
Computation of Convex Conjugates in
Linear Time using Graph-Matrix

Calculus
by

Tasnuva Haque

B.Sc., Rajshahi University of Engineering and Technology (RUET), 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE COLLEGE OF GRADUATE STUDIES

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

March 29, 2017

c© Tasnuva Haque, 2017

The undersigned certify that they have read, and recommend to the Col-
lege of Graduate Studies for acceptance, a thesis entitled:

Computation of Convex Conjugates in Linear Time using Graph-
Matrix Calculus

submitted by Tasnuva Haque in partial fulfilment of the requirements of
the degree of Master of Science.

Dr. Yves Lucet, Irvin K.Barber School of Arts and Sciences, Unit 5, Computer Science

Supervisor, Professor (please print name and faculty/school above the line)

Dr. Heinz Bauschke, Irvin K.Barber School of Arts and Sciences, Unit 5, Mathematics

Supervisory Committee Member, Professor (please print name and faculty/school above
the line)

Dr. Shawn Wang, Irvin K.Barber School of Arts and Sciences, Unit 5, Mathematics

Supervisory Committee Member, Professor (please print name and faculty/school above
the line)

Dr. Abbas S. Milani, Faculty of Applied Science, School of Engineering

University Examiner, Professor (please print name and faculty/school above the line)

March 29, 2017

(Date Submitted to Grad Studies)

ii

Abstract

Computational Convex Analysis focuses on computing the convex oper-
ators which are used very often in convex analysis. The Fenchel conjugate
is one of the most frequently used convex operator. The objective of this
thesis is to develop an algorithm for computing the conjugate of a bivariate
Piecewise Linear-Quadratic (PLQ) function. Although some algorithms al-
ready exist for computing the conjugate of a bivariate PLQ function, their
worst-case time complexity is not linear. Our challenge is to improve the
worst case time complexity to linear.

We use a planar graph to represent the entities of a PLQ function. Each
node of the graph contains a GPH matrix which represents an entity of the
PLQ function . In addition, we store the adjacency information and type of
all entities. We traverse the graph using breadth first search and compute
the conjugate of each entity. Moreover we store the information of visited
entities using a binary flag. So we never need loop through all entities to
check whether it is already visited. As a result we get linear computation
time in the worst case.

We perform numerical experiment which confirms that our algorithm
is running in linear-time. We provide a comparison of the performance of
this algorithm with the previous algorithms. Finally we explained how to
extend this algorithm in higher dimensions while keeping the worst-case time
complexity linear.

iii

Table of Contents

Abstract . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

Acknowledgment . ix

Dedication . x

Chapter 1: Introduction . 1
1.1 Motivation . 2
1.2 Algorithms for computing the conjugate of an univariate con-

vex function . 2
1.3 Algorithms for computing the conjugate of a bivariate convex

function . 5

Chapter 2: Preliminaries . 8
2.1 Polyhedral set . 9
2.2 Piecewise Linear-Quadratic function 10
2.3 Subdifferential of a function 13
2.4 Planar graph . 17

Chapter 3: Algorithm . 20
3.1 Data structure . 20

3.1.1 GPH matrix . 20
3.1.2 Adjacent entities . 31
3.1.3 Entity Type . 32

3.2 Algorithm . 32

iv

TABLE OF CONTENTS

3.3 Complexity . 35
3.3.1 Space complexity . 40
3.3.2 Time complexity . 41

Chapter 4: Numerical experiments 43
4.1 Example 1 . 43
4.2 Example 2 . 50
4.3 Partition of domain using a grid of points 55

4.3.1 Performance Comparison 57

Chapter 5: Conclusion . 60

Bibliography . 62

v

List of Tables

Table 1.1 The worst-case performance of the algorithms devel-
oped for computing the conjugate of a bivariate PLQ
function. 7

Table 3.1 Flag for x and s. 22
Table 3.2 Entity type. 32
Table 3.3 Iterations of Algorithm 1. 37
Table 3.4 Mapping of the primal entity to the dual entity for the

l1 norm function. 39

Table 4.1 Mapping of the primal entity to the dual entity. . . . 50
Table 4.2 Comparison of computation time using the algorithm

from [Kha13] and Algorithm Compute PLQ Conjugate.
All the times are in seconds. 58

vi

List of Figures

Figure 2.1 A convex function. 9
Figure 2.2 Examples of a polyhedral decomposition and polyhe-

dral subdivision. 11
Figure 2.3 Example of a bivariate PLQ function - the l1 norm

function. 12
Figure 2.4 Vertex in R2. 13
Figure 2.5 Red points are the extreme points for the set S =co

B(−1, 0) ∪ B(1, 0) where B(1, 0) is the closed ball of
radius 1 centered at (1, 0). 14

Figure 2.6 The subgradient of a function. 15
Figure 2.7 The subgradient of a convex function. 16
Figure 2.8 (a)The absolute value function and (b) the subdiffer-

ential ∂f(x) of the absolute value function. 17
Figure 2.9 Geometric interpretation of a conjugate function . . 18
Figure 2.10 Example of planar and non-planar graph. 19

Figure 3.1 The domain of the l1 norm function 21
Figure 3.2 Entity graph for the l1 norm function 21
Figure 3.3 (a)The domain of a PLQ function f , we use blue dot

to indicate an extreme point in the primal (b)The
subdifferential of f , green dots are used to represent
the extreme points in the dual. 24

Figure 3.4 Example of no inequality. We use dotted lines to indi-
cate the artificial polyhedral decomposition. We rep-
resent extreme points by using blue and non-extreme
points by using orange color. 25

vii

LIST OF FIGURES

Figure 3.5 Example of polyhedral sets with one inequality. (a)
A half space. To represent it we assume a ray in
the half space and then select the extreme and the
non-extreme points. (b) A ray which contains an ex-
treme point. To represent it completely we pick a
non-extreme point. (c) A line. We represent a line
using two rays. 26

Figure 3.6 Example of the polyhedral sets with two hyperplanes.
(a) The polyhedral set if the hyperplanes are parallel
(b) The polyhedral set if two hyperplanes intersect. . 27

Figure 3.7 Example of polyhedral sets with three inequalities. . 27
Figure 3.8 Visualization of the data structure 34
Figure 3.9 Traversing the entity graph of the l1 norm function

using Algorithm 1. 38
Figure 3.10 The partition of domain of the l1 norm function and

its conjugate. 39

Figure 4.1 The function f(x1, x2) from Equation 4.1 44
Figure 4.2 Partition of dom f which is not a polyhedral subdi-

vision. 44
Figure 4.3 Partition of dom f which is a polyhedral subdivision. 45
Figure 4.4 The conjugate f∗(s1, s2). 48
Figure 4.5 Partition of the domain of f∗. 48
Figure 4.6 The 2D energy function. 51
Figure 4.7 The domain of 2D energy function. The dotted lines

indicate that the partitions are not real partitions. . . 52
Figure 4.8 The approximation of univariate PLQ function f1(x1). 56
Figure 4.9 The approximation of function f(x1, x2) = x4

1 + x4
2. . 56

Figure 4.10 The time complexity for computing the conjugate of
the function from Example 4.3 where dom f is parti-
tioned into a grid. 57

Figure 4.11 The time complexity for computing the conjugate of
the function from Example 4.3 using the algorithm
from [Kha13] and the proposed algorithm 59

viii

Acknowledgment

In the name of Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, all praises to Allah for giving me the opportunity, the strength
and the patience to complete this thesis and overcome all the challenges and
difficulties.

I would like to express my sincere gratitude to my supervisor, Dr. Yves
Lucet, for the guidance, encouragement and advice he has provided through-
out the progression of my graduate studies. I have been extremely lucky to
have a supervisor who cared so much about my work, and who responded to
my questions and queries so promptly. His positive outlook and confidence
in my research inspired me and gave me confidence.

I would also like to extend my enduring gratitude to the members of
my examination committee: Dr. Heinz Bauschke and Dr. Shawn Wang for
their insightful comments on my thesis. I am also thankful to Dr. Abbas
S. Milani, my university examiner, for spending his valuable time reading
my thesis and providing constructive feedback. Thanks to the committee
members for letting my defense be an enjoyable moment.

I truly appreciate the support of all amazing colleagues and friends of
my research group. I am really proud to be a part of this research group.
I would also like to thank the Bangladesh community in Kelowna for their
efforts and selfless care.

I would like to take this opportunity to acknowledge and express my
gratitude towards my parents (Md. Manowarul Haque and Fouzia Jesmin),
parents-in-law, sister (Tasnima Haque) and other family members for their
continuous prayers, inspiration and support. I owe thanks to a very special
person, my husband, Md. Nobinur Rahman, for his unconditional support
and understanding during this journey that made the completion of the
thesis possible. Thanks to my baby, Nuayma, for being one of my sources
of inspiration in completing this thesis.

Finally, I am also thankful to the University of British Columbia, Okana-
gan and Natural Sciences and Engineering Research Council of Canada
(NSERC) for providing financial support.

ix

Dedication

To my husband
Md. Nobinur Rahman

&
my daughter

Nuayma Mahreen Rahman.

x

Chapter 1

Introduction

Computational Convex Analysis (CCA) introduces several algorithms
for studying operators commonly encountered in Convex Analysis. Among
them the addition, the scalar multiplication, the Moreau envelope (also
known as Moreau-Yosida approximate or Moreau-Yosida regularization),
the (Legendre-Fenchel) conjugate are considered as the core convex oper-
ators [GL13, Luc10]. These operators are used to develop new theories
and results in convex optimization [Luc13]. One application of CCA is
Computer-Aided Convex Analysis, which focuses on visualizing these oper-
ators when applied to functions of typically one or two variables.

Computational Convex Analysis has numerous applications in the field of
science and engineering such as network flow, electrical networks, robot nav-
igations, image processing, computer vision, partial differential equations,
network communications etc. For example, in image processing, convex op-
erators are used to compute the Euclidian distance transform, generalized
distance transform and morphological operators [Luc10]. The algorithms
for computing the Euclidian distance transform are developed based on the
concept of the Legendre-fenchel transform and the Moreau envelope. These
algorithms achieve linear-time complexity by combining separability of the
Euclidian distance transform with convex properties [Luc09]. See [Luc10]
for more details on how CCA facilitates all of these applications.

Convex analysis has several advantages over nonconvex analysis. One of
the advantages of a convex function is that the global optimality is guar-
anteed by local optimality. Nonsmooth functions can be manipulated using
convex calculus. Moreover several efficient numerical algorithms are avail-
able.

To calculate the convex operators and perform several transforms by
implementing convex algorithms, a Computational Convex Analysis (CCA)
toolbox has been developed. The current version of the CCA toolbox has
been built by using Scilab [SCI], a free and open source software. The CCA
toolbox is almost complete for univariate functions.

1

1.1. Motivation

1.1 Motivation

In this thesis we compute the convex conjugate which is one of the most
frequently used convex operator. Convex conjugate functions play a signifi-
cant role in duality. Consider the primal optimization problem

p = infx∈Rd [f(x) + g(Ax)].

The dual optimization problem is

d = supy∈Rd [−f∗(AT y)− g∗(−y)].

Here f∗ is the Fenchel conjugate of f . Fenchel’s duality theorem states
that under some constraint qualification conditions, p=d and the solution
of one problem can be computer from the solution of the other. Computing
the conjugate of a function is one of the key step to solve a dual optimization
problem [Her16].

There is a close relationship between the conjugate and the Moreau
envelope [Luc06, HUL07]. The Moreau envelope of a convex function is

Mλ(s) = infx∈Rd [f(x) +
||x− s||2

2λ
].

One of the important properties of the Moreau envelope is regularization
property [Luc10]. The Moreau envelope regularize a nonsmooth function
while keeping the same local minima [PW16]. The set of point at which the
infimum is found is called the proximal mapping which is the basis of many
convex and nonconvex optimization techniques e.g. the bundle method.

The application of conjugate function discussed above inspired us to
develop an algorithm to compute the convex conjugate. Although some
algorithms are available for computing the conjugate of the univariate or
bivariate convex functions, we are interested in improving their performance.
In Section 1.2 we discuss the performance of available algorithms for the
univariate function.

1.2 Algorithms for computing the conjugate of
an univariate convex function

The field of Computational Convex Analysis was born with developing
the algorithms to compute the Legendre-Fenchel transform, see also refer-
ences in [Luc10] for a more complete history. The Fenchel conjugate op-
erator, one of the most fundamental convex operators, is used to calculate

2

1.2. Algorithms for computing the conjugate of an univariate convex function

the dual properties of a convex function [Luc10]. Symbolic computation
algorithms have been developed for computing the conjugate operator of
univariate or multivariate convex functions. These algorithms involve calcu-
lating the Fenchel conjugate by differentiating a function under the supre-
mum and computing an equation which is satisfied by all the critical points.
However, the problem is that sometimes the computations of the critical
points involves a nonlinear equation that is difficult or impossible to solve
symbolically e.g. polynomial of degree 5 or higher degree.

The fast Legendre transform (FLT) algorithms were developed for com-
puting the conjugate using piecewise-linear approximations [Luc97, Luc13].
The FLT algorithms are also used to compute the Moreau envelope and the
proximal average. The Moreau envelope can be computed from the con-
jugate operator and it converts a nonsmooth optimization problem into a
smooth problem without changing the minimum of the problem [Luc06].

The worst-case time complexity of FLT algorithms was log-linear. The
time complexity of the FLT algorithms was later improved by the Linear-
time Legendre transform (LLT) algorithm, which runs in linear time [Luc97].

The LLT algorithms have a wide range of applications in network com-
munication, robotics, numeric simulation of multiphasic flows, pattern recog-
nition, and computation of distance transforms [Luc10]. Unfortunately, be-
cause of the curse of dimensionality the application of FLT and LLT algo-
rithms are limited to a small number of variables [GL13].

The Parabolic Envelope (PE) algorithm was developed as an alternative
to the LLT algorithms to compute the conjugate and the Moreau enve-
lope [FH12, Luc10]. However the efficiency of the PE and the LLT algo-
rithms are same.

A new class of algorithm based on Piecewise Linear-Quadratic (PLQ)
functions was developed to remove the restrictions of the symbolic algorithm
and the fast algorithms [LBT09]. A function is called a PLQ function if its
domain can be partitioned into a finite number of polyhedral sets, on each of
which the function is either linear or quadratic [RW09]. PLQ functions have
some interesting properties. Consider a convex univariate PLQ function f(x)
with k pieces,

f(x) =



Q0x
2 + q0x+ α0, if x ≤ x0,

Q1x
2 + q1x+ α1, if x0 ≤ x ≤ x1,

...
...

Qk−1x
2 + qk−1x+ αk−1, if xk−2 ≤ x ≤ xk−1,

Qkx
2 + qkx+ αk, otherwise,

3

1.2. Algorithms for computing the conjugate of an univariate convex function

where, Q is the quadratic term, q is the linear term and α is the constant
term. It is stored using a PLQ matrix as follows

PLQ matrix of f(x) =


x0 Q0 q0 α0

x1 Q1 q1 α1
...

...
...

...
xk−1 Qk−1 qk−1 αk−1

+∞ Qk qk αk

 .

If convex operators like the conjugate, the Moreau envelope or the prox-
imal average are applied to a PLQ function then the resulting function is
also a PLQ function [Kha13]. PLQ functions are closed under all convex
operators because they allow quadratic pieces [Luc13, Luc10, GKL14]. An-
other advantage of the PLQ functions is that the representation and the
evaluation of a PLQ function is simple. PLQ algorithms are as efficient
as the fast algorithms but provide greater precision. Usually PLQ based
algorithms have less numeric errors than fast algorithms especially with un-
bounded domain. In addition, efficient PLQ algorithms are available for the
standard convex univariate operators.

Another class of algorithms for PLQ functions, called GPH algorithms, is
based on graph-matrix calculus [Goe08]. The idea of GPH algorithms comes
from the linear relation between the graph of the subdifferential and the
graph of the function of a convex operator [GL11, Kha13]. GPH algorithms
are used to compute the graph of a transform. These algorithms store
the graph of the subdifferential and the function value at a finite set of
points [Luc13].

The GPH representation of f(x) is,

GPH matrix of f(x) =

x0 x1 x2 · · · xk xk+1

s0 s1 s2 · · · sk sk+1

y0 y1 y2 · · · yk yk+1


where xi are the points in the domain of f , si are the subgradients of f at
xi and yi is the function value at xi.

The advantage of using the GPH matrix over the PLQ matrix is that a
GPH matrix stores the graph of the subdifferential of a PLQ function which
simplifies the computation of the most common convex operators [GL11].
The performance of GPH algorithms is similar to PLQ algorithms (linear-
time) but they are simpler. The GPH algorithms become especially efficient
when implemented in matrix-based mathematical software like MATLAB
or Scilab. For example, the computation of the convex conjugate operator

4

1.3. Algorithms for computing the conjugate of a bivariate convex function

becomes a matrix multiplication operation. Consider the following GPH
matrix representation of f(x),

GPH matrix of f(x) =

xs
y

 . (1.1)

According to Goebel’s Graph-Matrix calculus rules [Goe08], the graph of
the subdifferential of the conjugate of f is defined by the following formula,

gph ∂(f∗) =

[
0 Id
Id 0

]
gph ∂(f).

Applying this formula, the GPH matrix of the conjugate of f , denoted by
f∗, is,

GPH matrix of f∗(x) =

[0 1
1 0

]
∗
[
x
s

]
sTx− y

 ,
=

 s
x

sTx− y

 ,
(1.2)

where ∗ is used for the standard matrix multiplication.
The performance of the CCA toolbox can be extended by including the

algorithms for computing convex operators in higher dimension. For exam-
ple, algorithms for computing the conjugate of a bivariate convex function
are already available . In the next section we briefly discuss their perfor-
mance and the limitations.

1.3 Algorithms for computing the conjugate of a
bivariate convex function

The first algorithm to compute the conjugate of a convex bivariate PLQ
function was developed in [GL13]. The algorithm is implemented in Scilab
using the Computational Geometry Library CGAL [CGA]. In this algo-
rithm, a planar arrangement is used to store the entities (vertices, edges
and faces) of a PLQ function. The dual arrangement is computed by loop-
ing through the entities of the planar arrangement.

The key idea of the algorithm proposed in [GL13] is to loop through the
vertices and compute the conjugate of the edges associated with a vertex.

5

1.3. Algorithms for computing the conjugate of a bivariate convex function

For every primal edge, the algorithm loops through all the gradients asso-
ciated with an edge and compute its dual vertex with a vertex index. The
algorithm never creates duplicate vertices and edges. However one of the
challenges is to compute whether a vertex is duplicate or not and assign an
index if it is unique.

A binary search tree is used to detect the duplicate points which has
O(N log N) worst-case time complexity. This algorithm can achieve a
linear-time expected-case complexity if it is implemented using a hash table
or a linear-time worst-case time complexity for a worst-case trie (assuming
bounded bit length).

For a convex bivariate PLQ function, the full conjugate can be computed
using the partial conjugate. The partial conjugate is the conjugate with
respect to one of the variables. Partial conjugates are also PLQ functions
but not necessarily convex [Roc70] e.g. the partial conjugate of the l1 norm
l1(x1, x2) = |x1| + |x2| is (l1)∗1(s1, x2) = ι[−1,1](s1) − |x2|. In [GKL14], the
full conjugate of a bivariate PLQ function is determined more easily by
using two partial conjugates. However, the complexity of the full conjugate
computation algorithm and the partial conjugate computation algorithm is
the same.

Another algorithm, based on parametric programming, is developed
in [Kha13] to compute the conjugate of convex bivariate PLQ functions.
Parametric programming is a method for computing the effect of pertur-
bations in mathematical programs. Optimization problems that depend on
one scalar parameter are called parametric programs while problems that
depend on several parameters are called multi-parametric programs. Solving
them involves computing the solution of an optimization problem for every
value in the parameter space [BBM03, PS11]. A parametric programming
problem is categorized as a parametric linear program (pLP), a paramet-
ric quadratic program (pQP), a parametric non-Linear program (pNLP), a
parametric linear complementary problem (pLCP), etc.

The algorithm in [Kha13] combines a Parametric Quadratic program-
ming (pQP) approach with computational convex analysis. The input and
output PLQ function is stored using a list representation which is internally
converted into a face-constraints adjacency representation. In this algorithm
a planar graph is used to store the entities of a PLQ function and adjacency
information of the entities is not stored.

The algorithm computes the vertices using Mulmuley’s segment inter-
section algorithm [Mul88] which requires a log-linear time complexity in the
worst-case. The time required to compute the remaining entities i.e. rays
and segment is log-quadratic because for every vertex, the algorithm loops

6

1.3. Algorithms for computing the conjugate of a bivariate convex function

through all adjacent edges which requires log-quadratic time in the worst-
case. However, according to [Kha13, Theorem 5.7], the worst-case time
complexity can be improved by using a half edge data structure as this data
contains the ordering information of the vertices. This algorithm still needs
to detect the duplicate entities, which takes log-linear time.

In total, the time required to compute the conjugate in [Kha13] without
breaking the similarity of input and output data structure is log-linear.

A summary of the algorithms for computing the conjugate of a bivariate
PLQ function is presented in Table 1.1.

Table 1.1: The worst-case performance of the algorithms developed for com-
puting the conjugate of a bivariate PLQ function.

Algorithm Source Time Data Structure Space

Full conjugate [GL13] Log-linear Red-Black Tree Linear
(geometric alg.) Linear Trie (bit length Linear

is bounded)
Expected Linear Hash table Linear

Full conjugate [Kha13] Log-linear List Linear
(parametric opt.)

Partial conjugate [GKL14] Log-linear Red-Black Tree Linear
(geometric alg.)

From Table 1.1, we can conclude that no algorithm is known so far to
compute the conjugate of a bivariate PLQ function in linear-time.

In this thesis, we present a new algorithm to compute the conjugate of
a bivariate PLQ function using graph-matrix calculus and fully leveraging
the neighbour graph. To our knowledge, this algorithm is the first linear-
time algorithm to compute the conjugate of a bivariate PLQ function. We
implement our algorithm in Scilab [SCI] for bivariate PLQ functions.

This thesis is organized as follows. We discuss the background and mo-
tivation of computing the convex conjugate operator in Chapter 1. All the
basic notations and definitions required to explain our algorithm are in-
cluded in Chapter 2. Our proposed algorithm is explained with an example
in Chapter 3. In this chapter, we also include a detailed explanation of the
data structure we used and the complexity of the algorithm. Results of the
numerical experiments are included in Chapter 4. Chapter 5 concludes the
thesis.

7

Chapter 2

Preliminaries

In this chapter, we discuss some basic definitions, properties and exam-
ples required to explain our algorithm.

Definition 2.1. [Effective domain] Consider f : Rd → R ∪ {+∞}. The
effective domain of a function f , denoted by dom f is,

dom f = {x ∈ Rd : f(x) < +∞}.

Definition 2.2. [Proper function] A function f is said to be a proper func-
tion if domf 6= ∅ and f(x) > −∞ for all x ∈ Rd.

Definition 2.3. [Convex function] A proper function f : Rd → R ∪ {+∞}
is convex if its domain is a convex set and for any two points x1, x2 ∈ dom f
and θ ∈ [0, 1]

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2).

Figure 2.1 illustrates an example of a convex function in which the line
segment passing through any two points of dom f lies above or on the graph
of the function.

Definition 2.4. [Convex Hull] Consider a set C ⊂ Rd. The closed convex
hull of C is the smallest closed convex set that contains C.

The closed convex hull of C is denoted by co (C) and can be computed
as the closure of

co (C) = {
n∑
i=0

λixi : xi ∈ C, λi ≥ 0,

n∑
i=0

λi = 1, n ≥ 0}.

Definition 2.5. [Lower semi-continuous function] A function f : Rd →
R ∪ {−∞,+∞} is said to be lower semi-continuous (l.s.c) if,

lim
x→x̄

inf f(x) ≥ f(x̄) for all x̄ ∈ Rd.

8

2.1. Polyhedral set

Figure 2.1: A convex function.

Definition 2.6. [Additively separable function] A function f : Rd → R ∪
{+∞} of n variables is called an additively separable function if for some
single variable functions f1(x1), f2(x2), · · · , fn(xn) it can be represented as

f(x1, x2, · · · , xn) =f1(x1) + f2(x2) + · · ·+ fn(xn).

Otherwise the function f is said to be an additively non-separable function.

2.1 Polyhedral set

Definition 2.7. [Polyhedral set] A polyhedral set in Rd is the intersection
of finitely many half-spaces.

It is usually denoted as C = {x ∈ Rd : ai
Tx ≤ bi} where ai ∈ Rd,

bi ∈ R, i = 1, · · · ,m. We have the following definitions regarding C.

Definition 2.8. [Relative interior] The relative interior of a set C, denoted
by ri C, is the interior of the set C with respect to the smallest affine set
containing C.

Definition 2.9. [Affinely independent] A set X ⊆ Rd, X 6= ∅ is said to be
affinely independent if no vector x ∈ X is expressible as an affine combina-
tion of the vectors in X \ {x} and can not be represented as

∑n
i=1 αixi = 0

where the constants αi are not all zeros.

Definition 2.10. [Dimension of a polyhedral set] The dimension of a poly-
hedral set C, denoted by dimC, is the maximum number of affinely inde-
pendent points in C minus 1.

9

2.2. Piecewise Linear-Quadratic function

For example, if C consists of a single point then dimC = 0 and if C is
full dimensional then dimC = d.

Definition 2.11. [Proper face, Improper face] A face of a convex set C is
a nonempty subset, F , of C with the property that if x1, x2 ∈ C, θ ∈ (0, 1)
and θx1 + (1− θ)x2 ∈ F then x1, x2 ∈ F . A face, F , that is strictly smaller
than C is called a proper face. Otherwise F is said to be an improper face.

Definition 2.12. [Polyhedral decomposition] The set C = {Ck : k ∈ K},
where K is a finite index set, is called a polyhedral decomposition of D ⊆ Rd
if it satisfies the following conditions

(i) all of its members Ck are polyhedral sets,

(ii)
⋃
k∈K Ck = D,

(iii) for all k ∈ K, dimCk = dimD,

(iv) ri Ck1 ∩ ri Ck2 = ∅, where k1, k2 ∈ K, k1 6= k2.

Definition 2.13. [Polyhedral subdivision] The set C is a polyhedral sub-
division if C is a polyhedral decomposition and the intersection of any two
members of C is either empty or a common proper face of both.

Example 2.14. Let C = {D1,D2,D3,D4} with D1∪D2∪D3∪D4 = D be a
collection of polyhedral sets. In Figure 2.2(a), the collection C is a polyhedral
decomposition but not a polyhedral subdivision becauseD1∩D3 or D2∩D3 is
not empty or a common proper face of both. In Figure 2.2(b), the collection
C is a polyhedral decomposition and a polyhedral subdivision of D.

2.2 Piecewise Linear-Quadratic function

Definition 2.15. [Piecewise Linear-Quadratic (PLQ) function] A function
f : Rd → R ∪ {+∞} is a Piecewise Linear-Quadratic (PLQ) function if its
domain can be represented as the union of finitely many polyhedral sets and
on each polyhedral set the function is either linear or quadratic [RW09].

The domain of a PLQ function can be decomposed into a polyhedral
decomposition and on each piece, f(x) = fk(x) if x ∈ Ck, k ∈ K, where

fk(x) =
1

2
xTQkx+ qk

Tx+ αk (2.1)

10

2.2. Piecewise Linear-Quadratic function

(a) A polyhedral decomposition
but not a polyhedral subdivi-
sion.

(b) A polyhedral subdivision.

Figure 2.2: Examples of a polyhedral decomposition and polyhedral subdi-
vision.

with Qk ∈ Rd×d a symmetric matrix, qk ∈ Rd and αk ∈ R. For each piece
of the PLQ function f , we associate the function f̃k = fk + δCk

where δCk

is the indicator function defined as

δCk
=

{
0, if x ∈ Ck;
∞, if x 6∈ Ck.

Example 2.16. Consider the l1 norm function,

f(x1, x2) =|x1|+ |x2|

=


x1 + x2, if − x1 ≤ 0,−x2 ≤ 0;

−x1 + x2, if x1 ≤ 0,−x2 ≤ 0;

−x1 − x2, if x1 ≤ 0, x2 ≤ 0;

x1 − x2, if − x1 ≤ 0, x2 ≤ 0;

This example is illustrated in Figure 2.3. The domain of the l1 norm function
is partitioned into four polyhedral set and on each polyhedral set the function
is linear.

Definition 2.17. [Partition] A family of sets P = {Ck : k ∈ K} is a partition
of D if

(i) ∀k ∈ K, Ck 6= ∅,

(ii) D = ∪k∈KCk,

11

2.2. Piecewise Linear-Quadratic function

Figure 2.3: Example of a bivariate PLQ function - the l1 norm function.

(iii) Ck ∩ Cl = ∅ for k 6= l.

Fact 2.18. (Partition of a convex PLQ function [Roc70, Theorem 18.2])
Let C be a non-empty convex set and F(C) be the collection of all non-empty
faces of C and RI(C) = {ri F : F ∈ F(C)} be the collection of all relative
interiors of non empty faces of C. Then RI(C) is a partition of C.

Definition 2.19. [Entity] Assume f is a PLQ function and ∪kCk= dom f
is a polyhedral subdivision that induce a partition of dom f . An entity is an
element of the partition of the domain. For f : R2 → R ∪ {+∞}, an entity
is either a vertex, an edge or a face [GL13].

Definition 2.20. [Vertex] If the dimension of an entity is 0 then it is called
a vertex. Figure 2.4 is the example of vertex .

Definition 2.21. [Edge] If the dimension of an entity is 1 then it is called
an edge. An edge for any x1 6= x2 is defined as

E = {x ∈ Rd : x = λ1x1 + λ2x2, λ1 + λ2 = 1, λ = (λ1, λ2) ∈ Λ}. (2.2)

In R2, an edge is classified as follows

(i) Line: when Λ = R2.

12

2.3. Subdifferential of a function

Figure 2.4: Vertex in R2.

(ii) Ray: when Λ = R+ × R where R+ = {x ∈ R : x ≥ 0}.

(iii) Segment: when Λ = R+ × R+.

Definition 2.22. [Face] If an entity has a nonempty interior then it is called
a face [Kha13]. For a PLQ function, a face Qk is categorized as

(i) a QQ face if the associated function is quadratic with Qk a symmetric
positive definite matrix.

(ii) a QL face if the associated function is quadratic with Qk a symmetric
positive semi-definite matrix with exactly one positive and one zero
eigenvalues.

(iii) a LL face if the associated function is linear.

Definition 2.23. [Extreme point, [Fan63]] An extreme point of a convex
set C, is a point x ∈ C, which has a property that if x = θx1 + (1 − θ)x2

with x1, x2 ∈ C and θ ∈ [0, 1], then x1 = x and/or x2 = x.
An extreme point of C is not in the relative interior of any line segment

lying entirely in C. An example of extreme point is showed in Figure 2.5.

2.3 Subdifferential of a function

Definition 2.24. [Subgradient] The subgradient of a function f at a point
x̄ ∈ dom f , is a vector s such that

f(x) ≥ f(x̄) + 〈s, x− x̄〉,

13

2.3. Subdifferential of a function

(-1,0) (1,0)

(-1,1) (1,1)

Figure 2.5: Red points are the extreme points for the set S =co B(−1, 0)∪
B(1, 0) where B(1, 0) is the closed ball of radius 1 centered at (1, 0).

14

2.3. Subdifferential of a function

f(x)

(s,
−1)

(x̄
, f

(x̄
))

Figure 2.6: The subgradient of a function.

for all x ∈ Rd. The vector s is said to be a subgradient of f at x̄. It
creates a supporting hyperplane which has normal (s,−1) and goes through
the point (x̄, f(x̄)) of the epigraph of f [RW09, Theorem 8.9].

If the function f is convex and differentiable then f has a unique subgra-
dient at a point x̄ and it is the gradient . If f is convex but nondifferentiable
at x̄ ∈ int dom f then f has multiple subgradients at x̄. This is illustrated
in Figure 2.7. A subgradient of the PLQ function f , defined by Equation
(2.1), at a point x is

s = ∇fk(x) = Qkx+ qk. (2.3)

Definition 2.25. [Subdifferential[Roc70, RW09, MN15]] The subdifferential
of a function f at a point x̄ is a closed convex set which is the collection
of all subgradients of f at x̄ . It is represented by the notation ∂f(x) and
defined as

∂f(x) ={s ∈ Rd : f(x) ≥ f(x̄) + 〈s, x− x̄〉,∀x ∈ Rd},

when x ∈ dom f . If x /∈ dom f by convention we set ∂f(x) = ∅ [Bal10].
If the function is convex and differentiable at x ∈ int domf , then ∂f(x) =

{∇f(x)}. If a PLQ function f is not differentiable at x then its subdiffer-

15

2.3. Subdifferential of a function

(a) The function f(x) is differen-
tiable at a point x and has a sub-
gradient s.

(b) The function is not differentiable
at x and has many subgradients at
x. Two subgradients e.g. s1 and s2
are shown.

Figure 2.7: The subgradient of a convex function.

ential is
∂f(x) = co {∇fk(x) : Ck 3 x}.

For example, in Figure 2.7(a), the subdifferential is single valued i.e.
∂f(x) = {s} but in Figure 2.7(b), it is multi-valued i.e. ∂f(x) = [s1, s2].

Consider the example of the absolute value function

f(x) =|x|

=

{
−x, if x ≤ 0;

x, if x > 0;

The absolute value function and its subdifferential is presented in Figure 2.8
The subdifferential at any x > 0 is ∂f(x) = {∇f(x)} = {1} and the

subdifferential at any x < 0 is, ∂f(x) = {∇f(x)} = {−1}. The function
is not differentiable at x = 0. The subdifferential at x = 0 is ∂f(0) =
co {−1, 1} = [−1, 1].

The graph of the subdifferential of f is,

gph ∂f = {(x, s) : x ∈ dom f, s ∈ ∂f(x)}.

Definition 2.26. [Conjugate function] Consider a proper convex lower semi-
continuous function f : Rd → R ∪ {+∞}. The conjugate of f , denoted by

16

2.4. Planar graph

(a) (b)

Figure 2.8: (a)The absolute value function and (b) the subdifferential ∂f(x)
of the absolute value function.

f∗, is defined as
f∗(s) = sup

x
(〈s, x〉 − f(x)). (2.4)

Consider the geometric interpretation of the conjugate function which is
illustrated in Figure 2.9. We want to compute a point x such that the slope
of the line segment passing through the point (x, f(x)) has the maximum
intercept on the s axis.

The affine functions that are less than f(x) are represented by the fol-
lowing inequalities,

〈s, x〉 − α ≤ f(x),

⇔ 〈s, x〉 − f(x) ≤ α.

The smallest value of α is found at f∗(s) which is the conjugate of f(x).

2.4 Planar graph

Definition 2.27. [Planar graph] A graph G = (V, E) is said to be a planar
graph if it can be drawn in a plane with no two edges crossing each other
except at a vertex to which they are incident.

Examples of a planar and a non planar graph are presented in Figure
2.10.

Definition 2.28. [Degree] In a graph G = (V, E), the degree of a node v ∈ V
is the number of edges e ∈ E that are connected to v.

17

2.4. Planar graph

x

f(x)

f(x)− 〈s, x〉

−f∗(s)

〈s, x〉

Figure 2.9: Geometric interpretation of a conjugate function

18

2.4. Planar graph

(a) A planar graph. (b) A non planar graph.

Figure 2.10: Example of planar and non-planar graph.

For example, in Figure 2.10(a) the degree of the node V is 4.

Fact 2.29. (Euler’s Formula) For a connected planar graph G with nv ver-
tices, ne edges and nf faces, the following must hold:

nv − ne + nf = 2.

19

Chapter 3

Algorithm

In this chapter, we explain our algorithm for computing the conjugate
of a proper convex l.s.c. bivariate PLQ function in linear-time using graph-
matrix calculus.

3.1 Data structure

The input for our algorithm is a graph, called the entity graph, and
specific information on each entity. The entity graph is built from a proper
convex l.s.c PLQ function. Each node of the entity graph represents an
entity of the PLQ function. From now we always assume the PLQ function
is a polyhedral subdivision.

Example 3.1. Consider the example of the l1 norm, f(x1, x2) = |x1|+ |x2|.
The partition of its domain is illustrated in Figure 3.1. This function has
nine entities: four faces, four rays and one vertex.

Let G = (V, E) be the entity graph where V is the set of nodes and E
is the set of edges. Each node of the set V represents an entity. When two
entities are adjacent then we connect them using an edge. Figure 3.2 is the
entity graph corresponding to the l1 norm function.

In addition, associated with each node of G we store the following in-
formation about an entity: the GPH matrix, the adjacent entities and the
entity type.

3.1.1 GPH matrix

We use GPH matrices to represent a PLQ function. For each entity,
we need to store enough information so that we can completely recover it
from the GPH matrix. We select some points from dom f , compute the
full subdifferential and the function value at those points. Points in the
GPH matrix representation are stored in order. Suppose we pick n points
to completely represent an entity. We represent the GPH matrix as

20

3.1. Data structure

Figure 3.1: The domain of the l1 norm function

Figure 3.2: Entity graph for the l1 norm function

21

3.1. Data structure

GPH matrix =


x1 x2 . . . xn
s1 s2 . . . sn
y1 y2 . . . yn
b1 b2 . . . bn
b∗1 b∗2 . . . b∗n


where xi is the coordinate of a point, si is a subgradient of f at the point xi
and yi is the value of f at xi. The points xi represents a polyhedral set in the
plane and are given in clockwise order. Note that we need to compute the
full subdifferential of f at xi. The binary flag bi is used to identify whether
xi is an extreme point. We classify a point using the flag from Table 3.1.

Table 3.1: Flag for x and s.

Flag Type

0 extreme point
1 non-extreme point

Similarly, using another binary flag b∗i we indicate whether si is an ex-
treme point. Table 3.1 contains the flags used for b∗i .

In Rd, the dimension of the GPH matrix is (2d + 3)n, where n is the
number of points. For example, in R2, the dimension of a GPH matrix is
7n.

Example 3.2. Consider the following example

f(x1, x2) =

{
1
2x1

2 + 1
2x2

2, if x1 ≥ 0, x2 ≥ 0;

∞, otherwise;

whose conjugate is

f∗(s1, s2) =


1
2(s2

1 + s2
2), if s1 ≥ 0, s2 ≥ 0;

1
2s

2
2, if s1 ≤ 0, s2 ≥ 0;

0, if s1 ≤ 0, s2 ≤ 0;
1
2s

2
1, if s1 ≥ 0, s2 ≤ 0;

The domain of the PLQ function f is shown in Figure 3.3(a). Suppose we
want to compute the GPH matrix for the entity E1 = {(x1, 0) : x1 ≥ 0}.
The entity E1 is a ray which is adjacent to F1 = {x : x1, x2 ≥ 0} associated
with function f1(x1, x2) = 1

2x1
2 + 1

2x2
2 and entity F2 = {x : x1 ≥ 0, x2 ≤ 0}

22

3.1. Data structure

associated with function f2(x1, x2) =∞. The domain of f2(x1, x2) is empty
and the subdifferential is ∂f2(x1, x2) = ∅.

The point x = (0, 0) is an extreme point of E1 and we represent it using
the flag b = 0. The subdifferential of the function f̃1 defined on R+ × R+

and equal to f1 is
∂f̃1(x1, x2) = {0} × (−∞, 0].

The point (0, 0) is an extreme point of f̃1 and we store it twice in the
GPH matrix. For x = (0, 0) a subgradient of f̃1 is s = (0, 0) which is an
extreme point of ∂f̃1(0, 0) and we indicate it by using b∗ = 0. Any other
subgradient at x = (0, 0) e.g. s = (0,−1) is a non-extreme point and has
the flag b∗ = 1.

Consider another point x′ = (1, 0) (or any other point) from E1. We use
the flag b = 1 to indicate that x′ is a non-extreme point in the primal. The
subdifferential of the function f1, whose domain is R+×R+, at x′ is {(1, 0)}
which is an extreme point in the dual. The GPH matrix for E1 is

GPH1 =



1 0 0
0 0 0
1 0 0
0 0 −1
1 0 ∞
1 0 0
0 0 1


.

In R2, we can recover the polyhedral set by computing the convex hull of xi
where i = 1, · · · , n (si in the dual). Note that we need at least one extreme
point to recover the polyhedral set and all non-extreme points are connected
with their adjacent extreme points.

Fact 3.3. (Representation of a polyhedral set [Roc70, Theorem 19.1],[BJS11,
Theorem 2.1]) Let C = {x ∈ R2 : aTi x ≤ bi, x ≥ 0, i = 1, · · · ,m} be a poly-
hedral set. Assume the set of extreme points is nonempty; then it contains a
finite number of elements e.g. x1, x2, · · · , xk. If C is bounded then the set of
extreme direction is empty. If C is not bounded then the set of extreme di-
rections is nonempty and has a finite number of elements e.g. d1, d2, · · · , dl.
Moreover, x̄ ∈ C if and only if it is represented as a convex combination of
the extreme points and the nonnegative linear combination of the extreme
directions, that is,

x̄ =
k∑
i=1

λixi +
l∑

i=1

µidi,

23

3.1. Data structure

(a) (b)

Figure 3.3: (a)The domain of a PLQ function f , we use blue dot to indicate
an extreme point in the primal (b)The subdifferential of f , green dots are
used to represent the extreme points in the dual.

where
∑k

i=1 λi = 1, λi ≥ 0, i = 1, · · · , k, µi ≥ 0, i = 1, · · · , l.

If we store enough points then it is possible to represent any polyhedral
set using a GPH matrix. We store the polyhedral set having different number
of inequalities as follows,

(i) No inequality: If no inequality is found then the domain is the full
space. To represent the full space we create an artificial polyhedral
decomposition. Note that the polyhedral decomposition is not unique.
However the decomposition should be a polyhedral subdivision. Figure
3.4 shows one possible representation of the full space.

(ii) Polyhedral sets with one inequality: If the inequality represents a half
space then we use the same representation as the full space i.e. we
make an artificial polyhedral decomposition and then store the ex-
treme and the non-extreme points. If the inequality represents a ray,
which already contains an extreme point, we pick a non-extreme point
to represent it. We divide a line into two rays and store it with one ex-
treme and two non-extreme points. Examples are presented in Figure
3.5.

24

3.1. Data structure

Figure 3.4: Example of no inequality. We use dotted lines to indicate the
artificial polyhedral decomposition. We represent extreme points by using
blue and non-extreme points by using orange color.

(iii) Polyhedral sets with two or more inequalities: Consider the following
two cases,

(a) If the hyperplanes associated with inequalities intersect, we pick
the extreme points of the intersection. If the extreme points are
not enough to represent the polyhedral set then we add some
non-extreme points.

(b) If the hyperplanes do not intersect e.g. if they are parallel then
we represent each of them individually using extreme and non-
extreme points and recover the polyhedral set by computing the
convex hull.

The representation of the polyhedral set with two or more inequalities
is illustrated in Figure 3.6 and 3.7.

Consider the domain of the l1 norm function which is illustrated in Fig-
ure 3.1. Suppose we want to compute the GPH matrix of the face E1. The
entity E1 contains all the points with nonnegative coordinates. There is
no unique representation of the GPH matrix. For efficiency we should pick
minimal number of points to completely represent an entity.

Example 3.4. The entity E1 can be represented using different GPH ma-

25

3.1. Data structure

(a) (b)

(c)

Figure 3.5: Example of polyhedral sets with one inequality. (a) A half space.
To represent it we assume a ray in the half space and then select the extreme
and the non-extreme points. (b) A ray which contains an extreme point.
To represent it completely we pick a non-extreme point. (c) A line. We
represent a line using two rays.

26

3.1. Data structure

(a) (b)

Figure 3.6: Example of the polyhedral sets with two hyperplanes. (a) The
polyhedral set if the hyperplanes are parallel (b) The polyhedral set if two
hyperplanes intersect.

(a) (b)

Figure 3.7: Example of polyhedral sets with three inequalities.

27

3.1. Data structure

trices. For example either of the following would work.

1 0 0
0 0 1
1 1 1
1 1 1
1 0 1
1 0 1
0 0 0


,



5 1 0 0 0
0 0 0 1 10
1 1 1 1 1
1 1 1 1 1

12.5 1 0 1 50
1 1 0 1 1
0 0 0 0 0


.

Now we show how to recover the function from the GPH matrix. The
procedure is general so we explain it for the PLQ function f : Rd →
Rd ∪ {+∞}. Recall that, on each piece of the domain the function f is
quadratic and represented by Equation (2.1). The subgradient of f at a
point x is represented by Equation (2.3). For each x we get d equations
from (2.3)(gradient information) and 1 equation from knowing the function
value. So for each x we have a total of d+ 1 equations.

The number of unknowns for Qk is d+ d− 1 + · · ·+ 1 = d(d+1)
2 since Qk

is a symmetric matrix. The number of unknowns for qk is d and for αk is 1.
The total number of unknowns are

d(d+ 1)

2
+ d+ 1 =(d+ 1)(

d

2
+ 1).

So the minimum number of points required to determine the function fk is
(dd/2e+ 1).

In R2, if we want to recover a function from a GPH matrix, we need to
compute the value of 6 unknowns. For each point we get 3 equations. So
we need to store at least two points to represent an entity. However, if two
points are not enough to completely represent the polyhedral set then we
need to store more points.

For every x we denote the function as follows

fk(x) =y =
1

2

[
x1 x2

] [a b
b c

] [
x1

x2

]
+
[
q1 q2

] [x1

x2

]
+ α. (3.1)

So the gradient can be computed as

s1 = ax1 + bx2 + q1, (3.2)

s2 = bx1 + cx2 + q2. (3.3)

28

3.1. Data structure

Consider the entity E1 of Example 3.1, which is a face. The GPH matrix
for E1 is,

GPH1 =



1 0 0
0 0 1
1 1 1
1 1 1
1 0 1
1 0 1
0 0 0


.

Here we pick three points from dom f to represent E1.
The 6th row of the GPH of E1 is the flag for these points and the last

row is the flag for the subdifferentials. We have an extreme point (0, 0) and
two non-extreme points ((1, 0) and (0, 1)). We use a 0 as a flag to indicate
that the point (0, 0) is an extreme point. Similarly, we use 1 to indicate that
the points (1, 0) and (0, 1) are non-extreme points.

To get the function that defines the entity E1 we need to compute the
value of 6 unknowns (a, b, c, q1, q2, α). From Equation (3.2) we get the fol-
lowing linear system, 1

1
1

 =

1 0 1
0 0 1
0 1 1

 ab
q1

 .
The solution of the system is  ab

q1

 =

0
0
1

 .
Similarly using the Equation (3.3) we compute bc

q2

 =

0
0
1

 .
If we substitute the value of a, b, c, q1 and q2 in Equation (3.1) we get α = 0.
We deduce

f1(x1, x2) = x1 + x2. (3.4)

In the GPH matrix representation, we can store a point x multiple times
if the subdifferential is multi-valued i.e. if we have multiple subgradient
at x [GL10, GL11]. For example, consider the entity E5 of Example 3.1.

29

3.1. Data structure

The entity E5 is a ray which is adjacent to two faces: E1 and E4. Consider
x = (0, 0). The face E1 is associated with f1(x) = x1 + x2 and the only
subgradient of f1 at x = (0, 0) is (1, 1). Similarly, the face E4 is associated
with

f4(x) = x1 − x2,

and at x = (0, 0), the subgradient is (1,−1). At any point on E5 (except
(0, 0)) the subdifferential is

∂f(x1, x2) ={1} × [1,−1],

= co {(1, 1), (1,−1)}.

and has two extreme points (1, 1) and (1,−1). We represents the GPH
matrix associated with E5 as

GPH5 =



1 0 0 1
0 0 0 0
1 1 1 1
1 1 −1 −1
1 0 0 1
1 0 0 1
0 0 0 0


.

Similarly the vertex E9 is adjacent to four faces. The subdifferential is

∂f(0, 0) =[−1, 1]× [−1, 1],

= co {(1, 1), (1,−1), (−1, 1), (−1,−1)}.

This set is representable using 4 points and a GPH matrix associated with
E9 is

GPH9 =



0 0 0 0
0 0 0 0
1 −1 −1 1
1 1 −1 −1
0 0 0 0
0 0 0 0
0 0 0 0


.

Note that the subdifferential of every x inside of a face is single valued. How-
ever, the subdifferential of a vertex or at any point of an edge (line/ray/segment)
is usually multi-valued.

In our implementation, we use two hypermatrices Hp and Hd to store
the GPH matrices of all entities in the domain of f and the domain of

30

3.1. Data structure

f∗ respectively. A hypermatrix is a generalization of a matrix to a multi-
dimensional array. In Rd, the dimension of the hypermatrix is N×M×nmax
where N is the total number of entities, M = (2d+ 3) is the number of rows
of the GPH matrix and nmax = maxi=1,...,N ni where ni is the number of
columns in the GPH matrix of entity i. For example, the function l1 norm
has nine entities and the maximum value of ni is 4 which is found from the
GPH matrix of the vertex E9. So the dimension of the hypermatrix H used
to store the entities of the l1 norm is 9× 7× 4.

Recall that with our data structure, for any point x, we can recover not
just one subgradient of f at x but the full subdifferential of f at x.

3.1.2 Adjacent entities

Each node of G contains information of its adjacent entities. We store
the adjacency information of all entities using a matrix. We call this matrix
a Neighbour Matrix and denote it by NM . The dimension of NM is N ×m
where N is the number of entities and m is the maximum degree of all
vertices in the entity graph.

Consider Example 3.1 which has nine entities. The vertex E9 has eight
adjacent entities which is the maximum. So we use a Neighbour Matrix of
dimension 9× 8. The entity E1 is adjacent to E5, E6 and E9. In the entity
graph G, the node V1 which contains E1, stores the indices of the adjacent
entities i.e. 5, 6, 9. We represent the Neighbour Matrix of Example 3.1 as

NM =



5 6 9 0 0 0 0 0
6 7 9 0 0 0 0 0
7 8 9 0 0 0 0 0
5 8 9 0 0 0 0 0
1 4 9 0 0 0 0 0
1 2 9 0 0 0 0 0
2 3 9 0 0 0 0 0
3 4 9 0 0 0 0 0
1 2 3 4 5 6 7 8


.

Each row of this matrix contains the adjacency information of the corre-
sponding entity. For example, the index of all adjacent entities of E5 is
found in the 5th row of NM .

However, we never read the full NM matrix. We extract the non-zero
elements from each row which gives the full adjacency information of an
entity. As a result the time complexity is not increased.

31

3.2. Algorithm

3.1.3 Entity Type

The type of each entity is defined by using a flag from Table 3.2. We use
an array, called T , of dimension 1×N to store the type of all entities.

Table 3.2: Entity type.

Entity Type Flag

Vertex 1
Face 2
Line 3
Ray 4
Segment 5

For example, the array which stores the entity type of the l1 norm func-
tion is

T =
[
2 2 2 2 4 4 4 4 1

]
and means that entities E1 to E4 are faces, entities E5 to E8 are rays and
E9 is a vertex.

We visualize the data structure using Figure 3.8. Consider a PLQ func-
tion with N entities and each entity has a GPH matrix, adjacency infor-
mation and entity type. We store all GPH matrices in a hypermatrix, all
adjacency information in neighbour matrix NM and all entity types in an
array T .

3.2 Algorithm

Consider the conjugate computation problem as a graph traversal prob-
lem. In Algorithm 1, we use breadth-first search to traverse the entity graph
G.

Consider f : R2 → R ∪ {+∞} where dom f has N entities. In this
algorithm, when we traverse an entity i, we store the index of all adjacent
entities in an array denoted D. The dimension of D is 1×N . We traverse
G according to the index stored in D. Note that we will not store any index
in D which is already stored in D. To check that the index of an entity
is already stored in D or not we use a binary array I of dimension 1 × N .
In the binary array, if the value of an element is 1 then the index of the
corresponding entity is already stored in D and if the value is 0 then it is
not stored yet.

32

3.2. Algorithm

Algorithm 1: Compute PLQ Conjugate

input : Hp (a hypermatrix which contains the GPH matrices of all
entities), NMp (contains the adjacency information of all
entities), Tp (contains the type of all entities).

output: Hd (a hypermatrix which contains the GPH matrices of all
dual entities), NMd (contains the adjacency information of
all dual entities), Td (contains the type of all dual entities).

Initialize I with zero and set I(1) = 1 ;
Initialize D with zero and set D(1) = 1 and N̄ = 1;
for i← 1 to N do

j ← D(i) ;
Gp ← Hp(j,:,:) ;
[Gd, t]← Conjugate GPH(Gp) ;
Hd(j,:,:) ← Gd ;
Td(j)← t ;
if (N̄ < N) then

Eadj = NMp(j, :) ;
Compute Index(Eadj , D, I, N̄) ;

end

end
NMd ← NMp ;

33

3.2. Algorithm

Figure 3.8: Visualization of the data structure

Suppose we want to traverse the entity graph G of Figure 3.2 using
Algorithm 1. We start from E1 which is a face. We have the following
informations about E1,

Gp =



1 0 0
0 0 1
1 1 1
1 1 1
1 0 1
1 0 1
0 0 0


,

Indices of adjacent entities =
[
5 6 9

]
,

Entity type =2.

We start to traverse the entity graph G from the entity E1 and initialize
D as

D =
[
1 0 0 0 0 0 0 0

]
,

the index array I as

I =
[
1 0 0 0 0 0 0 0

]
,

34

3.3. Complexity

and N̄ = 1. We apply Algorithm 2 to compute the conjugate of E1. The
matrix Gd is the GPH matrix which contains the conjugate of E1, we have

Gd =



1 1 1
1 1 1
1 0 0
0 0 1
0 0 0
1 0 1
0 0 0


.

The next step is to identify the type of entity of Gd, i.e. if it is a vertex,
an edge, or a face. We compute the total number of unique subdifferentials
of Gd, which is 1 and deduce that the conjugate of the face E1 is a vertex.

Next we check the adjacent entities of E1 using Algorithm 3. We find
that the entity E1 is adjacent to the entities E5, E6, E9. Then we check the
corresponding index of I to see whether these entities are already included
in D or not. In the index array I, the 5th, 6th and 9th elements are zero i.e.
these elements are not included in D. So we update D, I and N̄ as

I =
[
1 0 0 0 1 1 0 0 1

]
,

D =
[
1 5 6 9 0 0 0 0 0

]
,

N̄ =4.

We check the index of the next entity from D which is 5. Now we move
to E5 and do the same computation. Some steps of traversing the entity
graph(G) of the l1 norm function are illustrated in Figure 3.9.

We traverse all nodes of G and update the array D and I accordingly.
The changes of D and I after each iteration of Algorithm 1 are presented in
Table 3.3.

In Table 3.3, we use red color for a currently visiting vertex and blue
color for already visited vertex.

Figure 3.10 shows the partition of the primal and the dual domain of the
l1 norm function. The mapping of the entities from the primal to the dual
domain is presented in Table 3.4. According to Table 3.4, the mapping is a
one-to-one entity mapping.

3.3 Complexity

The space and time complexity of our algorithm is computed next.

35

3.3. Complexity

Algorithm 2: Compute GPH

input : Gp (the GPH matrix in the primal).
output: Gd (the GPH matrix in the dual which contains the

conjugate of Gp), t (type of the dual entity).

//Compute Gd ;
x = Gp(1 : 2, :), s = Gp(3 : 4, :) ;
y = Gp(5, :), b = Gp(6, :) ;
b∗ = Gp(7, :) ;

The conjugate is Gd ←


s
x

sTx− y
b
b∗

;

//Compute t ;
Pu = number of unique vectors in {Gd(1, k), GdC(2, k) : k};
Pt = number of columns of Gd ;
if Pu = 1 and Pt ≥ 1 then

// Gd is a vertex;
t = 1 ;

else if Pu = 2 then
//Gd is an edge;
Pb0 = number of elements in {Gd(6, k) : Gd(6, k) = 0} ;
Pb1 = number of elements in {Gd(6, k) : Gd(6, k) = 1} ;
if Pb1 = 2 then

// Gd is a line;
t = 3 ;

else if (Pb0 = 1 and Pb1 = 1) then
// Gd is a ray;
t = 4 ;

else if Pb0 = 2 then
// Gd is a segment;
t = 5 ;

end

else if Pu ≥ 2 then
// Gd is a face;
t = 2 ;

end

36

3.3. Complexity

Algorithm 3: Compute Index

input : Eadj (contains the indices of all adjacent entities of an
entity), D (contains the indices of the entities to traverse), I
(indicate that which entities are already included in D), N̄
(number of nonzero elements in D).

output: D, I, N̄ .

Adj ← [extract the non zero elements from Eadj] ;
for i← 1 to size of(Adj) do

index← Adj(i) ;
if (I(index) == 0) then

I(index) = 1 ;
N̄ ← N̄ + 1;
D(N̄) = index ;

end

end

Table 3.3: Iterations of Algorithm 1.

Iterations D I

Initialization 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 1 5 6 9 0 0 0 0 0 1 0 0 0 1 1 0 0 1

2 1 5 6 9 4 0 0 0 0 1 0 0 1 1 1 0 0 1

3 1 5 6 9 4 2 0 0 0 1 1 0 1 1 1 0 0 1

4 1 5 6 9 4 2 3 7 8 1 1 1 1 1 1 1 1 1

5 1 5 6 9 4 2 3 7 8 1 1 1 1 1 1 1 1 1

6 1 5 6 9 4 2 3 7 8 1 1 1 1 1 1 1 1 1

7 1 5 6 9 4 2 3 7 8 1 1 1 1 1 1 1 1 1

8 1 5 6 9 4 2 3 7 8 1 1 1 1 1 1 1 1 1

9 1 5 6 9 4 2 3 7 8 1 1 1 1 1 1 1 1 1

37

3.3. Complexity

(a) Traversing E1.

(b) Traversing E5.

(c) Traversing E6.

(d) Traversing E9.

Figure 3.9: Traversing the entity graph of the l1 norm function using Algo-
rithm 1.

38

3.3. Complexity

Table 3.4: Mapping of the primal entity to the dual entity for the l1 norm
function.

Primal entity Type Dual entity Type

E1 face 1 E1
′ vertex 1

E2 face 2 E2
′ vertex 2

E3 face 3 E3
′ vertex 3

E4 face 4 E4
′ vertex 4

E5 ray 1 E5
′ segment 1

E6 ray 2 E6
′ segment 2

E7 ray 3 E7
′ segment 3

E8 ray 4 E8
′ segment 4

E9 vertex 1 E9
′ face 1

(a) Partition of dom f . (b) Partition of dom f∗.

Figure 3.10: The partition of domain of the l1 norm function and its conju-
gate.

39

3.3. Complexity

3.3.1 Space complexity

Proposition 3.5. Consider a proper convex l.s.c bivariate PLQ function
f : R2 → R2 ∪ {+∞} with N entities. The worst-case space complexity for
computing the conjugate of f using Algorithm 1 is O(N2).

Proof. In Algorithm 1, we use two hypermatrices (Hp and Hd) to store
the input and output GPH matrices, a Neighbour matrix NM to store the
adjacency information, two arrays (Tp and Td) to store the type of entities,
an array D to store the indices to traverse and a binary array I.

The space complexity of our algorithm mainly depends on the size of
the hypermatrix and the Neighbour matrix. Recall that the size of the
hypermatrix H is N ×M × nmax where N is the total number of entities,
M = (2d + 3) is the number of rows of the GPH matrix and nmax is the
maximum number of columns in the GPH matrix. If we assume d is constant,
the worst-case space complexity of H is O(N).

In addition, we use four arrays: Tp, Td, D and I. In the worst-case, the
space required to store each array is O(N).

In Algorithm 1, we use a planar graph as the entity graph. Recall that the
sum of the degrees of the vertices equals twice the number of edges and the
dimension of the Neighbour matrix NM is N ×m where m is the maximum
degree of all vertices. For N entities, in the worst-case the maximum degree
of the vertices is (N − 1). So the worst-case space complexity of NM is
O(N2).

Remark 3.6. A sparse matrix data structure would lower that space com-
plexity to linear as would an adjacency list data structure i.e. the quadratic
space complexity of our implementation is a Scilab limitation.

In addition, the quadratic space complexity does not arise when the
maximum degree of vertices is bounded. For example, the worst-case space
complexity of a grid domain in R2 is linear where the maximum degree of
the vertices is 8 and the dimension of NM is N × 8. The following result
shows that even for nongrid domains, the matrix NM is sparse with at most
O(N) nonzero entries.

Corollary 3.7. Let G = (V, E) be a connected planar graph with ne edges and
nv vertices. Assume nv ≥ 3. Then the total number of edges is ne ≤ 3nv−6.

Proof. In a planar graph G, the edges divide the plane into different regions
and each region is called a face of the graph G. The total number of edges
bordering a face Fi is called the degree of Fi.

40

3.3. Complexity

Note that, in any planar graph G, since an edge separates 2 faces, the
sum of the degree of all faces is equal to twice the number of edges i.e.
m∑
i=1

deg Fi = 2ne.

Any face has degree deg Fi ≥ 3. So 2ne =
m∑
i=1

deg Fi ≥ 3nf , hence

nf ≤ 2
3ne. According to Euler’s formula from Fact 2.29, nv−ne+nf = 2. So

nf = 2+ne−nv ≤ 2
3ne, which gives 1

3ne ≤ nv−2, consequently ne ≤ 3nv−6.

Unfortunately, we have to use the Neighbour matrix NM to store the
adjacency information due to the limitation of suitable data type in Scilab.
Linear space complexity can be achieved if this algorithm is implemented
in another language like Java or C. Then we can represent each node of the
entity graph by using a structure containing the GPH matrix, the adjacent
list and the entity type. Although Scilab supports the use of structure,
its structure implementation is list-based while other languages use a more
efficient array-based implementation.

3.3.2 Time complexity

Proposition 3.8. The worst-case time complexity for computing the conju-
gate of a proper convex l.s.c bivariate PLQ function f with N entities using
Algorithm 1 is O(N).

Proof. The time complexity of our algorithm comes from the following parts

(i) Extracting N GPH matrices from the hypermatrix Hp according to
the index stored in D and store it to E,

(ii) Computing the conjugate of E,

(iii) Checking the adjacency information of E and updating the arrays D
and I,

(iv) Storing the GPH matrix, containing the conjugate of E, in Hd in the
index which is found from the array D.

Task (i) amounts to accessing an index of a hypermatrix Hp which is a multi
dimensional array. The advantage of using an array over other data types is
that the time for accessing any element of an array is always constant. This
is the main reason for using a hypermatrix to store the GPH matrices. So
the time complexity for accessing any element of Hp, where the dimension of

41

3.3. Complexity

Hp is N ×M × ni, is O(1). So the total time required to access N elements
of Hp is O(N).

Task (ii) involves computing the conjugate. The time complexity for
computing the conjugate of N entities is linear i.e. O(N).

In addition, task (iii) involves storing the index of adjacent entities in the
array D. Recall that the indices stored in D are used to traverse the entity
graph. In this part, when storing an index in D we need to check whether
the index is already stored in D or not. In the worse-case, searching the
index of an entity in an array takes O(N) time. For N entities, the time
for storing all indices in D is O(N2). To improve from this quadratic time
complexity, we use a binary array I. Every time we want to insert the index
of an entity in D we check the corresponding position of I. If we find 0, that
means the index is not stored in D and we can insert it in D. If we find 1, it
indicates this index is already stored in D. Accessing a position of I takes
constant time. So the time complexity for N entities reduces to linear i.e.
O(N).

Finally, task (iv) requires accessing a position of a hypermatrix Hd and
storing the output GPH matrix in Hd. Similar to the first part, this also
takes linear time i.e. the time complexity is O(N).

In total, the time complexity is

O(N +N +N +N) = O(N).

Therefore, the overall time complexity for our algorithm is linear.

We proved that it is possible to compute the conjugate of a bivariate
PLQ function in linear time while using the same input and output data
structure.

42

Chapter 4

Numerical experiments

In this chapter, we will present some examples and the result of a nu-
merical experiment. Our algorithm is implemented in Scilab [SCI].

4.1 Example 1

The PLQ (the l1 norm) function explained in Chapter 4 was an example
of a polyhedral subdivision. Now we explain an example of a PLQ function
that is not a polyhedral subdivision.

Example 4.1. Consider the PLQ function f which is defined as follows,

f(x1, x2) =


1
2(x2

1 + x2
2), if x1 ≥ 0, x2 ≥ 0;

−2x1 + 1
2x

2
2, if x1 ≤ 0, x2 ≥ 0;

∞, otherwise.

(4.1)

The domain of f has three pieces: a strictly convex piece, a convex piece
and a piece with infinite function value. The dom f is decomposed into six
entities: two finite faces, three rays and one vertex. This is presented in
Figure 4.2.

The polyhedral set for the PLQ function f is C = {C1, C2, C3} which is
not a polyhedral subdivision because C1 ∩ C3 or C2 ∩ C3 is neither empty
nor a common proper face of both. We need to modify the domain to make
it a polyhedral subdivision.

Note that there is no unique way to make a polyhedral subdivision. We
divide C3 into two pieces where on each piece the function value is infinite.
Now the domain of f becomes a polyhedral subdivision as C1 ∩ C3 and
C2 ∩ C4 is a common proper face of both. The modified domain of f is
presented in Figure 4.3.

The input for Algorithm 1 consists of a hypermatrix Hp, a Neighbour
matrix NM and an array Tp. The hypermatrix Hp has the following six

43

4.1. Example 1

Figure 4.1: The function f(x1, x2) from Equation 4.1

E4

E5 E3

E1E2

E6

1
2(x1

2 + x2
2)−2x1 + 1

2x2
2

∞

Figure 4.2: Partition of dom f which is not a polyhedral subdivision.

44

4.1. Example 1

E4

E5 E3

E1E2

E6

1
2(x1

2 + x2
2)−2x1 + 1

2x2
2

∞∞

Figure 4.3: Partition of dom f which is a polyhedral subdivision.

GPH matrices,

Hp(1, :, :) =



1 0 0
0 0 1
1 0 0
0 0 1
1
2 0 1

2
1 0 1
0 0 0


,

Hp(2, :, :) =



−1 0 0
0 0 1
−2 −2 −2
0 0 1
2 0 1

2
1 0 1
0 0 0


.

The entity E3 is a ray which is adjacent to two faces: F1 and F3. We pick
two points to build a GPH matrix for E3. The function associated with F1

is

f1(x1, x2) =
1

2
(x2

1 + x2
2),

45

4.1. Example 1

and the function associated with F3 is

f3(x1, x2) =∞.

Since f3 =∞, dom f3 = ∅ and the subdifferential is ∂f3 = ∅.
Assume we pick a point (0, 0) which is an extreme point of E3. The

subdifferential of the function f̃1 defined on R+ × R+ and equal to f1 is

∂f̃1(0, 0) ={0} × (−∞, 0].

In the GPH matrix we store the point x = (0, 0) twice because it is the
extreme point of the function f̃1. For s = (0, 0), we set b∗ = 0 as it is
the extreme point of ∂f̃1(0, 0). When we choose any other subgradient e.g.
s = (0,−1) then we set b∗ = 1 as it is a non-extreme point.

Similarly, if we pick another point (1, 0), the subdifferential of f1 at (1, 0)
is {(1, 0)} which is an extreme point. The GPH matrix of E3 is

Hp(3, :, :) =



1 0 0
0 0 0
1 0 0
0 0 −1
1
2 0 ∞
1 0 0
0 0 1


.

A similar computation is required to compute the subdifferential of E5

and E6 because in both entities we need to represent the infinity in the
domain.

Hp(4, :, :) =



0 0 0 0
1 0 0 1
0 0 −2 −2
1 0 0 1
1
2 0 0 1

2
1 0 0 1
0 0 0 0


,

Hp(5, :, :) =



−1 0 0
0 0 0
−2 −2 −2
0 0 −2
2 0 ∞
1 0 0
0 0 1


,

46

4.1. Example 1

Hp(6, :, :) =



0 0 0 0
0 0 0 0
0 −2 −2 0
0 0 −2 −1
0 0 ∞ ∞
0 0 0 0
0 0 1 1


.

The maximum degree of entities is 5. So the Neighbour matrix NM of
f is

NM =



3 4 6 0 0
4 5 6 0 0
1 6 0 0 0
1 2 6 0 0
2 6 0 0 0
1 2 3 4 5

 .

The type of all input entities are stored in Tp as

Tp =
[
2 2 4 4 4 1

]
which indicates that the domain of f has two faces, three rays and a vertex.

We apply Algorithm 1 and compute the conjugate of f

f∗(s1, s2) =



1
2(s2

1 + s2
2), if s1 ≥ 0, s2 ≥ 0;

1
2s

2
2, if −2 ≤ s1 ≤ 0, s2 ≥ 0;

0, if −2 ≤ s1 ≤ 0, s2 ≤ 0;
1
2s

2
1, if s1 ≥ 0, s2 ≤ 0;

∞, otherwise.

The conjugate is illustrated in Figure 4.4. The domain of f∗ has twelve
entities: four faces, five rays, one segment and two vertices. The partition
of dom f∗ is illustrated in Figure 4.5.

We store all the entities making a partition of dom f∗ in a hypermatrix

47

4.1. Example 1

Figure 4.4: The conjugate f∗(s1, s2).

E1E2

E4 E3

E5

E6E7

E9 E8

E11

E12

(0, 0)(−2, 0)

1
2s2

2

1
2s1

20

1
2(s1

2 + s2
2)

E10

Figure 4.5: Partition of the domain of f∗.

48

4.1. Example 1

Hd as follows,

Hd(1, :, :) =



1 0 0
0 0 1
1 0 0
0 0 1
1
2 0 1

2
1 0 1
0 0 0


,

Hd(2, :, :) =



−2 −2 −2
0 0 1
−1 0 0
0 0 1
0 0 1

2
1 0 1
0 0 0


,

Hd(3, :, :) =



1 0 0
0 0 −1
1 0 0
0 0 0
1
2 0 −∞
1 0 0
0 0 1


,

Hd(4, :, :) =



0 0 −2 −2
1 0 0 1
0 0 0 0
1 0 0 1
1
2 0 0 1

2
1 0 0 1
0 0 0 0


,

Hd(5, :, :) =



−2 −2 −2
0 0 −2
−1 0 0
0 0 0
0 0 −∞
1 0 0
0 0 1


,

49

4.2. Example 2

Hd(6, :, :) =



0 −2 −2 0
0 0 −2 −1
0 0 0 0
0 0 0 0
0 0 −∞ −∞
0 0 0 0
0 0 1 1


.

The adjacency information of the entities are not changed in the dual i.e.
NMp = NMd while

Td =
[
2 4 2 2 4 2

]
.

Table 4.1 is the mapping of the entities from the primal to the dual
domain.

Table 4.1: Mapping of the primal entity to the dual entity.

Primal entity Type Dual entity Type

E1 face 1 E1
′ face 1

E2 face 2 E7
′ ray 3

E3 ray 1 E3
′ face 3

E4 ray 2 E2
′, E6

′, E7
′, face 2, ray 2, ray 3,

E10
′, E11

′, E12
′ segment 1, vertex 1,

vertex 2
E5 ray 3 E9

′ ray 5
E6 vertex 1 E4

′,E8
′ face 4,ray 4

According to Table 4.1, the mapping is a one-to-many entity mapping.

4.2 Example 2

Example 4.2. Consider the example of 2D energy function,

f(x1, x2) =
1

2
(x1

2 + x2
2)

which is presented in Figure 4.6.
This function does not have any inequality constraint. The domain of

this function is the full two dimensional space and it has only one entity.
To represent the full space we have to make some artificial partitions. Note
that the number of partitions is not unique. However the domain should

50

4.2. Example 2

Figure 4.6: The 2D energy function.

be divided in a way that it becomes a polyhedral subdivision. Suppose we
divide the domain of the energy function as follows

f(x1, x2) =


1
2(x1

2 + x2
2), if − x1 ≤ 0,−x2 ≤ 0;

1
2(x1

2 + x2
2), if x1 ≤ 0,−x2 ≤ 0;

1
2(x1

2 + x2
2), if x1 ≤ 0, x2 ≤ 0;

1
2(x1

2 + x2
2), if − x1 ≤ 0, x2 ≤ 0.

Now the domain of f(x1, x2) has four pieces which is illustrated in Figure
4.7. This is a polyhedral subdivision and dom f has nine entities: four faces,
four rays and a vertex.

The next step is to compute the GPH matrices for all entities. We build

51

4.2. Example 2

1
2(x1

2 + x2
2)1

2(x1
2 + x2

2)

1
2(x1

2 + x2
2)1

2(x1
2 + x2

2)

(1,0)(0,0)(-1,0)

(0,1)

(0,-1)

E5

E6

E7

E8

E2 E1

E3 E4

E9

Figure 4.7: The domain of 2D energy function. The dotted lines indicate
that the partitions are not real partitions.

52

4.2. Example 2

the GPH matrices Hp as follows,

Hp(1, :, :) =



1 0 0
0 0 1
1 0 0
0 0 1
1
2 0 1

2
1 0 1
0 0 0


,

Hp(2, :, :) =



−1 0 0
0 0 1
−1 0 0
0 0 1
1
2 0 1

2
1 0 1
0 0 0


,

Hp(3, :, :) =



−1 0 0
0 0 −1
−1 0 0
0 0 −1
1
2 0 1

2
1 0 1
0 0 0


,

Hp(4, :, :) =



1 0 0
0 0 −1
1 0 0
0 0 −1
1
2 0 1

2
1 0 1
0 0 0


,

Hp(5, :, :) =



1 0 0 1
0 0 0 0
1 0 0 1
0 0 0 0
1
2 0 0 1

2
1 0 0 1
0 0 0 0


,

53

4.2. Example 2

Hp(6, :, :) =



0 0 0 0
1 0 0 1
0 0 0 0
1 0 0 1
1
2 0 0 1

2
1 0 0 1
0 0 0 0


,

Hp(7, :, :) =



−1 0 0 −1
0 0 0 0
−1 0 0 −1
0 0 0 0
1
2 0 0 1

2
1 0 0 1
0 0 0 0


,

Hp(8, :, :) =



0 0 0 0
−1 0 0 −1
0 0 0 0
−1 0 0 −1

1
2 0 0 1

2
1 0 0 1
0 0 0 0


,

Hp(9, :, :) =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

The energy function is the only self conjugate function [Roc70]. So the same
GPH matrices is found in the dual i.e. Hp = Hd. The neighbour matrix
NM and the entity type T for the energy function is the same as the l1
norm function.

All the PLQ functions discussed above have a small number of entities.
In the next section we give an example a of PLQ function with a large
number of entities.

54

4.3. Partition of domain using a grid of points

4.3 Partition of domain using a grid of points

Example 4.3. Consider the following additively separable PLQ function

f(x1, x2) = x4
1 + x4

2.

We set f1(x1) = x4
1 and f2(x2) = x4

2.
We use plq build function from CCA package [CCA] to approximate an

univariate PLQ function from f1. The plq build function is used for the
quadratic approximation of f1. We use a grid of points to approximate f1

into an univariate PLQ function. From the univariate PLQ function we
approximate a bivariate PLQ function.

For example, if we use the points 0, 1, 2, 3 and 4 then we get an univariate
PLQ function with ten pieces. For preserving the shape plq build function
takes one additional point within every interval and divide the domain into
ten quadratic pieces. We get the following PLQ matrix from f1,

PLQ matrix of f1(x1) =



0.00 0.00 0.00 ∞
0.75 0.67 0.00 0.00
1.00 6.00 −8.00 3.00
1.61 9.06 −14.12 6.06
2.00 21.64 −54.55 38.55
2.57 29.16 −84.65 68.65
3.00 49.52 −189.09 202.64
3.55 61.21 −259.26 307.89
4.00 89.47 −459.70 663.40
∞ 0.00 0.00 256.00


.

Figure 4.8 shows the PLQ function built from f1(x1) = x4
1. We consider

the pieces with finite function value and approximate the univariate PLQ
function into a bivariate PLQ function. The univariate PLQ function f1

has eight finite pieces. So the bivariate PLQ function contains 8 ∗ 8 = 64
pieces. Figure 4.9 illustrates the resulting bivariate PLQ function f(x1, x2)
approximating x4

1 + x4
2.

Next we compute all the entities and represents them using GPH matri-
ces. We build the hypermatix Hp and compute the neighbour matrix NM .
Now we apply our algorithm and compute the conjugate of f which is

f∗(s1, s2) =f∗1 (s1) + f∗2 (s2),

where f∗1 (s1) = (3
4)

4
3 s1

4
3 and f∗2 = f∗1 .

55

4.3. Partition of domain using a grid of points

Figure 4.8: The approximation of univariate PLQ function f1(x1).

Figure 4.9: The approximation of function f(x1, x2) = x4
1 + x4

2.

56

4.3. Partition of domain using a grid of points

y = 0.0034x - 0.5095

R² = 0.9991

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e

Total entity

Figure 4.10: The time complexity for computing the conjugate of the func-
tion from Example 4.3 where dom f is partitioned into a grid.

We increase the number of pieces by increasing the size of the grid and
measure the time for computing the conjugate of f . The time complexity
of the function f is presented in Figure 4.10.

4.3.1 Performance Comparison

We compare the performance of our proposed Algorithm with the al-
gorithm developed in [Kha13]. We compute the conjugate of the function
f(x1, x2) from Example 4.3 and measure the time for the computation using
both algorithms. The times for different grid size using both algorithms are
shown in Table 3.8.

57

4.3. Partition of domain using a grid of points

Table 4.2: Comparison of computation time using the algorithm from
[Kha13] and Algorithm Compute PLQ Conjugate. All the times are in sec-
onds.

Total entity [Kha13] Proposed Algorithm

81 4.1 0.3
169 14.4 0.5
289 20.4 1.2
441 40.2 1.4
625 67.9 2.3
841 110.7 2.9

1,089 173.4 3.7
1,369 263.2 4.8
1,681 375.1 5.4
2,025 604.3 6.5
2,401 921.4 8.4
2,809 1,234.9 9.1
3,249 1,651.4 10.8

The table shows that the computation time of the proposed algorithm
is more than 100 times faster than the other algorithm.

Figure 4.11 is the plot of the time complexity for these two algorithms.
For the algorithm developed in [Kha13], when we fit a linear trendline the
value of R2 is 0.91. However, if we fit a quadratic trendline then we get
R2 = 0.99 which means this algorithm actually runs in quadratic time.

We plot the time complexity of our proposed algorithm. We fit a linear
trendline and compute the R2 value which is 0.99. The value of R2 proves
that the proposed algorithm is a linear time algorithm.

We run all numerical experiments on a Core(TM) i5 processor, 64 bit
OS, 8.00 GB RAM, 2.40 GHz HP Pavilion x360 laptop, running Windows
10. The implementation of the algorithm is done using Scilab version 5.5.2.
We perform the numerical experiment several times and obtained similar
results each time.

The implementation of the algorithm from [Kha13] was a pure Scilab
code that did not include the improvement of using the half-edge data struc-
ture provided in an external library. At the price of considerable complexity
and a loss in portability, the [Kha13] algorithm can be implemented in log-
linear time. However, our new algorithm would still be faster (linear-time)
and much simpler.

58

4.3. Partition of domain using a grid of points

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

0 500 1000 1500 2000 2500 3000 3500

T
im

e

Total Entity

Total Entity vs Time
Previous Algorithm

Proposed Algorithm

Figure 4.11: The time complexity for computing the conjugate of the func-
tion from Example 4.3 using the algorithm from [Kha13] and the proposed
algorithm .

59

Chapter 5

Conclusion

This chapter summarizes the work we have completed so far and our
future plans. Our goal was to remove the limitations and improve the
worst-case complexity of the existing algorithms developed for computing
the conjugate of a bivariate PLQ function. The outcome of this thesis is
the first linear-time algorithm to compute the conjugate of a bivariate PLQ
function.

In this thesis, we worked with a proper convex l.s.c PLQ function. We
assume that the domain of the function is a polyhedral subdivision. Otherwise
we need to create a polyhedral subdivision.

We used GPH matrices to store the entities of a PLQ function and
stored all GPH matrices using a hypermatrix. Moreover we stored the full
adjacency information of the entities. The adjacency information was not
stored in the previous approaches. We traversed the entity graph, accessed
each entity and computed the conjugate. We also stored the information
about the visited entity. So for each entity we never need to loop through
all the entities to check whether it is visited or not. As a result the overall
cost for traversing the entity graph becomes linear. This is the improvement
of our algorithm over the algorithms developed before (see Table 1.1).

We computed only the convex conjugate operator. The improved com-
plexity of this algorithm encourage us to develope GPH based algorithms
for computing the other convex transforms like the proximal average, the
Moreau envelope, the addition and the scalar multiplication. An interest-
ing future work will be developing new algorithms using GPH matrix-based
data structure for computing all the convex transforms of a bivariate PLQ
function.

We implemented our algorithm in R2. We provided a detail explanation
about the implementation in Chapter 3. However there is the potential to
implement this algorithm in higher dimension. Directions for future work
include computing the conjugate of a convex PLQ function of d variables.

We presented some examples to show the performance of our algorithm
for different types of bivariate PLQ functions. The results are included in
Chapter 4. We showed that our algorithm can deal with a PLQ function

60

Chapter 5. Conclusion

which has thousands of pieces and still computes the conjugate in linear-
time. We included a graph in Chapter 4 to show the comparison of per-
formance of this algorithm and a previous algorithm. The graph clearly
visualize that our proposed algorithm is significantly faster than the previ-
ous algorithms.

61

Bibliography

[Bal10] E. J. Balder. On subdifferential calculus. Lecture notes, Univer-
siteit Utrecht, 2010. → pages 15

[BBM03] F. Borrelli, A. Bemporad, and M. Morari. Geometric algorithm
for multiparametric linear programming. Journal of Optimization
Theory and Applications, 118(3):515–540, 2003. → pages 6

[BJS11] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear programming
and network flows. John Wiley & Sons, 2011. → pages 23

[CCA] The computational convex analysis numerical library.
http://atoms.scilab.org/toolboxes/CCA. → pages 55

[CGA] Computational Geometry Algorithms Library.
http://www.cgal.org. → pages 5

[Fan63] K. Fan. On the Krein-Milman theorem. Convexity, 7:211–220,
1963. → pages 13

[FH12] P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms
of sampled functions. Theory of Computing, 8(19), 2012. → pages
3

[GKL14] B. Gardiner, J. Khan, and Y. Lucet. Computing the partial
conjugate of convex piecewise linear-quadratic bivariate func-
tions. Computational Optimization and Applications, 58(1):249–
272, 2014. → pages 4, 6, 7

[GL10] B. Gardiner and Y. Lucet. Convex hull algorithms for piecewise
linear-quadratic functions in computational convex analysis. Set-
Valued and Variational Analysis, 18(3-4):467–482, 2010. → pages
29

[GL11] B. Gardiner and Y. Lucet. Graph-matrix calculus for compu-
tational convex analysis. In Fixed-Point Algorithms for Inverse

62

http://atoms.scilab.org/toolboxes/CCA
http://www.cgal.org
http://dx.doi.org/10.4086/toc.2012.v008a019
http://dx.doi.org/10.4086/toc.2012.v008a019
http://dx.doi.org/10.1007/s11228-010-0157-5
http://dx.doi.org/10.1007/s11228-010-0157-5
http://dx.doi.org/10.1007/978-1-4419-9569-8_12
http://dx.doi.org/10.1007/978-1-4419-9569-8_12

Bibliography

Problems in Science and Engineering, volume 49 of Springer Opti-
mization and Its Applications, pages 243–259. Springer New York,
2011. → pages 4, 29

[GL13] B. Gardiner and Y. Lucet. Computing the conjugate of convex
piecewise linear-quadratic bivariate functions. Mathematical Pro-
gramming Series B, 139(1-2):161–184, 2013. → pages 1, 3, 5, 7,
12

[Goe08] R. Goebel. Self-dual smoothing of convex and saddle functions.
Journal of Convex Analysis, 15(1):179–192, 2008. → pages 4, 5

[Her16] C. Hermosilla. Legendre transform and applications to finite
and infinite optimization. Set-Valued and Variational Analysis,
24(4):685–705, 2016. → pages 2

[HUL07] J Hiriart-Urruty and Y. Lucet. Parametric computation of the
legendre-fenchel conjugate with application to the computation
of the moreau envelope. Journal of Convex Analysis, 14(3):657,
2007. → pages 2

[Kha13] J. Khan. Computational convex analysis using parametric
quadratic programming, 2013. → pages vi, viii, 4, 6, 7, 13, 57, 58,
59

[LBT09] Y. Lucet, H. Bauschke, and M. Trienis. The piecewise linear-
quadratic model for computational convex analysis. Computa-
tional Optimization and Applications, 43(1):95–118, May 2009.
→ pages 3

[Luc97] Y. Lucet. Faster than the Fast Legendre Transform, the Linear-
time Legendre Transform. Numerical Algorithms, 16(2):171–185,
1997. → pages 3

[Luc06] Y. Lucet. Fast moreau envelope computation i: numerical algo-
rithms. Numerical Algorithms, 43(3):235–249, 2006. → pages 2,
3

[Luc09] Y. Lucet. New sequential exact euclidean distance transform al-
gorithms based on convex analysis. Image and Vision Computing,
27(1):37–44, 2009. → pages 1

63

http://www.springerlink.com/content/j726881521t4541l/
http://www.springerlink.com/content/j726881521t4541l/
http://www.springerlink.com/content/m41t352758814q50/
http://www.springerlink.com/content/m41t352758814q50/

Bibliography

[Luc10] Y. Lucet. What shape is your conjugate? A survey of computa-
tional convex analysis and its applications [reprint of mr2496900].
SIAM Review, 52(3):505–542, 2010. → pages 1, 2, 3, 4

[Luc13] Y. Lucet. Techniques and open questions in computational convex
analysis. In Computational and analytical mathematics, volume 50
of Springer Proceedings in Mathematical & Statistics (PROMS),
pages 485–500. Springer, 2013. → pages 1, 3, 4

[MN15] B. S. Mordukhovich and N. M. Nam. Geometric approach to
convex subdifferential calculus. Optimization, 0(0):1–35, 2015. →
pages 15

[Mul88] K. Mulmuley. A fast planar partition algorithm. i. In 2013 IEEE
54th Annual Symposium on Foundations of Computer Science
(1988), volume 00, pages 580–589, Los Alamitos, CA, USA, 1988.
IEEE Computer Society. → pages 6

[PS11] P. Patrinos and H. Sarimveis. Convex parametric piecewise
quadratic optimization: Theory and algorithms. Automatica,
47(8):1770 – 1777, 2011. → pages 6

[PW16] C. Planiden and X. Wang. Strongly convex functions, moreau en-
velopes, and the generic nature of convex functions with strong
minimizers. SIAM Journal on Optimization, 26(2):1341–1364,
2016. → pages 2

[Roc70] R. T. Rockafellar. Convex Analysis. Princeton University Press,
Princeton, New york, 1970. → pages 6, 12, 15, 23, 54

[RW09] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis.
Springer-Verlag, Berlin, 2009. → pages 3, 10, 15

[SCI] Scilab. http://www.scilab.org/. → pages 1, 7, 43

64

http://dx.doi.org/10.1137/100788458
http://dx.doi.org/10.1137/100788458
http://doi.ieeecomputersociety.org/10.1109/SFCS.1988.21974
http://www.sciencedirect.com/science/article/pii/S0005109811002238
http://www.sciencedirect.com/science/article/pii/S0005109811002238
http://press.princeton.edu/titles/1815.html
http://www.scilab.org/

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgment
	Dedication
	1 Introduction
	1.1 Motivation
	1.2 Algorithms for computing the conjugate of an univariate convex function
	1.3 Algorithms for computing the conjugate of a bivariate convex function

	2 Preliminaries
	2.1 Polyhedral set
	2.2 Piecewise Linear-Quadratic function
	2.3 Subdifferential of a function
	2.4 Planar graph

	3 Algorithm
	3.1 Data structure
	3.1.1 GPH matrix
	3.1.2 Adjacent entities
	3.1.3 Entity Type

	3.2 Algorithm
	3.3 Complexity
	3.3.1 Space complexity
	3.3.2 Time complexity

	4 Numerical experiments
	4.1 Example 1
	4.2 Example 2
	4.3 Partition of domain using a grid of points
	4.3.1 Performance Comparison

	5 Conclusion
	Bibliography

