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Abstract 
The thyroid gland, necessary for normal human growth and development, is essential 

for the regulation of metabolism. Its function – to produce and secrete appropriate levels 

of thyroid hormone – is simple; however accurate assessment of thyroid abnormality is 

challenging and a fundamental understanding of the normal thyroid is therefore needed. 

One way to characterize the normal functioning of the thyroid gland is to study the 

epigenome and resulting transcriptome within its constituent cells. In this study, we 

compare the consistency of chromatin state annotations across the epigenomes from 

the grossly uninvolved tumour-adjacent thyroid tissue of four human individuals using 

ChIP-seq and RNA-seq. We profile four activating (H3K4me1, H3K4me3, H3K27ac, 

H3K36me3) and two repressing (H3K9me3, H3K27me3) histone modifications, identify 

chromatin states using a hidden Markov model, produce a novel metric for model 

selection, and establish epigenomic maps of 19 chromatin states. We found that 

epigenetic features characterizing promoters and transcription elongation tend to more 

consistent across epigenomes and that epigenetically active genes consistent across all 

epigenomes tend to have higher expression than those that are not marked as 

epigenetically active in all samples. We also identified a set of 18 genes epigenetically 

active and consistently expressed in the thyroid that are likely relevant to thyroid 

function. Altogether, we believe the epigenomes presented in this work represent a 

useful resource to gain a deeper understanding of the underlying molecular biology of 

thyroid function and provide contextual information of thyroid and human epigenomic 

data for comparison and integration into future studies. 
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Introduction 
The main role of the thyroid is to produce and secrete hormones necessary for growth 

and development. In humans, thyroid dysfunction has been associated with infertility 

and poor pregnancy outcomes (Crawford & Steiner, 2016). Furthermore, thyroid cancer, 

the most common endocrine malignancy, was previously the 14th 20 years ago but is 

now the 5th most frequent cancer in women (Vigneri, Malandrinoa, & Vigneri, 2015). 

 

Routine assessment of a healthy or diseased thyroid function state is currently based on 

blood serum concentrations of thyroid related hormones such as Thyroid Stimulating 

Hormone (TSH), Triiodothyronine (T3), or Thyroxine (T4) within a predefined “normal” 

range (Führer, Brix, & Biebermann, 2015). However, the definition of a “normal” TSH 

range and similarly “normal” T3 and T4 concentrations remains the subject of debate in 

different countries worldwide (Führer, Brix, & Biebermann, 2015). Furthermore, the 

variability in individual factors such as sex, body mass index, exclusion of incident 

thyroid disease, ethnicity, and iodine and selenium intake impacts a more 

comprehensive definition of healthy thyroid hormone ranges within a given population 

(Führer, Brix, & Biebermann, 2015). 

 

In summary, the incidence of thyroid abnormalities is increasing and accurate 

assessment of abnormal thyroids states across different individuals is challenging. 

Overall, a fundamental understanding of the normal thyroid is needed. 
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The human thyroid 
Anatomy 
The human thyroid is a relatively homogeneous tissue composing of two types of cells: 

follicular cells and parafollicular cells. Follicular cells are thyroid epithelial cells and are 

responsible for the production, storage, and secretion of thyroid hormones. Spatially, 

the follicular cells are arranged into spherical units known as follicles and the lumen of 

each follicle is the stored secretion of the follicular cells known as the colloid. On the 

other hand, parafollicular cells – sometimes referred to as C cells – are responsible for 

the production of calcitonin, a hormone playing a minor role in calcium homeostasis. 

Spatially, parafollicular cells are scattered sparsely around follicles and account for only 

a relatively small percentage of the thyroid. According to a review by (Eladio & Gershon, 

1978), despite inter- and intra- species differences, sampling variation, functional 

differences in parafollicular cell activity, and the relative non-specificity of some 

histochemical procedures used to estimate C cell number, there is good agreement of 

the relatively small percentage – 1% of thyroid cells in mice, 1% in pig, 2% in rabbit, 

13% in guinea pig, and 1-6% in rat – of C cells compared to the follicular cells. 

 

With regards to blood, the thyroid gland is richly vascularized with blood supplying from 

the superior and inferior thyroid arteries and draining into the upper, middle, and lower 

thyroid veins (Jancic & Stosic, 2014). Blood flow is profuse, with little resistance for the 

exchange of nutrients, gases, and hormones. With regards to lymphatics, the drainage 

of lymph (produced in consequence by the exchange from the capillary bed) is also well 

developed. With regards to nerve supply, the thyroid is connected to the vagus and 

sympathetic nerves. According to (Harris & Donovan, 1961), the thyroid nerves are 

probably vasomotor in function and indirectly influence the thyroid gland by altering 

blood supply. 

 
Function 
The thyroid gland is the largest endocrine gland in the human body, it produces and 

secretes T3 and T4 thyroid hormones directly into the blood stream. These hormones 

are then used for the regulation of metabolism in every cell of the human body. 
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Predominantly, the thyroid gland produces the less active T4 form and within cells this 

form is converted to the more active T3 form by deiodinases (Panicker, 2011). 

According to (Harris & Donovan, 1961), a component of functional thyroid hormones is 

iodine and the follicular cell is the only cell in the human body to uptake iodine. In 

addition to the production and secretion of thyroid hormones, the thyroid gland serves 

as a reservoir to store thyroglobulin (a precursor of thyroid hormones), T3, and T4 in the 

colloid of the thyroid follicles (Jancic & Stosic, 2014).  

 

Thyroid hormone action 
Once released from the thyroid gland into circulation, T3 and T4 thyroid hormones are 

taken into cells by thyroid hormone transporters; examples include the monocarboxylate 

8 (MCT8) transporter and the organic-anion transporting polypeptide 1C1 (OATP1C1) 

(Panicker, 2011). Once within cells, the less active T4 form is converted into the active 

T3 form by iodothyronine deiodinases: D1, D2, and D3 (Panicker, 2011). To regulate 

the transcription of thyroid responsive genes, T3 then moves to the cell nucleus where it 

binds thyroid hormone receptors resulting in a change in the formation and binding of 

the receptor to DNA (Panicker, 2011). According to (Panicker, 2011), the binding of 

thyroid hormone receptors are often heterodimeric with retinoid X receptor and the 

binding action is also influenced by co-regulator proteins which can bind once T3 is 

bound to the receptor. 

 

Thyroid hormone regulation 
With regards to thyroid hormone regulation, T3 and T4 thyroid hormones are released 

into the blood by the thyroid gland under the stimulation of TSH from the anterior 

pituitary gland (Panicker, 2011). When the level of TSH is low, TSH Releasing Hormone 

(TRH) is released by the hypothalamus to stimulate the anterior pituitary gland to 

produce TSH (Figure 1). As the levels of T3 and T4 increase, T3 and T4 negatively 

feedback to the anterior pituitary gland and hypothalamus to inhibit the production and 

release of TSH and TRH (Figure 1). Overall, T3, T4, TSH, and TRH hormone levels 

remain stable. 
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Abnormalities 
Abnormal levels of thyroid hormone, thyroiditis (inflammation of the thyroid gland), 

degeneration, and neoplasms are some abnormalities associated with an unhealthy 

thyroid. Too much thyroid hormone is hyperthyroidism and too little is hypothyroidism. 

Hyperthyroidism may result from Grave’s disease (also known as toxic diffuse goiter), 

an autoimmune disease characterized by the swelling of the neck and protrusion of the 

eyes resulting from an overactive thyroid gland (Harris & Donovan, 1961). On the other 

hand, hypothyroidism may result from Hashimoto’s disease, an autoimmune disease 

characterized by chronic inflammation thyroiditis and an underactive and subsequent 

failure of the thyroid gland (Davies, Latif, & Yin, 2012). Two diseases characterized by 

the degeneration of the thyroid gland include Myxedema (or Gull’s disease) occurring 

during adult age and cretinism occurring during childhood (Harris & Donovan, 1961). 

Neoplasms (or new and abnormal growth) of the thyroid may be benign such as goiter 

and follicular adenoma or malignant such as thyroid carcinomas. Goiter is the visible 

swelling of the neck due to enlargement of the thyroid gland (Harris & Donovan, 1961). 

Follicular adenomas are encapsulated benign tumors (Lai & Chen, 2015). The four main 

types of thyroid carcinoma include papillary thyroid carcinoma (PTC), follicular thyroid 

carcinoma (FTC), medullary thyroid carcinoma (MTC), and anaplastic thyroid carcinoma 

(ATC). The most frequent thyroid carcinoma (as well as most frequent endocrine 

carcinoma) is PTC and the one with the worst prognosis is ATC. Approximately 80-85% 

of all thyroid cancers are PTC and 90% of patients with ATC die within 6 months of 

diagnosis (Lin, 2011) 

 

Tests 
Blood tests, imaging tests, and fine-needle aspiration (FNA) biopsies are some ways in 

which the thyroid gland is assessed (Bomeli, LeBeau, & Ferris, 2010). Blood tests are 

used to assess thyroid function by measuring the levels of thyroid hormone circulating in 

the blood. A hormone is considered free if it is not bounded to proteins. According to the 

healthcare diagnostic provider LifeLabs (Canada) reference ranges (LifeLabs, 2016), for 

female and male adults over 20, the normal range is considered 0.32 – 5.04 milliunits 

per liter (mU/L) for TSH, 10.6 – 19.7 picomoles per liter (pmol/L) for free T4, and 3.00 – 
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5.90 pmol/L for free T3. These ranges can differ from lab to lab and geographically. 

Furthermore, a test result within laboratory reference limits is not necessarily normal for 

an individual (Andersen, Pedersen, Bruun, & Laurberg, 2002). With regards to imaging 

tests, ultrasounds, computed tomography (CT) scans, and positron emission 

tomography (PET) scans are used – sometimes in conjunction with the uptake of 

radioactive isotopes including 18-flurodeoxyglucose (F18-FDG) (Bertagna, et al., 2013) 

or radioactive iodine-131 (Harris & Donovan, 1961) – to look for abnormal growth. With 

regards to FNA biopsies, a hollow needle is inserted into the thyroid through the neck to 

collect a sample of cells for analysis. This technique is fairly inexpensive and excels at 

identifying PTC with diagnostic accuracy as high as 95% in skilled hands with 

experienced cytopathologic staff (Patel, et al., 2011). In comparison, distinguishing 

between a benign follicular adenoma, malignant FTC, and malignant follicular variant of 

PTC is problematic with FNA for these neoplasms cannot be differentiated 

cytopathologically (Patel, et al., 2011). Instead, surgery is performed to check for the 

presence of capsular and vascular invasion characteristic of malignant neoplasms 

(Patel, et al., 2011). According to (Patel, et al., 2011), inconclusive diagnosis from 

“suspicious” or “follicular-patterned lesion” occur roughly 10-30% of the time and 8-17% 

of these suspicious nodules are determined to be malignant after surgical removal. 

Nevertheless, FNA biopsy and cytologic analysis is an integral and invaluable tool in the 

comprehensive evaluation of the thyroid nodule (Cannon, 2011), but there is room for 

improvement with regards to thyroid related laboratory tests. 
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Epigenetics 
Epigenetic processes play a role in the regulation of transcription and gene expression. 

The term epigenetics, originally introduced by Waddington in 1942, was used to 

describe the mechanism lying between and connecting the genotype and the phenotype 

(cited in (Jablonka & Lamm, 2012)). Today, epigenetics is a broad field of study 

referring to heritable changes in the regulation of gene activity and expression that are 

not dependent on the underlying DNA sequence. Previous studies have found 

epigenetic components in health and disease. For instance, in adult de novo acute 

myeloid leukemia, 44% of cases described DNA-methylation-related genes mutations 

(The Cancer Genome Atlas Research Network, 2013); in malignant rhabdoid tumours 

(MRT) associated with SMARCB1 loss, there was evidence for epigenetic 

reprogramming of homeobox (HOX) genes including the loss of H3K27me3 at HOX 

promoters and MRT-specific super enhancers at HOXA, HOXB, and HOXC clusters 

(Chun, et al., 2016); and in ependymomas, CpG hypermethylation at promoters 

containing CpG islands was found to be higher in ependymomas predominantly found in 

infants (which is associated with poor prognosis in spite of maximally aggressive 

therapy) than those found in older children and adults (Mack, et al., 2014). 

 

Chromatin structure 
Chromatin – a complex macromolecule made up of DNA, protein, and RNA – functions 

to package the DNA into a smaller volume within the nuclei of a cell. The basic 

repeating unit of chromatin, a nucleosome, consists of about 200 base pairs (bp) of 

DNA wrapped around a histone protein octamer. This octamer – made up of two copies 

of each core histone H2A, H2B, H3, and H4 – can be chemically modified to signal an 

activation or repression of transcription. Broadly, chromatin can be classified into two 

categories: euchromatin (a loose and transcription permissive structure) and 

heterochromatin (a dense and transcription repressed structure). Overall, DNA is 

packaged, reinforced to prevent DNA damage, and controlled by the interaction with 

proteins regarding replication and gene expression. 
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Epigenetic modifications 
Epigenetic, referring to the reversible changes in chromatin and DNA that can regulate 

gene activity and expression, include the post-translational modifications of histone 

proteins at their N-terminal tails and DNA methylation. At the most basic level, when 

acetylated, positively charged histones tend to be less positively charged and will result 

in the loosening of negatively charged DNA from chromatin and allows access to 

transcription machinery for gene expression. Examples of histone modifications include 

H3K4m3, which have been associated with active promoters; H3K27ac to active 

promoters and enhancers; H3K4me1 to active enhancers; H3K36me3 to transcribed 

gene bodies; H3K9me3 to heterochromatin; and H3K27me3 to Polycomb repressed 

regions (Roadmap Epigenomics Consortium, et al., 2015). To map the putative 

locations of these marks onto the genome, chromatin immunoprecipitation sequencing 

(ChIP-seq) experiments – involving the crosslinking, shearing, extracting, un-

crosslinking, amplifying, and sequencing of DNA – are used. Methylated DNA occurs at 

cytosine nucleotides and is often associated with gene silencing. In the human genome, 

there are roughly 28 million CpG dinucleotides (Ernst & Kellis, 2015) and over 28 

thousand CpG islands (Karolchik D, 2004). To determine the pattern of DNA 

methylation mapping across the genome, bisulfite sequencing experiments – involving 

the treatment of DNA with bisulfite to convert un-methylated cytosines to thymines – are 

used. 

 

International efforts to map the human epigenome 
Genome wide epigenomic maps of functional elements encompassing promoters, 

enhancers, silencers, and transcription factor binding sites across an increasing number 

of different cell types and tissues have been generated (Roadmap Epigenomics 

Consortium, et al., 2015). Earlier projects focusing on understanding, cataloging, and 

identifying epigenetic processes include the Human Epigenome Project and the High-

throughput Epigenetic Regulatory Organisation In Chromatin (HEROIC) consortium 

(2005-2010). Large international initiatives contributing to the mapping of the human 

epigenome include the International Human Epigenome Consortium (IHEC) 

(Stunnenberg, Consortium, & Hirst, 2016), which set standards for experimental setup, 
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meta data collection, data storage, and data analysis. IHEC also coordinates the 

contribution from seven international consortia – ENCODE (Dunham, et al., 2012), NIH 

Roadmap (Roadmap Epigenomics Consortium, et al., 2015), CEEHRC (CEEHRC, 

2016), BLUEPRINT (Martens & Stunnenberg, 2013), DEEP, AMED-CREST, and KNIH 

– and aims to sequence and decipher 1000 human epigenomes of various cell types 

(Bujold, et al., 2016). 

 

The Encyclopedia of DNA Elements (ENCODE) project – funded by US National 

Institutes of Health (NIH) – aims to identify all functional elements in the human genome 

(Dunham, et al., 2012). Building on the work of ENCODE, the NIH Roadmap 

Epigenomics Project – generating the largest collection so far of human epigenomes for 

primary cells and tissues (Roadmap Epigenomics Consortium, et al., 2015) – aims to 

analyze samples taken directly from human tissues and cells for the understanding of 

how epigenetic processes contribute to human biology and disease (Roadmap 

Epigenomics Consortium, et al., 2015). Similarly, BLUEPRINT, a European Union-

funded project, focuses on the generation of at least 100 hematopoietic epigenomic 

maps of a wide variety of cell types from the blood of healthy and diseased individuals 

(Martens & Stunnenberg, 2013) 

 

Other international efforts include the Canadian Epigenetics, Environment and Health 

Research Consortium (CEEHRC) Network from Canada, the Japan Agency for Medical 

Research and Development Core Research for Evolutional Science and Technology 

(AMED-CREST) program from Japan, the German epigenome programme ‘DEEP’ from 

Germany, and the Korea National Institute of Health (KNIH) from South Korea. In 

summary, there is work focused towards the common goal of generating epigenomic 

references across the world. 
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Related works 
Various works have been published to supplement and analyze epigenetic data. Tools 

such as ChromImpute (Ernst & Kellis, 2015) and Epigram (Whitaker, Chen, & Wang, 

2015) have been developed to deal with missing epigenetic data by predicting, 

respectively, signal tracks for mark-sample combinations not experimentally mapped 

and the epigenome based on DNA motifs. Other tools such as ChromHMM (Ernst & 

Kellis, 2012) using a hidden Markov model or Segway (Hoffman, et al., 2012) using a 

Dynamic Bayesian Network have been developed to represent different combinations of 

epigenetic features by partitioning the epigenome into various defined chromatin states. 

Other methods of segmentation include the modelling of topological domains by wavelet 

transformations for predicting active and repressive states (Chen, Wang, Xuan, Chen, & 

Zhang, 2016) and the use of nucleotide-sequence-based Markov chains to refine the 

chromatin map produced by ENCODE (Lee & Park, 2016). With these chromatin states, 

tools such as ChromDiff (Yen & Kellis, 2015) have been developed to identify chromatin 

state differences across groups of epigenomes.  

 

Groups generating epigenomes such as ENCODE (Dunham, et al., 2012) and 

Roadmap (Roadmap Epigenomics Consortium, et al., 2015) then use these tools to 

produce chromatin state reference annotations which are then further used in various 

studies. For instance, excess rare SNVs were observed to be significantly different in 

schizophrenia versus control cases at Polycomb prepressed states (González-Peñas J. 

, et al., 2016); rheumatoid arthritis associated SNPs were found in the enhancer 

chromatin state in memory but not naïve T cells (Orent, et al., 2016); and the enhancer 

states were compared between mouse and humans to reveal an immune basis of 

Alzheimer’s disease (Gjoneska, et al., 2015). Furthermore, promoter related chromatin 

states have been used to profile core promoter elements (Lent, Lee, & Park, 2015) and 

the chromatin state of maternal and embryonic Xenopus were compared to highlight the 

extent maternal factors shape chromatin state in Xenopus embryos (Hontelez, et al., 

2015). 
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There are also published studies comparing normal samples. For instance, (Roberto, et 

al., 2016) compared the microarray gene expression profile of normal cells surrounding 

tumors of thyroid cancer for neoplastic and non-neoplastic thyroid disease; (Wijetunga, 

et al., 2014) looked at the epigenetic variability in the same cell type between healthy 

individuals; and (Gascard, et al., 2015) studied the epigenetics and transcriptional 

determinants of the human breast between three normal individuals. 

 

Hypothesis  
Overall, a fundamental understanding of the normal thyroid is needed. One way to 

characterize the normal thyroid is to study its epigenome and matched transcriptome 

across different individuals. I hypothesized that the epigenetic features important in the 

function of the normal thyroid would be consistent between different individuals. We 

therefore want to understand and characterize regions of epigenetic regulation which 

are consistent and regions which are variable across the normal thyroids of different 

individuals. Overall, I characterized an available reference thyroid epigenome as a 

resource and reference of human epigenome data useful for comparison and integration 

of future studies. 
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Research chapters 
 
Data 
Four human adult thyroid specimens were provided from surgical resections conducted 

at St. Paul’s Hospital, Vancouver, British Columbia. The pathologic findings in the 

glands included two follicular adenomas, one goiter, and one papillary carcinoma. The 

pathologic findings reflect the challenge of obtaining normal thyroid tissue from healthy 

individuals. In the case of the thyroid, a biopsy sample is obtained by a procedure called 

fine-needle aspiration (FNA), whereby a hollow needle is inserted into the thyroid – 

through the neck – to collect a sample of cells. Following the procedure, patients may 

feel sore and common complications include local pain, discomfort, and minor 

hematomas (abnormal collection outside the blood vessel). Furthermore, there have 

been reported cases of acute transient thyroid swelling (Norrenberg, et al., 2011) 

(Nakatake, Fukata, & Tajiri, 2012), cutaneous sinus formation (Akbaba, et al., 2014), 

and transient bradycardia (abnormally slow heart action) and faintness (Silverman, et 

al., 1986) following a FNA. Furthermore, the quantity of cells collected from a FNA may 

not be sufficient for genetic and epigenetic profiling and larger surgical operations may 

be required for sample collection. The specimens referred to as “normal” in this study 

are from microscopically uninvolved thyroid tissue in the resected thyroid glands. 

 

The ChIP-seq and RNA-seq data of 4 adult human thyroid and 15 adult human colon 

samples were obtained from the Centre for Epigenome Mapping Technologies (CEMT) 

branch of the CEEHRC Network. Thyroid tissue sample donor information is presented 

in Table 1. 
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Methods 
ChIP-sequencing 
Human thyroid ChIP-seq data was as previously described (Pellacani, et al., 2016). In 

brief, this procedure involves the (1) cross linking of DNA to proteins using 

formaldehyde, (2) lysing of cells or tissues, (3) shearing of DNA into smaller fragments 

by sonification, (4) recovering of DNA-protein complexes by immunoprecipitation using 

specific antibodies, (5) reversing cross links, (6) ligating on sequence adaptors, (7) 

amplifying DNA using PCR, and (8) sequencing of DNA. The antibodies were obtained 

from Diagenode (x3), Abcam (x2), and Cell Signaling (x1); and the catalogue numbers 

are, respectively, C15410037/pAb-037-050 (H3K4me1), C15410056/pAb-056-050 

(H3K9me3), C15410195/pAb-195-050 (H3K27me3), ab4729 (H3K27ac), ab9050 

(H3K36me3), and 9751S (H3K4me3). DNA input fractions (obtained before 

immunoprecipitation) were also sequenced as control. For sample CEMT_86/87, one 

lane of sequencing was merged with native ChIP protocol. 75 base pair paired-end 

reads were sequenced on Illumina HiSeq 2500 (Illumina Inc., USA). Sequenced reads 

were then split by index, adaptors were trimmed, and the fastq files corresponding to 

the two mate pairs were generated for each index. The reads were aligned to GRCh37-

lite reference using Burrows-Wheeler Aligner v0.5.7 (Li & Durbin, 2009), converted to 

bam format with SAMtools v0.1.13 (Li, et al., 2009), and annotated using CEEHRC in-

house tools (including flagging of chastity failed reads) and Picard Tools' 

MarkDuplicates.jar v1.71 (Broad Institute). Processed datasets and all underlying raw 

DNA sequences have been deposited at the European Genome-phenome Archive 

(EGA, http://www.ebi.ac.uk/ega/) under accession number EGAS00001000552. In this 

work, CEMT_40-45 and CEMT_86-87 were the thyroid samples and CEMT_33-34, 

CEMT_50-61, and CEMT_72 were the colon samples used for analysis. Detailed 

methodology for library construction, read alignment, and data processing is available in 

the Supplemental Experimental Procedures of (Pellacani, et al., 2016), at 

http://www.epigenomes.ca/protocols-and-standards, or upon request. 

 

  



 13 

RNA-sequencing 
Human RNA-seq data was as previously described (Pellacani, et al., 2016). In brief, this 

procedure involves the (1) purification of RNA followed by poly-A RNA selection, (2) 

conversion of RNA to cDNA by random priming, (3) fragmentation of cDNA, (4) ligation 

of adaptors, (5) amplification of DNA by PCR, and (6) sequencing of DNA. 75 base pair 

paired-end reads were sequenced on Illumina HiSeq 2500 (Illumina Inc., USA). 

Adaptors were trimmed and the fastq files corresponding to the two mate pairs were 

generated. The reads were aligned to a genome + transcription reference using 

Burrows-Wheeler Aligner v0.5.7 (Li & Durbin, 2009) and converted to bam format with 

SAMtools v0.1.13 (Li, et al., 2009). The resulting bam files were repositioned to 

GRCh37-lite using JAGuaR v2.0.2 (Butterfield, et al., 2014) and annotated using 

CEEHRC in-house tools (including flagging of chastity failed reads) and Picard Tools' 

MarkDuplicates.jar v1.71 (Broad Institute). Processed datasets and all underlying raw 

DNA sequences have been deposited at the European Genome-phenome Archive 

(EGA, http://www.ebi.ac.uk/ega/) under accession number EGAS00001000552. In this 

work, CEMT_40-45 and CEMT_86-87 were the thyroid samples used for analysis. 

Detailed methodology for library construction, read alignment, and data processing is 

available in the Supplemental Experimental Procedures of (Pellacani, et al., 2016), at 

http://www.epigenomes.ca/protocols-and-standards, or upon request. 

 

ChIP-seq enrichment analysis 
We used FindER v1.0.0b (CEEHRC, 2016) and MACS2 v2.1.1.20160309 (Zhang Y, 

2008) to find enriched regions. We called peaks (i.e. regions of enrichment) using 

FindER with default options. We called peaks using MACS2 “callpeak” with options as 

follows: “-B --nomodel --extsize 200 --SPMR -g hs”. For broad MACS2 peaks, we used 

the same options with an additional “--broad" argument. 
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Determination of chromatin states 
We used ChromHMM v1.12 (Ernst & Kellis, 2012), an implementation of a hidden 

Markov model, to learn combinatorial chromatin states jointly across 8 thyroid 

epigenomes (a normal and diseased thyroid sample from each of the 4 thyroid sample 

donors). ChromHMM was trained using 6 histone marks (H3K4me1, H3K4me3, 

H3K27ac, H3K36me3, H3K9me3, and H3K27me3). For each ChIP-seq data set, read 

counts were computed in non-overlapping 200bp bins across the entire genome. In total 

there were 15,181,508 bins. Each bin was discretized using ChromHMM’s BinarizeBam 

into two levels: 1 indicating enrichment, and 0 indicating no enrichment. The binarization 

was performed by comparing ChIP-seq read counts to ChIP-seq DNA input control data 

for local adjustments to the binarization threshold. We have also used ChIP-seq DNA 

input control data as an additional feature directly in the model. Reads mapping to 

chromosome Y were discarded to ensure reads that were mismapped were not carried 

forward in the computation. Command “LearnModel” with options “-p 11” was specified 

to use 11 processors in parallel to train a model using a standard Baum-Welch training 

algorithm (as opposed to the default incremental expectation-maximization algorithm 

when “-p” is not specified). We trained a total of 26 models with the number of states 

ranging from 11 to 23 states. The trained model was then used to compute the posterior 

probability of each state for each genomic bin in each sample. The regions were 

labelled using the state with the maximum posterior probability. To assign biologically 

meaningful labels to the states, we used ChromHMM package to compute the overlap 

and neighbourhood enrichments of each state relative to coordinates of known 

functional annotation obtained from the Epigenome Roadmap Project (Roadmap 

Epigenomics Consortium, et al., 2015). The chromatin state models and browser tracks 

can be downloaded from http://www.bcgsc.ca/data/thyroid. 
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Novel quantitative metric for model selection 
To determine a model of chromatin states that most closely represented our thyroid 

data, we selected a model with the most discrete inter-sample consistent output state 

emissions. In other words, the model that is the most well defined, maximizing the 

homogeneity of epigenetic features in chromatin states across samples. Concretely, 

choosing a model based on this selection metric will make it so that the set of epigenetic 

features associated with a region partitioned as state 2 in one sample will tend to be 

similar (or homogeneous) to the set of epigenetic features associated with a region 

partitioned as state 2 in another sample. We provide an R package (hmmpickr available 

at https://github.com/csiu/hmmpickr) to help users select such a model 

(doi:10.5281/zenodo.398681). Overall, we choose the model that has the lowest 

homogeneity cost, which we compute as follows: 

 

Let 𝐻 represent the total number of histone marks and ℎ represent a particular histone 

mark. Here ℎ = 1,2, …𝐻 . We represent a probability close to 0 or 1, representing 

respectively absent and present histone marks across regions of the same state, by 

taking the minimum of the emission probability of a histone mark for a state (𝐸:;) and 1 

minus that probability. To increase the penalty on states that are not as well defined, 

state costs are squared. To account for the difference in the number of states across 

models, we normalize by the number of states (𝐾) in each model. Overall, we represent 

the homogeneity cost of the state (𝑑;) and the homogeneity cost of a model (𝐷) as 

follows: 

 

𝑑; = min{1 − 𝐸:;, 	𝐸:;}
D

:EF

	

𝐷 =
𝑑;

GH
;EF

𝐾  
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Promoters 
In this study, promoters were defined to be regions around the annotated transcription 

start site (TSS) +/- 1kbp. We decided to use 1kbp from the TSS for this distance 

encapsulates the promoter signal as observed in the RefSeq TSS neighborhood 

enrichments generated by ChromHMM (Figure 3C). The coordinates for the TSS 

promoter regions were obtained from the Ensembl GRCh37 Release 75 Gene sets GTF 

file available at http://feb2014.archive.ensembl.org/info/data/ftp/index.html. Gene sets 

was filtered for “protein_coding” (source), “transcript” (feature), on chromosomes 1-22, 

X, and Y. In total, we obtain 81,732 transcripts deriving from 20,314 protein coding 

genes across the autosomes. Altogether, the 20,314 genes encompass 43% of the 

genome, with their exons and coding sequences representing 2.5% and 1.2% of the 

genome respectively. 

 
Estimating transcript abundance and gene expression 
We used Salmon v0.7.2 (Patro, Duggal, Love, Irizarry, & Kingsford, 2017) to estimate 

transcript abundance from RNA-seq reads. As input, Salmon takes a reference 

transcriptome and a set of raw sequence reads. Each read is 75 nucleotides in length. 

The transcriptome used was downloaded from the UCSC Table Browser with options as 

follows: group “Genes and Gene Predictions”, track “GENCODE Genes V19”, table 

“Basic (wgEncodeGencodeBasicV19)”, and output format “sequence”. The function 

“salmon index” was used to index the reference transcriptome, while “salmon quant” 

was used to estimate transcript abundance measured in transcripts per million (TPM). 

To integrate the transcript-level abundance estimates into gene-level abundance 

estimates, tximport R package v1.2.0 (Soneson, Love, & Robinson, 2015) was used to 

sum up the Salmon estimated transcript abundances within genes. The tximport 

function of the tximport R package also computes gene level read counts by the same 

method. 
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Estimating gene variance 
We used the regularized logarithm transformation (rlog) function of the DESeq2 R 

package v1.14.0 (Love, Huber, & Anders, 2014) to transform tximport generated read 

count data to render them homoskedastic (i.e. such that the variance of the errors over 

the samples are similar). The rlog transformation behaves similarly to a log2 

transformation for genes with high counts, while shrinking together the values for 

different samples and avoiding the problem of spreading apart of data for genes with 

low counts (Love, Huber, & Anders, 2014). Gene variance was calculated on the 

transformed read counts. 

 

Gene annotations 
We used Metascape v3.0 (Tripathi, et al., 2015) – available at http://metascape.org/ – to 

annotate gene lists. 

 

Selecting genes that have low expression in non-thyroid tissue types 
Gene expression of various tissue types were obtained from the Genotype-Tissue 

Expression (GTEx) project. Data was downloaded for “Query: Genes matching: ‘’, 

specifically expressed in any Organism part above the expression level cutoff: 0 in 

experiment E-MTAB-2919” at https://www.ebi.ac.uk/gxa/experiments/E-MTAB-2919 on 

November 21, 2016. Expression is measured in Fragments Per Kilobase of transcript 

per Million mapped reads (FPKM). We consider a gene as lowly expressed if the FPKM 

is less than or equal to 10. Expression values were then binarized to “low” and “high” 

expression. Genes for 52 non-thyroid samples were then clustered and visualized on a 

heat map. The cluster of genes that had low expression across all non-thyroid samples 

were then considered the set of genes that had low expression in 52 non-thyroid tissue 

types. 

 

Motifs 
We used HOMER v4.8 (Heinz, et al., 2010) to find enriched motifs in genomic regions 

using “findMotifsGenome.pl” with options as follows: “-size given”. 
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Results 
Reference epigenomes of thyroid tissue 
Reference epigenomes have been used to describe regions of functional interest such 

as promoter regions or transcription factor binding sites (Roadmap Epigenomics 

Consortium, et al., 2015) and they have been used to provide context to specific 

genomic locations such as single nucleotide variants (SNVs) or expression quantitative 

trait loci (eQTLs) (González-Peñas J. , et al., 2016). In this study, we have generated 

reference epigenomes from the thyroids of tumor and adjacent normal tissue of four 

human adult subjects. The pathology of the sample donors includes two follicular 

adenomas, one goiter, and one papillary carcinoma. In total, we have 56 histone 

modification ChIP-seq data sets covering six histone modifications and an input DNA 

control, 8 DNA methylation data sets, and 8 RNA-seq data sets. The six histone 

modifications consist of four activating (H3K4me1, H3K4me3, H3K27ac, and 

H3K36me3) and two repressing (H3K9me3 and H3K27me3) marks and they coincide 

with the core set of histone modifications analyzed from the 127 epigenomes of various 

tissues and cells in the NIH Roadmap project (Roadmap Epigenomics Consortium, et 

al., 2015). 

 

Defining chromatin states 
Histone modifications associate with different parts of the genome. In the 6 histone 

modifications used, H3K4me3 have been associated to promoters, H3K27ac to 

promoters and active enhancers, H3K4me1 to active enhancers, H3K36me3 to 

transcribed gene bodies, H3K9me3 to heterochromatin, and H3K27me3 to Polycomb 

repressed regions (Roadmap Epigenomics Consortium, et al., 2015). Undoubtedly, the 

distribution of different histone modifications reveal different epigenetic signals and tools 

such as ChromHMM (Ernst & Kellis, 2012) and Segway (Hoffman, et al., 2012) have 

been developed to represent combinations of epigenetic features by partitioning the 

epigenome into various chromatin states. In this study, we used ChromHMM (Ernst & 

Kellis, 2012) to partition the epigenomes into 19 chromatin states. 
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ChromHMM (Ernst & Kellis, 2012), an implementation of a hidden Markov model 

(HMM), uses epigenetic features such as histone modifications to represent observed 

(or output) states and unobserved (or hidden) states to represent chromatin states. 

Generally, HMMs have 2 parameters: (1) emission probabilities representing the output 

(e.g. histone) probability of a hidden state, and (2) transition probabilities representing 

the probability of the next hidden state. Due to the nature of hidden states, the number 

of states (denoted by k) will need to be specified programmatically. In this study, we 

trained ChromHMM on k = 11 to 23 states. The number of hidden states used 

encompassed the number of states chosen by the NIH Roadmap Consortium for the 

anlsysis of epigenomic states across 111 cell types (Roadmap Epigenomics 

Consortium, et al., 2015): 15 states for 5 histone modifications, and 18 states for 6 

histone modifications. Furthermore, there are 2 ways to treat the input DNA control 

using ChromHMM: (1) as an input feature directly in the model to help isolate regions of 

copy number variation and repeat associated artifacts or (2) as a control to locally adjust 

the input feature binarization threshold. Interestingly, when we trained 3 independent 

models using the same parameters for arbitrarily k = 15 states, the same model and 

same segmentation of chromatin states were produced. Inspecting the ChromHMM 

program further, we found that the randomization of the initial parameters has been 

seeded with a predefined integer, which will result in reproducible models. In total, we 

trained 26 different candidate models in order to select the final model for further 

analysis. 

 

From the epigenomes, we produced a set of 26 candidate models. The task now is to 

select a model for further analysis. Two popular model selection methods include the 

Bayesian information criterion (BIC) and Akaike information criterion (AIC). These 

selection methods however tend to favour higher number of states which are 

biologically harder to distinctly interpret and does not capture sufficiently distinct 

interactions. According to (Hamada, Ono, Fujimaki, & Asai, 2015), using BIC for HMMs 

is not mathematically well founded because HMMs do not typically satisfy the regularity 

conditions of BIC. (Hamada, Ono, Fujimaki, & Asai, 2015) then proposed a factorized 

information criterion (FIC) for selecting the number of states produced by ChromHMM; 
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however, their result indicated more estimated chromatin states by FIC-HMM than what 

was selected for by the original ChromHMM analysis done in (Ernst, et al., 2011) and 

thus are again biologically harder to distinctly interpret. In comparison, the number of 

states chosen in (Roadmap Epigenomics Consortium, et al., 2015) was based on 

manual consideration on evaluation for the number of states which capture all key 

interactions between chromatin marks. Similarly, the number of chromatin states 

presented in (Hoffman, et al., 2013) was chosen by a manual compromise between 

capturing all of the potential complexity of chromatin mark combinations (which requires 

very large numbers of states) and generating models that are easily interpretable and 

maximally useful for interpreting genomic features (which requires maintaining a small 

number of states). 

 

The number of states modelled in (Roadmap Epigenomics Consortium, et al., 2015), 

(Hoffman, et al., 2013), or (Ernst, et al., 2011) were selected by manual consideration. 

BIC, AIC, and FIC tend to favour higher number of states which are biologically harder 

to distinctly interpret. In this study, we devised a novel quantitative selection metric that 

will allow rapid assessment for the optimal number of states by choosing a model that is 

most well defined, maximizing the homogeneity of epigenetic features in chromatin 

states across samples (see methods). Using this novel quantitative selection metric to 

compute homogeneity cost, we found that the number of states chosen is similar to 

(Roadmap Epigenomics Consortium, et al., 2015), which has been trained on 111 

primary human tissues and cell types. From the homogeneity cost (Figure 2), we found 

that 19 states with input as control and 20 states with input as a mark were the optimal 

number of states to use. For further analysis, we then proceeded with 19 states using 

the input as control based on (1) there were less states and (2) the Roadmap project 

(Roadmap Epigenomics Consortium, et al., 2015) treated input as control. Similar to the 

18 state model published for 111 primary human tissues and cell types (Roadmap 

Epigenomics Consortium, et al., 2015), we found our model recapitulates many of the 

states with a few notable differences (Figure 3A): (1) we have 19 states while Roadmap 

has 18; (2) our model, in accordance to state enrichments described in the next section, 

has a repressed (state 15) and repeat (state 17) state not published in (Roadmap 
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Epigenomics Consortium, et al., 2015); and (3) we lack the bivalent TSS state published 

in (Roadmap Epigenomics Consortium, et al., 2015). Minor differences in state 

discrimination include having a second transcription state, but lacking a second active 

enhancer state; and having an extra flanking enhancer state, but lacking the weakly 

repressed Polycomb state. 

 
Chromatin states correlate with genomic features 
The chromatin states from the 19 epigenomic partitioning correlate with various known 

genomic features (Figure 3). For instance, states 1 – 4 are enriched in transcription 

initiation neighborhoods (Figure 3C), which indicates that states 1 – 4 are correlated 

with promoters. H3K36me3 associated emissions correlate with genes, introns, and 

exons in states 5 – 9, indicating these states being related to transcribed gene bodies. 

In comparison, states 9 - 12 have emission of H3K4me1 characteristic of enhancers. In 

state 16, the H3K4me1 and H3K27me3 emissions are indicate of a bivalent enhancer 

state. According to the overlap enrichment of genomic features (Figure 3B), there is a 

lack of gene enrichment in states 14 – 15, and 17 – 19. In state 17, there is emission for 

all histone marks, indicating that this state may be associated with repetitive regions 

such as in (Ernst, et al., 2011). In contrast, state 19 is likely an epigenetically unmarked 

state based on the rationale that state 19 has no emission in any of the histone marks 

while covering the greatest percentage of the genome (Table 2) and such a quiescent 

state of this magnitude is to be expected (Roadmap Epigenomics Consortium, et al., 

2015). Based on a combination of histone mark emissions probabilities (Figure 3A), 

enrichment in genomic features (Figure 3B, Figure 3C), and comparison with published 

chromatin states (Roadmap Epigenomics Consortium, et al., 2015), we have labelled 

the states with biologically meaningful labels (Table 2). Furthermore, in an orthogonal 

experiment where the levels of methylation is measured, we found that the active TSS 

state (state 1) had, as expected, the lowest level of methylation across chromatin states 

(Figure 4). The chromatin state segmentations can be viewed on the UCSC Genome 

and Wash U Epigeniome Browsers through http://www.epigenomes.ca/data-release/ 

and a link provided in http://www.bcgsc.ca/data/thyroid (Figure 5). 
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Chromatin states stability 
We do not know how much epigenetic variation exists in the population and thus sought 

to annotate stable and unstable states. In this study, we were interested in 

characterizing regions that were epigenetically consistent. The genome was divided into 

15,181,508 genomic bins. Each bin is 200bp in length and represents a chromatin state. 

For a particular bin across different individuals, the chromatin state may be the same or 

it may be different. We define a bin as epigenetically consistent when the chromatin 

state is the same across all individuals. We find that only the promoter (state 1), 

transcribed (state 5), and weakly transcribed (state 7) states show consistency across 

the epigenomes of the normal thyroid tissue from the four individuals (Figure 6A, Figure 

6B). Furthermore, state 19, the epigenetically unmarked or quiescent state covering the 

greatest percentage of the genome (Table 2), remained largely unchanged (Figure 6A). 

We also found the epigenetic consistency is reduced in the other states. The states 

lacking the most agreement across samples are states 4 and 17 (Figure 6C), which we 

labelled as, respectively, regions flanking downstream of TSS and repeats associated 

with artifacts.  

 

Epigenetically marked promoters and relation with gene expression 
The promoter state labelled as active TSS (state 1) was found to be the most 

epigenetically consistent state (Figure 6). 101,278 out of 15,181,508 genomic bins were 

partitioned to this state in at least one epigenome and 36.5% of the 101,278 bins were 

found to be epigenetically consistent across all four epigenomes. For any given 

epigenome, a bin partitioned as state 1 had an average of 57% probability of also being 

partitioned as state 1 in three, 19% in two, 13% in one, and 11% in no of the other 

epigenomes (Figure 6C). 

 

We next associated bins partitioned as state 1 to genes if the bin is within a gene’s 

promoter (TSS +/- 1kbp). A majority of state 1 bins (77.4%) were found within protein 

coding gene promoters (Figure 7A). This value increased to 91.2% when we consider 

only bins consistently partitioned as state 1 across all four epigenomes. 13,175 out of 

20,154 known protein coding genes were associated to bins partitioned as state 1 in at 
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least one epigenome and 10,460 to bins partitioned as state 1 across all four 

epigenomes (Figure 7B). Collectively, state 1 bins capture the promoters of 65.4% 

known protein coding genes in the thyroid and this value drops to 51.9% when we 

consider only state 1 bins that are epigenetically consistent across the four epigenomes. 

It is striking that in a relatively simple tissue such as the thyroid, whose main role is to 

predominately produce thyroid hormone, approximately half of the known protein coding 

genes have epigenetically active promotes in all four samples. In comparison, we find 

roughly 100 to  300 genes epigenetically active in only one epigenome and when we 

annotate these genes using Metascape, we find functions related to matrix organization 

and immune response (Figure 8). One possible explanation of these functions may be 

due to the nature of the samples. From Figure 7, we find CEMT_40 and CEMT_42 

associated with matrix organization. Looking at the meta data (Table 1), both these 

samples come from donors with follicular adenoma – a condition whereby a benign 

tumor is encapsulated by a thin fibrous capsule (McHenry & Phitayakorn, 2011) – which 

may explain the effect on matrix organization in these samples. With regards to the 

enrichment of immune response relate functions in CEMT_44 and CEMT_86, there 

might have been more B cells in circulation during sample collection. 

 

We next grouped the genes by the epigenetic consistency of state 1 in gene promoters 

and compared the level of gene expression. A gene is epigenetically active if the 

promoter region is characterized by state 1 in at least one epigenome. We hypothesized 

that genes that are epigenetically active across all four samples will have higher 

expression than genes that are not epigenetically active in any samples. When we 

grouped expression by the number of epigenetically active promoters shared across 

samples, we found that the expression tends to be higher in genes partitioned as 

epigenetically active in more samples (Figure 7C, Figure 7D). Specifically, expression is 

on average 9.7-fold higher in genes characterized as epigenetically active than genes 

not characterized as epigenetically active in any samples. Furthermore, expression is 

on average 4.4-fold higher in genes that are epigenetically active across all four 

samples than genes that are epigenetically active in only one sample. Similarly, when 

we grouped genes into different brackets of expression, we found that genes with high 
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expression tend to be epigenetically active in all samples (Figure 7E). In one sample, 

90.9% of genes with expression between 100 – 1,000 TPM is epigenetically active in all 

samples and this proportion drops to 44.3% for genes with expression between 1 – 10 

TPM and 7.9% for genes with expression between 0.1 – 1 TPM (Figure 7E). 

Interestingly, we also find some genes, such as MTRNR2L12, have high expression 

despite not being determined as epigenetically active in any sample. In the findings, 

MTRNR2L12 is within the top 12 most highly expressed genes across the four samples 

(Table 4); epigenetically marked as heterochromatin, repressed, and quiescent; and the 

closest genomic bin marked as active TSS is in one sample located more than 20kbp 

away. In the literature, MTRNR2L12 has been suggested to be a candidate blood 

marker of early Alzheimer's disease-like dementia in adults with Down syndrome (Bik-

Multanowski, Pietrzyk, & Midro, 2015), but there were no mentions of thyroid or 

epigenetic regulation of MTRNR2L12. One possible explanation of the high expression 

despite not being determined as epigenetically active across the four samples is that 

such genes are constitutively expressed genes. 

  

Enhancers 
Chromatin states characterized as enhancers (states 8 – 11) were less consistent than 

states characterized as promoters (Figure 6). Nevertheless, enhancer type chromatin 

states include genic enhancers (state 8 and 9), active enhancers (state 10), and weak 

enhancers (state 11). Sequence analysis of these genomic DNA epigenetically 

consistent at enhancer type chromatin states indicate that the NF1 response element 

(CYTGGCABNSTGCCAR) was the most overrepresented sequence motif in enhancer 

states 8, 10, and 11. Other transcription factors response elements common across 

enhancer states 8, 10, and 11 are TLX (CTGGCAGSCTGCCA), PAX8 

(GTCATGCHTGRCTGS), and PAX5 (GCAGCCAAGCRTGACH). In the literature, PAX8 

was found to be involved with thyroid organogenesis and the maintenance of the thyroid 

differentiated state (Trueba, et al., 2005). PAX8 may also have diagnostic utility in 

thyroid epithelial neoplasms for it was strongly expressed in papillary carcinomas, 

follicular adenomas, follicular carcinomas, and 79% of anaplastic carcinomas (Nonaka, 
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Tang, Chiriboga, Rivera, & Ghossein, 2008). The top 3 motifs of each enhancer 

chromatin state are shown in ( 

Table 3). 

 

Transcript abundance 
With regards to estimating transcript abundances, we found that the most highly 

expressed transcripts representing 95% of the RNA-seq reads are made of at least 

7,194 genes and 10,000 genes account for an average of 98% of transcript reads 

detected (Figure 9). Across the 4 samples, the top 25 genes – accounting for 19% of 

transcripts – contains 42 unique genes and 10 of these genes are consistent across the 

4 samples (Table 4).  

 

In 3 out of 4 cases, the top gene – accounting for about 2.4% of transcripts – is the 

gene encoding the thyroid hormone precursor protein, thyroglobulin (TG). In CEMT_40, 

where TG is not the most abundant gene, we find genes encoding ribosomal proteins, 

Eukaryotic Translation Elongation Factor 1 Alpha 1 (EEF1A1), and Metallothionein 1G 

(MT1G) as being more abundant (Table 4). Across the 4 samples, EEF1A1 is ranked 

within the top 4 and MT1G within the top 42 most abundant protein coding gene across 

the 4 samples. EEF1A1, encoding a protein which plays a key role in protein translation 

by interacting with aminoacyl-tRNA to bring it to the acceptor site of the ribosome in the 

first step of the elongation cycle, was found to have increased expression in Solea 

senegalensi upon T4 hormone treatment (Infante, Asensio, Cañavate, & Manchado, 

2008), which may suggest EEF1A1 is a thyroid sensitive gene and may be highly 

relevant to thyroid function. In contrast, functions for MT1G are related to metal-binding 

property, including detoxification of heavy metals, donation of zinc/copper to certain 

enzymes and transcription factors, and protection against oxidative stress (Fu, et al., 

2013). Furthermore, it was suggested that MT1G acts as a tumor suppressor of thyroid 

carcinogenesis (Fu, et al., 2013). Overall, these genes appear to be related to 

metabolism – which is not unexpected in the thyroid – by either being directly involved 

in the synthesis of proteins or as protection against oxidative stress as a result of 

metabolic process.  
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In the top 25 most abundant genes across the 4 samples, most were partitioned as 

active TSS state 1 within the gene promoter across the same bin in the 4 samples 

(Table 4). Exceptions include CD74, CLU, HBA2, HBB, MTRNR2L12, and RPS24 

(highlighted with grey in Table 4). Although CD74, CLU, and RPS24 were not 

partitioned as active TSS (state 1) in the same bin across the 4 epigenomes, we find 

these genes were nonetheless inconsistently marked as active TSS across different 

bins within the gene promoters for at least 3 epigenomes (Figure 10). With regards to 

the other 3 genes, HBA2 was partitioned with repressed Polycomb (state 18) and 

bivalent enhancer (state 16) states; and HBB and MTRNR2L12 were partitioned with 

heterochromatin (state 14) and quiescent (state 19) states. Hemoglobin Subunit Alpha 2 

(HBA2) and Hemoglobin Subunit Beta (HBB) are proteins associated with blood. One 

rationale for their high expression, despite not being epigenetically marked with active 

chromatin states, is that the expression may be a consequence of impurities from blood 

during thyroid tissue collection. In contrast, not a lot is known about  MT-RNR2-like 12 

(MTRNR2L12) other than its alias as Humanin-Like 12 (HN12) and the one study 

suggesting potential value for MTRNR2L12 to be used as a blood biomarker of early 

dementia in individuals with Down syndrome (Bik-Multanowski, Pietrzyk, & Midro, 

2015). 

 

Epigenetically active and consistently expressed genes in the thyroid 
To further define the thyroid, we next identified a set of genes that were likely highly 

relevant to thyroid function. These genes are ideally epigenetically active and 

consistently expressed, as epigenetically active genes are presumed poised for 

transcription and consistently expressed genes with low expression variance across 

samples are considered to be under stringent transcriptional control. We consider a 

gene as epigenetically active if a bin within the gene promoter (TSS +/- 1kbp) is 

partitioned as state 1. Previously, we found 13,175 genes to be epigenetically active in 

at least one sample and 10,460 genes were found to be epigenetically active across all 

four samples (Figure 7B). We considered a gene as consistently expressed if (1) it is 

within the intersection of the top 2,000 most highly expressed gene in each sample and 
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(2) it is in the set of 2,000 genes with the lowest variance across the normal samples. 

Overall, the 2,000 most highly expressed genes have a minimum expression of 29 TPM 

and accounted for an average of 76% of protein coding RNA-seq transcripts. Within the 

top 2,000 genes across the four samples, there was a total of 3,024 genes and the 

intersection defined 1,183 genes across the four samples. Intersecting the set of 10,460 

genes that are epigenetically active across all four samples, 1,183 genes that have high 

expression, and 2,000 genes with low variance, we arrived at a set of 137 genes (Figure 

11A). Examining this set of genes using Metascape (Tripathi, et al., 2015), we 

predominantly find general processes such as functions related to metabolic processes, 

protein folding, transport, and secretion (Figure 11B). The top 3 Gene Ontology (GO) 

terms are RNA localization (GO:0006403), protein folding (GO:0006457), and negative 

regulation of cell death (GO:0060548). 

 

To further prioritize the list of 137 genes, we filtered out genes expressed (FPKM >= 10) 

in 52 non-thyroid tissues using expression values from the GTEx project (Figure 12). 

Overall, we are left with 18 genes (Table 5). When we perform a gene set enrichment 

(Tripathi, et al., 2015) analysis on this set of 18 genes, no terms were found enriched. In 

Table 5, we present the GO annotation of individual genes. ETFB, NT5C2, SNF8, 

SORD, and TOR1AIP1 appear to be terms related to metabolism, N4BP2L2 to blood, 

and TPD52 to the immune system. In the literature, spatacsin, encoded by SPG11, was 

identified to play critical roles in autophagic lysosome reformation, a pathway that 

generates new lysosomes (Chang, Lee, & Blackstone, 2014) and TPD52 has been 

predicted to regulate endolysosomal trafficking in secretory cell types (Byrne, Frost, 

Chen, & Bright, 2014). In the thyroid gland, thyroid hormone is produced (from the 

breakdown of biomolecules involving lysosomes) and secreted (playing important roles 

in secretory processes). Thus it is not unexpected for SPG11 and TPD52 to be of 

importance to normal thyroid function. With regards to DEPTOR, a mTOR inhibitor, it 

was suggested as having activity in controlling several molecular pathways, such as 

apoptosis, cell survival, autophagy, and endoplasmic reticulum homeostasis, and it was 

suggested to play a role as a transcriptional activator (Catena & Fanciulli, 2017). 

DEPTOR may also play a role in the transcriptional activation of thyroid responsive 
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genes. According to a review by (Claudel, Zollner, Wagner, & Trauner, 2011), FXR1 

belongs to the nuclear receptor superfamily of transcription factors and can bind DNA 

as a heterodimer with retinoid X receptor (RXR) alpha. Similarly, thyroid hormone 

receptors binding with T3 can also often heterodimerize with RXR (Panicker, 2011). 

Taken together, we suggest the binding of FXR1 with RXR could influence transcription 

of thyroid responsive genes. With regards to PMF1 (involved in polyamine homeostasis 

(Alvarez-Mugica, et al., 2013)), H2AFY (encoding a histone H2A variant (Jufvas, 

Stralfors, & Vener, 2011)), NSMCE1, SCAF11 (involved in RNAPII elongation 

(Rebehmed, Revy, Faure, De Villartay, & Callebaut, 2014)), TCTN1 (involved in 

embryonic development and growth (Wang, et al., 2015)), TPGS2, VEZT (encoding an 

adherens junction transmembrane protein (Sousa, et al., 2004)), and WBSCR22 

(involved in ribosome small subunit biosynthesis (Ounap, Kasper, Kurg, & Kurg, 2013)), 

we did not find any published studies linking these genes with the thyroid, which may 

suggest potential significance of these genes in the thyroid. 

 
Chromatin state defined by both H3K9me3 and H3K27me3 
In state 15 (labelled as “repressed”), we find emission of H3K9me3 and H3K27me3 

(Figure 3A). In the literature, there is limited knowledge of regions containing both 

H3K9me3 and H3K27me3. Studies have suggested there may be a functional role of 

H3K9 and H3K27 methylation in coordinating and ensuring progressive lineage 

restriction during the enactment of the oligodendrocyte progenitor differentiation 

program (Liu, et al., 2015) or in a cooperative mechanism in maintaining silencing 

whereby H3K27me3-bound PRC2 stabilizes H3K9me3-anchored HP1A (Boros, Arnoult, 

Stroobant, Collet, & Decottignies, 2014). In another study, it was suggested the 

antibody used to enrich H3K27me3 has off target enrichment for H3K9me3 (Peach, 

Rudomin, Udeshi, Carr, & Jaffe, 2012), which would make H3K9me3 and H3K27me3 

an artificial state. Overall, there remains a question whether state 15 is a functional 

chromatin state. According to our results (Figure 6A), the stability of this chromatin state 

across 4 epigenomes is low and that out of all bins partitioned as state 15, only 3.0% 

are consistent across 4 epigenomes. Similarly, a bin partitioned as state 15 has a 9% 

probability of finding the same state in the same bin across 3 other epigenomes (Figure 
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6C). The lack of conservation of state 15 between samples further questions whether 

this has any real biological function or whether it arises as a random chromatin state. In 

terms of transition probabilities, there exists probability for transitions to occur from state 

14 (“heterochromatin”) to state 15 and from state 15 to itself and to states 14 and 19 

(“quiescent”) (Figure 3A). Taken together, this suggests regions containing both 

H3K9me3 and H3K27me3 may be an intermediate state from heterochromatin to 

quiescent states. 

 

In our other analyses, when we ran a sequence analysis of genomic DNA epigenetically 

consistent at state 15, we found that ZNF692 response element (GTGGGCCCCA) was 

the most overrepresented sequence motif. When we computed the overlap enrichment 

of repeat regions, we found enrichment in LTR, LINEs, and SINEs far (>10kbp) from 

protein coding genes (Figure 13). When we applied the 19 state model to 15 colon 

epigenomes, we find that the conservation in state 15 drops to 0.2% across the 15 

epigenomes, while active TSS state 1 remains at 12.4% (Figure 14). When we 

correlated the emission profiles of the 19 state model with Roadmap’s 18 state model, 

we find that state 15 correlates with Roadmap’s Quiescent, Heterochromatin, and ZNF 

states (Figure 15). If state 15 was an intermediate between heterochromatin state 14 

and quiescent state 19, then it’s feasible for there to be correlation of state 15 with these 

Roadmap states. In other words, if state 15 was an intermediate between the 

heterochromatin and quiescent states, we expect state 15 to have characteristics of 

both the heterochromatin and quiescent states, resulting to the higher correlation of 

state 15 with Roadmap’s Quiescent and Heterochromatin states. 
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Reliability of a single reference 
References should be representative and we should therefore expect the epigenetic 

features from the reference epigenomes to be consistent across different individuals. In 

this study, we compared the consistency of chromatin state annotations across the 

epigenomes from the thyroid tissue of different individuals. We characterized normal 

thyroid epigenomes into 19 chromatin states and found that some states – such as the 

promoter and transcription states – tend to be more epigenetically consistent and stable 

than others (Figure 6). Similar to the high consistencies of our active TSS and 

transcription states, (Lee & Park, 2016) predicted chromatin states from nucleotide 

frequency profiles of K562 or GM12878 and found that their Active Promoter and 

Transcribed chromatin states highly coincided with the annotations of other cell lines. 

Furthermore, the quiescent state remained largely unchanged across epigenomes, 

while every other state showed inconsistencies across the 4 epigenomes. In 

comparison with other chromatin state models, the same states were not always 

reproduced. For instance, state 15, labelled as repressed, was not observed in the 

Roadmap project (Roadmap Epigenomics Consortium, et al., 2015) but was observed in 

(Pellacani, et al., 2016). When we trained a new ChromHMM model on 15 colon 

samples, we found that (1) the optimal number of states differs between the thyroid 

(k=19) and the colon (k=16) (Figure 16) and (2) the 19 states produced from the colon 

samples differ from the 19 states produced from the thyroid samples (Figure 17). To 

account that the inconsistencies were not due to the partitioning of chromatin state by 

ChromHMM, we show similar findings as Figure 6 when peaks were called directly 

using FindER and MACS2 (Figure 18). Nonetheless, we found regions of consistency 

across the 4 epigenomes, but to isolate individual differences (Figure 8), we suggest the 

more biological replicates you have, the more relevant the consensus reference will be. 
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Conclusion 
We characterized the normal thyroid epigenome into 19 chromatin states and compared 

the epigenetic features across four different individuals. We found that epigenetic 

features characterizing promoters and transcription elongation tends to be more 

consistent whereas every other feature tends to be more variable across the four 

individuals. Consistent with expectations, we also found that genes epigenetically active 

across all epigenomes tend to have higher expression than those that are not 

consistently epigenetically active. Furthermore, we identified a set of 18 genes 

epigenetically active and consistently expressed genes in the thyroid. Overall, we 

conclude the epigenomes presented in the paper and available at 

http://www.bcgsc.ca/data/thyroid represent a valuable resource to gain a deeper 

understanding of the molecular biology of thyroid function and provide contextual 

epigenetic information and integration within future studies. 
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Tables 
Table 1. Thyroid donor information. 

Sample ID Donor age Donor sex Donor health status 

CEMT_40 67 Female Follicular Adenoma 

CEMT_42 46 Female Follicular Adenoma 

CEMT_44 55 Male Goiter 

CEMT_86 44 Female Papillary Carcinoma 

 

 
Table 2. The 19-state model: state labels and average genomic coverage. Genomic coverage values 
were averaged across 4 normal thyroids samples. 

State Color (rgb) Label Average genomic coverage (%) 

1 255,0,0 Active TSS 0.43 

2 255,69,0 TSS 0.22 

3 255,69,0 TSS Flanking 0.32 

4 255,69,0 TSS Flanking downstream 0.14 

5 0,128,0 Transcription 1 2.82 

6 0,128,0 Transcription 2 2.40 

7 0,100,0 Weak transcription 9.42 

8 194,225,5 Genic enhancer 1 0.75 

9 194,225,5 Genic enhancer 2 0.65 

10 255,195,77 Active enhancer 1.91 

11 255,255,0 Weak enhancer 1.80 

12 255,255,0 Flanking enhancer 7.68 

13 102,205,170 ZNF 0.31 

14 138,145,208 Heterochromatin 5.32 

15 138,145,208 Repressed 2.06 

16 189,183,107 Bivalent enhancer 0.28 

17 192,192,192 Repeats associated with artifacts 2.58 

18 128,128,128 Repressed PolyComb 6.33 

19 255,255,255 Quiescent 54.58 
 



 33 

Table 3. Motifs significantly enriched in genomic DNA epigenetically consistent at enhancers type 
chromatin states: 8 & 9 = genic enhancers, 10 = active enhancer, and 11 weak enhancers. Motif 
enrichment was performed using HOMER software and the top 3 motifs for each enhancer type 
chromatin state is given (Benjamini corrected p-values < 0.03). State 9 has enrichment in only 1 motif.  

 

State TF DNA binding 
domain 

Consensus log(p-value) 

     

8 NF1 CTF CYTGGCABNSTGCCAR -29.3 
8 Tlx? NR CTGGCAGSCTGCCA -16.4 
8 Pax8 Paired,Homeobox GTCATGCHTGRCTGS -11.1 
     

9 Mef2c MADS DCYAAAAATAGM -9.6 

     

10 NF1 CTF CYTGGCABNSTGCCAR -114.5 
10 Fosl2 bZIP NATGASTCABNN -71.5 
10 Tlx? NR CTGGCAGSCTGCCA -60.3 

     

11 NF1 CTF CYTGGCABNSTGCCAR -293.6 
11 Tlx? NR CTGGCAGSCTGCCA -114.9 
11 PAX6 Paired,Homeobox NGTGTTCAVTSAAGCGKAAA -84.0 
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Table 4. The 25 most abundant transcripts for protein coding genes in each sample. In total, there 
are 42 unique genes. Text highlighted in grey represent genes (n=6) not determined to be epigenetically 
active (i.e. labelled as active TSS state 1 in the same bin) across 4 samples. Non-highlighted genes 
(n=36) are considered epigenetically active. 

Rank mean st. dev. Gene 
  (%) (%) CEMT_40 CEMT_42 CEMT_44 CEMT_86 
1 2.4 0.4 RPS29 TG TG TG 
2 4.0 0.5 RPL39 MTRNR2L12 EEF1A1 EEF1A1 
3 5.2 0.8 RPS27 EEF1A1 RPS27 B2M 
4 6.4 1.1 EEF1A1 RPS27 MT1G MTRNR2L12 
5 7.4 1.6 MT1G RPS29 B2M RPS27 
6 8.4 2.1 RPL41 TPT1 GPX3 RPL41 
7 9.3 2.5 RPS3A RPL41 TPT1 GPX3 
8 10.1 2.9 TG RPS3A MTRNR2L12 CLU 
9 10.9 3.3 TPT1 B2M RPS29 ACTB 

10 11.6 3.7 RPS18 RPL39 RPL41 TPT1 
11 12.3 4.0 RPS21 RPL26 TPO RPL10 
12 12.9 4.4 MTRNR2L12 GPX3 RPS3A RPS3A 
13 13.5 4.8 RPL34 RPL27A RPS24 HBA2 
14 14.1 5.0 RPL27A RPS21 RPL39 UBC 
15 14.6 5.3 RPL26 RPL34 RPL37A EMP1 
16 15.1 5.5 B2M TPO RPL10 ACTG1 
17 15.7 5.8 RPS15A RPS24 RPL27A CD74 
18 16.1 5.9 RPL24 RPL37A RPL26 TPO 
19 16.6 6.1 RPS6 RPL17 ACTB RPS18 
20 17.1 6.3 RPS24 RPS15A GNAS RPS29 
21 17.5 6.4 HBB RPS18 CLU RPL9 
22 17.9 6.5 RPS27A RPL10 RPL34 FOSB 
23 18.4 6.7 RPL27 RPL18A RPL13 RPL37A 
24 18.8 6.8 RPS12 ACTB RPL17 RPL34 
25 19.2 7.0 RPL17 RPL24 ACTG1 FTL 
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Table 5. GO Biological Process annotation of 18 acitvely transcribed and consistently expressed 
genes in the thyroid that do not have high expression in 52 non-thyroid GTEx tissues. GO 
annotations were obtained from Metascape.  

GENE SYMBOL DESCRIPTION GO BIOLOGICAL PROCESS 

DEPTOR DEP domain 

containing MTOR-

interacting protein 

GO:0045792 negative regulation of cell size; 

GO:0032007 negative regulation of TOR 

signaling; GO:0006469 negative regulation 

of protein kinase activity 

ETFB electron transfer 

flavoprotein beta 

subunit 

GO:0033539 fatty acid beta-oxidation using 

acyl-CoA dehydrogenase; GO:0006635 fatty 

acid beta-oxidation; GO:0009062 fatty acid 

catabolic process 

FXR1 FMR1 autosomal 

homolog 1 

GO:2000637 positive regulation of gene 

silencing by miRNA; GO:0060148 positive 

regulation of posttranscriptional gene 

silencing; GO:0060964 regulation of gene 

silencing by miRNA 

H2AFY H2A histone family 

member Y 

GO:0034184 positive regulation of 

maintenance of mitotic sister chromatid 

cohesion; GO:0061086 negative regulation 

of histone H3-K27 methylation; GO:0051572 

negative regulation of histone H3-K4 

methylation 

N4BP2L2 NEDD4 binding 

protein 2 like 2 

GO:1902037 negative regulation of 

hematopoietic stem cell differentiation; 

GO:1902035 positive regulation of 

hematopoietic stem cell proliferation; 

GO:1901533 negative regulation of 

hematopoietic progenitor cell differentiation 
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NSMCE1 NSE1 homolog, 

SMC5-SMC6 

complex component 

GO:2001022 positive regulation of response 

to DNA damage stimulus; GO:0006301 

postreplication repair; GO:0016925 protein 

sumoylation 

NT5C2 5'-nucleotidase, 

cytosolic II 

GO:0046085 adenosine metabolic process; 

GO:0006195 purine nucleotide catabolic 

process; GO:0046040 IMP metabolic 

process 

PMF1 polyamine 

modulated factor 1 

GO:0007062 sister chromatid cohesion; 

GO:0000819 sister chromatid segregation; 

GO:0098813 nuclear chromosome 

segregation 

SCAF11 SR-related CTD 

associated factor 11 

GO:0000245 spliceosomal complex 

assembly; GO:0000398 mRNA splicing, via 

spliceosome; GO:0000377 RNA splicing, via 

transesterification reactions with bulged 

adenosine as nucleophile 

SNF8 SNF8, ESCRT-II 

complex subunit 

GO:1903772 regulation of viral budding via 

host ESCRT complex; GO:0010797 

regulation of multivesicular body size 

involved in endosome transport; 

GO:0043328 protein targeting to vacuole 

involved in ubiquitin-dependent protein 

catabolic process via the multivesicular 

body sorting pathway 

SORD sorbitol 

dehydrogenase 

GO:0006062 sorbitol catabolic process; 

GO:0051160 L-xylitol catabolic process; 

GO:0019640 glucuronate catabolic process 

to xylulose 5-phosphate 
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SPG11 spastic paraplegia 

11 (autosomal 

recessive) 

GO:0048675 axon extension; GO:0008088 

axo-dendritic transport; GO:1990138 neuron 

projection extension 

TCTN1 tectonic family 

member 1 

GO:0021956 central nervous system 

interneuron axonogenesis; GO:0021523 

somatic motor neuron differentiation; 

GO:0021955 central nervous system neuron 

axonogenesis 

TOR1AIP1 torsin 1A interacting 

protein 1 

GO:0071763 nuclear membrane 

organization; GO:0032781 positive 

regulation of ATPase activity; GO:0043462 

regulation of ATPase activity 

TPD52 tumor protein D52 GO:0030183 B cell differentiation; 

GO:0030098 lymphocyte differentiation; 

GO:0042113 B cell activation 

TPGS2 tubulin 

polyglutamylase 

complex subunit 2 

  

VEZT vezatin, adherens 

junctions 

transmembrane 

protein 

GO:0016337 single organismal cell-cell 

adhesion; GO:0098602 single organism cell 

adhesion; GO:0098609 cell-cell adhesion 

WBSCR22 Williams-Beuren 

syndrome 

chromosome region 

22 

GO:0031167 rRNA methylation; 

GO:0000154 rRNA modification; 

GO:0001510 RNA methylation 
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Figures 
 

 

 
 

 
Figure 1. Thyroid hormone regulation showing the direction of stimulation (normal arrow) and inhibition 
(blunt arrow). 
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Figure 2. Plots showing the homogeneity cost used for model selection. Formulation for the 
homogeneity cost is presented in the methods section. Scores were computed for 26 ChromHMM 
generated candidate models. The number of hidden states ranged from k = 11 – 23 states. Input was 
treated as a control (left) and as a mark (right). 19 states with input as a control and 20 states with input 
as a mark produced the lowest models with the lowest homogeneity cost. 19 states with input as control 
was chosen for the model to use for further analysis. 
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Figure 3. 19-state model with input as control. Chromatin states were defined using the ChromHMM 
software. The figure shows: (A) chromatin state definitions, histone mark probabilities, transition 
probabilities, (B) CEMT_44 genomic feature enrichments, and (C) CEMT_44 neighborhood enrichments 
around RefSeq TSSs and TESs. Average genomic coverages are given in Table 2. 
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Figure 4 Boxplot showing the methylation levels across chromatin states. Fractional methylation 
calls were computed based on the IJKLMN	OP	QRS	NMTUV

WOWTX	IJKLMN	OP	QRS	NMTUV
 for each genomic bin. Values were summarized 

for each normal sample to which bisulfite-seq data was available at the time of analysis. 
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Figure 5. Screenshot of the UCSC Genome Browser showing tracks for the 19-state model around 
the thyroglobulin gene. These tracks can be viewed on the UCSC Genome Browser through a link 
provided in http://www.bcgsc.ca/data/thyroid. (A) The consistency of chromatin states across 4 
epigenomes. We show the tracks for states 1 (active TSS) and 10 (active enhancer). The tracks for the 
remaining 17 states are hidden from view. (B) The overview of ChromHMM state segmentations for each 
sample. (C) Predefined tracks for gene annotations from RefSeq, UCSC, and Ensembl; CpG islands; and 
repeat elements by RepeatMasker. 
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Figure 6. Overview of epigenetic consistency across 4 thyroid epigenomes. The genome was 
divided into 15,181,508 bins. Each bin is 200bp in length and is marked by a chromatin state. For a 
particular bin across different individuals, the chromatin state may be the same or it may be different. If a 
bin was partitioned as state 1 consistently across 4 samples, then the bin count for state 1 at x = 4 is 
incremented. If the states for a bin across 4 samples were {1, 1, 2, 1}, then the bin counts for state 1 at x 
= 3 and state 2 at x = 1 is incremented. We define a bin as epigenetically consistent when the chromatin 
state is the same across all individuals. (A) Histogram showing the number of genomic bins sharing the 
same state across 4 epigenomes. (B) Values from (A) scaled to 0 and 1 showing that states 1, 5, and 7 
tends to more epigenetically consistent than every other state excluding quiescent state 19. (C) Heat map 
showing the average probability of finding a bin partitioned to the same chromatin state in 0, 1, 2, or 3 
other epigenomes 
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Figure 7. Association of chromatin state 1 “Active TSS” with protein coding genes. (A) Histogram 
showing the number of genomic bins partitioned to state 1 in 1, 2, 3, or 4 epigenomes. Orange represents 
state 1 bins located within promoters (TSS +/- 1kbp) of known protein coding genes. (B) Histogram 
showing the number of protein coding genes partitioned as state 1 across the 4 epigenomes; values are 
6979, 947, 754, 1014, 10460. (C) Plot showing the percentile of expression (log10-scaled, values from 
CEMT_44) in the set of genes epigenetically active in 0, 1, 2, 3, and 4 epigenomes. Genes with 0 
expression were removed. (D) Expression (log10-scaled, values from CEMT_44) across genes that are 
epigenetically active in 0, 1, 2, 3, and 4 samples. Genes with 0 expression were removed. (E) Proportion 
of genes in different brackets of expression (values from CEMT_44). Total number of genes in each 
bracket is shown on top. Color represents the number of samples sharing the same genomic bin. 
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Figure 8. Genes epigenetically active in only 1 sample. (A) Gene counts. (B) Probability of metascape 
gene set enrichments.  
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Figure 9. Average proportion of transcripts in the top 10,000 most abundant protein coding genes. 
Genes were ranked according to transcript abundances. The gene at rank 1 is the most abundant gene in 
a given sample. The average transcript proportion by gene rank were computed across 4 thyroid samples 
and is shown in the blue line. The grey ribbon is the mean proportion of transcripts +/- 2 standard 
deviations.  
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Figure 10 Screenshot of the UCSC Genome Browser showing RPS24 as being inconsistently marked 
as active TSS across different bins within the gene promoter. In comparison, POLR3A is consistently 
marked as active TSS within the gene promoter.   
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Figure 11. 137 epigenetically active and consistently expressed genes in the thyroid. (A) 
Epigenetically active and consistently expressed genes were identified based on criteria as follows: is 
epigenetically marked as state 1 across all 4 epigenomes, have high expression, and have low variance. 
(B) Metascape gene set enrichment of the 137 genes. 
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Figure 12. Heat map highlighting 18 genes (green cluster) epigenetically active and consistently 
expressed in the thyroid with low expression in 52 non-thyroid tissues obtained from GTEx. Blue 
represent FPKM >= 10, white represents otherwise. Genes in dark blue cluster are present in all tissues, 
whereas genes in the light blue cluster are present in a subset of predominately non-brain related tissues.   
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Figure 13. Chromatin state overlap enrichment of repeat regions close to and far from protein 
coding genes. We consider a gene as close if it is within 10kbp. Coordinates were obtained from 
RepeatMasker downloaded from the UCSC Table Browser. Overlap enrichment was performed using 
ChromHMM software. The enrichment values displayed is the average of values from 4 normal thyroid 
epigenomes.  



 51 

 
 
Figure 14. The 19-state model applied to 15 normal colon epigenomes. (A) Histogram showing the 
number of genomic bins sharing the same state across 4 epigenomes. See Figure 6 for details. (B) 
Values from (A) scaled to 0 and 1. 
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Figure 15. Pearson correlation of state emissions between ChromHMM models. The 19-state model 
presented in this work is on the y-axis. The 18-state model published in Roadmap (Roadmap 
Epigenomics Consortium, et al., 2015) is on the x-axis. 
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Figure 16. Plot showing the heterogeneity cost for model selection on models trained on 15 
normal colon reference epigenomes. Training was specified for k = 14 – 20 states. Input was treated 
as a control and training was done on 15 normal colon epigenomes using ChromHMM software. 
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Figure 17 The 19 states generated from the epigenomes of thyroid (left) and colon (right) samples 
differ. The states and emission probabilities were produced using ChromHMM.  
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Figure 18. Overview of histone modification consistency across 4 thyroid epigenomes. We used 
FindER (A) and MACS2 regular and broad (B, C) peak callers to find enriched regions. The genome was 
divided in 15,181,508 bins. Each bin is 200bp in length and was discretized into two levels: 1 indicating 
enrichment, and 0 indicating no enrichment. For a particular bin across different individuals, the 
enrichment of a particular histone may be present in all (x = 4), some (x = {1, 2, 3}), or no (x = 0) 
individual. 
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Figure 19 Overview of state consistency across 98 epigenomes published in (Roadmap 
Epigenomics Consortium, et al., 2015). The segmentations of the 18 Roadmap states for each 
epigenome were obtained from http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html   
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