution, DIM
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and SUM will try to apply Add or Swap to grow it. In this section, since
F(Gi) provides a uniform way to evaluate Gi, no matter whether Gi is a
solution or non-solution, for ease of presentation, we use the term “answer”
as a generic term that may refer to a solution or a non-solution.

Local Search. Readers are referred to [33, 52] for complete details of local
search. Here, we briefly revisit major steps:

1. Given the current answer, find feasible candidate answers in the neigh-
borhood by one of the operations;

2. Evaluate candidates using the objective function F ;

3. If the marginal gain is positive, move to the best candidate, and then
jump to step 1. Otherwise, return the current solution or NULL if the
current answer is a non-solution.

Deterministic Iterative Maximization. DIM follows the greedy strategy
by always moving to the best available neighboring answer. Major steps of
the DIM approach are shown in Alg. 2. The pre-solution TQ is set as the
starting point of the maximization. If Gi is a non-solution (C(Gi) < λ), we
repeat Remove operations until Gi becomes a λ-quasi-clique or there is no
qualified λ-quasi-clique containing S in G (line 4-8). If Gi is already a solu-
tion, we repeat Add and Swap operations iteratively, until F(Gi) cannot be
improved any more (line 9-23). In particular, we start from Add operations
by exploring neighbors on core tree level by level, and if qualified nodes can
be found for Add, we pick the best node to add (line 10-18); otherwise, we
try to Swap nodes (line 20-23). We repeat Add and Swap until the F score
cannot be improved. An example for the scheduling of operations is shown
in Fig. 4.5(a), in which Remove operations are performed first if TQ is not
a λ-quasi-clique, followed by Add or Swap operations. Supposing the total
number of iterations of DIM is T and on each iteration, on an average, n
answers are explored, time complexity of DIM is O(Tn).

DIM always picks the best available neighboring answer on each iteration.
While this greedy heuristic is effective and is followed by lots of local search
methods, it may converge to a local maximum.

In the following, we propose SUM (Stochastically Updated Maximiza-
tion), which is a stochastic approach, moving with a probability to one of
the good neighboring answers. SUM has the potential to break the local
maximum limitation and find better results than DIM.

Stochastically Updated Maximization. Given the current answer Gi,
we define the marginal gain ∆F = F(G′i)−F(Gi) for a neighboring answer
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Algorithm 2: DIM
Input: Pre-solution TQ, S, λ
Output: the QMQ Q

λ

S

1 if TQ is the root node G and C(TQ) ≥ λ then return G ;
2 Gi = TQ;
3 while Gi is not a λ-quasi-clique do
4 Rank node v in Gi by ∆ = K(Gi−{v}) +D(Gi−{v})−K(Gi)−D(Gi);
5 Remove the node not in S with the highest positive ∆;
6 if Gi is not connected or not changed then return NULL ;

7 while true do
8 AddSet = ∅ and TI = the deepest tree node with Gi;
9 while max |E(Gi, v)| < K(TI) for v in TI but not in Gi and AddSet do

10 Add v into AddSet if C(Gi + {v}) ≥ λ;
11 if TI is not the root then
12 TI = the parent of TI ;
13 else Break WHILE loop;

14 if AddSet 6= ∅ then
15 Add v = arg max{|E(Gi, v)| | v ∈ AddSet} into Gi;
16 else
17 v1 = arg max{|E(Gi, v)| | v ∈ V − Vi};
18 G′′i = Gi + {v1}, G′i = Gi + {v1} − {v2};
19 if it exists v2 ∈ Vi − S such that deg(v2, G

′′
i ) < λ(|Vi|) and

deg(v1, G
′
i) > deg(v2, Gi) then Gi = G′i ;

20 else Break WHILE loop and return Gi;

G′i. As discussed in Section 4.4.2, for each operation, neighboring answers
are ranked by ∆F in descending order, and we use the function F(x) to
denote the marginal gain of a solution ranked at the x-th place, e.g., F(1)
denotes the maximum marginal gain.

In related work, GRASP [1] is a well-known randomized local search
method based on the threshold δ = minF(x)+c(maxF(x)−minF(x)) where
c ∈ [0, 1]. The new answer is picked randomly from all answers with F(x) ≥ δ.
If c = 1, GRASP always moves to the best answer like DIM. If c = 0,
GRASP performs a random selection from all neighboring answers. However,
GRASP has two drawbacks: (1) the parameter c is difficult to tune; (2)
GRASP totally ignores the actual distribution of marginal gains as x varies.
In our proposed Stochastically Updated Maximization (SUM) algorithm, we
overcome these limitations by picking the new answer based on the “inflection
point” (x∗,F(x∗)) on F(x). The inflection point is the point when the F(x)
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Figure 4.5: (a) An example for the QMQ maximization. (b) Illustrating the
inflection node on F(x), where solutions with rank x ≤ x∗ are preferred.

change is maximized. That is,

x∗ = arg max
x

(F(x)− F(x+ 1)) (4.8)

The inflection point splits F(x) into a high marginal gain part and a low
marginal gain part. Fig. 4.5(b) shows an illustration of the inflection point
on F(x). SUM draws an answer from all high marginal gain answers with
rank x < x∗, using the probability:

P(x) =
F(x)∑

F(x)≥F(x∗) F(x)
(4.9)

P(x) can be understood as the ratio between answer x’s marginal gain
and the sum of all marginal gains higher than F(x∗). It is possible that an
answer is not the best but is picked as the new answer, though its probability
of being picked is lower than that of the best answer. On the other hand,
since non-greedy answers can be selected with a non-zero probability, SUM
has the potential to avoid being trapped in a local maximum. Clearly, the
output of DIM is just one possible output of SUM, and SUM may produce
much better results than DIM.

Major steps of SUM are shown in Alg. 3. As can be seen, SUM and DIM
have a similar scheduling strategy for maximization operations. However,
SUM probabilistically picks the new answer from a set of good answers.
The preparation for the solution set SolGain can be found in lines 5-8 for
Remove, lines 14-20 for Add and lines 24-28 for Swap. Supposing the total
number of iterations of SUM is T and on each iteration the marginal gain is
evaluated on n answers, the time complexity of each simulation of SUM is
O(Tn2).
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4.5 Experimental Study

All experiments are conducted on a computer with Intel 2.90 GHz CPU and 8
GB RAM. All algorithms are implemented in Java. We conduct experiments
on three real data sets, as explained below.

LiveJournal Social Network. LiveJournal is an online blogging website
with a friendship network. We model each user as a node, and friendship
ties as edges in LiveJournal social network. Available at SNAP5, this dataset
has 3,997,962 nodes and 34,681,189 edges in total. A social circle in Live-
Journal social network is best modeled by a quasi-clique, since every user is
required to declare friendship with the majority of members in a social cir-
cle so defined. The query-driven maximum quasi-clique corresponds to the
largest social circle containing the query users, which supports applications
like social community search.

DBLP Co-Authorship Network. To simulate social collaborations, we
use the DBLP6 Co-Authorship Network. Each author is modeled as a node,
and if two authors have collaborated on at least one paper, there will be
a link between them. In total, DBLP co-authorship network has 1,206,881
nodes and 8,894,745 edges. A quasi-clique in the co-authorship network is
a group of authors closely working with each other. Given a set of query
researchers, the query-driven maximum quasi-clique search seeks to find the
largest collaboration network between them.

Youtube Sharing Network. This dataset, available at SNAP7, is based
on Youtube’s social network, where two people are connected if they have
similar interests in videos and become friends. There are a total of 1,134,890
nodes and 2,987,624 edges. Given a set of users, the query-driven maximum
quasi-clique is the largest video sharing group containing these query users.

4.5.1 Core Tree Construction

Core tree construction is an offline step. The running time for core tree
construction on three datasets is shown in Table 4.3, where we also show the
highest k (i.e., degeneracy [47]) for each dataset. Considering that LiveJour-
nal and DBLP datasets have 4M and 1.2M nodes respectively, DBLP dataset
takes more time than LiveJournal dataset, which indicates that apart from
the graph size, graph structure is a significant factor influencing the perfor-

5http://snap.stanford.edu/data/com-LiveJournal.html
6http://dblp.uni-trier.de/xml/
7http://snap.stanford.edu/data/com-Youtube.html
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Figure 4.6: The number of maximal cores first rapidly increases, and then
slowly decreases with the coreness k on three data sets.

mance of the core tree construction. Specifically, in Fig. 4.6, we show the
number of maximal k-Cores for each k, for the three data sets. As we can see,
from the root to leaves, the number of maximal cores first rapidly increases,
and then slowly decreases with the coreness k for all datasets. Especially,
there is a huge number of 2-Cores and 3-Cores in DBLP co-authorship net-
work, because there are many graduate students only publishing papers with
their supervisors or a few collaborators. This is a dominant factor in the core
tree construction time, as this means the core tree for DBLP has many more
nodes than for the other datasets.

4.5.2 Performance Evaluation

Baselines. To the best of our knowledge, there is no previous study on
query-driven maximum quasi-clique search. Therefore, we adapt previous
approaches for maximum quasi-clique detection (without query) as base-
lines. In our evaluation, we designed two categories of baselines based on
related work: operation baselines and optimization baselines. For operation
baselines, we use Add-MC and Remove-MC, which are discussed in [15] and
are extended from traditional maximum clique problem. These baselines are
compared with Add, Remove and Swap discussed in Section 4.4.2.
• Add-MC: Call a node u in a λ-quasi-clique Gi a critical node if λ(|Vi|−

1) ≤ deg(u,Gi) < λ|Vi|. Then we add a node v with the maximum
deg(v,Gi+{v}) to the quasi-clique Gi such that: (i) deg(v,Gi+{v}) ≥
λ|Vi| and (ii) v is adjacent to every critical node of Gi.
• Remove-MC: Remove a node v from Gi whose removal results in the

largest set of Add-MC nodes.
For optimization baselines, we use RLS (Reactive Local Search) [15],
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(a) (b)

Figure 4.7: (a) Running time of 1000 pre-solution queries as the increasing
of query set size. (b) Portion of pre-solution chosen from Gl, out of all
pre-solutions, for different query set sizes. λ = 0.9.

GRASP [1], and DFS-Tree [50, 74], which are compared with DIM and SUM.
• RLS: At each step, choose the best Add-MC node. If no nodes can be

added, choose the best Remove-MC node. Every time a node is added
or removed, it cannot be removed or added again for the next move.
• GRASP: A randomized local search method based on thresholds. We

set c = 0.5 and adapt GRASP on core tree by picking a new solution
randomly from all solutions with objective scores higher than the aver-
age.
• DFS-Tree: Build depth-first search trees for quasi-cliques by setting

each query node as the root, and return the largest tree node in these
trees that contains all query nodes, adapted from [50, 74].

Pre-Solution on Core Tree. Finding a pre-solution is one of the key steps
of our method. In this section, we evaluate the efficiency of our algorithm
for finding a pre-solution. We generate queries with q nodes by randomly
choosing q nodes from a subgraph within radius 2, and this subgraph is itself
randomly chosen from the original graph. The core tree built in the offline
step provides an extremely efficient way to find the pre-solution for a given
query. In Fig. 4.7(a), we show the running time of 1000 pre-solution queries
for different query sizes. With the help of core tree, the pre-solution search for
λ and S reduces to a few tree traversal operations and is extremely efficient:
1000 pre-solution searches can be done in a few milliseconds, on data sets
with millions of nodes. Except for two special cases – the whole graph is
a λ-quasi-clique or there is no tree node that is a λ-quasi-clique containing
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S – a pre-solution will be chosen from either Gl or Gu, depending on the
proximity of their cohesion to λ. As shown in Fig. 4.7(b), the majority of
pre-solutions are chosen from Gl, for which Add and/or Swap are applicable.

Maximization. The efficiency of an iterative maximization process is deter-
mined by two key aspects: the cost of a single iteration and the convergence
rate. We evaluate the performance of iterative maximization from these two
aspects respectively.

Fig. 4.8(a) shows the running time for searching neighboring solutions
using Add and Add-MC with different sizes (i.e., number of nodes) of current
solution Gi on LiveJournal. Due to given graph structure, different Gi may
have very different numbers of neighbors, resulting in a skewed distribution
of running time. On average, Add operation is 2.6 times faster than Add-
MC: each Add takes 24 ms, while each Add-MC takes 62 ms. This can be
explained by the observation that an exploration using Add has a remarkably
smaller search space than Add-MC, since Add searches solutions by exploring
neighboring nodes level by level and stops immediately if top n solutions are
already found on core tree, with n set to a small number, e.g., 10. But Add-
MC needs to check every neighboring node to find top solutions. Notice that
for SUM, Add finds top-n solutions whereas for DIM, only the top 1 solution
is needed. Fig. 4.8(b) compares the ratio of the search space for Add to that
for Add-MC. As query size increases, the ratio between the search spaces
of Add and Add-MC decreases, indicating that Add only needs to search a
fraction of the search space of Add-MC, as the query size grows. The added
value of Add over Add-MC in the quality of results will be discussed in detail
below (see Table. 4.4).

Next, given a pre-solution as the starting point of optimization, we mea-
sure the number of iterations taken by each optimization method before
convergence. For every query size, we repeat the experiment 100 times and
show in Fig. 4.8(c) the average number of iterations for each of the four
maximization methods: the numbers show a common decreasing trend as
the query size increases. This makes sense because larger query size is more
likely to result in a larger solution, which sets a higher bar to add new nodes.
Fig. 4.8(c) also shows that SUM has the highest number of iterations, but
we will see later that SUM also succeeds in finding larger quasi-cliques more
often than all other methods.

Total Running Time. Unlike RLS and GRASP, DFS-Tree baseline is not
an iterative optimization method. Instead, “DFS-Tree” represents a category
of methods [50, 74] that find maximal quasi-cliques by exploring the space of
quasi-cliques in a depth-first search tree, in which each tree node corresponds
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to a quasi-clique. Since the DFS-Tree method is not originally designed for
the QMQ search problem, to use it as a baseline, we adapt it by applying
pruning techniques and returning the largest node of the DFS tree (corre-
sponding to a quasi-clique) containing all query nodes. In Fig. 4.8(d), we
show the average running time of these methods on LiveJournal, as the query
size |S| increases. RLS, GRASP, DIM, and SUM have comparable running
times, with RLS being slower than the other three. This is explained by the
fact that RLS uses Add-MC and Remove-MC in place of the faster Add and
Remove. DFS-Tree quickly explodes as the query size increases. In fact, its
running time trend is opposite to that of DIM and SUM. This is because
the DFS-Tree method needs to build a DFS tree for every query node in S
and the cost of searching the largest tree node containing all query nodes
increases with |S|, making DFS-Tree based methods consume more memory
and perform worse than our core tree based methods, DIM and SUM. The
running time of GRASP is comparable to SUM.

Quality Comparison. As discussed in Section 4.2, there is unlikely to
be any heuristic algorithm with guaranteed approximation for the optimal
QMQ. To measure the quality of proposed approaches empirically, we de-
signed the following experiment: given the same pre-solution, we run RLS,
GRASP, DFS-Tree, DIM and SUM independently to get the QMQ w.r.t. S
and λ. We rank these QMQs by size, and the method producing the largest
QMQ will earn a hit score of one point. By randomly selecting queries with
size 3, we repeat the experiment 100 times, and list the final score for each
method in Table 4.4. Notice that multiple methods may generate the same
final QMQ and may earn a hit score in a given round, so the sum of scores
is higher than 100. The score of GRASP is the lowest, because it uniformly
selects a neighboring solution from a set of above-average solutions, and in
many cases, GRASP ends up with not-the-best final solutions. Theoreti-
cally, DFS-Tree should yield a high score overall, but since we have to prune
the search path to control its memory consumption [50, 74], it generates an
overall score only slightly higher than GRASP. Both RLS and DIM greed-
ily move to a new solution with the highest marginal gain, but since DIM
uses Swap to improve the density while RLS does not provide Swap, DIM
achieves a higher quality score than RLS. Finally, SUM achieves the highest
overall score, because not only is SUM capable of using Swap to improve
the density, it is able to strike a balance between greed and opportunity:
while it is more probable to move to a new solution with a higher marginal
gain, it retains the potential to jump out of the local maximum and thus
achieve a better final solution, thanks to the non-zero probability of choosing
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a neighboring solution that is not (locally) the best.

4.6 Discussion and Conclusion

In this chapter, we discussed the cohesion-persistent story search problem.
Given a query consisting of a set of nodes S in a graph G(V,E), and param-
eter λ ∈ (0, 1], we focus on finding the largest λ-quasi-clique containing S,
which has lots of applications in real world networks. This is NP-hard and
is hard to approximate, calling for clever heuristic solutions. To quickly find
a dense subgraph containing S with cohesion close to λ, as the pre-solution
of the final solution, we propose the notion of core tree by recursively orga-
nizing maximal cores of G. We make use of three optimization operations:
Add, Remove and Swap. Then, we propose two iterative maximization algo-
rithms, DIM and SUM, to approach the query-driven maximum quasi-clique
in terms of deterministic and stochastic means respectively. With extensive
experiments on three real datasets, we demonstrate that our algorithms sig-
nificantly outperform several natural baselines based on the state of art, in
running time and/or the quality of the solution found. This work raises a
number of open questions. It’s interesting to ask if we can apply the oper-
ations in bulk mode, at the level of subgraphs, instead of the node-by-node
mode that we have taken. It is also important to investigate whether our
techniques can be extended and generalized to search other kinds of dense
subgraphs such as k-plexes or optimal quasi-cliqes [73].
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Algorithm 3: SUM
Input: Pre-solution TQ, S, λ, n
Output: the QMQ Q

λ

S

1 if TQ is the root node G and C(TQ) ≥ λ then return G ;
2 Gi = TQ;
3 while Gi is not a λ-quasi-clique do
4 Set SolGain = ∅;
5 for each node v in Gi but not in S do
6 Solution = Gi − {v}, Gain = F(solution)−F(Gi);
7 Add (Solution,Gain) into SolGain;

8 if SolGain 6= ∅ then
9 Gi = Stochastically pick an answer from SolGain with gain higher

than F(x∗);

10 else Return NULL ;

11 while true do
12 AddSet = ∅ and TI = the deepest tree node with Gi;
13 while top n-th |E(Gi, v)| ≤ K(TI) for v in TI but not in Gi and

AddSet do
14 Add v into AddSet if C(Gi + {v}) ≥ λ;
15 if TI is not the root then
16 TI = the parent of TI ;
17 else Break WHILE loop;

18 if AddSet 6= ∅ then
19 Stochastically pick v from nodes in AddSet with gain higher than

F(x∗) and let Gi := Gi + {v};
20 else
21 Set SolGain = ∅;
22 for each node v1 ∈ V − Vi with E(Gi, v1) > deg(v2, Gi) + 1 do
23 G′′i = Gi + {v1}, G′i = Gi + {v1} − {v2};
24 if it exists v2 ∈ Vi − S such that deg(v2, G

′′
i ) < λ(|Vi|) and

deg(v1, G
′
i) > deg(v2, Gi) then

25 Add (G′i,F(G′i)−F(Gi)) into SolGain;

26 if SolGain 6= ∅ then
27 Gi = Stochastically pick an answer from SolGain with gain

higher than F(x∗);

28 else Break WHILE loop and return Gi ;
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Data Sets LiveJournal DBLP Youtube
Time (seconds) 346 486 29
Highest Coreness 361 119 52

Table 4.3: Running time for core tree construction.

(a) (b)

(c) (d)

Figure 4.8: (a) Running time of Add and Add-MC for different solution
sizes, with query node size |S| = 3; (b) ratio between the search spaces of
Add and Add-MC, given current solution, as query size increases; (c) average
#iterations for various methods on LiveJournal data set; (d) average running
time of different methods on LiveJournal, as query size increases; λ = 0.9 by
default.

Method SUM DIM DFS-Tree GRASP RLS
Score 77 41 11 9 17

Table 4.4: Aggregated quality scores for different methods from 100 tests.
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Chapter 5

Context-Aware Story-Telling

Stories that we identified from the post network may be highly related, e.g.,
two stories “the launch of Blackberry 10” and “BlackBerry Super Bowl ad”
are highly related. The detection of story relatedness, or called story con-
text search, is a fundamental task of social stream mining. Story context
search aims at finding the neighboring stories of a given story in the post
network efficiently. In this chapter, We try to exploit and integrate signals
from different perspectives (e.g., content or time) to compute the related-
ness between stories. After that, effective and efficient story context search
algorithms are proposed to build a network of stories in social streams.

5.1 Introduction

There are many previous studies [48, 55, 66, 77] focusing on detecting new
emerging stories from social streams. They serve the need for answering
“what’s happening now? ”. However, in reality, stories usually do not hap-
pen in isolation, and existing studies fail to track the relatedness between
them. For example, “Crimea votes to join Russia” (on May 6, 2014) and
“President Yanukovych signs compromise” (on February 21, 2014) are two
separate stories, but they are actually highly related under the same event
“Ukraine Crisis”. In this chapter, our goal is to design a context-aware story-
teller for streaming social content, which not merely detects trending stories
in a given time window of observation, but also builds the “context” of each
story by measuring its relatedness with other stories on the fly. As a result,
our story-teller has advantages on responding advanced user queries like “tell
me related stories”, which is crucial to help digest social streams.

Building a context-aware story-teller over streaming social content is a
highly challenging problem, as explained below:
• The effective organization of social content. It is well known that posts

such as tweets are usually short, written informally with lots of gram-
matical errors, and even worse, a correctly written post may have no
significance and be just noise.
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• Identification of transient stories from time window. Story detection
should be robust to noise and efficient to support the single-pass tracking
essential in the streaming environment.
• Story context search on the fly. Story relatedness computation should

be interpretable and efficient to support online queries.
To the best of our knowledge, no training data set for the context-aware

story-telling on social streams is publicly available, which renders the existing
works [59, 68] on Story Link Detection (SLD) not applicable, because SLD
is trained on well-written news articles. Furthermore, we cannot apply topic
tracking techniques [27, 32] to story context search, because topic tracking is
usually formulated as a classification problem [4], with an assumption that
topics are predefined before tracking, which is unrealistic for story context
search on social streams.

To address above challenges, we propose CAST in this chapter, which is
a Context-Aware Story-Teller specifically designed for social streams. CAST
takes a noisy social stream as the input, and outputs a “story vein”, which is a
human digestible and evolving summarization graph by linking highly related
stories. The major workflow of CAST is illustrated in Figure 5.1. First of
all, we treat each post as a node and add an edge between two posts if they
are similar enough. For example, “Australian authorities update search for
MH370” and “new MH370 search area is closer to Australia” are two similar
posts and we add an edge between them. By this way, a post network
will be constructed for social posts in the same observing time window.
Second, we propose the new notion of (k, d)-Core to define a transient story,
which is a cohesive subgraph in post network. In a (k, d)-Core, every node
has at least k neighbors and two end nodes of every edge have at least d
common neighbors. We propose two algorithms, Zigzag and NodeFirst,
for the efficient discovery of maximal (k, d)-Cores from post network. After
that, we define the iceberg query as finding highly related stories for a given
story. Two approaches are proposed, deterministic context search (DCS)
and randomized context search (RCS), to implement the iceberg query with
high efficiency. The story vein is constructed based on the iceberg query
and serves as the backend of context-aware story-teller on social streams,
which discovers new stories and recommends related stories to users at each
moment. Typical users of CAST are daily social stream consumers, who
receive overwhelming (noisy) buzzes and wish to digest them by an intuitive
and summarized representation in real time.

The main contributions of this chapter are summarized below:
• We define a new cohesive subgraph called (k, d)-Core to represent sto-
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Figure 5.1: Illustrating the workflow of StoryVein, which has three major
steps: (1) post network construction, (2) transient story discovery and (3)
story context search.

Q a social stream
s(pi, pj) the similarity between posts pi and pj
G(V,E) post network
G(V,E) story vein
S(VS , ES) a story S
Cor(S, S′) the relatedness between story S and S′

Table 5.1: Major Notations.

ries and propose two efficient algorithms, Zigzag and NodeFirst, to
identify maximal (k, d)-Cores from the post network (Section 5.3);
• We propose deterministic and randomized context search to support the

iceberg query for highly related stories, which builds the story vein on
the fly (Section 5.4);
• Our experimental study on real Twitter streams shows that StoryVein

can digest and effectively build an expressive context-aware story-teller
on streaming social content (Section 5.5).
We conclude this chapter in Section 5.6. Major notations are shown in

Table 5.1.

5.2 Story Vein

In this chapter, we propose CAST, an effective context-aware story-teller
for social streams. As social posts flow in, CAST is able to discover new
stories and track the “vein” between stories, in which each story is a group of
highly similar posts telling the same thing in the social stream, and each vein
is a relatedness link between two stories. We define a story vein as follows,
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where we use Cor(Si, Sj) to denote the relatedness between stories Si and
Sj .

Definition 16 (Story Vein) Given a post network G(V,E) and a threshold
γ (0 < γ < 1), the output of CAST can be represented by a directed graph
G(V,E), where each node S ∈ V is a story, and each edge (Si, Sj) ∈ E means
the story relatedness Cor(Si, Sj) ≥ γ and Si happens earlier than Sj.

The motivation behind CAST is, real world stories are not isolated but
commonly correlated with each other. Intuitively, the context of S in G(V,E)
is the neighboring stories of S. In particular, we use upper and lower context
to represent the stories connected by incoming and outgoing edges of S,
respectively. The target of CAST is to discover new stories and build the
contexts of these stories. As the social stream Q gets updated over time, the
story vein G(V,E) will be also updated in real time. The dynamic nature
of context-aware story-telling raises challenges both in the discovery of new
stories and in the tracking of story context. In the following, we will address
these challenges by discussing transient story discovery in Section 5.3 and
story context tracking in Section 5.4.

5.3 Transient Story Discovery

In this section, we describe the motivation and algorithms for identifying
transient stories as a new kind of cohesive subgraph, (k, d)-Core, from the
post network.

5.3.1 Defining a Story

Edge weights in a post network have very natural semantics: the higher the
post similarity, the more likely two posts are to talk about the same story.
It is well-known that a cohesive subgraph is a sub-structure with high edge
density and very low internal commute distance [75]. Suppose S(VS , ES) is a
cohesive subgraph in G(V,E). Since nodes in S(VS , ES) have a high density
to connect with each other, it is very likely that all nodes in S(VS , ES) share
the same content and tell the same story. Based on this observation, we
model a story in social streams as a cohesive subgraph in post network.

There are many alternative ways to define a cohesive subgraph. Clique
may be the best candidate in spirit, because any two nodes have a sufficiently
high similarity and thus share the same content. However, in real world data
sets, cliques are too restrictive for story definition and this calls for some
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relaxations. There are several choices for clique relaxations, e.g., quasi-
clique, k-Core, k-Plex, etc [47]. Given a connected subgraph S(VS , ES),
supposing N(p) is the neighbor set of node p ∈ VS in S(VS , ES), these clique
relaxations are defined as:
• Quasi-clique: |N(p)| ≥ λ(|VS | − 1) for every post p with 0 < λ ≤ 1 ;
• k-Plex: |N(p)| ≥ |VS | − k for every post p ∈ VS ;
• k-Core: |N(p)| ≥ k for every post p ∈ VS .
Notice that finding the maximum clique, quasi-clique or k-Plex from a

graph is an NP-Hard problem [8, 15]. Even worse, [31] proved that there
are no polynomial algorithms that provide any reasonable approximation
to the maximum clique problem. Since a clique is a special case of quasi-
clique or k-Plex, these hardness results carry over to maximum quasi-clique
and maximum k-Plex problems. There are a lot of heuristic algorithms that
provide no theoretical guarantee on the quality [1, 8, 15]. Since most of them
are based on local search [15], they do not scale to large networks, because
local search involves the optimization of solutions by iteratively moving to a
better neighbor solution in an exponential search space.

The good news is that k-Cores can be exactly found in polynomial
time. By adjusting k, we can generate k-Cores with desired edge density
2|ES |/|VS |. For example, increasing k will improve edge density because the
minimal edge degree is increased and |VS | is decreased in the same time.
However, k-Cores are not always capable of capturing our intuition on sto-
ries: although each post has at least k neighbors, the fact that two posts are
connected by a single edge may be not a strong enough evidence to prove
that they tell the same story. Sometimes, posts only share some common
words but discuss different stories, e.g., “Google acquires Motorola Mobility”
and “Bell Mobility acquires Virgin Mobile”. We show an example of 3-Core
in Figure 5.2(a), where p1 and p2 are connected but they belong to two sep-
arate cliques. To address this challenge, we make a key observation that
the existence of more common neighbors between two edge-connected posts
suggests a stronger commonality in story-telling. Supposing pi and pj are
connected by an edge and there exists post pl ∈ N(pi)∩N(pj), then we call
pl a witness for the post similarity s(pi, pj). We capture this intuition in the
following definition, where we formalize a story as a maximal (k, d)-Core.

Definition 17 (Story in CAST) A story in social stream Q is defined by
a maximal (k, d)-Core S(VS , ES) in post network G(V,E) associated with Q,
where k, d are numbers with k > d > 0 and
• S(VS , ES) is a connected subgraph;
• For every post p ∈ VS, |N(p)| ≥ k;
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Figure 5.2: (a) A 3-Core without similarity witness between p1 and p2. (b)
The illustration of generating a (3, 1)-Core from a 3-Core.

• For every edge (pi, pj) ∈ ES, |N(pi) ∩N(pj)| ≥ d.

Why (k, d)-Core? In (k, d)-Cores, we use k to adjust the edge density, and
use d to control the strength of similarity witness. It is easy to see that a
maximal (k, d)-Core is a subgraph of a maximal k-Core. However, compared
with k-Cores, (k, d)-Cores have a more cohesive internal structure enhanced
by at least d common neighbors as witnesses of commonality between two
nodes connected by an edge. This enhancement makes posts in (k, d)-Core
more likely to tell the same story. We show an example of 3-Core and (3,1)-
Core in Figure 5.2(b). As we can see, p4 is in 3-Core but not in (3,1)-Core,
because the similarity between p1 and p4 is not witnessed by other posts.
Besides, [65] defines a kind of cohesive subgraph called k-Dense, in which
every edge has at least k witnesses. It is easy to infer that a k-Dense is a
(k+1, k)-Core. Thus, k-Dense is a special case of (k, d)-Core, but provides no
flexibility to adjust k and d independently. Therefore, our proposed (k, d)-
Core is better than k-Core and k-Dense in capturing a story.

Non-overlap Property. Similar to maximal k-Cores, a maximal (k, d)-
Core cannot be a subgraph of any other (k, d)-Cores. Maximal (k, d)-Cores
have the following important property.

Proposition 6 The maximal (k, d)-cores of a graph are pairwise disjoint.

Proof: Suppose Si(Vi, Ei) and Sj(Vj , Ej) are two different maximal (k, d)-Cores
and Vi ∩ Vj 6= ∅. Now we can construct a connected subgraph S(Vi ∪ Vj , Ei ∪ Ej).
Since each node in S has at least degree k and each edge in S has at least d simi-
larity witnesses, S exactly satisfies the definition of a (k, d)-Core. This conclusion
contradicts the assumption that Si and Sj are maximal. 2
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5.3.2 Story Formation

We now discuss the computation of (k, d)-Cores. We first review the k-Core
generation process [47]: given a network G(V,E), iteratively remove the
nodes with degree less than k from G(V,E), until all the remaining nodes
have a degree at least k. The result will be a set of maximal k-Cores, which
are obtained in polynomial time. The k-Core generation process forms the
basis of our (k, d)-Core generation algorithms. We propose the first solution
for (k, d)-Core generation in Algorithm 4. We call it a Zigzag algorithm,
because the basic idea is to repeatedly change the property of the current
network between two states: the first state is k-Core set G1 obtained by
removing nodes recursively, and the second state is (d + 1, d)-Core set G2

obtained by removing edges recursively. This Zigzag process will terminate
if each connected component in the result set is a (k, d)-Core, or the result
set is empty. It is easy to see Algorithm 4 takes polynomial time and the
result is exact.

We notice that the transition costs between two states are not symmetric:
the computational costs of G1 and G2 are very different. If we can reduce the
frequency of the transition with a higher overhead, the overall performance
of Zigzag can be optimized. The following lemma formalizes the property.

Proposition 7 Given a network G(V,E) with |V | < |E| and integers k, d
(k > d), for each iteration in Zigzag, the computation of k-Core set G1 is
more efficient than the computation of (d+ 1, d)-Core set G2.

Proof: To compute G1, we need to check the degree of every node. To compute G2,
we need to check the common neighbor size of the two end nodes for every edge.
Given that |V | < |E| in most networks and the checking of node degree is more
efficient than the checking of common neighbors, we complete the proof. 2

Proposition 7 suggests that if we reduce the computation frequency of
the (d + 1, d)-Core set G2, the performance will be improved. Following
this, we propose Algorithm 5 to improve the performance of Algorithm 4, by
applying node deletions as much as possible. The heuristic is, whenever an
edge is deleted, we check whether this deletion makes the degree of its end
nodes smaller than k, and if it does, a recursive node deletion process starting
from end nodes will be performed (Line 7). We call Algorithm 5 NodeFirst
because it greedily invokes the node deletion process when possible. Since
NodeFirst avoids to perform a complete edge deletion process as Zigzag
did, the network converges very fast to the set of maximal (k, d)-Cores. The
following propositions indicate that NodeFirst produces exactly the same
results as Zigzag, but its performance is better than Zigzag.
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Algorithm 4: (k, d)-Core Generation: Zigzag
Input: G(V,E), k, d
Output: All maximal (k, d)-Cores

1 Generate a set of k-Cores G1 by removing nodes with degree less than k
recursively from G(V,E);

2 while G1 is not empty do
3 Generate a set of (d+ 1, d)-Cores G2 by removing edges with witnesses

less than d recursively from G1;
4 if G1 equals G2 then
5 break while loop;

6 Generate a set of k-Cores G1 by removing nodes with degree less than k
recursively from G2;

7 if G1 equals G2 then
8 break while loop;

9 return G1;

Proposition 8 Given a network G(V,E) and numbers k, d (k > d), both
Zigzag and NodeFirst generate the same result, which is the set of all
maximal (k, d)-Cores in G(V,E).

Proof: Suppose S(k,d) is the set of all maximal (k, d)-Cores inG(V,E). Both Zigzag
and NodeFirst try to remove nodes or edges in each iteration, so the sizes of nodes
and edges follow a monotone decreasing trend. With this message, we show the
proof by following algorithm logics: Zigzag converges to S(k,d) because S(k,d) is the
first time when a k-Core set and a (d+1, d)-Core set are equal (Line 7 in Algorithm
4); NodeFirst converges to S(k,d) because it is the first time when no edges with
witness less than d can be found in a k-Core set (Line 8 in Algorithm 5). 2

Proposition 9 On each iteration, NodeFirst is more efficient than Zigzag.

Proof: We measure the efficiency by the number of node degree check or edge sim-
ilarity witness check operations. Zigzag takes |V | + |E| operations, while Node-
First takes |V | + 1 operations. Thus, NodeFirst is more efficient than Zigzag.

2

5.4 Story Context Tracking

Transient stories we identified from the post network may be highly cor-
related, e.g., “the launch of Blackberry 10” and “BlackBerry Super Bowl
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Algorithm 5: (k, d)-Core Generation: NodeFirst
Input: G(V,E), k, d
Output: All maximal (k, d)-Cores

1 Generate a set of k-Cores G′ by removing nodes with degree less than k
recursively from G(V,E);

2 while G′ is not empty do
3 Find an edge e(pi, pj) with less than d witnesses;
4 if e(pi, pj) exists then
5 delete (pi, pj) from G′;
6 if Deg(pi) < k or Deg(pj) < k then
7 Remove nodes with degree less than k recursively from G′;

8 else
9 break while loop;

10 return G′;

ad”. In this section, we exploit and integrate signals from different measures
in story relatedness computation, and propose deterministic context search
(DCS) to construct the veins for a story S on the fly. The performance of
DCS is proportional to the size of S’s neighboring posts. In the case when
the neighboring post size is huge, we propose randomized context search
(RCS) to boost the performance.

We remark that DCS and RCS proposed in this section are two general
computation frameworks, which can be applied to different definitions of
stories. As long as a story is a connected subgraph in a post network, DCS
and RCS will apply to find the context between stories. That is to say,
stories defined as λ-quasi-cliques and (k, d)-Cores can work seamlessly as
two instantiations of story concept in the same context tracking framework.
For simplicity, we take (k, d)-Core as the structure to instantiate story and
explain its context search in this section.

5.4.1 Story Relatedness Dimensions

Recall that stories correspond to (k, d)-cores in the post network and let
Si(Vi, Ei) and Sj(Vj , Ej) denote two stories. Here we introduce different
types of relatedness dimensions, which capture the story relatedness from
different perspectives, and quantify the relatedness by a value in [0, 1]. No-
tice that node overlap is a very common evidence to assess the relatedness
between two subgraphs [69]. However, since Proposition 6 shows that (k, d)-
Cores generated by Zigzag or NodeFirst are pairwise disjoint in nodes,
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node overlap is not useful in story relatedness computation.

Dimension 1: Content Similarity. By viewing a story as a document and
a post entity as a term, existing document similarity measures can be used
to assess the story relatedness. However, TF-IDF based Cosine similarity
fail to be effective, since TF vectors of stories tend to be very sparse. We
exploit another popular measure, LDA-based symmetric KL-divergence [59].
Supposing d is the document representation of story S and θ(d) is the topic
distribution of d produced by LDA, we have

C1(Si, Sj) =
KL(θ(di) ‖ θ(dj)) +KL(θ(dj) ‖ θ(di))

2
(5.1)

where KL(θ(di) ‖ θ(dj)) =
∑

x θx(di) log θx(di)
θx(dj)

.

Dimension 2: Temporal Proximity. Stories that happen closer in time
are more likely to correlate together. Given a story Si(Vi, Ei), we can get
the histogram of post volume along time dimension on each bin with size
equal to the time window sliding step ∆t. Supposing Dist is the normalized
distribution (with the sum equal to 1) of story S’s histogram, we take the
complement of L1 Norm as an example to measure the temporal proximity
between Si and Sj :

C2(Si, Sj) = 1−
len∑
t=1

|Disti(t)−Distj(t)| (5.2)

where len is the length of the observation time window.

Dimension 3: Edge Connectivity. Capillaries associated with posts of
two stories can be used to determine the story relatedness. This approach
calculates the strength of edge connectivity between posts of Si and Sj in
post network. These edges serve as the bridge between two stories, and the
connectivity strength can be measured by various ways, e.g., the Jaccard
Coefficient based on the portion of bridge edges:

C3(Si, Sj) =
|E(Vi, Vj)|

|E(Vi, V ) ∪ E(Vj , V )|
(5.3)

where E(A,B) is the edge set between node set A and B.

Baseline: Hybrid Relatedness Model. As a baseline approach, story
relatedness can be computed by a hybrid model on all relatedness dimensions,
with the form:

CorH(Si, Sj) =

3∏
k=1

Ck(Si, Sj) (5.4)
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It is easy to see that 0 ≤ CorH(Si, Sj) ≤ 1. One drawback of the hybrid
relatedness model is the performance. First, LDA computation for large
corpus is expensive [70]. Second, to construct the context of story S in
the story vein, the hybrid relatedness model needs to compute CorH(S, S′)
between S and every other story S′ in G(V,E), which is redundant and
time-consuming.

5.4.2 Story Context Search

Story context search aims at finding the neighbors of a story in the story
vein G(V,E) efficiently. However, simply applying the hybrid relatedness
model shown in Eq.(5.4) results in an inefficient pairwise computation. To
overcome the challenge, we introduce iceberg query on story vein, as stated
below.

Definition 18 (Iceberg Query) Given a story vein G(V,E), a threshold
γ (0 < γ < 1) and a story S (S 6∈ V), the iceberg query for S is to find the
subset of all stories VS ⊆ V, where for each S′ ∈ VS, Cor(S, S′) ≥ γ.

Iceberg query is the key technique to support CAST. Iceberg query
grows the story vein on the fly: for each new story S, it can quickly build
possible relatedness links between S and the remaining stories. Iceberg query
does not need to explore all stories in V to generate the exact VS , which
improves the performance.

In this section, we propose two approaches to implement iceberg query
on story vein. The first approach is deterministic, which integrates content
similarity, temporal proximity and edge connectivity together by aggregating
all capillaries between two stories. The second approach is randomized,
which improves the performance of the deterministic approach by filtering
the flow from S to S′. They are discussed separately below.

Deterministic Context Search. The basic idea of deterministic context
search (DCS) follows a propagation and aggregation process. To initialize,
we treat story S(VS , ES) as source and every other story S′(VS′ , ES′) as
target. In the propagation phase, we start from each post in source and
broadcast the post similarity to neighboring posts along capillaries. In the
aggregation phase, we aggregate the post similarity received by posts in each
target, and denote it by PAD(S, S′). In detail, we have

PAD(S, S′) =
∑

p∈VS ,p′∈VS′ ,(p,p′)∈E

s(p, p′) (5.5)
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Since s(p, p′) is computed by combining content similarity and tempo-
ral proximity (see Eq.(3.1)), PAD(S, S′) naturally integrates the above dis-
cussed three story relatedness dimensions. The relatedness between S and
S′ is assessed by the ratio between the post similarity aggregated by S′ and
propagated by S:

CorD(S, S′) =
PAD(S, S′)

PAD(S,G)
(5.6)

where PAD(S,G) is the post similarity sum of all capillaries associated
with posts in S. When CorD(S, S′) ≥ γ, there will be a story link between
S and S′ in story vein G(V,E). Let Sτ denote the average time stamp of
S, i.e., Sτ = 1

|VS |
∑

p∈VS p
τ . If Sτ < S′τ , the edge direction is from S to S′.

Otherwise, the edge direction is from S′ to S.
The sketch of DCS is shown in Algorithm 6. Notice that post similarity

is not aggregated on every story. Some stories may receive zero or little
post similarity, and can be omitted. On average, a source story visits at
most min{|V |, |SV |·|E||V | } neighboring posts in DCS. Compared with the hybrid
relatedness model, which requires to access the whole post network G(V,E)
in pairwise computation, DCS improves the performance significantly.

The propagation and aggregation process is also extensively discussed in
the structural similarity search problem [45]. In [45], the similarity between
two nodes are modeled as the authority score of corresponding node pair, and
the propagation and aggregation process on node-pairs is used to compute
the similarity score accurately.

Randomized Context Search. To improve the performance of the de-
terministic context search further, we propose randomized context search
(RCS) based on random walk. The motivation behind RCS is, in the propa-
gation phase, it is preferable to only visit the neighboring posts with a high
post similarity. Given a post p in story S, suppose max(p) and min(p) are
the maximum and minimum post similarity associated with p, respectively.
Technically, we use α (0 ≤ α ≤ 1) as a throttle to propagate high post
similarities: only if s(p, p′) ≥ min(p) +α(max(p)−min(p)), RCS propagates
s(p, p′) to p′ by a uniformly random probability.

There are two special cases in RCS:
• α = 0: Post p propagates to every neighboring post.
• α = 1: Post p only propagates to the neighboring post with the highest

post similarity.
We empirically choose α = 0.5. Suppose N is the total number of

simulations we run for the source story S. On each simulation, a ran-
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Algorithm 6: Deterministic Context Search (DCS)
Input: G(V,E), G(V,E), new story S(VS , ES), γ
Output: In-neighbor set NI(S), out-neighbor set NO(S)

1 PAD(S,G) = 0, N(S) = ∅, NI(S) = ∅, NO(S) = ∅;
2 Sτ = 1

|VS |
∑
p∈VS p

τ ;
3 for each p ∈ VS do
4 for each neighbor p′ of p in G(V,E) do
5 if p′ is in a story S′ then
6 if S′ 6∈ N(S) then
7 add S′ into N(S);

8 add s(p, p′) into PAD(S,G) and PAD(S, S′);

9 for each S′ ∈ N(S) do
10 CorD(S, S′) = PAD(S,S′)

PAD(S,G) ;
11 if CorD(S, S′) ≥ γ then
12 S′τ = 1

|VS′ |
∑
p′∈VS′

p′τ ;
13 if Sτ < S′τ then add S′ into NO(S);
14 else add S′ into NI(S);

15 return NI(S) and NO(S);

dom surfer starts from a post p in S and randomly visits a neighbor p′
if s(p, p′) ≥ min(p) + α(max(p) − min(p)). The aggregated post similarity
from source S to target S′ on simulation i can be described as

Ri(S, S
′) =

{
s(p, p′) if p ∈ VS , p′ ∈ VS′

0 otherwise (5.7)

The aggregated post similarity by S′ on N simulations is denoted by
PAR(S, S′):

PAR(S, S′) =

N∑
i=1

Ri(S, S
′) (5.8)

We show the sketch of RCS in Algorithm 7. Similar to DCS, the relat-
edness between S and S′ is computed by CorR(S, S′) = PAR(S,S

′)
PAR(S,G) . The vein

threshold and direction is determined by the same way of DCS. Clearly, in
RCS, a source story visits at most N neighboring posts and usually N � |V |.
The value of N is decided by the time budget of story context search in real
CAST system. Compared with DCS, RCS achieves better performance by
accessing smaller number of neighboring posts connected by capillaries with
higher post similarity.
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Algorithm 7: Randomized Context Search (RCS)
Input: G(V,E), G(V,E), new story S(VS , ES), γ, α, n
Output: In-neighbor set NI(S), out-neighbor set NO(S)

1 PAR(S,G) = 0, N(S) = ∅, NI(S) = ∅, NO(S) = ∅, count = 0;
2 Sτ = 1

|VS |
∑
p∈VS p

τ ;
3 while count < n do
4 randomly select a node p ∈ VS ;
5 randomly select a neighbor p′ of p in G(V,E);
6 while s(p, p′) < min(p) + α(max(p)−min(p)) do
7 randomly select a neighbor p′ of p in G(V,E);

8 if p′ is in a story S′ then
9 if S′ 6∈ N(S) then

10 add S′ into N(S);

11 add s(p, p′) into PAR(S,G) and PAR(S, S′);

12 for each S′ ∈ N(S) do
13 CorR(S, S′) = PAR(S,S′)

PAR(S,G) ;
14 if CorR(S, S′) ≥ γ then
15 S′τ = 1

|VS′ |
∑
p′∈VS′

p′τ ;
16 if Sτ < S′τ then add S′ into NO(S);
17 else add S′ into NI(S);

18 return NI(S) and NO(S);

5.4.3 Interpretation of Story Vein

Since story vein is described in graph notation, it becomes very important
to explain the story vein to end users who may be non-technical. There are
various options to present a (k, d)-Core in human consumable form. The first
option is annotating a (k, d)-Core by the most representative posts inside,
e.g., posts with the highest edge degree. The second option is rendering a
(k, d)-Core into a word cloud. Since we extracted entities from each post,
the frequency of an entity in a (k, d)-Core can be used to indicate the font
size of that entity in the word cloud. In this paper, we provide both options
to aid human perception. We will show some interpretation examples in
experimental study.
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5.5 Experimental Study

All experiments are conducted on a computer with Intel 2.66 GHz CPU, 8
GB RAM, running 64-bit Windows 7. All algorithms are implemented in
Java. We empirically set the threshold ε = γ = 0.2 for the construction of
post network and story vein. We set α = 0.5 to filter out capillaries with
low post similarity in RCS.

All data sets are crawled from Twitter.com via Twitter4J8 API, with a
time span from Jan. 1 to Feb. 1, 2012. Although our story teller CAST
works regardless of the domain, we make the data set domain-specific in
order to facilitate evaluation of the generated results.

CNN-News. By simulating a social news stream, we collect tweets cre-
ated in the first half year of 2014 from CNN channels, which include @cnn,
@cnnbrk, @cnnmoney, @cnnlive and @cnni. This data set has 10872 tweets
and serves for the quality analysis.

Tech-Lite. We built a technology domain dataset called Tech-Lite by ag-
gregating timelines of users listed in Technology category of “Who to follow”9

and their retweeted users. Tech-Lite has 352,328 tweets, 1402 users and the
streaming rate is 11700 tweets/day.

Tech-Full. Based on the intuition that users followed by users in Technol-
ogy category are most likely also in the technology domain, we obtained a
larger technology social stream called Tech-Full by collecting all the time-
lines of users that are followed by users in Technology category. Tech-Full
has 5,196,086 tweets, created by 224,242 users, whose streaming rate is about
7216 tweets/hour.

5.5.1 Tuning Post Network

Post similarity computation shown in Eq. (3.1) influences the structure of
post network directly. We can tune the content similarity function sT (pTi , p

T
j )

and temporal proximity function sτ (|pτi − pτj |) to make the post network
concise and expressive. Many set-based similarity measures such as Jaccard
coefficient [53] can be used to compute the similarity sT (pTi , p

T
j ) between

posts. Since entity usually appears once in one tweet, similarity measures
such as Cosine similarity and Pearson correlation [53] will degenerate to a
form very similar to Jaccard, so we use Jaccard as our similarity function
and omit further discussion of alternatives.

8Twitter4J. http://twitter4j.org/
9http://twitter.com/who_to_follow/interests
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Methods Capillaries Stories Vein Links
No-Fading 1159364 373 495
Exp-Fading 327390 87 275

Reci-Fading 357132 123 384

Table 5.2: The number of edges in the post network, and the number of
stories and relatedness links in the story vein as the changing of temporal
proximity functions. We define a story as a (5, 3)-Core.

Temporal proximity function sτ (|pτi − pτj |) determines how similarity to
older posts is penalized, compared to recent posts. We compared three dif-
ferent functions: (1) reciprocal fading (“Reci-Fading”) with D(|pτi − pτj |) =

1
|pτi −pτj |+1 , (2) exponential fading (“Exp-Fading”) withD(|pτi−pτj |) = e−|p

τ
i −pτj |

and (3) no fading (“No-Fading”) with D(|pτi − pτj |) = 1. For any posts pi, pj ,
clearly e|p

τ
i −pτj | ≥ |pτi − pτj |+ 1 ≥ 1. Exp-Fading penalizes the posts in the

old part of time window severely (see Table 5.2): the number of capillaries
and stories generated by Exp-Fading is lower than by other approaches. Since
No-Fading does not penalize old posts in the time window, too many capil-
laries and stories will be generated without considering recency. Reci-Fading
is in between, which is a more gradual penalty function than Exp-Fading.
In the rest of experiments, we use Exp-Fading, since it generates the most
concise post network with an emphasis on recent posts.

5.5.2 Quality Evaluation

In this section, we evaluate the quality of CAST on two tasks: story dis-
covery and context search, by comparing with baselines.

Ground Truth. We build the ground truth of tech stories in Jan 2012 by
browsing news articles on main stream technology websites like CNET.com,
TechCrunch.com, and ReadWrite.com, etc. We pick headlines with high
occurrence and build a ground truth of top 10 stories. They include CES
related stories, SOPA & PIPA related stories, Facebook IPO, Yahoo co-
founder Jerry Yang resignation, RIM CEO changes, etc.

Baseline 1: Peak Detection. Some recent work on event detection
[48, 55, 67] can be used for story discovery, and they share the same spirit
that aggregates the frequency of topic-indicating phrases at each moment to
build a histogram and generates stories by detecting volume peaks in the
histogram. We design three baselines to capture the major techniques used
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Rank  HashtagPeaks MentionPeaks EntityPeaks 
1 #CES @CNETNews google 
2 #SOPA @thatdrew	 ces 
3 #EngadgetCES @m4tt	 apple 
4 #opengov @TNWapple video 
5 #gov20 @TNWinsider sopa 
6 #CES2012 @TNWapps	 twitter 
7 #PIPA @TGW	 year 
8 #opendata @jonrussell	 facebook 
9 #StartupAmerica @CNET	 app 
10 #win7tech @harrisonweber iphone 
Precision 0.5 0.2	 0.7 
Recall 0.4 0.2	 0.5 
	
	
	 	Figure 5.3: Top 10 results of HashtagPeaks, MentionPeaks and EntityPeaks

on Tech-Lite dataset. The ground truth for precision and recall is top 10
major stories selected from main stream technology news websites.

by these approaches.
• HashtagPeaks: aggregate frequent hashtags;
• MentionPeaks: aggregate frequent mentions.
• EntityPeaks: aggregate frequent entities.
We show top 10 results of HashtagPeaks, MentionPeaks and EntityPeaks

in Tech-Lite dataset with time stamps between Jan 1 and Feb 1, 2012 in
Figure 5.3. Their precision and recall are also listed by comparing with
the ground truth. Notice that multiple peaks may correspond to the same
story in ground truth, where the precision and recall differ. As we can see,
MentionPeaks is the worst because most of these mentions are not topic-
indicating phrases. Hashtags are the “twitter” way to indicate an event, but
it requires manual assignation by human. EntityPeaks is the best out of three
baselines, since entities are extracted from the social stream preprocessing
stage to annotate stories. Although these baselines are able to indicate some
words about a story, they’re not qualified for a successful story-teller because
the internal and external structure of the story is missing. In particular, they
cannot show how users interact with each other, how posts are clustered, and
how the story is distributed along time dimension.

Baseline 2: Topic Modeling. Topic modeling is a typical way to detect
topics from text document corpus. As we mentioned earlier, existing work on
topic detection and tracking falls into a classification problem, and prevalent
topic modeling models like Latent Dirichlet Allocation (LDA) [13] are mainly
trained on formal-writing news articles. We design a baseline using LDA,
and treat top 100 posts of each topic as a story. Post time stamps are totally
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Rank LDA-Detected Story Description
1 blog post, great buy in january, start sign
2 report amazon kindle fire
3 check real youtube interview video series
4 win chance south beach trip
5 small business company story, local community
6 make great start, things learn
7 bad thing in life, feel good
8 send email hey, glad to hear, follow tweet
9 jan travel, days ago, back home tonight
10 president obama, iran war killed
11 daily top stories, tech news, health care
12 apple tv iphone ipad, ces event, app store
13 watch night show, tonight fun, miss baby
14 twitter mobile app, android apps, tweet free
15 Iowa caucus results, Santorum and Romney
16 play half game, nyc new york city, winter fans
17 super bowl, man football party
18 happy new year, hope wonderful year, friends family
19 love word, perfect friend, people
20 google internet search ad, https link

Table 5.3: Top 20 stories detected by LDA from Tech-Full and described by
high frequency words. We treat top 100 posts of each topic as a story.

ignored in LDA. We set the topic number as 50, and after rendering topics
to stories, we show the top 20 stories in Table 5.3. As we can see, the
topic cohesion of LDA-detected stories is not very high: posts sharing some
common words are very easily classified into the same topic, even though they
are not exactly talking about the same story. Besides, LDA model cannot
deal with noisy posts, so the quality is compromised in social streams.

CAST on Tech-Lite. Recall that our proposed story-teller CAST uses
a (k, d)-Core to represent a story, which is a cohesive subgraph in the post
network. Figure 5.4 shows top 10 transient stories generated byCAST. Each
story is represented as a (5,3)-Core. It is worth noting that there are various
ways to present stories on the user interface. In this experiment, we render
a story into an entity cloud. Each cloud is annotated by a short description
beside. Interestingly, we observe the curve of tweet frequency goes down on
every weekend, which reflects the living habit in reality. Compared with the
ground truth, our story-teller achieves a precision of 0.9 and a recall of 0.8.
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z
z

Figure 5.4: Top 10 transient stories generated by our proposed story-teller
on Tech-Lite. Each story is represented as a (5,3)-Core, and we render a
story into an entity cloud for human reading. Some transient stories may
be related, as linked by lines. The curve on the bottom is the breakdown of
tweet frequency on each day in Jan 2012.

For precision, the only case we fail is that “hug/hope new year” is not a story
in ground truth. The reason may be lots of people tweeting about “happy
new year” but this is not formally reported in technology news websites, since
it is a well-known fact. For recall, the ground truth story not appearing in
our top 10 is “Apple iBooks 2 Release” on Jan 19. This story is ranked on
the 13th position in our story-teller.

We can see that stories may be related with each other. In Figure 5.4,
there are multiple stories about CES (Consumer Electronic Show) 2012, held
from Jan 8 to Jan 13. Meanwhile, stories related to SOPA & PIPA are highly
related, even though each of them tells a relatively different story.

When inspecting the top 50 transient stories returned by CAST, we ob-
serve two major advantages compared with news reports. First, our story-
teller can identify stories that are hardly noticeable in news websites. For
exmple, “Rupert Murdoch joins Twitter” is a story widely spread in social
streams, but not commonly reported by news articles. Second, the forma-
tion of a transient story in social streams generally occurs earlier than the
first publishing of the corresponding news articles. [48] also observed this
phenomenon, and the typical time lag is around 2.5 hours.

CAST on Tech-Full. Figure 6.1 shows an example to illustrate the story
vein on Tech-Full. To help understand, we group stories densely connected
by vein links in rectangles, where each rectangle can be viewed as a story
series. As we can see, “CES” and “SOPA & PIPA” are two very different
story series, but they can be connected by indirect links via posts such as
“CES 2012: Microsoft Keynote With Steve Ballmer” and “Microsoft opposes
SOPA”. CAST will track the relatedness between stories and build a highly
informative story vein for story-teller.
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Figure 5.5: A fragment of story vein tracked from CNN-News, which has a
time span from January 1 to June 1, 2014.

CAST on CNN-News. CNN-News simulates the daily social stream re-
ceived by a Twitter user and has a time span of six months. We show a
fragment of the story vein tracked from CNN-News in Figure 5.5. In this
example, “MH370 lost and search” is a story series with an internal structure,
by organizing individual stories together. Users can click on each story to
see the details, or traverse along story veins to read highly related stories
happening earlier or later. Compared with Twitter Trends Search10 which
shows trending topics, CAST has distinct advantages on providing both the
internal structure and the external context of a specific story.

5.5.3 Performance Testing

In this section, we test the performance of proposed algorithms. All tests are
performed on Tech-Full dataset with the time window set to one week. On
average, the post network has a node size 710,000 and edge size 4,020,000.

Story Identification. Recall that both k-Core and (k, d)-Core generations
have polynomial time complexity. We test the running time of generating
all maximal k-Cores and (k, d)-Cores from the post network and show the
result in Figure 5.7(a). Let k = d + 1. As d increases, the running time of
k-Core generation drops. The reason is, although a bigger k means more
nodes need to be removed at each iteration, the total number of iterations
drops even more quickly. The running time for (k, d)-Cores is nearly sta-
ble, but much higher than k-Core generation. This observation implies that

10https://twitter.com/search-home
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Figure 5.6: An example to illustrate our context-aware story-teller. Each tag
cloud here is a single story identified from the post network. Sets of stories
with higher relatedness are grouped together in rectangles to aid readability.

NodeFirst should be much faster than Zigzag, since NodeFirst performs
k-Core generation whenever possible. This conclusion is supported by the
experimental results in Figure 5.7(a). The relationship between d and the
number of connected components we can find from the post network is dis-
covered in Figure 5.7(b). We see that with increasing d, both the numbers of
(d+ 1)-Cores and (d+ 1, d)-Cores drop. Since a (d+ 1, d)-Core is at least a
(d+ 1)-Core but more cohesive, we may find multiple (d+ 1, d)-Cores from a
(d+1)-Core by removing edges that do not satisfy the (k, d)-Core definition.
Thus, given the same post network, the number of (d+ 1, d)-Cores is usually
higher than the number of (d+ 1)-Cores.

Iceberg Queries. In CAST, we use iceberg query to construct possible
vein links between a given story and all other stories in the post network.
As discussed in Section 5.4, we treat the given story as source and all other
stories as targets, and the story relatedness threshold γ will govern the con-
struction of story vein links.

In Figure 5.7(c), we treat each story in the post network as the query and
show the total running time of iceberg queries for all stories. As d increases,
we observe that the number of (d+1, d)-Cores decrease gradually from Figure
5.7(b). This will make the total size of transient stories smaller and naturally
the total running time of iceberg queries decrease. In experiments, we can

86



5.6. Discussion and Conclusion

0.1

1

10

100

1000

1 2 3 4 5Ti
m

e 
(s

ec
on

ds
 in

 lo
g 

sc
al

e)
 

d 

(d+1)-Core
(d+1,d)-Core: NodeFirst
(d+1,d)-Core: Zigzag

(a)

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5

# 
Co

nn
ec

te
d 

Co
m

po
ne

nt
s 

d 

(d+1)-Core
(d+1,d)-Core

(b)

0

1

2

3

4

5

6

1 2 3 4 5

Ti
m

e 
(s

ec
on

ds
)

d

DCS
RCS
Hybrid Correlation Model

(c)

Figure 5.7: (a) Running time of (d+ 1)-Core generation and (d+ 1, d)-Core
generation (Zigzag,NodeFirst). (b) The number of connected components
generated by (d+1)-Cores and (d+1, d)-Cores. (c) Running time of different
context search approaches. All experiments are running on Tech-Full dataset
with the time window set to one week.

see that the performance of RCS is remarkably better than the performance
of DCS. For the quality, we show the accuracy of RCS in Table 5.4, as the
number of simulations n grow. We define n as a number proportional to the
neighboring post size of story S and as we can see, 20% simulations alrady
produce an accuracy higher than 95%.

5.6 Discussion and Conclusion

In this chapter, we focus on two problems: (1) Efficiently identify tran-
sient stories from fast streaming social content; (2) Perform Iceberg query
to build the structural context between stories. To solve the first problem,
we transform social stream in a time window to a post network, and model
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n
|neighboring posts of S| 10% 20% 30% 40%

Avg(1− |CorD(S,S′)−CorR(S,S′)|
CorD(S,S′) ) 0.91 0.95 0.98 0.99

Table 5.4: The accuracy of RCS, as the number of simulations n grow. We
define n as a number proportional to the neighboring post size of story S
and measure the accuracy based on DCS.

transient stories as (k, d)-Cores in the post network. Two polynomial time
algorithms are proposed to extract maximal (k, d)-Cores. For the second
problem, we propose deterministic context search and randomized context
search to support the iceberg query, which allows to perform context search
without pairwise comparison. We perform detailed experimental study on
real Twitter streams and the results demonstrate the effectiveness and value
of our proposed context-aware story-teller CAST. In future work, we are
interested in mining opinions from transient stories, e.g., the sentiment on a
political event. Besides, we are interested in various visualization techniques
to present transient stories to end users in a friendly way.

88



Chapter 6

Incremental Event Evolution
Tracking

In Chapter 3, we discussed the modeling of an event as a density cluster.
Density-based clustering is superior to other clustering methods such as K-
Means or hierarchical clustering for event identification, since it is robust
to noisy posts and can quickly find core posts in social streams. As the
post network changes over time, the maintenance of density clusters without
computation from scratch is very important and this is a highly challenging
task. In this chapter, we focus on the tracking of event evolution patterns,
which corresponds to the incremental density-based cluster maintenance on
the post network level.

6.1 Introduction

People easily feel overwhelmed by the information deluge coming from social
websites. There is an urgent need to provide users with tools which can
automatically extract and summarize significant information from highly
dynamic social streams, e.g., report emerging bursty events, or track the
evolution of one or more specific events in a given time span. There are many
previous studies [10, 26, 48, 55, 66, 67] on detecting new emerging events from
text streams; they serve the need for answering the query “what’s trending
now? ” over social streams. However, in many scenarios, users may want to
know more details about an event and may like to issue advanced queries
like “how’re things going? ”. For example, for the event “SOPA (Stop Online
Piracy Act) protest” happening in January 2012, existing event detection
approaches can discover bursty activities at each moment, but cannot answer
queries like “how SOPA protest has evolved in the past few days?”. An ideal
output to such an evolution query would be a “panoramic view” of the event
history, which improves user experience. In grpah perspective, we can model
social streams as dynamically evolving post networks and model events as
clusters over these networks, obtained by means of a clustering approach that
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Figure 6.1: Post network captures the correlation between posts in the time
window at each moment, and evolves as time rolls on. The skeletal graph is
shown in bold. From moment t to t+ 1, the incremental tracking framework
will maintain clusters and monitor the evolution patterns on the fly.

is robust to the large amount of noise present in social streams. Accordingly,
we consider the above kind of queries as an instance of the cluster evolution
tracking problem, which aims to track the cluster evolution patterns at each
moment from such dynamic networks. Typical cluster evolution patterns
include birth, death, growth, decay, merge and split. Event detection can be
viewed as a subproblem of cluster evolution tracking in social streams.

In this chapter, we propose an incremental tracking framework for clus-
ter evolution over highly dynamic networks. To illustrate the techniques
in this framework, we consider the event evolution tracking task in social
streams as an application, where a social stream and an event are modeled
as a dynamic post network and a post cluster respectively. The reasons we
deploy our framework on this application are: social streams usually surge
very quickly, making it ideal for the performance evaluation, and events are
human-readable, making it convenient to assess the quality. In detail, since
a significant portion of social posts like tweets are just noise, we first define
a Skeletal Graph as a compact summary of the original post network, from
which post clusters can be generated. Then, as we will discuss later, we
monitor the network updates with a fading time window, and capture the
evolution patterns of networks and clusters by a group of primitive evolution
operations and their algebra. Moreover, we extend node-by-node evolution
to subgraph-by-subgraph evolution to boost the performance of evolution
tracking of clusters. Figure 6.1 shows an overview of major modules we use
for cluster evolution tracking in social streams.

We notice that at a high level, our method resembles previous work on
density-based clustering over streaming data, e.g., DenStream [17], DStream
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SF (p1, p2) the fading similarity between posts p1 and p2
(ε, δ) similarity threshold, priority threshold
wt(p) the priority of post p at moment t

Gt(Vt, Et) the post network at moment t
Gold the old subgraph that lapses at moment t+ 1

Gnew the new subgraph that appears at moment t+ 1

Gt(V t, Et) the skeletal graph at moment t
C, St a component, a component set in Gt
C, St a cluster, a cluster set in Gt
N (p) post p’s neighbor set with similarity larger than ε
Nc(p) the cluster set of post p’s neighboring core posts

Table 6.1: Notation.

[18] and cluster maintenance in [2] and [5]. However, there are several major
differences with this body of work. First, our approach works on highly
dynamic networks and provides users the flexibility in choosing the scope
for tracking by means of a fading time window. Second, the existing work
can only process the adding of nodes/edges one by one, while our approach
can handle adding, deleting and fading of nodes, in bulk mode, i.e., subgraph
by subgraph. This is an important requirement for dealing with the high
throughput rate of dynamic networks. Third, the focus of our approach is
tracking and analyzing the cluster evolution dynamics in the whole life cycle.
By contrast, the previous works focus on clustering streaming data, which is
a sub-task in our problem.

On the application side, comparing with topic tracking approaches, we
note that they are usually formulated as a classification problem [4]: when
a new story arrives, compare it with topic features in the training set by
decision trees or k-NN [78], and if it matches sufficiently, declare it to be
on a topic. Since these approaches assume that topics are predefined before
tracking, we cannot simply apply them to event evolution tracking in social
streams. Comparing with existing event detection and tracking approaches
[48, 55, 66, 67], our framework has advantages in tracking the whole life cycle
and capturing composite evolution behaviors such as merging and splitting.

The problem is formalized in Sec. 6.2. For convenience, we summarize
the major notations used in this chapter in Table 6.1.
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6.2. Problem Formalization

6.2 Problem Formalization

We formally define dynamic network and dynamic clusters here, and then
introduce the problem this paper seeks to solve.

Dynamic Network. A dynamic network is a network with node and edge
updates over time. We define a snapshot of an dynamic network at moment
t as a weighted graph Gt(Vt, Et), where an edge e(u, v) ∈ Et connects nodes
u, v in Vt and s(u, v) is the similarity between them. For the problem studied
in this paper, we assume a dynamic network is the input and s(u, v) ∈
(0, 1] is a value usually set by a specific similarity function. From time t
to t + 1, we use ∆Gt+1 to describe the updating subgraph applied to Gt,
i.e., Gt + ∆Gt+1 = Gt+1. In real applications, the size of ∆Gt+1 is typically
much smaller than the size of Gt or Gt+1, and we make this as an assumption
throughout this Chapter. Naturally, a dynamic network G1:i from moment
1 to i can be described as a continuous updating subgraph sequence applied
at each moment. The formal definition is given below.

Definition 19 A dynamic network Gi:j from moment i to j is denoted as
(Gi; ∆Gi+1, · · · ,∆Gj), where Gi(Vi, Ei) is a weighted graph with node set Vi
and edge set Ei, and ∆Gt+1 (i ≤ t < j) is an updating subgraph at moment
t+ 1 such that Gt + ∆Gt+1 = Gt+1.

When the network evolves from Gt to Gt+1, we reasonably assume that
at moment t + 1, only a small portion of Gt is incrementally updated, i.e.,
|Vt+1 − Vt| + |Vt − Vt+1| � |Vt| and |Et+1 − Et| + |Et − Et+1| � |Et|. This
assumption generally holds in practice, and when it doesn’t, we can shorten
moment interval sufficiently to make the assumption hold. For simplicity, we
express ∆Gt+1 as a sequence of node additions and deletions, e.g., ∆Gt+1 :=
+v1− v2 means adding node v1 and all the edges incident with v1 in a single
operation, and analogously, deleting node v2 and its incident edges in a
subsequent operation.

Dynamic Clusters. Let’s suppose Ct is a subgraph inGt, and isCluster(Ct)
is a boolean function to validate whether Ct is a cluster or not, with the exact
definition given in Sec. 6.4.2. In the following, we define a dynamic density
cluster.

Definition 20 A dynamic cluster Ci:j from moment i to j is denoted as
(Ci; ∆Ci+1, · · · ,∆Cj) where isCluster(Ci) = True, and ∆Ct+1 (i ≤ t < j)
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Figure 6.2: (a) The commutative diagram between dynamic networks
Gt, Gt+1 and cluster sets St, St+1. The “divide-and-conquer” baseline and
our Incremental Tracking are annotated by dotted and solid lines respec-
tively. (b) The workflow of incremental tracking module, which shows our
framework tracks cluster evolution dynamics by only consuming the updat-
ing subgraph ∆Gt+1.

is an updating subgraph at moment t+ 1 that makes Ct + ∆Ct+1 = Ct+1 and
isCluster(Ct+1) = True.

The Problem. We focus on addressing the following problem:

Problem 2 Supposing Gi:j = (Gi; ∆Gi+1, · · · ,∆Gj) is a large dynamic net-
work and isCluster(Ct) is a binary validation function for cluster candi-
date Ct, the problem of incremental cluster evolution is to generate an up-
dating subgraph sequence (∆Ci+1, · · · ,∆Cj) with Ct + ∆Ct+1 = Ct+1 and
isCluster(Ct+1) = True, where i ≤ t < j.

The cluster evolution patterns can be observed from the updating se-
quence. For example, if Ct 6= ∅ but Ct+1 = ∅, it means Ct dies at moment
t + 1. Ct = ∅ but Ct+1 6= ∅, a new cluster Ct+1 is born at moment t + 1.
Typical cluster evolution patterns include birth, death, growth, decay, merge
and split. In this paper, we aim to track the complete set of cluster evolution
patterns in real time.

6.3 Incremental Tracking Framework

We illustrate the relationship between dynamic networks Gt, Gt+1 and clus-
ter sets St, St+1 at consecutive moments as a commutative diagram in Fig-
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ure 6.2(a). The traditional approaches for tracking dynamic network related
problems usually follow a “divide-and-conquer” spirit [38], which consists of
three components: (1) decompose a dynamic network into a series of snap-
shots for each moment, (2) apply graph mining algorithms on each snapshot
to find useful patterns, (3) match patterns between different moments to gen-
erate a dynamic pattern sequence. Applied to our problem, to track cluster
evolution patterns, these steps are:

Step 1©: At moment t, identify the cluster set St from Gt;
Step 2©: At moment t + 1, as the network evolves, generate Gt+1 from

Gt using ∆Gt+1;
Step 3©: Again, identify the cluster set St+1 from Gt+1;
Step 4©: Generate cluster evolution patterns from time t to t + 1 by

tracing the correspondence between St and St+1.
However, this approach suffers from both performance and quality. Firstly,

repeated extraction of clusters from large networks from scratch is a very ex-
pensive operation (steps 1© and 3©), and tracing the correspondence between
cluster sets at successive moments is also expensive (step 4©). Secondly, the
step of tracing correspondence, since it is done after two cluster sets are
generated, may lead to loss of accuracy. In contrast, the method we propose
is incremental tracking of cluster evolution, which corresponds to step 5© in
Figure 6.2(a). The workflow of this incremental tracking from time t to t+1
is illustrated in Figure 6.2(b). More precisely, for the very first snapshot of
the dynamic network, say G0, our approach will generate the corresponding
event set S0 from scratch. After this, we update the existing cluster set
by the changed parts and move to the next moment recursively, by only ap-
plying step 5©, i.e., we incrementally derive St+1 from St and ∆Gt+1. The
experiments on real data set show that our incremental tracking approach
outperforms the traditional baselines in both performance and quality.

6.4 Skeletal Graph Clustering

The functional relationships between different types of objects defined in
this paper are illustrated in Figure 6.3. As an example, the arrow from Gt
to Gt with label Ske means Gt is derived from Gt by function Ske, i.e.,
Gt = Ske(Gt). See Table 6.1 for notations used. The various objects and
their relationships will be explained in the rest of the paper.
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Figure 6.3: The functional relationships between different types of objects
defined in this paper, e.g., the arrow from Gt to Gt with label Ske means
Gt = Ske(Gt). Refer to Table 6.1 for notations.

6.4.1 Node Prioritization

In reality, many posts tend to be just noise, so it is essential to identify those
nodes that play a central role in clusters. On web link graph analysis, there
is a lot of research on node authority ranking, e.g., HITS and PageRank
[53]. However, most of these methods are iterative and not applicable to
the single-pass computation on streaming data. Node prioritization is a
technique to quickly differentiate and rank the processing order of nodes by
their roles in a single pass. It is extremely useful in big graph mining, where
there are too many nodes to be processed and many of them are of little
significance. However, to the best of our knowledge, there is insufficient
study on single-pass node prioritization in a streaming environment.

In this paper, we perform node prioritization based on density parameters
(ε, δ), where 0 < ε < 1, and ε ≤ δ. In density-based clustering (e.g.,
DBSCAN [20]), the threshold MinPts is used as the minimum number of
nodes in an ε-neighborhood, required to form a cluster. We adapt this and
use a weight threshold δ as the minimum total weight of neighboring nodes,
required to form a cluster. The reason we choose density-based approaches
is that, compared with partitioning-based approaches (e.g., K-Means [30])
and hierarchical approaches (e.g., BIRCH [30]), density-based methods such
as DBSCAN define clusters as areas of higher density than the remainder
of the data set, which is effective in finding arbitrarily-shaped clusters and
is robust to noise. Moreover, density-based approaches are easy to adapt
to support single-pass clustering. In the post network, we consider ε to be
a similarity threshold to decide connectivity, and can be used to define the
post priority.
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Definition 21 Given a post p = (L, τ, a) in post network Gt(Vt, Et) and
similarity threshold ε, the priority of p at time t (t ≥ pτ ), is defined as

wt(p) =
1

e|t−pτ |

∑
q∈N (p)

SF (p, q) (6.1)

where N (p) is the subset of p’s neighbors with SF (p, q) > ε.

Notice that post priority decays as time moves forward. Thus, post
priority needs to be continuously updated. In practice, we only store the
sum

∑
q∈N (p) SF (p, q) with p to avoid frequent updates and compute wt(p)

on demand.

Skeletal Graph. With post priority computed, we use δ as a priority
threshold to differentiate nodes in Gt(Vt, Et):
• A post p is a core post if wt(p) ≥ δ;
• It is a border post if wt(p) < δ but there exists at least one core post
q ∈ N (p);
• It is a noise post if it is neither core nor border, i.e., wt(p) < δ and there

is no core post in N (p).
Intuitively, a post is a core post if it shares enough common entities with

many other posts. Neighbors of a core post are at least border posts, if not
core posts themselves. Core posts play a central role: if a core post p is found
to be a part of a cluster C, its neighboring (border or core) posts will also
be a part of C. This property can be used in the single-pass clustering: if an
incoming post p is “reachable” from an existing core post q, post p will be
assigned to the cluster with q. Core posts connected by edges with similarity
higher than ε will form a summary of Gt(Vt, Et), that we call the skeletal
graph.

Definition 22 Given post network Gt(Vt, Et) and density parameters (ε, δ),
we define the skeletal graph as the subgraph of Gt(Vt, Et) induced by posts
with wt(p) ≥ δ and edges with similarity higher than ε. We write Gt =
Ske(Gt).

Ideally, Gt(V t, Et) will retain important information in Gt. Empirically,
we found that adjusting the granularity of (ε, δ) to make the size |V t| roughly
equal to 20% of |Vt| leads to a good balance between the quality of the skeletal
graph in terms of the information retained and its space complexity. More
tuning details can be found in Section 6.7.1.
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6.4.2 Skeletal Cluster Identification

One of the key ideas in our incremental cluster evolution tracking approach is
to use the updating subgraph ∆Gt+1 between successive moments to main-
tain the skeletal clusters. Post clusters are constructed from these skeletal
clusers. Maintaining skeletal clusters can be done efficiently since the skele-
tal graph is much smaller in size than the post graph it’s obtained from.
Besides efficiency, skeletal cluster has the advantage of giving the correspon-
dence between successive post clusters in a very small cost.

Definition 23 Given Gt(Vt, Et) and the corresponding skeletal graph Gt(V t, Et),
a skeletal cluster C is a connected component of Gt. A post cluster is a set
of core posts and border posts generated from a skeletal cluster C, written as
C = Gen(C), using the following expansion rules:
• All posts in C form the core posts of C.
• For every core post in C, all its neighboring border posts in Gt form the
border posts in C.

In what follows, by cluster, we mean a post cluster, distinguished from
the explicit term skeletal cluster. By definition, a core post only appears in
one (post) cluster. If a border post is associated with multiple core posts in
different clusters, this border post will appear in multiple (post) clusters.

6.5 Incremental Cluster Evolution

In this section, we discuss the incremental evolution of skeletal graph and
post clusters under the fading time window.

6.5.1 Fading Time Window

Fading (or decay) function and sliding time window are two common aggre-
gation schemes used in time-evolving graphs (e.g., see [17]). Fading scheme
puts a higher emphasis on newer posts, as captured by fading similarity in
Eq. (3.1). Sliding time window scheme (posts are first-in, first-out) is essen-
tial because it provides a scope within which a user can monitor and track
the evolution.

Since clusters evolve quickly from moment to moment, even within a
given time window, it is important to highlight new posts and degrade old
posts using the fading scheme. Thus, we combine these two schemes and in-
troduce a fading time window, as illustrated in Figure 6.4. In practice, users
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Figure 6.4: An illustration of the fading time window from time t to t + 1,
where post priority may fade w.r.t. the end of time window. Gt will be
updated by deleting subgraph Gold and adding subgraph Gnew.

can specify the length of the time window to adjust the scope of monitoring.
Users can also choose different fading functions to penalize old posts and
highlight new posts in different ways. Let ∆t denote the interval between
moments. For simplicity, we abbreviate the moment (t + i · ∆t) as (t + i).
When the time window slides from moment t to t + 1, the post network
Gt(Vt, Et) will be updated to be Gt+1(Vt+1, Et+1). Suppose Gold(Vold, Eold)
is the old subgraph (of Gt) that lapses at moment t+1 and Gnew(Vnew, Enew)
is the new subgraph (of Gt+1) that appears (see Figure 6.4). Clearly,

Gt+1 = Gt −Gold +Gnew (6.2)

Let Len be the time window length. We assume Len > 2∆t, which makes
Vold ∩ Vnew = ∅. This assumption is reasonable in applications, e.g., we set
Len to 1 week and ∆t to 1 day.

6.5.2 Network Evolution Operations

We analyze the evolution process of networks and clusters at each moment
and abstract them into five primitive operators: +, −, �, ↑, ↓. We classify
the operators based on the objects they manipulate: nodes or clusters, and
define them below.

Definition 24 Primitive node operations:
• Gt+p: add a new post p into Gt(Vt, Et) where p 6∈ Vt. All the new edges
associated with p will be constructed automatically by linkage search (ex-
plained in Sec. 3.3);

• Gt − p: delete a post p from Gt(Vt, Et) where p ∈ Vt. All the existing
edges associated with p will be automatically removed from Et.
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• �Gt: update the post priority scores in Gt.
Composite node operations:
• Gt ⊕ p = �(Gt + p): add a post p into Gt(Vt, Et) where p 6∈ Vt and
update the priority of related posts;

• Gt 	 p = �(Gt − p): delete a post p from Gt(Vt, Et) where p ∈ Vt and
update the priority of related posts.

Definition 25 Primitive cluster evolution operations:
• +C: generate a new cluster C;
• −C: remove an old cluster C;
• ↑ (C, p): increase the size of C by adding post p;
• ↓ (C, p): decrease the size of C by removing post p.
Composite cluster evolution operations:
• Merge(S) = +C−S: merge a set of clusters S into a new single cluster
C and remove S;

• Split(C) = −C + S: split a single cluster C into a set of new clusters
S and remove C.

In particular, composite node operations are designed to conveniently
describe the adding/deleting of posts with priority scores updated in the
same time, and composite cluster operations are designed to capture the
advanced evolution patterns of clusters. Each operator defined above on a
single object can be extended to a set of objects, i.e., for a node set X =
{p1, p2, · · · , p}, Gt +X = Gt + p1 + p2 + · · ·+ p. This is well defined since +
is associative and commutative. We use the left-associative convention for
‘−’: that is, we write A−B−C to mean (A−B)−C. These operators will
be used later in the formal description of the evolution procedures. Figure
6.5(a) depicts the role played by the primitive operators in the tracking of
cluster evolutions from dynamic networks.

6.5.3 Skeletal Graph Evolution Algebra

The updating of skeletal graphs from Gt to Gt+1 is the core task in cluster
evolution tracking. If we ignore the node priorities for a moment, the follow-
ing formula shows different ways to compute the overlapping part in Gt+1

and Gt, as illustrated in Figure 6.4:
Gt+1 −Gnew = Gt −Gold = Gt+1 	Gnew = Gt 	Gold (6.3)
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However, at the skeletal graph level, Ske(Gt+1−Gnew) 6= Ske(Gt−Gold):
some core posts in Gt−Gold may no longer be core posts due to the removal
of edges incident with nodes in Gold or simply due to the passing of time;
some non-core posts may become core posts because of the adding of edges
with nodes in Gnew. To measure the changes in the overlapping part, we
define the following three components.

Definition 26 Updated components in overlap:
• S+ = Ske(Gt+1 −Gnew)− Ske(Gt+1 	Gnew): components of non-core
posts in Gt − Gold that become core posts in Gt+1 − Gnew due to the
adding of Gnew;

• S− = Ske(Gt − Gold) − Ske(Gt 	 Gold): components of core posts in
Gt−Gold that become non-core posts in Gt+1−Gnew due to the removing
of Gold;

• S� = Ske(Gt	Gold)−Ske(Gt+1	Gnew): components of core posts in
Gt−Gold that become non-core posts in Gt+1−Gnew due to the passing
of time.

Based on Definition 26, from moment t to t + 1, the changes of core
posts in the overlapping part, i.e., Gt+1−Gnew (equivalently, Gt−Gold – see
Figure 6.4), can be updated using the components S+, S− and S�. That is,

Ske(Gt+1 −Gnew)− Ske(Gt −Gold)
= (Ske(Gt+1 −Gnew)− Ske(Gt+1 	Gnew))

−(Ske(Gt −Gold)− Ske(Gt 	Gold))
−(Ske(Gt 	Gold)− Ske(Gt+1 	Gnew))

= S+ − S− − S� (6.4)

Let Sold and Snew denote the sets of skeletal clusters in Gold and Gnew
respectively. The following theorem characterizes the iterative and incre-
mental updating of skeletal graphs from moment t to t + 1, and it plays a
central role in the cluster evolution.

Theorem 1 From moment t to t+ 1, the skeletal graph evolves by removing
core posts in Gold, adding core posts in Gnew and updating core posts in the
overlapping part. That is

St+1 = St − Sold − S− − S� + Snew + S+ (6.5)

Proof: Since operator ‘−’ does not update post priority, we have Ske(Gt+1−
Gnew) = Ske(Gt+1)−Ske(Gnew) = St+1−Sn, Ske(Gt−Gold) = Ske(Gt)−
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Post Network Clu Skeletal Clusters

Skeletal GraphSke Gen

(a)

|Nc(p)| 0 1 ≥ 2
Add a core post p + ↑ Merge
Delete a core post p − ↓ Split

(b)

Figure 6.5: (a) The relationships between primitives and evolutions. Each
box represents an evolution object and the arrows between them describe in-
puts/outputs. (b) The evolutionary behavior table for clusters when adding
or deleting a core post p.

Ske(Gold) = St− Sold. Then, St+1− Snew − St + Sold = S+− S−− S� and
we get the conclusion. 2

Theorem 1 indicates that we can incrementally maintain skeletal clusters
St+1 from St. Since we define (post) clusters based on skeletal clusters, this
incremental updating of skeletal clusters benefits incremental updating of
cluster evolution essentially.

6.5.4 Incremental Cluster Evolution

Let St = Clu(Gt) denote the set of clusters obtained from the post network
Gt. Notice that noise posts in Gt do not appear in any clusters, so the
number of posts in St is typically smaller than |Vt|. Next, we explore the
incremental cluster evolution problem from two levels: the node-by-node
updating level and subgraph-by-subgraph updating level.

Node-by-Node Evolution. The basic operations underlying cluster evo-
lution are the cases when St is modified by the addition or deletion of a
cluster that includes only one post. In the following, we analyze and show
the evolution of clusters by adding or deleting a post p. When adding p, we
let Nc(p) denote the set of clusters that p’s neighboring core posts belong
to before p is added. When deleting p, let Nc(p) denote the set of clusters
that p’s neighboring core posts belong to after p is removed. |Nc(p)| = 0
means p has no neighboring core posts. Notice that Merge and Split are
composite operations and can be decomposed into a series of cluster primi-
tive operations. We show the evolution behaviors of clusters in Figure 6.5(b)
and explain the detail below.

(a) Addition: St + {p}
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If p is a noise post after being added into Gt, ignore p. If p is a border
post, add p to each cluster in Nc(p). Else, p is a core post and we do the
following:
• If |Nc(p)| = 0: apply +C, where C = {p} ∪ N (p);
• If |Nc(p)| = 1: apply ↑ (C, {p} ∪ N (p)), where C is the lone cluster in
Nc(p);
• If |Nc(p)| ≥ 2: apply Merge = +C −

∑
C′∈Nc(p)C

′ and C = Nc(p) ∪
{p} ∪ N (p).
(b) Deletion: St − {p}
If p is a noise post before being deleted from Gt, ignore p. If p is a border

post, delete p from each cluster in Nc(p). Else, p is a core post and we do
the following:
• If |Nc(p)| = 0: apply −C where p ∈ C;
• If |Nc(p)| = 1: apply ↓ (C, {p} ∪ N (p));
• If |Nc(p)| ≥ 2: apply Split = −C +

∑
C′∈Nc(p)C

′, where p ∈ C before
the deletion.

Subgraph-by-Subgraph Evolution. When dynamic networks such as
post networks in social streams surge quickly, the node-by-node processing
for cluster evolution will lead to a poor performance. To accelerate the
performance, we consider the subgraph-by-subgraph updating approach. Let
Clu(Gnew) = Snew and Clu(Gold) = Sold be the cluster sets of the graphs
Gnew and Gold, and St be the set of all clusters at moment t. As the time
window moves forward to moment t+ 1, if we add Gnew to the network Gt,
clusters will evolve as follows:

Clu(Gt +Gnew) = Gen(Ske(Gt +Gnew))

= Gen(Ske(Gt) + Ske(Gnew) + S+ − S�) (Definition 26)
= St + Snew + S+ − S� (6.6)

where S+ = Gen(S+) and S� = Gen(S�). Similarly, if we remove Gold
from the network Gt, clusters evolve as follows:

Clu(Gt −Gold) = Gen(Ske(Gt −Gold))
= Gen(Ske(Gt)− Ske(Gold)− S−) (Definition 26)
= St − Sold − S− (6.7)

where S− = Gen(S−). Based on Equation (6.6) and (6.7), from moment
t to t + 1, the set of clusters can be incrementally updated by the iterative
computation
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St+1 = Clu(Gt+1) = Clu(Gt −Gold +Gnew)

= St − Sold − S− + Snew + S+ − S� (6.8)

Equation (6.8) can be also verified by applying Gen function on both
sides of Equation (6.5). Naturally, Equation (6.8) provides a theoretical basis
for the incremental computation of cluster evolution: as the post network
evolves from Gt to Gt+1, we do not compute St+1 from Gt+1. Instead,
we incrementally update St by means of the five cluster sets appearing in
Equation (6.8), using simple set operations. Since the sizes of Gold and Gnew
are usually very small compared with Gt, these five cluster sets are also of
small size and so we can generate St+1 quickly from them. The details of
incremental computation are discussed in Section 6.6.

6.6 Incremental Algorithms

The traditional approach of decomposing an evolving graph into a series of
snapshots suffers from both quality and performance, since clusters are gen-
erated from scratch and matched heuristically at each moment. To overcome
this limitation, we propose an incremental tracking framework, as introduced
in Section 6.5 and illustrated in Figure 6.2(b). In this section, we leverage
our incremental computation by proposing Algorithm 8 for the incremental
cluster maintenance (ICM) and Algorithm 9 for the cluster evolution track-
ing (eTrack) respectively. Since at each moment |Vold| + |Vnew| � |Vt|, our
algorithms can save a lot computation by adjusting clusters incrementally,
rather than generating them from scratch.

Bulk Updating. Traditional incremental computation on dynamic graphs
usually treats the addition/deletion of nodes or edges one by one [18, 22].
However, in a real scenario, since social posts arrive at a high speed, the
post-by-post incremental updating will lead to very poor performance. In
this paper, we speed up the incremental computation of St by bulk updating.
Clearly, updating St with a single node {p} is a special case of bulk updating.
Here, a bulk corresponds to a cluster of posts and we “lift” the post-by-
post updating of St to the bulk updating level. Recall that Nc(p) is the
neighboring cluster set of p where p is a core post. To understand the bulk
updating in Algorithm 8, for a cluster C, we define Nc(C) as the neighboring
cluster set of posts in C, i.e., Nc(C) = ∪p∈CNc(p) where C = Ske(C). When
C is added into or deleted from St as a bulk, the size of Nc(C) will decide
the evolution patterns of clusters from moment t to t+ 1 after C is added or
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deleted, as shown in Figure 6.5(b). Since C is usually a small subgraph, we
consider a bulk operation can be done in constant time. Since internal edges
of a subgraph C can be ignored when determining Nc(C), bulk updating is
more efficient than node-by-node updating.

Incremental Cluster Maintenance (ICM). The steps for incremental
cluster maintenance (ICM) from any moment t to t + 1 are summarized in
Algorithm 8. The ICM algorithm follows the iterative computation shown
in Equation (6.8), that is St+1 = St − Sold − S− − S� + Snew + S+. As
analyzed in Section 6.5.4, each bulk addition and bulk deletion has three
possible evolution behaviors, decided by the size of Nc(C). Lines 3-13 deal
with deleting a bulk C, where three patterns {−, ↓, Split} are handled. Lines
15-26 deal with adding a bulk C and handle another three patterns {+, ↑,
Merge}. Supposing there are n bulk updates in ICM, the time complexity
of ICM is O(n). Since a bulk operation is generally completed in constant
time, ICM is an efficient single-pass incremental computation algorithm.

Cluster Evolution Tracking (eTrack). Given a dynamic network Gi:j
and the set of clusters Si at the start moment i, the eTrack algorithm will
track the primitive cluster evolution operations at each moment, working
on top of the ICM algorithm (Line 3). We summarize the steps of eTrack
in Alg. 9. Basically, eTrack monitors the changes of clusters effected by
ICM at each moment. If the cluster is not changed, eTrack will take no
action; otherwise, eTrack will determine the corresponding cases and output
the cluster evolution patterns (Lines 4-12). Notice that in Lines 5-8, if a
cluster C in St has ClusterId id, we use the convention that St(id) = C
to access C by id, and St(id) = ∅ means there is no cluster in St with
ClusterId id. Especially, lines 7-8 mean a cluster in St evolves into a cluster
in St+1 by deleting the posts in St(id)− St+1(id) first and adding the posts
in St+1(id)− St(id) later. As an efficient monitoring algorithm, once we get
St+1 incrementally by ICM, the time complexity of eTrack is linear in the
number of clusters in St and St+1 at each moment.

6.7 Experiments

In this section, we first discuss how to tune the construction of post network
and skeletal graph to find the best selection of entity extraction and density
parameters. Then, we test the quality and performance of cluster evolution
tracking algorithms on two social streams: Tech-Lite and Tech-Full that we
crawled from Twitter. Our event detection baseline covers the major tech-
niques reported in [48, 55, 66, 67]. Our evolution tracking baseline captures
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Figure 6.6: The trends of the number of core posts, core edges and events
when increasing δ from 0.3 to 0.8. We set δ = ε = 0.3 as the 100% basis.

the essence of the state of the art algorithms reported in [38]. All algorithms
are implemented in Java. We use the graph database Neo4J11 to store and
manipulate the post network.

Datasets. All datasets are crawled from Twitter via Twitter API. Although
our cluster evolution tracking algorithm works regardless of the domain,
in order to facilitate evaluation, we make the dataset domain specific. The
crawling of datasets is performed as follows. We built a technology domain
dataset called Tech-Lite by aggregating all the timelines of users listed in the
Technology category of “Who to follow”12 and their retweeted users. Tech-
Lite has 352,328 tweets, 1402 users and the streaming rate is about 11700
tweets/day. Based on the intuition that the followees of users in Technology
category are most likely to be in the same domain, we obtained a larger tech-
nology social stream called Tech-Full by collecting all the timelines followed
by users in the Technology category. Tech-Full has 5,196,086 tweets, created
by 224,242 users, whose streaming rate is about 7216 tweets/hour. Both
Tech-Lite and Tech-Full include retweets and have a time span from Jan. 1
to Feb. 1, 2012. Since each tweet corresponds to a node in the post network,
both Tech-Lite and Tech-Full produce highly dynamic networks. Notice that
the performance of our single-pass incremental approach is mainly affected
by the streaming rate, rather than the dataset size.

6.7.1 Tuning Skeletal Graph

Post Preprocessing. As described in Section 6.4, we extract entities from
posts by POS tagger. One alternative approach to entity extraction is
using hashtags. However, only 11% of the tweets in our dataset have hash-
tags, which results in lots of posts in the dataset having no similarity score

11http://neo4j.org/
12http://twitter.com/who_to_follow/interests
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between them. Another approach is simply tokenizing tweets into unigrams
and treating unigrams as entities, and we call it the “Unigrams” approach,
as discussed in [55]. Table 2(a) shows the comparison of the three entity ex-
traction approaches in the first time window of the Tech-Full social stream.
If we use “Unigrams”, obviously the number of entities is larger than other
two approaches, but the number of edges between posts tends to be smaller,
because tweets written by different users usually share very few common
words even when they talk about the same event. The “Hashtags” approach
also produces a smaller number of edges, core posts and events, since it gen-
erates a much sparser post network. Overall, the “POS-Tagger” approach
can discover more similarity relationships between posts and produce more
core posts and events given the same social stream and parameter setting.

Density Parameters. The density parameters (ε, δ) control the construc-
tion of the skeletal graph. Clearly, the higher the density parameters, the
smaller and sparser the skeletal graph. Figure 6.6 shows the number of core
posts, core edges and events as a percentage of the numbers for ε = 0.3, as
δ increases from 0.3 to 0.8. Results are obtained from the first time window
of the Tech-Full social stream. We can see the rate of decrease of #events
is higher than the rates of #core posts and #core edges after δ > 0.4, be-
cause events are less likely to form in sparser skeletal graphs. More small
events can be detected by lower density parameters, but the computational
cost will increase because of larger and denser skeletal graphs. However, for
big events, they are not very sensitive to these density parameters. We set
ε = 0.3, δ = 0.5 as a trade-off between the size and number of events one
hand and processing efficiency on the other.

6.7.2 Cluster Evolution Tracking

Ground truth. To generate the ground truth, we crawl news articles in
January 2012 from famous technology websites such as TechCrunch, Wired,
CNET, etc, without looking at tweets. Then we treat the titles of news
as posts and apply our event tracking algorithm to extract event evolution
patterns. Finally, a total of 20 major events with life cycles are identified as
ground truth. Typical events include “happy new year”, “CES 2012”, “sopa
wikipedia blackout”, etc. To find more small and less noticeable events, we
use Google Trends for Search13, which shows the traffic trends of keywords
that appeared in Google Search along the time dimension. If an event-
indicating phrase has a volume peak in Google Trends at a specific time,

13http://www.google.com/trends/
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Jan 15, 2012 Jan 22, 2012 Jan 29, 2012

SOPA 
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Figure 6.7: Examples of Google Trends peaks in January 2012. We validate
the events generated by cTrack by checking the existence of volume peaks at
a nearby time moment in Google Trends. Although these peaks can detect
bursty events, Google Trends cannot discover the merging/splitting patterns.

HashtagPeaks UnigramPeaks Louvain eTrack
CES google Apple iphone ipad CES conference
SOPA ces CES ultrabook tablet SOPA PIPA
EngadgetCES apple Google search privacy Hug new year
opengov video Week’s Android games RIM new CEO
gov20 sopa Kindle Netflix app Yahoo jerry yang
CES2012 twitter Internet people time Samsung Galaxy Nexus
PIPA year Hope weekend Apple iBooks
opendata facebook SOPA Megaupload Facebook IPO News
StartupAmerica app SOPA PIPA Wikipedia Martin Luther King
win7tech iphone Facebook IPO Tim Cook Apple stock

Figure 6.8: Lists of top 10 events detected from Twitter Technology streams
in January 2012 by baseline HashtagPeaks, UnigramPeaks, Louvain and our
incremental tracking approach eTrack.

we say this event is sufficiently validated by the real world. We validate
the correctness of an event Ci by the following process: we pick the top 3
entities of Ci ranked by frequency and search them in Google Trends, and if
the traffic trend of these top entities has a distinct peak at a nearby time to
Ci, we consider that Ci corresponds to a real world event widely witnessed
by the public. Four examples of Google Trends peaks are shown in Figure
6.7. It is not surprising to find that the birth of events in social streams is
usually earlier than its appearance in Google Trends.

Cluster Annotation. Considering the huge volume of posts in a cluster, it
is important to summarize and present a post cluster as a conceptual event
to aid human perception. In related work, Twitinfo [55] represents an event
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it discovers from Twitter by a timeline of tweets, showing the tweet activity
by volume over time. However, it is tedious for users to read tweets one-by-
one to figure out the event detail. In this paper, we summarize a snapshot of
a cluster by a word cloud [29]. The font size of a word in the cloud indicates
its popularity. Compared with Twitinfo, word cloud provides a summary of
the cluster at a glance and is much easier for human to read.

Comparison with DynDense [5]. DynDense works on entity graphs, with
the majority of tweets ignored since they have less than 2 entities. DynDense
models events as dense subgraphs with size smaller than Nmax, usually set
as 5. We observed that with less than Nmax entities, many DynDense results
are difficult to interpret as specific real events, e.g., a subgraph with 3 nodes
{“HP”, “Microsoft”, “Google”}. Compared with DynDense, models events as
large dense post clusters, which can be validated as real events by checking
highly correlated core posts in the cluster.

Baseline 1: Peak-Detection. In recent works [48, 55, 66, 67], events are
generally detected as volume peaks of phrases over time in social streams.
These approaches share the same spirit that aggregates the frequency of
event-indicating phrases at each moment to build a histogram and generates
events by detecting volume peaks in the histogram. We design two variants
of Peak-Detection to capture the major techniques used by these state-of-
the-art approaches.
• Baseline 1a: HashtagPeaks which aggregates hashtags;
• Baseline 1b: UnigramPeaks which aggregates unigrams.
Notice, both baselines above are for event detection only. Lists of the

top 10 events detected by HashtagPeaks and UnigramPeaks are pre-
sented in Figure 6.8. Some highly frequent hashtags like “#opengov” and
“#opendata” are not designed for event indication, hurting the precision.
UnigramPeaks uses the unigrams extracted from the social stream prepro-
cessing stage, which has a better quality than HashtagPeaks. However,
both of them are limited in their representation of events, because the inter-
nal structure of events is missing. Besides, although these peaks can detect
bursty words, they cannot discover cluster evolution patterns such as the
merging/splitting. For example, in Figure 6.7, there is no way to know
“Apple announced iBooks” is a split from the big event “SOPA” earlier, as
illustrated in detail in Figure 6.9.

Baseline 2: Community Detection. A community in a large network
refers to a subgraph with dense internal connections and sparse connections
with other communities. It is possible to define an event as a community of
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posts. Louvain method [14], based on modularity optimization, is the state-
of-the-art approach community detection method in terms of performance.
We design a baseline called “Louvain” to detect events defined based on post
communities. The top 10 events generated by Louvain are shown in Fig-
ure 6.8. As we can see, not every result detected by the Louvain method is
meaningful. For example, “Apple iphone ipad” and “Internet people time” are
too vague to correspond to any concrete real events. The reason is, although
Louvain method can make sure every community has relatively dense in-
ternal and sparse external connections, it cannot guarantee that every node
in the community is important and has a sufficiently high connectivity with
other nodes in the same community. It is highly possible that a low-degree
node belongs to a community only because it has zero connectivity with
other communities. Furthermore, noise posts are quite prevalent in Twitter
and they negatively impact Louvain method.

Baseline 3: Pattern-Matching. We design a baseline to track the evo-
lution patterns of clusters between snapshots. In graph mining, the “divide-
and-conquer” approach of decomposing the evolving graph into a series of
snapshot graphs at each moment is a traditional way to tackle evolving
graph related problems (e.g., [38]). As an example, Kim et al. [38] first
cluster individual snapshots into quasi-cliques and then map them in adja-
cent snapshots over time. Inspired by this approach, we design a baseline
for cluster evolution tracking, which characterizes the cluster evolution at
consecutive moments, by identifying certain heuristic patterns:
• If |Ct∩Ct+1|

|Ct∪Ct+1| ≥ κ and |Ct| ≤ |Ct+1|, Ct+1 =↑ Ct;
• If |Ct∩Ct+1|

|Ct∪Ct+1| ≥ κ and |Ct| > |Ct+1|, Ct+1 =↓ Ct.
where Ct and Ct+1 are any two clusters detected at moment t and t + 1
respectively, κ% is the minimal commonality to say Ct and Ct+1 are different
snapshots of the same cluster. A higher κ% will result in a higher precision
but a lower recall of the evolution tracking. Empirically we set κ% = 90%
to guarantee the quality. It is worth noting that this baseline generates the
same clusters as the eTrack algorithm, but with a non-incremental evolution
tracking approach.

Precision and Recall. To measure the quality of event detection, we
use HashtagPeaks, UnigramPeaks and Louvain as baselines to compare
with our algorithm eTrack. It is worth noting that Baseline 3 is designed for
the tracking of event evolution patterns between moments, so we omit it here.
We compare the precision and recall of top 20 events generated by baselines
and eTrack and show the results in Table 2(b). Compared with the ground
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truth, HashtagPeaks and UnigramPeaks have rather low precision and
recall scores, because of their poor ability in capturing event bursts. Notice
that multiple extracted events may correspond to the same ground truth
event. eTrack outperforms the baselines in both precision and recall. Since
there are many events discussed in the social media but not very noticeable
in news websites, we also validate the precision of the generated events using
Google Trends. As we can see, HashtagPeaks and UnigramPeaks per-
form poorly under Trends validation, since the words they generate are less
informative and not very event-indicating. eTrack gains a precision of 95%
in Google Trends, where the only failed result is “Samsung galaxy nexus”,
whose volume is steadily high without obvious peaks in Google Trends. The
reason may be that the social stream is very dynamic. Louvain is worse than
eTrack. The results show eTrack is significantly better than the baselines in
quality.

Life Cycle of Cluster Evolution. Our approach is capable of tracking
the whole life cycle of a cluster, from birth to death. We explain this using
the example of “CES 2012”, a major consumer electronics show held in Las
Vegas from January 10 to 13. As early as Jan 6, our approach has already
detected some discussions about CES and generated an event about CES.
On Jan 8, most people talked about “CES prediction”, and on Jan 9, the
highlighted topic was “CES tomorrow” and some hearsays about “ultrabook”
which would be shown in CES. After the actual event happened on Jan 10,
the event grew distinctly bigger, and lots of products, news and messages are
spreading over the social network, and this situation continues until Jan 13,
which is the last day of CES. Afterwards, the discussions become weaker and
continue until Jan 14, when “CES” was not the biggest mention on that day
but still existed in some discussions. Compared with our approach, Baselines
1 and 2 can detect the emerging of “CES” with a frequency count at each
moment, but no trajectory is generated. Baseline 3 can track a very coarse
trajectory of this event, i.e., from Jan 10 to Jan 12. The reason is, if an
event changes rapidly and many posts at consecutive moments cannot be
associated with each other, Baseline 3 will fail to track the evolution. Since
in social streams the posts usually surge quickly, our approach is superior to
the baselines. The illustration of “CES” evolution trajectory and extended
discussions can be found in [46].

Cluster Merging & Splitting. Figure 6.9 illustrates an example of cluster
merging and splitting generated by algorithm eTrack. eTrack detected the
event of SOPA (Stop Online Piracy Act) and Wikipedia on Jan 16, because
on that day Wikipedia announced the blackout on Wednesday (Jan 18) to
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Figure 6.9: The merging and splitting of “SOPA” and “Apple”. At each
moment, an event is annotated by a word cloud. Baselines 1 and 2 only
works for the detection of new emerging events, and is not applicable for the
tracking of merging and splitting dynamics. The evolution trajectories of
and Baseline 3 are depicted by solid and hollow arrows respectively.

protest SOPA. This event grew distinctly on Jan 17 and Jan 18, by inducing
more people in the social network to discuss about this topic. At the same
time, there was another event detected on Jan 18, discussing Apple’s prod-
ucts. On Jan 19, actually the SOPA event and Apple event were merged,
because Apple joined the SOPA protest and lots of Apple products such as
iBooks in education are directly related to SOPA. This event evolved on Jan
20, by adding more discussions about iBooks 2. Apple iBooks 2 was actually
unveiled in Jan 21, while this new product gained lots of attention, people
who talked about iBooks did not talk about SOPA anymore. Thus, on Jan
21, the SOPA-Apple event was split into two events, which would evolve
independently afterwards. Unfortunately, the above merging and splitting
process cannot be tracked by any of the baselines, which output some inde-
pendent events.
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Figure 6.10: The running time on two datasets as the adjusting of the time
window length and step length.

6.7.3 Running Time of Evolution Tracking

Remind that Baseline 1 and 2 are for event identification in a fixed time
window. For evolution tracking, we measure how the Baseline 3 and eTrack
scale w.r.t. both the varying time window width and the step length. We
use both Tech-Lite and Tech-Full streams, and set the time step interval
∆t = 1 day for Tech-Lite, ∆t = 1 hour for Tech-Full to track events on
different time granularity. The streaming post rates for Tech-Lite and Tech-
Full are 11700/day and 7126/hour respectively. Figure 6.10(a) shows the
running time of eTrack when we increase the time window length, and we
can see for a time window of 10∆t hours in Tech-Full, our approach can
finish the post preprocessing, post network construction and event tracking
in just 3 minutes. A key observation is that the running time of eTrack does
not depend on the overall size of the dataset. Rather, it depends on the
streaming speed of posts in ∆t. Thus, Tech-Lite takes more time than Tech-
Full since its streaming posts in ∆t is higher. Figure 6.10(b) shows if we fix
the time window length as 10∆t and increase the step length of the sliding
time window, the running time of eTrack grows nearly linearly. Compared
with our incremental computation, Baseline 3 has to process posts in the
whole time window from scratch at each moment, so the running time will
be steadily high. If the step length is larger than 4∆t in TechFull, eTrack does
not have an advantage in running time compared with Baseline 3, because a
large part of post network is updated at each moment. However, this extreme
case is rare. Since in a real scenario, the step length is much smaller than
the time window length, our approach shows much better efficiency than the
baseline approach.
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6.8 Discussion and Conclusion

Our main goal is to track the evolution of events over social streams such
as Twitter. To that end, we extract meaningful information from noisy post
streams and organize it into an evolving network of posts under a sliding time
window. We model events as sufficiently large clusters of posts sharing the
same topics, and propose a framework to describe event evolution behaviors
using a set of primitive operations. Unlike previous approaches, our evolu-
tion tracking algorithm performs incremental updates and efficiently tracks
event evolution patterns in real time. We experimentally demonstrate the
performance and quality of our algorithm over two real data sets crawled
from Twitter. As a natural progression, in the future, it would be interesting
to investigate the tracking of evolution of social emotions on products, with
its obvious application for business intelligence.
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Algorithm 8: ICM: Incremental Cluster Maintenance
Input: St, Sold, Snew, S−, S+, S�
Output: St+1

1 St+1 = St;
// Delete Sold ∪ S−

2 for each cluster C in Sold ∪ S− ∪ S� do
3 C = Ske(C);
4 Nc(C) = ∪p∈CNc(p);
5 if |Nc(C)| = 0 then
6 remove cluster C from St+1;

7 else if |Nc(C)| = 1 then
8 delete C from cluster C ′ where C ′ ∈ Nc(C);

9 else
10 remove the cluster that C belongs to from St+1;
11 for each cluster C ′ ∈ Nc(C) do
12 assign a new cluster id for C ′;
13 add C ′ into St+1;

// Add Snew ∪ S+

14 for each cluster C in Snew ∪ S+ do
15 C = Ske(C);
16 Nc(C) = ∪p∈CNc(p);
17 if |Nc(C)| = 0 then
18 assign a new cluster id for C and add C to St+1;

19 else if |Nc(C)| = 1 then
20 add C into cluster C ′ where C ′ ∈ Nc(C);

21 else
22 assign a new cluster id for C;
23 for each cluster C ′ ∈ Nc(C) do
24 C = C ∪ C ′;
25 remove C ′ from St+1;

26 add C into St+1;

27 return St+1;
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Algorithm 9: eTrack: Cluster Evolution Tracking
Input: G = {Gi, Gi+1, · · · , Gj}, Si
Output: Primitive cluster evolution operations

1 for t from i to j do
2 obtain Sold, Snew, S−, S+ from Gi+1 −Gi;
3 St+1 = ICM(St, Sold, Snew, S−, S+, S�);
4 for each cluster C ∈ St+1 do
5 id = ClusterId(C);
6 if St(id) 6= ∅ then
7 output ↓ (C, St(id)− St+1(id));
8 output ↑ (C, St+1(id)− Si(id));

9 else +C;

10 for each cluster C ∈ Si do
11 id = ClusterId(C);
12 if St+1(id) = ∅ then −C;

(a) Results of different entity extraction approaches.

Methods #edges #coreposts #coreedges #events
Hashtags 182905 6232 28964 196
Unigrams 142468 15070 46783 430

POS-Tagger 357132 21509 47808 470

(b) Precision and recall of top 50 events.

Methods Precision Recall Precision
(major events) (major events) (G-Trends)

HashtagPeaks 0.40 0.30 0.25
UnigramPeaks 0.45 0.40 0.20

Louvain 0.60 0.55 0.75
eTrack 0.80 0.80 0.95

Table 6.2: Tuning post network.
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Chapter 7

Crowdsourcing-Based User
Study

User study is an effective way to determine the ground truth, or evaluate the
correctness of a hypothesis. Traditionally, user studies are usually conducted
in an “offline” mode, e.g., domain experts are employed to mark the truth, or
students in a lab are invited to annotate images. With the rising of the In-
ternet, crowdsourcing has recently become a popular mechanism behind user
studies. Crowdsourcing is the process of obtaining needed services or con-
tent by soliciting contributions from a large group of online users. Compared
with the traditional offline evaluation, crowdsourcing has clear advantages
on engaging high number of users who are ready to work at flexible time for a
fairly low price. However, crowdsourcing may easily fall into the low-quality
user problem, since these users are typically not experts of crowdsourcing
tasks, and they are motivated by earning money. The quality evaluation of
users becomes a crucial problem in crowdsourcing based user study. In this
chapter, we will analyze the problem and propose effective techniques like
Expectation-Maximization with Qualification (EMQ) to conquer the chal-
lenges.

7.1 Introduction

In this thesis, we studied the cohesion, context and evolution problems of sto-
ries and events in unstructured social streams. In Chapter 1, we mentioned
that the approaches we proposed in this thesis are based on two hypotheses:
(1) When modeling social streams, users prefer correlated posts to individ-
ual posts; (2) To model stories/events in social streams, structural approach
is better than frequency-based approach and LDA-based approach. These
two fundamental hypotheses determine that we model social streams as post
networks and use graph mining approaches to mine stories and events. In
this section, we conduct crowdsourcing-based user study to verify these two
important hypotheses in social stream mining. All crowdsourcing tasks are
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implemented on Amazon Mechanical Turk (MTurk). Given the fact that a
large number of workers on MTurk are bots and spammers, the most crit-
ical challenge is user quality control in crowdsourcing. In the related work
section, we summarize existing techniques on user quality control, including
majority voting, minimum time constraint, qualification test, etc. However,
none of them can solve the “Smart Spammer” problem, in which workers
pass the qualification test but perform like a spammer to get the reward
with minimal work. To deal with the challenge, in this chapter, we propose
Expectation-Maximization with Qualification (EMQ), which is capable of
measuring user’s quality in crowdsourcing and detecting Smart Spammers
among all qualified workers. As an iterative process, EMQ recursively up-
dates the probability of a worker being a valuable worker until convergence,
and we call this probability the quality score of a worker. Finally, for a
crowdsourcing task composed by a question and several options, the answer
of this question is the option obtaining the highest votes, where each vote is
weighted by the quality score of a worker.

We organize this chapter as follows. In Section 7.2, we introduce existing
techniques for worker quality control in crowdsourcing, and review their pros
and cons respectively. In Section 7.3, the two hypotheses that support the
modeling of social streams and stories/events in this thesis are introduced.
Section 7.4 introduces the quality control workflow used in crowdsourcing
tasks of this thesis. Especially, we introduce Expectation-Maximization with
Qualification (EMQ), an advanced approach to evaluate the quality of work-
ers. We show experiment results in Section 7.5.

7.2 Related Work

User (or worker) quality control is crucially important in guaranteeing the
quality of submitted work in crowdsourcing. As the truth of each crowdsour-
ing task is either unavailable or very time-consuming to obtain and workers
are primarily motivated by the reward, user quality control on crowdsourcing
tasks is very challenging. For example, we may consider that a higher reward
can lead to a higher quality of answers to this task. However, as pointed by
[24], there is no clear correlation between the reward and the final quality.
The reason is that increasing the price is believed to attract spammers (i.e.,
Turkers who cheat, not really performing the job, but using robots or an-
swering randomly). In this section, the state-of-the-art techniques for quality
control in crowdsourcing are summarized below.

Majority Voting. The traditional approach to improve the answering qual-
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ity of a task is by assigning the same task to a large number of workers, and
then doing a majority voting [60]. However, this approach is costly, as each
worker needs to be paid.

Minimum Time Constraint. This technique sets a minimum test cost
for a task, which forces the workers to read and think about the task for a
time span higher than the minimum, e.g., 20 seconds, before making their
decision. This action is supported by Amazon MTurk, and has proved to
be effective to block bots and spammers [12]: bots will typically submit the
work faster than any human, e.g., less than 1 second, and spammers usually
do not read the instructions carefully and tend to make decisions faster than
normal workers.

Approval Rate Constraint. As mentioned in [16], the Requester can
require that all workers meet a particular qualification, such as sufficient
accuracy on a small test set or a minimum percentage of previously accepted
submissions. In [72], researchers only released HITs (Human Intelligence
Tasks) to two groups of turkers: turkers with (1) the Master’s Qualification (a
qualification awarded by Amazon) and (2) the default custom qualifications
which requires the turkers to have completed at least 1000 HITs with a 95%
approval rating. They reported that those turkers with high approval rating
can achieve a quality as high as the quality achieved by skilled crowd, which
are a group of well-trained graduate students. The disadvantages of this
approach is it requires workers having long historical submission records to
make the approval rate computed meaningfully.

Check and Reject. This approach does a manual check of the answers
provided by the workers and rejects the work if the Requesters feel the sub-
mission is of low quality. Also, the Requester has the option of rejecting
the work of individual workers, in which case these workers are not paid.
However, the manual check of all answers is time-consuming and needs lots
of human labor.

Qualification Test. Qualification test is a widely used technique for user
quality control in crowdsourcing. For instance, Yashar [58] designed some
gold units as a qualification test for the bilingual translation. That is, they
provide an English sentence and a Spanish sentence, and then ask turkers
yes/no on whether there is a translation between them. As an effective
approach, qualification test is widely used in crowdsourcing for the quality
control of workers. The downside of this approach is workers need to spend
considerable amount of time to complete the qualification test before the
actual work.
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Expectation-Maximization. Aditya et. al [60] mentioned that the Ex-
pectation Maximization algorithm can be used to estimate worker quality.
These algorithms collect annotations from humans, and do disagreement-
based analysis to deduce the true answers. Ipeirotis et. al. [36] discussed
the quality management on Amazon Mechanical Turk. They proposed a
solution based on Expectation-Maximization: the algorithm iterates until
convergence, following two steps: (1) estimate the correct answer for each
task, using labels assigned by multiple workers, accounting for the quality of
each worker; and (2) estimate the quality of the workers by comparing their
submitted answers to the inferred correct answers. However, the output of
EM method changes with the selection of intial seeds, and a bad selection of
seeds may produce low-quality results.

Hybrid Approach. By working with Google, Ipeirotis et. al. [35] de-
scribed Quizz, a gamified crowdsourcing system that simultaneously assesses
the knowledge of users and acquires new knowledge from them. Quizz op-
erates by asking users to complete short quizzes on specific topics; as a user
answers the quiz questions, Quizz estimates the user’s competence. To ac-
quire new knowledge, Quizz also incorporates questions for which we do not
have a known answer; the answers given by competent users provide useful
signals for selecting the correct answers for these questions. Their exper-
iments involve over ten thousand users and confirm that Quizz can auto-
matically identify users with the desired expertise and interest in the given
topic, with cost below that of hiring workers through paid-crowdsourcing
platforms. The downside of Quizz is it may fall into the “smart spammer”
problem, where workers perform competent innitially but then behave like
spammers by giving random answers, because they want to get the reward
as quickly as possible.

7.3 Hypotheses in Social Stream Mining

As defined in Chapter 1, in social streams, an event is a set of related stories,
and a story is a set of similar posts with high cohesion. The goal of social
stream mining is to detect and track stories and events from social streams.
To help achieve the goal, we have two fundamental hypotheses for social
stream mining in this thesis.

Hypothesis 1 When modeling social streams, users prefer models in the
form of correlated posts to models in the form of individual posts.
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Figure 7.1: Crowdsourcing task for Hypothesis 1.

With Hypothesis 1, we can model a social stream as a post network
based on their correlations. Hypothesis 1 is fundamental for the modeling
of unstructured social streams in this thesis, since correlated posts provide
a better user experience than individual posts. All the data mining tech-
niques proposed in this thesis are essentially based on Hypothesis 1, since
these techniques are sophisticated graph mining algorithms which model a
collection of posts as a post network.

In Figure 7.1, we show our proposed user study for Hypothesis 1. Sup-
posing the search is for “MH370”, we show result 1 and result 2 to Amazon
workers. Result 1 lists tweets containing MH370 one-by-one, ranked by fresh-
ness. Result 2 lists grouped tweets, e.g., “MH370 Search Updates”, “MH370
Causes of Disappearance”, etc., with each group telling one event related to
MH370. We then provide the following five options:
• Option A: Result 1 is much better than Result 2;
• Option B: Result 1 is slightly better than Result 2;
• Option C: They have no difference;
• Option D: Result 2 is slightly better than Result 1;
• Option E: Result 2 is much better than Result 1.
The crowdsourcing task for testing Hypothesis 1 is asking Amazon work-

ers to answer the question by choosing an option. To be fair, we do not
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Result 1

2. Following options try to illustrate the top events detected from tweets in a short time span. Which option you consider 
that illustrates top events in the best way?

Result 2 Result 3

Result 4

Option A: Result 1 is the best;
Option B: Result 2 is the best;

Option C: Result 3 is the best;
Option D: Result 4 is the best.
Option E: They have no difference. 

Figure 7.2: Crowdsourcing task for Hypothesis 2.

inform Amazon workers which kind of algorithms we use to generate indi-
vidual and correlated results.

Hypothesis 2 To model stories/events in social streams, structural approach
is better than frequency-based approach and LDA-based approach.

Hypothesis 2 is fundamental to the cohesion, context and evolution prob-
lems studied in this thesis. If stories/events are not defined in a structural
way, it will be extremely hard to define the notions like story cohesion, story
context and event evolution. With Hypothesis 2, we can model a story/event
as a dense subgraph inside the post network, and subsequently, the cohesion,
context and evolution problems can be defined and studied from the graph
mining perspective.

In Figure 7.2, we show our crowdsourcing task for Hypothesis 2. We
provide five options, which correspond to results generated by four different
story detection approaches:
• Option A: (frequency-based) top hashtags
• Option B: (frequency-based) top entities
• Option C: (LDA-based) LDA approaches
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• Option D: (structural) Cluster method
• Option E: They have no difference.
We then ask Amazon workers’ preference for the best result, by selecting

one of the results. Notice that for the sake of fairness, we do not show the
actual approach name in the crowdsourcing task, so the worker who votes
for an option has no idea on the algorithmic principle behind this option.

7.4 Quality Control for Crowdsourcing

Distinguishing Workers. Amazon Mechanical Turk (MTurk) is the most
popular crowdsourcing Internet marketplace. As reported in January 2011,
there are over 500,000 workers from over 190 countries. Besides the normal
MTurk workers, it is a well-known fact that a large number of Amazon
workers are actually spammers and bots. In this user study, we distinguish
the following four different categories of workers:
• Bots. A bot is an automatic program that virtually attempts to an-

swer the task. Bots are designed to get the reward, and a bot usually
returns the answers within a very short time, typically not realistic for
an average human.
• Spammers. A spammer is a real worker who provides nonsensical

answers. They are real persons and their sole target is to get the re-
ward, without reading the instructions carefully and doing the necessary
thinking or work.
• Unqualified Workers. An unqualified worker is a real worker who

cannot pass the qualification test. In the case of social stream mining,
unqualified workers include the workers without comprehension ability:
they either cannot understand the instructions very well, or fail to make
a rational decision. It is worth noting that an unqualified worker for task
A may be a qualified worker for task B.
• Qualified Workers. A qualified worker is a real worker who passes the

qualification test. Depending on the rule of the qualification test, a qual-
ified worker may fail some qualification questions, given the assumption
that the portion of correctly answered questions is larger than a pre-
defined threshold, e.g., 0.6. User quality management in crowdsourcing
tasks aims to find a sufficiently high number of qualified workers.
Typically, the minimum time constraint can make a distinction between

a bot and a real person, because a bot usually returns the answers within a
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very short time which is unrealistic for human. However, it is possible that
a bot is designed to allow for a minimum elapsed time before it responds to
a task. In this case, the historical approval rate constraint can easily filter
out bots and spammers, since they usually do random guess and have a very
low approval rate. Clearly, a bot and spammer cannot pass the qualification
test. A qualification test is designed to distinguish the qualified workers and
unqualified workers. Depending on the effectiveness of qualification test, all
unqualified workers are rejected and are not allowed to submit the work for
the designed crowdsourcing tasks.

Smart Spammers. In this user study, we use the term “Smart Spammers”
to refer to a category of qualified workers, who pass the qualification test,
but make nonsensical submissions to a part of the subsequent crowdsourcing
tasks. Smart Spammers prove their ability to answer the qualifying task,
and thereafter the motivation of their behaviors resembles that of a spam-
mer who focuses simply on getting the reward with very little actual work.
Notice that a smart spammer may perform like a spammer only in a part
of crowdsourcing tasks, but not in all of tasks. Thus, a qualified worker can
be either a smart spammer, or a “valuable worker” who really contributes
to the crowdsourcing tasks. The detection of the smart spammers is a chal-
lenging problem. In this user study, we propose Expectation-Maximization
with Qualification (EMQ), an iterative approach to measure worker’s quality
by combining workers’ performance in the qualification test and subsequent
crowdsourcing tasks. EMQ approach is designed to detect the abuse of the
system, by assigning low quality scores to those workers with a high proba-
bility of being smart spammers.

Quality Control Workflow. To guarantee maximum effectiveness, we use
multiple techniques to control the quality of workers in this user study. The
workflow of the quality control is shown in Figure 7.3. In the beginning, we
set the Approval Rate Constraint by a sufficiently high threshold to filter out
MTurk workers who have a very low historical approval rate. For the remain-
ing workers, we perform the qualification test, which is a series of questions
with known answers. These qualification questions will be treated as the
golden standard and workers’ qualification will be measured in terms of the
ratio of questions answered correctly. If the ratio is higher than a predefined
threshold, this worker will be treated as a qualified worker. After this step,
nearly all bots, spammers and unqualified workers will be blocked out be-
fore the start of real crowdsourcing tasks. All qualified workers will submit
their work on the real crowdsourcing tasks. Since there are no predefined
answers for crowdsourcing tasks, the quality of workers will be measured

123



7.4. Quality Control for Crowdsourcing

Qualification Test

Expectation-Maximization 
with Qualification

Remove bots, spammers and 
unqualified workers

Valuable Workers

All Amazon MTurk Workers

Punish smart spammers

Approval Rate Constraint Remove bots and spammers

Figure 7.3: The workflow of quality control steps.

by cross-comparison with peers in an iterative way, which is captured by
Expectation-Maximization with Qualification (EMQ). In the case of smart
spammers who passed the qualification test but submitted random answers
to crowdsoucing tasks, their quality scores will be lowered down iteratively
due to the fact these random answers deviate from the majority voting dis-
tinctly. Thus, EMQ is capable of measuring user’s quality in crowdsourcing
and punishing smart spammers from among all qualified workers, by assign-
ing low quality scores to them. We will discuss the EMQ approach in detail
in next paragraph.

Expectation-Maximization with Qualification (EMQ). The EMQ ap-
proach measures user’s quality in crowdsourcing iteratively. To formalize
EMQ, let q denote the quality vector, where qi denotes the quality score for
worker i on each iteration. Assuming there are n workers, we have

q =
[
q1 q2 q3 · · · qn

]
(7.1)

Next, we assume V is the voting matrix between workers and questions,
where each element Vij is a 0/1 vector describing worker i’s vote on options
of question j. As an example, V12 = [0 0 1 0 0] means worker 1 chooses the
3rd option of question 2. Aussuming there are m questions, we get
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V =


V11 V12 · · · V1m
V21 V22 · · · V2m
· · · · · · · · · · · ·
Vn1 Vn2 · · · Vnm

 (7.2)

We also assume D is the distribution of weights on each option for each
question, and each question has l options. Thus, D is a m × l matrix, and
for each row Dj∗, its elements sum up to 1, i.e.,

∑
kDjk = 1.

During the EMQ process, V will be fixed, q and D will be updated on
each iteration. To initialize q, since EMQ uses user’s score in qualification
test as their initial quality, we set qi as the percentage of questions answered
correctly by worker i in the qualification test, and then normalize q by q =
q/‖q‖1. On each iteration, EMQ works as follows:
• Step 1:

• Computation: Dj∗ =
∑n

i=1 qiVij ;
• Normalization: Dj∗ = Dj∗/‖Dj∗‖1;

• Step 2:

• Computation: qi =
∑m

j=1Dj∗V
T
ij ;

• Normalization: q = q/‖q‖1;

To explain, in Step 1, we treat qi as the weight of worker i with which to
grade each answer provided by that worker in crowdsourcing tasks, and each
question will have a distribution of weighted votes on its options, denoted
by Dj∗. In Step 2, we re-calculate the weight of each worker, by cross-
comparison between his voting on question j and the current distribution of
votes on options of question i. In each iteration, we normalize option weight
distribution vectors and quality vector, where ‖v‖1 means the normalization
by l1-norm, i.e., ‖v‖1 =

∑
i |vi|.

The major steps of EMQ are shown in Algorithm 10. Recall that while
the correct answer for each qualification question is predefined, we do not
know the correct answer for crowdsourcing tasks. Basically, EMQ computes
the distribution of answers for each question based on workers’ quality vector
and voting matrix, and workers’ qaulity vector will be evaluated again based
on the distribution matrix bewtween questions and answers. This process
will continue, until the quality vector q converges, with l1-norm of (qo − q)
less than a small given threshold δ, or the maximum iteration number K is
reached. We empirically set δ = 0.0001.

We use the example in Figure 7.4 to illustrate the idea of EMQ algo-
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Algorithm 10: Expectation-Maximization with Qualification (EMQ)
Input: Users’ answers in qualification test, users’ voting matrix V in

crowdsourcing tasks, qualification threshold τ , convergence
threshold δ, max iteration K

Output: User quality vector q
1 for each worker i do
2 compute qi, the percentage of questions answered correctly in the

qualification test;
3 if qi < τ then
4 mark worker i as unqualified and remove;

5 set q as the qualification score vector of qualified workers;
6 set k = 0;
7 q = q/‖q‖1;
8 while k < K do
9 qo = q;

10 Dj∗ =
∑n
i=1 qiVij ;

11 Dj∗ = Dj∗/‖Dj∗‖1;
12 qi =

∑m
j=1Dj∗V

T
ij ;

13 q = q/‖q‖1;
14 if ‖qo − q‖1 < δ then
15 return q;

16 k = k + 1;

17 return q;

rithm. Suppose that there is a voting example with 3 workers and 3 ques-
tions, where each question has two options A and B, as shown in Figure
7.4(a). Figure 7.4(b) assumes that workers’ initial quality score vector ob-
tained from the qualification test is [0.6, 0.8, 1.0], which is [0.2500 0.3333
0.4167] after the normalization in initialization. In the first iteration, we
compute the distribution of aggregated quality scores between options for
each question, as shown in Figure 7.4(c). In detail, for question Q1, we
compute 0.2500+0.4167=0.6667 for option A and 0.3333 for option B, and
similarly for question Q2 and Q3. In turn, to update the quality scores, we
compare the weight distribution of options for each question and worker’s
vote for that question. For example, worker W1 answered A for Q1 and
Q2, B for Q3, so W1 will get a total score of 0.6667+0.5833+0.5833=1.8333.
Analogously, workers W2 and W3 get 1.4999 and 1.5001 respectively. After
the normalization, we get the quality score vector [0.3793 0.3103 0.3103] in
iteration 1, which will be used as the input for iteration 2. This iterative
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Figure 7.4: (a) A voting example with 3 workers and 3 questions, where
each question has two options: A and B. (b) The computation of normalized
quality vector q on each iteration, where quality scores on iteration 0 are
obtained from the qualification test. (c) and (d): The distributions of quality
weights among options for each question on iteration 1 and 15, respectively.

process continues and reaches the convergence on the 15th iteration. As we
can see in Figure 7.4(b), while W3 has the highest initial quality score, the
final quality score of W3 is low, indicating that W3 may be a smart spam-
mer who did well in the qualification test, but provided random answers
for crowdsourcing tasks to get the reward. Thus, EMQ is capable to catch
smart spammers because their quality scores become very low after many
iterations of punishments, even though these smart spammers may get very
high initial quality scores in the qualification test.

It is well-known that the Expectation-Maximization (EM) algorithm is a
hill-climbing approach, and it can only be guaranteed to reach a local maxi-
mum. When there are multiple maximas, whether we will actually reach the
global maximum depends on where we start. Clearly, the selection of starting
seeds impacts the final user quality upon convergence. Existing user studies
[36, 60] based on EM typically set the seed by a uniform distribution, i.e.,
elements in Q1 are equal, or by a unreliable random guess. In contrast, we
consider that worker’s performance in the qualification test serves as a good
starting point for EM. EMQ uses the scores obtained from the qualification
test as the prior information, which is an ideal seed to measure worker’s
task-specific quality in crowdsourcing.
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7.5 Experiments

In this section, we perform crowdsourcing-based user studies on Amazon
MTurk. We employed a total of 945 workers with historical approval rate
higher than 85%, out of which 890 workers passed the qualification test.
Each qualified worker will work on two crowdsourcing tasks, as shown in
Figure 7.1 and 7.2 respectively.

Qualification Test Design. Our tasks expect that the users have some
comprehension ability, i.e., given a set of tweets, they can figure out what
these tweets are talking about. Thus, a qualification test can be done by pro-
viding multiple summarization phrases as options, and then asking turkers
to select the best summarization phrase capturing the given tweet. There
will be only one correct answer for each qualification question. To avoid
the situation that the qualification question becomes naive, we ensure that
the summarization phrase itself does not occur in the tweets themselves.
For example, given 5 tweets talking about an event “oil price drop” but not
necessarily mentioning the phrase “oil price drop”, and then provide users
a list of 3 options, e.g., “iphone 6 price”, “oil filter change” and “oil price
drop”. If a worker does not select “oil price drop”, she will fail in this ques-
tion. Very likely, it is a bot or a worker with very low comprehension ability.
We assess each worker’s performance in the qualification test by a score,
which is computed by the portion of qualification questions answered cor-
rect, e.g., if a worker gets correct on four qualification questions out all the
five, the qualification score of this worker will be 0.8. In experiments, we
set the qualification threshold τ as 0.5 (shown in Algorithm 10), with the
intuition that any qualified workers should get correct on at least a half of all
qualification questions. Workers with qualification scores lower than 0.5 are
considered unqualified and will be rejected to participate in the subsequent
crowdsourcing tasks.

We show our qualification test sample used before real crowdsourcing
tasks in Figure 7.5. There are a total of five questions and we provide three
options for each question. Workers who answered at least three questions
correctly will be selected as qualified workers. In our experiment, we have a
total of 945 Amazon workers who participated the qualification test, out of
which 890 workers passed the test with qualification scores higher than 0.5.
Thus, the pass rate is 94.2% and these 890 qualified workers will proceed to
work on real crowdsourcing tasks.

EMQ Implementation. All qualified workers are eligible to participate
the subsequent crowdsourcing tasks, where the true answer is unknown. We
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Qualification Test: select the best summarization phrase capturing the given tweet

No. Tweets Summarization Options

A. 2015 moments
B. Photoshop
C. Powerful women

1.

2.

3.

4.

5.

A. Childhood life
B. MH370 crash
C. Truck crash

A. Mother and father
B. Database center
C. New tech

A. MH370 new found
B. Indian people
C. Australia cities

A. Korean music
B. MH370 engine
C. New possibility

Figure 7.5: Qualification test sample used before real crowdsourcing tasks.

use EMQ to measure the credibility of each qualified worker’s answers to
these crowdsourcing tasks. To implement EMQ, we set the initial seed of
user quality scores as the qualification scores. By following the steps in
Algorithm 10, EMQ iterates and will be able to generate a convergent quality
score for each qualified user, which in turn results in a convergent voting score
weighted by user quality scores for each crowdsourcing task.

Hypothesis Verification Using EMQ. Each qualified worker will work on
two crowdsourcing tasks, as shown in Figure 7.1 and 7.2, which correspond
to Hypothesis 1 and 2 (denoted by H1 and H2 for short) respectively. In
a neutral manner, to claim Hypothesis 1 and 2 to be true, we require that
the majority of qualified workers vote for options D and E in H1 and option
D in H2, where each vote is weighted by the quality score. Recall that in
Section 7.3, options D and E in H1 indicate users prefer correlated posts
than individual posts in social stream search, and option D in H2 means
structural approach is the best in social stream modeling. We empirically
set 60% as the threshold to claim “majority voting”, e.g., if more than 60%
of votes choose option D in H2, then we say Hypothesis 2 is true.

Based on the results returned by EMQ, we compute a weighted voting
sum (WVS) score for each option in each hypothesis, where WVS of an op-
tion is the sum of workers’ quality scores who voted for this option. Both
Hypothesis 1 and 2 will be validated by these WVS scores. In Hypothesis 1,
options D and E correspond to the situation that Result 2 is better than Re-
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7.5. Experiments

(a) Workers’ voting table on Hypothesis 1 and 2

(b) EMQ for Hypothesis 1 (c) EMQ for Hypothesis 2

Figure 7.6: Running EMQ for verifying Hypothesis 1 and 2. In (b), the
percentage of weighted votes on options D/E increase from 74.4% (before
EMQ) to 83.4% (after EMQ). In (c), the percentage of weighted votes on
options D increase from 56.7% (before EMQ) to 75.4% (after EMQ).

sult 1. In Hypothesis 2, if result D has higher WVS scores than A, B, C and
D, we say structural approaches are better than frequency-based approaches
and content approaches, and this hypothesis is true.

We show the results of running EMQ for verifying Hypothesis 1 and 2
in Figure 7.6. Workers’ original answers on Hypothesis 1 and 2 are shown
in Figure 7.6(a). There are a total of 890 workers who participated in these
crowdsourcing tasks, and EMQ takes 9 iterations to converge. H1 has five
options: A, B, C, D and E. In Figure 7.6(b), we show the initial distribution
of WVS scores before running of EMQ and the final distribution of WVS
scores after running EMQ. As we can see, the final distrition is more skewed
than the initial distribution, which indicates EMQ iteratively strengthens
the WVS scores of options voted by high quality workers, and weakens the
WVS scores of options voted by low quality workers. In the end, options
D and E collect 32.9% and 50.5% of weighted votes respectively. Recalling
that option D means “result 2 is slightly better than result 1” and option
E means “result 2 is much better than result 1”, we conclude that 83.4% of
weighted votes agree that result 2 (in the form of correlated posts) is better
than result 1 (in the form of individual posts).
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Figure 7.6(c) shows the initial and final distributions of WVS scores for
option A, B, C, D and E in Hypothesis 2. As we can see, EMQ procedure
lowers down the WVS scores for option A, B and C, while the WVS score for
option D is improved. Recall that option A, B are freqency-based approaches,
C are LDA-based approaches and D is structural approach. Since option D
gets 75.4% of weighted votes finally, we conclude that structural approach is
better than other approaches.

In conclusion, Figure 7.6(b) and 7.6(c) show that the majority of high
quality workers agree that correlated posts are better than individual posts
in social stream modeling, and structural approach is better than other ap-
proaches in story/event modeling in social streams.

Detection of Smart Spammers by EMQ. Smart spammers are those
workers who passed the qualification test but performed like a spammer in
real crowdsourcing tasks. Smart spammers are very difficult to detect by ex-
isting techniques. EMQmethod is capable to detect smart spammers because
their quality scores become very low after many iterations of punishments.
It is normal for some workers to have relatively lower final quality scores
than their initial quality scores, but if their final quality scores become ex-
tremely low, these workers could be smart spammers. We empirically define
smart spammers as workers whose inital quality scores are at least five times
higher than their final quality scores. Following this definition, we find 44
smart spammers whose convergent EMQ quality scores are five times lower
than their initial quality scores. In other words, 4.94% qualified workers are
actually smart spammers, which is a portion that cannot be easily ignored
in the quality evaluation. In contrast, existing methods cannot detect smart
spammers effectively.

7.6 Discussion and Conclusion

The crowdsourcing based hypothesis verification proposed in this chapter
has several limitations:
• Crowdsourcing tasks are designed by a few domain experts, which may

lose generality and introduce bias that these tasks are not perfectly
designed in both content and form to verify the hypothesis. For example,
the current crowdsourcing task uses “MH370” event as an example, but
maybe this event is not well-known for every worker, or even workers
know about MH370 event, their responses are likely to be biased in how
this event is presented in crowdsourcing tasks.
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• The visualization in crowdsourcing tasks may bring new bias. For ex-
ample, to verify Hypothesis 2, we use circles with texts and links to
visualize structural approaches, but the visualization itself may bring
different understanding overhead for workers with different educational
levels.
• Due to the diversity of human behaviors in crowdsourcing, the smart

spammer detection algorithm by EMQ may be not effective in all situ-
ations. For example, some qualified workers may work normally in the
first half of tasks, but later they perform like spammers because of some
reasons, e.g., being tired or wanting to get the reward quickly.
There is room for the improvement. First, we can employ a larger number

of domain experts to design more tasks with different forms and topics, which
will reduce the bias introduced by the tasks themselves. Second, better
algorithms may be developed to combat smart spammers. Third, we can
randomly mix the qualification questions and actual tasks, making it hard
for the workers to distinguish them, so that the qualification questions and
actual tasks have equal chances to be spammed by workers. This will make
it more challenging for smart spammers to pass the qualification test.
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Chapter 8

Summary and Future Research

8.1 Summary

In the current social web age, mining unstructured social streams has be-
come a fundamental requirement to satisfy people’s needs in information
seeking. Existing user experience on social stream applications like Twitter
Search may easily lead to “information anxiety”, in which users input several
keywords and the output will be a long list of tweets or posts with keywords
contained, ranked by time freshness. Since a post like a tweet or a Facebook
update only contains a small piece of information, users are required to digest
a long list of search results, which is time-consuming and painful. The noisy
and redundant nature of social streams degrades user’s experience further.
The social stream mining that we propose aims at providing users with an
organized and summarized view of what’s happening in their social world.
In this thesis, we examine several important applications in social stream
mining, and propose efficient solutions based on graph mining techniques.

Chapter 3 discussed the modeling of unstructured social streams. In
detail, we model a social stream as an evolving network of posts. Stories and
events are modeled as two special kinds of subgraphs. Specifically, a story
is a dense subgraph of posts with high cohesion in each snapshot of a post
network, while an event is a cluster of posts across consecutive snapshots as
the post network evolves.

In Chapter 4, we instantiate a story as a quasi-clique, and given a query
node set S in a graph G(V,E), we try to solve the maximum quasi-clique
search problem, which is formalized as finding the largest λ-quasi-clique con-
taining S. To quickly locate the initial solution, we propose k-Core tree by
recursively organizing dense subgraphs in G. Three maximization operations
are introduced to optimize the solution: Add, Remove and Swap. Then, we
propose two iterative maximization algorithms, DIM and SUM, to approach
the maximum quasi-clique that contains the given query node set S using
deterministic and stochastic approaches respectively.

In Chapter 5, we focus on two problems: (1) efficiently identify tran-
sient stories from fast streaming social content; (2) perform iceberg query
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to build the structural context between stories. To solve the first prob-
lem, we transform social stream in a time window to a capillary network,
and model transient stories as (k, d)-Cores in the capillary network. Two
efficient algorithms are proposed to extract maximal (k, d)-Cores. For the
second problem, we propose deterministic context search and randomized
context search to support the iceberg query, which allows to perform con-
text search without pairwise comparison. We perform detailed experimental
study on real Twitter streams and the results demonstrate the effectiveness
and value of our proposed context-aware story-teller CAST.

Our main goal in Chapter 6 is to track the event evolution patterns from
highly dynamic post networks. To that end, we summarize the network by
a skeletal graph and monitor the updates to the post network by means of a
sliding time window. Then, we design a set of primitive operations and ex-
press the cluster evolution patterns using these operations. Unlike previous
approaches, our evolution tracking algorithm eTrack performs incremental
bulk updates in real time. We deploy our approach on the event evolution
tracking task in social streams, and experimentally demonstrate the perfor-
mance and quality on two real data sets crawled from Twitter.

Finally, Chapter 7 performs crowdsourcing based user studies to vali-
date two important hypotheses. These two hypotheses are fundamental to
our mining tasks on social streams. The key problem of the crowdsourcing
based user studies is the quality evaluation of workers. We distinguish Ama-
zon MTurk workers into four types: bots, spammers, unqualified workers
and qualified workers. While bots and spammers can be detected by tradi-
tional techniques like minimum time constraint and approval rate constraint,
carefully designed qualification test is required to distinguish unqualified and
qualified workers. We discussed detailed qualification test for crowdsourcing
tasks in the preceding sections. As a special kind of qualified workers, smart
spammers are workers who passed the qualification test but sometimes per-
form like a spammer in the subsequent crowdsourcing tasks. The detection of
smart spammers is a challenging and unsolved problem. In this chapter, we
use Expectation-Maximization with Qualification (EMQ), which is capable
of measuring user’s quality in crowdsourcing and detecting Smart Spammers
from among all qualified workers.

8.2 Future Research

This thesis has made substantial progress in the study of cohesion, context
and evolution problems in unstructured social stream mining. In future
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research, there are still several open opportunities and challenges in social
stream mining, as listed below.
• It would be interesting to investigate the incremental evolution of social

emotions and sentiments for business intelligence, associated with the
evolution of events.
• We look forward to performing advanced analytics on stories and events,

such as the spread paths of rumors on social networks, personalized
recommendation of new events with GPS signals, etc.
• We are interested in various novel visualization techniques to present

transient stories and incremental updating events to end users in a
friendly way.
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