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Abstract

Airborne electromagnetic (AEM) data is commonly collected for detecting buried

natural resources, and this technique is sensitive to subsurface electrical resistivity

distributions. The subsequent process of 3D AEM inversion constructs a physical

property model from this data in order to better understand the size and shape of

potential hidden resources. This thesis is designed to develop practical strategies

to improve 3D AEM inversion accuracy in geologic settings where AEM data sets

produce inconsistent or unsatisfactory inversion results.

In this research, two overarching problematic scenarios are examined. First,

in regions where an AEM survey overlaps with other electromagnetic data sets, a

novel cooperative approach is introduced. This method is first tested on synthetic

data where instead of producing an inversion model from each data set, the cooper-

ative algorithm finds one consistent 3D resistivity model with improved resolution.

The approach is then applied to field data over a high-sulfidation epithermal gold

deposit where similar improvements are observed.

The second scenario relates to improving 3D AEM inversions over thin conduc-

tive anomalies, a common geophysical target for copper and gold deposits. A new

parametric inversion is developed using skewed Gaussian ellipsoids to represent

target bodies. The approach is general but applied to frequency and time-domain

AEM data with one or multiple anomalies. Combined with a voxel algorithm, the

parametric inversion forms a hybrid approach capable of resolving thin conduc-

tive targets with smooth surrounding features. This hybrid technique is tested on

synthetic data over conductive targets in a resistive background, and consistently

produces models that are easier to interpret compared to voxel inversions alone.

Field examples from a volcanogenic massive sulfide and an orogenic gold deposit
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highlight the practical nature of this method to image conductive mineralization

with increased precision.

The thesis concludes by analyzing a setting where multiple spatially overlap-

ping AEM data sets exist over narrow conductive anomalies. Here, parametric,

cooperative and voxel inversions are applied together to generate a consistent 3D

resistivity model with thin targets and smooth background features. This section

includes a discussion about potential pitfalls of such an approach when incompati-

ble field measurements are encountered.
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Preface

The following document presents original research I completed at the Geophysi-

cal Inversion Facility (GIF) in the Department of Earth, Ocean and Atmospheric

Sciences at the University of British Columbia (UBC), Vancouver, Canada. Por-

tions of this research can be located in two peer-reviewed journal articles as well

as seven expanded conference proceedings, and I have presented this work at nine

conferences worldwide.

Chapter 2 contains text and figures from the published paper McMillan and

Oldenburg (2014) in Geophysics. I came up with the idea, carried out the numerical

experiments and wrote the manuscript. Dr. Douglas Oldenburg helped to edit the

manuscript and Dr. Eldad Haber assisted with some of the numerical content. The

work first appeared in the SEG expanded abstract McMillan and Oldenburg (2012).

Chapter 3 is a revised version of the published paper McMillan et al. (2015c)

in Geophysics. The idea developed from discussions with Dr. Eldad Haber, Dr.

Elliot Holtham and myself. I performed the numerical experiments with help from

Dr. Christoph Schwarzbach, and I wrote the journal paper with editing help from

Dr. Douglas Oldenburg. The work was first shown in the SEG expanded abstract

McMillan et al. (2014).

Chapter 4 is currently in preparation for submission. The idea was my own, I

did the numerical experiments with help from Dr. Christoph Schwarzbach, and I

wrote the resulting chapter with edits from Dr. Douglas Oldenburg. The work first

appeared in the EAGE expanded abstract McMillan et al. (2015b).

Chapter 5 is part of ongoing research that will lead to a future publication.

I thought of the idea, and I completed the numerical trials with help from Dr.

Christoph Schwarzbach and Dr. Eldad Haber. I wrote the chapter with edits from
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Dr. Douglas Oldenburg, and the work was first shown in the EAGE expanded

abstract McMillan et al. (2016).

Appendix A and Appendix B contain material relevant to Chapter 4 and Chap-

ter 5 and represents more of my original research.

This thesis manuscript is entirely my own work, and I prepared it and wrote it

with editing help from Dr. Douglas Oldenburg and Dr. Eldad Haber.
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Chapter 1

Introduction

1.1 Research Motivation
The subsurface of the earth, in particular the top kilometer of the crust, contains

most of the available natural resources that society will need over the course of the

next generation. Whether it be in the search for metal, water, oil or other com-

modities of interest, accurately mapping these resources is vitally important for

conservation, extraction and monitoring purposes. Imaging this upper crustal re-

gion of the earth with geophysical techniques is an appealing cost effective solution

compared to the likes of drilling. One such geophysical method, broadly known as

electromagnetics, is sensitive to electrical resistivity, which is a physical property

that measures the degree to which a material opposes the flow of electric current.

Variations in resistivity within the earth can indicate a change in rock type, alter-

ation or in-situ fluid condition. These variations can in turn help locate and even

characterize buried resources.

The usefulness of electromagnetic and specifically airborne electromagnetic

(AEM) data for mineral exploration and commodity detection has been known for

many decades. Companies have steadily acquired data in various configurations

over the years, and as a result, an ongoing question is how to interpret the ensuing

data sets. Only within the past decade has the AEM problem become tractable

for 3D inversion, a process designed to reconstruct a feasible 3D earth model that

best matches the collected electromagnetic observations. This is due to software

1



algorithms taking advantage of the increased computing power and novel massive

parallelization options not previously available. Consequently, decades of historic

data sets over a wide range of geologic targets are now being inverted with modern

3D techniques.

The process of inverting historic as well as modern data sets has opened up

many new questions with regards to best practices for 3D AEM inversion. One

scenario that commonly occurs due to the abundance of historic data sets, is what

to do when two surveys have been collected over the same area but at different

times. The question that arises is whether the information from each survey can be

combined in a useful manner. The other common problem relates to the resolution

of 3D inversion models. Often exploration companies plan drill holes based on 3D

inversion models, and for certain targets such as narrow thin anomalies, conven-

tional inversion results have trouble accurately representing this compact geometry.

In this thesis, I introduce novel algorithms and develop practical strategies to ad-

dress these questions with regards to improving the accuracy and capabilities of

3D frequency and time-domain AEM inversion.

This first introductory chapter will present a review on general electromagnet-

ics and relevant equations, the airborne electromagnetic method, fundamentals of

voxel, cooperative and parametric 3D inversion and will conclude with an outline

of the thesis.

1.2 Electromagnetic Survey Techniques
Electromagnetic surveys detect contrasts in electrical resistivity, which can help

distinguish rock types and alteration zones within the earth (Keller, 1988). But,

these data can be collected in a multitude of ways, and selecting an appropriate

survey design is critical to ensure that the target of interest can be imaged. A

general electromagnetic layout consists of a transmitter that generates a signal that

penetrates the ground and a set of one or more receivers that measure the induced

response that emanates from the earth. When designing a survey, there are many

choices to consider in terms of the type of transmitter and receiver to use and how to

place these instruments during data acquisition. Some major distinctions between

survey configurations are listed below.
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1. Type of transmitter - inductive, galvanic or natural source.

2. Type of receiver measurements - electric field (e), magnetic flux (b) or time

rate of change of magnetic flux ( ∂b
∂ t ).

3. Spatial component of measurements - x, y, or z.

4. Transmitter and receiver locations - airborne, ground or borehole.

5. Domain of measurements - frequency or time domain.

This list is not meant to be exhaustive, but it is clear that many choices are avail-

able when designing an electromagnetic survey, and there are pros and cons to each

choice depending on the goal of the particular project. In this thesis I will focus

primarily on AEM configurations (Macnae et al., 1991) both in the frequency and

time domain. AEM surveys have been collected since the late 1950’s (Palacky and

West, 1973), and deploy inductive sources, which excite the earth using a time-

varying magnetic field. Figure 1.1 shows a cartoon of a generic frequency and

time-domain helicopter AEM configuration. A frequency-domain setup generally

consists of multiple small transmitter loops that can be oriented in any direction.

Figure 1.1 depicts a simplified version with one transmitter loop in a horizontal

coplanar orientation, also known as a vertical dipole. A time-domain system of-

ten possesses a much larger transmitter loop, and due to the size of the loop it

is usually oriented in a horizontal fashion as shown in Figure 1.1. The heavier

time-domain loop generally maintains a higher terrain clearance compared to the

frequency-domain counterpart, but the exact terrain clearance will vary depend-

ing on the survey specifications and the amount of topography present in the area.

Both frequency and time-domain AEM receivers are generally small loops located

in the air that measure components of b or ∂b
∂ t from secondary fields induced in the

earth by the transmitted source. These secondary fields are dependent on the true

heterogeneous resistivity distribution of the earth, but for demonstration purposes

can be thought of as due to a background resistivity ρ0 and an anomalous target

region ρ1.

In the frequency domain, the transmitted waveform oscillates continuously as

displayed in Figure 1.2a, and the recorded data from the receiver is decomposed
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into real (in-phase with the transmitter source) and imaginary (out-of-phase with

the transmitter source) components. Conversely in the time domain, the transmitter

waveform is usually turned on for a period of time in a pulse-like manner with a

large amount of current and then shut off as shown in Figure 1.2b. During this

‘off-time’, the receiver records the secondary fields from the earth in the absence

of the transmitted primary signal. Note that many variations of waveforms are

used in time-domain AEM systems, from square waves (Eaton et al., 2013) to

triangular waves (Boyko et al., 2003) to half-sine waves (Mulè et al., 2012), with

many combinations in between. Some newer systems combine two transmitter

pulses, one high and one low amplitude pulse, to suit both deep and near-surface

targets (Chen et al., 2015).

Other data sets mentioned throughout this work include controlled source au-

dio frequency magnetotellurics (CSAMT) (Zonge and Hughes, 1991) and the direct

current (DC) resistivity method (Kunetz, 1966). A CSAMT survey uses receivers

on the ground to measure electric fields and magnetic fluxes in response to a gal-

vanic transmitter many kilometers away that injects current directly into the earth

at frequencies between 0.1 Hz and 10 kHz.

In contrast, a DC configuration is often considered an electrical technique, but

it can be thought of as a special case of the electromagnetic method that operates at

a near-zero frequency. The DC method injects current with a galvanic transmitter,

and often operates in the time domain using a half-duty cycle square wave elec-

tric current with an eight second period. Frequency-domain DC surveys also exist,

and they inject an oscillating electric current into the ground instead of a square

wave. In either the time or frequency domain, DC data consist of electric poten-

tial differences measured between grounded receiver electrodes known as dipoles.

CSAMT and DC data are sensitive to electrical conductivity, and as such they are

both helpful to reconstruct conductivity distributions through Maxwell’s equations.

1.3 Maxwell’s Equations
Electromagnetic induction is governed by Maxwell’s equations, which are written

in quasi-static form in the time domain as
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Figure 1.1: Simplified helicopter airborne electromagnetic setup for a generic
frequency and time-domain system. ρ0 is the background resistivity and
ρ1 represents the target resistivity.

∇× e+µ
∂h
∂ t

= 0 (1.1)

∇×h−σe = s (1.2)

5



Time

N
or

m
al

iz
ed

 c
ur

re
nt

 (A
)

a) Timeb)

N
or

m
al

iz
ed

 c
ur

re
nt

 (A
)

Figure 1.2: Generic frequency and time-domain waveforms used for an air-
borne electromagnetic survey. a) Frequency domain. b) Time domain.

where e is the electric field, h is the magnetic field, µ is the magnetic permeabil-

ity, σ is the electrical conductivity and s is a source vector. Electrical resistivity

ρ , the reciprocal of conductivity, is mentioned interchangeably with conductivity

throughout this dissertation.

The same equations can be written in the frequency domain as

∇×E+ iωµH = 0 (1.3)

∇×H−σE = S. (1.4)

where ω is the angular frequency and the capitalized notation represents the frequency-

domain version of the fields and source term. The relationship between fields and

fluxes is summarized by constitutive equations

B = µH (1.5)

J = σE (1.6)

where B is the magnetic flux density and J is the current density vector. In this

work we presume that µ = µ0, the magnetic permeability of free space (4π ×
10−7 N/A2).

From Maxwell’s equations, the skin depth (δ ) can be derived, which is an
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informative metric that describes the depth at which point the amplitude of the

electromagnetic wave is reduced by a factor of 1 / e, and it is written as

δ =

√
2

µ0σω
. (1.7)

The equivalent in the time domain is the diffusion distance (d) that describes the

depth at which point the amplitude of the electromagnetic wave is at a maximum

for a fixed time t, and it is written as

d =

√
2t

µ0σ
. (1.8)

1.4 Electromagnetic Modeling and Inversion
This work builds upon techniques for discretizing Maxwell’s equations for nu-

merical modeling and inversion of electromagnetic data as shown in Haber et al.

(2007b); Haber and Schwarzbach (2014); Oldenburg et al. (2013); Ruthotto et al.

(2016). Namely that the forward problem is written as

F(m) = d (1.9)

where F is a forward operator of Maxwell’s equations, m is the relevant physical

property (i.e. electrical conductivity or resistivity) and d is the data. The choice

of discretization is a finite-volume approach, however finite-difference (Commer

and Newman, 2004; Egbert and Kelbert, 2012; Weiss and Constable, 2006), finite-

element (Key and Weiss, 2006; Li and Key, 2007; Schwarzbach and Haber, 2013)

and integral equation (Cox et al., 2010; Zhdanov, 2010) techniques are also com-

monly employed. The inverse problem is then written as the optimization of

argmin
m

φ(m) = φd(m)+βφm(m) (1.10)
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where φd is the data misfit, φm is the model regularization term, and β is a trade-off

or regularization parameter. The data misfit is defined by a least-squares measure

φd(m) = ‖Wd(dpred−dobs)‖2
2 (1.11)

where Wd is a diagonal matrix containing the reciprocal of data error standard

deviations, dpred is the predicted data computed from the forward operator F(m),

the observation data is given by dobs and ‖ ‖2
2 is the squared `2 norm. The default

model regularization term is given by

φm(m) = αs||Ws(m−m0)||22 +αx||Wx(m)||22 +αy||Wy(m)||22 +αz||Wz(m)||22
(1.12)

where the α values are user-defined weights that control the proximity of the model

m to a reference model m0 and the overall smoothness of m. Diagonal weighting

matrices W act on particular model cells or cell boundaries and can be used to

incorporate a priori information into the inversion process. In Equation 1.12, m0

may also be included in the W(m) terms as W(m−m0) if desired. Although `2

norms are common in the model regularization, `1 and approximations to `0 type

norms can be used as well to encourage compactness (Ekblom, 1973; Fournier,

2015; Last and Kubik, 1983; Portniaguine and Zhdanov, 1999). The optimization

problem is solved with an iterative Gauss-Newton approach, and the minimiza-

tion of the objective function at the (i+ 1)th Gauss-Newton iteration requires the

solution of

(JT WT
d WdJ+βRm)δm =−JT WT

d Wd(d
(i)
pred−dobs)−βRm(m(i)−m0) (1.13)

where J is a Jacobian matrix of sensitivities, Rm is a regularization term com-

posed of Ws, Wx, Wy and Wz matrices and δm is a model perturbation vector.

The inversion model is updated through Equation 1.13 until a suitable step can no

longer be found or the target data misfit has been reached. In this thesis, the data

misfit will be normalized by the number of data points, meaning the target data

misfit will always be equal to unity.
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1.5 Airborne Electromagnetic Interpretation Techniques
As AEM techniques have been around for decades, there have been a variety of

methodologies developed to interpret and model AEM data sets, and these methods

are now discussed.

1.5.1 Semi-quantitative methods

Prior to inversion, analysis of AEM data relied on semi-quantitative approaches,

where approximations and simplifications to the structure of the earth are used.

These techniques can produce valuable inferences and range from curve-fitting of

simple geometric shapes such as vertical ribbons representing thin plates to de-

termine the conductance of an anomaly (Palacky and West, 1973), to calculating

a best-fitting apparent resistivity value at each transmitter/receiver pair (Fraser,

1978). Later on, groups started developing efficient conductivity-depth transforms

for imaging anomalies at depth (Eaton, 1998; Macnae et al., 1998; Macnae and

Lamontagne, 1987; Macnae et al., 1991) as well as analyzing the time-constant

exponential rate of decay of the fields to gain knowledge of the conductivity and

shape of the target (Macnae et al., 1998; Nabighian and Macnae, 1991). While

simple and fast, semi-quantitative methods have limitations due to their simplicity

and various approximations, but they paved the way for electromagnetic inversion.

1.5.2 Voxel inversion methods

AEM inversion began with 1D layered earth inversions (Constable et al., 1987;

Farquharson and Oldenburg, 1993; Raiche et al., 1985), and moved to 2D (Wilson

et al., 2006), before 3D voxel AEM inversions became computationally feasible

(Cox et al., 2010, 2012; Haber and Schwarzbach, 2014; Oldenburg et al., 2013;

Ruthotto et al., 2016; Yang et al., 2014). The term 3D voxel inversion means that

the earth is discretized into cells in a 3D mesh, where the conductivity value in each

cell is solved for during the inversion process. This technique, sometimes referred

to as a pixel method, provides flexibility in the sense that any arbitrary anomaly

shape or geologic structure that can be discretized on a mesh can be theoretically

recovered by the inversion.

In a 3D AEM setting, the system of equations to solve can become excessively
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large for a number of reasons. The vast area covered in an airborne survey means

that a significant number of 3D mesh cells are required to discretize the expan-

sive spatial domain. In addition, the number of source locations can easily exceed

100,000, which makes for an expensive system to solve at many source locations.

To tackle these numerical obstacles, Cox et al. (2012) introduces the concept of

a moving sensitivity footprint to reduce the spatial domain size of the forward

problem. Alternatively, an adaptive mesh refinement can be used (Key and Weiss,

2006), where the mesh is refined in areas that require a higher numerical accu-

racy, while retaining a coarse solution in other areas. This approach is applied in

Haber and Schwarzbach (2014), where the full spatial domain is modeled, but the

problem size is reduced by using decoupled forward and inverse adaptive octree

meshes, specifically for time-domain problems. Recently, Ruthotto et al. (2016)

introduced the operators necessary to model the full spatial responses in both the

frequency and time domain through the Julia language framework (Bezanson et al.,

2012). It is worth noting that a potential drawback of the voxel approach in large

surveys is that it can be difficult to accurately fit small-scale features, especially

thin anomalies with high resistivity contrasts compared to the background. Strate-

gies to address this issue will be discussed in the parametric section.

1.5.3 Cooperative and joint inversion

The inversion methodology becomes ambiguous when multiple data sets are present

over a common spatial area. If individual inversions produce inconsistent models

this can lead to the question of why the models are different, and which one should

be used for ensuing interpretation purposes. In a cooperative inversion, a common

physical property model is sought by incorporating the inversion result from one

data set as a priori knowledge for another data set, either through a reference model,

initial model or inversion weights (Commer and Newman, 2009; Lines et al., 1988;

Oldenburg et al., 1997). A variation of the cooperative approach is the alternating

direction method of multipliers (ADMM) (Wahlberg et al., 2012) where the objec-

tive function is re-written as an optimization problem with a Lagrangian multiplier

and a constraint that the resistivity models from each data set must be equal. An

application of ADMM to 3D hydrogeophysical inversion can be found in Steklova
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and Haber (2016). These approaches differ from a joint approach, where multi-

ple data sets are inverted simultaneously to produce one inversion model (Albouy

et al., 2001; Gallardo and Meju, 2004; Oldenburg et al., 1997; Sosa et al., 2013;

Vozoff and Jupp, 1975). This requires being able to forward model and compute

sensitivities for all data within a single code, and it also requires proper relative

assignments of uncertainties.

1.5.4 Constrained inversion

Physical property values can be extracted from drilling or surface rock samples, and

represents an efficient manner to incorporate geologic knowledge into the inversion

as constraints. Constrained inversions have been studied at length and the reader

is advised to peruse Lelièvre and Oldenburg (2009); Lelièvre et al. (2009); Li and

Oldenburg (2000); Williams et al. (2009) for a detailed account of various ways

to add such information. In this thesis, geologic constraints will be added in the

form of reference models and upper and lower physical property bounds when this

information is available.

1.5.5 Parametric methods

Parametric inversion methods can be advantageous when prior geometric or geo-

logic knowledge suggests that the target anomaly has a particular shape or a sim-

plistic geometry. Parametric inversions solve for a reduced set of parameters that

describe the physical property space instead of solving for the value in every mesh

cell. Early parametric methods incorporated a reduced-physics approach where

various assumptions and approximations to Maxwell’s equations were used. A

reduced-physics approach was applied to the AEM problem by Keating and Cross-

ley (1990) where a plate parameterization in free space is assumed, by Xiong and

Tripp (1995) with the software package Marco Air, where 3D prisms are placed

in a layered-earth environment, and by Raiche (1998) with the package Leroi

Air, where 3D plates are modeled in a layered earth setting. Currently, a com-

monly used reduced-physics forward modeling and inversion parametric algorithm

is Maxwell EMIT (2005), where the response from one or multiple plates is calcu-

lated in free-air, in a half-space or in a layered-earth media using electrical ribbon
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currents located on plate edges. Although these parametric programs are highly

useful for modeling responses from simplified conductors, they contain significant

numerical approximations that can create issues when dealing with multiple tar-

gets or complex geometries. One of the major contributions of this thesis is that

the parametric algorithm that is introduced models the full 3D Maxwell’s equations

shown in Equations 1.1 and 1.2.

1.6 Thesis Outline
This thesis is composed of four main chapters, the first two have been published

in peer-reviewed journals, the third is in preparation for submission and the fourth

is part of ongoing research. The content is written under the common theme of

developing practical cooperative and parametric strategies to improve the accuracy

of 3D AEM inversion in a variety of geologic settings where conventional tech-

niques face difficulties. Each chapter contains both synthetic and field examples

to demonstrate how the approaches are both theoretically and practically viable.

These novel algorithms focus on two common scenarios, and the goals of this dis-

sertation are listed below.

1. To develop strategies to invert AEM data in 3D that spatially overlap with

other electromagnetic surveys.

2. To develop methods to invert AEM data in 3D to recover thin, high contrast

anomalies.

Chapter 2 focuses on the first topic where I propose a cooperative methodol-

ogy for incorporating multiple electromagnetic data sets over a common area. In

Chapter 3 I look at the second goal where I introduce a new parametric method of

inverting AEM data for narrow, highly conductive targets. In Chapter 4 I expand

the method from Chapter 3 to allow for multiple anomalies, making the approach

suitable for a larger range of geologic scenarios. Finally in Chapter 5 I address the

situation where both topics apply, and here I modify the cooperative strategy from

Chapter 2 to incorporate both parametric and voxel based inversion algorithms.

Collectively, my specific contribution to science includes:
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1. Presenting a new cooperative algorithm for spatially overlapping electro-

magnetic data sets that is also general for other types of geophysical data.

2. Developing the first parametric algorithm for airborne electromagnetics that

models the full 3D Maxwell equations.

3. Introducing the first parametric hybrid inversion for geophysical applica-

tions where smooth features are incorporated along with compact parametric

anomalies within one framework.
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Chapter 2

Cooperative Inversion of Multiple
Electromagnetic Data Sets

In this chapter, I develop a cooperative methodology for inverting AEM data that

spatially overlaps with other electromagnetic surveys. The approach produces a

consistent 3D resistivity model with improved resolution compared to inverting

each data set independently, and adheres to geologic knowledge from borehole

measurements through bound constraints. Synthetic and field data from the Anto-

nio gold deposit in Peru are used to demonstrate the benefits of this technique.

2.1 Introduction
Conventionally, an individual AEM survey is inverted to create a single resistivity

inversion model; however, when multiple spatially overlapping surveys, possibly

from different time periods, produce inconsistent inversion models, this can lead

to difficulties in interpretation. These model discrepancies suggest that a joint or

cooperative approach, where one consistent inversion model is sought, could be

beneficial.

The advantage of a cooperative approach is that individual algorithms, tailored

to inverting a particular data type, can be used. This is beneficial because carry-

ing out inversions of multiple data sets individually is generally much faster than

inverting them simultaneously. Cooperative inversion is also less sensitive to prob-
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lematic or noisy measurements compared to joint inversion. Erroneous data within

the entire suite of observations can cause a joint inversion and to a lesser degree a

cooperative approach to proceed very slowly or to stall, and may produce unwanted

artifacts in the final model. By breaking up the inversion into small steps using one

single data set at a time, as in the cooperative approach, the inversion has an easier

time finding a suitable model update step. In a joint inversion this computed step

is based on all data sets, each with a different noise signature, and can be more

problematic to obtain.

There are numerous ways to implement a cooperative inversion through the use

of reference models, constraints, or weightings in the regularization term of the ob-

jective function (Commer and Newman, 2009; Lines et al., 1988; Oldenburg et al.,

1997). However, there is also the question of whether one such consistent model

exists due to the presence of induced-polarization effects or a frequency-dependent

conductivity. Therefore, a cooperative inversion needs a set methodology or work

flow to address specific issues in implementation. In this chapter, time-domain

AEM data are cooperatively inverted with a joint CSAMT and DC resistivity data

set. Here, the DC data are modeled as a very low frequency EM survey in order

to model simultaneously with the CSAMT data in a generalized frequency-domain

inversion code. This chapter focuses on three primary research objectives.

• To develop a cooperative inversion method for AEM data that spatially over-

lap with other geophysical EM data sets.

• To prove, with a synthetic example, that a cooperative method increases the

accuracy of the resulting 3D resistivity model.

• To apply a cooperative approach to field data to produce a consistent inver-

sion model where additional geologic interpretations can be established.

Three spatially overlapping data sets are first introduced over the Antonio high-

sulfidation epithermal gold deposit: time-domain AEM, CSAMT, and DC resistiv-

ity. As an initial step, each survey is inverted individually in 3D to estimate a re-

sistivity structure sensitive to that particular survey. Similarities and differences in

the resulting models are then noted. The inversion results coupled with geological

insights regarding the deposit are subsequently used to construct a synthetic model
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that emulates, as close as possible, the Antonio deposit. Simulated data sets, us-

ing field measurement locations, are computed over the synthetic model. Synthetic

data are inverted individually to ascertain whether differences again occur between

resulting models. At this point, a cooperative approach is applied, which aims to

improve the accuracy of the synthetic inversion model in a qualitative and quantita-

tive sense. This cooperative work flow is then applied to the Antonio field data. A

constrained cooperative inversion follows where bound constraints from boreholes

measurements are used, which yields a consistent final model from which geologic

interpretations can be made.

P   E   R   U

Antonio

Figure 2.1: Map of Peru with location of Antonio deposit marked as a black
star. Modified from McMillan and Oldenburg (2014).

2.2 Antonio Geologic Background
The Antonio gold deposit is located in the Andes mountains of Northern Peru,

as shown in Figure 2.1, and resides within the larger Yanacocha high-sulfidation

epithermal gold system. Newmont Mining Corporation owns the majority of this

active mining and exploration project. The region experienced pervasive hydrother-

mal alteration to form a zone of massive silicic alteration in the innermost zone,

flanked by alunite, pyrophyllite, kaolinite and montmorillonite assemblages with

an outermost halo of propylitic alteration (Teal and Benavides, 2010). This alter-

ation zonation is characteristic of high-sulfidation deposits (Arribas, 1995). Fig-
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ure 2.2 shows a regional view of the alteration zones at Yanacocha, and the corre-

sponding relationship between high grade gold deposits in black and silica alter-

ation in red.

Figure 2.2: Yanacocha regional alteration map with location of major gold
deposits. (modified from Hoschke (2011)).

It is clear that the bulk of the gold mineralization resides within or near massive

silica, vuggy silica and granular silica units. The resistive nature of silica alteration

compared to the relatively conductive background makes it an applicable target for

EM surveys (Goldie, 2000; Hoschke, 2011; Oldenburg et al., 2005). These quartz-

rich areas of metasomatism are often found near faults where confined fluid flow

occurred (Teal and Benavides, 2010). Furthermore, the intersection of faults, of-

ten conductive in nature, where hydrothermal breccias broke through overlaying

volcanic units is especially prospective for gold mineralization. These structural

traps within favorable pyroclastic lithologies, such as ignimbrite beneath or prox-

imal to flow dome complexes, are typical geologic hosts to gold deposits in the

region (Loayza and Reyes, 2010). Much of the surrounding clay alteration, which
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is generally more conductive than silica alteration (Goldie, 2000), at Antonio has

also been enriched with silica. For the sake of this study, any zone significantly

enriched with quartz is referred to as silica alteration. Figure 2.3 shows a geologic

map of the Antonio region with lithologies and structures marked. The primary

extent of near-surface (0 - 100 m depth) silica alteration is outlined in dashed red.

X (m)

Y
 (

m
)

Figure 2.3: Antonio geology with lithologies, structures and near-surface sil-
ica alteration outlined.
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2.3 Antonio Geophysical Data Sets

2.3.1 Time-domain AEM

In 2003, a helicopter based time-domain AEM survey was collected using the

NEWTEM I system (Eaton et al., 2013). Five East-West lines over the Antonio

deposit, extracted from the larger airborne survey, are analyzed in this chapter.

The peak current of the transmitter was 245 A, with a transmitter loop area of 289

m2. z-component responses ( ∂bz
∂ t ), measured out to 6.35 ms after current shut-off

were recorded every 20 m with a line spacing of 200 m for a total of 268 trans-

mitter positions. Time channels from 30 µs to 2000 µs are used for analysis, and

the discretized waveform is shown in Figure 2.4 with logarithmically spaced time

channels plotted for reference. The waveform closely approximates a square wave,

which is advantageous for near-surface mapping of weakly conductive or resis-

tive targets (Allard, 2007). Smaller discretized time steps are taken near the first

recorded time channel for numerical accuracy purposes (Haber and Schwarzbach,

2014). Due to mountainous terrain, the drape of the transmitter above the ground

varied from 32 m to 146 m, with a mean value of 62 m. Exact system locations are

shown as orange circles in Figure 2.5.
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Figure 2.4: NEWTEM-I discretized waveform in red with measured time
channels marked as black crosses.
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2.3.2 CSAMT

In 2003, an asynchronous scalar CSAMT (Zonge and Hughes, 1991) survey was

acquired by Quantec Geoscience with a total of five East-West (EW) and eight

North-South (NS) lines over the Antonio deposit. Two transmitters: an EW ori-

ented transmitter 6.2 km to the south, and a NS oriented transmitter 5.9 km to the

east provided the source for EW and NS lines respectively. Having transmitters

with orthogonal orientations permitted the earth to be energized from two direc-

tions. Line spacings varied between 150 m and 200 m, and stations were spread 50

m apart. In-line electric field, and orthogonal magnetic field measurements from

11 frequencies ranging between 2 Hz and 2048 Hz are used in this study. Receiver

locations are shown as red stars in Figure 2.5.

2.3.3 DC resistivity

In 1998, a conventional in-line time-domain pole-dipole DC resistivity survey was

acquired with five EW lines spread 150 m to 200 m apart with 50 m spaced dipoles,

and a transmitter/receiver separation (N spacing) of 1 to 6. In 2004, one additional

line of 150 m spaced dipoles situated 50 m south of the previous survey was col-

lected. Receiver locations are shown as green triangles in Figure 2.5. Examples of

field data from each survey can be seen in Figure 2.6.

2.4 Inversion Methods

2.4.1 Inversion preparation

Prior to inverting field data, initial steps such as quality control of the data, prepar-

ing suitable meshes, and assigning appropriate uncertainty values, need to be com-

pleted, as well as removing field data below an estimated noise threshold. Even

though inversions are carried out separately in a cooperative inversion, it is de-

sirable to have a common mesh so that difficulties in transferring results from

one mesh to another are avoided. Here, because there are frequency and time-

domain surveys, the design of the mesh is based on diffusion distance and skin

depth (Nabighian and Macnae, 1991; Ward and Hohmann, 1988) shown in Equa-

tions 1.7 and 1.8.
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Figure 2.5: Antonio geophysics locations. Receiver sites for AEM (orange
circles), CSAMT (red stars), and DC Resistivity (green triangles) over-
laid on topography with near-surface silica alteration outlined in dashed
red and geologic faults in thin blue.

In order to minimize numerical accuracy issues, mesh creation in this chap-

ter and throughout the thesis adheres to the guidelines below, which are based on

experience working with EM inversion codes. Additionally, when significant to-

pography, such as at Antonio, is present, the topography discretization error must

be taken into consideration when determining a finest mesh cell size.

• The mesh contains padding cells extending to a minimum of twice the largest

diffusion distance, or twice the largest skin depth. For a 50 Ωm half-space
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Figure 2.6: Observed and predicted field data from individual inversions. a)
AEM plan view of ∂bz

∂ t at 139 µs b) CSAMT plan view of y-component
electric field amplitudes at 16 Hz c) DC apparent resistivity pseudo-
section from line 9230630.

this equates to roughly four kilometers of padding around the core area of

interest for AEM, and five kilometers of padding around the CSAMT re-

ceivers.

• The smallest cell size in the mesh is at most half the minimum diffusion

distance or minimum skin depth. For a 50 Ωm half-space this produces a

minimum cell size of 24 m and 40 m for AEM and CSAMT respectively.

In an inversion, there is always a trade-off between accuracy and total size of the

mesh. Using the above guidelines, the final mesh is designed to be suitable for all

three surveys, and contains core cell sizes of 25 m × 50 m × 25 m in x,y,z. To

accommodate CSAMT transmitters far away from the receiver area without greatly

increasing the number of total cells, an adaptive ocTree mesh is used (Haber et al.,

2007a) with a total number of inversion mesh cells of 86,942. For AEM inversions,

forward and inverse meshes are decoupled for maximum efficiency as described in

Haber and Schwarzbach (2014), and these forward meshes have roughly 10,000

cells per mesh.

The next task is to assign uncertainties to the data. The assigned error uncer-
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tainty is made up of a percentage and a floor value. Percentages range between

10% and 15%, depending on the noisiness of the data, and noise floors are selected

as shown in Table 2.2.

2.4.2 Inversion methodology

AEM, CSAMT and DC 3D inversions follow algorithms outlined in (Haber et al.,

2004; Haber and Schwarzbach, 2014; Oldenburg and Li, 1994). In this chapter,

three Gauss-Newton iterations are computed for each trade-off value of β , known

collectively as one β iteration, and the inversion terminates when the data misfit

reaches its target level φ ∗d of unity.

2.4.3 Individual Antonio inversions

3D inversions for all individual field data sets are performed, and examples of

predicted data results are shown in Figure 2.6. Resistivity plan maps at a constant

elevation of 3870 m above sea-level through the resulting models are shown in

Figure 2.7 with a consistent color scale. Due to rolling topography, a constant

elevation slice of 3870 m corresponds to an average depth below surface of roughly

75 m, although it ranges from 10 m to 150 m throughout the survey area. Additional

constant elevations slices at 3895 m, 3845 m, 3820 m, and 3795 m are displayed

in Figure 2.16. These inversions are unconstrained, and use a 50 Ωm half-space

reference model. Details about uncertainty assignments and final data misfits are

summarized in Table 2.1. Geologic faults and the outline of known near-surface

silica alteration are plotted for reference. Figure 2.7a shows a slice through the

3D AEM inversion model along with data locations, and the result recovers a large

uniform resistor in the center of the survey area. This anomaly agrees well with the

known resistive silica alteration outline and past studies (Oldenburg et al., 2005,

2004), although the resistor extends beyond the known outline to the north-west

for approximately 200 m.
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Figure 2.7: Resistivity 3D inversions from field data at a 3870 m elevation
slice with receiver locations shown. Near-surface silica alteration out-
line in dashed red and geologic faults in thin solid blue. a) AEM b)
CSAMT c) DC Resistivity d) Cooperative.
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Table 2.1: Error assignments and final data misfits for individual field and
synthetic inversions.

Data Set Error (%) Error (floor) Final φd

Field
AEM 15 4.2×10−10 V/Am2 0.98
CSAMT 10 3.5×10−8 V/m (E) 0.96

2.7×10−8 A/m (H)
DC 10 0.5 mV 0.91
Synthetic
AEM 10 4.2×10−10 V/Am2 1.00
CSAMT 10 1.0×10−9 V/m (E) 0.52

1.0×10−9 A/m (H)
DC 10 1.5 mV 0.72
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Figure 2.7b portrays a 3870 m constant elevation slice through the 3D CSAMT

inversion result along with receiver locations. Due to the asynchronous nature of

the CSAMT survey, meaning the transmitter and receiver clocks are not synchro-

nized, only the amplitude and not the phase of the electric and magnetic fields are

inverted. The imaged resistor has some similarity to that from the AEM inver-

sion, but it deviates more from the known silica alteration outline. Although the

recovered resistivity magnitudes compare well with that from AEM, the center of

the CSAMT anomaly is shifted to the west, and the resistor extends 100 m to 200

m west of the mapped alteration zone. The CSAMT anomaly is broken up into

multiple pieces, unlike the cohesive AEM image, and some small conductive areas

occur within the resistive region. There is also a spurious anomaly in the extreme

north-west corner of Figure 2.7b, which is outside the data supported region and

should be ignored.

The inversion of DC potential differences is shown as a 3870 m constant ele-

vation slice in Figure 2.7c, along with receiver electrode locations. The recovered

model exhibits a similar curved north-northwest trending resistivity feature as the

AEM survey, although the strongest resistor occurs outside the dashed outline to

the north-west. Within the known alteration zone, much of the area is modeled as

conductive, although there is a thin resistive feature that extends down through the

marked anomaly to the south-east portion of the survey. Resistivity magnitudes are

generally weaker compared to AEM and CSAMT results, and the overall shape is

narrower and smaller compared to the other two models.

2.4.4 Cooperative inversion work flow

Discrepancies between individual field inversion results suggest that joint and/or

cooperative methods are warranted to produce one resistivity model that fits all the

data sets. Intrinsically this may be challenging. Each survey has its own noise

signature, and the geometric layout of transmitters and receivers may be sensitive

to different portions of the earth. In addition the process of homogenization, or

representing micro-scale features in the earth as a homogeneous physical property

value within a mesh cell, may not yield equivalent results across all electromag-

netic techniques (Caudillo-Mata et al., 2016). Hence, each survey will not neces-
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sarily image the ground in the same manner. Furthermore, induced-polarization

effects, anisotropy, data quality variations, acquisition location differences, mod-

eling errors, and different source types (galvanic vs. inductive) can all potentially

complicate results. That being said, at Antonio, the frequency-dependent nature

of conductivity within sulfides is thought to be minimal and there is no reason to

believe that anisotropy is a major factor. Galvanic and inductive sources will im-

age the ground in unique ways, but it is postulated that the combined information

from these data sets will be beneficial for inversion accuracy instead of detrimen-

tal. Therefore, it is assumed that producing a consistent isotropic resistivity model

is possible, while the mesh generation guidelines above should minimize model-

ing errors. First, the AEM data is cooperatively inverted with a joint CSAMT/DC

data set. In this joint CSAMT/DC data set, DC voltages are converted into elec-

tric fields, and then treated as a 0.125 Hz frequency input in the CSAMT data.

This frequency is sufficiently low that there are no inductive effects observed in the

simulated data.

The cooperative work flow developed is proposed in Figure 2.8. Starting with

an initial model σ0, the first task is to calculate a model update from data set d1

using a starting beta, β
(1)
1 , where the subscript refers to data set (d1), and the super-

script in parenthesis refers to the cooperative iteration number. The Gauss-Newton

system is solved multiple times for a given β , known as an inner iteration, to pro-

duce a revised model σ
(1)
1 . This updated model becomes the initial and reference

model for the first cooperative iteration for data set d2, and the output is σ
(1)
2 . Sub-

sequently, the process repeats and σ
(1)
2 becomes the initial and reference model for

a second cooperative iteration. The values of β for this next, and future, iterations

are reduced according to a schedule β
(i+1)
1 = γβ

(i)
1 and β

(i+1)
2 = γβ

(i)
2 , where γ ≤ 1.

For the work here γ = 0.2, which is an aggressive β reduction scheme; however,

experience with the code suggests that solving the Gauss-Newton system multiple

times per β makes this a feasible approach.

This cooperative work flow continues up to a maximum number of iterations

imax, until the target misfit is reached for one or both data sets or until a suitable

step that reduces the data misfit can no longer be found. If a single model hits both

target misfits, φ ∗d1 for d1 and φ ∗d2 for d2, each data set has been adequately fit and

the process stops.
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If only one data set is fit, i.e. d1, then the emphasis shifts to continued Gauss-

Newton iterations for d2. If the output model σ
(i)
2 is still compatible with d1 but

still not satisfactory for d2, then further iterations are performed with d2. After

additional work with d2, if the misfit for d1 is significantly increased, then the

cooperative inversion cycle resumes with d1 starting with the last used β i
1. At this

point, if the misfit for d2 no longer decreases, the current model is accepted as the

final result. The strategy is automated and requires only a few user parameters.

2.5 Synthetic Inversion Results

2.5.1 Individual synthetic inversions

In synthetic modeling, a geophysical data set is computed over a pre-defined resis-

tivity distribution, noise is then added to simulate errors encountered in field data

and this noisy synthetic data set is inverted in an attempt to recover the original

model. The synthetic model in this section is designed to encapsulate the primary

features of the Antonio area. It includes a 225 m thick 1000 Ωm resistor placed in

a uniform 50 Ωm background. Two conductive 10 Ωm blocks with dimensions of

100 m × 150 m × 100 m are embedded. The northern conductive block is buried

75 m below the surface while the southern block is exposed at the surface. To-

pography for the Antonio area is used for the synthetic study. Figure 2.9 shows a

3870 m constant elevation slice through this synthetic model. Additional elevation

slices, are shown in Figure 2.13a.

Forward modeling of AEM, CSAMT and DC surveys is carried out by keeping

data locations and other specifications equivalent to those of the field setups. 10%

Gaussian noise is added to the measurements prior to inversion. Error assignments

and final data misfit values are summarized in Table 2.1. Constant elevation slices

at 3870 m through the resulting inversions are shown in Figure 2.10, with addi-

tional elevation slices presented in Figure 2.13. The images all display a resistive

body centered in the correct location, but the extent of the resistor, and the ability

to detect the conductive blocks varies between the three models. In Figure 2.10a,

the AEM inversion is able to image the outline of the resistor, but is not able to de-

tect either of the two conductive bodies. Figure 2.10b shows the CSAMT inversion
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Figure 2.8: Cooperative inversion work flow. σ
(i)
j = conductivity model from

the ith cooperative iteration for data set j, β = trade-off parameter, φd =
data misfit, φ ∗d = target data misfit.
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recovery. The result accurately images the overall resistor geometry, while clearly

detecting the southern conductor, and faintly identifying the northern anomaly. For

CSAMT data, real and imaginary electric and magnetic fields are inverted instead

of amplitude-only data as in the field example, and this produces twice the number

of data points. As field components (real and imaginary) represent a typical data

set collected by industry, these are used to showcase the maximum improvement

that can be obtained with the cooperative inversion. Experience has also shown that

using field components can sometimes be better at recovering the true resistivity

structure compared to amplitude data only. Numerical computations are also easier

with field components as the equations are more linear compared to using ampli-

tudes and phases, and this reduces the chance of being stuck in a local minimum

during optimization. Error floors for synthetic CSAMT data are also set consider-

ably lower to prevent dramatic under fitting of the data. The DC inversion result

is displayed in Figure 2.10c, which depicts the overall geometry of the resistor and

the southern conductive block. Resistivity magnitudes are closer to those in the

synthetic model compared to the CSAMT and AEM results; however, the northern

block is not seen. The three inversions have each produced valuable information,

but significant differences exist in the models. At this point, the cooperative work

flow is tested on these data sets in the hopes of establishing a common resistivity

model.

2.5.2 Synthetic cooperative inversion

The cooperative work flow from Figure 2.8 is applied to the synthetic data sets.

A common mesh is used for all inversions, and previous error assignments are

kept from the individual synthetic inversions with the addition of an error floor of

3.0×10−5 V/m for electric fields at 0.125 Hz converted from DC voltages. A con-

vergence curve documenting the data misfit progression for each data set is plotted

in Figure 2.11, and summarized in Table 2.2. For each cooperative iteration there

are a maximum of four data misfit evaluations, representing the initial data misfit,

and the resulting misfit after each of the three inner iterations. It can be seen on Fig-

ure 2.11a that the joint CSAMT/DC data, pictured as red x’s, hits the target misfit,

shown by a black dashed line, on the third cooperative iteration. On the fourth co-
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Figure 2.9: Synthetic model resistivity at a 3870 m elevation slice.

operative iteration, the initial data misfit for the joint data set is still below the target

level, and thus no additional model update is performed. Eventually the process is

stopped after iteration 7, because the AEM data misfit increases compared to that

in iteration 6, indicating the inversion is trending in the wrong direction. Therefore,

the model after iteration 6 of the AEM inversion is chosen as the final result. At that

point, the CSAMT/DC and AEM final data misfits are very close to their desired

target misfits. Figure 2.10d shows a 3870 m constant elevation slice through this

sequential synthetic inversion model. The resistor magnitude and shape is defined

more uniformly compared to the individual inversions, and the northern conductor

is now better detected. The southern conductor is still clearly defined, although

not as strongly as in the individual CSAMT or DC inversion. Although the AEM

individual inversion does little to resolve the two conductive targets, it contributes

to the cooperative inversion by helping to define the main resistive target. As AEM

is an induction method, it should be sensitive to conductive targets; however, the

northern conductor is buried, which masks the signal. Furthermore, the flight lines
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Figure 2.10: Resistivity 3D inversions from synthetic data at a 3870 m eleva-
tion slice with receiver locations shown. True resistor outline in black.
a) AEM b) CSAMT c) DC Resistivity d) Cooperative.

32



Table 2.2: Final data misfits for cooperative synthetic and field inversions.

Inversion Method Data Set Final φd

Synthetic Cooperative AEM 1.01
CSAMT/DC 1.02

Field Cooperative AEM 1.62
CSAMT/DC 1.15

Synthetic Constrained Cooperative AEM 1.00
CSAMT/DC 1.00

Field Constrained Cooperative AEM 1.29
CSAMT/DC 1.15

do not directly pass over the southern conductor. In a resistive setting, the sig-

nal level is also smaller, and the conductive responses may be washed out by the

Gaussian noise added, and by the relatively high uncertainty assignments.

Visual interrogation of the models shows that the cooperative result is better

than any of the individual inversions. In an attempt to quantify this numerically,

a region of the model is extracted that consists of the resistor and its included

conductive blocks. The recovered models are numerically evaluated to determine

how close they are to the true model using a residual (R) as the metric of choice as

shown in Equation 2.1.

R =
1
N
‖log10(m)− log10(mtrue)‖2

2 (2.1)

where m and mtrue are the recovered and true resistivity model values respectively,

and N is the number of cells in the volume of interest. A lower value of R refers

to a smaller deviation from the true model, and hence a more accurate recovery.

The residuals corresponding to the individual and cooperative inversions, and also

the residual from the starting model, a 50 Ωm half-space, are shown in Table 2.3.

The cooperative inversion performs the best, followed closely by the DC result,

while the CSAMT and AEM models fare increasingly worse. As expected, all

four inversions recover a more accurate model compared to a uniform 50 Ωm half-

space. This synthetic example demonstrates that a cooperative method improves

the accuracy of the recovered anomalies. Because of its close association with the
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Figure 2.11: Data misfit convergence curves with target misfit shown in
dashed black with final models circled in black. a) Synthetic data with-
out bounds b) Field data without bounds c) Synthetic data with bounds
d) Field data with bounds.

field data example, the same conclusions are anticipated there.

2.5.3 Synthetic constrained cooperative inversion

Thus far, all inversions have been unconstrained, and all start with a 50 Ωm half-

space initial and reference model. To test a constrained approach, the synthetic

example is revisited. Constraints are extracted from drilling information from 78

synthetic boreholes which are replicas of the field boreholes over the Antonio de-

posit. Each hole intersects multiple discretized cells in the synthetic 3D model, and

this information is used to produce upper and lower resistivity bounds. The upper
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Table 2.3: Quantitative assessment of synthetic inversions using a residual
(R) value. A lower residual refers to a more accurate recovery.

Inversion Model Residual (R)

50 Ωm half-space 1.62
AEM 0.80
CSAMT 0.66
DC 0.55
Cooperative 0.47
Bounded Cooperative 0.26

and lower bounds for each model cell intersected by a borehole are respectively set

to 5% above and below the corresponding resistivity value in the synthetic model.

The regularization of the inversion algorithm attempts to smooth this information

away from constrained cells, and a global bound range of 1 Ωm to 5000 Ωm is ap-

plied to all cells not intersected by boreholes. This global bound prevents extreme

inversion artifacts from emerging, and allows the conductivity to vary freely within

this range.

The cooperative method from Figure 2.8 is implemented. The convergence plot

from Figure 2.11c shows that after the third cooperative iteration, the CSAMT/DC

data set reaches its target value, and after the sixth AEM cooperative iteration,

both data sets reach convergence. Therefore, the addition of bounds helps guide

the cooperative approach to a single solution that fits both data sets. A 3870 m con-

stant elevation image of the constrained inversion result is shown in Figure 2.12a

with additional elevation slices in Figure 2.13f. The outline of the resistor is much

improved compared to previous results, and both the northern and southern con-

ductors are clearly imaged. Even the small resistive zone at the southern tip of the

survey is recovered, thanks primarily to a synthetic borehole. Quantitatively, the

constrained cooperative method produces a residual value of 0.26, which outper-

forms all other synthetic inversions.
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Figure 2.12: Cooperative 3D inversions with bounds at a 3870 m elevation
slice a) Synthetic data with the true resistor outline in thin black b)
Field data with the outline of known near-surface silica alteration in
dashed red, interpreted silica alteration outline at 3870 m elevation in
solid black, geologic faults in thin blue, and conductive anomalies of
interest numbered in yellow.

2.6 Antonio Inversion Results

2.6.1 Antonio cooperative inversion

The cooperative approach is applied to the field data, once again using the same

common mesh and error assignments as before. A noise floor of 1.0× 10−5 V/m

is placed on 0.125 Hz electric fields converted from DC data. The convergence

curves are plotted in Figure 2.11b and final data misfit values are described in Ta-

ble 2.2. The joint CSAMT/DC data set reaches its target level, after cooperative

iteration 8, and the inversion terminates after iteration 9, when the AEM data mis-

fit is greater than after iteration 8. The model after the eighth AEM iteration is
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a) Resistivity: True model b) Resistivity: AEM c) Resistivity: CSAMT

d) Resistivity: DC e) Resistivity: Cooperative f) Resistivity: Cooperative with bounds
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Figure 2.13: Resistivity 3D inversions from synthetic data at five elevation
slices: 3895 m, 3870 m, 3845 m, 3820 m, 3795 m. a) True model b)
AEM c) CSAMT d) DC Resistivity e) Cooperative f) Cooperative with
drilling bounds.

chosen as the end result. The final AEM data misfit of 1.62 is above the target

value of 1.0, which demonstrates that the inversion has a more difficult time fitting

AEM measurements to the assigned error levels, compared to CSAMT/DC data,

where the final data misfit is only slightly higher than the target value. A constant

3870 m elevation image of the result is displayed in Figure 2.7d. The recovered

resistive anomaly has a better agreement with the silica alteration outline compared

to the individual inversions and additional conductive features are clearly visible

within the deposit region. Comparable to the synthetic case, the AEM contributes

most to the cooperative result by mapping the extent of the large resistor, while

the conductive features are largely due to the CSAMT/DC data. This may seem
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counter intuitive at first, but the NEWTEM waveform is designed specifically to

be sensitive to near-surface resistors, and the CSAMT/DC surveys have more data

points directly over the well-imaged southern conductor compared to AEM mea-

surements. The magnitude of the cooperative resistor is slightly stronger than the

individual inversions, and the resistive anomaly extends past the mapped outline to

the north-west. Erroneous resistive anomalies in the extreme north-west and north-

east corner are beyond the data supported region, and should be neglected. As

would be expected, the cooperative model is similar to all three individual images

in some aspects, but not identical to any, and is interpreted to be a more accurate

representation of the resistivity signature over the Antonio deposit.

2.6.2 Antonio constrained cooperative inversion

The constrained cooperative method is now applied to field data, which requires

borehole resistivity information. However, boreholes at Antonio have alteration

logging and geochemical assay values, but only a limited number of resistivity

measurements. Surprisingly, from the samples available there is a poor correlation

between alteration or rock type with resistivity; thus, another proxy for resistivity

information is needed. Nelson and Van Voorhis (1983) noted an inverse relation-

ship between total weight percent sulfide and resistivity for in-situ rock measure-

ments in a porphyry environment. Although Antonio is a high-sulfidation deposit

and not a porphyry, this concept is investigated by plotting in Figure 2.14 the total

weight percent sulfur against resistivity for 30 rock samples at Antonio, colored

by alteration type. The linear regression curve, represented by the black line in

Figure 2.14, does not include propylitic samples, and has a resulting Pearson cor-

relation coefficient of -0.73, indicating a statistical negative correlation. Nearly an

identical relationship is extracted when resistivity is compared to total weight per-

cent sulfide, but total sulfur content is used because more of these measurements

are available.

This regression relationship is applied to the alteration values from 78 field

boreholes, whose locations are shown in Figure 2.15a, and total sulfur content

from 61 boreholes, displayed in Figure 2.15b. The product of the relationship

is a resistivity reference model, shown in Figure 2.15c. Propylitic samples are
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Figure 2.14: Linear regression curve, shown as a black line, for the resistivity
versus total sulfur relationship from 30 borehole samples.

assigned a resistivity value of 23 Ωm in the reference model, equal to the mean of

the three samples in Figure 2.15a. To create upper and lower bounds, the mean and

standard deviation of the resistivity values within each model cell are calculated,

and the bounds are set respectively to one standard deviation above or below the

mean cell value. The incorporation of these bounds to a cooperative constrained

field inversion produces the convergence curve shown in Figure 2.11d. The final

target AEM misfit of 1.29 is lower than the unconstrained cooperative inversion,

but still above the target level, whereas the joint CSAMT/DC final misfit of 1.15

is identical to the unconstrained case. A 3870 m constant elevation slice from

this model is displayed in Figure 2.12b. This result has a strong agreement with

the known silica outline, and with previous studies (Oldenburg et al., 2005, 2004),

although some additional features are present, and will be discussed further in the

geologic interpretation section.

Caution must be placed when implementing constraints such as upper and

lower resistivity bounds, because they could erroneously bias the inversion model.

Field constraints are derived from a relationship between total sulfur content and

resistivity based on 30 laboratory rock measurements. This represents a small sam-

ple size from which to produce constraints for an entire model. But the validity of

this relationship is corroborated by the similarity between the unconstrained and
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Figure 2.15: Drilling information for model cells intersected by 78 boreholes
at Antonio. a) Alteration b) Total sulfur content c) Resistivity derived
from a regression relationship between total sulfur/alteration and resis-
tivity.

constrained cooperative inversions. For additional confidence in the bounds, more

petro-physical measurements should be acquired, and this is recommended for fu-

ture constrained cooperative studies.

2.6.3 Geologic interpretation

The constrained cooperative inversion result shown in Figure 2.12b is consid-

ered the final field inversion, and additional elevation slices are displayed in Fig-

ure 2.16f. This final result compares well with the unconstrained cooperative model

in Figure 2.7d, which adds more confidence to the regression relationship that

helped calculate the upper and lower resistivity bounds. In all elevation slices,

the final model maps the target silica alteration zone as a strong resistor. At an

elevation of 3870 m, the resistive zone extends past the mapped alteration outline

to the north-west, which suggests that the silica alteration does as well. Conse-

quently, an outline shown in solid black in Figure 2.12b represents the interpreted

silica alteration zone at 3870 m elevation based on the final field inversion.

Within this resistive alteration region, small conductive areas are recovered,

and two such anomalies are numbered 1 and 2 in Figure 2.12b. From borehole alter-

ation logs, anomaly 1 represents a small area of propylitic alteration, and anomaly 2

coincides with a large total sulfur anomaly within silica alteration, which suggests
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Figure 2.16: Resistivity 3D inversions from field data at five elevation slices:
3895 m, 3870 m, 3845 m, 3820 m, 3795 m. a) Alteration from bore-
holes b) AEM c) CSAMT d) DC Resistivity e) Cooperative. An exam-
ple of a conductive anomaly potentially linked to propylitic alteration
is highlighted with a yellow star f) Cooperative with drilling bounds.

extensive sulfide mineralization. This location of inferred sulfide mineralization

is potentially explained by its proximity to fault intersections directly to the north

and west, where fluid flow would have been confined. Anomaly 2 also sits on a

chargeability high from induced-polarization data. Based on these characteristics,

anomaly 2 is a prime target for gold mineralization. Borehole assays corroborate

this observation with anomalous gold values present within anomaly 2 but not in

anomaly 1.

At greater depths, many conductive anomalies within the confines of silica

alteration can be explained by the presence of propylitic alteration. This agreement
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is noted even in the unconstrained cooperative inversion where borehole constraints

have not been applied. An excellent example is the large conductive zone at an

elevation of 3795m as shown by yellow stars in Figures 2.16e and 2.16f. When

compared to the region of propylitic alteration in Figure 2.16a there is a strong

spatial correlation. Other smaller conductive anomalies within the silica-rich zone

not linked to propylitic alteration may indicate the presence of sulfides, and these

regions are considered prospective targets for gold mineralization.

2.7 Conclusions
The mineralization at Antonio is known to occur within areas of silica alteration,

which is a resistive geophysical target. However, AEM data in addition to two

other geophysical surveys over the Antonio deposit image the resistivity signature

differently. The cooperative inversion method inputs all this information into one

physical property model, and images the resistive zone at Antonio with a high level

of agreement to the known silica alteration. This method is successful in ensuring

a consistent inversion result, as demonstrated with a synthetic and field example.

Through synthetic modeling, the cooperative method is shown to improve the

accuracy of 3D resistivity inversions. Moreover, adding geologic constraints to the

inversion, in the form of upper and lower resistivity bounds for each 3D model cell,

produces a result closer to the true synthetic model. Consequently, in a field setting,

when reliable borehole physical property information exists, it should be incorpo-

rated into the 3D inversion. The final constrained cooperative field model clearly

images the large silica alteration zone, and its shape is in general correspondence

with drilling and previous studies of the area. An area of silica alteration from the

field inversion that extends beyond the previous known outline offers a new inter-

pretation of the mapped alteration. Further analysis from this final model highlights

potential areas of sulfide and gold mineralization, within the silica alteration zone,

in the form of small conductive anomalies.

Collectively this study illustrates that a practical cooperative constrained inver-

sion methodology is possible for AEM and other electromagnetic data sets, and

that exploration companies could benefit from such a technique for spatially over-

lapping surveys with or without borehole constraints.
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Chapter 3

Single Anomaly Parametric
Inversion of AEM data

In this chapter, I demonstrate a method to invert AEM data using a parametric

level-set approach combined with a conventional voxel-based technique to form

a parametric hybrid inversion. The approach is designed for situations where a

voxel-based inversion alone may struggle, such as a conductive thin dipping plate

with a large physical property contrast between itself and a highly resistive back-

ground. Synthetic and field data from the Caber volcanogenic massive sulfide de-

posit in Quebec, Canada, are shown to highlight the advantages of this technique.

Although the approach is shown for time-domain data, the same functionality has

been developed for the frequency domain and will be showcased in later chapters.

3.1 Introduction
It has been established that AEM surveys are widely used as a mineral exploration

tool for imaging subsurface electrical resistivity distributions to help identify rock

types, mineralization, and alteration zones (Keller, 1988). In a conventional voxel-

based electromagnetic inversion, the resistivity value in every active mesh cell is

solved for, and in recent years, inversion algorithms have been modified to facil-

itate thousands of source locations. This has resulted in numerous 3D inversion

codes tailored toward AEM data (Cox et al., 2012; Haber and Schwarzbach, 2014;
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Oldenburg et al., 2013; Ruthotto et al., 2016).

When an anomaly of interest has sharp boundaries and a large physical property

contrast compared to the background, experience with voxel-based inversion codes

suggests that accurately defining these abrupt resistivity contrasts can be challeng-

ing. Moreover, the true resistivity of the target is often poorly estimated, especially

with a low resistivity or high conductivity target. One option is to use minimum or

compact norm solutions for voxel-based problems to help achieve sharp anomalies

(Farquharson and Oldenburg, 1998; Fournier, 2015; Last and Kubik, 1983; Port-

niaguine and Zhdanov, 1999; Zhdanov and Cox, 2013); however, experience has

shown mixed results when applying these types of solutions to 3D AEM problems.

Another approach that will be explored further in this chapter is the parametric

method (Abubakar et al., 2006; Aghasi et al., 2011). Here, instead of solving for

the resistivity in every cell, only a few parameters are sought to describe the phys-

ical property space, and the reduction in the number of variables can typically be

many orders of magnitude. Parametric inversions can also be coupled with such

methods as level sets (Osher and Fedkiw, 2001; Osher and Sethian, 1988), to solve

for the resistivity and shape of a target of interest (Aghasi et al., 2011). Level-

set methods have previously been applied to 2D electromagnetic tomography and

inverse scattering (Dorn and Lesselier, 2006; Dorn et al., 2000), as well as other

geophysical inverse problems such as 2D travel time (Zheglova and Farquharson,

2016), 2D DC resistivity (Ascher and Roosta-khorasani, 2016; van den Doel and

Ascher, 2006), 3D gravity (Isakov et al., 2011) and 3D gravity gradient data (Lu

and Qian, 2015).

This research focuses on 3D AEM data, and specifically on parametric level-set

inversion methods, which adds a level of stability to the inverse problem compared

to traditional level-sets by restricting the shape of the anomaly; thus, acting as

a form of regularization (Aghasi et al., 2011). A parametric level-set approach

enables the inversion to find optimally shaped anomalies with potentially sharp

boundaries and a high resistivity contrast compared to the background with a mini-

mal number of variables. This study adds to previous hybrid modeling approaches

for AEM data such as Leroi Air (Raiche, 1998), where thin sheet integral equa-

tions are used with 3D plates in a layered earth, and Marco Air (Xiong and Tripp,

1995), where volume integral equations are incorporated with 3D prisms in a lay-
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ered earth.

Finding an appropriate parameterization is critical, and this work chooses to

work with a skewed Gaussian ellipsoid to represent the target anomaly, although

other options are available such as radial basis functions or truncated Gaussian dis-

tributions (Aghasi et al., 2011; Pidlisecky et al., 2011). The Gaussian ellipsoid

shape is chosen for its flexibility, as it can easily discretize high-frequency features

including plates and thin layers, as well as broader shapes such as large intrusions.

It is recognized that the skewed Gaussian parameterization has limitations, espe-

cially in the single-anomaly case. Therefore, to account for additional features in

the model space, a voxel-based stage is added to solve for smooth background fea-

tures. The choice of parameterization is specific, but the method developed here

is general to any parameterization, and could be applied to other geophysical data

sets such as ground EM, potential fields or induced-polarization. The data sets

presented in this section are all in the time domain, but the method has also been

developed for frequency-domain observations.

The three research goals in this chapter are listed below.

• To develop a parametric inversion for AEM data with a skewed Gaussian

ellipsoid parameterization.

• To show, with a synthetic and field example, that the novel parametric inver-

sion can accurately recover a thin dipping plate; a pertinent target for mineral

exploration.

• To combine parametric and voxel-based methods to form a hybrid technique

that can model a single target of interest with parametric inversion, while

filling in remaining features with a voxel-based code.

This chapter first discusses general electromagnetic theory before going into

detail regarding the parametric hybrid methodology. Simulated AEM data over

a synthetic model composed of a thin dipping conductor in a resistive half-space

is then introduced to provide a means to test the code. Following the synthetic

example, the hybrid inversion, which to our knowledge is the first algorithm to

combine smooth and parametric features for a geophysical application, is tested on
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AEM field data over a volcanogenic massive sulfide (VMS) deposit. The results are

subsequently compared to previous work and to geologic knowledge from drilling.

3.2 Electromagnetic Background
This chapter focuses on AEM platforms where the receiver is contained in the

center of the transmitter loop, known as coincident loop systems (Allard, 2007).

The data collected are typically x,y,z component ∂b
∂ t data, although components of

b alone can also be calculated.

For conventional voxel-based time-domain AEM inversions, the approach dis-

cussed in Haber and Schwarzbach (2014) is followed, where Gauss-Newton based

optimization is used to solve quasi-static Maxwell’s equations in space and time

subject to boundary and initial conditions

n× (∇×h) = 0 (3.1)

h(x,y,z, t = 0) = h0 (3.2)

∇ ·µh0 = 0 (3.3)

using a finite-volume discretization on ocTree meshes (Haber et al., 2007a). Here

n is a normal vector, x,y,z are spatial observation coordinates and t is time. For

further information on voxel-based electromagnetic inversion theory, see Haber

et al. (2004); Haber and Heldmann (2007); Haber et al. (2007b). Details regarding

the parametric hybrid inversion are now discussed.

3.3 Inversion Methodology
Consider an inverse problem where the forward problem has the form

F(m(x))+ ε = d (3.4)

where F maps the function m(x), with position vector x, to the discrete data d, and

ε is the noise that is assumed to be Gaussian. After discretization of the model, the
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discrete problem

F(m)+ ε = d (3.5)

is obtained where m is a discrete approximation to the function m(x). A maximum

likelihood approach would minimize the global misfit φ as shown in Chapter 2.

min
m

φ(m) =
1
2
(F(m)−d)TWT

d Wd(F(m)−d) (3.6)

However, this problem is typically ill-posed, and there are many possible solutions

that minimize the global misfit. To obtain a well-posed problem, two possible

routes can be taken. First, if the model m does not have any particular form some

smoothness can be assumed and this results in a regularized least-squares approach.

A second option is where some specific a priori information is available, and it is

assumed that the model m, with n number of cells, can be expressed by a small

number of j parameters denoted as p. This can be expressed by

m = f (p) (3.7)

where f : R j→Rn is a known smooth function that is continuously differentiable.

In some cases both assumptions about the model are valid. The model can be

made of a smooth background and an anomalous body that can be parametrized.

That is

m = ms + f (p) (3.8)

where ms is some smooth background and f (p) describes an anomalous conductive

or resistive body. This leads to the following regularized problem to be solved.

min
ms,p

φ(ms,p) =
1
2
(F(ms + f (p))−d)>WT

d Wd(F(ms + f (p))−d)+βR(ms)(3.9)

Here, R(·) is a regularization term that enforces smoothness on the background

model and β is a regularization parameter. Additional restrictions, such as bounds

on p or ms can also be invoked. Equation 3.9 is a discrete optimization problem
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for the smooth background model ms and the parameters p. In general, it is non-

convex and therefore care must be taken to obtain feasible solutions.

A hybrid approach is proposed where a block coordinate descent (Gill et al.,

1981) is used to fix ms and minimize over p in the first, or parametric stage, and

then fix p and minimize over ms in the second, or voxel-based stage. Another

option is to run the voxel-based stage first, prior to the parametric stage, but ex-

perience with the code so far suggests that the former procedure produces better

results. The proposed hybrid scheme runs through each stage once, but this process

could be iterated. The stopping criteria are when the inversion: a) has converged

to a target data misfit of unity b) has reached a maximum number of user-defined

iterations, or c) can not find a Gauss-Newton step that lowers the normalized data

misfit by more than 0.1%. The program may also be terminated if the inversion

is deemed to be over-fitting the data by placing obvious resistivity artifacts near

transmitter or receiver locations.

This hybrid approach has the advantage of scale separation, in that the para-

metric inversion of f (p) typically affects data locally, whereas optimizing over ms

affects data globally, and can fit large-scale and smooth features. In the first para-

metric stage, the method searches for one anomaly of interest, either conductive or

resistive, in a background ms. This background can either be a uniform half-space

or a heterogeneous resistivity distribution from a priori information or previous in-

version work. Once again, the time-dependent quasi-static Maxwell’s equations are

solved with initial and boundary conditions as shown in Equations 3.1 through 3.3.

The parametric hybrid approach finds a best-fitting skewed Gaussian ellipsoid,

by means of a finite-volume discretization on local and global ocTree meshes

(Haber and Schwarzbach, 2014). The inversion requires an initial guess, which

is composed of the quantities, rx, ry, rz, φx, φy, φz, x0, y0, z0, ρ0, and ρ1. The values

r and φ represent an estimate for the radius and rotation angle of the ellipsoid for

each Cartesian direction, while x0, y0 and z0 represent the center coordinates of the

anomaly, and ρ0 and ρ1 are the background and anomalous resistivities. Resistiv-

ity values can be fixed by the user, or alternatively, these resistivities can be set as

active parameters in the inversion. The initial guesses for radii and rotation angles

are multiplied together to give a transform matrix T as shown in Equations 3.10

to 3.14. Equation 3.15 then forms a symmetric positive definite matrix M, com-
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posed of stretching and skewing parameters m1 through m6, and more information

regarding rotation matrices can be found in Modersitzki (2003). All unscaled pa-

rameters p̃ are scaled by element-wise division denoted by � with the vector s, to

improve the conditioning of the system as seen in Equations 3.16 and 3.17. The

vector s is composed of an appropriate length scale L, and a characteristic resis-

tivity ρ̂ . In total, p contains 11 scaled parameters that are used in the parametric

inversion.

S =


1
rx

0 0

0 1
ry

0

0 0 1
rz

 (3.10)

Rx =

1 0 0

0 cos(φx) −sin(φx)

0 sin(φx) cos(φx)

 (3.11)

Ry =

 cos(φy) 0 sin(φy)

0 1 0

−sin(φy) 0 cos(φy)

 (3.12)

Rz =

cos(φz) −sin(φz) 0

sin(φz) cos(φz) 0

0 0 1

 (3.13)

T = SRxRyRz (3.14)

M =

m1 m4 m5

m4 m2 m6

m5 m6 m3

= TTT (3.15)
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p̃ =



m1

m2

m3

m4

m5

m6

x0

y0

z0

log(ρ0)

log(ρ1)



s =



L−2

L−2

L−2

L−2

L−2

L−2

L

L

L

log(ρ̂)

log(ρ̂)



(3.16)

p = p̃� s. (3.17)

For any position x,y,z in the spatial domain Ω set

x =

x

y

z

 x0 =

x0

y0

z0

 (3.18)

and the level-set function τ is introduced in each mesh cell

τ = c− (x−x0)
TM(x−x0) (3.19)

where c represents a positive constant and will be discussed in more detail later in

this chapter. τ , ρ0, and ρ1 are used to generate the resistivity distribution through

an analytic step function

ρ(τ,ρ0,ρ1) = ρ0 +
1
2
(1+ tanh(aτ))(ρ1−ρ0) (3.20)
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where

lim
τ→−∞

ρ(τ,ρ0,ρ1) = ρ0

lim
τ→+∞

ρ(τ,ρ0,ρ1) = ρ1

ρ(τ = 0,ρ0,ρ1) =
1
2
(ρ0 +ρ1).

A hyperbolic tangent is chosen for the analytic step function, but other choices are

possible (Tai and Chan, 2004). The transition zone between ρ0 and ρ1 occurs when

τ = 0, also known as the zero level set (Osher and Sethian, 1988), and its width is

controlled by the parameter a. For numerical stability, a minimum of two mesh

cells should occur within the transition zone to ensure a suitable Gauss-Newton

step can be found. The optimization of the inversion follows a conventional Gauss-

Newton procedure for time-domain AEM data (Haber and Schwarzbach, 2014),

and a line search is used to determine an appropriate model update step within a

minimum and maximum value. Other techniques such as the trust region approach

introduced by Sturler and Kilmer (2011) can be applied if an acceptable step length

is not found with a conventional line search, although this issue has not been en-

countered in this research. In the case where m = f (p) is sufficient to model the

region of interest, the parametric code can be used as a stand-alone algorithm where

ms is fixed. Otherwise, the hybrid technique is achieved by setting the parametric

inversion model as the initial and reference model when optimizing over ms.

3.4 Parametric Sensitivity and Initial Parameter
Selection

Gauss-Newton optimization for minimizing Equation 3.9 requires a sensitivity ma-

trix Ji, j, or ∂di
∂ p j

, where di is the ith data point and p j is the jth inversion parameter.

For p1 through p9, the chain rule is used to calculate Ji, j as shown in Equation 3.21

Ji, j = ∑
α,β

∂di

∂ρα

∂ρα

∂ρβ

∂ρβ

∂τ

∂τ

∂ p j
(3.21)
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where ρα is the cell center resistivity for each local mesh cell, α is the local mesh

cell index, ρβ is the cell center resistivity for each global mesh cell, and β is the

global mesh cell index. This domain separation into local and global meshes is used

for maximum computational efficiency as described in Haber and Schwarzbach

(2014). For p10 and p11, Ji, j is shown in Equation 3.22 where the derivative with

respect to τ is replaced with a derivative with respect to ρ0 or ρ1

Ji, j = ∑
α,β

∂di

∂ρα

∂ρα

∂ρβ

∂ρβ

∂ρ0,1

∂ρ0,1

∂ p j
(3.22)

The voxel-based framework calculates the derivatives ∂di
∂ρα

∂ρα

∂ρβ

, therefore, the para-

metric algorithm requires the evaluation of ∂ρβ

∂τ

∂τ

∂ p j
or ∂ρβ

∂ρ0,1

∂ρ0,1
∂ p j

. These derivatives

are expressed below in Equation 3.23.
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∂ρβ

∂m1
= −0.5a(ρ1−ρ0)(1− tanh2(aτ))(x− x0)

2

∂ρβ

∂m2
= −0.5a(ρ1−ρ0)(1− tanh2(aτ))(y− y0)

2

∂ρβ

∂m3
= −0.5a(ρ1−ρ0)(1− tanh2(aτ))(z− z0)

2

∂ρβ

∂m4
= −a(ρ1−ρ0)(1− tanh2(aτ))(x− x0)(y− y0)

∂ρβ

∂m5
= −a(ρ1−ρ0)(1− tanh2(aτ))(x− x0)(z− z0)

∂ρβ

∂m6
= −a(ρ1−ρ0)(1− tanh2(aτ))(y− y0)(z− z0)

∂ρβ

∂x0
= a(ρ1−ρ0)(1− tanh2(aτ))(M(x− x0))

∂ρβ

∂y0
= a(ρ1−ρ0)(1− tanh2(aτ))(M(y− y0))

∂ρβ

∂ z0
= a(ρ1−ρ0)(1− tanh2(aτ))(M(z− z0))

∂ρβ

∂ρ0
= 0.5(1− tanh(aτ))

∂ρβ

∂ρ1
= 0.5(1+ tanh(aτ))

(3.23)

To calculate Ji, j, the user defined inversion parameters L, ρ̂,a,c,, from Equa-

tions 3.16, 3.19, and 3.20 need to be chosen. Experience suggests to choose L such

that it represents a typical length scale of the problem, meaning it should be on the

order of a few cell lengths, and in this thesis, L = 100. Select ρ̂ such that it repre-

sents a moderately low resistivity value in the inversion. With resistivities varying

by many orders of magnitude this can be difficult to select, but 10 Ωm is chosen

throughout this work. Based on initial tests, the exact choice of L or ρ̂ does not

substantially change the inversion results and should not be a critical choice.

The parameters a and c collectively change the width of the transition zone

between ρ1 and ρ0, as depicted in Figure 3.1 with initial parameters [rx,ry,rz] =
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[25,50,25], [φx,φy,φz] = [0,0,0], [x0,y0,z0] = [0,0,0] and [ρ0,ρ1] = [0,1]. Select-

ing the parameter a to be larger results in a smaller transition zone. For the ex-

amples shown in this thesis, a = 10, such that a minimum of two mesh cells are

present within the transition zone. It is suggested to choose a between 5 and 15

for best results. The inversion is less sensitive to the parameter c, but it is recom-

mended to be set to 1 to keep initial radius guesses rx, ry and rz consistent with

the mapped radius values of the ensuing ellipsoid after the transformations from

Equations 3.11 to 3.20. Figures 3.1a, 3.1b and 3.1c demonstrate a sharp step-off

function followed by the resulting ellipsoids with a = 10 and the parameter c set to

1 and 5 respectively. Figures 3.1d, 3.1e and 3.1f show a gradual step-off followed

by the corresponding ellipsoids with a = 0.5 and the parameter c set to 1 and 5 re-

spectively. Figure 3.1b displays the ellipsoid constructed with the suggested choice

of inversion parameters of a = 10 and c = 1.

54



a) b) c)

d) e) f)

y 
(m

)

x (m) x (m)

y 
(m

)

x (m) x (m)

y 
(m

)

y 
(m

)

Figure 3.1: a) Analytic step-function with a = 10. b) Gaussian ellipsoid ex-
ample with a = 10, c = 1. c) Gaussian ellipsoid example with a = 10, c =
5. d) Analytic step-function with a = 0.5. e) Gaussian ellipsoid example
with a = 0.5, c = 1. f) Gaussian ellipsoid example with a = 0.5, c = 5.
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3.5 Synthetic Results

3.5.1 Thin plate responses

Prior to inversion, it is worthwhile to look at ∂bz
∂ t responses from a concentric loop

time-domain AEM system over a thin, vertical or dipping conductive plate. The

discretized triangular waveform used to calculate these curves is depicted in Fig-

ure 3.2 with measured time channels marked in black for reference. This waveform

has a longer on-time pulse coupled with a slower shut-off decay compared to the

NEWTEM-I waveform from Chapter 2, which is beneficial for detecting deep con-

ductive targets (Allard, 2007).
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Figure 3.2: Triangular discretized waveform in red with measured time chan-
nels marked as black crosses.

Figure 3.3 displays three scenarios with a conductive 3 Ωm thin plate of dimen-

sions 20 x 300 x 300 m in x,y,z buried 20 m below a flat topographic surface in a

resistive half-space of 3000 Ωm. The transmitter and receiver are located 37.5 m

above the earth, and the data consists of 19 time channels recorded between 10 µs

- 7000 µs. Figure 3.3a demonstrates the classic symmetric double-peak response

over a vertical dipping plate. Figure 3.3b displays how the symmetry is broken

when the plate is tilted at a 45 degree angle, and Figure 3.3c shows a single broad

high over a flat-lying thin conductive sheet.
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Figure 3.3: Noise-free ∂bz
∂ t responses from a coincident loop AEM system

flying 37.5 m over a thin 3 Ωm conductive plate in a 3000 Ωm back-
ground. a) Vertical plate buried 20 m below the surface. b) 45 degree
dipping plate buried 20 m below the surface. c) Flat plate buried 20 m
below the surface.

3.5.2 Synthetic dipping plate inversion results

To test the parametric inversion, a synthetic model of a buried plate-like dipping

conductor is constructed in a resistive background. For simplicity, flat topography

is included in this example. Figures 3.4a, 3.4b, and 3.4c portray sections through

the synthetic model in each Cartesian direction. A time-domain AEM survey is

simulated at a height of 37.5 m above ground with 49 transmitter locations over

the dipping plate as shown by stars in Figure 3.4a. The data is composed of ∂bz
∂ t

data, contaminated with 5% Gaussian noise, calculated at 19 time channels using

the waveform and time gates shown in Figure 3.2. The model is discretized on an

ocTree mesh with core cells of 20 × 20 × 20 m for a total of 96,272 cells in the

inversion mesh, and roughly 10,000 cells in the forward meshes. The resistivity

of the plate is 3 Ωm in a uniform 3000 Ωm background. The dimensions of the

dipping plate are 320× 60× 640 m in x,y,z respectively with a near vertical dip of

80 degrees in the positive y direction (east). Figures 3.4d, 3.4e, and 3.4f show the

results from a voxel-based inversion alone (Haber and Schwarzbach, 2014) with a

compact Ekblom regularization (Ekblom, 1973) on the smoothness component of

the model norm, which demonstrates how a voxel algorithm has trouble imaging
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this type of target. The resulting anomaly gets smeared, the resistivity magnitude

is much too high, and the inversion is unable to capture the true dip.

For the parametric inversion, the initial guess consists of a 50 m radius sphere

located at [x,y,z] = [-120, 0, -150] in a uniform background. This is the same initial

guess as the voxel-based inversion, although a similar voxel result ensues if a half-

space is used as the starting guess. In the first example, the true anomalous and

background resistivity is presumed known. In the second trial, incorrect values are

assigned and the inversion calculates the resistivity parameters. Having a sphere

as a starting guess provides minimal information with regards to the true size and

dip of the anomaly, and it is a reasonable starting guess without having any a priori

knowledge. Note, in the case where a portion of the recovered ellipsoid resides

above ground, this region is set to a typical resistivity value of air.
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Figure 3.4: Plan view depth slices and cross-sections through the true model,
recovered voxel-based inversion and recovered parametric models. a)
True model at z = -250 m. b) True model along y = 0 m. c) True model
along x = -50 m. d) Voxel model at z = -250 m. e) Voxel model along
y = 0 m. f) Voxel model along x = -50 m. g) Parametric model at z =
-250 m for fixed ρ . h) Parametric model along y = 0 m for fixed ρ . i)
Parametric model along x = -50 m for fixed ρ . j) Parametric model at z
= -250 m for variable ρ . k) Parametric model along y = 0 m for variable
ρ . l) Parametric model along x = -50 m for variable ρ .
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When the anomalous and background resistivities are fixed to the true values,

the optimization over p finishes in 32 Gauss-Newton iterations. For the parametric

stage, only a small number of poorly correlated parameters are sought, which in

itself acts as a form of regularization. As such, an extra regularization term is not

required and β is set to zero. Based on testing, this approach has been successful,

but different regularization schemes in parametric and level-set inversions can be

found in Aghasi et al. (2011); Dorn and Lesselier (2006); van den Doel and Ascher

(2006); Zheglova and Farquharson (2016). At this point, the voxel-based stage

solves for ms, but in this example there are no regional background features to

resolve, and the sharp resistivity contrast between the homogeneous background

and the thin plate favors a parametric inversion. Consequently, the voxel-based

stage does not decrease the data misfit without adding spurious inversion artifacts.

Although the parametric result does not reach the target data misfit, the voxel-based

stage is considered to over-fit the data and the model after the first parametric stage

is chosen as the final answer.

Although the concept of a target misfit is valuable for a stopping criteria, it

is acknowledged that the Gaussian ellipsoid parameterization may not perfectly

represent the true model or anomaly of interest, and the inversion may not reach

the target misfit. As such, if the inversion terminates due to a stalled data misfit

but does not reach the target level of unity, this suggests that the inversion has

progressed as far as possible based on the assigned uncertainty values. In this

case, the resulting model should have a significant reduction in data misfit to be

considered an acceptable final result.

Sections through the recovered synthetic model are shown in Figures 3.4g, 3.4h,

and 3.4i. These images show that the parametric algorithm is able to accurately re-

cover the size, shape and dip of the anomaly compared to the true answer. The dip

of the parametric model is roughly 74 degrees to the east, and this closely matches

the true dip of 80 degrees to the east. One aspect not perfectly detected is the po-

sition of the plate bottom, which sits around 600 m in the parametric recovery and

800 m in the true model. This discrepancy can most likely be attributed to reduced

sensitivity to model cells at depths greater than 600 m. Similar parametric results

are produced when the initial guess is centered at z = -300 and z = -450, so the

recovery is not highly sensitive to the exact depth of the initial guess.
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The next example allows the resistivity to be variable, and incorrect anomalous

and background values of 1 Ωm and 1000 Ωm are assigned. The choice of starting

guess is open to the user, but naturally, the further the starting guesses are from

the true resistivities, the more difficulties the program will have converging to the

correct solution. With the chosen starting guesses, the parametric stage concludes

after 29 Gauss-Newton iterations. As before, the voxel-based stage adds little im-

provement, and the model after the parametric stage is chosen as the final result.

Cross-sections through the recovered variable resistivity inversion are displayed in

Figures 3.4j, 3.4k, and 3.4l. The inversion defines the shape of the target with

accurate precision with an estimated dip of 73 degrees to the east. The depth extent

of the anomaly is slightly closer to the true model compared to the case when the

true resistivities are assigned. Recovered anomalous and background resistivities

are 3.97 Ωm and 3173 Ωm respectively.

A plan map of observed and predicted data at a mid-range time channel, 1110

µs, is displayed in Figure 3.5a and 3.5b. The plot is for the fixed resistivity in-

version where the true values are assigned, although predicted data are similar in

the variable resistivity case. An observed and predicted sounding from a selected

location, marked with a cross in Figure 3.5a, is plotted in Figure 3.5c. Collectively,

these images demonstrate the high level of agreement between the observed and

predicted data. The initial and final data misfits are 70.4 and 3.8 for the fixed resis-

tivity case and 2328.4 and 2.8 for the variable resistivity scenario. For both trials,

the misfit at each Gauss-Newton iteration is summarized in Figure 3.5d. The misfit

summary shows that both parametric inversions make excellent strides in reducing

the data misfit but fall short of the target level.
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Figure 3.5: Synthetic dipping plate observed and predicted ∂bz
∂ t data. a) Ob-

served data at 1110 µs for fixed ρ , with a selected sounding marked
with a cross. b) Predicted data at 1110 µs for fixed ρ , with a selected
sounding marked with a cross. c) Fixed ρ observed and predicted data at
selected sounding location. d) Fixed and variable resistivity data misfit
progression.
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A possible explanation for the lower final misfit when using a variable resis-

tivity instead of true values is that a skewed Gaussian ellipsoid can not perfectly

recover the staircase nature of a discretized dipping plate. It is also worth remem-

bering that within the transition zone between ρ0 and ρ1, the anomaly does not

contain the true resistivity value, but instead a weighted average of ρ0 and ρ1.

Therefore, if the anomalous resistivity quantity is allowed to vary, it is possible

that the inversion can find a shape and resistivity combination that fits the observed

data better than correct values of ρ0 and ρ1. As an additional check to the code, the

inversion reaches the same solution and data misfit as shown in the variable resis-

tivity example when the initial guess is composed of spheres with fixed resistivities

that match the previously achieved values of ρ0 = 3.97 Ωm and ρ1 = 3173 Ωm. This

ensures that the fixed and variable version of the code are acting consistently.

Based on testing not presented, the parametric inversion achieves similar re-

sults when dealing with smaller resistivity contrasts, one or two orders of mag-

nitude difference, between the background and target resistivity. In general, the

encouraging results from the synthetic dipping plate parametric inversion suggest

that similar success can be found with a more complicated field example.

3.6 Caber Case Study Results

3.6.1 Caber geology

The parametric hybrid approach is now applied to data from the Caber volcanogenic

massive sulfide (VMS) deposit of western Quebec, Canada, as shown in Figure 3.6a.

Within the Superior Province, the copper and zinc rich Caber deposit is part of the

Matagami camp of the Abitibi greenstone belt (Carr et al., 2008). Geologically, the

prominent McIvor fault separates Caber and accompanying gabbros, rhyolites and

basalts from a granodiorite unit to the north-east (Adair, 2011). The local geology

in plan view is depicted in Figure 3.6a and a simplified cross-section is displayed

in Figure 3.6b (Prikhodko et al., 2010). The cross-section shows there is a thin

conductive overburden layer above the ore-body that thickens to the north-east.

The deposit itself is cigar-like in shape with a steep dip of 75 to 85 degrees to the

south-west, and a strike direction of 125 degrees (Adair, 2011). The cross-section
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also shows the near-vertical nature of a narrow shear zone proximal to the deposit,

and nearby steeply dipping rhyolite and gabbro units.

The thin, buried nature of the Caber deposit, coupled with its position below

conductive overburden, makes it a challenging target to detect with AEM tech-

niques. Fortunately, the elevated conductivity of the deposit compared to surround-

ing rock units produces an anomalous electromagnetic response that is measurable

from the air (Prikhodko et al., 2010). A small shear zone next to the deposit, which

may be more conductive relative to the background but more resistive than the de-

posit, may contribute to the conductive response. For the purpose of this research,

the response from the deposit and any contribution from the shear zone will be

considered the target of interest.
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Figure 3.6: a) Caber deposit location and geology, modified from Prikhodko
et al. (2010) and Adair (2011). b) Simplified deposit cross-section with
drilling traces.

3.6.2 Caber time-domain AEM

The Caber AEM field data are inverted with the parametric hybrid approach. The

AEM data at Caber consist of eight lines of Versatile Time-Domain Electromag-

netic (VTEM-35) data, collected in 2012 with a 35 m diameter transmitter loop
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and a peak dipole moment of 1,300,000 Am2. See Allard (2007) for further infor-

mation regarding the VTEM system. Due to relatively flat terrain, the drape of the

transmitter above the ground varied between 34 m to 46 m, with a mean value of 40

m. The flight lines are spaced 50 m apart with a heading of 225 degrees. The dis-

cretized modified-triangular VTEM waveform is displayed in Figure 3.7 with 19

time channels ranging from 167 µs to 2021 µs marked with black x’s for reference.

Once again, a slower transmitter current shut-off compared to NEWTEM-I is de-

signed to achieve a deeper penetration of the signal, but it is modified from a pure

triangular wave to achieve a slightly steeper turn-off slope to detect near-surface

weak conductors (Allard, 2007).
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Figure 3.7: VTEM-35 (2012) discretized waveform in red with measured
time channels marked as black crosses.

3.6.3 Caber parametric inversions

For the parametric inversion stage, a subsection of the total AEM survey over the

Caber deposit is used, consisting of 102 transmitters of ∂bz
∂ t data with 11 time chan-

nels ranging from 505 µs to 2021 µs. The model is discretized on an ocTree mesh

with core cells of 20 × 20 × 20 m for a total number of 63,876 cells in the in-

version mesh. The initial guess is a 50 m radius sphere, buried 150 m below the

surface, with a resistivity of 0.2 Ωm positioned in the center of the observed ∂bz
∂ t

anomaly with a background of 1000 Ωm. In this field example, the true anomalous
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and background quantities are unknown, and ρ0 and ρ1 are variables solved for in

the inversion. Data uncertainties of 5% plus a time-channel dependent noise floor

are applied. The noise floor is set to one order of magnitude lower than a 1000

Ωm half-space response. This varying noise floor is selected to weight each time

channel as equally as possible in the inversion. The optimization over p concludes

after 30 Gauss-Newton iterations and sections through the initial guess and result-

ing model in each Cartesian direction are shown in Figures 3.8a through 3.8f. The

recovered model has a steep 80 degree dip to the south-west, which agrees with the

known dip of the deposit. The final resistivities of the anomaly and background are

0.084 Ωm and 2118 Ωm respectively. As in the synthetic case, similar results are

produced if the initial guess is moved to various locations and depths near the cen-

ter of the observed ∂bz
∂ t anomaly. The achieved anomaly value of 0.084 Ωm is well

within the range of resistivities for massive sulfides (Palacky, 1988), and is similar

to the value of 0.14 Ωm over a 30 m thickness obtained by Maxwell plate modeling

(EMIT, 2005) of the 2012 AEM data over Caber from previous work (Prikhodko

et al., 2012). Overall, the similarities between the two results are encouraging,

and an exact match to a 30 m plate can not be expected with a Gaussian ellipsoid

on a 20 m mesh discretization. Even with 15 m mesh cells, the results would not

be expected to be identical since the methods use different approximations and

parameterizations.

3.6.4 Caber hybrid parametric inversion

A plan map of observed and predicted parametric data for a mid-range time chan-

nel, 1010 µs, is displayed in Figure 3.9a and 3.9b. Overall there is a close agree-

ment between the observed and predicted data, as they both exhibit a similar asym-

metric double peaked response, indicative of a single dipping plate anomaly. Some

discrepancies between the data sets exist, such as the break in the observed data

that separates the southern lobe of the double peak that is not present in the pre-

dicted data. The inability to resolve fine levels of detail, such as this break, is a

limitation of the first parametric stage of the hybrid approach, but the primary pur-

pose of finding a best-fitting skewed Gaussian ellipsoid that matches the overall

trend of the data is achieved. Observed and predicted data at a selected sounding
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Figure 3.8: Plan view depth slices and cross-sections through the initial guess
and recovered Caber parametric and hybrid models. a) Initial guess at z
= 142.5 m. b) Initial guess along y = 5513510 m. c) Initial guess along
x = 710146 m. d) Parametric model at z = 42.5 m. e) Parametric model
along y = 5513510 m. f) Parametric model along x = 710146 m. g)
Hybrid model at z = 42.5 m. h) Hybrid model along y = 5513510 m. i)
Hybrid model along x = 710146 m.

in the center of the northern lobe, marked with a cross in Figure 3.9b are shown

in Figure 3.9c, and a strong agreement is evident. The initial and final data misfits

are 58.6 and 5.7 respectively, meaning the parametric approach reduces the data

misfit by an order of magnitude, and the data misfit progression is summarized in
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Figure 3.9d.
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Figure 3.9: Caber observed and predicted ∂bz
∂ t data. a) Observed data at 1010

µs with a selected sounding marked with a cross. b) Predicted data at
1010 µs with a selected sounding marked with a cross. c) Observed and
predicted data at selected sounding location. d) Data misfit progression.

For the second stage of the hybrid approach, the parametric result is placed as

the initial and reference model in order to optimize over ms, allowing the resistiv-

ity in every mesh cell to vary. Data from 19 time channels ranging from 167 µs to

2021 µs are included, and responses below a threshold of 1e-13 V
Am2 are discarded

because of potential noise concerns. In total, 727 transmitter locations from across

the entire survey area are inverted with the same error assignments as in the para-
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metric stage. Data over the central anomaly are included to allow the resistivity

and shape of the parametric result to adjust if needed.

Over nine Gauss-Newton iterations, each composed of three inner iterations

for a fixed β , ms is optimized and the inversion converges to a data misfit of 0.95.

The regularization parameter β starts at a value of 1e-3 and decreases by a fac-

tor of γ = 0.2 with each Gauss-Newton iteration. The starting β is much smaller

compared to Chapter 2 because the parametric starting guess is a much more de-

tailed initial model compared to a half-space, and the same cooling scheme as

Chapter 2 is kept. Figures 3.8g, 3.8h and 3.8i show sections through the final hy-

brid parametric model. Once again the thin conductor is imaged, representing the

Caber deposit. A different color bar is used for the hybrid result to show both the

weakly conductive overburden and the strongly conductive target together. The

Caber anomaly steeply dips to the south-west with a dip of 80 degrees, and an

overburden unit over the conductor initially thickens to the north-east. The re-

covered size, dip and presence of overburden corroborates geologic information

from Figure 3.6b, which adds confidence to this hybrid result. The shape and sharp

boundaries of the dipping conductor are achieved through the parametric inversion,

while the voxel-based inversion adds smooth features such as the overburden. Al-

though the voxel-based stage can potentially alter the shape and resistivity of the

Caber deposit, the anomaly only changes slightly from the parametric result.

Observed and predicted ∂bz
∂ t data from time channel 505 µs, are illustrated in

Figure 3.10. The predicted data at this time channel closely resemble the observed

data, and clearly illustrate the response of the Caber deposit in addition to the

conductive overburden in the north-east portion of the survey area. Holes in the

observed and predicted data represent areas of resistive terrain where ∂bz
∂ t responses

drop below 1e-13 V
Am2 . Data from much of the south-west survey area is not shown

due to data below this noise threshold.

To validate and ground truth the field inversion, Figure 3.11 displays a front

and side view of a 0.4 Ωm iso-surface from the parametric result in red, the hybrid

result in hatched gray, the massive sulfide deposit outline from drilling (M. Allard,

personal communication, 2014) in light gray, and the aforementioned plate models

for individual lines (Prikhodko et al., 2012) in yellow. The image demonstrates

how the depiction of the Caber anomaly is extremely similar after both the para-
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Figure 3.10: Caber observed and predicted data at 505 µs from the paramet-
ric hybrid inversion. a) Observed data. b) Predicted data.

metric and hybrid stages, however, the hybrid result is treated as the final model.

The hybrid iso-surface accurately portrays the general size and dip of the target

anomaly, although it stretches further to the south-east compared to the deposit

model. Interestingly, previous AEM plate modeling also places conductive plates

extending off the deposit. This suggests that additional conductive material to the

south-east of the recorded sulfide zone is needed to explain the observed response.

This anomalous material outside the deposit could be due to an unknown extension

of the economic mineralization or the mapped shear zone shown in Figure 3.6b, or

some combination of the two. As shown in the synthetic example, there is reduced

inversion sensitivity at depth and caution must be taken when interpreting deep

features. However, the parametric hybrid inversion provides a new interpretation

to the cause of the conductive response from the 2012 time-domain AEM data.

The Gaussian ellipsoid parameterization has been shown to be successful for

thin targets, but it also has the flexibility to map out larger anomalies such as in-

trusions or kimberlites. McMillan et al. (2015a) provides an example not shown

in this thesis, where the parametric inversion uses time-domain AEM data to accu-

rately image the DO-27 diamondiferous kimberlite deposit at Tli-Kwi-Cho (TKC)

in the North-West Territories, Canada. Lessons from this work will be discussed in
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further detail in Chapter 5.

3.7 Conclusions
A parametric hybrid inversion has been developed for AEM data to recover a tar-

get represented by a skewed Gaussian ellipsoid in a smooth background. This

approach is valid for frequency and time-domain surveys, but it is tested in this

chapter on time-domain synthetic and field AEM data. Here the target is a thin

conductive plate-like body with a large resistivity contrast between itself and the

resistive background. Both examples recover models that agree well with either

the true synthetic answer or geologic information from past drilling respectively.

The approach can be used as an alternative to a purely voxel-based inversion where

sharp boundaries and large resistivity contrasts may not be imaged accurately. The

parametric hybrid models are produced using a basic initial guess of a sphere with-

out a priori information, which adds robustness to the algorithm. The results show
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that the choice of parameterization is well suited for a thin, dipping plate target, but

the approach is also applicable for other exploration environments such as mapping

large intrusions or kimberlites.

For simplistic cases such as a synthetic dipping plate, the parametric stage does

an admirable job in recovering the narrow target accurately. In a more complex

example, such as the Caber case study, a hybrid approach is required, which is able

to recover both the target of interest while including smooth features such as the

conductive overburden. This task is not feasible with the parametric stage alone,

and highlights the benefits of a hybrid approach.

For this single-anomaly version of the code, care must be taken in the paramet-

ric stage because in a scenario where two nearby conductive or resistive anomalies

exist, the response may be modeled erroneously as a single anomaly. Thus, any a

priori knowledge of the area coupled with a careful analysis of the observed and

predicted data is needed to see whether one or multiple bodies are warranted. In

this example, a priori information from plate modeling and drilling suggested that

the Caber deposit could be depicted appropriately as one anomaly. Unfortunately,

no physical property data existed from these bore holes to include as constraints

into the inversion.
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Chapter 4

Multiple Anomaly Parametric
Inversion of AEM data

In this chapter, I demonstrate an extension of the single anomaly parametric in-

version method to include multiple anomalies with distinct resistivity values for

frequency and time-domain AEM data sets. The approach is designed to gener-

alize the parametric inversion technique, making it more flexible for a variety of

geologic settings and targets. The algorithm is tested with synthetic and field data

from the West Plains orogenic gold deposit in Nunavut, Canada.

4.1 Introduction
Natural resource deposits come in all shapes and sizes. Some can be straightfor-

ward in their geometric nature as shown in the previous chapter, but this is true for

only a handful of cases. A single body parametric code can be applied to simplistic

examples, but for multiple targets, additional tools are needed. A logical progres-

sion, shown in this chapter, is to incorporate multiple parametric bodies into the

inversion scheme, thus allowing the anomalies to interact and arrange themselves

in more complex patterns. There are three primary research goals of this chapter

and they are listed below.

• To extend the parametric inversion framework to include multiple anomalies

and unique resistivity values for frequency and time-domain AEM data using
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a skewed Gaussian ellipsoid parameterization.

• To show, with synthetic and field examples, that the multiple anomaly para-

metric inversion can accurately recover several thin dipping conductors, as

typically found in orogenic gold settings.

• To apply the hybrid parametric approach to improve data fits and to fill in

missing features not captured with a parametric inversion alone.

This chapter begins with a discussion regarding the extension of the parametric

method from single to multiple anomalies. Synthetic inversions are then shown

from frequency and time-domain AEM data over a model with three thin dipping

conductors in a resistive half-space. Following the synthetic case, the hybrid in-

version is tested on frequency and time-domain AEM field data from an orogenic

gold deposit in the Canadian Arctic. The field results are subsequently evaluated

in areas where geologic and mineralization knowledge from drilling exists.

4.2 Inversion methodology
The multiple anomaly parametric inversion method solves for an integer number

(n) targets in a smooth or heterogeneous background. Each anomaly is once again

represented by a skewed Gaussian ellipsoid; however, further discussion regarding

the use of a multiple sphere parameterization can be found in Appendix A. Equa-

tion 4.1 shows the symmetric matrix Mn composed of the stretching and skewing

parameters for the nth ellipsoid.

Mn =

m1(n) m4(n) m5(n)

m4(n) m2(n) m6(n)

m5(n) m6(n) m3(n)

 (4.1)

Observation locations (x) are defined as described in the single anomaly ver-

sion, with the central position of the nth ellipsoid (x0(n)) written as

x0(n) =

x0(n)

y0(n)

z0(n)

 . (4.2)
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The parametric function τn is now defined for the nth anomaly as

τn = c− (x−x0(n))
TMn(x−x0(n)) (4.3)

where c represents a positive constant, which is set to unity for all inversions. The

zero level set is taken (Osher and Sethian, 1988) with a hyperbolic tangent analytic

Heaviside function to split anomalous regions from the background. In each mesh

cell, the separation of the nth ellipsoid, denoted as Hn, from the background is

defined as

Hn = 1−0.5(1+ tanh(aτn)) (4.4)

where a controls the steepness of the Heaviside function and is once again set to

10 for all inversions. Hn = 1 refers to a background resistivity value (ρ0) and Hn

= 0 equates to an anomalous resistivity value (ρa). To assign specific anomalous

resistivity values, the approach from Tai and Chan (2004) is applied. For two

anomalies in a homogeneous background the resistivity in each mesh cell is set to

ρ =ρ0(H1)(H2)+ρ1(1−H1)(H2)+

ρ2(H1)(1−H2)+ρ3(1−H1)(1−H2).
(4.5)

Figure 4.1 shows an example of a cross-section through a parametric model with

two anomalies, H1 and H2, with distinct resistivities, ρ1 and ρ2, an overlapping

region with resistivity ρ3 and a homogeneous background set to ρ0.

For more than two anomalies, the method can be easily modified. One ap-

proach is to use an arbitrary number of parametric bodies, but to keep four unique

resistivity values as in Equation 4.5. In this scenario, Heaviside functions from

each anomaly Hn can be multiplied together (element-wise) to form two global

Heaviside functions, Ψ1 and Ψ2, which are then substituted in for H1 and H2 in

Equation 4.5. Here, all anomalies within Ψ1 are assigned a value of ρ1 and all

within Ψ2 are set to ρ2. The overlap region of the two global Heaviside functions

is set to ρ3. The second approach is to assign a unique resistivity to each para-

metric body, however, with each additional anomaly, an overlap region must be
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Figure 4.1: Cross section through a two-anomaly parametric model with four
unique resistivity values (ρ0 - ρ3). H1 and H2 represent anomaly re-
gions.

defined between itself and every other anomaly. This quickly increases the number

of parameters needed, but may be necessary for certain situations. All examples

shown in this thesis are suitable for the former approach, and this method is the

focus moving forward.

The multiple anomaly parametric algorithm recovers a user-defined number of

anomalies, and requires a starting guess for the location and resistivity of each

target like the single anomaly version. Similar to Chapter 3, the inversion op-

timization follows a Gauss-Newton approach with a line search to determine an

appropriate model update step, and the inversion parameters are scaled in the same

manner. The sensitivity matrix Ji, j is also computed as in Chapter 3, except that
∂ρβ

∂H
∂H
∂τ

replaces ∂ρβ

∂τ
for the derivatives with respect to location and skewing param-

eters as shown in Equation 4.6.

Ji, j = ∑
α,β

∂di

∂ρα

∂ρα

∂ρβ

∂ρβ

∂H
∂H
∂τ

∂τ

∂ p j
(4.6)
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4.3 Synthetic Results
To test the multiple body parametric approach, a frequency and time-domain AEM

synthetic modeling study is performed, simulating an Arctic gold exploration set-

ting. The motivation for the synthetic study comes from field data over the West

Plains area of the Committee Bay greenstone belt in Nunavut, Canada. The loca-

tion of this auriferous region is shown in Figure 4.2. This greenstone belt contains

gold mineralization within ultramafic units such as komatiites and banded iron for-

mations, which exist as a series of mainly linear, thin, dipping conductors in a

resistive background (Kerswill, 1996). Hence, the synthetic model will contain

multiple thin conductors, representing these ultramafic targets within a resistive

host.

Figure 4.2: The West Plains area resides within the Archean Committee Bay
greenstone belt in Eastern Nunavut, Canada
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4.3.1 Synthetic model

The true synthetic model is composed of three dipping conductors of 0.2 Ωm, 2.0

Ωm and 2.0 Ωm respectively in a 1000 Ωm background with flat topography as

shown in Figure 4.3a. The left panel displays a plan view at an elevation slice of

250 m (60 m below surface), and the solid white lines represent two East-West

cross-sections shown in the right panel from top to bottom at y = 7333080 m and

y = 7332780 m respectively. This same plan view and cross-section layout are

used for all images in the synthetic study. Two of the conductors have a dip of

65 degrees with respect to the horizontal, one to the East and one to the West,

while the third conductor has a vertical dip. The white dashed lines in plan view

outline the starting guess locations for the parametric inversions. The synthetic

data locations are taken from two overlapping AEM field data sets collected over

the West Plains area: a 2005 frequency-domain RESOLVE (Viezzoli et al., 2009)

and a 2003 time-domain VTEM (Allard, 2007) survey. The RESOLVE survey has

25 lines collected with a 310 degree heading with a variable line spacing of 60 m

and 120 m. The drape of the transmitter varies between 22 m and 39 m with a

mean terrain clearance of 30 m. The VTEM survey has 18 lines, and is also flown

in a 310 degree direction with a variable line spacing of 60 m and 120 m. The

transmitter height fluctuates between 22 m and 36 m with a mean height of 26 m.

This average instrument drape is extremely low for a time-domain system, and is

only possible due to essentially flat topography.
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Figure 4.3: Frequency and time-domain AEM synthetic voxel inversions in
plan view at z = 250 m (left panel) and cross-section across solid white
lines at y = 7333080 m and y = 7332780 m (right panel). a) True syn-
thetic model. b) Frequency-domain voxel inversion. c) Time-domain
voxel inversion.
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4.3.2 Synthetic data

Forward modeled data are contaminated with 3% Gaussian noise, and 3D inver-

sions are completed with a conventional voxel-based inversion algorithm (Haber

and Ascher, 2001; Oldenburg et al., 2013), and then with the multiple body para-

metric approach. In the frequency domain, the data consists of 793 source locations

with 10 logarithmically spaced frequencies between 315 Hz and 6000 Hz of real

and imaginary Hz data. In the time domain, 522 source locations are used with 20

logarithmically spaced time channels between 150 µs and 3180 µs of ∂bz
∂ t data. The

synthetic data uses a transmitter waveform similar to that seen in Figure 3.7 from

Chapter 3, but with a 7.5 ms on-time pulse as shown in Figure4.4 to match the 2003

VTEM system. The inversion mesh consists of 289,979 cells with a finest dimen-

sion size of 20 x 20 x 20 m in x,y,z respectively, and the forward meshes contain

roughly 10,000 cells per mesh. Inversion uncertainties are assigned as 3% of the

observed data plus a noise floor that is one order of magnitude below the response

from a 1000 Ωm half-space, to weight each time channel as equally as possible.

In order to reduce the size of the system to speed up numerical computations, the

data are down-sampled using a total horizontal gradient (THG) method of sam-

pling. This technique computes the horizontal gradient amplitude for a particular

frequency or time and uses this information to discard data in regions with slowly

varying responses while preserving measurements where the response is rapidly

changing. More details regarding THG sampling are described in Appendix B. To

keep the locations consistent between the field and synthetic data, the THG sam-

pling method is based on the field data observations at 385 Hz and 150 µs, although

Appendix B shows that synthetic results improve when THG sampling is applied

based on the synthetic data.

The time channels selected are from the 2003 VTEM system, and frequencies

are chosen to give a similar depth of penetration compared to these time channels

as per the skin depth and diffusion distance shown in Equations 1.7 and 1.8. This

means that both data sets should have similar sensitivities to the target conductors.

The synthetic study incorporates only 10 frequencies compared to 20 time channels

to honor the reality that currently fewer frequencies are available on airborne sys-

tems such as RESOLVE compared to the number of time channels on time-domain
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Figure 4.4: VTEM (2003) discretized waveform in red with measured time
channels marked as black crosses.

airborne platforms such as VTEM, NewTEM, AeroTEM, HeliTEM MegaTEM and

SkyTEM (Allard, 2007; Boyko et al., 2003; Eaton et al., 2013; Mulè et al., 2012;

Smith et al., 2003; Sørensen and Auken, 2004).

4.3.3 Synthetic voxel inversions

Conventional voxel inversion results for the frequency and time-domain synthetic

study are shown in Figure 4.3b and 4.3c respectively. The true background is

presumed to be known for this study, and a 1000 Ωm half-space reference model

is used with an Ekblom norm to promote thin anomalies. In Figures 4.3b and 4.3c,

voxel inversions give a relatively accurate spatial recovery of the conductors in plan

view but struggle to clearly identify the true dip and depth extent of the anomalies

in cross-section.

4.3.4 Synthetic parametric inversions

Figure 4.5 shows the parametric inversion results using the same data and uncer-

tainty values as the voxel trials, with the true model displayed in Figure 4.5a, the

frequency inversion in Figure 4.5b and the time inversion in Figure 4.5c. Once

again the true background is incorporated and the initial guess consists of three
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Figure 4.5: Synthetic parametric inversions in plan view at z = 250 m (left
panel) and cross-section across solid white lines at y = 7333080 m
and y = 7332780 m (right panel). Dashed white lines represent start-
ing guess locations for parametric anomalies. a) True synthetic model.
b) Frequency-domain parametric inversion. c) Time-domain parametric
inversion.

200 m radius spheres of 1 Ωm centered over the anomalies of interest at a depth

of z = 150 m. The starting guess locations are marked by dashed white lines in

Figure 4.5a. Both the frequency and time-domain parametric results successfully

spatially reconstruct the anomalies in plan view and give a much more accurate

approximation of the respective dips in cross-section compared to the voxel in-

versions. The recovered target resistivities are 0.17 Ωm and 2.62 Ωm for the fre-
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Table 4.1: Synthetic data inversion summary.

Inversion model ρ1 ρ2 Rc RAll # GN Final φd

True model 0.20 Ωm 2.00 Ωm 0.0 0.0 - -
Voxel (freq) Variable Variable 2.73 0.39 96 4.2
Voxel (time) Variable Variable 2.58 0.75 45 17.2
Parametric (freq) 0.17 Ωm 2.62 Ωm 2.18 0.26 38 19.6
Parametric (time) 0.15 Ωm 1.99 Ωm 3.33 0.31 28 17.6

quency domain and 0.15 Ωm and 1.99 Ωm for the time domain. These values

are extremely close to the true resistivities of 0.20 Ωm and 2.00 Ωm respectively.

The results for all synthetic inversions are summarized in Table 4.1. Examining

Figure 4.3 and Figure 4.5 suggests that a parametric inversion provides increased

interpretation accuracy over voxel counterparts, and differences between frequency

and time-domain inversions are minimal.

In an attempt to objectively evaluate the accuracy of each synthetic inversion,

the quantitative metric from 2.1 is employed, and these values are displayed in

Table 4.1. When only the conductive cells are taken into account, the frequency-

domain parametric model outperforms the voxel result with a lower residual value

of 2.18 compared to 2.73, but surprisingly the time-domain parametric model has a

higher residual value of 3.33 compared to the voxel inversion at 2.58. This raises a

concern with assessing synthetic inversions, because quantitatively the voxel model

is more accurate, but the human eye can interpret and glean more true information

in terms of the size and dip of the various conductors from the parametric model. In

contrast, when all of the cells in the model are taken into account, both parametric

models show a better quantitative result. These metrics demonstrate a potential is-

sue when interpreting purely quantitative assessments of synthetic models, because

a model may be deemed more accurate but could be less useful to the interpreter.

This suggests that an improved model for human interpretation is not necessarily

always quantitatively more accurate.
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Observed and predicted Hz data at 450 Hz and ∂bz
∂ t data at 150 µs from the

synthetic parametric inversions are displayed in Figure 4.6 along with survey loca-

tions as black dots. All predicted data visually match closely with observed mea-

surements, and data misfit curves are presented in Figure 4.7. Both data sets show

a comparable decrease in misfit although the final data misfits of 19.6 and 17.6 are

well above the target misfit of unity. This is most likely due to the small 3% as-

signed error percentage, and future models can be run with a higher assigned noise

percentage to achieve a smaller data misfit, however similar results are expected.

Note that the time-domain voxel inversion terminated at a similar data misfit level

of 17.2, whereas the frequency-domain voxel inversion converged to a value of

4.2. This small misfit level for the frequency voxel model is most likely due to

the placement of high-frequency near-surface conductive features, which may be

artifacts.

Figure 4.8 shows a 5 Ωm iso-surface view of the parametric synthetic inver-

sions, which gives a way of looking at only the conductive cells of interest. Fig-

ure 4.8a displays the true model with the starting guess model shown in Figure 4.8b.

Figure 4.8c and Figure 4.8d display the frequency and time-domain parametric in-

versions. Collectively Figure 4.8 visually demonstrates how a Gaussian ellipsoid

parameterization geometrically matches a dipping plate target extremely well. Of

course this example is designed for this purpose, but the motivation stems from a

case study that will now be discussed.
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Figure 4.6: Observed and predicted synthetic data from parametric inversions
with locations shown as black dots. a) Observed data - real Hz at 450
Hz. b) Predicted parametric data - real Hz at 450 Hz. c) Observed data -
imaginary Hz at 450 Hz. d) Predicted parametric data - imaginary Hz at
450 Hz. e) Observed data - ∂bz

∂ t at 150 µs. f) Predicted parametric data
- ∂bz

∂ t at 150 µs.
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Figure 4.8: Frequency and time-domain parametric inversion 5 Ωm iso-
surfaces. a) True synthetic model. b) Starting guesses. c) Frequency-
domain parametric inversion. d) Time-domain parametric inversion.
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4.4 West Plains Case Study Results
Based on the success of the synthetic study, the multiple body parametric approach

is now applied to field AEM data from the West Plains project.

4.4.1 West Plains geology

West Plains is an active orogenic gold exploration project, located in the South-

West portion of the Archean Committee Bay greenstone belt, which itself is part of

the larger Rae geologic domain, in Eastern Nunavut, Canada (Skulski et al., 2003).

The project is owned by Auryn Resources Inc., and the economic gold mineral-

ization is hosted in conductive units within a resistive background, a scenario well

suited for AEM data. A simplified geology map of West Plains is shown in Fig-

ure 4.9 with the outline of overlapping frequency and time-domain AEM surveys

in black. The geology consists of a series of ultramafic komatiite units shown in

dark purple, named the Prince Albert Group, that cut through a sediment pack-

age shown in light purple (Carson et al., 2004). The komatiites and sediments are

bounded by granodiorites to the North-West and tonalites to the South-East. The

komatiites contain the majority of the gold mineralization, and garnering a better

understanding of their 3D geometry represents the focal point of this study.

Geologic outcrops are scarce in the West Plains region, and the simplified ge-

ology map is compiled mainly from regional magnetic data analysis. The geologic

interpretation from Figure 4.9 does not include information from AEM data, which

means there is plenty of room for improvement based off 3D AEM inversion re-

sults. From the geology and drilling, it is believed that three conductive units exist,

comprised of a Western conductor, numbered 1 on Figure 4.9, and two near-parallel

or possibly intersecting conductors in the East, numbered 2 and 3 on Figure 4.9.

4.4.2 West Plains AEM data

AEM field data locations and inversion meshes are kept the same as the synthetic

case and the assigned uncertainties are applied in the same manner. Hz data from

five coplanar frequencies (385, 1500, 6200, 25,000 and 115,000 Hz) are used in the

frequency domain, and the same 20 time channels of ∂bz
∂ t data from the synthetic

section are inverted in the time domain.
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Figure 4.9: Simplified West Plains geology map with major lithology units
defined and location of overlapping frequency and time-domain AEM
surveys outlined in black. Conductive komatiite units of interest are
numbered in yellow.

Selected data maps from West Plains are shown in Figure 4.10. Imaginary com-

ponent Hz data from the lowest frequency, 385 Hz, is portrayed in Figure 4.10a and

from the highest frequency, 115,000 Hz, in Figure 4.10b. The low-frequency grid

clearly highlights the conductors of interest and has a relatively quiet signal else-

where in the survey area. Conversely, the high-frequency grid has a response from

the conductors, but also detects near-surface features such as clay layers associated

with lakes and rivers. Subsets of the data could be used in an attempt to isolate the

conductors, however all the data are input to show the robustness of the parametric

algorithm.

Time-domain ∂bz
∂ t data from the earliest time, 150 µs, are shown in Figure 4.10c

and from the latest time, 3180 µs, in Figure 4.10d. The earliest time channel does
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an excellent job in mapping out the target conductors without much influence from

lakes. However, at later times the data become noisier and measurements below a

perceived noise threshold of 5e-12 V
Am2 are removed for quality control purposes.

This threshold is chosen by looking at the amplitude at which point the electromag-

netic response no longer consistently decays monotonically and oscillates due to

noise. As can be seen in Figure 4.10d, only data points near the strong conductors

have amplitudes above this threshold at late times. This perceived noise level is an

order of magnitude higher compared to data over the Caber deposit described in

Chapter 3. The noisiness of VTEM data at West Plains compared to Caber, em-

phasizes the improvements in noise reduction of time-domain AEM data between

2003 and 2012.

4.4.3 West Plains voxel inversions

Conventional voxel inversion results are shown for frequency and time-domain

AEM data at West Plains in Figure 4.11a and 4.11b with plan view slices at a

constant elevation of z = 190 in the left panel and cross-sections from y = 7333080

m and y = 7332780 m in the right panel. Inversion parameters are selected to match

those from the synthetic example. Data misfit progression curves from the voxel

inversions are shown in Figure 4.12a.

The voxel inversions recover a linear Western conductor and two Eastern con-

ductors although the distinction between the two conductive units in the East is

not consistently clear. In cross-section, the two inversions bare few similarities,

as the conductors in the frequency-domain are compact near-surface objects while

the time-domain result produces anomalies that are larger and extend to depth.

The presence of near-surface features in the frequency domain and not in the time

domain is not entirely surprising, since the skin depth from observed frequencies

ranges from 47 m to 810 m, whereas the diffusion distance from observed time

channels varies from 487 m to 2247 m, using a 1000 Ωm background.

4.4.4 West Plains parametric inversions

To complement the voxel models, parametric inversions are computed to image

more clearly the three conductive komatiite units at West Plains. Appropriately,
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Figure 4.10: Frequency and time-domain field data. a) Imaginary Hz at 385
Hz. b) Imaginary Hz at 115000 Hz. c) ∂bz

∂ t at 150 µs. d) ∂bz
∂ t at 3180

µs.

the parametric algorithms are set to recover three conductors, with the Western

conductor chosen to have its own resistivity value and the Eastern units sharing a

best-fitting resistivity. This is based on a priori knowledge that the two Eastern

conductors are similar in nature. Figure 4.13a shows the frequency-domain field

parametric inversion, with a plan view slice through the model at z = 190 m in the

left panel. The solid white lines represent two East-West cross-sections displayed

in the right panel at y = 7333080 m and y = 7332780 m. The dashed white lines

indicate the spatial outlines of the 1 Ωm starting guesses centrally located at a

depth of z = 150 m. The recovered target resistivities in the frequency-domain

are 0.15 Ωm and 7.28 Ωm with a background of 12,609 Ωm. Comparatively, the
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Figure 4.11: Frequency and time-domain West Plains voxel inversions in
plan view at z = 190 m (left) and cross-section across solid white lines
at y = 7333080 m and y = 7332780 m (right). a) Frequency domain. b)
Time domain.

time-domain model, which is shown in plan view and cross section in Figure 4.13b,

recovers resistivities of 0.28 Ωm and 0.11 Ωm with a background of 495 Ωm. West

Plains parametric inversion statistics, including recovered resistivities, number of

Gauss-Newton iterations required and final data misfit values are summarized in

Table 4.2. Data misfit curves are displayed in Figure 4.12b, where the initial part

of the curve represents the parametric portion while the latter half is the hybrid

inversion discussed in the next section.

In plan view, the frequency and time-domain models have many spatial sim-

ilarities, although the absolute recovered resistivities are much lower in the time-

domain for the Eastern conductors (ρ2) and the background (ρ0). This suggests

that there is some disagreement between the two AEM data sets, and the discrep-

ancy in ρ0 will be addressed in greater detail in Chapter 5. In cross-section, the

Western conductor has a similar shape and steep dip to the West in both inversions;
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Figure 4.12: West Plains data misfit progression. a) Voxel inversions. b)
Parametric and hybrid parametric inversions.

Table 4.2: Field data inversion summary.

Inversion model ρ1 ρ2 ρ0 # GN Final φd

Voxel (freq) variable variable variable 49 1.50
Voxel (time) variable variable variable 60 2.92
Parametric (freq) 0.15 Ωm 7.28 Ωm 12609 Ωm 96 6.27
Parametric (time) 0.28 Ωm 0.11 Ωm 495 Ωm 175 8.49
Hybrid (freq) variable variable variable 47 1.87
Hybrid (time) variable variable variable 40 3.51

however, the Eastern conductors appear different. In the frequency domain, the

Eastern conductors are rounder compared to the time-domain results, with a steep

dip to the East. In contrast, the time-domain model has a thin central conductor that

steeply dips to the West, and a small near-surface Eastern conductor. Rectangular

blocky anomalies in the North-East corner of the parametric models are outside the

observed data area, within padding cells, and should be ignored.

Observed and predicted field data are shown in Figure 4.14. Real-component

Hz data at 385 Hz are shown in Figure 4.14a along with parametric predicted data in

Figure 4.14b. Observed and parametric predicted imaginary Hz data are displayed

in Figure 4.14d and Figure 4.14e respectively. Time-domain observed ∂bz
∂ t data at

150 µs are shown in Figure 4.14g with parametric predicted data in Figure 4.14h.
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Figure 4.13: West Plains parametric inversions in plan view at an elevation
of z = 190 m (left) and cross-section across solid white lines at y =
7333080 m and y = 7332780 m (right). Dashed white lines represent
starting guess locations for parametric anomalies. a) Frequency do-
main. b) Time domain.

The parametric predicted data from Figure 4.14 closely resemble the observed

data, but further improvements can be made such as fitting two amplitude highs in

the real-component image of Figure 4.14a that are missing in the predicted data.

Additional modifications to the parametric models to fit detailed features is the

benefit of the hybrid parametric method.

4.4.5 West Plains hybrid parametric inversions

As shown in Chapter 3, a hybrid parametric inversion incorporates the parametric

result as an initial and reference model for a voxel inversion. In the voxel stage,

all cells are kept active, meaning that the resistivity value can change in each mesh

cell. This process allows information from the parametric stage to be passed to the

voxel stage, which then inserts complexities into the model not possible with Gaus-

sian ellipsoids only. The hybrid method is applied to parametric results from the
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Figure 4.14: Observed and predicted field data from parametric and hybrid
inversions with locations shown as black dots. a) Observed data - real
Hz at 385 Hz. b) Predicted parametric data - real Hz at 385 Hz. c)
Predicted hybrid parametric data - real Hz at 385 Hz. d) Observed data
- imaginary Hz at 385 Hz. e) Predicted parametric data - imaginary Hz

at 385 Hz. f) Predicted hybrid parametric data - imaginary Hz at 385
Hz. g) Observed data - ∂bz

∂ t at 150 µs. h) Predicted parametric data -
∂bz
∂ t at 150 µs. i) Predicted hybrid parametric data - ∂bz

∂ t at 150 µs.

previous section and hybrid frequency and time-domain AEM models from West

Plains are displayed in Figure 4.15. Figure 4.15a displays the frequency model, and

in plan view it is evident that the voxel stage alters the resistivity within the three

conductors in an attempt to concentrate areas of high conductivity in certain places.

In cross-section, this effect is even more apparent as the Eastern conductor now has
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a concentrated near-surface conductivity high similar to the time-domain result.

Figure 4.15b shows the hybrid time-domain inversion, which only has minor de-

viations from the parametric result. The voxel inversion places diffuse conductive

zones around the main anomalies, but does not change the resistivity distribution

within the conductors to any large degree.
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Figure 4.15: West Plains hybrid parametric inversions in plan view at an ele-
vation of z = 190 m (left) and cross-section across solid white lines at
y = 7333080 m and y = 7332780 m (right). a) Frequency domain. b)
Time domain.

The hybrid inversion also adds near-surface conductive zones due to clay layers

and lakes as seen in Figure 4.16 where plan view slices at the model surface are

displayed from both data sets. The colorbars have been modified to best display

near-surface features, which are more pronounced in the frequency-domain model

compared to the time-domain, as would be expected due to a greater near-surface

sensitivity.

Modified conductivity structures added from the voxel stage of the hybrid

method permit a closer data fit compared to parametric inversions alone as pre-

sented in Figure 4.14. Here the hybrid predicted data closely matches the observed
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Figure 4.16: West Plains hybrid parametric inversions in plan view at an ele-
vation of z = 310 m (surface). a) Frequency domain. b) Time domain.
Note the colorbars are different to highlight near-surface features.

data. Specifically, the double amplitude high in the real-component Hz data is now

present in the hybrid predicted data in Figure 4.14c. Hybrid misfit curves are dis-

played in the latter half of Figure 4.12b where the voxel stage lowers the achieved

misfit from 6.27 to 1.87 in the frequency domain, and from 8.49 to 3.51 in the

time domain. Note that final hybrid data misfit values are marginally higher than

voxel inversion misfits, but the hybrid model is judged to give a clearer interpre-

tation of the shape and dip of the conductive anomalies. Originally, the starting

regularization parameter β for the voxel portion of the hybrid inversion was cho-

sen to be 1e-3 with a cooling parameter of γ = 0.2 like in Chapter 3. However, this

setup had trouble reducing the data misfit and the model update simply put diffuse

conductivity zones around the central conductors with little change to the actual

conductor shape. As a result, the hybrid inversions in this section use β = 0 for all

Gauss-Newton iterations.

To compare the inversion models to ground truth information, Figure 4.17 dis-

plays conductive zones from the West Plains inversions in the form of a 30 Ωm

iso-surface along with 1 g/t gold mineralization within the Western conductive ko-

matiite unit. Almost no drilling exists in the Eastern conductors, and the focus

shifts primarily to the Western anomaly. A rock model of the komatiite unit it-

self does not exist, therefore, the 1 g/t gold shape that is known to reside within
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the komatiite acts as a proxy for highly conductive zones. A full model view and

a closeup of the Western conductor is provided at y = 7333300 m. Figure 4.17a

shows the frequency-domain voxel iso-surface, which provides a broad spatial cor-

relation with the gold shape but no clear dip information. Figure 4.17b displays the

time-domain voxel inversion iso-surface where a better sense of the dip is achieved

but the anomaly is still much broader compared to the thin nature of the mineraliza-

tion. The frequency and time-domain hybrid parametric inversion iso-surfaces are

displayed in Figures 4.17c and 4.17d respectively. Both of these inversion demon-

strate an excellent match with the compact dipping nature of the gold mineraliza-

tion within the conductive komatiite, although the time-domain model achieves a

slightly tighter spatial correlation.
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Figure 4.17: 30 Ωm iso-surfaces from voxel and hybrid inversions from West
Plains field data. 1 g/t gold shapes from drilling in the West conductor
are shown in yellow and correspond with the conductive komatiite unit.
a) Frequency-domain voxel. b) Time-domain voxel. c) Frequency-
domain hybrid parametric. d) Time-domain hybrid parametric.
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4.5 Conclusions
A multiple body parametric inversion framework has been developed for frequency

and time-domain AEM data with unique resistivity values. The merits of the ap-

proach are demonstrated through synthetic and field inversions where the anoma-

lies of interest are thin dipping conductors. The targets are designed to represent

a typical orogenic gold exploration setting, such as the West Plains area of the

Committee Bay greenstone belt in the Canadian Arctic. The parametric inversion

is coupled with a voxel approach to form a hybrid inversion in order to recover

sharp targets in addition to background features. The parametric anomalies are

composed of skewed Gaussian ellipsoids that can change location, radius and ro-

tation angle in all three Cartesian planes. The synthetic example shows that the

parametric stage of the hybrid inversion successfully recovers the spatial location,

dip and resistivity of all three anomalies. The parametric results make interpreting

the dip and depth extent of the conductors much easier compared to conventional

voxel-based approaches.

In the West Plains field example, three near-vertical conductors are imaged

with the parametric algorithm. The frequency and time-domain field inversions

contain similarities with regards to the spatial extent of the targets in plan view

and the dip of the Western conductor in cross-section, although discrepancies exist

when examining the dip and depth extent of the two Eastern conductors. To achieve

an improved data fit and to fill in any remaining details missed by the parametric

stage, a hybrid parametric technique is employed where the parametric results are

used as initial and reference models for voxel-based inversions. Final hybrid results

have improved agreement with the gold mineralization from drilling compared to

pure voxel inversions, and contain added detail not present within the parametric

stage. Like the Caber example, no physical property information was available at

West Plains for constrained inversion, but would be beneficial for future inversions.

As multiple models have been produced over a common spatial area at West

Plains, it is well suited for a cooperative approach to produce one consistent model,

and this topic will be addressed in Chapter 5.
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Chapter 5

Cooperative Multiple Anomaly
Parametric Inversion of AEM
Data

In this chapter, I apply both the cooperative and parametric methods to a scenario

where spatially overlapping frequency and time-domain AEM data sets exist over

multiple thin dipping conductors. This approach is first tested with synthetic mea-

surements before being applied to field data over the West Plains orogenic gold

deposit. The cooperative parametric results highlight the benefits of this method

when data sets are compatible and provide complementary information, but also

identify potential pitfalls when data inconsistencies arise between surveys.

5.1 Introduction
The discovery of a natural resource deposit generally takes years if not decades,

and over the course of that time frame, many rounds of geophysical surveys are

often collected. Due to changes in technology, budget, geologic target, or a myriad

of other reasons, multiple AEM data sets can be flown over the same area. Each

of these data sets contains valuable information regarding the complex nature of

the resistivity distribution of the target of interest. Chapter 2 introduced a cooper-

ative technique for inverting overlapping surveys with voxel-based codes, but the
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approach is equally applicable for parametric inversions where sharp anomalies

are sought with large resistivity contrasts compared to the background. This set-

ting exists at the West Plains orogenic gold deposit discussed in Chapter 4, where

two overlapping frequency and time-domain AEM surveys were flown in different

years over a greenstone geologic setting with multiple thin gold-bearing conduc-

tors.

The two research goals in this chapter are listed below.

• To apply the cooperative approach to a parametric inversion framework.

• To demonstrate and discuss the pros and cons of a cooperative parametric

inversion with synthetic and field data.

This chapter first revisits the cooperative algorithm from Chapter 2, adding a

few modifications designed for the parametric problem. The cooperative paramet-

ric method is then applied to overlapping synthetic frequency and time-domain

AEM data introduced in Chapter4. Finally the process is implemented for over-

lapping field data at West Plains in an attempt to produce one consistent resistivity

inversion model for the area. Results are compared to models from Chapter 4 and

to information from drilling, and the observations are discussed.

5.2 Inversion Methodology
As shown in Figure 2.8 the voxel-based cooperative algorithm operates by iterating

through each data set with a cooling schedule for the regularization parameter β ,

and swapping the data back and forth between inversion codes. Recall the strength

of the cooperative method is its ability to rely on all possible sources of information

instead of a single data set alone. However, since the parametric technique assigns

β = 0, the methodology is altered slightly to iterate between data sets after a fixed

number of Gauss-Newton iterations. Also, the cooperative inversion now passes

parameters relating to the size and shape of the anomalies back and forth instead

of conductivity values as shown in Chapter 2. How many Gauss-Newton iterations

to choose depends on how well the data sets complement one another, with fewer

needed if the data misfit reduces steadily after each cooperative iteration, and more

if the data misfit has trouble decreasing. This research chooses to start with five
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Gauss-Newton iterations for the synthetic data while a few choices are tested with

field measurements. Once this number has been selected, the model swapping

continues until both data sets ideally hit the target misfit or the data misfits start

increasing. The cooperative parametric result can then be passed along as the initial

and reference model to a voxel-based cooperative inversion where the process starts

over as described in Chapter 2. The model at the end of this process is considered

the final hybrid cooperative parametric model.

5.3 Synthetic Results

5.3.1 Cooperative parametric inversion

The cooperative parametric approach is tested on synthetic frequency and time-

domain AEM data sets from Chapter 4, where the model consists of three dipping

conductors in a resistive background. The parametric inversion, with β set to zero,

begins with time-domain data, although results are similar by starting with fre-

quency measurements. The process continues until the inversion reaches the end

of the eighth cooperative iteration, when both the frequency and time-domain in-

versions have a higher data misfit compared to the seventh iteration. The process

terminates at this point and the result after the seventh cooperative iteration is con-

sidered the final model. The data misfit progression is outlined in Figure 5.1 where

two black circles represent final data misfits. For clarity, five Gauss-Newton steps

are first taken for the time-domain data, numbered 1) on Figure 5.1. The param-

eters from this result are used as starting guesses for five Gauss-Newton steps for

the frequency-domain data, numbered 2) on Figure 5.1. The parameters after the

second segment are subsequently incorporated as starting values for the next five

time-domain Gauss-Newton steps, as numbered 3) on Figure 5.1, and the process

continues as such.

Figure 5.2a displays in plan view and cross-section the true model, Figures 5.2b

and 5.2c re-shows the frequency and time-domain parametric results from Chap-

ter 4, and Figure 5.2d portrays the cooperative parametric model. The cooperative

parametric inversion produces resistivity values of 0.16 Ωm and 1.87 Ωm respec-

tively, and the shape and dip of the anomalies represent the closest approximation
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Figure 5.1: Synthetic cooperative parametric inversion data misfit progres-
sion with the final model circled in black. The first three segments are
numbered for explanation purposes.

to the true model of any of the synthetic inversions. Moreover, the quantitative

residual for the cooperative model is the lowest number of any inversion at Rc

= 2.15 for the conductive cells only and RAll = 0.18 for all cells. The synthetic

inversion results collectively from Chapter 4 and Chapter 5 are summarized in Ta-

ble 5.1. It is worth noting a comparable number of Gauss-Newton iterations are

required per data set in the cooperative approach versus the individual parametric

inversions, and final data misfit levels are also similar. Altogether, it is proposed

that the synthetic cooperative parametric inversion is an improvement over both

individual parametric and voxel inversions.
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Figure 5.2: Synthetic parametric inversions in plan view at z = 250 m (left
panel) and cross-section across solid white lines at y = 7333080 m
and y = 7332780 m (right panel). Dashed white lines represent start-
ing guess locations for parametric anomalies. a) True synthetic model.
b) Frequency-domain parametric inversion. c) Time-domain parametric
inversion. d) Cooperative parametric inversion.
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Table 5.1: Synthetic data parametric inversion summary.

Inversion model ρ1 ρ2 Rc RAll # GN Final φd

True model 0.20 Ωm 2.00 Ωm 0.0 0.0 - -
Parametric (freq) 0.17 Ωm 2.62 Ωm 2.18 0.26 38 19.6
Parametric (time) 0.15 Ωm 1.99 Ωm 3.33 0.31 28 17.6
Parametric (coop) 0.16 Ωm 1.87 Ωm 2.15 0.18 35 18.7 (freq)

35 27.0 (time)

5.4 West Plains Case Study Results

5.4.1 Cooperative parametric inversions

The cooperative parametric method is now applied to West Plains AEM data in-

troduced in Chapter 4, and once again inversion parameters are kept the same as

before. However, as shown in Chapter 4, the best fitting half-spaces of 12,609 Ωm

and 495 Ωm for the frequency and time-domain observations respectively suggest

that a discrepancy exists between the two data sets. Not surprisingly this creates

problems for the cooperative inversion, because during each cooperative iteration

the inversion drastically changes the background level, which takes away from the

focus of adjusting the shape of the target conductors.

From research presented in Fournier et al. (2014); McMillan et al. (2015a) and

discussed further in a full paper currently in revision, an analogous discrepancy

was encountered over the Tli-Kwi-Cho (TKC) diamond exploration project in the

North-West Territories, Canada. At TKC, two spatially overlapping AEM data sets

were flown over a kimberlite complex, a 1992 DIGHEM frequency-domain (Foun-

tain, 1998) and a 2004 VTEM time-domain survey. Similarly to West Plains, the

two AEM data sets over TKC generate best-fitting half-spaces that are an order of

magnitude apart. At TKC, the frequency-domain data also produces a more resis-

tive half-space, which corroborates the observed discrepancy seen at West Plains.

Literature states that unweathered igneous or metamorphic rock, representa-

tive of background geology at TKC and West Plains, has an average background

resistivity of 10,000 Ωm (Palacky, 1988). This suggests that the frequency-domain
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half-space value is more trust worthy. One possible explanation stems from the

lack of transmitter waveform knowledge from 2003 or 2004 VTEM data, as the

exact transmitter current used during the survey was not recorded in these years.

Instead, it was presumed that the transmitter produced an ideal waveform with an

electric current level of zero during the off-time. Modern systems monitor the ac-

tual transmitted waveform, which decays to zero during the early off-time. This

small time-varying current produces an additional primary field that increases the

observed ∂bz
∂ t response measured by the receiver. Incorrectly assuming a current

level of zero in the off-time generates a spuriously elevated conductivity level in

the inversion model to compensate for the increased observed response, and would

explain the background level inconsistency at West Plains and TKC.

Figure 5.3 illustrates this waveform effect. Here, ∂bz
∂ t responses at the first

five time channels from West Plains are modeled with both a practical and ideal

waveform shown in Figure 5.3a. The data are modeled using a VTEM setup with

the transmitter and receiver 30 m above a 1000 Ωm half-space. 3% Gaussian noise

is added to the responses shown in Figure 5.3b, and it is clear that a small decaying

current in the off-time shifts the response curve up significantly. Although every

time-domain AEM system has a different current shut-off signature, this waveform

is based off the 2012 VTEM waveform used in Chapter 3.

With this data incompatibility in mind, the cooperative parametric algorithm is

altered to start with frequency-domain data, and after five Gauss-Newton iterations

the best-fitting background level is fixed and the parameters are used as starting

values for the time-domain data. To de-emphasize the early time channels, which

are the most likely to be contaminated by waveform issues, a 20% uncertainty as-

signment is added to the first three channels as opposed to 3% for all others. A

higher uncertainty is added to the first three time channels only, because in resis-

tive regions, later time channels generally fall below the perceived noise threshold

and are discarded. In contrast, the effect of the unknown waveform is minimized

in conductive terrain as the response level is higher, and the data are deemed suit-

able for a lower uncertainty level. Figure 5.4a shows the data misfit progression

with the final model circled in black, which illustrates that after four cooperative

iterations both data misfits increase and the process stops. Even with adjustments

to the background level and uncertainty assignments, the time-domain data misfit
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Figure 5.3: Comparison of a practical waveform with a small decaying cur-
rent during early off-time ∂bz

∂ t measurements compared to an ideal in-
stantaneous shut-off waveform. a) Practical waveform (red) and ideal
waveform (black) in early off-times. b) ∂bz

∂ t responses at early times
for the practical and ideal waveforms modeled 30 m above a 1000 Ωm
half-space.

has trouble decreasing with each progressive cooperative iteration. Therefore, a

second inversion is run with ten Gauss-Newton steps per cooperative iteration, and

the data misfit curve is displayed in Figure 5.4b. Once again, there is no great re-

duction in misfit with subsequent cooperative iterations, and the process terminates

after the fifth round of data swapping. It appears in this case that multiple cooper-

ative iterations adds little value to the overall data fit, so a third trial is completed

with 25 Gauss-Newton steps. This inversion terminates after only two coopera-

tive iterations, and the data misfit graph is displayed in Figure 5.4c. Although the

time-domain data misfit noticeably decreases in the first cooperative iteration, the

incompatibility between data sets is evident by the extremely high initial misfit

value at the start of the second frequency-domain cooperative iteration. An alter-

native option is to let each stage run as many Gauss-Newton iterations as possible

before swapping, but this process not only takes longer to compute, but also pro-

duces a similar model to the 25 Gauss-Newton iteration case; consequently, this

result is not shown.

At this point, no cooperative inversion has shown an ability to match both data
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Figure 5.4: West Plains cooperative parametric inversion data misfit progres-
sions with varying numbers of Gauss-Newton iterations per cooperative
iteration. Final models circled in black. a) 5 Gauss-Newton iterations.
b) 10 Gauss-Newton iterations. c) 25 Gauss-Newton iterations. d) Hy-
brid cooperative inversion with 25 Gauss-Newton iterations, with each
segment numbered for explanation purposes.

sets sufficiently, and the relative importance of each survey must be evaluated.

Frequency-domain measurements provide the best estimate for the background re-

sistivity, but time-domain data have more time channels with a greater depth of

penetration. Therefore, even with an uncertain waveform, it is deemed that fitting

time-domain data will provide the most information with relation to the shape, dip

and resistivity of the target conductors. With this in mind, the cooperative para-

metric result using 25 Gauss-Newton steps is chosen as the final parametric model

since it produces the lowest time-domain data misfit.
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5.4.2 Hybrid cooperative parametric inversion

A hybrid inversion is now completed using the final cooperative parametric result.

This involves computing a further 25 Gauss-Newton steps for each data set with

voxel-based codes. Figure 5.4d shows the data misfit progression, where every seg-

ment is numbered for clarity. The first segment represents the frequency-domain

parametric stage, and the parameters after this segment are passed along as starting

guesses for the time-domain parametric stage, numbered 2) on Figure 5.4d. The

third segment represents the frequency-domain voxel inversion, the latter half of

the hybrid method, using the parameters from the second stage. The fourth and

final segment represents the time-domain voxel inversion using the result from the

third segment as an initial model. After this stage, the time-domain data misfit

reaches a low point of 1.56, and this is considered the final hybrid cooperative

parametric model. Like in Chapter 4, the regularization parameter β is set to zero

for the duration of this process and all model cells are kept active in the voxel

stage. This model still does not accurately fit the frequency-domain data as shown

by the subsequent initial data misfit of 150, numbered 5) on Figure 5.4d, but this is

considered a consequence of incompatible data sets and the goal of fitting the time-

domain measurements is deemed a success. Note that with only one cooperative

iteration, this is a similar style of sequential voxel inversion as used for electromag-

netic and magnetotelluric data in Commer and Newman (2009). The difference in

this example is the use of a parametric algorithm to provide the initial guess for the

cooperative voxel inversion.

Plan view slices and cross-sections from the cooperative parametric model are

presented in Figure 5.5a and through the final hybrid cooperative parametric result

in Figure 5.5b. The similarities between the parametric and hybrid models are ob-

vious, but in plan view the hybrid approach outlines subtle concentrated areas of

conductivity highs within the parametric bodies, which could be helpful to target

areas of greatest mineralization. In both parametric and hybrid models, the Western

conductor has a steep vertical dip and a comparable shape to individual parametric

models of Chapter 4. In contrast, the Eastern conductors are both wider com-

pared to parametric results, but the central conductor maintains a similar steep dip

to the West. The Eastern conductor changes the most and possesses an elongate
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near-vertical shape instead of being a near-surface compact body. This anomaly

represents the most uncertain target, especially at depth, but as a whole this hybrid

model can be used to make new interpretations regarding the location and dip of

the Eastern conductors.

With such a high final data misfit value, it may not seem like the frequency-

domain data contributes much to the cooperative process apart from the back-

ground value, but it provides a valuable starting model, making it easier to fit

time-domain responses. The frequency measurements also provide near-surface

information not present in the time domain data, as seen in a surficial view of the

hybrid parametric model in Figure 5.5c. Once again, some caution must be taken

interpreting these surface anomalies due to the poor fit of the frequency data, but

there is a general correlation with these features to near-surface clay layers in lakes.
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Figure 5.5: Cooperative and hybrid cooperative parametric inversions at West
Plains. Dashed white lines represent starting guess locations for para-
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a) Cooperative parametric model. b) Hybrid cooperative parametric
model. c) Hybrid cooperative parametric model with a plan view slice
at surface.
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5.5 Cooperative Inversion Discussion
The purpose of the cooperative approach is to find one consistent 3D resistivity

model from two overlapping AEM data sets at West Plains, but this proved prob-

lematic as no one model matched this criteria. The incompatibility between data

sets led to fixing the background resistivity at the best-fitting level derived from

frequency-domain data and focusing on fitting time-domain observations there-

after. Figure 5.6a portrays the 30 Ωm iso-surface through the final hybrid co-

operative parametric model. A closeup view in Figure 5.6b demonstrates a high

correlation with gold mineralization within the Western komatiite. Figure 5.6c cir-

cles an area of widening in the Western conductor at an elevation slice of z = 280

m that corresponds to a zone of concentrated gold mineralization. This is highly

beneficial information achieved through the hybrid approach. Finally Figure 5.6d

shows the excellent correlation between the dip of the Western conductor and gold

mineralization.
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Even though the recovered model extends to a greater depth compared to the

gold shapes, this deeper zone contains higher uncertainty as few drill holes reached

this depth, and mineralization could extend further. Overall, the accurate corre-

lations with gold mineralization in the Western conductor suggests that valuable

interpretations can now be made regarding the Eastern conductors. To this end, a

190 m elevation slice from the final hybrid cooperative parametric model is over-

laid on the simplified geology map in Figure 5.7. The recovered conductors are

much thinner compared to the mapped komatiites, and new spatial outlines in plan

view and cross-section can be applied to update the geology image.

Komatiite
Sediments
Granodiorite

Tonalite

Survey 
outline

Figure 5.7: Final hybrid cooperative parametric inversion at West Plains. El-
evation slice at z = 190 m overlaid on simplified geology map.

This field example is meant to demonstrate a few difficulties that can be en-

countered with overlapping field data that do not necessarily agree. Weighting

schemes could also be applied to down-weight one data set over the other such as

described in Meqbel and Ritter (2014) and Commer and Newman (2009); alter-

natively, an ADMM approach (Wahlberg et al., 2012) could be implemented. At

West Plains, certain elements of each data set are deemed important, such as the
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frequency-domain background level and time-domain information from later time

channels. Finding the optimal way to treat overlapping incompatible data sets is

still an open question, but this chapter sheds some light on ways to progress for-

ward in this scenario. Fortunately, time-domain AEM data in recent years have

started recording the exact waveform transmitted, and the background level issue

presented here should not be as prevalent in present-day and future surveys.

5.6 Conclusions
A cooperative parametric approach is applied to spatially overlapping frequency

and time-domain AEM data sets where the targets of interest are thin dipping con-

ductors. The method is tested on both synthetic and field examples. In the synthetic

example, the cooperative method produces one consistent model that achieves a

closer match to the true model compared to individual parametric or voxel inver-

sions.

In the West Plains field example, the cooperative method fails to find one model

that accurately fits both data sets, and it is deemed that the overlapping AEM sur-

veys contain incompatible measurements. This is possibly due to a small decaying

current in the transmitter waveform for time-domain data during off-time mea-

surements. The proposed solution is to use frequency-domain data to generate an

initial parametric model with a best-fitting background resistivity, and to fix this

background level for the time-domain parametric inversion stage. This process is

then repeated with voxel based algorithms to produce a final hybrid cooperative

parametric model.

The corresponding agreement to gold mineralization is excellent, and new in-

terpretations can now be made with regards to the shape of the Eastern conductors.

Although this is perceived to be the best possible model from this data, it is ac-

knowledged that the final data fit on the frequency-domain data is still poor and

more research is needed to fully rectify this discrepancy.

115



Chapter 6

Conclusions

Airborne electromagnetic data remains one of the most commonly used tools for

geophysical exploration as a means to image the subsurface of the earth. This

method is sensitive to contrasts in electrical resistivity, which can be used to help

locate and characterize buried natural resources such as metal, water and oil. While

surveys have been flown for decades, 3D AEM inversion is a relatively new and

rapidly developing field. As such, I designed this thesis to contribute to the scien-

tific community by advancing 3D AEM inversion accuracy over a wide range of

geologic environments. In particular, I present practical strategies that address two

important and unresolved questions.

1. How to improve 3D AEM inversion with spatially overlapping surveys.

2. How to improve 3D AEM inversion to recover thin, high contrast anomalies.

The following sections summarize the findings of this thesis followed by a

discussion on future research questions.

6.1 Cooperative Inversion
In Chapter 2 I investigated the first topic listed above, and looked at how to invert

multiple overlapping electromagnetic data sets to produce one consistent 3D re-

sistivity model that satisfied all geophysical observations. Three overlapping field

data sets, time-domain AEM, CSAMT and DC, were examined over the Antonio
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high-sulfidation epithermal deposit in Peru. After comparing inversion results from

each individual data set, I found that resulting models contained many discrepan-

cies in their resistivity distributions. This phenomenon was studied in more detail

through a synthetic example which was designed to emulate the geology at Antonio

with a large resistor that hosted two buried conductors. The individual synthetic

inversions were able to recover similar looking resistive regions, but the detection

of the contained conductive bodies varied greatly. A cooperative approach was

subsequently developed, where the inversion iterated between data sets and con-

structed a result that satisfied all geophysical information provided. This method

created one consistent 3D model that successfully imaged the resistive region as

well as the conductive bodies to a closer degree to the true model compared to any

individual inversion.

Following the success of the synthetic example, I applied the cooperative tech-

nique to the Antonio field data and generated a common physical property model

that mapped a large gold-bearing silica-rich resistor interspersed with smaller con-

ductive zones. The final cooperative model resolved this resistive region with a

high level of agreement compared to known silica alteration from drilling and ge-

ologic mapping, and highlighted small conductive regions that could be indicative

of sulfide and gold mineralization. These inferences represented new potential

targets of interest at this project, and showed the applicability of the cooperative

approach to a field setting. This chapter also demonstrated how physical prop-

erty information derived from drill holes assisted in constraining both the synthetic

and field cooperative inversion models through upper and lower resistivity bounds.

This showed that drill hole information should be incorporated into cooperative

inversions when available.

6.2 Parametric Inversion - Single Anomaly
Chapter 3 addressed the second thesis topic of how to improve 3D AEM inver-

sion over thin conductive targets. Here I developed a parametric solution where

the algorithm recovered a single anomaly in the shape of a best-fitting skewed

Gaussian ellipsoid that represented the target of interest in a smooth background.

The method was first tested on a synthetic example composed of a thin conductive
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plate-like anomaly in a uniform resistive background, and the parametric method

was able to recover the target to a much higher degree of accuracy compared to a

purely voxel-based solution.

The approach was then applied to time-domain AEM field data over the Caber

volcanogenic massive sulfide deposit in Quebec where the parametric inversion

model was able to replicate the thin dipping nature of the copper-zinc resource as

defined by drilling. The Caber parametric model was subsequently used as a refer-

ence model for a voxel-based inversion to fill in missing features such as a conduc-

tive overburden layer. The hybrid parametric inversion was designed to combine

elements from both parametric and voxel methods, and this proved beneficial to

map out the Caber target in addition to relevant surrounding geology.

6.3 Parametric Inversion - Multiple Anomalies
In Chapter 4 I modified the parametric framework to include multiple skewed

Gaussian ellipsoids with individual resistivity values. This extension made the

parametric approach suitable for a wider range of geologic settings and target

styles. The multiple anomaly parametric code was first tested on synthetic fre-

quency and time-domain AEM data over three narrow dipping conductors in a

resistive background. This synthetic model was built to replicate an orogenic gold

exploration setting such as the West Plains area of the Committee Bay greenstone

belt in Nunavut. The synthetic results recovered the shape, dip and resistivity value

of the dipping conductors with excellent precision, and made interpreting the mod-

els much simpler compared to voxel-based inversions.

The technique was subsequently tested on the West Plains frequency and time-

domain AEM field data, and recovered three narrow, elongate, near-vertical con-

ductors. The Western anomaly from both parametric models displayed a high level

of correlation to the shape and dip of gold mineralization hosted in a conductive ko-

matiite unit known from drilling, and managed to depict its thin nature with greater

ease compared to conventional voxel inversions. The Eastern conductors were less

consistent between the parametric models and were not as thoroughly evaluated

since little ground truth was available in this area. I applied the hybrid approach

to the parametric field results which helped fit the observed data to a higher degree
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and added near-surface features not possible with a parametric method alone. The

hybrid inversion also generated concentrated areas of conductivity within the target

anomalies, which could be valuable to detect high grade mineralization.

6.4 Cooperative Parametric Inversion
For Chapter 5 I combined the cooperative and parametric methods for spatially

overlapping AEM data sets. This approach saw improved inversion accuracy with

synthetic data, but encountered issues with incompatible field data. With synthetic

data from Chapter 4, the cooperative parametric result imaged three dipping con-

ductors with greater precision compared to individual parametric inversions. The

latter were already a close approximation to the synthetic model, but the coopera-

tive method was able to extract additional information and created subtle improve-

ments. As these data were computer generated, they represented a test example

with perfectly calibrated and compatible data.

The cooperative parametric algorithm was subsequently tested on overlapping

frequency and time-domain AEM field measurements at West Plains, and it be-

came quickly apparent that the data sets were incompatible and did not provide

fully complementary information. The biggest discrepancy came in the form of

the best-fitting recovered background resistivity, where the frequency observations

produced a highly resistive value and the time-domain data suggested a much

more conductive background. A similar inconsistency was previously identified

at the TKC kimberlite deposit in the Canadian Arctic with comparable AEM sys-

tems. It is postulated to be caused from the time-domain transmitter possessing

an unknown non-zero decaying current level during the system off-time. Con-

sequently, it was determined that the frequency-domain data produced the more

accurate background value and this was fixed for time-domain iterations.

The final hybrid cooperative parametric model at West Plains imaged the West-

ern conductor with excellent agreement to drilling information, and was able to

isolate areas of high conductivity within the Western conductor that corresponded

with areas of concentrated gold mineralization. Similar interpretations can now

be made for the shape and dip of the two Eastern conductors where little drilling

knowledge exists. However, as the surveys were deemed incompatible, the final
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model was unable to fit both data sets, and in this example the priority was given

to time-domain measurements. This was due to more available time channels com-

pared to frequencies coupled with a greater depth of penetration. However, the

frequency-domain data were still beneficial for providing the background value and

near-surface features. Collectively this chapter showed that a hybrid cooperative

parametric method can be advantageous when the observations provide comple-

mentary information, but caution must be taken when compatibility issues arise

between data sets.

6.5 Future Research
In this thesis I have introduced practical cooperative and parametric strategies for

3D AEM inversion, both in the frequency and time domain, but further research

is needed to optimize algorithm robustness and efficiency. The ADMM method

(Wahlberg et al., 2012) would be worthwhile testing for multiple spatially over-

lapping data sets and comparing the results against the cooperative algorithm pre-

sented. In terms of the parametric algorithm, future trials should raise the com-

plexity level of the target geometry to push the limits of the inversion capability.

It will be important to include small-scale compact targets and also large-scale

smoothly varying features to thoroughly test the hybrid parametric method. Mul-

tiple data sets can be synthetically generated over these complex models to test

the hybrid cooperative parametric method, and additional field data sets should be

sought for practical applications. These future trials should incorporate alternative

parameterizations such as multiple spheres and potentially other relevant shapes in

order to evaluate a broad scope of parametric methods. Finally this dissertation has

focused on airborne electromagnetic data but the cooperative and parametric strate-

gies developed are designed to be general, and are equally applicable to ground EM

measurements, potential field or induced-polarization surveys.
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Appendix A

Multiple Sphere Parametric
Inversion

A.1 Introduction
Here I introduce a multiple sphere parameterization for AEM data as a way to

complement the Gaussian ellipsoid approach discussed in this dissertation. This is

meant to demonstrate the flexibility of the developed parametric framework and to

emphasize how various shape choices are available. The reader is also encouraged

to see Aghasi et al. (2011); Pidlisecky et al. (2011) for discussions about other

shape reconstructions.

A.2 Sphere Parameterization
A sphere is a simplified shape compared to a Gaussian ellipsoid, because although

the radius and central location of the sphere can change, it can not stretch or rotate.

This means that fewer parameters are needed to describe a sphere compared to an

ellipsoid, with the obvious drawback of a reduction in shape flexibility.

Mathematically, the transition in the parametric algorithm from multiple Gaus-

sian ellipsoids to multiple spheres is straight forward. For positions x,y,z in the

spatial domain, define a position vector x and a central location vector x0(n) for the
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nth anomaly as in Equation 4.2

x =

x

y

z

 x0(n) =

x0(n)

y0(n)

z0(n)

 . (A.1)

The parametric function τn is once again defined as

τn = c− (x−x0(n))
TMn(x−x0(n)) (A.2)

but the former skewing matrix Mn is now a diagonal matrix with the inverse of the

squared sphere radius, r, on the diagonal

Mn =


1
r2 0 0

0 1
r2 0

0 0 1
r2

 . (A.3)

Each sphere can be given its own radius value, but in this example the radii are fixed

at r. The resistivity of each sphere, ρ1, is also fixed with the idea that anomalies

can arrange themselves in ways to either increase or decrease the desired resistivity

effect. In this manner, the inversion is designed to be an iterative process that gives

the user the ability to test different scenarios. Finally the resistivity in each mesh

cell is defined as

ρ(τn,ρ0,ρ1) = ρ0 +
1
2
(1+ tanh(aτn))(ρ1−ρ0) (A.4)

and the derivatives for the Jacobian matrix are calculated in the same manner as

Equation 3.23, without the need for derivatives with respect to skewing parame-

ters which no longer exist. To compensate for the rigid form of the sphere, the

mesh is populated with many spheres, i.e. 100 or more, allowing the inversion the

flexibility to fit non-linear target features not well suited for a Gaussian ellipsoid

parameterization. With a large number of spheres in the inversion, the regulariza-

tion trade-off term β is set to unity and follows a cooling schedule as described in

Chapter 2 with a cooling factor γ = 0.9. This ensures there exists a penalty term for

deviating from a reference model, which prevents the spheres from scattering eas-
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ily throughout the model. A much more conservative cooling schedule is needed

compared to previous chapters, otherwise the effect of the regularization is too mild

and spheres begin to spread out too quickly.

A.3 Synthetic Example
To test the multiple sphere approach, synthetic AEM data from Chapter 4 are re-

visited. In this example, frequency-domain data are used, but similar results are

expected for time-domain measurements. The data and inversion parameters are

kept the same as Chapter 4, but instead of three Gaussian ellipsoids, the starting

guess is composed of 100 spheres of 75 m radius with a fixed resistivity of 1 Ωm.

Three cluster centers are spatially chosen from the observed synthetic data, and the

initial spheres are split up and populated randomly around these points with a stan-

dard deviation of 200 m, 200 m, 50 m in x,y,z respectively. The depth of the cluster

centers is chosen to be 60 m, or z = 250 m. This keeps the spheres near the surface

and ensures that any depth or dip information from the ensuing inversion comes

from the data and not from the initial model. The left panel of Figure A.1a shows

a plan slice through the true model at z = 250 m, where cluster centers are shown

as black crosses and the location of two East-West cross-sections at y = 7332880

m and y = 7332640 m are displayed in white. These cross-sections through the

synthetic model are shown in the right panel of Figure A.1a. Figure A.1b presents

a plan view and two cross-sections through the initial guess. The exact nature of

the initial guess is clearly user-dependent and will vary, but this example is meant

to demonstrate a typical guess when little a priori information is available.

A.4 Synthetic Result
Figure A.1c portrays the synthetic multiple sphere parametric inversion results in

plan view and cross-section. In plan view, the spheres are able to reconstruct the

true model quite well, and even in cross-section there is some sense of the true

dip in all three anomalies. The initial data misfit is 6.3e5, and after 74 Gauss-

Newton iterations the final data misfit levels off at 38.1. Recall the data misfit

for the Gaussian ellipsoid example was 19.6, so the multiple spheres method does

not achieve a similar level of data fit, but it does provide valuable information. If
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the anomalies were curved or non-linear the sphere approach would have a much

greater advantage, and is worthy of future research.
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Figure A.1: Multiple sphere parametric inversion, frequency-domain AEM
data. Plan view at z = 250 m (left) and cross-section across solid white
lines at y = 7332880 m and y = 7332640 m (right). a) True model with
cluster centers marked with black x’s. b) Initial guess. c) Parametric
sphere inversion.
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Appendix B

Airborne Electromagnetic Data
Sampling

B.1 Total Horizontal Gradient Data Sampling
The survey locations in Chapter 4 are selected through a data reduction sampling

method based on the total horizontal gradient (THG) magnitude of the data, defined

for time-domain ∂bz
∂ t measurements as

THG =

√√√√(∂ ( ∂bz
∂ t )

∂x

)2

+

(
∂ ( ∂bz

∂ t )

∂y

)2

. (B.1)

Figure B.1 visually demonstrates the THG sampling method, where Figure B.1a

shows the synthetic time-domain AEM ∂bz
∂ t data from chapter 4 at 150 µs with the

full data set of 1172 source locations presented as black dots. Figure B.1b then

illustrates a standard evenly down-sampled ∂bz
∂ t data set at 150 µs where every

second source location along-line is discarded. Figure B.1c depicts a THG down-

sampled data set overlaid on the THG of ∂bz
∂ t data at 150 µs. Here, all data points

are kept in regions where the THG value remains above a user-defined threshold,

0.06 in this case, whereas outside this core region only every fourth point is se-

lected.
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Figure B.1: Time-domain AEM data sampling techniques. Data locations
shown as black dots. a) Full synthetic ∂bz

∂ t data set at 150 µs with 1172
total source locations. b) Evenly down-sampled synthetic ∂bz

∂ t data set
at 150 µs with 533 total source locations. c) THG of ∂bz

∂ t data at 150 µs
with 522 selected source locations based from the THG.
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The THG down-sampling technique focuses on keeping data points where the

signal is rapidly changing to retain the most valuable information from the data set

while eliminating data where the signal is constant or slowly varying. This method

is clearly dependent on which time channel or frequency is chosen to calculate the

THG. In this example the first time-channel is selected because its THG image is

representative of the entire data set, but this may not be the case for every scenario.

Synthetic parametric inversion results are displayed in Figure B.2 for each of

the aforementioned data sampling methods. Inversion parameters and meshes are

kept to match those from Chapter 4. The left panel shows a 250 m constant eleva-

tion slice through the inversion models and the thick white East-West lines depict

two cross-section locations at y = 7333080 m and y = 7332780 m that are displayed

in the right panel. The true model conductors are outlined in thin solid white and

the location of the starting guesses are in thin dashed white. All methods recover

an accurate reconstruction of the true conductors in both plan and cross-section;

however, the full and THG sampled data inversions have a better overall recovery

of the dip of the Western conductor and a closer match to the true resistivities.

Recovered resistivities, total number of Gauss-Newton iterations and final data

misfits are displayed in Table B.1. This table shows that the THG sampling method

quantitatively has the best result of the three methods with a reconstruction accu-

racy Rc of 1.52 when looking only at conductive cells and RAll = 0.17 using all

cells in the true model. Note that the evenly down-sampled recovery has a worse

reconstruction accuracy of Rc = 3.27, and also requires 269 Gauss-Newton itera-

tions before terminating and achieves a final data misfit of 31.1. This is compared

to only 23 Gauss-Newton iterations and a final misfit of 21.4 for the THG data

set. This suggests that a THG down-sampling approach is preferable over evenly

down-sampling the data, and little information is lost compared to inverting the full

data set. Although this method is presented with a time-domain example, similar

results occur for frequency measurements, but are not shown.
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Table B.1: Synthetic inversions summary: down-sampling methods.

Model or method ρ1 ρ2 Rc RAll # GN Final φd

True model 0.20 Ωm 2.00 Ωm 0.0 0.0 - -
Full data 0.14 Ωm 1.94 Ωm 2.01 0.21 22 15.8
Even sampling 0.45 Ωm 1.91 Ωm 3.27 0.30 269 31.1
THG sampling 0.16 Ωm 1.95 Ωm 1.52 0.17 23 21.4
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Figure B.2: a) Full sampling. b) Even sampling. c) THG sampling.
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