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Abstract

The underlying data in many machine learning tasks have a sequential nature. For example, words generated

by a language model depend on the previously generated words, behaviour of a user in a social network

evolves over different snapshots of the social graph over time, different speech frames in a speech recognition

system depend on the previously generated frames, etc. The main question is, how can we leverage the

sequential nature of data to extract better features for the target machine learning task? In an effort to

address this question, this thesis presents three important applications of deep sequence modelling methods.

The first application is sentence modelling for web search task where the question addressed is: How

to create a vector representation for a natural language sentence, aimed at a specific task such as web

search? We propose Long Short-Term Memory Deep Structured Semantic Model (LSTM-DSSM), a model

for information retrieval on click-through data with significant performance gains compared to existing state

of the art baselines. The proposed LSTM-DSSM model sequentially takes each word in a sentence, extracts

its relevant information, and embeds it into a semantic vector.

The second application involves distributed compressive sensing, where the main questions addressed

are: (a) How to relax the joint sparsity constraint? (b) How to exploit the structural dependency of a group of

sparse vectors to reconstruct them better from down-sampled measurements (structures besides sparsity)?

(c) How to exploit available offline data during sparse reconstruction at the decoder? We present a deep

learning approach to distributed compressive sensing and show that it addresses the above three questions

and is almost as fast as greedy methods during reconstruction.

The third application is related to speech recognition. The question addressed here is: How to build

a recurrent acoustic model for the task of phoneme recognition? We present a Recurrent Deep Stacking

Network (R-DSN) architecture for this task. Each module in the R-DSN is initialized with an Echo State

Network (ESN), and then all connection weights within the module are fine tuned.
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Chapter 1

Introduction

Everything we hear is an opinion, not a fact. Everything we see is a perspective, not the truth.
— Marcus Aurelius

Deep Learning (DL) [23, 27, 48, 55, 79, 129, 131] is the foundation for many recent breakthroughs in

different research areas [20, 37, 51, 58, 76, 91, 109, 125, 128]. Some fundamental ideas in deep learning,

e.g., feedforward or convolutional neural networks, back-propagation and recurrent neural networks have

been known from 1980s. The main reasons for the recent popularity of these ideas are: (a) the fast and

efficient computation using Graphical Processing Unit (GPU) which makes it possible to run experiments in

a reasonable amount of time, and (b) the availability of very large datasets (90% of world’s data have been

generated over the last two years[2]).

Among the different deep models, sequence modelling methods are of great importance. The main

reason for this is that many real world and machine learning tasks have an inherent sequential nature. For

example, (a) sentences used in a conversation depend on the previous sentences used in that conversation

and the context, i.e., a sequence of sentences, (b) words / characters used in a sentence depend on previous

words / characters, i.e., a sequence of words / characters. This is very important in language modelling

tasks. (c) Different blocks in one image and different image frames in a video have strong sequential

dependencies / correlations, i.e., a sequence of images. (d) In an acoustic model of speech recognition

system, the probability of which speech frame happens next, depends on the previously observed speech

frames, i.e., a sequence of speech frames. (e): In a social network, e.g., Facebook or Linkedin, a social

graph represents each user by a node and the connections of that user to other users as edges in the graph.

This graph quickly evolves over time depending on new interactions among users, e.g., new connections,

followers, etc. Different snapshots of this social graph over time have strong correlations / dependencies,

i.e., a sequence of social graphs. This is central in the important task of link prediction in social networks,

e.g., “people you may know” feature in Facebook or Linkedin. (f) In a machine translation system, e.g.,

Google translate or Skype translator, the main task is: given a sentence in a source language (e.g., French),

generate its translation in a target language (e.g., English). The state-of-the-art methods for this task are

based on sequence to sequence models that use one sequence model for source language (encoder), and

another sequence model for target language (decoder). The encoder sequence model basically extracts
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features from a sequence of words / characters in a source language. The decoder sequence model generates

words / characters in target language given the features from encoder. In other words, the whole system is

based on the sequential nature of words / characters in source and target language.

In this thesis, we addressed three important problems using approaches based on deep sequence mod-

elling methods:

1. Acoustic modelling for speech recognition which resulted in a new model, Recurrent Deep Stacking

Network (R-DSN) for speech recognition.

2. Sentence modelling for web search task which resulted in Long Short-Term Memory Deep Struc-

tured Semantic Model (LSTM-DSSM). This model can potentially improve the performance of search

engines like Google or Bing and

3. Compressive Sensing which resulted in a fundamentally new deep learning approach to distributed

compressive sensing.

The rest of this chapter is organized as follows: in the next section an introduction to deep learning

and deep sequence modelling methods are presented. In section 1.2, an introduction to Compressive Sens-

ing (CS) is described. Section 1.3 explains motivations behind this research work and identifies our contri-

butions. The organization of the thesis is summarized in section 1.4.

1.1 Deep Learning
Since their introduction in 1957 [104], neural networks have been used for finding patterns in input data

and for modelling complicated relationship between input and output data. The first generation of neural

networks is the Perceptron [104] that performs a classification task by mapping an input vector of real

numbers to a single binary value (its output). The Perceptron has a simple learning algorithm but it can

not learn complex structures. The second generation of neural networks is the Multilayer Perceptron (MLP)

which has multiple layers of neurons (processing units). In MLP, each neuron in a hidden layer has a

non-linear activation function, e.g., sigmoid function f (x) = 1
1+e−x . The learning algorithm used in MLP

is Backpropagation [105]. Although MLP performs better than the Perceptron, Backpropagation has two

main problems; it is very slow in networks with multiple hidden layers and it can get stuck in poor local

optima. Due to these problems in the 1990’s many researchers stopped using neural networks with multiple

hidden layers [56]. However, in 2006, two seminal papers [60] and [61] proposed more efficient methods

for training Deep Neural Network (DNN), i.e., neural networks with many hidden layers. Afterwards, DNNs

were used successfully in different applications, e.g. speech, audio, image, video and language processing

[129].

A DNN is a neural network with more than one hidden layer in space (e.g., the multilayer feed-forward

or the convolutional neural networks) or in time (e.g., recurrent neural network). For example, for feed-

forward neural networks, each unit j in a hidden layer is typically a non-linear function (e.g., sigmoid, tanh
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Figure 1.1: A Feed-forward DNN.

or Rectified Linear Unit (RELU)) that maps its input to a state h(1)j where

h(1)j = f (∑
i

xiwi j +b j). (1.1)

In (1.1), h(1)j is the output of the j-th unit in the first hidden layer (the superscript (1) in h(1)j indicates the

hidden layer number which is 1 in this case), the wi j is the weight for the connection between this unit and

the unit xi (where xi is the unit i in the layer below), and b j is the bias for j-th unit. f (.) is the non-linear

activation function for unit j. For example, the activation function in the case of sigmoid non-linearity is

f (x) =
1

1+ e−x . (1.2)

A feed-forward DNN model is presented in Fig. 1.1. In this figure, a DNN with n input (visible) units

represented by [x1,x2, . . . ,xn], the m1 hidden units in hidden layer 1 that are feature detectors, the m2 hidden

units in hidden layer 2 that are also feature detectors and the c output units [y1,y2, . . . ,yc] is represented.

As an example, if we want to do multi-class classification using this model, and assuming that we have c

classes, we add a softmax layer on the top of the network (not shown in Fig. 1.1) to get a value between 0

and 1 for each class, i.e.,

p j =
ey j

∑
l
eyl

, (1.3)

where p j in (1.3) can be interpreted as the probability that input data x = [x1,x2, . . . ,xn]
T belongs to the

j-th class. You can think of the input data x as pixels of an image, or as the Mel Frequency Cepstral

Coefficients (MFCC) features of a speech frame, or as one hot representation of a word, or a bag of words
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Figure 1.2: Importance of depth (Figure from [40]).

representation of a sentence, or simply some hand crafted features from the data. We can also use a weighted

layer to define p j in (1.3) and learn those weights as well. In other words, if we define y = [y1,y2, . . . ,yc]
T

then

p j =
eyT U j

∑
l
eyT Ul

, (1.4)

where U j is j-th row of the weights matrix between layer [y1,y2, . . . ] and layer [p1, p2, . . . ] (not shown in Fig.

1.1) which will be learned during training. To learn all parameters in Fig. 1.1 and also U in (1.4), we need

to define an appropriate cost function. For example, the cost function in the above classification example is

usually the cross entropy between the target labels, t, and the observed probabilities, p,

loss =−∑
j

t jlog(p j). (1.5)

In (1.5), target label t j is our given knowledge from training data of the class input data x belongs to. If x
actually belongs to class j, then t j is 1, otherwise it is 0. p j, on the other hand, is the DNN’s opinion about

input data x. It is the probability that DNN thinks input data x belongs to class j.

The main role of hidden layers in Fig. 1.1 is to create high level good features from the input data x. A

natural question here is: how important is depth of the network? In other words, does adding more hidden

layers continuously improves the performance? We can investigate the importance of depth by inspecting

the different parts of the Krizhevsky’s Convolutional Neural Network (CNN) [76] which has 8 layers and is

trained on ImageNet [106] dataset. The architecture of Krizhevsky’s CNN along with the results of applying

the Support Vector Machine (SVM) classifier on different layers are shown in Fig. 1.2. The main observation

from Fig. 1.2 is that applying the classifier to features from higher layers results in significant performance

improvement (e.g., from 44.8% using features from layer 1 to 85.5% using features from layer 7). It is

important to note that simply adding many more layers does not always improve the performance. A good

example for this is the results of simply using 20 layers and 56 layers of CNN for CIFAR-10 dataset which
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Figure 1.3: Effect of adding many layers (Figure from [52]).

Figure 1.4: Adding skip connections to resolve the problem with many layers (Figure from [52]).

is presented in Fig. 1.3. Similar phenomena have been observed on the ImageNet dataset which means

that learning better models is not always equivalent to adding more layers. Note that the above problem is

NOT caused by overfitting as it is obvious from the training error curves in Fig. 1.3. One reason is the fact

that with deeper networks the error signal during backpropagation is no longer significant enough by the

time it arrives to the lower layers. To resolve this problem, a residual network is proposed in [52] which

simply adds skip connections in the CNN architecture. One example is shown in Fig. 1.4. Note that the skip

connection is applied before the non-linear activation function.

The Recurrent Neural Network (RNN) is a type of deep neural network that is deep in the temporal

dimension and has been used extensively in time sequence modelling [13, 28, 36, 49, 84, 85, 103]. To

explain a simple RNN, assume that we have been observing input data from time t = 1 till time t = T .

For example, we can think of the input data as a sentence with T words. Assume the t-th word in the

sentence is represented by vector x(t) = [x1(t),x2(t), . . . ,xn(t)]T (T stands for transpose here). x(t) can be

a feature vector like word2vec [88] or a one hot representation of t-th word. We continue our explanation

of RNN using Fig. 1.5 which represents a one layer recurrent neural network unfolded over time. In

Fig. 1.5, h(t) = [h1(t),h2(t), . . . ,hm1(t)]T is vector of hidden units’ activations after observing t-th word
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Figure 1.5: One layer RNN unfolded over time.

in the sentence x(t). Since there is just one hidden layer, we have not shown the layer number superscript

for simplicity. Similarly, y(t) = [y1(t),y2(t), . . . ,yc(t)]T is the vector of the output units’ activations after

observing t-th word in the sentence. W is the matrix of weights between the input layer and the hidden layer,

Wrec is the matrix of weights among the hidden layer activations over time and U is the matrix of weights

between the hidden layer and the output layer. During the forward pass, h(t) and y(t) are calculated as

h(t) = f (Wx(t)+Wrech(t−1)) (1.6)

y(t) = g(Uh(t)), (1.7)

where f (.) and g(.) are non-linear activation functions for the hidden layer and the output layer. Back-

propagation Through Time (BPTT) is used to train this model. If we want to use this RNN model for the

classification task explained before, we can similarly add a softmax layer on the top and minimize the cross

entropy cost function in (1.5). There are of course much more details into the learning process and how to

make it work (which we omit in this introductory section). We just want to emphasize that simple RNNs are

notoriously hard to train [12] due to vanishing and exploding gradients problems. Nevertheless, there are

some specific RNN architectures that have resolved these problems. We will discuss some of them later in

this thesis.

A reasonable question to ask here is: Can all problems be mapped to a neural network style y = f (x)?
The short answer is No! Example tasks for which the simple y = f (x) fails are: (a) cloze style QA where

the task is to read and comprehend a text (e.g., book, etc) and then answer questions about it. (b) Given a

text, the task is to fill in the blanks and (c) ChatBot [24].

Generally a powerful model to address the above challenging tasks needs to remember the external

context, given an input, the model needs to know where to look for in the context, what to look for in the

context, how to reason, using this external context and the model should also handle a changing external

context. To address some of the above challenges Memory Networks [112] have been proposed where the
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main idea is to separate the controller of the memory from the memory itself. In other words, it combines a

large memory with a learning component that can read and write to the memory.

1.2 Compressive Sensing
Compressive Sensing (CS) is an effective framework for acquiring sparse signals by which both sensing and

compression are performed at the same time [9, 14, 31]. Since there are numerous examples of natural and

artificial signals that are sparse in the time domain, spatial domain or a transform domain, CS has found

various applications. One example to motivate the essence of compressive sensing is as follows: in a stan-

dard image compression like JPEG (or JPEG2000), the first step is to apply a DCT (or Wavelet) transform

to the image to create a compact (few non-zeros) representation, and then the very small coefficients are

discarded. Of course there are much more details but this is the basic idea. Consider though that we have

spent computational resources to calculate the small coefficients that we later discard. Now the question is:

is there any way to just sample (measure) the information that we need? The answer is Yes and this could

be done by using compressive sensing.

As a sample application, compressive sensing can be used for tele-monitoring the scalp Electroen-

cephalogram (EEG) signals via Wireless Body-Area Network (WBAN) [16]. In WBAN, a number of sensors

collect and compress the EEG data. The compressed data are then sent to a remote terminal for further

processing. By using this system, patients do not need to go to the hospital frequently. Instead, their EEG

data can be monitored and transmitted to the hospital when needed. In designing a WBAN, there are a

number of constraints such as the sensor’s energy constraint due to its limited battery life [90], accuracy

of the compressed and then transmitted physiological signals and a low hardware cost. Conventional data

compression schemes can not overcome all these constraints [81]. Compressive sensing, on the other hand,

can form a promising framework to solve the above constraints [6].

Besides wearable technology for health telemonitoring discussed above, other example applications of

compressive sensing are building a single pixel camera [34], Computed Tomography (CT) to reduce the

amount of radiation [5], Magnetic Resonance Imaging (MRI) to shorten MRI scanning sessions [80] and

many more applications including geophysical data analysis, computational biology, remote sensing and

communications [1].

A general CS framework with encoder and decoder is represented in Fig. 1.6. CS framework includes an

encoder to down-sample the input data and a decoder to reconstruct the input data from its down-sampled

version. In Fig. 1.6, the data is represented by vector x = [x(1),x(2), . . . ,x(N)]T . You can think of x as

vectorized version of an image with N pixels. The CS encoder is generally a wide random matrix. This is

represented by Φ which is an M×N matrix where M < N. The down-sampled version of x is represented

by y = [y(1),y(2), . . . ,y(M)]T . The entries of y are called measurements, each of them is a linear random

combination of all entries of x. The y is referred to as the measurement vector. Since we have just one

measurement vector in Fig. 1.6, it is also referred to as Single Measurement Vector (SMV) problem

y = Φx. (1.8)
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Figure 1.6: General CS framework.

The main task in CS is how to reconstruct the original data x given the measurement vector y and the

measurement matrix Φ. One of the main reasons that this task is challenging is that the linear system of

equations in (1.8) is underdetermined, i.e., it has more unknowns than equations. Therefore, there are infinite

number of solutions for x. Nevertheless, if x is sparse enough (has few non-zero entries), or if there is a

transform domain Ψ where the transformed representation of x is sparse (e.g., using DCT of x), then the

theory of CS guarantees that under some reasonable conditions, the sparsest solution is unique [31]. The

basis Ψ can be complete, i.e., Ψ ∈ ℜN×N , or over-complete, i.e., Ψ ∈ ℜN×N1 where N < N1 (compressed

sensing for over-complete dictionaries is introduced in [15]). For this section, assume a complete basis

Ψ ∈ℜN×N and

x = Ψs, (1.9)

where s is K− sparse, i.e., s has at most K non-zero elements. The condition to obtain a unique s given y is

usually described based on the spark1 value, i.e., K < spark(ΦΨ)
2 [32] or the the mutual coherence2 (µ(ΦΨ))

1spark of a given matrix (defined in section 3 of [32]), is the smallest possible number of linearly dependent columns of that
matrix. It gives a measure of linear dependency in the system modelled by a given matrix.

2The coherence µ(A) of a given matrix A is defined as the maximum absolute value of inner products between any two columns
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where the condition is K < 1
2(1+

1
µ(ΦΨ)) [33]. To find s, the following optimization problem should be

solved:

ŝ = argmin
s
‖s‖0 s.t. y = ΦΨs, (1.10)

where ‖s‖0 is (pseudo) norm 0 of s and represents the number of non-zero entries in s. Since `0 norm makes

the problem non-convex, it is usually relaxed to the `1 norm and the following convex optimization problem

is solved instead of (1.10):

ŝ = argmin
s
‖s‖1 s.t. y = ΦΨs. (1.11)

In distributed compressive sensing , also known as the Multiple Measurement Vectors (MMV) prob-

lem, a set of L sparse vectors {si}i=1,2,...,L is to be jointly recovered from a set of L measurement vectors

{yi}i=1,2,...,L. Some application areas of MMV include magnetoencephalography, array processing, com-

pressed sensing of different Electroencephalogram (EEG) channels on brain, equalization of sparse commu-

nication channels and cognitive radio [33].

Suppose that the L sparse vectors and the L measurement vectors are arranged as columns of matrices

S = [s1,s2, . . . ,sL] and Y = [y1,y2, . . . ,yL] respectively. In the MMV problem, S is to be reconstructed given

Y,

Y = AS, (1.12)

where

A = ΦΨ. (1.13)

In (1.12), S is assumed to be jointly sparse, i.e., non-zero entries of each vector occur at the same locations

as those of other vectors, which means that the sparse vectors have the same support. Assume that S is

jointly sparse. Then, the necessary and sufficient condition to obtain a unique S given Y is [22]:

|supp(S)|< spark(A)−1+ rank(S)
2

, (1.14)

where |supp(S)| is the number of rows in S with non-zero energy. In the SMV problem, no rank information

exists. In the MMV problem, the rank information exists and affects the uniqueness bounds. Generally,

solving the MMV problem jointly can lead to better uniqueness guarantees than solving the SMV problem

for each vector independently [35].

In the current MMV literature, a jointly sparse matrix is recovered typically by one of the following

methods: 1) greedy methods [120] like Simultaneous Orthogonal Matching Pursuit (SOMP) which performs

non-optimal subset selection, 2) relaxed mixed norm minimization methods [7, 82, 119, 121, 134], or 3)

Bayesian methods like [72, 126, 133] where a posterior density function for the values of S is created,

assuming a prior belief, e.g., Y is observed and S should be sparse in basis Ψ. The selection of one of the

above methods depends on the requirements imposed by the specific application.

of A (Definition 2 of [33]).
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1.3 Motivations and Contributions
In this thesis we study the applications of deep learning methods for sequence modeling, and how to use

them in favor of better performance for the target machine learning task. Our focus is on three important

applications related to speech recognition, sentence modeling for web search and distributed compressive

sensing. For each application, we explain the problem and present our proposed method to address the

problem followed by a list of our contributions.

We start the thesis by proposing a novel architecture for sequence learning that is a stack of one layer

recurrent neural networks with linear output units and initialized by echo state networks. We refer to this

architecture as Recurrent Deep Stacking Network (R-DSN) and evaluate its performance on a speech recog-

nition task. We then study the information retrieval task and propose a sentence embedding method that

uses Long Short-Term Memory (LSTM), an special neural network architecture for sequence modelling,

and show that it yields significantly better results than state-of-the-art methods on a real world commercial

search engine’s click-through data. Finally, we target the problem of distributed Compressive Sensing (CS)

and propose a deep learning approach for this problem, i.e., a new sparse reconstruction algorithm (for data

compressed by CS) that is based on deep learning. We show that the proposed method, is almost as fast as

greedy methods, performs better than a number of strong well known methods and effectively addresses the

MMV problem when sparse vectors are not jointly sparse.

Below we explain the motivation behind each work and briefly list our contributions in each area.

1.3.1 Recurrent Deep Stacking Networks for Speech Recognition

Echo State Network (ESN) is a special type of the temporally deep network model, the Recurrent Neural

Network (RNN), where the recurrent matrix is carefully designed and both the recurrent and input the ma-

trices are fixed. ESN uses a linear activation function for the output units. It uses this linearity to simplify

the learning of the output matrix. The Deep Stacking Network (DSN), on the other hand, is constructed

by stacking shallow feed-forward neural networks with linear output units on top of each other using con-

catenated features derived from the lower modules of the DSN and the raw input data. DSNs do not have

recurrent connections, making them less effective in modelling and classifying input data with temporal

dependencies. Our contributions in the area of sequence modelling methods of neural networks with linear

output units are as follows:

• we devise a special technique that takes advantage of the linearity in the output units of an ESN, to

learn the input and recurrent matrices. This has not been done in earlier ESNs due to their well known

difficulty in learning these matrices.

• Compared to the technique of BPTT in learning general RNNs, our proposed method exploits the lin-

earity of the activation function in the output units to formulate the relationships amongst the various

matrices in an RNN. These relationships result in the gradient of the cost function having an analyti-

cal form. This has the advantage of enabling us to compute the gradients faster and more accurately

instead of obtaining them by recursion as in BPTT.

10



• we embed recurrent connections into the DSN, giving rise to what we call an R-DSN. Each module of

the R-DSN consists of a special form of recurrent neural networks. Generalizing from the earlier DSN,

the use of linearity in the output units of the R-DSN enables us to derive a closed form for computing

the gradient of the cost function with respect to all network matrices without backpropagating errors.

1.3.2 A Sentence Modelling Method for Web Search Task

Learning a good representation (or features) of input data is an important task in machine learning. In text

and language processing, one such problem is the learning of an embedding vector for a sentence; that is, to

train a model that can automatically transform a sentence to a vector that encodes the semantic meaning of

the sentence. Our contributions in the area of sentence embedding and information retrieval are:

• Developing a model that addresses sentence embedding, a hot topic in current natural language pro-

cessing research, using an RNN with LSTM cells. The proposed LSTM-RNN model sequentially takes

each word in a sentence, extracts its information, and embeds it into a semantic vector.

• Training above LSTM-RNN model in a weakly supervised manner on users’ click-through data logged

by a commercial web search engine.

• Performing visualization and analysis to understand how the sentence embedding process works. The

model is found to automatically attenuate the unimportant words and detects the salient keywords in

the sentence. Furthermore, these detected keywords are found to automatically activate different cells

of the LSTM-RNN, where words belonging to a similar topic activate the same cell.

• As a semantic representation of the sentence, the embedding vector can be used in many different

applications. These automatic keyword detection and topic allocation abilities enabled by the LSTM-

RNN allow the network to perform document retrieval, a difficult language processing task. On a

web search task, the LSTM-RNN embedding is shown to significantly outperform several existing

state-of-the-art methods.

1.3.3 A Deep Learning Approach to Distributed Compressive Sensing

Various studies that address the problem of Multiple Measurement Vectors (MMVs), also known as dis-

tributed compressive sensing, have been recently carried. Most of these studies assume the different sparse

vectors in such a problem to be jointly sparse. They do not use complicated structures beyond sparsity

or block sparsity or tree structures and do not use available offline data during sparse reconstruction. Our

contributions in the area of compressive sensing are as follows:

• We relax the joint sparsity condition. Instead, we assume that these sparse vectors depend on each

other but that this dependency is unknown. We capture this dependency by computing the conditional

probability of each entry in each vector being non-zero, given the residuals of all previous vectors. To

estimate these probabilities, we propose to use deep sequence modelling methods.
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• To reconstruct the sparse vectors at the decoder, we propose a greedy solver that uses the above deep

sequence model to estimate the conditional probabilities. By performing extensive experiments on

two real world datasets, we show that the proposed method significantly outperforms the general

MMV solver (the Simultaneous Orthogonal Matching Pursuit (SOMP)) and a number of the model-

based Bayesian methods. The proposed method does not alter or add any complexity to the general

compressive sensing encoder. The trained model is only used to help the reconstruction algorithm at

the decoder.

• We propose a bidirectional version of the above solver and show that it performs better than above

solver.

• We propose a Convolutional architecture for Deep Stacking Networks which results in Convolutional

Deep Stacking Network (CDSN). As a sample application of this architecture, we use it in combination

with the above proposed greedy solver and obtain significant performance improvements compared

to SOMP and a number of model-based Bayesian methods.

1.4 Organization
Every chapter starts with an introduction section where the problem description is stated, followed by a

review of the related background. Then our proposed solution for the described problem is explained. This

is followed by the evaluation and comparison of the proposed solution against the state-of-the-art methods.

A summary of each chapter is given in the final section of that chapter. More details about the organization

of each chapter are:

• In Chapter 2 the problem of deep sequence modelling for neural networks with linear output units is

addressed. Two models are proposed, the first is a modified ESN whose input and recurrent weights

are learned in a special manner, and the second is the Recurrent Deep Stacking Network (R-DSN).

The models are evaluated on the TIMIT dataset for the speech recognition task. The performance is

comparable with state-of-the-art methods.

• In Chapter 3 the problem of sentence embedding is addressed. We have proposed and showed how

to use a deep sequence modelling method, with Long Short-Term Memory (LSTM) cells, for sentence

embedding. The results were significantly better than those of the state-of-the-art methods on the

difficult task of information retrieval using click-through data. We performed extensive visualization

and analysis and showed that the proposed model can be used for key word extraction and topic

modelling.

• In Chapter 4 the problem of distributed compressive sensing is addressed. We proposed a deep learn-

ing approach to distributed compressive sensing. We showed how deep sequence modelling methods

can help to (a) relax the joint sparsity condition (b) use structures beyond sparsity during reconstruc-

tion (c) use available offline data during reconstruction and (d) obtain the results of sparse reconstruc-

tion almost as fast as greedy methods.
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• In Chapter 5 we conclude this thesis and provide a summary of our contributions. We also discuss

future work and present potential opportunities for improvements and extensions of the methods pro-

posed in this thesis.
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Chapter 2

Recurrent Deep Stacking Networks for
Speech Recognition

It is not the knowledge but the act of learning, not possession but the act of getting there, which
grants the greatest enjoyment.

— Carl Friedrich Gauss

2.1 Introduction
Deep Neural Network (DNN) have proven to yield excellent performance in many pattern classification and

recognition tasks [30, 55]. To fine tune DNNs, the stochastic gradient descent method is often used. This

makes it difficult to parallelize the learning across different machines. As one way to overcome this problem,

Deep Stacking Networks (DSNs) have been proposed [26, 29]. Motivated by the stacking concept of [127],

(where complex functions are learnt by stacking a number of simple functions), a DSN is constructed by

stacking feed-forward neural networks with one hidden layer having a non-linear activation function for the

hidden units and a linear activation function for the output units[29]. Training each module is performed

independently of other modules, and there is no need to back propagate the error from the output to the

input layers. There are however no temporal connections in each module of a DSN; therefore, the temporal

dependencies in the input data are not learnt effectively in DSNs.

Recurrent Neural Networks (RNNs) belong to a general type of deep neural networks which are used

to model time sequences and dynamical systems [13, 28, 36, 49, 85, 103]. Echo State Networks (ESNs)

belong to the general class of the RNNs [66, 67, 69, 118]. The following properties of an ESN make it

distinct from other types of RNNs. First, both the recurrent and input matrices in an ESN are fixed and

not learned. This is largely due to the difficulty in learning RNN [12, 99]. Second, the number of hidden

neurons in an ESN is typically much larger than those in regular RNNs. The main challenges of training

RNNs described in [12, 99] is avoided in ESN by not training most of the very large number of difficult

network parameters. This also leads to avoiding potential overfitting problems. Third, the output units, also

called readout units, in an ESN are linear. This is unlike the typically nonlinear output units in regular RNNs.

Given the very large number of hidden neurons of an ESN, the output or readout weight matrix is very large
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as well. The use of linear output units allows the output weight matrix to be learned very efficiently and with

a simple regularization mechanism based on ridge regression. Fourth, the learning of the ESN parameters

(i.e. output matrix) is much simpler than that for regular RNNs. The former uses linear learning with

convex optimization, and the latter, is based typically on Back Propagation Through Time (BPTT) and is

highly nonlinear and non-convex. As a result, learning the ESN parameters can be effectively carried out

via batch training. This greatly facilitates parallel implementation. Learning the general RNN parameters

on the other hand, typically requires stochastic gradient descent, and is more difficult for parallelization.

The simplicity in ESN learning comes at the cost of not learning some important parameters (including

the input and the recurrent weight matrices) and of using linear output units. While the special design of the

recurrent matrices (see [68]) and the use of a large number of hidden neurons help in reducing the weakness

of using fixed parameters, it is desirable to make these parameters adapt to the data. This is as long as the

required learning remains simpler and more parallelizable than the common BPTT learning method applied

to regular RNNs.

This chapter presents this type of learning for the input and recurrent matrices of ESNs. We propose a

technique that makes full use of the linearity in the output units when constructing constraints on all three

input, output, and recurrent matrices in an ESN. The constraints enable us to compute the gradients as the

learning signal in an analytical form, and this makes the gradient estimate more accurate than when com-

puted by recursion as in BPTT. Our preliminary experimental results on phoneme classification are highly

positive. It is demonstrated that learning one or both of the input and recurrent matrices in an ESN gives

better phoneme classification accuracy than that obtained by a traditional ESN without learning them. Fur-

thermore, when longer time steps are used in analytically computing the gradients, the better classification

results are obtained.

To model input data having temporal dependencies more effectively, we also introduce the Recurrent

Deep Stacking Network (R-DSN) that combines the strengths of both DSNs and RNNs while overcoming

some of their weaknesses. The proposed R-DSN has recurrent (temporal) connections that are missing in the

DSN. In the R-DSN, each module is a single-layer RNN with linear output units. To train each module, we

do not use BPTT. Instead, we initialize the weights using ESN, and then fine tune them using batch-mode

gradient descent based on a closed-form formulation to compute the gradients. After each epoch of fine

tuning, the echo state property is also forced to be satisfied.

2.2 General Recurrent Networks and Specific Echo State Networks
A general RNN has temporal connections as well as input-to-hidden layer, hidden layer-to-output connec-

tions. These connections are mathematically represented by the recurrent weight matrix Wrec, the input

weight matrix W, and the output weight matrix U, respectively. The RNN architecture is illustrated in Fig.

2.1. It also includes input-to-output and output-to-hidden (feedback) connections, with the latter denoted by

W f b. The sequential sections of Fig. 2.1(a), 2.1(b), 2.1(c), . . . , denote the RNN as it unfolds in time. Note

that all the weight matrices are constrained to be the same (i.e. they are tied) at any discrete point in time.

In Figure 1, xi, hi and yi represent the input, hidden and output vectors at discrete time t = i. Again, the

connections between the input (xi) and hidden (hi) layers, the hidden and output (yi) layers, and the output
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Figure 2.1: Illustration of a general RNN unfolded over time

and hidden layers are represented by W, U and W f b respectively. The temporal connection between hi and

hi+1 is represented by the matrix Wrec. Note that the direct connections from the input to the output layer

form a part of the matrix U; i.e., it is equivalent to concatenating the input layer with the hidden layer.

There are two standard methods to train RNNs, BPTT and the method based on Extended Kalman

Filtering (EKF) [68]. BPTT is a first order method, which extends error backpropagation for feed-forward

networks by treating each time step as a new hidden layer ( but ties all the weight matrices across time).

Generally, BPTT has slow convergence. Its difficulty in capturing long-term memory due to vanishing

gradient and exploding gradient problems has been well known for many years [12]. It is often non-trivial

to obtain good results with BPTT; see the tremendous amount of engineering required to make BPTT work

[86, 103, 113]. The EKF-based method, on the other hand, has fast convergence properties and belongs

to a second-order method. However, the computational requirements of the EKF method are high and its

implementation is non-trivial [68], especially for large-scale problems.

One prominent approach that has been proposed to overcome the difficulty in training RNNs is the ESN

[69],[68]. As explained above, an ESN is a special type of RNNs whose recurrent weights (Wrec) and input

to hidden layer weights (W) are fixed and only U ( that represents the hidden layer to output and the input

to output weights ) is trained. The recurrent connections in Wrec are sparse and their values are carefully

fixed in a way that the echo-state property is preserved. ESNs can be trained very fast because the only

connections that are trained are the output connections. With good initialization, ESNs have been shown to

yield good performance for one dimensional sequences; but for high dimensional data such as speech, the

studies have been relatively limited; please see [118].

Since the output units in an ESN have a linear activation function and assuming the hidden units have a

sigmoid activation function, the formulation of an ESN as a special type of RNNs ( as shown in Fig. 2.1 )

can be succinctly described by

hi+1 = σ(WT xi+1 +Wrechi +W f byi) (2.1)

yi+1 = UT hi+1, (2.2)

where σ(x) = 1
1+e−x . As discussed earlier, an ESN has a special designed recurrent matrix, which is endowed

16



with the echo state property in most existing versions [68, 69, 118]. The echo state property implies that

the state, or the hidden units’ activities, of the network can be determined uniquely based on the current

and previous inputs and outputs provided the network has been running for a sufficiently long time. The

formal definition of echo states is described in [68]. Assume that the maximum eigenvalue of Wrec is λmax,

the activation function of the hidden units is sigmoid and | λmax |> 4, then the network does not have echo

states. This is a sufficient condition for the echo states to not exist1 [68]. However, as emphasized in [68], in

practice, when | λmax |< 4 the network has echo states. There is a similar sufficient condition under which

the exploding gradient problem for recurrent weights would not happen [98].

In ESN training, only the output weight matrix, U, is trained. The input and recurrent weight matrices

should be carefully fixed. There are three main steps in training an ESN: constructing a network with the

echo state property, computing the network states, and estimating the output weights.

To construct a network with the echo state property, the input weight matrix W and the sparse recurrent

weight matrix Wrec are randomly generated. Then, the maximum eigenvalue of Wrec is calculated and all

entries of Wrec are renormalized as follows:

Wrec = λ
Wrec

λmax
, (2.3)

where λ < 4 for sigmoid activation function. λ is also an important parameter which affects the memory

length of the network and should be determined based on the required memory size for the specific task. As

emphasized in [68], the entries of the input weight matrix are also of great importance; large entries cause

most hidden units to saturate while small entries lead hidden units to stay in the linear region of the sigmoid

function. The value of λ should be predetermined and fixed ( based on the desired task ) before the second

step (that calculates the network states).

To find the outputs of the hidden layer units, the hidden states are initialized to zero or another initial

state. Then the network runs freely for itrans time steps where the hidden states of each time step are

calculated using (2.1) with W f b = 0. After itrans time steps, the hidden state vectors are stacked in matrix

H, i.e.

H = [hitranshitrans+1 . . .hN ], (2.4)

where N is the number of time steps.

To calculate the output weights U, we stack the desired outputs or targets corresponding to input signal

xi as a matrix T; i.e.

T = [titranstitrans+1 . . . tN ]. (2.5)

Since H is computed using all known quantities (incluidng the fixed input and recurrent matrices) using

(2.1) and hence it is known also, U can be obtained by minimizing the following mean-square-error cost

function:

E =‖ UT Hc−T ‖2
F= tr[(UT Hc−T)(UT Hc−T)T ], (2.6)

1Note that in [68] the condition is stated as | λmax |> 1 because the activation function considered is hyperbolic tangent.
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where F stands for the Frobenius norm of a matrix, tr(.) is the trace of a matrix and

Hc = [H X]

X = [xitransxitrans+1 . . .xN ].
(2.7)

Minimizing (2.6), we have the globally optimal estimate of U determined by setting the gradient of the

above cost function to zero and solving it; i.e.

∂E
∂U

= 2Hc(UT Hc−T)T = 0

U = (HcHT
c )
−1HcTT .

(2.8)

In practical implementation, to prevent inaccurate results when HHT is singular or close to singular, the

following solution of “ridge regression” is used for estimating U

U = (HcHT
c +µI)−1HcTT , (2.9)

where I is the identity matrix and µ is a fixed positive number.

2.3 Learning the Input Weight Matrix in ESN
Assuming the memory of the network extends back to m time steps, we use the following notation to facili-

tate the development of the learning method for the input weight matrix W:

X1 = [x1 xm+1 x2m+1 . . . ], X2 = [x2 xm+2 x2m+2 . . . ], . . .

H1 = [h1 hm+1 h2m+1 . . . ], H2 = [h2 hm+2 h2m+2 . . . ], . . .

T1 = [t1 tm+1 t2m+1 . . . ], T2 = [t2 tm+2 t2m+2 . . . ], . . . .

(2.10)

Therefore, equations (2.1) and (2.2) can be written as

Hi+1 = σ(WT Xi+1 +WrecHi) (2.11)

Yi+1 = UT Hi+1. (2.12)

To find the gradient of the cost function E with respect to W and learn input weights W we consider two

cases in the remainder of this section. In Case 1, we assume that U does not depend on W and in Case 2 we

take into account the dependency between U and W. Note that in both cases we take into account the time

dependency among the hidden state vectors in H, i.e., the dependency of hi+1 on hi at every time step i 2.

Since Case 2 is a more realistic formulation of the gradient, it is used for learning the input weight matrix

in our experimental results presented in Section 5. We derive the gradient for one time step dependency and

then generalize it to n time step dependency, i.e., Hi depends on Hi−1, Hi−2 and so on up to n time steps.

2Note that this is one of the main differences with the work presented in [26, 130] where there is no temporal connection in the
single layer network and hence no time dependency is considered.
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2.3.1 Case 1

The gradient of the cost function with respect to W can be written as

∂E
∂W

=
∂

∂W
tr[(UT H2−T2)(UT H2−T2)

T ]

=
∂

∂W
tr[(UT

σ(WrecH1 +WT X2)−T2)(UT
σ(WrecH1 +WT X2)−T2)

T ]

= [
∂

∂W
σ(WrecH1 +WT X2)][2UT (UT H2−T2)

T ].

(2.13)

Assuming that H1 depends on W, i.e., H1 = σ(WrecH0 +WT X1), and denoting the term independent of W
by

S = 2UT (UT H2−T2)
T , (2.14)

then using chain rule of calculus we have

∂E
∂W

= [
∂

∂W
[Wrecσ(WrecH0 +WT X1)+WT X2]]HT

2 ◦ (1−HT
2 )◦S, (2.15)

and therefore

∂E
∂W

= X1[HT
1 ◦ (1−HT

1 )W
T
rec ◦HT

2 ◦ (1−HT
2 )◦S]+X2[HT

2 ◦ (1−HT
2 )◦S], (2.16)

where ◦ is element-wise multiplication.

2.3.2 Case 2

The gradient calculated in Case 1 is not accurate because the dependency between U and W is ignored. To

take this dependency into consideration, the first line of equation (2.13) is rewritten as

∂E
∂W

=
∂

∂W
tr(UT H2HT

2 U︸ ︷︷ ︸
a

−UT H2TT
2︸ ︷︷ ︸

b

−T2HT
2 U+T2TT

2 ). (2.17)

Substituting U = (H2HT
2 )
−1H2TT

2 we have

a = T2HT
2 (H2HT

2 )
−T H2HT

2 (H2HT
2 )
−1︸ ︷︷ ︸

I

H2TT
2

= T2HT
2 (H2HT

2 )
−T H2TT

2 ,

(2.18)

and

b = T2HT
2 (H2HT

2 )
−T H2TT

2 , (2.19)

therefore
∂E
∂W

=− ∂

∂W
tr(T2HT

2 (H2HT
2 )
−1H2TT

2 ). (2.20)
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Since tr(AB) = tr(BA) and tr(A) = tr(AT ) we have

∂E
∂W

=− ∂

∂W
tr((H2HT

2 )
−1H2TT

2 T2HT
2 ). (2.21)

Using the chain rule presented in equation (126) of [100], the gradient can be written as

∂E
∂W

=−[ ∂

∂W
H2︸ ︷︷ ︸

B

][
∂

∂HT
2

tr((H2HT
2 )
−1H2TT

2 T2HT
2 )︸ ︷︷ ︸

A

]. (2.22)

Below we first calculate matrix A and then matrix B.

For constant values of hidden states H2 we define F, M and S as follows:

F = (H2HT
2 )
−1

M = TT
2 T2

S = H2MHT
2 .

(2.23)

Then, using the chain rule again, we obtain

A =
∂

∂HT
2

tr(FH2MHT
2 )︸ ︷︷ ︸

A1

+
∂

∂HT
2

tr((H2HT
2 )
−1S)︸ ︷︷ ︸

A2

, (2.24)

considering the fact that tr(AB) = tr(BA), A1 can be written as

A1 =
∂

∂HT
2

tr(MHT
2 FH2). (2.25)

From equation (107) of [100] we have

A1 = MT HT
2 FT +MHT

2 F. (2.26)

Since FT = F and MT = M, A1 can be written as

A1 = 2MHT
2 F. (2.27)

Considering equation (114) of [100], A2 will be as follows

A2 =−(HT
2 (H2HT

2 )
−1)(S+ST )(H2HT

2 )
−1, (2.28)

substituting S and using M = MT results in

A2 =−2HT
2 (H2HT

2 )
−1(H2MHT

2 )(H2HT
2 )
−1. (2.29)
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Now substituting M and F in (2.23) results in the final formulation for A as follows:

A = 2TT
2 T2HT

2 (H2HT
2 )
−1−2HT

2 (H2HT
2 )
−1H2TT

2 T2HT
2 (H2HT

2 )
−1. (2.30)

To calculate B, we assume that there is just one time step dependency, i.e., H2 depends on H1 and W
and H1 does not depend on H0 but depends on W. The generalization to an arbitrary number of time steps

is straightforward and is presented at the end of this section. From (2.22) and (2.11) we write B as

B =
∂

∂W
[σ(Wrecσ(WrecH0 +WT X1)+WT X2)], (2.31)

which is similar to the term calculated in (2.16) and therefore

B = X1[HT
1 ◦ (1−HT

1 )W
T
rec ◦HT

2 ◦ (1−HT
2 )]+X2[HT

2 ◦ (1−HT
2 )]. (2.32)

By substituting (2.30) and (2.32) in (2.22) we get the gradient formulation for one time step dependency as

follows:
∂E
∂W

=−[X1[HT
1 ◦ (1−HT

1 )W
T
rec ◦HT

2 ◦ (1−HT
2 )◦A]+X2[HT

2 ◦ (1−HT
2 )◦A]]. (2.33)

This gradient formulation can be generalized for an arbitrary number of time steps as follows:

∂E
∂W

=−[
n

∑
i=1

XiCi], (2.34)

where n is the number of time steps and

Ci = [HT
i ◦ (1−HT

i )W
T
rec]◦Ci+1 , f or i = 1, . . . ,n−1

Cn = HT
n ◦ (1−HT

n )◦A.
(2.35)

To calculate A using (2.30), Hn and Tn are used.

After calculating the gradient of the cost function w.r.t W, the input weights W are updated using the

following update equation

Wi+1 = Wi−α
∂E

∂Wi
+β (Wi−Wi−1), (2.36)

where α is the step size and

β =
mold

mnew

mnew =
1+
√

1+4m2
old

2
,

(2.37)

and where the initial value for mold and mnew is 1. The third term in (2.36) helps the algorithm to converge

faster and is based on the FISTA algorithm proposed in [11] and used in [130].
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2.4 Learning the Recurrent Weight Matrix (Wrec) in the ESN
To learn the recurrent weights, the gradient of the cost function w.r.t Wrec should be calculated. We first

derive the formulation for the two time steps dependency, i.e., H2 depends on H1 and H1 depends on H0

but no more time dependencies. Then it will be generalized to the arbitrary number of time steps. The same

method that is used in section 2.3 can be used to get the following formulation for the gradient:

∂E
∂Wrec

=−[ ∂

∂Wrec
H2︸ ︷︷ ︸

B

][
∂

∂HT
2

tr((H2HT
2 )
−1H2TT

2 T2HT
2 )︸ ︷︷ ︸

A

], (2.38)

where A will be the same as (2.30). To calculate B we have

B =
∂

∂Wrec
[σ(Wrecσ(WrecH0 +WT X1)+WT X2)]

= [
∂

∂Wrec
[Wrec σ(WrecH0 +WT X1)︸ ︷︷ ︸

H1

+WT X2]]HT
2 ◦ (1−HT

2 )

= [H1 +Wrec H0[HT
1 ◦ (1−HT

1 )]︸ ︷︷ ︸
∂H1

∂Wrec

]HT
2 ◦ (1−HT

2 )

, (2.39)

and therefore the gradient will be:

∂E
∂Wrec

= H1[HT
2 ◦ (1−HT

2 )◦A]+WrecH0[HT
1 ◦ (1−HT

1 )◦ (HT
2 ◦ (1−HT

2 )◦A)]. (2.40)

It can be generalized for arbitrary number of time steps as follows:

∂E
∂Wrec

=
n

∑
i=1

Wn−i
rec Hi−1Ci, (2.41)

where H0 includes the initial hidden states and

Cn = HT
n ◦ (1−HT

n )◦A

Ci = HT
i ◦ (1−HT

i )◦Ci+1,
(2.42)

and A is calculated using (2.30) based on Hn and Tn.

Only the non-zero entries of the sparse matrix Wrec are updated using (2.36) and the gradient calculated

in (2.41). To make sure that the network has the echo state property after each epoch, the entries of Wrec

are renormalized such that the maximum eigenvalue of Wrec is λ that is predetermined in (2.3). This

renormalization also prevents the gradient explosion problem for recurrent weights from happening.

A summary of the learning method is as follows:

• The echo state network with predetermined maximum eigenvalue of Wrec is constructed based on the

explanations presented in section 2.2.
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Figure 2.2: Illustration of an R-DSN architecture with three modules shown with different colors

• Input weights matrix W is updated based on (2.34), (2.35), (2.36) and (2.37).

• Non-zero entries of the sparse recurrent weights matrix Wrec are updated based on (2.41), (2.42),

(2.36) for Wrec and (2.37).

• Updated Wrec is renormalized to have the predetermined maximum eigenvalue λ .

• The forward pass is repeated with the updated input and recurrent weights to find the hidden states.

The network runs freely for itrans time steps and then the hidden states are recorded as matrix H.

• Taking into account the direct connections from the input to output in the network, the output weight

matrix U is calculated using (2.9).

To prevent the value of the gradient w.r.t W from exploding, we use a similar approach proposed in [98]

where the gradient value is renormalized when it is greater than a threshold.

2.5 Learning the Recurrent Deep Stacking Network
The RNN described in the preceding section can be stacked into multiple modules. The architecture of a

R-DSN with three modules is shown in Fig. 2.2. In the R-DSN, the output of each module is part of the

input of the upper module. Therefore, the dimensionality of the input of the upper modules is more than

that of the lower modules. In this work, we have not used RBM or temporal RBM [114] to initialize the
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weights of the lowest module. Instead, we have used random initialization. The only constraint is that Wrec

be initialized such that echo state property holds; i.e., the maximum eigenvalue of Wrec is kept less than 4.

The training method we have implemented for the two modules of architecture in Fig. 2.2 is as follows:

• Training the first (i.e the lowest) module:

– Input and recurrent weights are initialized using an ESN architecture

– Hidden units’ states H(1)
i , i = 1, . . . ,m are calculated using (2.11)

– The method described in previous sections is used to compute gradients of the cost function w.r.t. W(1) and W(1)
rec

– W(1) and W(1)
rec are updated using (2.36) and (2.37)

– Entries of Wrec are renormalized such that the network has the echo state property using (2.3)

– U(1) is calculated using (2.8)

• Training the second module:

– Input weights corresponding to output of the first module W(2)
a are initialized randomly (Ra in Fig. 2.2) and input

weights corresponding to the input training data are initialized to the fine tuned input weights from the previous
module (W(1) in Fig. 2.2)

– Recurrent weights W(2)
rec are initialized with a random sparse matrix whose sparsity pattern is different from that of

the previous module(R(2)
rec in Fig. 2.2)

– Entries of W(2)
rec are normalized such that the echo state property holds

– All weights are fine tuned using the method described for the first module

To resolve the exploding gradient problem for input weights we have used the renormalization method

proposed in [99].

All modules higher than two in the R-DSN are trained in a similar way to the second step above. The

number of epochs used in training all modules are carefully tuned to provide regularization via the “early

stopping” mechanism.

2.6 Experiments
We carried out the experiments for frame-level classification of phoneme states on the TIMIT dataset using

an ESN with all parameters learned as discussed so far. The training data includes 1,124,589 frames. The

validation set has 122,488 frames from 50 speakers. The results are reported using the core test set consisting

of 192 sentences and 57,920 frames. The speech is analysed using the standard Mel Frequency Cepstral

Coefficients (MFCC). Each feature vector has 39 entries, including first and second derivatives. We have

used 3 states for each of 61 phonemes resulting in a target class vector with 183 entries. phoneme state

labels are extracted using a GMM-HMM system which aligns the frames with their corresponding states.

We have used a context window of 3 frames for all experiments resulting in the input vectors with

3×39 = 117 entries. The regularization parameter µ used in (2.9) is set to 10−8. The maximum eigenvalue

of Wrec is set to 3.9. We have used a step size (α in (2.36)) of 0.07. The task is to classify each frame in

the TIMIT core test set into one of 183 phoneme states. The results are presented in Table 2.1 for different

hidden layer sizes in the ESN, one for each row in the table. The results are also arranged by four different

24



ways of learning the input and recurrent weigh matrices W and Wrec, where m is the number of time steps

in incorporating matrices’ dependencies in the learning. The column of “ESN” refers to the traditional ESN

as in [66, 67, 69, 118] where W and Wrec are not learned.

Table 2.1: Frame-level phoneme-state classification error rates for the TIMIT core test set

Hidden units ESN Learning W Learning W and Wrec Learning W and Wrec

with m = 1 with m = 1 with m = 3
100 75.5% 66.7% 64.0 % 63.2%
500 70.1% 59.8% 57.5% 56.8%
2000 63.8% 54.2% 52.7% 52.1%
10000 57.1% 49.5% 48.0% 46.8%
30000 53.3% 45.9% 44.5% 43.0%

The set of results for the various R-DSNs with the hidden layer sizes of 4000 and 10000 and with the

stacking modules up to three are summarized in Table 2.2.

The preliminary experimental results shown in Table 2.1 and 2.2 verify that learning input and recurrent

weight matrices in the ESN is superior to the ESN with the same structure but without learning the two

matrices. Furthermore, the longer the time steps are incorporated in the learning, the lower error rates are.

On the column of “ESN” in Table 2.1, we also observe that the traditional ESN improves its performance

as the number of hidden units increases, consistent with the findings reported in [118]. Also stacking more

layers improves the performance as observed in Table 2.2. Finally, we would like to remark that the results

obtained so far are very preliminary, and the task is on frame-level classification of 183 phoneme states. Our

first step of research is focused on this easiest task since it is a pure and simple machine learning problem

and it requires no expertise in speech recognition. The next steps are to move 1) from 183-state classification

to 39-phoneme classification; 2) from frame level to segment level (which requires dynamic programming

over three states of each phoneme); and 3) from classification (with no phoneme insertion and deletion

errors) to recognition (with phoneme insertion and deletion errors).

2.7 Conclusions
The first idea of this chapter is straightforward: the traditional ESN learns only one of three important sets

of weight matrices, and we want to learn them all. The key property that characterizes the ESN is the use of

linear output units so that the learning is simple, convex and forms a least-square ridge regression problem

with a global optimum (in learning the output weights). In extending the learning of the output weights

to only learning input and recurrent weights, we make use of the same property of linear output units to

develop and formulate constraints among various sets of ESN weight matrices. Such constraints are then

used to derive analytic forms of the error gradients w.r.t the input and recurrent weights to be learned. The

standard learning method of BPTT for the general RNN (with typically nonlinear output units) does not

admit analytical forms of gradient computation. BPTT requires recursively propagating the error signal

backward through time, a very different style of computation and learning than what we have developed in
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Table 2.2: Frame level phoneme classification error rates for the R-DSN on the TIMIT core test set as
a function of the number of modules for the fixed 4000 or 10000 neurons in the hidden layer

Hidden Modules Learning W and Wrec Learning W and Wrec

Units in R-DSN with m = 1 with m = 3

4000 1 50.5% 50.0%

4000 2 49.9% 49.5%

4000 3 49.5% 49.1%

10000 1 48.0% 46.8%

10000 2 47.2% 46.0%

10000 3 47.0% 45.7%

this work for ESNs.

The second idea of this chapter is also straightforward: a novel deep learning architecture, the R-DSN,

which extends the earlier RNN and DSN models. The R-DSN constructs multiple modules of the RNN

using stacking, in the same way that the DSN uses stacking to form multiple modules of a simple, non-

recurrent feed-forward neural network. Alternatively, the R-DSN can be viewed as a generalization of the

DSN, where the generalization lies in embedding recurrent connections in each module that were missing

in the earlier DSN. The main technical contribution of the work reported in this part is the development of

closed-from formulas for the gradient computation based on the special structure of the R-DSN, and the

batch-mode training method for all parameters in the R-DSN capitalizing on these formulas.
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Chapter 3

A Sentence Modelling Method for Web
Search Task

In theory, there is no difference between theory and practice. But, in practice, there is!
— Jan. L. A. van de Snepscheut

3.1 Introduction
Learning a good representation (or features) of input data is an important task in machine learning. In text

and language processing, one such problem is learning of an embedding vector for a sentence; that is, to train

a model that can automatically transform a sentence to a vector that encodes the semantic meaning of the

sentence. While word embedding is learned using a loss function defined on word pairs, sentence embedding

is learned using a loss function defined on sentence pairs. In the sentence embedding usually the relationship

among words in the sentence, i.e., the context information, is taken into consideration. Therefore, sentence

embedding is more suitable for tasks that require computing semantic similarities between text strings.

By mapping texts into a unified semantic representation, the embedding vector can be further used for

different language processing applications, such as machine translation [116], sentiment analysis [77], and

information retrieval [65]. In machine translation, the recurrent neural networks (RNN) with Long Short-

Term Memory (LSTM) cells, or the LSTM-RNN, is used to encode an English sentence into a vector, which

contains the semantic meaning of the input sentence, and then another LSTM-RNN is used to generate a

French (or another target language) sentence from the vector. The model is trained to best predict the output

sentence. In [77], a paragraph vector is learned in an unsupervised manner as a distributed representation

of sentences and documents, which are then used for sentiment analysis. Sentence embedding can also be

applied to information retrieval, where the contextual information are properly represented by the vectors in

the same space for fuzzy text matching [65].

In this chapter, we propose to use an RNN to sequentially accept each word in a sentence and recurrently

map it into a latent space together with the historical information. As the RNN reaches the last word in the

sentence, the hidden activations form a natural embedding vector for the contextual information of the

sentence. We further incorporate the LSTM cells into the RNN model (i.e. the LSTM-RNN) to address the
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difficulty of learning long term memory in RNN. The learning of such a model is performed in a weakly

supervised manner on the click-through data logged by a commercial web search engine. Although manually

labelled data are insufficient in machine learning, logged data with limited feedback signals are massively

available due to the widely used commercial web search engines. Limited feedback information such as

click-through data provides a weak supervision signal that indicates the semantic similarity between the

text on the query side and the clicked text on the document side. To exploit such a signal, the objective

of our training is to maximize the similarity between the two vectors mapped by the LSTM-RNN from the

query and the clicked document, respectively. Consequently, the learned embedding vectors of the query

and clicked document are specifically useful for web document retrieval task.

An important contribution of this chapter is to analyse the embedding process of the LSTM-RNN by

visualizing the internal activation behaviours in response to different text inputs. We show that the embed-

ding process of the learned LSTM-RNN effectively detects the keywords, while attenuating less important

words, in the sentence automatically by switching on and off the gates within the LSTM-RNN cells. We

further show that different cells in the learned model indeed correspond to different topics, and the keywords

associated with a similar topic activate the same cell unit in the model. As the LSTM-RNN reads to the end

of the sentence, the topic activation accumulates and the hidden vector at the last word encodes the rich

contextual information of the entire sentence. For this reason, a natural application of sentence embedding

is web search ranking, in which the embedding vector from the query can be used to match the embedding

vectors of the candidate documents according to the maximum cosine similarity rule. Evaluated on a real

web document ranking task, our proposed method significantly outperforms many of the existing state of

the art methods in NDCG scores. Please note that when we refer to document in this chapter we mean the

title (headline) of the document.

3.2 Related Work
Inspired by the word embedding method [87, 89], the authors in [77] proposed an unsupervised learning

method to learn a paragraph vector as a distributed representation of sentences and documents, which are

then used for sentiment analysis with superior performance. However, the model is not designed to capture

the fine-grained sentence structure. In [75], an unsupervised sentence embedding method is proposed with

great performance on large corpus of contiguous text corpus, e.g., the BookCorpus [135]. The main idea

is to encode the sentence s(t) and then decode previous and next sentences, i.e., s(t − 1) and s(t + 1),

using two separate decoders. The encoder and decoders are RNNs with Gated Recurrent Unit (GRU) [18].

However, this sentence embedding method is not designed for document retrieval task having a supervision

among queries and clicked and unclicked documents. In [111], a Semi-Supervised Recursive Autoencoder

(RAE) is proposed and used for sentiment prediction. Similar to our proposed method, it does not need

any language specific sentiment parsers. A greedy approximation method is proposed to construct a tree

structure for the input sentence. It assigns a vector per word. It can become practically problematic for large

vocabularies. It also works both on unlabeled data and supervised sentiment data.

Similar to the recurrent models in this chapter, the DSSM [65] and CLSM [108] models, developed for

information retrieval, can also be interpreted as sentence embedding methods. However, DSSM treats the
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input sentence as a bag-of-words and does not model word dependencies explicitly. CLSM treats a sentence

as a bag of n-grams, where n is defined by a window, and can capture local word dependencies. Then a

Max-pooling layer is used to form a global feature vector. Methods in [19] are also convolutional based

networks for Natural Language Processing (NLP). These models, by design, cannot capture long distance

dependencies, i.e., dependencies among words belonging to non-overlapping n-grams. In [73] a Dynamic

Convolutional Neural Network (DCNN) is proposed for sentence embedding. Similar to CLSM, DCNN does

not rely on a parse tree and is easily applicable to any language. However, different from CLSM where a

regular max-pooling is used, in DCNN a dynamic k-max-pooling is used. This means that instead of just

keeping the largest entries among word vectors in one vector, k largest entries are kept in k different vectors.

DCNN has shown good performance in sentiment prediction and question type classification tasks. In [64],

a convolutional neural network architecture is proposed for sentence matching. It has shown great perfor-

mance in several matching tasks. In [132], a Bilingually-constrained Recursive Auto-encoders (BRAE) is

proposed to create semantic vector representation for phrases. Through experiments it is shown that the

proposed method has great performance in two end-to-end SMT tasks.

Long short-term memory networks were developed in [62] to address the difficulty of capturing long

term memory in RNN. It has been successfully applied to speech recognition, which achieves state-of-art

performance [50, 107]. In text analysis, LSTM-RNN treats a sentence as a sequence of words with internal

structures, i.e., word dependencies. It encodes a semantic vector of a sentence incrementally which differs

from DSSM and CLSM. The encoding process is performed left-to-right, word-by-word. At each time

step, a new word is encoded into the semantic vector, and the word dependencies embedded in the vector

are “updated”. When the process reaches the end of the sentence, the semantic vector has embedded all the

words and their dependencies, hence, can be viewed as a feature vector representation of the whole sentence.

In the machine translation work [116], an input English sentence is converted into a vector representation

using LSTM-RNN, and then another LSTM-RNN is used to generate an output French sentence. The model

is trained to maximize the probability of predicting the correct output sentence. In [53], there are two main

composition models, ADD model that is bag of words and BI model that is a summation over bi-gram pairs

plus a non-linearity. In our proposed model, instead of simple summation, we have used LSTM model with

letter tri-grams which keeps valuable information over long intervals (for long sentences) and throws away

useless information. In [8], an encoder-decoder approach is proposed to jointly learn to align and translate

sentences from English to French using RNNs. The concept of “attention” in the decoder, discussed in this

paper, is closely related to how our proposed model extracts keywords in the document side. For further

explanations please see section 3.5.1. In [74] a set of visualizations are presented for RNNs with and without

LSTM cells and GRUs. Different from our work where the target task is sentence embedding for document

retrieval, the target tasks in [74] were character level sequence modelling for text characters and source

codes. Interesting observations about interpretability of some LSTM cells and statistics of gates activations

are presented. In section 3.5.1 we show that some of the results of our visualization are consistent with the

observations reported in [74]. We also present more detailed visualization specific to the document retrieval

task using click-through data. We also present visualizations about how our proposed model can be used for

keyword detection.
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Different from the aforementioned studies, the method developed in this chapter trains the model so

that sentences that are paraphrase of each other are close in their semantic embedding vectors — see the

description in Sec. 3.4 further ahead. Another reason that LSTM-RNN is particularly effective for sentence

embedding, is its robustness to noise. For example, in the web document ranking task, the noise comes from

two sources: (i) Not every word in query / document is equally important, and we only want to “remember”

salient words using the limited “memory”. (ii) A word or phrase that is important to a document may not

be relevant to a given query, and we only want to “remember” related words that are useful to compute the

relevance of the document for a given query. We will illustrate robustness of LSTM-RNN in this chapter. The

structure of LSTM-RNN will also circumvent the serious limitation of using a fixed window size in CLSM.

Our experiments show that this difference leads to significantly better results in web document retrieval

task. Furthermore, it has other advantages. It allows us to capture keywords and key topics effectively. The

models in this chapter also do not need the extra max-pooling layer, as required by the CLSM, to capture

global contextual information and they do so more effectively.

3.3 Sentence Embedding Using RNNs with and without LSTM Cells
In this section, we introduce the model of recurrent neural networks and its long short-term memory version

for learning the sentence embedding vectors. We start with the basic RNN and then proceed to LSTM-RNN.

3.3.1 The Basic Version of RNN

The RNN is a type of deep neural networks that are “deep” in temporal dimension and it has been used

extensively in time sequence modelling [13, 17, 25, 28, 36, 49, 84, 85, 103]. The main idea of using RNN

for sentence embedding is to find a dense and low dimensional semantic representation by sequentially and

recurrently processing each word in a sentence and mapping it into a low dimensional vector. In this model,

the global contextual features of the whole text will be in the semantic representation of the last word in the

text sequence — see Figure 3.1, where x(t) is the t-th word, coded as a 1-hot vector, Wh is a fixed hashing

operator similar to the one used in [65] that converts the word vector to a letter tri-gram vector, W is the

input weight matrix, Wrec is the recurrent weight matrix, y(t) is the hidden activation vector of the RNN,

which can be used as a semantic representation of the t-th word, and y(t) associated to the last word x(m) is

the semantic representation vector of the entire sentence. Note that this is very different from the approach

in [65] where the bag-of-words representation is used for the whole text and no context information is used.

This is also different from [108] where the sliding window of a fixed size (akin to an FIR filter) is used to

capture local features and a max-pooling layer on the top to capture global features. In the RNN there is

neither a fixed-sized window nor a max-pooling layer; rather the recurrence is used to capture the context

information in the sequence (akin to an IIR filter).

The mathematical formulation of the above RNN model for sentence embedding can be expressed as

l(t) = Whx(t)

y(t) = f(Wl(t)+Wrecy(t−1)+b), (3.1)
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𝒍(2) 𝒍(1) 𝒍(𝑚) 

Figure 3.1: The basic architecture of the RNN for sentence embedding, where temporal recurrence is
used to model the contextual information across words in the text string. The hidden activation
vector corresponding to the last word is the sentence embedding vector (blue).

where W and Wrec are the input and recurrent matrices to be learned, Wh is a fixed word hashing operator,

b is the bias vector and f (·) is assumed to be tanh(·). Note that the architecture proposed here for sentence

embedding is slightly different from traditional RNN in that there is a word hashing layer that convert the

high dimensional input into a relatively lower dimensional letter tri-gram representation. There is also no

per word supervision during training, instead, the whole sentence has a label. This is explained in more

detail in section 3.4.

3.3.2 The RNN with LSTM Cells

Although RNN performs the transformation from the sentence to a vector in a principled manner, it is

generally difficult to learn the long term dependency within the sequence due to vanishing gradients problem.

One of the effective solutions for this problem in RNNs is using memory cells instead of neurons originally

proposed in [62] as Long Short-Term Memory (LSTM) and completed in [45] and [46] by adding forget

gate and peephole connections to the architecture.

We use the architecture of LSTM illustrated in Fig. 3.2 for the proposed sentence embedding method.

31



LSTM 

𝒓(𝑡) 

𝑾3 

𝒓(𝑡) 

𝑾4 

𝒓(𝑡) 

𝑾2 

𝒓(𝑡) 

𝑾1 

𝑔(. ) 

𝜎(. ) 𝜎(. ) Input Gate Output Gate 

𝜎(. ) Forget Gate 

Cell × 

𝒚𝑔(𝑡) 

𝒊(𝑡) 

𝒇(𝑡) 

𝒄(𝑡 − 1) × 

ℎ(. ) 

× 

𝒄(𝑡) 

𝒐(𝑡) 

𝒗(𝑡) 

𝒄(𝑡 − 1) 

𝑾𝑝2 

𝑾𝑝3 𝑾𝑝1 𝒗(𝑡 − 1) 

𝑾𝑟𝑒𝑐4 

𝟏 

𝒃4 

𝒗(𝑡 − 1) 𝟏 

𝑾𝑟𝑒𝑐3 𝒃3 

𝟏 

𝒃1 
𝑾𝑟𝑒𝑐1 

𝒗(𝑡 − 1) 

𝟏 

𝒃2 

𝒗(𝑡 − 1) 

𝑾𝑟𝑒𝑐2 

Figure 3.2: The basic LSTM architecture used for sentence embedding

In this figure, i(t), f(t) ,o(t) ,c(t) are input gate, forget gate, output gate and cell state vector respectively,

Wp1, Wp2 and Wp3 are peephole connections, Wi, Wreci and bi, i= 1,2,3,4 are input connections, recurrent

connections and bias values, respectively, g(·) and h(·) are tanh(·) function and σ(·) is the sigmoid function.

We use this architecture to find y for each word, then use the y(m) corresponding to the last word in the

sentence as the semantic vector for the entire sentence.

Considering Fig. 3.2, the forward pass for LSTM-RNN model is as follows:

yg(t) = g(W4l(t)+Wrec4y(t−1)+b4)

i(t) = σ(W3l(t)+Wrec3y(t−1)+Wp3c(t−1)+b3)

f(t) = σ(W2l(t)+Wrec2y(t−1)+Wp2c(t−1)+b2)

c(t) = f(t)◦ c(t−1)+ i(t)◦yg(t)

o(t) = σ(W1l(t)+Wrec1y(t−1)+Wp1c(t)+b1)

y(t) = o(t)◦h(c(t)), (3.2)

where ◦ denotes Hadamard (element-wise) product. A diagram of the proposed model with more details is

presented in section 3.12.
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3.4 Learning Method
To learn a good semantic representation of the input sentence, our objective is to make the embedding

vectors for sentences of similar meaning as close as possible, and meanwhile, to make sentences of different

meanings as far apart as possible. This is challenging in practice since it is hard to collect a large amount

of manually labelled data that give the semantic similarity signal between different sentences. Nevertheless,

the widely used commercial web search engine is able to log massive amount of data with some limited user

feedback signals. For example, given a particular query, the click-through information about the user-clicked

document among many candidates is usually recorded and can be used as a weak (binary) supervision signal

to indicate the semantic similarity between two sentences (on the query side and the document side). In this

section, we explain how to leverage such a weak supervision signal to learn a sentence embedding vector

that achieves the aforementioned training objective. Please also note that above objective to make sentences

with similar meaning as close as possible is similar to machine translation tasks where two sentences belong

to two different languages with similar meanings and we want to make their semantic representation as close

as possible.

We now describe how to train the model to achieve the above objective using the click-through data

logged by a commercial search engine. For a complete description of the click-through data please refer

to section 2 in [41]. To begin with, we adopt the cosine similarity between the semantic vectors of two

sentences as a measure for their similarity

R(Q,D) =
yQ(TQ)

T yD(TD)

‖yQ(TQ)‖ · ‖yD(TD)‖
, (3.3)

where TQ and TD are the lengths of the sentence Q and sentence D, respectively. In the context of training

over click-through data, we will use Q and D to denote “query” and “document”, respectively. In Figure

3.3, we show the sentence embedding vectors corresponding to the query, yQ(TQ), and all the documents,

{yD+(TD+),yD−1
(TD−1

), . . . ,yD−n (TD−n )}, where the subscript D+ denotes the (clicked) positive sample among

the documents, and the subscript D−j denotes the j-th (un-clicked) negative sample. All these embedding

vectors are generated by feeding the sentences into the RNN or LSTM-RNN model described in Sec. 3.3

and take the y corresponding to the last word — see the blue box in Figure 3.1.

We want to maximize the likelihood of the clicked document given query, which can be formulated as

the following optimization problem:

L(Λ) = min
Λ

{
− log

N

∏
r=1

P(D+
r |Qr)

}
= min

Λ

N

∑
r=1

lr(Λ), (3.4)

where Λ denotes the collection of the model parameters; in regular RNN case, it includes Wrec and W in

Figure 3.1, and in LSTM-RNN case, it includes W1, W2, W3, W4, Wrec1, Wrec2, Wrec3, Wrec4, Wp1, Wp2,

Wp3, b1, b2, b3 and b4 in Figure 3.2. D+
r is the clicked document for r-th query, P(D+

r |Qr) is the probability
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Figure 3.3: The click-through signal can be used as a (binary) indication of the semantic similarity
between the sentence on the query side and the sentence on the document side. The negative
samples are randomly sampled from the training data.

of clicked document given the r-th query, N is number of query / clicked-document pairs in the corpus and

lr(Λ) =− log

(
eγR(Qr,D+

r )

eγR(Qr,D+
r )+∑

n
i= j eγR(Qr,D−r, j)

)

= log

(
1+

n

∑
j=1

e−γ·∆r, j

)
, (3.5)

where ∆r, j = R(Qr,D+
r )−R(Qr,D−r, j), R(·, ·) was defined earlier in (3.3), D−r, j is the j-th negative candidate

document for r-th query and n denotes the number of negative samples used during training.

The expression in (3.5) is a logistic loss over ∆r, j. It upper-bounds the pairwise accuracy, i.e., the 0 - 1

loss. Since the similarity measure is the cosine function, ∆r, j ∈ [−2,2]. To have a larger range for ∆r, j, we

use γ for scaling. It helps to penalize the prediction error more. Its value is set empirically by experiments

on a held out dataset.

To train the RNN and LSTM-RNN, we use Back Propagation Through Time (BPTT). The update equa-

tions for parameter Λ at epoch k are as follows:

4Λk = Λk−Λk−1

4Λk = µk−14Λk−1− εk−1∇L(Λk−1 +µk−14Λk−1), (3.6)

where ∇L(·) is the gradient of the cost function in (3.4), ε is the learning rate and µk is a momentum pa-

rameter determined by the scheduling scheme used for training. Above equations are equivalent to Nesterov

method in [93]. To see why, please refer to appendix A.1 of [115] where Nesterov method is derived as a

34



momentum method. The gradient of the cost function, ∇L(Λ), is

∇L(Λ) =−
N

∑
r=1

n

∑
j=1

T

∑
τ=0

αr, j
∂∆r, j,τ

∂Λ︸ ︷︷ ︸
one large update

, (3.7)

where T is the number of time steps that we unfold the network over time and

αr, j =
−γe−γ∆r, j

1+∑
n
j=1 e−γ∆r, j

. (3.8)

∂∆r, j,τ
∂Λ

in (3.7) and error signals for different parameters of RNN and LSTM-RNN that are necessary for

training are presented in section 3.6. Full derivation of gradients in both models is presented in section 3.9.

To accelerate training by parallelization, we use mini-batch training and one large update instead of

incremental updates during back propagation through time. To resolve the gradient explosion problem we

use gradient re-normalization method described in [85, 98]. To accelerate the convergence, we use Nesterov

method [93] and found it effective in training both RNN and LSTM-RNN for sentence embedding.

We have used a simple yet effective scheduling for µk for both RNN and LSTM-RNN models, in the first

and last 2% of all parameter updates µk = 0.9 and for the other 96% of all parameter updates µk = 0.995.

We have used a fixed step size for training RNN and a fixed step size for training LSTM-RNN.

A summary of training method for LSTM-RNN is presented in Algorithm 1.

3.5 Analysis of the Sentence Embedding Process and Performance
Evaluation

To understand how the LSTM-RNN performs sentence embedding, we use visualization tools to analyze

the semantic vectors generated by our model. We would like to answer the following questions: (i) How are

word dependencies and context information captured? (ii) How does LSTM-RNN attenuate unimportant

information and detect critical information from the input sentence? Or, how are the keywords embedded

into the semantic vector? (iii) How are the global topics identified by LSTM-RNN?

To answer these questions, we train the RNN with and without LSTM cells on the click-through dataset

which are logged by a commercial web search engine. The training method has been described in Sec. 3.4.

Description of the corpus is as follows. The training set includes 200,000 positive query / document pairs

where only the clicked signal is used as a weak supervision for training LSTM. The relevance judgement set

(test set) is constructed as follows. First, the queries are sampled from a year of search engine logs. Adult,

spam, and bot queries are all removed. Queries are de-duped so that only unique queries remain. To reflex

a natural query distribution, we do not try to control the quality of these queries. For example, in our query

sets, there are around 20% misspelled queries, and around 20% navigational queries and 10% transactional

queries, etc. Second, for each query, we collect Web documents to be judged by issuing the query to several

popular search engines (e.g., Google, Bing) and fetching top-10 retrieval results from each. Finally, the

query-document pairs are judged by a group of well-trained assessors. In this study all the queries are
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Algorithm 1 Training LSTM-RNN for Sentence Embedding
Inputs: Fixed step size “ε”, Scheduling for “µ”, Gradient clip threshold “thG”, Maximum number of Epochs “nE poch”, Total number of query
/ clicked-document pairs “N”, Total number of un-clicked (negative) documents for a given query “n”, Maximum sequence length for truncated
BPTT “T ”.
Outputs: Two trained models, one in query side “ΛQ”, one in document side “ΛD”.
Initialization: Set all parameters in ΛQ and ΛD to small random numbers, i = 0, k = 1.
procedure LSTM-RNN(ΛQ,ΛD)

while i≤ nE poch do
for “first minibatch”→ “last minibatch” do

r← 1
while r ≤ N do

for j = 1→ n do
Compute αr, j . use (3.8)

Compute ∑
T
τ=0 αr, j

∂∆r, j,τ
∂Λk,Q

. use (3.14) to (4.54) in section 3.6
Compute ∑

T
τ=0 αr, j

∂∆r, j,τ
∂Λk,D

. use (3.14) to (4.54) in section 3.6
sum above terms for Q and D over j

end for
sum above terms for Q and D over r
r← r+1

end while
Compute ∇L(Λk,Q) . use (3.7)
Compute ∇L(Λk,D) . use (3.7)
if ‖∇L(Λk,Q)‖> thG then

∇L(Λk,Q)← thG ·
∇L(Λk,Q)

‖∇L(Λk,Q)‖
end if
if ‖∇L(Λk,D)‖> thG then

∇L(Λk,D)← thG ·
∇L(Λk,D)

‖∇L(Λk,D)‖
end if
Compute4Λk,Q . use (4.13)
Compute4Λk,D . use (4.13)
Update: Λk,Q←4Λk,Q +Λk−1,Q
Update: Λk,D←4Λk,D +Λk−1,D
k← k+1

end for
i← i+1

end while
end procedure

preprocessed as follows. The text is white-space tokenized and lower-cased, numbers are retained, and no

stemming/inflection treatment is performed. Unless stated otherwise, in the experiments we used 4 negative

samples, i.e., n = 4 in Fig. 3.3.

We now proceed to perform a comprehensive analysis by visualizing the trained RNN and LSTM-RNN

models. In particular, we will visualize the on-and-off behaviors of the input gates, output gates, cell states,

and the semantic vectors in LSTM-RNN model, which reveals how the model extracts useful information

from the input sentence and embeds it properly into the semantic vector according to the topic information.

Although giving the full learning formula for all the model parameters in the previous section, we will

remove the peephole connections and the forget gate from the LSTM-RNN model in the current task. This

is because the length of each sequence, i.e., the number of words in a query or a document, is known in

advance, and we set the state of each cell to zero in the beginning of a new sequence. Therefore, forget

gates are not a great help here. Also, as long as the order of words is kept, the precise timing in the

sequence is not of great concern. Therefore, peephole connections are not that important as well. Removing

peephole connections and forget gate will also reduce the amount of training time, since a smaller number
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of parameters need to be learned.

3.5.1 Analysis

In this section we would like to examine how the information in the input sentence is sequentially extracted

and embedded into the semantic vector over time by the LSTM-RNN model.

Attenuating Unimportant Information

First, we examine the evolution of the semantic vector and how unimportant words are attenuated. Specifi-

cally, we feed the following input sentences from the test dataset into the trained LSTM-RNN model:

• Query: “hotels in shanghai”

• Document: “shanghai hotels accommodation hotel in shanghai discount and reservation”

Activations of input gate, output gate, cell state and the embedding vector for each cell for query and

document are shown in Fig. 3.4 and Fig. 3.5, respectively. The vertical axis is the cell index from 1 to 32,

and the horizontal axis is the word index from 1 to 10 numbered from left to right in a sequence of words

and color codes show activation values. From Figs.3.4–3.5, we make the following observations:

• Semantic representation y(t) and cell states c(t) are evolving over time. Valuable context information

is gradually absorbed into c(t) and y(t), so that the information in these two vectors becomes richer

over time, and the semantic information of the entire input sentence is embedded into vector y(t),
which is obtained by applying output gates to the cell states c(t).

• The input gates evolve in such a way that it attenuates the unimportant information and detects the

important information from the input sentence. For example, in Fig. 3.5(a), most of the input gate

values corresponding to word 3, word 7 and word 9 have very small values (light green-yellow color)1,

which corresponds to the words “accommodation”, “discount” and “reservation”, respectively, in

the document sentence. Interestingly, input gates reduce the effect of these three words in the final

semantic representation, y(t), such that the semantic similarity between sentences from query and

document sides are not affected by these words.

Keywords Extraction

In this section, we show how the trained LSTM-RNN extracts the important information, i.e., keywords,

from the input sentences. To this end, we backtrack semantic representations, y(t), over time. We focus on

the 10 most active cells in final semantic representation. Whenever there is a large enough change in cell

activation value (y(t)), we assume an important keyword has been detected by the model. We illustrate the

result using the above example (“hotels in shanghai”). The evolution of the 10 most active cells activation,

y(t), over time are shown in Fig. 3.6 for the query and the document sentences.2From Fig. 3.6, we also

1If this is not clearly visible, please refer to Fig. 3.8. We have adjusted color bar for all figures to have the same range, for this
reason the structure might not be clearly visible. More visualization examples could also be found in section 3.10

2Likewise, the vertical axis is the cell index and horizontal axis is the word index in the sentence.
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Figure 3.4: Query: “hotels in shanghai”. Since the sentence ends at the third word, all the values to
the right of it are zero (green color).

observe that different words activate different cells. In Tables 3.1–3.2, we show the number of cells each

word activates.3 We used Bidirectional LSTM-RNN to get the results of these tables where in the first row,

LSTM-RNN reads sentences from left to right and in the second row it reads sentences from right to left.

In these tables we labelled a word as a keyword if more than 40% of top 10 active cells in both directions

declare it as keyword. The boldface numbers in the table show that the number of cells assigned to that word

is more than 4, i.e., 40% of top 10 active cells. From the tables, we observe that the keywords activate more

cells than the unimportant words, meaning that they are selectively embedded into the semantic vector.

Topic Allocation

Now, we further show that the trained LSTM-RNN model not only detects the keywords, but also allocates

them properly to different cells according to the topics they belong to. To do this, we go through the test

3Note that before presenting the first word of the sequence, activation values are initially zero so that there is always a consid-
erable change in the cell states after presenting the first word. For this reason, we have not indicated the number of cells detecting
the first word as a keyword. Moreover, another keyword extraction example can be found in section 3.10.2.

38



 

 

2 4 6 8 10

5

10

15

20

25

30
−0.6

−0.4

−0.2

0

0.2

0.4

(a) i(t)

 

 

2 4 6 8 10

5

10

15

20

25

30
−0.6

−0.4

−0.2

0

0.2

0.4

(b) c(t)

 

 

2 4 6 8 10

5

10

15

20

25

30
−0.6

−0.4

−0.2

0

0.2

0.4

(c) o(t)

 

 

2 4 6 8 10

5

10

15

20

25

30
−0.6

−0.4

−0.2

0

0.2

0.4

(d) y(t)

Figure 3.5: Document: “shanghai hotels accommodation hotel
in shanghai discount and reservation”. Since the sentence ends at the ninth word, all the values
to the right of it are zero (green color).

Table 3.1: Key words for query: “hotels in shanghai”

Query hotels in shanghai
Number of assigned

cells out of 10
Left to Right - 0 7

Number of assigned
cells out of 10
Right to Left 6 0 -

dataset using the trained LSTM-RNN model and search for the keywords that are detected by a specific cell.

For simplicity, we use the following simple approach: for each given query we look into the keywords that

are extracted by the 5 most active cells of LSTM-RNN and list them in Table 3.3. Interestingly, each cell

collects keywords of a specific topic. For example, cell 26 in Table 3.3 extracts keywords related to the topic

“food” and cells 2 and 6 mainly focus on the keywords related to the topic “health”.
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Figure 3.6: Activation values, y(t), of 10 most active cells for Query: “hotels in shanghai” and Docu-
ment: “shanghai hotels accommodation hotel in shanghai discount and reservation”

Table 3.2: Key words for document: “shanghai hotels accommodation hotel in shanghai discount and
reservation”

shanghai hotels accommodation hotel in shanghai discount and reservation
Number of assigned

cells out of 10
Left to Right - 4 3 8 1 8 5 3 4

Number of assigned
cells out of 10
Right to Left 4 6 5 4 5 1 7 5 -

3.5.2 Performance Evaluation

Web Document Retrieval Task

In this section, we apply the proposed sentence embedding method to an important web document retrieval

task for a commercial web search engine. Specifically, the RNN models (with and without LSTM cells)

embed the sentences from the query and the document sides into their corresponding semantic vectors, and

then compute the cosine similarity between these vectors to measure the semantic similarity between the

query and candidate documents.

Experimental results for this task are shown in Table 3.4 using the standard metric mean Normalized

Discounted Cumulative Gain (NDCG) [70] (the higher the better) for evaluating the ranking performance of

the RNN and LSTM-RNN on a standalone human-rated test dataset. We also trained several strong base-

lines, such as DSSM [65] and CLSM [108], on the same training dataset and evaluated their performance

on the same task. For fair comparison, our proposed RNN and LSTM-RNN models are trained with the

same number of parameters as the DSSM and CLSM models (14.4M parameters). Besides, we also include

in Table 3.4 two well-known information retrieval (IR) models, BM25 and PLSA, for the sake of bench-

marking. The BM25 model uses the bag-of-words representation for queries and documents, which is a

state-of-the-art document ranking model based on term matching, widely used as a baseline in IR society.
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Table 3.3: Keywords assigned to each cell of LSTM-RNN for different queries of two topics, “food”
represented by green color and “health” represented by red color

Query cell 1 cell 2 cell 3 cell 4 cell 5 cell 6 cell 7 cell 8 cell 9 cell 10 cell 11 cell 12 cell 13 cell 14 cell 15 cell 16
al yo yo sauce yo sauce sauce

atkins diet lasagna diet
blender recipes

cake bakery edinburgh bakery
canning corn beef hash beef, hash

torre de pizza
famous desserts desserts

fried chicken chicken chicken
smoked turkey recipes
italian sausage hoagies sausage

do you get allergy allergy
much pain will after total knee replacement pain pain, knee

how to make whiter teeth make, teeth to
illini community hospital community, hospital hospital community

implant infection infection infection
introductory psychology psychology psychology

narcotics during pregnancy side effects pregnancy pregnancy,effects, during during
fight sinus infections infections

health insurance high blood pressure insurance blood high, blood
all antidepressant medications antidepressant, medications

Query cell 17 cell 18 cell 19 cell 20 cell 21 cell 22 cell 23 cell 24 cell 25 cell 26 cell 27 cell 28 cell 29 cell 30 cell 31 cell 32
al yo yo sauce

atkins diet lasagna diet diet
blender recipes recipes

cake bakery edinburgh bakery bakery
canning corn beef hash corn, beef

torre de pizza pizza pizza
famous desserts

fried chicken chicken
smoked turkey recipes turkey recipes
italian sausage hoagies hoagies sausage sausage

do you get allergy
much pain will after total knee replacement knee replacement

how to make whiter teeth whiter
illini community hospital hospital hospital

implant infection infection
introductory psychology psychology

narcotics during pregnancy side effects
fight sinus infections sinus, infections infections

health insurance high blood pressure high, pressure insurance,high
all antidepressant medications antidepressant medications

PLSA (Probabilistic Latent Semantic Analysis) is a topic model proposed in [63], which is trained using the

Maximum A Posterior estimation [42] on the documents side from the same training dataset. We experi-

mented with a varying number of topics from 100 to 500 for PLSA, which gives similar performance, and

we report in Table 3.4 the results of using 500 topics. Results for a language model based method, uni-gram

language model (ULM) with Dirichlet smoothing, are also presented in the table.

To compare the performance of the proposed method with general sentence embedding methods in

document retrieval task, we also performed experiments using two general sentence embedding methods.

1. In the first experiment, we used the method proposed in [77] that generates embedding vectors known

as Paragraph Vectors. It is also known as doc2vec. It maps each word to a vector and then uses the

vectors representing all words inside a context window to predict the vector representation of the next

word. The main idea in this method is to use an additional paragraph token from previous sentences

in the document inside the context window. This paragraph token is mapped to vector space using

a different matrix from the one used to map the words. A primary version of this method is known

as word2vec proposed in [88]. The only difference is that word2vec does not include the paragraph

token.

To use doc2vec on our dataset, we first trained doc2vec model on both train set (about 200,000 query-

document pairs) and test set (about 900,000 query-document pairs). This gives us an embedding

vector for every query and document in the dataset. We used the following parameters for training:

• min-count=1 : minimum number of of words per sentence, sentences with words less than this
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will be ignored. We set it to 1 to make sure we do not throw away anything.

• window=5 : fixed window size explained in [77]. We used different window sizes, it resulted in

about just 0.4% difference in final NDCG values.

• size=100 : feature vector dimension. We used 400 as well but did not get significantly different

NDCG values.

• sample=1e-4 : this is the down sampling ratio for the words that are repeated a lot in corpus.

• negative=5 : the number of noise words, i.e., words used for negative sampling as explained in

[77].

• We used 30 epochs of training. We ran an experiment with 100 epochs but did not observe much

difference in the results.

• We used gensim [101] to perform experiments.

To make sure that a meaningful model is trained, we used the trained doc2vec model to find the

most similar words to two sample words in our dataset, e.g., the words “pizza” and “infection”. The

resulting words and corresponding scores are presented in section 3.11. As it is observed from the

resulting words, the trained model is a meaningful model and can recognise semantic similarity.

Doc2vec also assigns an embedding vector for each query and document in our test set. We used these

embedding vectors to calculate the cosine similarity score between each query-document pair in the

test set. We used these scores to calculate NDCG values reported in Table 3.4 for the Doc2Vec model.

Comparing the results of doc2vec model with our proposed method for document retrieval task shows

that the proposed method in this chapter significantly outperforms doc2vec. One reason for this is that

we have used a very general sentence embedding method, doc2vec, for document retrieval task. This

experiment shows that it is not a good idea to use a general sentence embedding method and using a

better task oriented cost function, like the one proposed in this chapter, is necessary.

2. In the second experiment, we used the Skip-Thought vectors proposed in [75]. During training, skip-

thought method gets a tuple (s(t − 1),s(t),s(t + 1)) where it encodes the sentence s(t) using one

encoder, and tries to reconstruct the previous and next sentences, i.e., s(t − 1) and s(t + 1), using

two separate decoders. The model uses RNNs with Gated Recurrent Unit (GRU) which is shown to

perform as good as LSTM. In the paper, authors have emphasized that: ”Our model depends on having

a training corpus of contiguous text”. Therefore, training it on our training set where we barely have

more than one sentence in query or document title is not fair. However, since their model is trained

on 11,038 books from BookCorpus dataset [135] which includes about 74 million sentences, we can

use the trained model as an off-the-shelf sentence embedding method as authors have concluded in

the conclusion of the paper.

To do this we downloaded their trained models and word embeddings (its size was more than 2GB)

available from “https://github.com/ryankiros/skip-thoughts”. Then we encoded each query and its

corresponding document title in our test set as vector.

42

https://github.com/ryankiros/skip-thoughts


We used the combine-skip sentence embedding method, a vector of size 4800×1, where it is concate-

nation of a uni-skip, i.e., a unidirectional encoder resulting in a 2400×1 vector, and a bi-skip, i.e., a

bidirectional encoder resulting in a 1200×1 vector by forward encoder and another 1200×1 vector

by backward encoder. The authors have reported their best results with the combine-skip encoder.

Using the 4800× 1 embedding vectors for each query and document we calculated the scores and

NDCG for the whole test set which are reported in Table 3.4.

The proposed method in this chapter is performing significantly better than the off-the-shelf skip-

thought method for document retrieval task. Nevertheless, since we used skip-thought as an off-the-

shelf sentence embedding method, its result is good. This result also confirms that learning embedding

vectors using a model and cost function specifically designed for document retrieval task is necessary.

As shown in Table 3.4, the LSTM-RNN significantly outperforms all these models, and exceeds the

best baseline model (CLSM) by 1.3% in NDCG@1 score, which is a statistically significant improvement.

As we pointed out in Sec. 3.5.1, such an improvement comes from the LSTM-RNN’s ability to embed the

contextual and semantic information of the sentences into a finite dimension vector. In Table 3.4, we have

also presented the results when different number of negative samples, n, is used. Generally, by increasing

n we expect the performance to improve. This is because more negative samples results in a more accurate

approximation of the partition function in (3.5). The results of using Bidirectional LSTM-RNN are also

presented in Table 3.4. In this model, one LSTM-RNN reads queries and documents from left to right, and

the other LSTM-RNN reads queries and documents from right to left. Then the embedding vectors from left

to right and right to left LSTM-RNNs are concatenated to compute the cosine similarity score and NDCG

values.

A comparison between the value of the cost function during training for LSTM-RNN and RNN on the

click-through data is shown in Fig. 3.7. From this figure, we conclude that LSTM-RNN is optimizing

the cost function in (3.4) more effectively. Please note that all parameters of both models are initialized

randomly.

3.6 Expressions for the Gradients
In this section we present the final gradient expressions that are necessary to use for training the proposed

models. Full derivations of these gradients are presented in section 3.9.

3.6.1 RNN

For the recurrent parameters, Λ = Wrec (we have ommitted r subscript for simplicity)

∂∆ j,τ

∂Wrec
= [δ D+

yQ
(t− τ)yT

Q(t− τ−1)+

δ
D+

yD
(t− τ)yT

D+(t− τ−1)]− [δ
D−j
yQ (t− τ)yT

Q(t− τ−1)

+δ
D−j
yD (t− τ)yT

D−j
(t− τ−1)], (3.9)
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Table 3.4: Comparisons of NDCG performance measures (the higher the better) of proposed models
and a series of baseline models, where nhid refers to the number of hidden units, ncell refers to
number of cells, win refers to window size, and n is the number of negative samples which is set to
4 unless otherwise stated. Unless stated otherwise, the RNN and LSTM-RNN models are chosen
to have the same number of model parameters as the DSSM and CLSM models: 14.4M, where
1M = 106. The boldface numbers are the best results.

Model NDCG NDCG NDCG
@1 @3 @10

Skip-Thought 26.9% 29.7% 36.2%
off-the-shelf

Doc2Vec 29.1% 31.8% 38.4%
ULM 30.4% 32.7% 38.5%
BM25 30.5% 32.8% 38.8%

PLSA (T=500) 30.8% 33.7% 40.2%
DSSM (nhid = 288/96) 31.0% 34.4% 41.7%

2 Layers
CLSM (nhid = 288/96, win=1) 31.8% 35.1% 42.6%
2 Layers, 14.4 M parameters

CLSM (nhid = 288/96, win=3) 32.1% 35.2% 42.7%
2 Layers, 43.2 M parameters

CLSM (nhid = 288/96, win=5) 32.0% 35.2% 42.6%
2 Layers, 72 M parameters

RNN (nhid = 288) 31.7% 35.0% 42.3%
1 Layer

LSTM-RNN (ncell = 32) 31.9% 35.5% 42.7%
1 Layer, 4.8 M parameters
LSTM-RNN (ncell = 64) 32.9% 36.3% 43.4%

1 Layer, 9.6 M parameters
LSTM-RNN (ncell = 96) 32.6% 36.0% 43.4%

1 Layer, n = 2
LSTM-RNN (ncell = 96) 33.1% 36.5% 43.6%

1 Layer, n = 4
LSTM-RNN (ncell = 96) 33.1% 36.6% 43.6%

1 Layer, n = 6
LSTM-RNN (ncell = 96) 33.1% 36.4% 43.7%

1 Layer, n = 8
Bidirectional LSTM-RNN 33.2% 36.6% 43.6%

(ncell = 96), 1 Layer

where D−j means j-th candidate document that is not clicked and

δyQ(t− τ−1) = (1−yQ(t− τ−1))◦

(1+yQ(t− τ−1))◦WT
recδyQ(t− τ), (3.10)
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Figure 3.7: LSTM-RNN compared to RNN during training: The vertical axis is logarithmic scale of
the training cost, L(Λ), in (3.4). Horizontal axis is the number of epochs during training.

and the same as (3.10) for δyD(t− τ−1) with D subscript for document side model. Please also note that

δyQ(TQ) = (1−yQ(TQ))◦ (1+yQ(TQ))◦

(b.c.yD(TD)−a.b3.c.yQ(TQ)),

δyD(TD) = (1−yD(TD))◦ (1+yD(TD))◦

(b.c.yQ(TQ)−a.b.c3.yD(TD)), (3.11)

where

a = yQ(t = TQ)
T yD(t = TD)

b =
1

‖yQ(t = TQ)‖
, c =

1
‖yD(t = TD)‖

. (3.12)

For the input parameters, Λ = W

∂∆ j,τ

∂W
= [δ D+

yQ
(t− τ)lTQ(t− τ)+

δ
D+

yD
(t− τ)lTD+(t− τ)]−

[δ
D−j
yQ (t− τ)lTQ(t− τ)+δ

D−j
yD (t− τ)lTD−j (t− τ)]. (3.13)

A full derivation of BPTT for RNN is presented in section 3.9.
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3.6.2 LSTM-RNN

Starting with the cost function in (3.4), we use the Nesterov method described in (4.13) to update LSTM-

RNN model parameters. Here, Λ is one of the weight matrices or bias vectors {W1,W2,W3,W4,Wrec1,Wrec2,Wrec3,Wrec4

,Wp1,Wp2,Wp3,b1,b2,b3,b4} in the LSTM-RNN architecture. The general format of the gradient of the

cost function, ∇L(Λ), is the same as (3.7). By definition of ∆r, j, we have

∂∆r, j

∂Λ
=

∂R(Qr,D+
r )

∂Λ
−

∂R(Qr,Dr, j)

∂Λ
. (3.14)

We omit r and j subscripts for simplicity and present ∂R(Q,D)
∂Λ

for different parameters of each cell of LSTM-

RNN in the following subsections. This will complete the process of calculating ∇L(Λ) in (3.7) and then

we can use (4.13) to update LSTM-RNN model parameters. In the subsequent subsections vectors vQ and

vD are defined as

vQ = (b.c.yD(t = TD)−a.b3.c.yQ(t = TQ))

vD = (b.c.yQ(t = TQ)−a.b.c3.yD(t = TD)), (3.15)

where a, b and c are defined in (3.12). Full derivation of truncated BPTT for LSTM-RNN model is presented

in section 3.9.

Output Gate

For recurrent connections we have

∂R(Q,D)

∂Wrec1
= δ

rec1
yQ

(t).yQ(t−1)T +δ
rec1
yD

(t).yD(t−1)T , (3.16)

where

δ
rec1
yQ

(t) = oQ(t)◦ (1−oQ(t))◦h(cQ(t))◦vQ(t), (3.17)

and the same as (4.27) for δ rec1
yD

(t) with subscript D for document side model. For input connections, W1,

and peephole connections, Wp1, we will have

∂R(Q,D)

∂W1
= δ

rec1
yQ

(t).lQ(t)T +δ
rec1
yD

(t).lD(t)T . (3.18)

∂R(Q,D)

∂Wp1
= δ

rec1
yQ

(t).cQ(t)T +δ
rec1
yD

(t).cD(t)T . (3.19)

The derivative for output gate bias values will be

∂R(Q,D)

∂b1
= δ

rec1
yQ

(t)+δ
rec1
yD

(t). (3.20)
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Input Gate

For the recurrent connections we have

∂R(Q,D)

∂Wrec3
=

diag(δ rec3
yQ

(t)).
∂cQ(t)
∂Wrec3

+diag(δ rec3
yD

(t)).
∂cD(t)
∂Wrec3

, (3.21)

where

δ
rec3
yQ

(t) = (1−h(cQ(t)))◦ (1+h(cQ(t)))◦oQ(t)◦vQ(t)

∂cQ(t)
∂Wrec3

= diag(fQ(t)).
∂cQ(t−1)

∂Wrec3
+bi,Q(t).yQ(t−1)T

bi,Q(t) = yg,Q(t)◦ iQ(t)◦ (1− iQ(t)). (3.22)

In equation (4.31), δ rec3
yD

(t) and ∂cD(t)
∂Wrec3

are the same as (4.32) with D subscript. For the input connections we

will have the following:

∂R(Q,D)

∂W3
=

diag(δ rec3
yQ

(t)).
∂cQ(t)
∂W3

+diag(δ rec3
yD

(t)).
∂cD(t)
∂W3

, (3.23)

where
∂cQ(t)
∂W3

= diag(fQ(t)).
∂cQ(t−1)

∂W3
+bi,Q(t).xQ(t)T . (3.24)

For the peephole connections we will have

∂R(Q,D)

∂Wp3
=

diag(δ rec3
yQ

(t)).
∂cQ(t)
∂Wp3

+diag(δ rec3
yD

(t)).
∂cD(t)
∂Wp3

, (3.25)

where
∂cQ(t)
∂Wp3

= diag(fQ(t)).
∂cQ(t−1)

∂Wp3
+bi,Q(t).cQ(t−1)T . (3.26)

For bias values, b3, we will have

∂R(Q,D)

∂b3
=

diag(δ rec3
yQ

(t)).
∂cQ(t)

∂b3
+diag(δ rec3

yD
(t)).

∂cD(t)
∂b3

, (3.27)

where
∂cQ(t)

∂b3
= diag(fQ(t)).

∂cQ(t−1)
∂b3

+bi,Q(t). (3.28)
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Forget Gate

For the recurrent connections we will have

∂R(Q,D)

∂Wrec2
=

diag(δ rec2
yQ

(t)).
∂cQ(t)
∂Wrec2

+diag(δ rec2
yD

(t)).
∂cD(t)
∂Wrec2

, (3.29)

where

δ
rec2
yQ

(t) = (1−h(cQ(t)))◦ (1+h(cQ(t)))◦oQ(t)◦vQ(t)

∂cQ(t)
∂Wrec2

= diag(fQ(t)).
∂cQ(t−1)

∂Wrec2
+b f ,Q(t).yQ(t−1)T

b f ,Q(t) = cQ(t−1)◦ fQ(t)◦ (1− fQ(t)). (3.30)

For input connections to forget gate we will have

∂R(Q,D)

∂W2
=

diag(δ rec2
yQ

(t)).
∂cQ(t)
∂W2

+diag(δ rec2
yD

(t)).
∂cD(t)
∂W2

, (3.31)

where
∂cQ(t)
∂W2

= diag(fQ(t)).
∂cQ(t−1)

∂W2
+b f ,Q(t).xQ(t)T . (3.32)

For peephole connections we have

∂R(Q,D)

∂Wp2
=

diag(δ rec2
yQ

(t)).
∂cQ(t)
∂Wp2

+diag(δ rec2
yD

(t)).
∂cD(t)
∂Wp2

, (3.33)

where
∂cQ(t)
∂Wp2

= diag(fQ(t)).
∂cQ(t−1)

∂Wp2
+b f ,Q(t).cQ(t−1)T . (3.34)

For forget gate’s bias values we will have

∂R(Q,D)

∂b2
=

diag(δ rec2
yQ

(t)).
∂cQ(t)

∂b2
+diag(δ rec2

yD
(t)).

∂cD(t)
∂b2

, (3.35)

where
∂cQ(t)

∂b2
= diag(fQ(t)).

∂cQ(t−1)
∂b3

+b f ,Q(t). (3.36)
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Input without Gating (yg(t))

For recurrent connections we will have

∂R(Q,D)

∂Wrec4
=

diag(δ rec4
yQ

(t)).
∂cQ(t)
∂Wrec4

+diag(δ rec4
yD

(t)).
∂cD(t)
∂Wrec4

, (3.37)

where

δ
rec4
yQ

(t) = (1−h(cQ(t)))◦ (1+h(cQ(t)))◦oQ(t)◦vQ(t)

∂cQ(t)
∂Wrec4

= diag(fQ(t)).
∂cQ(t−1)

∂Wrec4
+bg,Q(t).yQ(t−1)T

bg,Q(t) = iQ(t)◦ (1−yg,Q(t))◦ (1+yg,Q(t)). (3.38)

For input connection we have

∂R(Q,D)

∂W4
=

diag(δ rec4
yQ

(t)).
∂cQ(t)
∂W4

+diag(δ rec4
yD

(t)).
∂cD(t)
∂W4

, (3.39)

where
∂cQ(t)
∂W4

= diag(fQ(t)).
∂cQ(t−1)

∂W4
+bg,Q(t).xQ(t)T . (3.40)

For bias values we will have

∂R(Q,D)

∂b4
=

diag(δ rec4
yQ

(t)).
∂cQ(t)

∂b4
+diag(δ rec4

yD
(t)).

∂cD(t)
∂b4

, (3.41)

where
∂cQ(t)

∂b4
= diag(fQ(t)).

∂cQ(t−1)
∂b4

+bg,Q(t). (3.42)

Error Signal Backpropagation

Error signals are back propagated through time using following equations:

δ
rec1
Q (t−1) =

[oQ(t−1)◦ (1−oQ(t−1))◦h(cQ(t−1))]

◦WT
rec1.δ

rec1
Q (t), (3.43)
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Figure 3.8: Input gate, i(t), for Document: “shanghai hotels accommodation hotel in shanghai dis-
count and reservation”

δ
reci
Q (t−1) = [(1−h(cQ(t−1)))◦ (1+h(cQ(t−1)))

◦oQ(t−1)]◦WT
reci

.δ reci
Q (t), f or i ∈ {2,3,4}. (3.44)

3.7 A More Clear Figure for Input Gate for “hotels in shanghai” Example
In this section we present a more clear figure for part (a) of Fig. 3.5 that shows the structure of the input

gate for document side of “hotels in shanghai” example. As it is clearly visible from Fig. 3.8, the input gate

values for most of the cells corresponding to word 3, word 7 and word 9 in document side of LSTM-RNN

have very small values (light green-yellow color). These are corresponding to words “accommodation”,

“discount” and “reservation” respectively in the document title. Interestingly, input gates are trying to

reduce effect of these three words in the final representation (y(t)) because the LSTM-RNN model is trained

to maximize the similarity between query and document if they are a good match.
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Table 3.5: RNNs with & without LSTM cells for the same query: “hotels in shanghai”

hotels in shanghai
Number of assigned

cells out of 10 (LSTM-RNN) - 0 7
Number of assigned

neurons out of 10 (RNN) - 2 9

Table 3.6: RNNs with & without LSTM cells for the same Document: “shanghai hotels accommoda-
tion hotel in shanghai discount and reservation”

shanghai hotels accommodation hotel in shanghai discount and reservation
Number of assigned

cells out of 10 (LSTM-RNN) - 4 3 8 1 8 5 3 4
Number of assigned

neurons out of 10 (RNN) - 10 7 9 6 8 3 2 6

3.8 A Closer Look at RNNs with and without LSTM Cells in Web
Document Retrieval Task

In this section we further show examples to reveal the advantage of LSTM-RNN sentence embedding com-

pared to the RNN sentence embedding.

First, we compare the scores assigned by trained RNN and LSTM-RNN to our “hotels in shanghai”

example. On average, each query in our test dataset is associated with 15 web documents (URLs). Each

query / document pair has a relevance label which is human generated. These relevance labels are “Bad”,

“Fair”, “Good” and “Excellent”. This example is rated as a “Good” match in the dataset. The score for this

pair assigned by RNN is “0.8165” while the score assigned by LSTM-RNN is “0.9161”. Please note that

the score is between 0 and 1. This means that the score assigned by LSTM-RNN is more correspondent

with the human generated label.

Second, we compare the number of assigned neurons and cells to each word by RNN and LSTM-RNN

respectively. To do this, we rely on the 10 most active cells and neurons in the final semantic vectors in

both models. Results are presented in Table 3.5 and Table 3.6 for query and document respectively. An

interesting observation is that RNN sometimes assigns neurons to unimportant words, e.g., 6 neurons are

assigned to the word “in” in Table 3.6.

As another example we consider the query, “how to f ix bath tub wont turn o f f ”. This example is rated

as a “Bad” match in the dataset by human. It is good to know that the score for this pair assigned by

RNN is “0.7016” while the score assigned by LSTM-RNN is “0.5944”. This shows the score generated by

LSTM-RNN is closer to human generated label.

Number of assigned neurons and cells to each word by RNN and LSTM-RNN are presented in Table

3.7 and Table 3.8 for query and document. This is out of 10 most active neurons and cells in the semantic

vector of RNN and LSTM-RNN. Examples of RNN assigning neurons to unimportant words are 3 neurons

to the word “a” and 4 neurons to the word “you” in Table 3.8.
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Table 3.7: RNN versus LSTM-RNN for Query: “how to f ix bath tub wont turn o f f ”

how to f ix bath tub wont turn o f f
Number of assigned

cells out of 10 (LSTM-RNN) - 0 4 7 6 3 5 0
Number of assigned

neurons out of 10 (RNN) - 1 10 4 6 2 7 1

Table 3.8: RNN versus LSTM-RNN for Document: “how do you paint a bathtub and what paint
should . . . ”

how do you paint a bathtub and what paint should you . . .
Number of assigned

cells out of 10(LSTM-RNN) - 1 1 7 0 9 2 3 8 4
Number of assigned

neurons out of 10(RNN) - 1 4 4 3 7 2 5 4 7

3.9 Derivation of BPTT for RNN and LSTM-RNN
In this section we present the full derivation of the gradients for RNN and LSTM-RNN.

3.9.1 Derivation of BPTT for RNN

From (4) and (5) we have
∂L(Λ)

∂Λ
=

N

∑
r=1

∂ lr(Λ)
∂Λ

=−
N

∑
r=1

n

∑
j=1

αr, j
∂∆r, j

∂Λ
, (3.45)

where

αr, j =
−γe−γ∆r, j

1+∑
n
j=1 e−γ∆r, j

, (3.46)

and

∆r, j = R(Qr,D+
r )−R(Qr,Dr, j). (3.47)

We need to find ∂∆r, j
∂Λ

for input weights and recurrent weights. We omit r subscript for simplicity.

Recurrent Weights

∂∆ j

∂Wrec
=

∂R(Q,D+)

∂Wrec
−

∂R(Q,D−j )

∂Wrec
. (3.48)

We divide R(D,Q) into three components:

R(Q,D) = yQ(t = TQ)
T yD(t = TD)︸ ︷︷ ︸
a

.

1
‖yQ(t = TQ)‖︸ ︷︷ ︸

b

.
1

‖yD(t = TD)‖︸ ︷︷ ︸
c

, (3.49)
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then

∂R(Q,D)

∂Wrec
=

∂a
∂Wrec

.b.c︸ ︷︷ ︸
D

+a.
∂b

∂Wrec
.c︸ ︷︷ ︸

E

+

a.b.
∂c

∂Wrec︸ ︷︷ ︸
F

. (3.50)

We have

D =
∂yQ(t = TQ)

T yD(t = TD).b.c
∂Wrec

=
∂yQ(t = TQ)

T yD(t = TD).b.c
∂yQ(t = TQ)

.
∂yQ(t = TQ)

∂Wrec
+

∂yQ(t = TQ)
T yD(t = TD).b.c

∂yD(t = TD)
.
∂yD(t = TD)

∂Wrec

= yD(t = TD).b.c.
∂yQ(t = TQ)

∂Wrec
+

yQ(t = TQ).(b.c)T︸ ︷︷ ︸
b.c

.
∂yD(t = TD)

∂Wrec
. (3.51)

Since f (.) = tanh(.), using chain rule we have

∂yQ(t = TQ)

Wrec
=

[(1−yQ(t = TQ))◦ (1+yQ(t = TQ))]yQ(t−1)T , (3.52)

and therefore

D = [b.c.yD(t = TD)◦ (1−yQ(t = TQ))◦

(1+yQ(t = TQ))]yQ(t−1)T+

[b.c.yQ(t = TQ)◦ (1−yD(t = TD))◦

(1+yD(t = TD))]yD(t−1)T . (3.53)

To find E we use following basic rule

∂

∂x
‖x−a‖2 =

x−a
‖x−a‖2

. (3.54)
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Therefore

E = a.c.
∂

∂Wrec
(‖yQ(t = TQ)‖)−1 =

−a.c.(‖yQ(t = TQ)‖)−2.
∂‖yQ(t = TQ)‖

∂Wrec

=−a.c.(‖yQ(t = TQ)‖)−2.
yQ(t = TQ)

‖yQ(t = TQ)‖
∂yQ(t = TQ)

∂Wrec

=−[a.c.b3.yQ(t = TQ)◦ (1−yQ(t = TQ))◦

(1+yQ(t = TQ))]yQ(t−1), (3.55)

where F is calculated similar to (3.55):

F =−[a.b.c3.yD(t = TD)◦ (1−yD(t = TD))◦

(1+yD(t = TD))]yD(t−1). (3.56)

Considering (3.50),(3.53),(3.55) and (3.56) we have

∂R(Q,D)

∂Wrec
= δyQ(t)yQ(t−1)T +δyD(t)yD(t−1)T , (3.57)

where

δyQ(t = TQ) = (1−yQ(t = TQ))◦ (1+yQ(t = TQ))◦

(b.c.yD(t = TD)−a.b3.c.yQ(t = TQ)),

δyD(t = TD) = (1−yD(t = TD))◦ (1+yD(t = TD))◦

(b.c.yQ(t = TQ)−a.b.c3.yD(t = TD)). (3.58)

Equation (3.58) will just unfold the network one time step, to unfold it over rest of time steps using back-

propagation we have

δyQ(t− τ−1) = (1−yQ(t− τ−1))◦

(1+yQ(t− τ−1))◦WT
recδyQ(t− τ),

δyD(t− τ−1) = (1−yD(t− τ−1))◦

(1+yD(t− τ−1))◦WT
recδyD(t− τ), (3.59)
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where τ is the number of time steps that we unfold the network over time which is from 0 to TQ and TD for

queries and documents respectively. Now using (3.48) we have

∂∆ j,τ

∂Wrec
= [δ D+

yQ
(t− τ)yT

Q(t− τ−1)+

δ
D+

yD
(t− τ)yT

D+(t− τ−1)]− [δ
D−j
yQ (t− τ)yT

Q(t− τ−1)

+δ
D−j
yD (t− τ)yT

D−j
(t− τ−1)]. (3.60)

To calculate final value of gradient we should fold back the network over time and use (3.45), we will have

∂L(Λ)
∂Wrec

=−
N

∑
r=1

n

∑
j=1

T

∑
τ=0

αr, j,TD,Q

∂∆r, j,τ

∂Wrec︸ ︷︷ ︸
one large update

. (3.61)

Input Weights

Using a similar procedure we will have the following for input weights:

∂R(Q,D)

∂W
= δyQ(t− τ)lQ(t− τ)T +δyD(t− τ)lD(t− τ)T , (3.62)

where

δyQ(t− τ) = (1−yQ(t− τ))◦ (1+yQ(t− τ))◦

(b.c.yD(t− τ)−a.b3.c.yQ(t− τ)),

δyD(t− τ) = (1−yD(t− τ))◦ (1+yD(t− τ))◦

(b.c.yQ(t− τ)−a.b.c3.yD(t− τ)). (3.63)

Therefore

∂∆ j,τ

∂W
=

[δ D+

yQ
(t− τ)lTQ(t− τ)+δ

D+

yD
(t− τ)lTD+(t− τ)]−

[δ
D−j
yQ (t− τ)lTQ(t− τ)+δ

D−j
yD (t− τ)lTD−j (t− τ)], (3.64)

and therefore
∂L(Λ)

∂W
=−

N

∑
r=1

n

∑
j=1

T

∑
τ=0

αr, j
∂∆r, j,τ

∂W︸ ︷︷ ︸
one large update

. (3.65)
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3.9.2 Derivation of BPTT for LSTM-RNN

Following from (3.50) for every parameter, Λ, in LSTM-RNN architecture we have

∂R(Q,D)

∂Λ
=

∂a
∂Λ

.b.c︸ ︷︷ ︸
D

+a.
∂b
∂Λ

.c︸ ︷︷ ︸
E

+a.b.
∂c
∂Λ︸ ︷︷ ︸

F

, (3.66)

and from (3.51)

D = yD(t = TD).b.c.
∂yQ(t = TQ)

∂Λ
+

yQ(t = TQ).b.c.
∂yD(t = TD)

∂Λ
. (3.67)

From (3.55) and (3.56) we have

E =−a.c.b3.yQ(t = TQ)
∂yQ(t = TQ)

∂Λ
, (3.68)

F =−a.b.c3.yD(t = TD)
∂yD(t = TD)

∂Λ
. (3.69)

Therefore

∂R(Q,D)

∂Λ
= D+E+F =

vQ
∂yQ(t = TQ)

∂Λ
+vD

∂yD(t = TD)

∂Λ
, (3.70)

where

vQ = (b.c.yD(t = TD)−a.b3.c.yQ(t = TQ))

vD = (b.c.yQ(t = TQ)−a.b.c3.yD(t = TD)). (3.71)

Output Gate

Since α ◦β = diag(α)β = diag(β )α where diag(α) is a diagonal matrix whose main diagonal entries are

entries of vector α , we have

∂y(t)
∂Wrec1

=
∂

∂Wrec1
(diag(h(c(t))).o(t))

=
∂diag(h(c(t)))

∂Wrec1︸ ︷︷ ︸
zero

.o(t)+diag(h(c(t))).
∂o(t)

∂Wrec1

= o(t)◦ (1−o(t))◦h(c(t)).y(t−1)T . (3.72)
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Substituting (3.72) in (3.70) we have

∂R(Q,D)

∂Wrec1
= δ

rec1
yQ

(t).yQ(t−1)T +δ
rec1
yD

(t).yD(t−1)T , (3.73)

where

δ
rec1
yQ

(t) = oQ(t)◦ (1−oQ(t))◦h(cQ(t))◦vQ(t)

δ
rec1
yD

(t) = oD(t)◦ (1−oD(t))◦h(cD(t))◦vD(t), (3.74)

with a similar derivation for W1 and Wp1 we get

∂R(Q,D)

∂W1
= δ

rec1
yQ

(t).lQ(t)T +δ
rec1
yD

(t).lD(t)T , (3.75)

∂R(Q,D)

∂Wp1
= δ

rec1
yQ

(t).cQ(t)T +δ
rec1
yD

(t).cD(t)T . (3.76)

For output gate bias values we have

∂R(Q,D)

∂b1
= δ

rec1
yQ

(t)+δ
rec1
yD

(t). (3.77)

Input Gate

Similar to output gate we start with

∂y(t)
∂Wrec3

=
∂

∂Wrec3
(diag(o(t)).h(c(t)))

=
∂diag(o(t))

∂Wrec3︸ ︷︷ ︸
zero

.h(c(t))+diag(o(t)).
∂h(c(t))
∂Wrec3

= diag(o(t)).(1−h(c(t)))◦ (1+h(c(t)))
∂c(t)

∂Wrec3
. (3.78)

To find ∂c(t)
∂Wrec3

assuming f(t) = 1 (we derive formulation for f(t) 6= 1 from this simple solution) we have

c(0) = 0

c(1) = c(0)+ i(1)◦yg(1) = i(1)◦yg(1)

c(2) = c(1)+ i(2)◦yg(2)

. . .

c(t) =
t

∑
k=1

i(k)◦yg(k) =
t

∑
k=1

diag(yg(k)).i(k). (3.79)
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Therefore

∂c(t)
∂Wrec3

=
t

∑
k=1

[
∂diag(yg(k))

Wrec3︸ ︷︷ ︸
zero

.i(k)+diag(yg(k)).
∂ i(k)
Wrec3

]

=
t

∑
k=1

diag(yg(k)).i(k)◦ (1− i(k)).y(k−1)T (3.80)

, (3.81)

and

∂y(t)
∂Wrec3

=
t

∑
k=1

[o(t)◦ (1−h(c(t)))◦ (1+h(c(t)))︸ ︷︷ ︸
a(t)

◦yg(k)◦ i(k)◦ (1− i(k))︸ ︷︷ ︸
b(k)

]y(k−1)T . (3.82)

But this is expensive to implement, to resolve it we have

∂y(t)
∂Wrec3

=
t−1

∑
k=1

[a(t)◦b(k)]y(k−1)T

︸ ︷︷ ︸
expensive part

+[a(t)◦b(t)]y(t−1)T

= diag(a(t))
t−1

∑
k=1

b(k).y(k−1)T

︸ ︷︷ ︸
∂c(t−1)
∂Wrec3

+diag(a(t)).b(t).y(t−1)T . (3.83)

Therefore
∂y(t)

∂Wrec3
= [diag(a(t))][

∂c(t−1)
∂Wrec3

+b(t).y(t−1)T ]. (3.84)

For f(t) 6= 1 we have

∂y(t)
∂Wrec3

= [diag(a(t))][diag(f(t)).
∂c(t−1)
∂Wrec3

+bi(t).y(t−1)T ], (3.85)

where

a(t) = o(t)◦ (1−h(c(t)))◦ (1+h(c(t)))

bi(t) = yg(t)◦ i(t)◦ (1− i(t)). (3.86)
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Substituting above equation in (3.70) we will have

∂R(Q,D)

∂Wrec3
= diag(δ rec3

yQ
(t)).

∂cQ(t)
∂Wrec3

+diag(δ rec3
yD

(t)).
∂cD(t)
∂Wrec3

, (3.87)

where

δ
rec3
yQ

(t) = (1−h(cQ(t)))◦ (1+h(cQ(t)))◦oQ(t)◦vQ(t)

∂cQ(t)
∂Wrec3

= diag(fQ(t)).
∂cQ(t−1)

∂Wrec3
+bi,Q(t).yQ(t−1)T

bi,Q(t) = yg,Q(t)◦ iQ(t)◦ (1− iQ(t)). (3.88)

In equation (3.87), δ rec3
yD

(t) and ∂cD(t)
∂Wrec3

are the same as (3.88) with D subscript. Therefore, update equations

for Wrec3 are (3.87), (3.88) for Q and D and (6).

With a similar procedure for W3 we will have the following:

∂R(Q,D)

∂W3
= diag(δ rec3

yQ
(t)).

∂cQ(t)
∂W3

+diag(δ rec3
yD

(t)).
∂cD(t)
∂W3

, (3.89)

where
∂cQ(t)
∂W3

= diag(fQ(t)).
∂cQ(t−1)

∂W3
+bi,Q(t).xQ(t)T . (3.90)

Therefore, update equations for W3 are (3.89), (3.90) for Q and D and (6).

For peephole connections we will have

∂R(Q,D)

∂Wp3
= diag(δ rec3

yQ
(t)).

∂cQ(t)
∂Wp3

+diag(δ rec3
yD

(t)).
∂cD(t)
∂Wp3

, (3.91)

where
∂cQ(t)
∂Wp3

= diag(fQ(t)).
∂cQ(t−1)

∂Wp3
+bi,Q(t).cQ(t−1)T . (3.92)

Hence, update equations for Wp3 are (3.91), (3.92) for Q and D and (6).

Following similar derivation for bias values b3 we will have

∂R(Q,D)

∂b3
= diag(δ rec3

yQ
(t)).

∂cQ(t)
∂b3

+diag(δ rec3
yD

(t)).
∂cD(t)

∂b3
, (3.93)
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where
∂cQ(t)

∂b3
= diag(fQ(t)).

∂cQ(t−1)
∂b3

+bi,Q(t). (3.94)

Update equations for b3 are (3.93), (3.94) for Q and D and (6).

Forget Gate

For forget gate, with a similar derivation to input gate we will have

∂y(t)
∂Wrec2

= [diag(a(t))][diag(f(t)).
∂c(t−1)
∂Wrec2

+b f (t).y(t−1)T ], (3.95)

where

a(t) = o(t)◦ (1−h(c(t)))◦ (1+h(c(t)))

b f (t) = c(t−1)◦ f(t)◦ (1− f(t)). (3.96)

Substituting above equation in (3.70) we will have

∂R(Q,D)

∂Wrec2
= diag(δ rec2

yQ
(t)).

∂cQ(t)
∂Wrec2

+diag(δ rec2
yD

(t)).
∂cD(t)
∂Wrec2

, (3.97)

where

δ
rec2
yQ

(t) = (1−h(cQ(t)))◦ (1+h(cQ(t)))◦oQ(t)◦vQ(t)

∂cQ(t)
∂Wrec2

= diag(fQ(t)).
∂cQ(t−1)

∂Wrec2
+b f ,Q(t).yQ(t−1)T

b f ,Q(t) = cQ(t−1)◦ fQ(t)◦ (1− fQ(t)). (3.98)

Therefore, update equations for Wrec2 are (3.97), (3.98) for Q and D and (6).

For input weights to forget gate, W2, we have

∂R(Q,D)

∂W2
= diag(δ rec2

yQ
(t)).

∂cQ(t)
∂W2

+diag(δ rec2
yD

(t)).
∂cD(t)
∂W2

, (3.99)

where
∂cQ(t)
∂W2

= diag(fQ(t)).
∂cQ(t−1)

∂W2
+b f ,Q(t).xQ(t)T . (3.100)

Therefore, update equations for W2 are (3.99), (3.100) for Q and D and (6).
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For peephole connections, Wp2, we have

∂R(Q,D)

∂Wp2
= diag(δ rec2

yQ
(t)).

∂cQ(t)
∂Wp2

+diag(δ rec2
yD

(t)).
∂cD(t)
∂Wp2

, (3.101)

where
∂cQ(t)
∂Wp2

= diag(fQ(t)).
∂cQ(t−1)

∂Wp2
+b f ,Q(t).cQ(t−1)T . (3.102)

Therefore, update equations for Wp2 are (3.101), (3.102) for Q and D and (6).

Update equations for forget gate bias values, b2, will be following equations and (6):

∂R(Q,D)

∂b2
= diag(δ rec2

yQ
(t)).

∂cQ(t)
∂b2

+diag(δ rec2
yD

(t)).
∂cD(t)

∂b2
, (3.103)

where
∂cQ(t)

∂b2
= diag(fQ(t)).

∂cQ(t−1)
∂b3

+b f ,Q(t). (3.104)

Input without Gating (yg(t))

Gradients for yg(t) parameters are as follows:

∂y(t)
∂Wrec4

= [diag(a(t))][diag(f(t)).
∂c(t−1)
∂Wrec4

+bg(t).y(t−1)T ], (3.105)

where

a(t) = o(t)◦ (1−h(c(t)))◦ (1+h(c(t)))

bg(t) = i(t)◦ (1−yg(t))◦ (1+yg(t)). (3.106)

Substituting above equation in (3.70) we will have

∂R(Q,D)

∂Wrec4
= diag(δ rec4

yQ
(t)).

∂cQ(t)
∂Wrec4

+diag(δ rec4
yD

(t)).
∂cD(t)
∂Wrec4

, (3.107)
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where

δ
rec4
yQ

(t) = (1−h(cQ(t)))◦ (1+h(cQ(t)))◦oQ(t)◦vQ(t)

∂cQ(t)
∂Wrec4

= diag(fQ(t)).
∂cQ(t−1)

∂Wrec4
+bg,Q(t).yQ(t−1)T

bg,Q(t) = iQ(t)◦ (1−yg,Q(t))◦ (1+yg,Q(t)). (3.108)

Therefore, update equations for Wrec4 are (3.107), (3.108) for Q and D and (6).

For input weight parameters, W4, we have

∂R(Q,D)

∂W4
= diag(δ rec4

yQ
(t)).

∂cQ(t)
∂W4

+diag(δ rec4
yD

(t)).
∂cD(t)
∂W4

, (3.109)

where
∂cQ(t)
∂W4

= diag(fQ(t)).
∂cQ(t−1)

∂W4
+bg,Q(t).xQ(t)T . (3.110)

Therefore, update equations for W4 are (3.109), (3.110) for Q and D and (6).

Gradients with respect to bias values, b4, are

∂R(Q,D)

∂b4
= diag(δ rec4

yQ
(t)).

∂cQ(t)
∂b4

+diag(δ rec4
yD

(t)).
∂cD(t)

∂b4
, (3.111)

where
∂cQ(t)

∂b4
= diag(fQ(t)).

∂cQ(t−1)
∂b4

+bg,Q(t). (3.112)

Therefore, update equations for b4 are (3.111), (3.112) for Q and D and (6). There is no peephole connec-

tions for yg(t).

3.10 LSTM-RNN Visualization
In this section we present more examples of LSTM-RNN visualization.

3.10.1 LSTM-RNN Semantic Vectors: Another Example

Consider the following example from test dataset:

• Query: “how to f ix bath tub wont turn o f f ”

• Document: “how do you paint a bathtub and what

paint should you use yahoo answers︸ ︷︷ ︸
treated as one word

”
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Figure 3.9: Query: “how to fix bath tub wont turn off ”

Activations of input gate, output gate, cell state and cell output for each cell for query and document are

presented in Fig.3.9 and Fig.3.10 respectively based on a trained LSTM-RNN model.

Three interesting observations from Fig.3.9 and Fig.3.10:

• Semantic representation y(t) and cell states c(t) are evolving over time.

• In part (a) of Fig.3.10, we observe that input gate values for most of the cells corresponding to word 3,

word 4, word 7 and word 9 in document side of LSTM-RNN have very small values (light blue color).

These are corresponding to words “you”, “paint”, “and” and “paint” respectively in the document ti-

tle. Interestingly, input gates are trying to reduce effect of these words in the final representation (y(t))
because the LSTM-RNN model is trained to maximize the similarity between query and document if

they are a good match.

• y(t) is used as semantic representation after applying output gate on cell states. Note that valuable

context information is stored in cell states c(t).
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Figure 3.10: Document: “how do you paint a bathtub and what paint should . . . ”

Table 3.9: Keyword extraction for Query: “how to f ix bath tub wont turn o f f ”

how to f ix bath tub wont turn o f f
Number of assigned

cells out of 10
Left to Right - 0 4 7 6 3 5 0

Number of assigned
cells out of 10
Right to Left 4 1 6 7 6 7 7 -

3.10.2 Key Word Extraction: Another Example

Evolution of 10 most active cells over time for the second example are presented in Fig. 3.11 for query and

Fig. 3.12 for document. Number of assigned cells out of 10 most active cells to each word are presented in

Table 3.9 and Table 3.10.
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Figure 3.11: Query: “how to fix bath tub wont turn off ”

Table 3.10: Keyword extraction for Document: “how do you paint a bathtub and what paint should . . .”

how do you paint a bathtub and what paint should you . . .
Number of assigned

cells out of 10
Left to Right - 1 1 7 0 9 2 3 8 4

Number of assigned
cells out of 10
Right to Left 5 9 5 4 8 4 5 5 9 -

3.11 Doc2Vec Similarity Test
To make sure that a meaningful model is trained, we used the trained doc2vec model to find the most similar

words to two sample words in our dataset, the words “pizza” and “infection”. The resulting words and

corresponding scores are as follows:

print(model.most-similar(’pizza’)) :

[(u’recipes’, 0.9316294193267822),
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Figure 3.12: Document: “how do you paint a bathtub and what paint should . . . ”

(u’recipe’, 0.9295548796653748),

(u’food’, 0.9250608682632446),

(u’restaurants’, 0.9223555326461792),

(u’bar’, 0.9191627502441406),

(u’sabayon’, 0.916868269443512),

(u’page’, 0.9160783290863037),

(u’restaurant’, 0.9112323522567749),

(u’house’, 0.9104640483856201),

(u’the’, 0.9103578925132751)]

print(model.most-similar(’infection’)):

[(u’infections’, 0.9698576927185059),

(u’treatment’, 0.9143450856208801),

(u’symptoms’, 0.9138627052307129),

(u’disease’, 0.9100595712661743),
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Figure 3.13: Architecture of the proposed method.

(u’palpitations’, 0.9083651304244995),

(u’pneumonia’, 0.9073051810264587),

(u’medical’, 0.9043352603912354),

(u’abdomen’, 0.9034136533737183),

(u’medlineplus’, 0.9032401442527771),

(u’gout’, 0.9027985334396362)]

As it is observed from the resulting words, the trained model is a meaningful model and can recognise

semantic similarity.

3.12 Diagram of the Proposed Model
To clarify the difference between the proposed method and the general sentence embedding methods, in this

section we present a diagram illustrating the training procedure of the proposed model. It is presented in

Fig. 3.13. In this figure n is the number of negative (unclicked) documents. The other parameters in this

figure are similar to those used in Fig. 2 and Fig. 3 of this chapter.
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3.13 Conclusions
This chapter addresses deep sentence embedding. We propose a model based on long short-term memory

to model the long range context information and embed the key information of a sentence in one semantic

vector. We show that the semantic vector evolves over time and only takes useful information from any new

input. This has been made possible by input gates that detect useless information and attenuate it. Due to

general limitation of available human labelled data, we proposed and implemented training the model with

a weak supervision signal using user click-through data of a commercial web search engine.

By performing a detailed analysis on the model, we showed that: 1) The proposed model is robust to

noise, i.e., it mainly embeds keywords in the final semantic vector representing the whole sentence and 2)

In the proposed model, each cell is usually allocated to keywords from a specific topic. These findings have

been supported using extensive examples. As a concrete sample application of the proposed sentence em-

bedding method, we evaluated it on the important language processing task of web document retrieval. We

showed that, for this task, the proposed method outperforms all existing state of the art methods significantly.

This work has been motivated by the earlier successes of deep learning methods in speech [20, 21, 29,

57, 129] and in semantic modelling [43, 44, 65, 108], and it adds further evidence for the effectiveness of

these methods.
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Chapter 4

A Deep Learning Approach to Distributed
Compressive Sensing

When a traveller reaches a fork in the road, the `1-norm tells him to take either one way or the
other, but the `2-norm instructs him to head off into the bushes!

— John F. Claerbout and Francis Muir

4.1 Introduction
Compressive Sensing (CS) [31],[14],[9] is an effective approach for acquiring sparse signals where both

sensing and compression are performed at the same time. Since there are numerous examples of natural

and artificial signals that are sparse in the time, spatial or a transform domain, CS has found numerous

applications. These include medical imaging, geophysical data analysis, computational biology, remote

sensing and communications.

In the general CS framework, instead of acquiring N samples of a signal x ∈ℜN×1, M random measure-

ments are acquired where M < N. This is expressed by the underdetermined system of linear equations

y = Φx, (4.1)

where y∈ℜM×1 is the known measured vector and Φ∈ℜM×N is a random measurement matrix. To uniquely

recover x given y and Φ, x must be sparse in a given basis Ψ. This means that

x = Ψs, (4.2)

where s is K−sparse, i.e., s has at most K non-zero elements. The basis Ψ can be complete; i.e., Ψ∈ℜN×N ,

or over-complete; i.e., Ψ ∈ ℜN×N1 where N < N1 (compressed sensing for over-complete dictionaries is

introduced in [15]). From (4.1) and (4.2)

y = As, (4.3)

where A = ΦΨ. Since there is only one measurement vector, the above problem is usually called the Single
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Measurement Vector (SMV) problem in compressive sensing.

In distributed compressive sensing , also known as the Multiple Measurement Vectors (MMV) prob-

lem, a set of L sparse vectors {si}i=1,2,...,L is to be jointly recovered from a set of L measurement vectors

{yi}i=1,2,...,L. Some application areas of MMV include magnetoencephalography, array processing, equal-

ization of sparse communication channels and cognitive radio [33].

Suppose that the L sparse vectors and the L measurement vectors are arranged as columns of matrices

S = [s1,s2, . . . ,sL] and Y = [y1,y2, . . . ,yL] respectively. In the MMV problem, S is to be reconstructed given

Y
Y = AS. (4.4)

In (4.4), S is assumed to be jointly sparse, i.e., non-zero entries of each vector occur at the same locations as

those of other vectors, which means that the sparse vectors have the same support. Assume that S is jointly

sparse. Then, the necessary and sufficient condition to obtain a unique S given Y is [22]

|supp(S)|< spark(A)−1+ rank(S)
2

, (4.5)

where |supp(S)| is the number of rows in S with non-zero energy and spark of a given matrix is the smallest

possible number of linearly dependent columns of that matrix. spark gives a measure of linear depen-

dency in the system modelled by a given matrix. In the SMV problem, no rank information exists. In

the MMV problem, the rank information exists and affects the uniqueness bounds. Generally, solving the

MMV problem jointly can lead to better uniqueness guarantees than solving the SMV problem for each

vector independently [35].

In the current MMV literature, a jointly sparse matrix is recovered typically by one of the following

methods: 1) greedy methods [120] like Simultaneous Orthogonal Matching Pursuit (SOMP) which per-

forms non-optimal subset selection, 2) relaxed mixed norm minimization methods [82, 119, 121, 134], or

3) Bayesian methods like [72, 126, 133] where a posterior density function for the values of S is created,

assuming a prior belief, e.g., Y is observed and S should be sparse in basis Ψ. The selection of one of the

above methods depends on the requirements imposed by the specific application.

4.1.1 Problem Statement

The MMV reconstruction methods stated above do not rely on the use of training data. However, for many

applications, a large amount of data similar to the data to be compressed by CS is available. Examples

are camera recordings of the same environment, images of the same class (e.g., flowers, buildings, ....),

electroencephalogram (EEG) of different parts of the brain, etc. In this chapter, we address the following

questions in the MMV problem when training data is available:

1. Can we learn the structure of the sparse vectors in S by a data driven bottom up approach using the

already available training data? If yes, then how can we exploit this structure in the MMV problem to

design a better reconstruction method?

2. Most of the reconstruction algorithms for the MMV problem rely on the joint sparsity of S. However,
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in some practical applications, the sparse vectors in S are not exactly jointly sparse. This can be due

to noise or due to sources that create different sparsity patterns. Examples are images of different

scenes captured by different cameras, images of different classes, etc. Although S is not jointly

sparse, there may exist a possible dependency among the columns of S, however, due to lack of joint

sparsity, the above methods will not give satisfactory performance. The question is, can we design

the aforementioned data driven method in a way that it captures the dependencies among the sparse

vectors in S? The type of such dependencies may not be necessarily that of joint sparsity. And then

how can we use the learned dependency structure in the reconstruction algorithm at the decoder?

Please note that we want to address the above questions “without adding any complexity or adaptability”

to the encoder. In other words, our aim is not to design an optimal encoder, i.e., optimal sensing matrix Φ or

the sparsifying basis Ψ, for the given training data. The encoder would be as simple and general as possible.

This is specially important for applications that use sensors having low power consumption due to a limited

battery life. However, the decoder in these cases can be much more complex than the encoder. For example,

the decoder can be a powerful data processing machine.

4.1.2 Proposed Method

To address the above questions, we propose the use of a two step greedy reconstruction algorithm. In the

first step, at each iteration of the reconstruction algorithm, and for each column of S represented as si, we

first find the conditional probability of each entry of si being non-zero, given the residuals of all previous

sparse vectors (columns) at that iteration. Then we select the most probable entry and add it to the support

of si. The definition of the residual matrix at the j−th iteration is R j = Y−AS j where S j is the estimate

of the sparse matrix S at the j−th iteration. Therefore in the first step, we find the locations of the non-zero

entries. In the second step we find the values of these non-zero entries. This can be done by solving a least

squares problem that finds si given yi and AΩi . AΩi is a matrix that includes only those atoms (columns) of

A that are members of the support of si.

To find the conditional probabilities at each iteration, we propose the use of a Recurrent Neural Network

(RNN) with Long Short-Term Memory (LSTM) cells and a softmax layer on top of it. To find the model

parameters, we minimize a cross entropy cost function between the conditional probabilities given by the

model and the known probabilities in the training data. The details on how to generate the training data and

the training data probabilities are explained in subsequent sections. Please note that this training is done

only once. After that, the resulting model is used in the reconstruction algorithm for any test data that has

not been observed by the model before. Therefore, the proposed reconstruction algorithm would be almost

as fast as the greedy methods. The block diagram of the proposed method is presented in Fig. 4.1 and Fig.

4.2. We will explain these figures in detail in subsequent sections.

To the best of our knowledge, this is the first model-based method in MMV sparse reconstruction that

is based on a deep learning bottom up approach. Similar to all deep learning methods, it has the important

feature of learning the structure of S from the raw data automatically. Although it is based on a greedy

method that selects subsets that are not necessarily optimal, we experimentally show that by using a prop-

erly trained model and only one layer of LSTM, the proposed method significantly outperforms well known

71



𝒓2 

LSTM 

𝒄1 

𝒓1 

LSTM 

𝒓𝐿 

LSTM 

𝒄𝐿−1 

… 

… 
LSTM cells and gates 

𝒗1 𝒗2 
𝒗𝐿 𝑼 𝑼 𝑼 

𝒛1 𝒛2 𝒛𝐿 

softmax softmax softmax 

… 

… 

… 

𝑃(𝒔1|𝒓1) 𝑃(𝒔2|𝒓1, 𝒓2) 𝑃(𝒔𝐿|𝒓1, 𝒓2, … , 𝒓𝐿) 

… 

… 

Ω1 update Ω2 update Ω𝐿 update 

Updating support of 𝒔𝐿 
Least Squares Least Squares Least Squares 

… 

𝒔 1 𝒔 2 𝒔 𝐿 Estimation of L-th 
sparse vector 

𝒓1 = 𝒚1 − 𝑨Ω1𝒔 1 

𝒓2 = 𝒚2 − 𝑨Ω2𝒔 2 

… 

𝒓𝐿 = 𝒚𝐿 − 𝑨Ω𝐿𝒔 𝐿 

Residual vector for L-th 
sparse vector 

Vector of LSTM cells’ state 

Figure 4.1: Block diagram of the proposed method unfolded over channels.

MMV baselines (e.g., SOMP) as well as the well known Bayesian methods for the MMV problem (e.g.,

Multitask Bayesian Compressive Sensing (MT-BCS)[72] and Sparse Bayesian Learning for temporally cor-

related sources (T-SBL)[133]). We show this on two real world datasets. At the end of this chapter, we also

present bidirectional version of above LSTM based CS reconstruction method along with a method based

on Convolutional Deep Stacking Networks.

We emphasize that the computations carried at the encoder mainly include multiplication by a random

matrix. The extra computations are only needed at the decoder. Therefore an important feature of compres-

sive sensing (low power encoding) is preserved.

4.1.3 Related Work

Exploiting data structures besides sparsity for compressive sensing has been extensively studied in the liter-

ature [4, 10, 33, 38, 71, 72, 83, 92, 95, 122, 126, 133]. In [10], it has been theoretically shown that using

signal models that exploit these structures will result in a decrease in the number of measurements. In [33], a

thorough review on CS methods that exploit the structure present in the sparse signal or in the measurements

is presented. In [71], a Bayesian framework for CS is presented. This framework uses a prior information

about the sparsity of s to provide a posterior density function for the entries of s (assuming y is observed). It
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Figure 4.2: Block diagram of the Long Short-Term Memory (LSTM).

then uses a Relevance Vector Machine (RVM) [117] to estimate the entries of the sparse vector. This method

is called Bayesian Compressive Sensing (BCS). In [72], a Bayesian framework is presented for the MMV

problem. It assumes that the L “tasks” in the MMV problem in (4.4), are not statistically independent. By

imposing a shared prior on the L tasks, an empirical method is presented to estimate the hyperparameters

and extensions of RVM are used for the inference step. This method is known as Multitask Compressive

Sensing (MT-BCS). In [72], it is experimentally shown that the MT-BCS outperforms the method that applies

Orthogonal Matching Pursuit (OMP) on each task, the Simultaneous Orthogonal Matching Pursuit (SOMP)

method which is a straightforward extension of OMP for the MMV problem, and the method that applies

BCS for each task. In [126], the Sparse Bayesian Learning (SBL) [39, 117] is used to solve the MMV prob-

lem. It was shown that the global minimum of the proposed method is always the sparsest one. The authors

in [133], address the MMV problem when the entries in each row of S are correlated. An algorithm based on

SBL is proposed and it is shown that the proposed algorithm outperforms the mixed norm (`1,2) optimization

as well as the method proposed in [126]. The proposed method is called T-SBL. In [83], a greedy algorithm

aided by a neural network is proposed to address the SMV problem in (4.3). The neural network parameters

are calculated by solving a regression problem and are used to select the appropriate column of A at each

iteration of OMP. The main modification to OMP is replacing the correlation step with a neural network.

73



They experimentally show that the proposed method outperforms OMP and `1 optimization. This method

is called Neural Network OMP (NNOMP). In [95], an extension of [83] with a hierarchical Deep Stacking

Netowork (DSN) [29] is proposed for the MMV problem. “The joint sparsity of S is an important assump-

tion in the proposed method”. To train the DSN model, the Restricted Boltzmann Machine (RBM) [59] is

used to pre-train DSN and then fine tuning is performed. It has been experimentally shown that this method

outperforms SOMP and `1,2 in the MMV problem. The proposed methods are called Nonlinear Weighted

SOMP (NWSOMP) for the one layer model and DSN-WSOMP for the multilayer model. In [92], a feedfor-

ward neural network is used to solve the SMV problem as a regression task. Similar to [95] (if we assume

that we have only one sparse vector in [95]), a pre-training phase followed by a fine tuning is used. For

pre-training, the authors have used Stacked Denoising Auto-encoder (SDA) [124]. Please note that an RBM

with Gaussian visible units and binary hidden units (i.e., the one used in [95]) has the same energy function

as an auto-encoder with sigmoid hidden units and real valued observations [123]. Therefore the extension of

[92] to the MMV problem will give similar performance as that of [95]. In [122], a reconstruction method

is proposed for sparse signals whose sparsity patterns change slowly with time. The main idea is to replace

Compressive Sensing (CS) on the observation y with CS on the Least Squares (LS) residuals. LS residuals

are calculated using the previous estimation of the support. In [38], a reconstruction method is proposed to

recover sparse signals with a sparsity pattern that slowly changes over time. The main idea is to use Sparse

Bayesian Learning (SBL) framework. Similar to SBL, a set of hyperparameters are defined to control the

sparsity of signals. The main difference is that the prior for each coefficient also involves the coefficients of

the adjacent temporal observations. In [4], a CS algorithm is proposed for time-varying sparse signals based

on the least absolute shrinkage and selection operator (LASSO). A dynamic LASSO algorithm is proposed

for the signals with time-varying amplitudes and support.

4.2 RNN with LSTM Cells
The RNN is a type of deep neural networks [20, 57] that are “deep” in the temporal dimension. It has been

used extensively in time sequence modelling [13, 28, 36, 49, 84, 85, 94, 96, 103]. If we look at the sparse

vectors (columns) in S as a sequence, the main idea of using RNN for the MMV problem is to predict the

sparsity patterns over different sparse vectors in S.

Although RNN performs sequence modelling in a principled manner, it is generally difficult to learn

the long term dependency within the sequence due to the vanishing gradients problem. One of the effective

solutions for this problem in RNNs is to employ memory cells instead of neurons that is originally proposed

in [62] as Long Short-Term Memory (LSTM). It is further developed in [45] and [46] by adding forget gate

and peephole connections to the architecture.

We use the architecture of LSTM illustrated in Fig. 4.2 for the proposed sequence modelling method

for the MMV problem. In this figure, i(t), f(t) ,o(t) ,c(t) are input gate, forget gate, output gate and cell

state vector respectively, Wp1, Wp2 and Wp3 are peephole connections, Wi, Wreci and bi, i = 1,2,3,4 are

input connections, recurrent connections and bias values, respectively, g(·) and h(·) are tanh(·) function and

σ(·) is the sigmoid function. We use this architecture to find v for each channel and then use the proposed

method in Fig. 4.1 to find the entries that have a higher probability of being non-zero. Considering Fig. 4.2,
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the forward pass for LSTM model is as follows:

yg(t) = g(W4r(t)+Wrec4v(t−1)+b4)

i(t) = σ(W3r(t)+Wrec3v(t−1)+Wp3c(t−1)+b3)

f(t) = σ(W2r(t)+Wrec2v(t−1)+Wp2c(t−1)+b2)

c(t) = f(t)◦ c(t−1)+ i(t)◦yg(t)

o(t) = σ(W1r(t)+Wrec1v(t−1)+Wp1c(t)+b1)

v(t) = o(t)◦h(c(t)), (4.6)

where ◦ denotes the Hadamard (element-wise) product.

Summary of notations used in Fig. 4.2 is as follows:

• “t”: Stands for the time index in the sequence. For example, if we have 4 residual vectors of four

different channels, we can show them as r(t), t = 1,2,3,4.

• “1”: is a scalar

• “Wreci, i= 1,2,3,4”: Recurrent weight matrices of dimension ncell×ncell where ncell is the number

of cells in LSTM.

• “Wi, i = 1,2,3,4”: Input weight matrices of dimension M×ncell where M is the number of random

measurements in compressive sensing. These matrices map the residual vectors to feature space.

• “bi, i = 1,2,3,4”: Bias vectors of size ncell×1.

• “Wpi, i = 1,2,3”: Peephole connections of dimension ncell×ncell.

• “v(t), t = 1,2, . . . ,L”: Output of the cells. Vector of size ncell×1. L is the number of channels in the

MMV problem.

• “i(t),o(t),yg(t), t = 1,2, . . . ,L”: Input gates, output gates and inputs before gating respectively. Vec-

tor of size ncell×1.

• “g(·) and h(·)”: tanh(·) function.

• “σ(·)”: Sigmoid function.

4.3 Proposed Method

4.3.1 High Level Picture

The summary of the proposed method is presented in Fig. 4.1. We initialize the residual vector, r, for each

channel by the measurement vector, y, of that channel. These residual vectors serve as the input to the LSTM

model that captures features of the residual vectors using input weight matrices (W1,W2,W3,W4) as well
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as the dependency among the residual vectors using recurrent weight matrices (Wrec1,Wrec2,Wrec3,Wrec4)

and the central memory unit shown in Fig. 4.2. A transformation matrix U is then used to transform,

v ∈ ℜncell×1, the output of each memory cell after gating, into the sparse vectors space, i.e., z ∈ ℜN×1.

“ncell” is the number of cells in the LSTM model. Then a softmax layer is used for each channel to find the

probability of each entry of each sparse vector being non-zero. For example, for channel 1, the j-th output

of the softmax layer is

P(s1( j)|r1) =
ez( j)

∑
N
k=1 ez(k)

. (4.7)

Then for each channel, the entry with the maximum probability value is selected and added to the support

set of that channel. After that, given the new support set, the following least squares problem is solved to

find an estimate of the sparse vector for the j-th channel

ŝ j = argmin
s j

‖y j−AΩ j s j‖2
2. (4.8)

Using ŝ j, the new residual value for the j-th channel is calculated as follows:

r j = y j−AΩ j ŝ j. (4.9)

This residual serves as the input to the LSTM model at the next iteration of the algorithm. The stopping

criteria for the algorithm is when the residual values are small enough or when it has performed N iterations

where N is the dimension of the sparse vector. Since we have used LSTM cells for the proposed method,

we call it LSTM-CS algorithm. The pseudo-code of the proposed method is presented in Algorithm 2.

Algorithm 2 Distributed Compressive Sensing using Long Short-Term Memory (LSTM-CS)
Inputs: CS measurement matrix A ∈ ℜM×N ; matrix of measurements Y ∈ ℜM×L; minimum `2 norm of residual matrix “resMin” as stopping
criterion; Trained “lstm” model
Output: Matrix of sparse vectors Ŝ ∈ℜN×L

Initialization: Ŝ = 0; j = 1; i = 1; Ω = /0; R = Y.
1: procedure LSTM-CS(A,Y, lstm)
2: while i≤ N or ‖R‖2 ≤ resMin do
3: i← i+1
4: for j = 1→ L do
5: R(:, j)i← R(:, j)i−1

max(|R(:, j)i−1|)
6: v j ← lstm(R(:, j)i,v j−1,c j−1) . LSTM
7: z j ← Uv j
8: c← so f tmax(z j)
9: idx← Support(max(c))

10: Ωi←Ωi−1 ∪ idx
11: ŜΩi (:, j)← (AΩi )†Y(:, j) . Least Squares
12: ŜΩC

i (:, j)← 0
13: R(:, j)i← Y(:, j)−AΩi ŜΩi (:, j)
14: end for
15: end while
16: end procedure

We continue by explaining how the training data is prepared from off-line dataset and then we present

the details of the learning method. Please note that all the computations explained in the subsequent two

sections are performed only once and they do not affect the run time of the proposed solver in Fig. 4.1. It is
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almost as fast as greedy algorithms in sparse reconstruction.

4.3.2 Training Data Generation

The main idea of the proposed method is to look at the sparse reconstruction problem as a two step task: a

classification as the first step and a subsequent least squares as the second step. In the classification step, the

aim is to find the atom of the dictionary, i.e., the column of A, that is most relevant to the given residual of

the current channel and the residuals of the previous channels. Therefore we need a set of residual vectors

and their corresponding sparse vectors for supervised training. Since the training data and A are given, we

can imitate the steps explained in the previous section to generate the residuals. This means that, given

a sparse vector s with k non-zero entries, we calculate y using (4.3). Then we find the entry that has the

maximum value in s and set it to zero. Assume that the index of this entry is k0. This gives us a new sparse

vector with k−1 non-zero entries. Then we calculate the residual vector from

r = y−ak0s(k0), (4.10)

where ak0 is the k0-th column of A and s(k0) is the k0-th entry of s. It is obvious that this residual value

is because of not having the remaining k− 1 non-zero entries of s. From these remaining k− 1 non-zero

entries, the second largest value of s has the main contribution to r in (4.10). Therefore, we use r to predict

the location of the second largest value of s. Assume that the index of the second largest value of s is k1. We

define s0 as a one hot vector that has value 1 at k1-th entry and zero at other entries. Therefore, the training

pair is (r,s0).

Now we set the k1-th entry of s to zero. This gives us a new sparse vector with k− 2 non-zero entries.

Then we calculate the new residual vector from

r = y− [ak0 ,ak1 ][s(k0),s(k1)]
T . (4.11)

We use the residual in (4.11) to predict the location of the third largest value in s. Assume that the index of

the third largest value of s is k2. We define s0 as a one hot vector that has value 1 at k2-th entry and zero at

other entries. Therefore, the new training pair is (r,s0).

The above procedure is continued upto the point that s does not have any non-zero entry. Then the same

procedure is used for the next training sample. This gives us training samples for one channel. Then the

same procedure is used for the next channel in S. Since the number of non-zero entries, k, is not known in

advance, we assume a maximum number of non-zero entries per channel for training data generation.

4.3.3 Learning Method

To calculate the parameters of the proposed model, i.e., W1,W2,W3,W4, Wrec1,Wrec2,Wrec3,Wrec4, Wp1,Wp2,Wp3,

b1,b2,b3,b4 in Fig. 4.2 and transformation matrix U in Fig.4.1, we minimize a cross entropy cost function

over the training data. Assuming s is the output vector of the softmax layer given by the model in Fig. 4.1

(output of the softmax layer is represented as conditional probabilities in Fig. 4.1) and s0 is the one hot
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vector explained in the previous section, the following optimization problem is solved:

L(Λ) = min
Λ

{
nB

∑
i=1

Bsize

∑
r=1

L

∑
τ=1

N

∑
j=1

Lr,i,τ, j(Λ)

}
Lr,i,τ, j(Λ) =−s0,r,i,τ( j)log(sr,i,τ( j)), (4.12)

where nB is the number of mini-batches in the training data, Bsize is the number of training data pairs,

(r,s0), in each mini-batch, L is the number of channels in the MMV problem, i.e., number of columns of S,

and N is the length of vector s and s0. Λ denotes the collection of the model parameters that includes W1,

W2, W3, W4, Wrec1, Wrec2, Wrec3, Wrec4, Wp1, Wp2, Wp3, b1, b2, b3 and b4 in Fig. 4.2 and U in Fig. 4.1.

To solve the optimization problem in (4.12), we use Backpropagation through time (BPTT) with Nes-

terov method. The update equations for parameter Λ at epoch k are as follows:

4Λk = Λk−Λk−1

4Λk = µk−14Λk−1− εk−1∇L(Λk−1 +µk−14Λk−1), (4.13)

where ∇L(·) is the gradient of the cost function in (4.12), ε is the learning rate and µk is a momentum pa-

rameter determined by the scheduling scheme used for training. Above equations are equivalent to Nesterov

method in [93]. To see why, please refer to appendix A.1 of [115] where the Nesterov method is derived as

a momentum method. The gradient of the cost function, ∇L(Λ), is

∇L(Λ) =
nB

∑
i=1

Bsize

∑
r=1

L

∑
τ=1

N

∑
j=1

∂Lr,i,τ, j(Λ)

∂Λ︸ ︷︷ ︸
one large update

. (4.14)

As it is obvious from (4.14), since we have unfolded the LSTM over channels in S, we fold it back when we

want to calculate gradients over the whole sequence of channels.
∂Lr,i,τ, j(Λ)

∂Λ
in (4.14) and error signals for different parameters of the proposed model that are necessary

for training are presented in section 4.5.

We have used mini-batch training to accelerate training and one large update instead of incremental

updates during back propagation through time. To resolve the gradient explosion problem we have used

gradient clipping. To accelerate the convergence, we have used Nesterov method [93] and found it effective

in training the proposed model for the MMV problem.

We have used a simple yet effective scheduling for µk in (4.13), in the first and last 10% of all parameter

updates µk = 0.9 and for the other 80% of all parameter updates µk = 0.995. We have used a fixed step size

for training LSTM. Please note that since we are using mini-batch training, all parameters are updated for

each mini-batch in (4.14).

A summary of training method for LSTM-CS is presented in Algorithm 3.

Although the training method and derivatives in section 4.5 are presented for all parameters in LSTM, in

the implementation ,we have removed peephole connections and forget gates. Since length of each sequence,
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Algorithm 3 Training the proposed model for Distributed Compressive Sensing
Inputs: Fixed step size “ε”, Scheduling for “µ”, Gradient clip threshold “thG”, Maximum number of Epochs “nE poch”, Total number of
training pairs in each mini-batch “Bsize”, Number of channels for the MMV problem “L”.
Outputs: LSTM-CS trained model for distributed compressive sensing “Λ”.
Initialization: Set all parameters in Λ to small random numbers, i = 0, k = 1.
procedure LSTM-CS(Λ)

while i≤ nE poch do
for “first minibatch”→ “last minibatch” do

r← 1
while r ≤ Bsize do

Compute ∑
L
τ=1

∂Lr,τ
∂Λk

. use (4.23) to (4.54) in section 4.5
r← r+1

end while
Compute ∇L(Λk)← “sum above terms over r”
if ∇L(Λk)> thG then

∇L(Λk)← thG
. For each entry of the gradient matrix ∇L(Λk)

end if
Compute4Λk . use (4.13)
Update: Λk ←4Λk +Λk−1
k← k+1

end for
i← i+1

end while
end procedure

i.e., the number of columns in S, is known in advance, we set state of each cell to zero in the beginning of

a new sequence. Therefore, forget gates are not a great help here. Also, as long as the order of columns in

S is kept, the precise timing in the sequence is not of great concern, therefore, peephole connections are not

that important as well. Removing peephole connections and forget gate will also help to have less training

time, i.e., less number of parameters need to be tuned during training.

4.4 Experimental Results and Discussion
We have performed the experiments on two real world datasets, the first is the MNIST dataset of handwritten

digits [78] and the second is three different classes of images from natural image dataset of Microsoft

Research in Cambridge [102].

In this section, we would like to answer the following questions: (i) How is the performance of different

reconstruction algorithms for the MMV problem, including the proposed method, when different channels,

i.e., different columns in S, have different sparsity patterns? (ii) Does the proposed method perform well

enough when there is correlation among different sparse vectors? E.g., when sparse vectors are DCT or

Wavelet transform of different blocks of an image? (iii) How fast is the proposed method compared to other

reconstruction algorithms for the MMV problem? (iv) How robust is the proposed method to noise?

For all the results presented in this section, the reconstruction error is defined as

NMSE =
‖Ŝ−S‖
‖S‖

, (4.15)

where S is the actual sparse matrix and Ŝ is the recovered sparse matrix from random measurements by the

reconstruction algorithm. The machine used to perform the experiments has an Intel(R) Core(TM) i7 CPU
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Figure 4.3: Randomly selected images for test from MNIST dataset. The first channel encodes digit
zero, the second channel encodes digit one and so on.

with clock 2.93 GHz and with 16 GB RAM.

4.4.1 MNIST Dataset

MNIST is a dataset of handwritten digits where the images of the digits are normalized in size and centred

so that we have fixed size images. The task is to simultaneously encode 4 images each of size 24× 24,

i.e., we have 4 channels and L = 4 in (4.4). The encoder is a typical compressive sensing encoder, i.e., a

randomly generated matrix A. We have normalized each column of A to have unit norm. Since the images

are already sparse, i.e., have a few number of non-zero pixels, no transform, Ψ in (4.2), is used. To simulate

the measurement noise, we have added a Gaussian noise with standard deviation 0.005 to the measurement

matrix Y in (4.4). This results in measurements with signal to noise ratio (SNR) of approximately 46dB.

We have divided each image into four 12× 12 blocks. This means that the length of each sparse vector is

N = 144. We have taken 50% random measurements from each sparse vector, i.e., M = 72. After receiving

and reconstructing all blocks at the decoder, we compute the reconstruction error defined in (4.15) for the

full image. We have randomly selected 10 images for each digit from the set {0,1,2,3}, i.e., 40 images in

total for the test. This means that the first column of S is an image of digit 0, the second column is an image

of digit 1, the third column is an image of digit 2 and the fourth column is an image of digit 3. Test images

are represented in Fig. 4.3.

We have compared the performance of the proposed reconstruction algorithm (LSTM-CS) with 7 recon-

struction methods for the MMV problem. These methods are:

• Simultaneous Orthogonal Matching Pursuit (SOMP) which is a well known baseline for the MMV
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problem.

• Bayesian Compressive Sensing (BCS)[71] applied independently on each channel. For the BCS

method we set the initial noise variance of i-th channel to the value suggested by the authors, i.e.,

std(yi)
2/100 where i ∈ {1,2,3,4} and std(.) calculates the standard deviation. We set the threshold

for stopping the algorithm to 10−8.

• Multitask Compressive Sensing (MT-BCS) [72] which takes into account the statistical dependency

of different channels. For MT-BCS we set the parameters of the Gamma prior on noise variance to

a = 100/0.1 and b = 1 which are the values suggested by the authors. We set the stopping threshold

to 10−8 as well.

• Sparse Bayesian Learning for Temporally correlated sources (T-SBL) [133] which exploits correlation

among different sources in the MMV problem. For T-SBL, we used the default values proposed by

the authors.

• Nonlinear Weighted SOMP (NWSOMP) [95] which solves a regression problem to help the SOMP

algorithm with prior knowledge from training data. For NWSOMP, during training, we used one layer,

512 neurons and 25 epochs of parameters update.

• Compressive Sensing on Least Squares Residual (LSCS) [122] where no explicit joint sparsity as-

sumption is made in the design of the method. For LSCS, we used sigma0 = cc∗ (1/3)∗ sqrt(Sav/m)

suggested by the authors where m is the number of measurements and Sav = 16 as suggested by the

author. We tried a range of different values of cc and got the best results with cc = 0.1. We also set

sigsys = 1, siginit = 3 and lambdap = 4 as suggested by the author.

• The method proposed in [38? ] and referred to as PCSBL-GAMP where sparse Bayesian learning is

used to design the method and no explicit joint sparsity assumption is made. For PCSBL-GAMP, we

used beta = 1, Pattern = 2 because we need the coupling among the sparse vectors, i.e., left and right

coupling, maximum number of iterations equal to maxiter = 400, and C = 1e0 as suggested by the

authors for the noisy case.

For LSTM-CS, during training, we used one layer, 512 cells and 25 epochs of parameter updates. We

used only 200 images for the training set. The training set does not include any of the 40 images used for

test. To monitor and prevent overfitting, we used 3 images per channel as the validation set and we used

early stopping if necessary. Please note that the images used for validation were not used in the training set

or in the test set. Results are presented in Fig. 4.4.

In Fig. 4.4, the vertical axis is the NMSE defined in (4.15) and horizontal axis is the number of non-zero

entries in the sparse vector. The number of measurements, M, is fixed to 72. Each point on the curves in

Fig. 4.4 is the average of NMSE over 40 reconstructed test images at the decoder.

For the MNIST dataset, we observe from Fig. 4.4 that LSTM-CS significantly outperforms the recon-

struction algorithms for the MMV problem discussed in this chapter. One important reason for this is that
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Figure 4.4: Comparison of different MMV reconstruction algorithms for MNIST dataset. Bottom fig-
ure is the same as top figure without results of BCS algorithm to make the difference among
different algorithms more visible. In this experiment M = 72 and N = 144.

existing MMV solvers rely on the joint sparsity in S, while the proposed method does not rely on this as-

sumption. Another reason is that the structure of each sparse vector is effectively captured by LSTM. The

reconstructed images using different MMV reconstruction algorithms for 4 test images are presented in Fig.

4.5. An interesting observation from Fig. 4.5 is that the accuracy of reconstruction depends on the complex-

ity of the sparsity pattern. For example when the sparsity pattern is simple, e.g., image of digit 1 in Fig. 4.5,

all the algorithms perform well. But when the sparsity pattern is more complex, e.g., image of digit 0 in Fig.

4.5, then their reconstruction accuracy degrades significantly.
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Figure 4.5: Reconstructed images using different MMV reconstruction algorithms for 4 images of
the MNIST dataset. First row are original images, S, second row are measurement matrices,
Y, third row are reconstructed images using LS-CS, fourth row are reconstructed images using
SOMP, fifth row using PCSBL-GAMP, sixth row using MT-BCS, seventh row using T-SBL,
eighth row using NWSOMP and the last row are reconstructed images using the proposed LSTM-
CS method.

We have repeated the experiments on the MNIST dataset with 25% random measurements, i.e., M = 36.

The results are presented in Fig. 4.6. We trained 4 different LSTM models for this experiment. The first one

is the same model used for previous experiment (m = 72). In the second model, we increased the number

of cells in the LSTM model from 512 to 1024. In the third and fourth models, we used 2 times and 4 times

more training data respectively. The rest of the experiments’ settings was similar to the settings described

before. As observed from these results, by investing more on training a good LSTM model, LSTM-CS

method performs better.

All the results presented so far are for noisy measurements where an additive Gaussian noise with stan-

dard deviation 0.005 is used (SNR' 46dB). To evaluate the stability of the proposed LSTM-CS method to

noise, and compare it with other methods discussed in this chapter, an experiment was performed using the

following range of noise standard deviations:

σ = {0.5,0.2,0.1,0.05,0.01,0.005}, (4.16)

where σ is the standard deviation of noise. This approximately corresponds to

SNR = {6 dB,14 dB,20 dB,26 dB,40 dB,46 dB}. (4.17)

We used the same experimental settings explained above. Results are presented in Fig. 4.7.

As observed from the results, in very noisy environment, i.e., SNR = 6 dB, performance of MT-BCS
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Figure 4.6: Comparison of different MMV reconstruction algorithms for MNIST dataset. Bottom fig-
ure is the same as top figure without results of BCS algorithm to make the difference among
different algorithms more visible. In this experiment M = 36 and N = 144.

, LSCS and PCSBL-GAMP degrades significantly while T-SBL , NWSOMP and LSTM-CS (proposed in

this chapter) methods show less severe degradation. In very low noise environment, i.e., SNR = 46 dB,

performance of LSTM-CS, trained with just 512 cells and 200 training images, is better than other methods.

In medium noise environment, i.e., SNR = 20 dB and SNR = 26 dB, performance of LSTM-CS, T-SBL

and PCSBL-GAMP are close (although LSTM-CS is slightly better). Please note that the performance of

LSTM-CS can be further improved by using a better architecture (e.g., more cells, more training data or

more layers) as explained previously.
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(b) Results without BCS method for a more clear visibility.

Figure 4.7: Reconstruction performance of the methods discussed in this chapter for different noise
levels.

To present the phase transition diagram of solvers, we used a simple LSTM-CS solver that uses 512 cells

and just 200 training images. The performance was evaluated over the following values of m
n where n is the

number of entries in each sparse vector and m is the number of measurements per channel:

m
n
= {0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50}. (4.18)
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Figure 4.8: Phase transition diagram for different methods on MNIST dataset where 90% perfect re-
covery is considered. Assuming a perfect recovery condition of NMSE ≤ 0.6 for this dataset.
“n” is the number of entries in each sparse vector, “m” is the number of random measurements
and “k” is the number of non-zero entries in each sparse vector.

For this experiment, we randomly selected 50 images per channel from MNIST dataset. Since we have

L = 4 channels, and each image is of size 24× 24, and each image has 4 blocks of 12× 12 pixels, in total

we will have 50× 4× 4 = 800 sparse vectors. Considering Fig. 4.4, NMSE of most solvers is about 0.6.

Therefore we set the following as the condition for perfect recovery: if more than 90% of test images are

reconstructed with an NMSE of 0.6 or less, count that test image as perfectly recovered. We did this for

each m
n in (4.18). Results are presented in Fig. 4.8. Results presented in Fig.4.8 shows the reconstruction

performance improvement when LSTM-CS method is used.

We also present the performance of LSTM-CS for different number of random measurements. We used

the set of random measurements in (4.18) with n = 144. We used an LSTM with 512 cells and 400 training

images. The settings for all other methods was similar to the one described before. Results are presented

in Fig. 4.9. As observed from Fig. 4.9, using LSTM-CS method improves the reconstruction performance

compared to other methods discussed in this chapter.

4.4.2 Natural Images Dataset

For experiments on natural images we used the MSR Cambridge dataset [102]. Ten randomly selected

test images belonging to three classes of this dataset are used for experiments. The images are shown in

Fig. 4.10. We have used 64× 64 images. Each image is divided into 8× 8 blocks. After reconstructing

all blocks of an image in the decoder, the NMSE for the reconstructed image is calculated. The task is to

simultaneously encode 4 blocks (L = 4) of an image and reconstruct them in the decoder. This means that S
in (4.4) has 4 columns each one having N = 64 entries. We used 50% measurements, i.e., Y in (4.4) have 4
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(b) Results without BCS method for a more clear visibility.

Figure 4.9: Comparison of different MMV reconstruction algorithms for different number of random
measurements for MNIST dataset. In this experiment n = 144.

columns each one having M = 32 entries.

We have compared the performance of the proposed algorithm, LSTM-CS, with SOMP, T-SBL, MT-

BCS and NWSOMP. We have not included results of applying BCS per channel due its weak performance

compared to other methods (this is shown in the experiments for MNIST dataset). We have used the same

setting as the settings for the MNIST dataset for different methods which is explained in the previous section.

The only differences here are: (i) For each class of images, we have used just 55 images for training set and
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Figure 4.10: Randomly selected natural images from three different classes used for test. The first row
are “buildings”, the second row are “cows” and the third row are “flowers”.

5 images for validation set which do not include any of 10 images used for test. (ii) We have used 15 epochs

for training LSTM-CS which is enough for this dataset, compared to 25 epochs for the MNIST dataset.

The experiments were performed for two popular transforms, DCT and Wavelet, for all aforementioned

reconstruction algorithms. For the wavelet transform we used Haar wavelet transform with 3 levels of

decomposition. Results for DCT transform are presented in Fig. 4.19. Results for wavelet transform are

presented in Fig. 4.20.

To conclude the experiments section, the CPU time for different reconstruction algorithms for the MMV

problem discussed in this chapter are presented in Fig. 4.23. Each point on the curves in Fig. 4.23 is the

time spent to reconstruct each sparse vector averaged over all the 8×8 blocks in 10 test images. We observe

from this figure that the proposed algorithm is almost as fast as greedy algorithms. Please note that there

is a faster version of T-SBL that is known as TMSBL. It will improve the CPU time of T-SBL but it is still

slower than other reconstruction methods.

4.5 Expressions for the Gradients
In this section we present the final gradient expressions that are necessary to use for training the proposed

model for the MMV problem. Due to lack of space, we omit the presentation of full derivations of these

gradients.

Starting with the cost function in (4.12), we use the Nesterov method described in (4.13) to update

LSTM-CS model parameters. Here, Λ is one of the weight matrices or bias vectors {W1,W2,W3,W4,Wrec1

,Wrec2,Wrec3,Wrec4,Wp1,Wp2,Wp3,b1,b2,b3,b4} in the LSTM-CS architecture. The general format of

the gradient of the cost function, ∇L(Λ), is the same as (4.14). To calculate ∂Lr,i,τ (Λ)
∂Λ

from (4.12) we have

∂Lr,i,τ(Λ)

∂Λ
=−

N

∑
j=1

s0,r,i,τ( j)
∂ log(sr,i,τ( j))

∂Λ
. (4.19)
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Figure 4.11: Comparison of different MMV reconstruction algorithms for natural image dataset using
DCT transform and just one layer for LSTM model in LSTM-CS. Image classes from top to
bottom respectively: buildings, cows and flowers.
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Figure 4.12: Comparison of different MMV reconstruction algorithms for natural image dataset using
Wavelet transform and just one layer for LSTM model in LSTM-CS. Image classes from top to
bottom respectively: buildings, cows and flowers.
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Figure 4.13: CPU time for different MMV reconstruction algorithms. These times are for the exper-
iment using DCT transform for 10 test images from the building class. The bottom figure is
the same as top figure but without T-SBL and LS-CS to make the difference among different
methods more clear.

After a straightforward derivation of derivatives we will have

∂Lr,i,τ(Λ)

∂Λ
= (β sr,i,τ − s0,r,i,τ)

∂zτ

∂Λ
, (4.20)
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where zτ is the vector z for τ-th channel in Fig. 4.1 and β is a scalar defined as

β =
N

∑
j=1

s0,r,i,τ( j). (4.21)

Since during training data generation we have generated one hot vectors for s0, β always equals to 1.

Since we are looking at different channels as a sequence, for a more clear presentation we show any vector

corresponding to t-th channel with (t) instead of index τ . For example, zτ is represented by z(t).
Since z(t) = Uv(t) we have

∂z(t)
∂Λ

= UT ∂v(t)
∂Λ

. (4.22)

Combining (4.20), (4.21) and (4.22) we will have

∂Lr,i,t(Λ)

∂Λ
= UT (sr,i(t)− s0,r,i(t))

∂v(t)
∂Λ

. (4.23)

Starting from “t = L”-th channel, we define e(t) as

e(t) = UT (sr,i(t)− s0,r,i(t)). (4.24)

The expressions for the gradients for different parameters of LSTM-CS model are presented in the subse-

quent sections. We omit the subscripts r and i for simplicity of presentation. Please note that the final value

of the gradient is sum of gradient values over the mini-batch samples and number of channels as represented

by summations in (4.14).

4.5.1 Output Weights U
∂Lt

∂U
= (s(t)− s0(t)).v(t)T . (4.25)

4.5.2 Output Gate

For recurrent connections we have

∂Lt

∂Wrec1
= δ

rec1(t).v(t−1)T , (4.26)

where

δ
rec1(t) = o(t)◦ (1−o(t))◦h(c(t))◦ e(t). (4.27)

For input connections, W1, and peephole connections, Wp1, we will have

∂Lt

∂W1
= δ

rec1(t).r(t)T , (4.28)

∂Lt

∂Wp1
= δ

rec1(t).c(t)T . (4.29)
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The derivative for output gate bias values will be

∂Lt

∂b1
= δ

rec1(t). (4.30)

4.5.3 Input Gate

For the recurrent connections we have

∂Lt

∂Wrec3
= diag(δ rec3(t)).

∂c(t)
∂Wrec3

, (4.31)

where

δ
rec3(t) = (1−h(c(t)))◦ (1+h(c(t)))◦o(t)◦ e(t)
∂c(t)

∂Wrec3
= diag(f(t)).

∂c(t−1)
∂Wrec3

+bi(t).v(t−1)T

bi(t) = yg(t)◦ i(t)◦ (1− i(t)). (4.32)

For the input connections we will have the following:

∂Lt

∂W3
= diag(δ rec3(t)).

∂c(t)
∂W3

, (4.33)

where
∂c(t)
∂W3

= diag(f(t)).
∂c(t−1)

∂W3
+bi(t).r(t)T . (4.34)

For the peephole connections we will have

∂Lt

∂Wp3
= diag(δ rec3

y (t)).
∂c(t)
∂Wp3

, (4.35)

where
∂c(t)
∂Wp3

= diag(f(t)).
∂c(t−1)

∂Wp3
+bi(t).c(t−1)T . (4.36)

For bias values, b3, we will have

∂Lt

∂b3
= diag(δ rec3(t)).

∂c(t)
∂b3

, (4.37)

where
∂c(t)
∂b3

= diag(f(t)).
∂c(t−1)

∂b3
+bi(t). (4.38)
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4.5.4 Forget Gate

For the recurrent connections we will have

∂Lt

∂Wrec2
= diag(δ rec2(t)).

∂c(t)
∂Wrec2

, (4.39)

where

δ
rec2(t) = (1−h(c(t)))◦ (1+h(c(t)))◦o(t)◦ e(t)
∂c(t)

∂Wrec2
= diag(f(t)).

∂c(t−1)
∂Wrec2

+b f (t).v(t−1)T

b f (t) = c(t−1)◦ f(t)◦ (1− f(t)). (4.40)

For input connections to forget gate we will have

∂Lt

∂W2
= diag(δ rec2(t)).

∂c(t)
∂W2

, (4.41)

where
∂c(t)
∂W2

= diag(f(t)).
∂c(t−1)

∂W2
+b f (t).r(t)T . (4.42)

For peephole connections we have

∂Lt

∂Wp2
= diag(δ rec2(t)).

∂c(t)
∂Wp2

, (4.43)

where
∂c(t)
∂Wp2

= diag(f(t)).
∂c(t−1)

∂Wp2
+b f (t).c(t−1)T . (4.44)

For forget gate’s bias values we will have

∂Lt

∂b2
= diag(δ rec2(t)).

∂c(t)
∂b2

, (4.45)

where
∂c(t)
∂b2

= diag(f(t)).
∂c(t−1)

∂b3
+b f (t). (4.46)

4.5.5 Input without Gating (yg(t))

For recurrent connections we will have

∂Lt

∂Wrec4
= diag(δ rec4(t)).

∂c(t)
∂Wrec4

, (4.47)
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where

δ
rec4(t) = (1−h(c(t)))◦ (1+h(c(t)))◦o(t)◦ e(t)
∂c(t)

∂Wrec4
= diag(f(t)).

∂c(t−1)
∂Wrec4

+bg(t).v(t−1)T

bg(t) = i(t)◦ (1−yg(t))◦ (1+yg(t)). (4.48)

For input connections we have

∂Lt

∂W4
= diag(δ rec4(t)).

∂c(t)
∂W4

, (4.49)

where
∂c(t)
∂W4

= diag(f(t)).
∂c(t−1)

∂W4
+bg(t).r(t)T . (4.50)

For bias values we will have

∂Lt

∂b4
= diag(δ rec4(t)).

∂c(t)
∂b4

, (4.51)

where
∂c(t)
∂b4

= diag(f(t)).
∂c(t−1)

∂b4
+bg(t). (4.52)

4.5.6 Error Signal Backpropagation

Error signals are back propagated through time using following equations:

δ
rec1(t−1) = [o(t−1)◦ (1−o(t−1))◦h(c(t−1))]

◦ [WT
rec1.δ

rec1(t)+ e(t−1)], (4.53)

δ
reci(t−1) = [(1−h(c(t−1)))◦ (1+h(c(t−1)))

◦o(t−1)]◦ [WT
reci

.δ reci(t)+ e(t−1)],

f or i ∈ {2,3,4}. (4.54)

4.6 Bidirectional LSTM for MMV Problem
In this section, we present bidirectional version of LSTM-CS. Given the fact that in the MMV problem,

usually all measurement vectors are given, we can use both past and future information about the structure

of the sparse vectors in S. This means that we can perform support prediction for a given column of S,

based on both previous columns and future columns. This calls for a bidirectional learning architecture. We

use bidirectional LSTM to address this problem. We experimentally show that the proposed method in this

section outperforms [72, 95, 133] and [97].
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Figure 4.14: Block diagram of the proposed bidirectional LSTM-CS method unfolded over channels.

Method presented in this section is similar to LSTM-CS with the difference that for support prediction,

we use both left to right and right to left predictions. This is shown in Fig. 4.14. If we detect the classes (the

non-zero entries) one by one, we can use the remaining residuals after finding each class (non-zero entry)

as an appropriate input to a deep model for feature extraction. The extracted feature vectors are represented

by {−→v1 ,
−→v2 , . . . ,

−→vL} for left-to-right model and {←−v1 ,
←−v2 , . . . ,

←−vL} for right-to-left model in Fig. 4.14. Feature

vectors from both directions can be concatenated for the next step of the algorithm.

Similar to previous sections, we initialize the residual vector, r, for each channel by the measurement

vector, y, of that channel. These residual vectors, represented as r1,r2, . . . ,rL in Fig. 4.14, serve as the

inputs to the bidirectional LSTM model. The bidirectional LSTM model captures features of the residual

vectors using input weight matrices (W1,W2,W3,W4) as well as the dependency among the residual vectors

using recurrent weight matrices (Wrec1,Wrec2,Wrec3,Wrec4) and the central memory units in left-to-right and

right-to-left LSTMs. A transformation matrix U is then used to transform, [−→v ,←−v ]T ∈ℜ2ncell×1, the outputs

of each memory cell after gating for both left-to-right and right-to-left models, into the sparse vectors space,

i.e., z ∈ ℜN×1. “ncell” is the number of cells in the LSTM model. Then a softmax layer is used for each

channel to find the probability of each entry of each sparse vector being non-zero. For example, for channel
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1, the j-th output of the softmax layer is

P(s1( j)|r1) =
ez( j)

∑
N
k=1 ez(k)

. (4.55)

Rest of the method is similar to LSTM-CS described in previous sections.

To evaluate performance of bidirectional LSTM-CS, we performed experiments on three different classes

of images from a natural image dataset described in section 3.5. We used the same NMSE defined in (4.15)

to evaluate the performance of bidirectional LSTM-CS.

Five randomly selected test images from each class (flowers, buildings, cows) were used for test exper-

iments. For each class of images, we used just 55 images for training set and 5 images for validation set

which do not include any of 5 images used for test. We re-sized images to 128×128 images. Each image

was divided into 8×8 blocks. After reconstructing all blocks of an image in the decoder, the NMSE for the

reconstructed image was calculated. The task was to simultaneously encode 4 blocks (L = 4) of an image

and reconstruct them in the decoder. This meant that S in (4.4) had 4 columns each one having N = 64

entries. We used 40% measurements, thus Y in (4.4) had 4 columns each one having M = 25 entries. The

encoder was a typical compressive sensing encoder, i.e., a randomly generated matrix A. We normalized

each column of A to have unit norm. To simulate the measurement noise, we added a Gaussian noise with

standard deviation 0.005 to the measurement matrix Y in (4.4).

We compared the performance of the proposed algorithm, BLSTM-CS, with SOMP [120], MT-BCS[72],

T-SBL[133], NWSOMP[95] and LSTM-CS[97]. For MT-BCS we set the parameters of the Gamma prior

on noise variance to a = 100/0.1 and b = 1 which are the values suggested by the authors. We set the

stopping threshold to 10−8 as well. For T-SBL, we used the default values proposed by the authors. We

used T-MSBL which is a faster version of T-SBL. For NWSOMP, during training, we used one layer, 512

neurons and 15 epochs of parameters update. The experiments were performed for two popular transforms,

DCT and Wavelet, for all of the above reconstruction algorithms. For the wavelet transform, we used Haar

wavelet transform with 3 levels of decomposition. For both LSTM-CS and BLSTM-CS, we used a small

model with 16 cells. For NWSOMP we used 3 layers and 512 neurons per layers. We present results for one

class of images, buildings. The results from the other two classes of images are similar to what is presented

here. To monitor and prevent overfitting, we used 5 images per channel as the validation set and we used

early stopping if necessary. Please note that the images used for validation were not used in the training set

or in the test set. Results for DCT transform and wavelet transform are shown in Fig. 4.15.

As observed in Fig.4.15, BLSTM-CS outperforms the other methods discussed in this section for dif-

ferent sparsity levels. To evaluate run time of different methods, considering the fact that all methods are

implemented in MATLAB and run on the same machine, the CPU time shown in Fig.4.15 demonstrates that

the proposed method is faster than the Bayesian methods discussed in this section and is almost as fast as

the greedy method SOMP.
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Figure 4.15: Up: Comparative reconstruction performance using DCT transform. Middle: Recon-
struction performance using Wavelet transform. Bottom: CPU time. Note that the time is
reported for T-MSBL which is a faster version of T-SBL.
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4.7 Convolutional Deep Stacking Networks for Distributed Compressive
Sensing

In this section, we propose a method that relies on a Convolutional Deep Stacking Network (CDSN) pro-

posed in this section to capture the dependency amongst the different channels. To reconstruct the sparse

vectors, the approach is similar to LSTM-CS with the difference that we use CDSN to capture structure

information of sparse vectors. In CDSN, to capture the dependencies amongst different channels, a sliding

convolution window over the columns of the matrix S is used where each convolution window contains w

consecutive columns of S where w is the size of convolution window.

The main contributions of this section are proposing a convolutional version of the Deep Stacking Net-

works (DSNs)[29], which we refer to as CDSN, and then using CDSN to capture the dependencies among

different channels in the MMV problem. We then use a similar greedy reconstruction algorithm to LSTM-

CS at the decoder to reconstruct S.

Please note that in the sparse representation literature, the dictionary learning method [3] uses the avail-

able training data to learn the sparsifying basis (Ψ in (4.2)) that can represent the signal as compactly as

possible. The main difference between dictionary learning and our work here is that we assume the sparsi-

fying basis as given and there is no need to learn it. In other words, the sparse vectors in S are not necessarily

very sparse. We expect the performance of our method to improve by combining dictionary learning with

our proposed method. Nevertheless, in this section, we focus on the performance improvement obtained by

using the proposed approach only.

Block diagrams of the proposed method are presented in Fig. 4.16. Similar to LSTM-CS, the dashed

lines in Fig. 4.16 show that the process of reconstructing the sparse vectors repeats for a number of iterations.

At each iteration, each column of S is estimated by a separate process. The inputs to this process are the

residuals at each iteration and the outputs are the estimated columns of S.

More formally, in the proposed method, before the i-th iteration of reconstructing the j-th column of

S, i non-zero entries of that column are predicted so far. We represent the j-th column of S by s j. At the

i-th iteration, the first step predicts the location of the (i+1)-th non-zero entry of s j, using the residuals of

columns contained in a sliding convolution window. In Fig. 4.16(a), an example with convolution window of

size 3 is represented. This sliding convolution window helps in capturing the dependencies among channels.

The predicted location of the (i+ 1)-th non-zero entry is then added to the support of s j. This support is

represented by Ω j in Fig. 4.16(a). The second step finds the updated estimate of s j by solving a linear least

squares problem that finds s j given y j (the j-th column of Y) and AΩ j

ŝ j = argmin
s j

‖y j−AΩ j s j‖2
2, (4.56)

where AΩ j is a matrix that includes only those columns of A that correspond to the support of s j. The

definition of the residual matrix at the i−th iteration is Ri = Y−ASi where Si is the estimate of the sparse

matrix S at the i−th iteration. Columns of R are represented by r j, j = 1,2, . . . ,L in Fig. 4.16(a).

Now the remaining important questions are:

(i) how can we find the parameters of CDSN represented in Fig. 4.16(b), i.e., W(1)
1 ,W(1)

2 ,W(2)
1 ,W(2)

2 ,W(3)
1 ,W(3)

2 ?
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Figure 4.16: Proposed Method.
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Please note that in Fig. 4.16(b), W(l)
1 is the matrix of weights from input layer to hidden layer for the l-th

layer of CDSN and W(l)
2 is the matrix of weights from hidden layer to output layer for the l-th layer of

CDSN. Residual vectors of channel one, two and three are represented by r1,r2 and r3 respectively in Fig.

4.16(b).

(ii) how should the training data be represented to find the parameters of CDSN given that at each

iteration of the proposed method the location of one of the non-zero entries is determined? This means that

the CDSN should observe the non-zero entries in the training data one by one. In the other words, we can

not simply use the given training data (e.g., images), and an appropriate representation of it is necessary.

Question (ii) has already been addressed for LSTM-CS method described at the beginning of this chap-

ter. We address question (i) by describing the CDSN formally and explaining the training method. The

forward pass for l-th layer of CDSN represented in Fig. 4.16(b) is

h(l) =
1

1+ e−W(l)
1 z(l)

v(l) = [W(l)
2 ]T h(l). (4.57)

In (4.57), v(l) is the output vector and z(l) is the input vector of l-th layer and is defined as follows:

z(l) = [v(1),v(2), . . . ,v(l−1),r]. (4.58)

In (4.58), r is the vector formed by the concatenation of all residual vectors in each convolution window. To

find the CDSN unknown parameters W(l)
1 and W(l)

2 for each layer, l, a mean squared error cost function is

minimized

{W(l)
1 ,W(l)

2 }= argmin
{W(l)

1 ,W(l)
2 }

1
2
‖V(l)−T‖2

2, (4.59)

where T is a matrix whose columns are the target vectors in the training set and V(l) is a matrix whose

columns are the corresponding output vectors from the l-th layer. Each layer of CDSN is a one layer neural

network with a non-linear hidden layer and a linear output layer. In an CDSN, similar to a DSN [29], the

optimization problem in (4.59) is solved for each layer separately. The linearity of the output layer for each

layer of CDSN makes it possible to find a closed form solution for W(l)
2 given W(l)

1 and T

W(l)
2 =

[
H(l)[H(l)]T

]−1H(l)TT , (4.60)

where H(l) is a matrix whose columns are h(l) in (4.57) corresponding to different training samples in the

training set. To prevent overfitting and to have a reliable solution for W(l)
2 when H(l) is ill conditioned, usu-

ally an `2 regularization term is added to (4.59). In other words, to calculate W(l)
2 the following optimization
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problem is solved:

W(l)
2 = argmin

W(l)
2

1
2
‖[W(l)

2 ]T H(l)−T‖2
2 +µ‖W(l)

2 ‖
2
2, (4.61)

which results in

W(l)
2 =

[
µI+H(l)[H(l)]T

]−1H(l)TT , (4.62)

where I is the identity matrix.

To find W(l)
1 , for each layer of CDSN we use the stochastic gradient descent method. To calculate the

gradient of the cost function with respect to W(l)
1 given the fact that W(l)

2 and H(l) depend on W(l)
1 , it can be

shown [130] that the gradient of the cost function in (4.59) with respect to W(l)
1 is

∂‖V(l)−T‖2
2

∂W(l)
1

= Z(l)
[
[H(l)]T ◦ [1−H(l)]T◦

[[
H(l)]†[H(l)TT ][T[H(l)]†

]
−TT [T[H(l)]†

]]]
, (4.63)

where Z(l) is a matrix whose columns are z(l) in (4.58) corresponding to different training samples in the

training set and ◦ is the Hadamard product operator. Using the gradient information from past iterations

can help to improve the convergence speed in convex optimization problems [11]. Although the problem in

(4.59) is not necessarily convex because of the stack of non-linear hidden layers, but we found out experi-

mentally that the gradient information from the past iterations can be helpful here as well. As in [130], we

use the FISTA algorithm to accelerate the fine tuning. Therefore, the update equations for W(l)
1 at the k-th

iteration are as follow:

W(l)
1,k = Ŵ(l)

1,k−ρ
∂‖V(l)−T‖2

2

∂Ŵ(l)
1,k

mk+1 =
1
2
(1+

√
1+4m2

k)

Ŵ(l)
1,k+1 = Ŵ(l)

1,k +
mk−1

mk+1
(W(l)

1,k−W(l)
1,k−1). (4.64)

The curve of the FISTA coefficients mk−1
mk+1

with respect to the epoch number is represented Fig. 4.17. After

computing W(l)
1 from (4.64), we use the closed form formulation in (4.62) to find W(l)

2 .

Another important consideration for training the CDSN is that the cost function in (4.59) is not necessar-

ily convex, therefore the initialization of W(l)
1 before fine tuning plays an important role. For initialization

of the first layer of CDSN, we train a Restricted Boltzmann Machine (RBM) [59, 110] with Gaussian visible

units and binary hidden units. This results in the following energy function between visible units, i.e., entries
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of z(1), and hidden units, i.e., entries of h(1)

E(z(1),h(1)) =
1
2
(z(1)−b1)

T (z(1)−b1)−bT
2 h(1)− [z(1)]T W(1)

1,inith
(1), (4.65)

where b1 and b2 are vectors of bias values for the visible and hidden units respectively. The goal is to find

W(1)
1,init from the training input data, i.e., the residual vectors, z(1), in the training data generated as explained

earlier. Then we use W(1)
1,init to initialize W(1)

1 as shown in Fig. 4.16(b). This approach has been shown to be

also helpful in training neural networks and specifically autoencoders [60]. The parameters of the RBM can

be found by maximizing the log probability that the RBM assigns to the input data, which is a function of

the energy function in (4.65), using the contrastive divergence method [59]. The details on the general RBM

training method used in this work can be found at [54]. As shown in the block diagram of CDSN in Fig.

4.16(a), to initialize the parameters of the upper layers of CDSN, W(l+1)
1 , we use the learned parameters of

the lower layer, W(l)
1 , as initialization. This approach has been shown to be helpful in training DSNs [29]

and it was helpful in our task as well. This completes the description of the training method for CDSN and

the answer for question (ii).

Given the trained CDSN, a summary of the proposed reconstruction algorithm that finds the sparsest

solution S given Y and A in (4.4) is presented in Algorithm 4. We refer to this algorithm as CDSN-CS since

we have used a convolutional DSN for distributed compressive sensing. A more high level architecture of

the proposed method is also presented in Fig. 4.18.
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Algorithm 4 Distributed Compressive Sensing using Covolutional Deep Stacking Network (CDSN-CS)
Inputs: CS measurement matrix A∈ℜM×N ; matrix of measurements Y∈ℜM×L; minimum `2 norm of residual matrix
“resMin” as stopping criterion; Trained “cdsn” model; Convolution window size “w”
Output: Matrix of sparse vectors Ŝ ∈ℜN×L

Initialization: Ŝ = 0; j = 1; i = 1; Ω = /0; R = Y.
1: procedure CDSN-CS(A,Y,cdsn)
2: while i≤ N and ‖R‖2 ≤ resMin do
3: i← i+1
4: for j = 1→ L do
5: R(:, j)i← R(:, j)i−1

max(|R(:, j)i−1|)
6: v j←

cdsn([R(:, j− w
2 )i,R(:, j− w

2 +1)i, . . . ,R(:, j+ w
2 −1)i,R(:, j+ w

2 )i])
7: idx← Support(max(v j))
8: Ωi←Ωi−1∪ idx
9: ŜΩi(:, j)← (AΩi)†Y(:, j) . Least Squares

10: ŜΩC
i (:, j)← 0

11: R(:, j)i← Y(:, j)−AΩi ŜΩi(:, j)
12: end for
13: end while
14: end procedure

4.7.1 Experimental Evaluation and Discussion

In this section we experimentally demonstrate: (i) How is the performance of the proposed method in this

section compared to other reconstruction algorithms? (ii) How fast is the proposed method? (iii) What are

the effects of the convolution window size in CDSN-CS? (iv) What are the effects of the RBM initialization?

To address the above issues, we performed experiments on the same natural image dataset described

earlier in this chapter. Ten randomly selected test images from each of 3 classes of this dataset were used

for experiments. The images are shown in Fig. 4.10. The size of each of the used images was 64×64. Each

image was divided into 8× 8 non-overlapping blocks. After reconstructing all the blocks of an image, the

reconstruction error for the reconstructed image was calculated. The reconstruction error is defined similar

to (4.15). We encoded 8 blocks (L = 8) of each image simultaneously using a random measurement matrix

and reconstructed them at the decoder. Therefore, S in (4.4) had 8 columns and each column had N = 64

entries. We used 40% measurements, i.e., Y in (4.4) had 8 columns and each column had M = 25 entries.

The encoder was a typical compressive sensing encoder, i.e., A was a randomly generated matrix. Each

column of A was normalized to have unity norm. To simulate the measurement noise, Gaussian noise with

standard deviation 0.005 was added to the measurement matrix Y in (4.4). We used two popular transforms,

DCT and Wavelet, as the sparsifying basis Ψ in (4.2). For the wavelet transform we used the Haar wavelet

transform with 3 levels of decomposition. We used 55 images for the training set, 5 images for the validation

set and 10 images for the test set. The PC used to perform the experiments had an Intel(R) Core(TM) i7

CPU with clock 2.93 GHz and with 16 GB RAM.

The performance of the proposed reconstruction algorithm (CDSN-CS) was compared with 5 recon-

struction methods for the MMV problem. These methods are: 1) Simultaneous Orthogonal Matching

Pursuit (SOMP) which is a well known baseline for the MMV problem, 2) Bayesian Compressive Sens-
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Figure 4.18: High level block diagram of the proposed method.

ing (BCS)[71] applied independently on each channel, 3) Multitask Compressive Sensing (MT-BCS) [72]

which takes into account the statistical dependency among the different channels, 4) Sparse Bayesian Learn-

ing for Temporally correlated sources (T-SBL) [133] which exploits the correlation among different sources

in the MMV problem and 5) Nonlinear Weighted SOMP (NWSOMP) [95]. For the BCS method we set

the initial noise variance of i-th channel to the value suggested by the authors, i.e., std(yi)
2/100 where

i∈ {1,2,3,4,5,6,7,8} and std(.) calculates the standard deviation. The threshold for stopping the algorithm

was set to 10−8. For MT-BCS we set the parameters of the Gamma prior on noise variance to a = 100/0.1

and b = 1 which are the values suggested by the authors. We set the stopping threshold to 10−8 as well. For

T-SBL, we used the default values recommended by the authors. For NWSOMP, during training, we used

three layers, each layer having 512 neurons and 25 epochs of parameters update. For CDSN-CS, during

training, we used three layers, 64 neurons per layer with different window sizes and 25 epochs of parameter

updates. For RBM initialization, we ran 200 epochs of RBM parameter update with step size 0.01. To mon-

itor overfitting of the RBM, we used free energy as explained in [54]. For fine tuning CDSN-CS after RBM

initialization we used step size 0.002. The regularization parameter µ in (4.62) was set to 0.01. To monitor

and prevent overfitting, we used 5 images per channel as the validation set and we used early stopping if

necessary. Please note that the images used for validation were different from those used in the training set
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or in the test set.

The results for the different classes of images are presented in Fig. 4.19 for the DCT transform and in

Fig. 4.20 for the Wavelet transform. In these figures, the vertical axis is the MSE defined in (4.15) and the

horizontal axis is the number of non-zero entries in each sparse vector. The number of measurements, M,

is fixed to 25. Each point on the curves is the average of the MSEs over 10 reconstructed test images at

the decoder. For all results, we used a convolution window of size 5 because it gave the best performance

compared to other window sizes. For image class of flowers (the bottom part of Fig. 4.19 and Fig. 4.20), a

convolution window of size 7 gave better performance. As observed in these figures, CDSN-CS outperforms

the five reconstruction methods SOMP, BCS applied to each channel independently, MT-BCS, T-SBL and

NWSOMP. We believe that this improvement in the performance is due to exploiting the dependencies

among the different channels by CDSN network.

To study the effect of the convolution window size, a comparison among the different convolution win-

dow sizes in CDSN-CS for the image class “cows” with the DCT transform is presented in Fig. 4.21. As

observed from this figure, increasing the window size improves the results up to a point after which the

results do not improve any more. Since we use distinct patches from each image, we might assign this

behaviour to the fact that the residuals of image patches that are far from each other might be less correlated

than the residuals of image patches that are close to each other.

To show that RBM initialization is helpful for our task, we conducted two experiments. In the first

experiment the CDSN is trained using random initialization. In the second experiment it is trained using

RBM initialization. The results are presented in Fig. 4.22. As observed in this figure, RBM initialization

improves the reconstruction performance.

To conclude this section we present the CPU time for the different reconstruction algorithms discussed

in this section in Fig. 4.23. Since all methods are run in MATLAB and on the same machine, Fig. 4.23

gives a rough idea about how fast the different methods discussed in this section are. As observed in this

figure, the proposed method is faster than the Bayesian methods discussed and is almost as fast as the greedy

methods.

4.8 Conclusions
This chapter presents a method to reconstruct sparse vectors for the MMV problem. The proposed method

learns the structure of sparse vectors and does not rely on the commonly used joint sparsity assumption.

Through experiments on two real world datasets, we showed that the proposed method outperforms the

general MMV baseline SOMP as well as a number of Bayesian model based methods for the MMV problem.

Please note that we have not used multiple layers of LSTM or the advanced deep learning methods for

training, e.g., regularization using drop out which can improve the performance of LSTM-CS. This chapter

is a proof of concept that deep learning methods and specifically sequence modelling methods, e.g., LSTM,

can improve the performance of the MMV solvers significantly. This is specially the case when the sparsity

patterns are more complicated than that of obtained by the DCT or Wavelet transforms. We showed this

on the MNIST dataset. We showed that the proposed method is almost as fast as greedy methods. The

good performance of the proposed method depends on the availability of training data (as is the case in all
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Figure 4.19: Comparison of different MMV reconstruction algorithms performance for the natural
image dataset using DCT transform. Image classes from top to bottom are buildings, cows and
flowers respectively.
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Figure 4.20: Comparison of different MMV reconstruction algorithms performance for the natural
image dataset using Wavelet transform. Image classes from top to bottom are buildings, cows
and flowers respectively.
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Figure 4.21: The performance of CDSN-CS with different window sizes. This experiment was con-
ducted for image class of cows with DCT transform as sparsifying basis.
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Figure 4.22: The performance of CDSN-CS with and without RBM initialization. This experiment
was conducted for image class of cows with Wavelet transform as sparsifying basis.
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Figure 4.23: CPU time of different MMV reconstruction algorithms discussed in this section. Up: all
methods. Bottom: removing T-SBL and BCS to make the difference among remaining methods
more visible.

deep learning methods). In many applications, however, training data is available, e.g., different images

of the same class or signals with similar sparsity patterns. Please note that if collecting training samples

is expensive or enough training samples are not available, using other sparse reconstruction methods is

recommended. We also presented the bidirectional version of LSTM-CS along with a reconstruction method

based on Convolutional Deep Stacking Networks model proposed in this chapter.
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Chapter 5

Conclusions and Future Work

All glory comes from daring to begin.
— Eugene F Ware

5.1 Conclusions
In this thesis, we focused on deep learning methods used for sequence modelling. We approached three

important problems: speech recognition, sentence modeling for web search and distributed compressive

sensing. For each problem, we explained why the problem have a sequential nature, and then, proposed

new methods to exploit this sequential behavior. We showed effectiveness of proposed methods through

extensive experiments on real world challenging datasets. A summary of our findings are listed below:

5.1.1 Recurrent Deep Stacking Networks for Speech Recognition

The traditional Echo State Networks (ESNs) learn only the set of one of three important weight matrices. In

this work, we wanted to address the problem of how to learn them all. The key property that characterizes

the ESN is the use of linear output units so that the learning is simple, can be formulated as a convex least-

square ridge regression problem w.r.t output weights. In extending the learning of the output weights to

learning input and recurrent weights, we make use of the same property of the linear output units to develop

and formulate constraints for the sets of various ESN weight matrices. Such constraints are then used to

derive analytic forms of the error gradients w.r.t the input and recurrent weights to be learned. The standard

learning method of BPTT used for the general RNN (with typically nonlinear output units) does not admit

analytical forms of gradient computation. BPTT requires recursively propagating the error signal backward

through time, a very different style of computation and learning than what we have developed in this work

for ESNs.

A novel deep learning architecture, the R-DSN, which extends the earlier RNN and DSN models was

also proposed. The R-DSN constructs multiple modules of the RNN using stacking, in the same way that

the DSN uses stacking to form multiple modules of a simple, non-recurrent feed-forward neural network.

Alternatively, the R-DSN can be viewed as a generalization of the DSN, where the generalization lies in

embedding recurrent connections in each module that were missing in the earlier DSN. The main technical
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contribution of the work reported in this part is the development of closed-from formulas for the gradi-

ent computation based on the special structure of the R-DSN, and the batch-mode training method for all

parameters in the R-DSN capitalizing on these formulas.

The above methods were evaluated on TIMIT dataset for phoneme recognition task in speech recogni-

tion. The results were better than a single layer RNN and also almost as good as the state-of-the-art methods,

but not better than them (Tables 2.1 and 2.2).

5.1.2 A Sentence Modelling Method for Web Search Task

We proposed LSTM-DSSM, a new sentence modeling method for web search task. The proposed method

was based on long short-term memory network to learn the long range context information and embed the

key information of a sentence in one semantic vector. We showed that the semantic vector evolves over

time and only takes useful information from any new input. This has been made possible by input gates

that detect useless information and attenuate it. One important property of the proposed method was that,

it created vector representations for queries and documents in such a way that semantic representations of

queries and clicked documents are as close as possible, while, those of queries and unclicked documents are

as far as possible. This was due to LSTM-DSSM’s specific architecture and cost function.

Due to the general limitation of available human labelled data, we proposed and implemented and trained

LSTM-DSSM with a weak supervision signal using users’ click-through data of a commercial web search

engine.

By performing a detailed analysis on the model, we showed that: 1) The proposed model is robust to

noise, i.e., it mainly embeds keywords in the final semantic vector that represents the whole sentence and 2)

in the proposed model, each cell is usually allocated to keywords from a specific topic. These findings have

been supported using extensive examples.

As a concrete sample application of the proposed sentence embedding method, we evaluated it on the

important language processing task of web document retrieval. The evaluations were performed on click-

through data from a real world commercial search engine. For the task of information retrieval, the proposed

method outperformed all existing state-of-the-art methods significantly (Table 3.4).

5.1.3 A Deep Learning Approach to Distributed Compressive Sensing

We presented a new method to reconstruct sparse vectors for the MMV problem based on a deep learning

approach. The proposed method learns the structure of the sparse vectors and does not rely on the commonly

used joint sparsity assumption. More accurately, it addresses the following three important problems in the

MMV problem at the same time: (a) How to exploit structures besides sparsity during reconstruction? (b)

How to do reconstruction in the MMV problem when sparse vectors are not jointly sparse? (c) How to

exploit available offline data for a better reconstruction performance?

Through experiments on two real world datasets, we showed that the proposed method outperforms

the general MMV baseline SOMP as well as a number of Bayesian model based methods for the MMV

problem. Please note that we have not used multiple layers of LSTM or the advanced deep learning methods

for training, e.g., regularization using drop out which can improve the performance of LSTM-CS. This
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work was a proof of concept that deep learning methods and specifically sequence modelling methods, e.g.,

LSTM, can improve the performance of MMV solvers significantly. This is specially the case when the

sparsity patterns are more complicated than that obtained by the DCT or a Wavelet transform. We showed

this on the MNIST dataset. We showed that the proposed method is almost as fast as the greedy methods.

The good performance of the proposed method depends on the availability of large amount of training

data (as is the case in all deep learning methods). In many applications, enough training data is available,

e.g., different images of the same class or different signals with similar sparsity patterns. Please note that

if collecting training samples is expensive or enough training samples are not available, then using other

sparse reconstruction methods is recommended.

The above methods were evaluated on two real world image datasets, MNIST dataset and different

classes of a natural image dataset. The results were better than the well known greedy method Simultaneous

Orthogonal Matching Pursuit (SOMP) and a number of state-of-the-art model based Bayesian methods (Fig.

4.4).

5.2 Future Work
There is still a lot that can be done in the direction of developing deep sequence modelling methods for the

problems discussed in this thesis. Below is a list of reasonably “feasible” future work problems:

1. Using the proposed sentence embedding method in chapter 3, LSTM-DSSM, for other important

language processing tasks for which we believe sentence embedding plays a key role. Some examples

are: question answering, machine translation, and sentiment analysis.

2. Exploiting the prior information about the structure of the different matrices in Fig. 3.2 in chapter 3

to develop more effective cost functions and learning methods.

3. Exploiting the attention mechanism [8] in the proposed model in chapter 3 to improve the retrieval

performance and finding out which words in the query are aligned to which words of the document.

4. Using the method proposed in chapter 3 for text summarization. For example, given an article or large

body of text, the task is to automatically generate a title for it.

5. Building a multi-resolution version of the method proposed in chapter 3. This means that using a

Convolutional Neural Network (CNN) or LSTM for character level feature extraction, an LSTM on

the top to extract word / sentence level information, and having a cosine similarity cost function on

the top. This multi-resolution architecture will be learned end to end using a method similar to the

one described in chapter 3.

6. Extending the proposed method in chapter 4 to non-linear distributed compressive sensing. This

means finding the sparsest solution s in

y = f (As) (5.1)
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where f (.) is a non-linear function. This non-linearity might come from the physical properties of the

problem or we might want to add it intentionally. We should also explore what a non-linear encoder

in CS might result in.

7. Using the proposed LSTM-CS approach in chapter 4 (to reconstruct data compressed using CS), for

the following important compressive sensing applications:

(a) Magnetic Resonance Imaging (MRI) to shorten MRI scanning sessions. There are also oppor-

tunities to use LSTM-CS for Dynamic MRI where the correlation among image frames can be

effectively exploited by LSTM-CS.

(b) Computed Tomography (CT) where the goal is to reduce the amount of radiation.

(c) Video compressive sensing where there is correlation amongst the video frames.

(d) Health telemonitoring and specifically compressive sensing of EEG signals where there is cor-

relation amongst the different EEG channels.

(e) Using a modified version of LSTM-CS for Blind Compressive Sensing (BCS) [47] where both

the sparse vector s and the sparsifying basis Ψ are unknown.

(f) Using an optimized implementation of LSTM-CS for Single-Pixel cameras [34].

8. Extending the evaluation tasks in chapter 2 to more complex continuous phoneme and word recogni-

tion tasks.

9. One challenge in compressive sensing research is that there is no unified framework to reliably com-

pare all existing reconstruction methods. This is specially the case when it comes to real world

datasets. An important future work direction is to create a unified and easy to use framework, such

that, new reconstruction methods can be easily compared with existing methods.
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