
Stacked Graphs and Symmetric Groups:
Modelling the Conformation Space of

Nucleic Acids
by

Morgan Antony Roosenmaallen

B.Sc., The University of British Columbia, 2014
B.A., Lakehead University, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in

THE COLLEGE OF GRADUATE STUDIES
(Interdisciplinary Studies)

THE UNIVERSITY OF BRITISH COLUMBIA
(Okanagan)
April 2017

© Morgan Antony Roosenmaallen, 2017

Thesis Committee

The undersigned certify that they have read, and recommend to the College of
Graduate Studies for acceptance, a thesis entitled Stacked Graphs and Symmetric
Groups: Modelling the Conformation Space of Nucleic Acids, submitted byMorgan
Antony Roosenmaallen in partial fulfilment of the requirements of the degree of
Master of Science:

Javad Tavakoli, Barber School of Arts and Sciences
Supervisor, Professor

Paramjit Gill, Barber School of Arts and Sciences
Supervisory Committee Member, Professor

Yong Gao, Barber School of Arts and Sciences
Supervisory Committee Member, Professor

Robert Lalonde, Barber School of Arts and Sciences
University Examiner, Professor

Monday April 10 2017
Date Submitted to Grad Studies

ii

Abstract

This work introduces a technique for approximating the conformation space of
rigid and semi-rigid kinematic chains with finite inverse kinematic solutions using
graph-like constructs called stacked graphs. The technique is developed in the con-
text of nucleic acids, in particular ribonucleic acid (RNA), whose phosphate back-
bone can be modelled as a kinematic chain. Additionally, a process for identifying
stable RNA conformations and likely conformational pathways is demonstrated.
As a secondary result, a potentially novel relationship between stacked graphs and
symmetric groups is uncovered and briefly investigated.

iii

A Note on Notation

To facilitate ease of reading as well as to maintain consistency, a standardized
naming and indexing notations will be used. Set hierarchies are denoted by specific
cases and font styles

a ∈ A ∈  ∈ A ∈ A

where the lowest level element is always indicated by a lower-case English charac-
ter. Element indices are denoted by lower-case letters using a right-hand, ‘ascending
curl’ format, beginning with the elements hierarchical location. For example

ai ∈ A → ai ∈ A
ai ∈ Aj ∈  → aji ∈ Aj ∈ 

ai ∈ Aj ∈ k ∈ A → ak j
i ∈ A

k
j ∈ k ∈ A

ai ∈ Aj ∈ k ∈ Al ∈ A → ak j
l i ∈ Al k

j ∈ l
k ∈ Al ∈ A.

A single term, such as Al k
j , encodes not only the elements place in a hierarchy, but

the hierarchy’s total depth as well.
Two-valued scripts denote start-stop indices, as in the case of graph edges

eij ∈ E.

As numerical index values never exceed 9 in this work, commas between such in-
dices will be avoided to condense notation. Thus, e17 should be read as e1,7. Occa-
sionally, indices of (n − 1) and the like will be used, producing terms like e4(n−1).

Superscripts in the absence of subscripts denote notions of size, such as a group
composition of length n

�n

and a cycle stack of length n and size m
nm.

Graphs with vertex sets V and edge sets E are denoted by  = (V ,E). Walks,
paths, and cycles are written in edge-edge format. For example

e13 − e32 − e27. (1)

iv

A Note on Notation

All indices - vector or script - begin at 0. Vectors are accessed using [⋅] notation.
Thus if a = ⟨

1, 7,−2, 11
⟩, then a[1] = 7 and a[3] = 11.

Lower-case Greek letters are reserved for group theoretic concepts (Chapter
3), except in the case of kinematic chain parametrization, where they are used to
maintain consistency with reference works (Chapter 5). Upper-case Greek letters
are reserved for general spaces.

v

Table of Contents

Thesis Committee . ii

Abstract . iii

A Note on Notation . iv

Table of Contents . vi

List of Tables . viii

List of Figures . ix

Acknowledgements . xi

Chapter 1: Introduction . 1

Chapter 2: Stacked Graphs . 8
2.1 Motivating Example . 8
2.2 Constructing Stacked Graphs . 13
2.3 Assignments and Feasibility . 19
2.4 Feasibility of Non-Simple Stacked Graphs 33
2.5 Singular Constraints . 35

Chapter 3: Stacked Graphs and Symmetric Groups 39
3.1 Assignments and Sm . 39
3.2 Assignment Feasibility and Symmetric Group Duals 48
3.3 Duality and Non-Simple Stacked Graphs 54

Chapter 4: Linear Programming: Communication, Capacity, andCon-
tiguity . 56

4.1 Local, Regional, and Global Optimization 56
4.2 The 3C Constraints of Assignment Feasibility 57

vi

TABLE OF CONTENTS

4.2.1 Communication . 59
4.2.2 Capacity . 60
4.2.3 Contiguity . 61
4.2.4 Asinglular LP Problem Statement 61
4.2.5 Size Complexity of Asingular LP 62

4.3 Modelling Singular Constraints: ULA 64
Chapter 5: Kinematic Chains . 68

5.1 Denavit-Hartenberg Parameters 68
5.2 Forward and Inverse Kinematics 72
5.3 Kinematic Nucleic Acids . 73
5.4 Outline of Converting IK Solutions and Stacked Graphs 75

Chapter 6: Conformation Space Sampling 77
6.1 Sampling Technique . 77
6.2 Formal Definitions . 82

Chapter 7: Stacked Graphs of Conformation Spaces 95
7.1 Validating theULAConstraint andDisconnectingAssignment Com-

ponents . 98
Chapter 8: Conformation Space Simulations 102

8.1 Comparing Normalized Workspaces 102
8.1.1 A∗ Congruence Metric ΩA∗ 103
8.1.2 Vertex Stack Congruence Metric ΩV 104
8.1.3 Regional Congruence Metric Ω 105
8.1.4 Layer Congruence Metric Ω 107
8.1.5 Metrics At Infinite Resolutions 109
8.1.6 Metrics on Groups of Conformation Graphs 110

8.2 Averaged Stacked Graphs . 112
8.3 Energetics and Simulations . 113
8.4 Model Validation and Real-World Data 115

Chapter 9: Concluding Remarks and Future Research 118

Bibliography . 121

Appendices . 124
Appendix A: Constructing Unique Subscripts 124
Appendix B: Constructing Normal Coordinates 127

vii

List of Tables

Table 6.1 RNA Phosphate Backbone Bond Lengths 80
Table 6.2 RNA Phosphate Backbone Bond Angles 80
Table 6.3 Impact of Bisections on Sample Lattice Grid Length . . . 81
Table 6.4 Sample Label Ranges for nc and ne 85
Table A.1 Unique Sample Subscripts 124

viii

List of Figures

Figure 1.1 Types of RNA . 2
Figure 1.2 RNA and DNA . 3
Figure 1.3 Active and Inactive HIV 5
Figure 2.1 The Annulus f (X) and Image Approaches 10
Figure 2.2 Potential Image Approaches for f (X) 11
Figure 2.3 Stacks and Assignments on f (X) 12
Figure 2.4 Linear Approximation of f (X) 13
Figure 2.5 Edge Stack . 14
Figure 2.6 Multiple Graph Packings 16
Figure 2.7 Packed and Unpacked Diagrams 18
Figure 2.8 Valid and Invalid Edge Stack Assignments 20
Figure 2.9 Paths of a Path Stack Assignment 22
Figure 2.10 Feasible and Infeasible Assigments of 32 23
Figure 2.11 Not All Disjoint Cycle Covers of Cycle Stacks Are Feasi-

ble Assignments . 23
Figure 2.12 Extension of  (n−1)m to nm 25
Figure 2.13 Adjacency of v0a and vn−1b 26
Figure 2.14 Joined Cycle Stacks . 27
Figure 2.15 Assignment Covers of Joined Cycle Stacks of Size 2 . . . 28
Figure 2.16 Multi-Joined Cycle Stacks 29
Figure 2.17 Assignment Covers of Path Stack Connected Cycle Stacks

of Size 2 . 29
Figure 2.18 Regional Stacked Graphs 32
Figure 2.19 Identity Assignment A∗ 34
Figure 2.20 ULA Singular Feasibility Constraint 37
Figure 3.1 Sm Elements as Perfect Matchings 40
Figure 3.2 Graph Dual of � . 42
Figure 3.3 Group Dual Inverses . 45
Figure 3.4 A Bad Composition . 46

ix

LIST OF FIGURES

Figure 4.1 Linear Cycle Stacks . 58
Figure 4.2 Communication: Losing Layer Information 59
Figure 4.3 Communication: Regaining Layer Information 60
Figure 4.4 Shared Edge Stacks and LP Complexity 63
Figure 4.5 Independent Optimization and ULA 67
Figure 5.1 Examples of Kinematic Pairs 69
Figure 5.2 Parallel Kinematic Chain 70
Figure 5.3 Denavit-Hartenberg Parameters 71
Figure 5.4 3R Chain and its Workspace 72
Figure 5.5 Finite and Infinite IK Solutions 73
Figure 5.6 Phosphate Backbone as a Kinematic Chain 74
Figure 5.7 Outline of Modelling Procedure 76
Figure 6.1 Chain Parameters and Workspace Extent 78
Figure 6.2 ComparingConformation SpacesUnderDifferent Parametriza-

tions . 79
Figure 6.3 Cartesian Component Sample Labelling 83
Figure 6.4 Adjacency on Variable-Scale Lattice Graph 87
Figure 6.5 Sample Adjacency . 88
Figure 6.6 Conformational Pathways 91
Figure 7.1 Annulus Function f (X) Revisited 100
Figure 7.2 Disconnecting Annulus Components 101
Figure 8.1 Regional Identification 106
Figure 8.2 Layer Identification . 108
Figure 8.3 Lattice Grouping Technique for Real-World Sample Data 116
Figure A.1 Construction of Unique Sample Subscripts using Spirals . 126

x

Acknowledgements

I would like to thank my supervisor Javad Tavakoli for his assistance and pa-
tience in what has been a lengthy endeavour, as well as Al Vaisius for introducing
me to the research topic some four or five years ago.

xi

Chapter 1

Introduction

Ribonucleic acid, or RNA, is a complex, polymeric biomolecule which per-
forms a wide range of cellular functions. For example, messenger RNA (mRNA)
synthesized from a DNA template is the mechanism for translating the nucleotide
codons into the amino acid sequences of proteins (Figure 1.1(a)) [LNC93]. In this
process, RNAmolecules are structural components of ribosomes, which are the site
of nascent protein synthesis; as well transfer RNA (tRNA) forms covalent bonds
with amino acids to deliver them to ribosomes (Figure 1.1(b)) [LNC93]. In ad-
dition, there are a myriad of small regulatory RNAs that control gene expression.
There also exists viral RNA (vRNA), which is used by a number of viruses for
genetic information instead of DNA (Figure 1.1(c)) [LNC93].

RNA and DNA are similarly constructed from long sequences of nucleotides
and shares many of the same chemical structures, including a phosphate backbone
(Figure 1.2). The functionality of a given RNA strand is greatly influenced by its
particular conformation, or the bending, twisting, and folding of the strand about
itself and other biomolecules1. The phosphate backbone provides the primary level
of constraints for RNA conformation. Although the backbone chain of nucleic acids
consists entirely of sigma bonds, i.e. single covalent bonds, with full rotation about
the bonds, the lengths of atomic bonds in the backbone, as well as the angles be-
tween them, place strong limits on how a single nucleotide moves. An important -
and still open - question concerning RNA functionality is the exact nature of these
limits with regards to neighboring polymeric units.

Considerable research efforts have gone into studying the conformation prob-
lem [Mak08][KHP11][WKM+08][MLL08]. Loosely stated, the issue is how the
rotation of a nucleotide about the chemical bonds in its backbone relates to the
physical space the backbone exists in. More formally, the challenge is to find the
pre-image of

f ∶ [0◦, 360◦)6 → ℝ3 × [0◦, 360◦)3 (1.1)
where f is a known function.

A number of approaches have been taken by researchers. Implicitly or explic-
itly, most of them are based on mathematical constructs known as kinematic chains,

1From discussions with Al Vaisius.

1

Chapter 1. Introduction

(a) (b) (c)

Figure 1.1: a) Fragment of mouse mammary tumour virus mRNA that causes a
frame shift conformation in the mRNA , (b) yeast tRNA, and (c) a regulatory RNA
transcribed from the human immunodeficiency virus, HIV, pro-viral DNA. Images
from [Dat16], NDB IDs are 1RNK, TRNA03, and 1ANR, respectively.

models of rigid objects that dominate the field of robotics[Ang07]. Chemical bonds
and angles are treated as fixed instead of the semi-flexible objects they are and the
machinery of kinematic chains is used to generate descriptions of RNA’s confor-
mation space, or full range of possible bendings and twistings. f (Equation 1.1)
becomes a description of the chain, usually represented as a product of transforma-
tion matrices.

In the case of individual backbones, [Mak08] developed a numerical technique
for finding the pre-image f−1 for individual points in the conformation space (i.e.
specific conformations), later generalizing it to multiple backbones using Monte
Carlo methods [MCM11]. Similar results were produced by [PRT+07] for general
chemical structures, though at the cost of computational speed. [KHP11] took the
approach of reducing the dimensionality of the problem by replacing the six back-
bone torsion angles with two. Although the reduction supposedly captures the bulk
of information for multi-nucleotide backbones, its nevertheless discards consider-
able available data. In a different vein, kinematic chains are used in [WKM+08]
to correct steric clashes, the energetically-unfavourable collision of atoms resulting
from certain conformations, in existing crystallographic data. There is at least one
case where f−1 has been solved analytically, although in the context of proteins and

2

Chapter 1. Introduction

(a) (b)

Figure 1.2: Dinucleotide strands of (a) DNA and (b) RNA, both consisting of the
same two nucleosides, cytosine and adenosine (colored boxes), the structures of
which are not shown. The structure of the phosphate backbone, which for a single
nucleotide consists of the atoms between successive phosphate atoms, inclusively,
is the same for both DNA and RNA. The key difference between the two molecules
is the presence of a hydroxyl group (OH) in the sugar ring of RNA. Figures from
[LNC93].

3

Chapter 1. Introduction

at the expense of idealizing bond angle values [MLL08]2.
By defining a phosphate backbone as a special kind of redundant kinematic

chain, the problem of solving the entirety of f−1 is theoretically possible using the
technique of [PRT+07]. Indeed, this approach was originally pursued by myself,
however the process was both inelegant and impractical: it more than double the
number of variables by introducing seven new degrees of freedom3.

The primary limitation of previous attempts to solve the RNA conformation
problem is the very assumption which allowed them to use kinematic chains in
the first place - that phosphate backbones are rigid objects. Chemical bonds are
inherently flexible, undergoing compression and extension, while the mathematics
modelling them is strictly rigid. The conformation problem for RNA can thus be
considered as a special case of a more general problem in the theory of kinematic
chains, namely how to incorporate semi-rigid objects in a rigid mathematics. It is
the general problem that this work seeks to address, with its development conducted
through the lens of RNA to provide a concrete example.

The main aim of this work, technically stated, is to approximate subsets of the
conformation space of arbitrary kinematic chains which provide finite inverse kine-
matic (IK) solutions, or finite values for f−1 in Equation 1.1. Infinite solutions
are treated as boundaries between these finite regions. The semi-rigidity of chain
components is accounted for by repeated approximations of the range of each com-
ponent’s flexibility, then averaging them to form a new approximation.

While the technique applies, in theory, to the finite components of any type of
kinematic chain, we’ll be restricting our analysis almost exclusively to 6R chains,
the kinematic equivalent of a linear molecule consisting of six sigma bonds, of
which the phosphate backbone is one. In addition, the technique is predicated on
the existence of high-speed algorithms, specifically, those that can quickly solve
IK solutions. Fortunately, such algorithms exist for 6R chains [MC94] in general
and phosphate backbones specifically [Mak08]. Should these algorithms ultimately
prove too slow, however, or should they not exist for certain other types of chains,
then the technique is not without merit - it simply anticipates the products of future
research.

Two related sub-problems concerning RNA are also addressed. The first in-
volves identifying stable conformations, or the set of energetically favourable states
of a backbone, while the second involves identifying likely pathways between any
two conformations. Conformational pathways, the continuous sequence of bend-
ings and twistings that RNA takes to move from one conformation to another, have
important applications in the field of pharmaceutical development. RNA-based

2A sequence of three amino acids has an associated kinematic chain similar to that of RNA.
3The process involved incorporating two spherical and one prismatic kinematic pairs.

4

Chapter 1. Introduction

(a) (b)

Figure 1.3: (a) A portion of HIV-1 TAR RNA in an inactive state, prior to binding
to another biomolecule, and (b) the same, nearly identical portion in HIV-2 in an
active state post-binding. Although the two structures are from different strains of
HIV, the binding properties are similar [BW97]. Images from [Dat16], NDB IDs
are 1ANR and 1AJU, respectively.

5

Chapter 1. Introduction

based diseases can be at least partially driven by conformational changes in RNA4.
In the case of HIV, there exist two conformations for an important trans-activator
regulating RNA, TAR, that is involved in the kinetics of HIV provirus transcription
and resultant infectivity (Figure 1.3) [BW97]. Should the conformational path-
way(s) between the two states be identified, it may be possible to design drugs that
specifically target regions of the viral RNA that block the pathway(s), effectively
inactivating it.

There are three research goals to this work:
1. Generate approximations for the finite inverse kinematic components of ar-

bitrary kinematic chains, with specific focus on individual RNA phosphate
backbones, that account for semi-flexible components;

2. Identify energetically favourable conformations for individual backbones;
3. Identify energetically favourable pathways between conformations for indi-

vidual backbones.
In order to address these goals, it was necessary to construct novel graph-like

structures called stacked graphs. Chapters 2 through 4 are dedicated to introducing
these structures. Chapter 2 defines stacked graphs and the basics of their mathemat-
ics, including the notion of feasible assignments, or ‘solutions’ to stacked graphs
that, in our case, approximate conformation spaces. The chapter culminates in The-
orem 2.31, which provides necessary and sufficient conditions for assignment fea-
sibility. Chapter 3 explores the close relationship between stacked graphs and the
symmetric groups. While the chapter is not required to solve the conformation
problem, it does provide a succinct notation for modelling it, as well as being a
subject worthy of discussion in and of itself. Chapter 4 constructs a linear program
for finding minimally weighted feasible assignments, or optimal approximations to
a conformation space that satisfy the conditions of Theorem 2.31.

Chapters 5 through 8 focus on the techniques and mathematics required to write
the phosphate backbone conformation space problem in terms of stacked graphs.
Chapter 5 reviews the theory of kinematic chains to a level sufficient to understand
the conformation space problem. Chapter 6 describes the methodology for sam-
pling a conformation space, in addition to formally defining the conformation prob-
lem. These samples form a data set from which, in Chapter 7, a stacked graph will
be constructed. The optimal feasible assignment to this stacked graph is shown to
be an approximation to the conformation space problem for rigid kinematic chains.
In Chapter 8 we define a number of metrics for determining the accuracy of our ap-
proximations. In addition, we locate stable conformations for individual phosphate

4From discussions with Al Vasius.

6

Chapter 1. Introduction

backbones as well as likely conformational pathways by converting stacked graphs
into Markov chains. Finally, a new kind of ‘averaged’ stacked graph is defined to
account for semi-flexible kinematic chains. Chapter 9 reviews the work and details
primary topics that need to be addressed by future research.

As far as I am aware, the theory of stacked graphs is original to this work. I have
been unable to find an equivalent to it in existing literature, although a previous
discovery is certainly possible.

7

Chapter 2

Stacked Graphs

This chapter introduces stacked graphs. The first section provides a non-technical
example of what is meant by ‘approximating a conformation space’ using a pair
of curves, while presenting stacked graphs in an intuitive manner. Only a limited
mathematical background is assumed in this section. The remaining portions of the
chapter formally construct the mathematics of stacked graphs.

2.1 Motivating Example

Suppose we have a mapping f between two metric spaces5
f ∶ X → Y (2.1)

where f is neither one-to-one nor onto6. We’ll further suppose that we cannot
find f (X) explicitly, although we know that f (X) consists of a finite number of
connected components. We have, however, a subset S of X where f (xi) is known
for all xi ∈ S, and where each f (xi) consists of a finite number of elements in Y

f (xi) = {yij|j = 0, 1, 2,…m, ∀xi ∈ Sn}. (2.2)
Perhaps f is a real world function describing natural phenomenon we wish to un-
derstand and each f (xi) is an experimental sample. Or, perhaps f is an inverse
image of a function and each f (xi) is a numerical approximation. In either case,
we would like to know whether we can use the elements S to approximate the en-
tirety of f (X). The following example suggests that this is possible in some cases.

Let f (X) be the stretched annulus of Figure 2.1(a), although we don’t know it
is. We’ll take our sample point-set S in X to be

S ∶= {xi|xi < xi+1, i = 0, 1,… , 12, xi ∈ X}. (2.3)
By looking at Figure 2.1(a), the following two properties for are intuitively true if
|S| is sufficiently large and S provides good coverage of X. First, (almost) every

5Spaces that have a notion of ‘distance’.
6A single point inX may map to many points in Y , but not ever point in Y can be arrived at from

a point in X.

8

2.1. Motivating Example

two successive values xi and xi+1 will have images f (xi) and f (xi+1), respectively,
of equal size

|f (xi)| = |f (xi+1)|. (2.4)
Second, for (almost) every successive pair xi and xi+1, for every value yij in f (xi)
there is exactly one ‘special’ value yi+1k in f (xi+1) such that, as the distance between
xi and xi+1 approaches zero, the distance between these special pairs of values also
approaches zero. Technically stated,
|f (xi) − f (xi+1)| → ∞ ⟹ ∀yij ∈ f (xi) ∃! y

i+1
k ∈ f (xi+1) ∋ |yij − y

i+1
k | → 0.

(2.5)
Figure 2.1 illustrates both properties. The ‘almost’ qualifier exists as there are cases
where these conditions do not hold (i.e. f (x3) and f (x4)). However, the number
of cases is finite. The properties as they related to the conformation space problem
are discussed in detail in Chapter 7. At present, we’ll take them as given.

While we know that there exist pairs of values, one each from f (xi) and f (xi+1),
that approach each other in the limit, we don’t know which pair. We only know that
such pairs exist. As a result, we must consider every possible approach between
successive image sets (Figure 2.2).

To this end, we view each image set as a ‘stack’ of vertices and the set of possible
approaches between each successive image pair f (xi) and f (xi+1) as a ‘stack’ of
edges. These vertex and edge stacks form a succession of complete bipartite graphs
(Figure 2.3(a)). Let Vi be the vertex associate with f (xi) and Ei(i+1) be the edge
stack between Vi and Vi+1. When |fxi| = |f (xi+1)|, an approach ‘solution’ is a
perfect matching or set of disjoint edges [Fou92] mapping each vertex in Vi to a
unique vertex in Vi+1. There are many possible matchings, or ‘assignments’.

One possible‘assignment for our sample set S is show in bold line in Figure
2.3(b). The assignment gives a reasonable approximation of f (X), though there
is an obvious error in the lower portion between V6 andV7. There is also the issue
of what to make of edge stacks whose vertex stacks are of different sizes, which
results when |fxi| ≠ |f (xi+1)|, such as between V3 and V4, and V10 and V11. These
‘singularities’ add a layer of complication that cannot be address in this preliminary
section.

Determining the best set of approaches for an edge stack is related to the classic
weighted bipartite matching, or assignment, problem [AMO93], and involves linear
optimization. If S is large enough and covers X, then the optimal] assignment on
S forms a piece-wise linear approximation of f (X). For our choice of S above the
best approximation of f (X) is that of Figure 2.4.

The above annulus example is a mathematical introduction to the primary aim
of this work. Instead of an annulus, the mapping f we wish to approximate, which

9

2.1. Motivating Example

(a)

(b)

Figure 2.1: (a) The annulus f (X)with awell-distributed collection of sample points
xi. Note that f (x0) is empty. Most xi have the same number of image values f (xi)
as xi+1. (b) In each of these cases, one value in f (xi) is on the same portion of the
annulus as exactly one value in f (xi+1), so that, if xi and xi+1 were to approach
each other, the two corresponding values in f (xi) and f (xi+1) would do likewise,
as with f (x5) and f (x6).

10

2.1. Motivating Example

(a) (b)

Figure 2.2: (a) As f (X) is unknown, its possible that y52 approaches any one of y60,
y61, y62, and y63. (b) We must therefore assume all possible approaches.

corresponds to the phosphate backbone conformation space, is actually the inverse
image of a six-dimensional manifold. The limit behaviour as f (xi) approaches
f (xi+1) is expressed as shrinking neighbourhoods of open sets, while the singulari-
ties produced when |f (xi)| ≠ |f (xi+1)| result, in part, when there is an intervening
xk ∈ X

xi < xk < xi+1 (2.6)
where |f (xk)| is uncountable. The rest of this chapter is dedicated to developing the
mathematics of stacked graphs necessary for our project. The optimization compo-
nent for finding minimally weighted assignments is the subject of Chapter 4. The
intervening Chapter 3 develops amethod of writing stacked graphs, which are rather
complicated, in simple algebraic terms. That the approximation in Figure 2.4 does
not produce the disjoint components of f (X) is a consequence of how singularities
are handled. It’s possible, however, to interpolate disjointedness in certain cases.
This is covered briefly in Section 7.1.

11

2.1. Motivating Example

(a)

(b)

Figure 2.3: (a) The conversion of each f (xi) to vertex stack Vi produces a complete
bipartite graph between every successive pair Vi and Vi+1. (b) Creating an assign-
ment (bold), or set of approach solutions, for every edge stack Ei(i+1), or bipartite
graph, produces a linear approximation to f (X) (dashed).

12

2.2. Constructing Stacked Graphs

Figure 2.4: An optimal linear approximation to f (X) based on S.

2.2 Constructing Stacked Graphs

Stacked graphs are a class of graphs formed by replacing each vertex with a set
of indexed vertices and each edge with a complete bipartite graph between adjacent
vertex stacks.
Definition 2.1 (Stacked Graphs). A vertex stack is an indexed set of vertices

Vk ∶= {vki |i = 0, 1,… , m}. (2.7)
The size of a vertex stack is |Vk|. An edge stack is the complete bipartite graph
formed between the vertices of two vertex stacks, Vp and Vq7

Epq ∶= {e
pq
ij |i = 0, 1,… , |Vp| − 1; j = 0, 1,… , |Vq| − 1}. (2.8)

Let = {Vk | k = 0, 1,…} be a set of vertex stacks and  = {Epq | Vp, Vq ∈ }
be a set of edge stacks formed on  . Then G = ( , ) is a stacked graph.

If Epq ∈ G, then Vp and Vq are adjacent. If |Vp| = |Vq|, then the Epq is asin-
gular. Otherwise, it’s singular. The size of an asingular Epq, denoted by |Epq|, is
|Vp|. If Epq is singular and |Vp| > |Vq|, then Vp is the collapsing vertex stack and
Vq is the expanding vertex stack of Epq.

7A complete bipartite graph consists of two sets of vertices Va and Vb where every vertex in Va isadjacent to every vertex in Vb, but no edge exists between vertices within Va or Vb [Bol79].

13

2.2. Constructing Stacked Graphs

If G is composed entirely of singular edge stacks, then G is singular. The same
applies in the asingular case. If G is neither singular nor asingular, it’s mixed. If G
is asingular and connected, then the size of G, |G|, is |Epq| for some Epq ∈ G8.

Examples of singular and asingular edge stacks are shown in Figure 2.5.

Figure 2.5: Adjacent stacks Vp and Vq form an asingular stack Epq since |Vp| =
|Vq| = 4. However, Ep′q′ is singular as |Vp′| = 2 and |Vq′| = 3.

Stacked graphs maintain all the properties of ‘unstacked’ graphs: every graph
concept has an analogous stacked version.
Definition 2.2 (Stacked Analogues). A stacked analogue is a graph structure in
which every vertex stack Vk or edge stack Epq is viewed as a single vertex vk or
edge epq.

For example, a path stack is a path composed of vertex and edge stacks
Vi − Eij − Vj − Ejk − Vk −…

or
Eij − Ejk −… .

The naming convention for stacked analogues is to either postfix a term with
the word ‘stack’, or prefix it with ‘stacked’. Both are legitimate.9

8It’s possible that an asingular disconnected G contains vertex stacks of different sizes, as isolated
vertex stacks of different sizes can exist in asingular G.

9With the exception of stacked graphs - such as a stacked lattice graph - preference is given to
using ‘stack’ over ‘stacked’. Saying ‘stacked path’ and ‘stacked cycle’ is rather awkward.

14

2.2. Constructing Stacked Graphs

Aswith stacked graphs in general, stacked analogues take one of three following
forms, depending on the nature of the constituent edge stacks: singular, asingular,
ormixed. If an analogue is asingular, its size is the size of its constituent edge stacks.

Due to their ubiquity, it will help to have a succinct notation for path and cycle
stacks.
Definition 2.3 (Path and Cycle Stacks). A path stack of length n is n. If it’s
asingular size m, then its denoted by nm. Cycle stacks are similarly defined for n
and nm.

It may at times be helpful to view stacked graphs as unstacked graphs, and vice
versa.
Definition 2.4 (Un/Packing Graphs). If a stacked graphG is viewed as an unstacked
graph, that is, as a collection of vertices and edges, not vertex and edge stacks, then
G is denoted by G, read as G unpacked as .

Likewise, if ′ is graph isomorphic to some G, then ′ can be viewed as the
stacked graph, G, read  packed as G.

Packing and unpacking can be restricted to paths, cycles, and their stacked ana-
logues, such as nm

 and nm .
The process of unpacking a stacked graph exposes the edges and nodes, while

packaging an unstacked graph hides them. We mention packings only in passing as
they’re not necessary for this work. In general, packings are not unique and every 
has at least one trivial packaging, formed by assigning to each vertex in  a vertex
stack of size one. Figure 2.6 gives an example of different packings for a small
graph.

Given any graph , it’s possible to generate an asingular stacked graph G with
the same underlying structure, and vice versa.
Definition 2.5 (Graph Collapse and Expansion). The mth expansion of , ̂m, is the
asingular stacked graph formed by replacing all vertices and edges in  with vertex
and edge stacks of size m.

Likewise, if G is singular, asingular, or mixed, then the collapse of G, Ǧ, is the
graph formed by replacing each vertex and edge stack in G with a single vertex and
edge, respectively.

As with un/packings, collapses and expansions can be restricted to structures

15

2.2. Constructing Stacked Graphs

(a) (b) (c)

(d) (e)

Figure 2.6: (a) An unstacked graph  and five packings G: (b) the trivial packing
and packings producing (c) four, (d) three, and (e) two vertex stacks. Vertices of
the same color are part of the same stack.

16

2.2. Constructing Stacked Graphs

such as paths (stacks) and cycles (stacks)10
̌nm → P n

P̂ nm → nm

̌nm → Cn

Ĉnm → nm

Expansions, collapses, and unpacking introduce five of ways of modifying or
viewing the graphical structures  and G: ̂m, ̂m , G, Ǧ, and Ǧ.
Lemma 2.6. Every unstacked graph  can be treated as a stacked graph of size 1
by taking the first expansion, ̂1. The processes can be reversed by unpacking ̂1.
That is

 = ̂1.

Unpacking is thus the inverse function of the first expansion.

Proof. The proof is obvious.
First expansions ̂1 provide a sort of ‘wrapper’ function for unstacked graphs,

allowing us to treat them as being stacked. Analogues, on the other hand, let us
treat stacked graphs as ‘graph-like’ objects in their own right: path stack connec-
tivity is identical to path connectivity - except with path stacks. To limit confusion,
however, we need to keep track of the words ‘stack’ and ‘stacked’. Unless they’re
explicitly used, it’s assumed that we’re dealingwith unstacked structures/properties.

Drawing stacked graphs is difficult. Explicitly displaying edges epqij of some G
while making the underlying structure of G obvious leads to extremely crowded
diagram. This is true in even the simplest cases where G consists of few edge
stacks, all of which are asingular and of small size. To facilitate ease of reading,
two different graphical notations are used, depending on the needs at hand.
Definition 2.7 (Packed and Upacked Diagrams). For any stacked graph G, the un-
packed diagram of G show the vertices and edges of each constituent vertex and
edge stack, while the packed diagram shows only the vertex and edge stacks.

Figure 2.7 illustrates the difference between packed an unpacked diagrams.
When large unpacked stacked graphs are used, the vertex labels will often be sup-
pressed and vertices will be coloured instead, as in Figures 2.6 and 2.18.

Singular and asingular edge stacks are wildly different creatures. In the case of
mixed G, being able to work with its singular and asingular components separately
will prove useful.

10This is one reason why consistent usage of style is important: P̂ nm and nm have two different
meanings, even if though the former produces the latter.

17

2.2. Constructing Stacked Graphs

(a) (b)

Figure 2.7: The (a) unpacked and (b) packed diagrams of 32.

Definition 2.8 (De/Singularization of G). Let the set of singular edge stacks of
any G be ̉ . Then G̐ is the desingularization of G, or the asingular stacked graph
induced by G

G̐ ∶= ( ,  − ̉). (2.9)
Similarly, G̉ 11 is the singularization ofG, or the singular stacked graph induced

by G
G̉ ∶= ( , ̉). (2.10)

Fact 2.9. If G is asingular, than G̐ = G and G̉ has no edge stacks. If G is singular,
then G̉ = G and G̐ has no edge stack.

The connected component stacks of G̐ and the edge stacks of G̉ are special.
Definition 2.10 (Regions). The set of connected component stacks of G̐, G, are
the regions of G

G ∶= {i | i = 0, 1,…}. (2.11)
All vertex stacks Vk ∈ i are of the same size12, which is also the size ofi, |i|.
Definition 2.11 (Regional Boundaries). If r and t are two regions of G such
that |r| ≠ |t|, with Vp ∈ r, Vq ∈ t and Epq ∈ G, then Epq ∈ G̉. The set
of all such edge stacks for r and t is the (singular) boundary between r and
t, denoted by ̉rt. If |r| > |t|, then r is the collapsing region and t is the
expanding region.

11Concerning the accents used, ̐ resembles two disjoint regions, while ̉ resembles the negative
space of ̐ .

12This is easily derivable and need not be part of the definition.

18

2.3. Assignments and Feasibility

If ̉rt is non-empty, then r and t are adjacent, otherwise they are not adja-
cent.

Regions are connected component stacks, not components. If G is singular,
then G̐ has no edges and every node is disconnected. G̐ would thus have a large
number of components, but G̐ would have only || component stacks, or regions.
Asingular cycle stacks are a core feature of stacked graphs and will be used to form
the stacked analogue of a cycle basis.
Definition 2.12 (Fringe and Core ofG). LetEpq be any asingular edge stack inG. If
Epq belongs to an asingular cycle stack, then Epq is a cyclic edge stack. Otherwise
Epq is an acyclic edge stack.

The stacked sub-graph of G composed of all acyclic edges stacks of G is the
fringe G̃ of G, while the stacked sub-graph composed of all cyclic edge stacks is the
core of G̊13.
Fact 2.13. G̃ is a tree or forest.

Fact 2.13 follows immediately from the definition of G̃.
Lemma 2.14 (Fringe, Core, and Singular Edges of G). For any G, the three sub-
graph stacks G̃, G̊, and G̉ partition the edge stacks  of G into disjoint sets.

Proof. Every edge stack is singular, asingular and part of a cycle stack, or asingular
and not part of a cycle stacks.

Thus there exists an equivalence relation on  of G with three classes defined
by G̃, G̊, and G̉.

2.3 Assignments and Feasibility

Assignments are essentially special kinds of network flow solutions to G.
Definition 2.15 (Edge Stack Assignment). An assignment A on Epq

Apq ∶= A(Epq)

is an onto mapping from the collapsing vertex stack of Epq to the expanding one.
If Epq is asingular, then the mapping is one-to-one and onto.

13Concerning the accents used, ̊ resembles a cycle while ̃ resembles a path.

19

2.3. Assignments and Feasibility

(a) (b) (c) (d) (e)

Figure 2.8: Asingular edge stacks assignments (bold lines) that are (a) valid and
(b) invalid. For singular edge stacks, the number of assignment edges is equal to
the largest size of the two vertex stacks. A (c) valid assignment ensures that every
vertex in one stack is adjacent to at least one vertex in the other while (d) invalid
singular assignments may have insufficient edges and/or (e) incomplete adjacency.

The flow value14 of epqij under Apq is denoted by xpqij . Unless otherwise stated,flow values are binary
xpqij ∈ {0, 1}. (2.12)

If Apq maps vpi to vqj , then xpqij = 1 and xpqij = 0 otherwise.
Let |Vp| ≥ |Vq|. The ith edge flow of Apq, denoted by xpqi , corresponds to the

edge incident on vpi whose flow value is non-zero15.
Figure 2.8 gives an example of valid and invalid assignments for both singular

and asingular edge stacks.
Definition 2.16 (Stacked Graph Assignment). An assignment A on G, A(G), pro-
vides an assignment Apq for every Epq ∈ G.

If ℍ is a sub-stacked graph of G and A an assignment on G, then A(ℍ) is the
restriction of A to ℍ.

We’ll often treat assignments as unstacked graphs in their own right. When
referring to ‘an edge of Apq’, we actually mean an edge in A(Epq) with non-zero
flow. This allows us to write things like

epqij ∈ Apq (2.13)
14Flow values form solutions to network flow problems [AMO93].
15By the definition of an assignment, such an edge always exist and exists.

20

2.3. Assignments and Feasibility

which, though technically incorrect, provides a useful shorthand. Diagramatically,
assignments will always be indicated as bold edges.

Assignments on Epq are related to the classic assignment problems on bipartite
graphs [AMO93]. Similarly, assignments on G can be thought of as solutions to a
collection of inter-related assignment problems.

Not all assignments are created equal, however.
Definition 2.17 (Assignment Feasibility). Let A be an assignment on G. Then
A(G) is feasible if, for every Vp ∈ G, the vertices of Vp are path disjoint in A(G̐).
Otherwise, A(G) is infeasible.

Equivalently, A(G) is feasible if, for any path connected vertices vpi and vpj in
A(G), every path connecting them contains at least one edge belonging to a singular
edge stack.

The remainder of this section is dedicated to proving necessary and sufficient
conditions for assignment feasibility, culminating in Theorems 2.31 and 2.32. The
process begins by looking at the application of assignments to path stacks.
Theorem 2.18 (Paths of a Path Stack). For any assignmentA on an asingular path
stack nm, A(nm) consists of exactly m disjoint paths of length n. If nm begins at
Va and ends at Vb, then each path of length n in A(nm) begins at a vertex vai and
ends at a vertex vbj . Furthermore, the maximum length of a path in A(nm) is n.

Proof. By definition, for each Epq in nm, Apq consists of m disjoint edges, or
paths of length 1. For any adjacent pair Epq and Eqr in nm, every edge epqij ∈ Apq
is adjacent to exactly one edge eqrjk. Thus an assignment on any path stack of length
2

Epq − Eqr
consists of m disjoint paths of length 2. By induction on the length of nm, A(nm)
consists of m disjoint paths of length n.

Two corollaries follow from Theorem 2.18.
Corollary 2.19. All assignments A on any asingular nm are feasible.

Proof. The proof follows from that of Theorem 2.18 by induction on n and m.
Corollary 2.20. The disjoint paths Pi of A(nm) for any A are isomorphic to nm

and form a disjoint vertex cover of nm
 .

Proof. By definition of an assignment on asingular edge stacks, every vpi ∈ Vp
maps to exactly one vqj ∈ Vq. Thus epqij is isomorphic to Epq and each vertex in Vp
and Vq is covered by some edge inApq. By induction on the edge stacks, every path
Pi ∈ A(nm) is isomorphic to nm and form a covering of the vertices in nm

 .

21

2.3. Assignments and Feasibility

Figure 2.9 gives an example of a feasible assignment on 44. From it, it’s easy
to visualize the proof of Corollary 2.20.

Figure 2.9: Any assignment A on a path stack 44 will create 4 paths of length 4.

We now turn tomaintaining assignment feasibility onmore complicated graphs,
starting with cycle stacks.

Consider an asingular, 3-cycle stack, 32, formed by V0, V1, and V2. Assign-
ment A0(32) (Figure 2.10(a)) is infeasible as v00 and v01 are path connected by

v00 − v
1
0 − v

2
1 − v

0
1. (2.14)

In fact, all vertices are path connected since A0(32) describes a vertex cycle cover
consisting of a single cycle. A1(32), however, is feasible (Fig 2.10(b)). The two
connected components ofA1(C32) each contain exactly one vertex from each vertex
stack.

A1(32) suggests a necessary condition for assignment feasibility of cycle stacks.
Lemma 2.21. If A is a feasible assignment on asingular nm, then A(nm) forms a
disjoint cycle cover of the vertices of nm .

Proof. The proof relies on the asingular nature of nm. It follows from the definition
of edge stack assignments (Definition 2.15) that, for any two adjacent edge stacks
Epq and Eqw in nm, every vqj is adjacent on exactly two other vertices vpi and vwk
in A(nm). This implies that every vertex belongs to a cycle16. By assumption,
A(nm) is feasible, so that intra-vertex stack vertices are path disconnected. Thus,
all vertices in a given vertex stack belong to disjoint cycles. A(nm) is therefore a
disjoint cycle cover of the vertices of nm .

16If they did not, then they would necessarily belong to a path. However, paths of non-zero length
consist of at least two vertices incident on only a single edge.

22

2.3. Assignments and Feasibility

(a) (b)

Figure 2.10: (a) A0(32) does not enforce path disjointedness of intra-stack nodes
while (b) A1(32) does.

The converse is not true. Figure 2.11 gives an example of a disjoint cycle cover
on 42 which is neither feasible nor an assignment.

Figure 2.11: A disjoint cycle cover of 42 that does not form a feasible assignment.

Lemma 2.22. If A is feasible on some nm, then there are m disjoint cycles in
A(nm), each of length n.

Proof. By definition of a cycle, a cycle stack is a path stack that starts and ends
on the same vertex stack Vk. Viewed as a path stack, by Theorem 2.18 there exist
m disjoint paths of length n in A(nm), each starting and ending in Vk. However,

23

2.3. Assignments and Feasibility

since A(nm) is feasible, it is necessarily the case that each path starts and ends on
the same vertex in Vk in order to prevent path connectedness between the nodes of
Vk. Thus, each path is a cycle and disjoint. Therefore, there are m disjoint cycles
of length n in A(nm).

Theorem 2.22 leads to a key theorem about asingular cycle stacks and their
feasible assignments.
Theorem 2.23 (Disjoint Cycles of Feasible Asingular Cycle Stack Assignments).
Let A be an assignment on asingular nm. Then, A(nm) is feasible if and only if it
forms a disjoint cycle cover of the vertices of nm , consisting of m cycles, each of
length n.17

Proof. For the forward portion, see proofs for Lemmas 2.21 and 2.22. The proof for
the backwards portion, that an assignment which produces an appropriate disjoint
cycle cover is necessarily feasible, is as follows.

Let  (n−1)m be the asingular path stack
 (n−1)m ∶= E01 − E12 −⋯ − E(n−2)(n−1) (2.15)

and let A be some assignment on it. Introduce a new edge stack E(n−1)0 and append
it to  (n−1)m to create the asingular cycle stack nm (Figure 2.12). In addition,
introduce an assignment A(n−1)0 onto E(n−1)0.

Let A(nm) be the extension of A applied to  (n−1)m by incorporating A(n−1)0.
In other words, A( (n−1)m) is the proper sub-graph of A(nm) formed by removing
the edges of A(n−1)0. By Corollary 2.19, A( (n−1)m) is feasible, meaning that the
feasibility of A(nm) is dependent on A(n−1)0.

From Theorem 2.18 we know that A( (n−1)m) consists of m disjoint paths of
length n − 1. Without loss of generality, choose path Pi. Let v0a and vn−1b for some
a, b ∈ {0, 1,… , (m−1)} be the first and last nodes of Pi, respectively. By Definition
2.15, vn−1b is adjacent to exactly one vertex in V0. If vn−1b is not adjacent to v0a, itforms a path with a length of at least 2n − 1 (Figure 2.13(a)) and includes two
vertices in V0, violating the assumption of independence. Thus vn−1b is adjacent to
v0a, which forms a cycle Ci of length n containing only a single vertex from each
vertex stack (Figure 2.13(b)).

As each cycle Ci contains exactly one vertex from each vertex stack, and as
each vertex stack is of size m, it follows that there are m disjoint cycles of length n.

Therefore, if A(nm) is a disjoint cycle cover of the vertices of nm consisting
of m cycles of length n, A(nm) is feasible.

17We’re assuming the disjoint cover cycle is produced by an assignment. We know there exist
disjoint cover cycles for some nm consisting of m cycles of length n that do not form assignments
(Figure 2.11).

24

2.3. Assignments and Feasibility

Figure 2.12:  (n−1)m extended to nm by the inclusion of E(n−1)0, with m = 2.

There are two special cases for assignment feasibility on nm, namely when
n = 1 and n = 2. These are addressed in Section 2.4.
Corollary 2.24. IfA is a feasible assignment on any asingular nm, then the disjoint
cycles Ci of A(nm) are isomorphic to nm.

Proof. See proof for Corollary 2.20.
Theorem 2.23 provides necessary and sufficient conditions for assignment fea-

sibility on arbitrary asingular cycle stacks. This leads immediately to necessary and
sufficient conditions for assignment feasibility on any asingular G.
Theorem 2.25 (Feasibility of G). For any assignment A on G, A(G) is feasible if
and only if, for every asingular cycle stack nm in G, A(nm) is feasible.

Proof. For the forward component, A(nm) is a sub-graph of A(G), so that any two
vertices vpi and vqj that are path disconnected in A(G) are necessarily so in A(nm).For the backward component, every vertex stack belongs to a path and/or cycle
stack. As feasibility is defined on asingular path and cycle stacks alone, we need
only consider vertex stacks in them. If Vi is contained in one or more cycle stacks,
then, by assumption, the vertices in Vi are disjoint under A. If Vi is not in some
cycle stack, then it is necessarily in one or more path stacks. By Corollary 2.19, all
A(nm) are feasible, and by assumption, all A(nm) are feasible. Therefore A(G) is
feasible.

The conditions of Theorem 2.25 conditions are imposing: it requires that every
asingular cycle stack be checked for feasibility underA, which is tedious at best and

25

2.3. Assignments and Feasibility

(a) (b)

Figure 2.13: Example of an assignment on  (n−1)m and nm, with m = 2. If the end
of path Pi (blue) does not coincide with its start (red) via E(n−1)0, a path of length
2n−1 is formed (a). However, by assumptionA(nm) is composed of disjoint cycles
of length n, implying that all paths are at most length n−1. It must be the case then
that Pi ends where it starts via E(n−1)0 to form a cycle (b).

highly impractical in general. Fortunately, the conditions can be reduced to apply
solely to the basis of a stacked graph’s cycle stacks.
Lemma 2.26 (Feasibility of Joined Cycle Stacks). Let G be asingular, of size m,
and composed of two cycle stacks rm and tm which share a single common path
stack sm of length s < min{r, t} (Figure 2.14). In other words,

rm ∩E tm = sm (2.16)
where ∩E denotes the edge stacks shared between two stacked graph structures.
Then assignment A on G is feasible if and only if A(rm) and A(tm) are both
feasible.

Proof. The forward component is true by Theorem 2.25. For the backward com-
ponent, the key is that sm is shared by both cycle stacks. By Theorem 2.18 and
Corollary 2.19, A(sm) creates m disjoint paths Pk, irrespective of A’s details. In
addition, by Theorem 2.23, A(rm) and A(tm) each form m disjoint cycles, Ci and
C ′j , respectively. Because sm is a stacked subgraph of by both cycle stacks, these
two properties imply that every disjoint cycle in A(rm) shares a path of length
s with exactly one disjoint cycle in A(tm). Thus vertices disjoint in A(rm) and
A(tm) are also disjoint in A(G) (Figure 2.15).

Therefore, if both A(rm) and A(tm) are feasible, A(G) is feasible.

26

2.3. Assignments and Feasibility

Figure 2.14: Asingular G formed by rm (blue and green) and tm (red and green)
which share a single path sm (green).

Lemma 2.26 can be generalized to two cycle stacks that share multiple disjoint
paths.
Lemma 2.27 (Feasibility of Multi-Joined Cycle Stacks). Let G be as in Theorem
2.26 except that tm and tm share multiple disjoint path stacks am, bm, etc.
(Figure 2.16). Then an assignment A on G is feasible if and only if A(rm) and
A(tm) are feasible.

Proof. The proof is the inductive application of the proof for Theorem 2.26 on each
shared path stack. Each path in A(am) is connected to one path in A(bm), which
is connected to one path in A(cm), etc., each of which is part of a single cycle in
A(rm) and a single cycle in A(tm).

Lemma 2.26 also applies when s = 0. In this case, rm and tm share only a
single vertex stack. This can be generalized to apply to any two disjoint cycle stacks
path stack connected to each other.
Lemma 2.28 (Feasibility of Path Stack Connected Cycle Stacks). Let G be asin-
gular, of size m, and composed of two edge stack disjoint cycle stacks rm and tm
which are path stack connected by sm such that

rm ∩E sm = ∅ (2.17)
tm ∩E sm = ∅, (2.18)

where is ∩E is as in Theorem 2.26 (Figure 2.17). Then an assignment A on G is
feasible if and only if A(rm) and A(tm) are both feasible.

27

2.3. Assignments and Feasibility

Figure 2.15: If every Ci and C ′j contain exactly one Pk as a stacked subgraph, it’s
necessarily the case that m disjoint covers of G are formed. In the case of m = 2,
for example, two covers can be formed by C0 and C ′1 sharing P1, and C1 and C ′0sharing P0.

Proof. The proof is similar to that of Lemma 2.26 in that every disjoint cycle of
A(rm) is connected to a single disjoint cycle inA(tm) via a single path inA(sm),
and vice versa. Again, the details of A(sm) are irrelevant.

Lemmas 2.26 through 2.28 provide the components necessary to show that fea-
sibility is preserved under the disjoint union of cycle stacks. The result is that, as
a basis can always be found for the cycles of a graph - and consequently the cycle
stacks of a stacked graph - and as cycles are formed via the disjoint union of basis
cycles, then a feasible cycle stacks basis implies that all cycle stacks are feasible,
and, consequently, an the entire assignment A(G).
Theorem 2.29 (Feasibility of Cores). For asingular G and assignment A on it,
A(G) is feasible if and only if A(G̊) is feasible.

Proof. The proof is the same for Theorem 2.25.
Corollary 2.30 (Feasibility of Fringes). For asingular G and assignment A on it,
A(G̃) is always feasible.

28

2.3. Assignments and Feasibility

Figure 2.16: 9m and 8m multi-joined by 1m and 2m.

Figure 2.17: Two edge stack disjoint cycle stacks rm and tm joined by sm.

Proof. By definition, G̃ contains only edge stacks that are not part of cycle stacks
in G. Therefore, there are no cycle stacks in G̃. By Corollary 2.19 and Theorem
2.25, A(G̃) is feasible.

Recall that a spanning tree of a connected graph  is a connected sub-graph
which covers the vertices of  and contains no cycles. The fundamental cycles
of a spanning tree are the cycles created by adding back the edges in  that were
removed when creating the spanning tree [AMO93]. For any spanning tree of , the
associated fundamental cycles form a basis for the cycle space of  [Bol79]. That
is, every cycle in  can be written as a disjoint union of some set of fundamental
cycles.

This leads to the first cornerstone theorem of this work.
Theorem 2.31 (Feasibility of Fundamental Cycle Stacks). Let G = ( , ) be asin-
gular and of size m, and let T be a spanning tree stack of G. In addition, let

29

2.3. Assignments and Feasibility

T = {i|i = 0, 1,… , k − 1} be the set of fundamental cycle stacks associated
with T , where k = ||− | |+1 18. Then any assignment A on G is feasible if and
only if A(i) is feasible for all i ∈ T .

Proof. The forward component is true by Theorem 2.25. For the backwards com-
ponent, all cycle stacks of T of are feasible. Any two fundamental cycles i and
j form one of three types: they are joined by one or more shared path stacks, or
are disjoint but still path stack connected, or both. In the first case, Lemmas 2.26
and 2.27 ensure feasibility is preserved, while Lemma 2.28 does the same for the
second case. The third case is the combination of the first to, so that feasibilit is
preserved. Therefore, A(G) ia feasible.

The restriction of Theorem 2.31 to asingular G is merely one of notational con-
venience: it applies to any G when spanning trees and forests are produce for G̐.

The nice things about Theorem 2.31 is not only that any spanning tree can be
used, but also that the associated fundamental cycles can be found in time com-
plexity  (

| |

2) [AMO93], which is independent of the size of the edge stacks in
G.

The second cornerstone theorem describes the nature of connected components
in feasible A(G).
Theorem 2.32 (Layers and Sublayers). If G is asingular and of size m, and if A is
feasible on G, then A(G) produces a set ℍG of m connected components i

ℍG ∶= {i|i = 0, 1,… , m − 1} (2.19)
where eachi is isomorphic to G. ℍG are the layers of A(G) andi is the ith layer
of A(G).

If G is singular or mixed, then any feasible A(G̐) produces |G| regions i,
each consisting of |i| components isomorphic to i. The set ℍi of connected
components i

j in A(i)

ℍi ∶= {i
j|j = 0, 1,… , |i| − 1} (2.20)

are the layers of A(i), where i
j is the j

th layer ofi.
For any connected stacked subgraph of a regioni, the set ℍ of connected

components j of A()

ℍ ∶= {j|j = 0, 1,… , |i| − 1} (2.21)
are the sub-layers of A(), where j is the j

th sub-layer of A().
18The number of fundamental cycles for a graph is derived in [AMO93].

30

2.3. Assignments and Feasibility

Proof. By Theorems 2.18 and 2.23, all feasible assignments on any nm or nm

producem disjoint cycles or paths that are, by Corollaries 2.20 and 2.24, isomorphic
to their parent object. The isomorphism proofs are by induction on the cycle and
path stacks of G or its regions.

Before ending this section, two more concepts will prove useful: assingular
assignment constraints and regional stacked graphs.
Definition 2.33 (Asingular Assignment Constraints). LetEpq be asingular andA an
assignment on it. Apq is fully constrained if the values of all xpqij ∈ Apq are requiredto take specific value (i.e. they’re parameters and not variables). If only some are
restricted, then Apq is partially constrained. Otherwise, it is unconstrained.

If A is an assignment on some nm so that all disjoint paths in A(nm) are re-
quired to start and end on specific vertices, thenA(nm) is fully constrained. If only
some are so required, then A(nm) is partially constrained. Otherwise it is uncon-
strained. If there are additional constraints on A(nm) so that the paths of A(nm)
must pass through one or more additional, specific vertices, these are termed inter-
nal constraints with the specified vertices called waypoints.
Lemma 2.34 (Fully Constrained Asingular Cycle Stack Assignments). Assign-
ments on asingular cycle stacks are fully constrained.

Proof. See the proof of Theorem 2.23.
Definition 2.35 (Regional Stacked Graphs ℝG). For any stacked graph G, the re-
gional stacked graph ofG,ℝG, is the stacked graph formed by replacing each region
s ∈ G with a vertex stack Vs, where |Vs| = |s|. Edge stack Est ∈ ℝG exists
only if the singular boundary ̉st in G is non-empty. Each vertex vsi is associatedwith layer s

i .
Regional stacked graphs abstract the details of individual layers and focus on

the relationship between them. Paths in ℝG represent broad-scale descriptions of
connectedness between layers through regional boundaries.

Figure 2.18 provides an example of regional stacked graphs using both packed
and unpacked diagrams.

Notice that the vertices in ℝG represent abstract layers as layers are only prop-
erly defined in the context of assignments (Theorem 2.32). The same theorem,
however, tells us that, regardless of the assignment, we always know the number
of layers a feasible assignment will produce. We can therefore discuss layers in a
general sense without the complexities involved when working with assignments.

But what of assignments on ℝG? Since ℝG is a stacked graph, we should be
able to define assignments on it. While technically true, such assignment will be

31

2.3. Assignments and Feasibility

(a) (b)

(c) (d)

Figure 2.18: The (a) unpacked and (b) packed diagrams of some G and its regional
stacked graph, as well as its (c) unpacked and (d) packed regional stacked graph
ℝG. 0 consists of edge stacks E56 and E67, 1 consists solely of E34, and 2
consists of E01, E12, and E20. Singular boundary ̉01 in ℝG consists of singular
edges E45 and E47, while ̉12 consists only of E23.

32

2.4. Feasibility of Non-Simple Stacked Graphs

largely meaningless. The value of xrtij ∈ A(ℝG) for some A indicates whether layer
r
i is adjacent tot

j through ̉rt, but little more; we know nothing of which vertices
are in which layer.

When we remember that ℝG is a derived structure, it isn’t too hard to imagine
that derivatives of assignments can also be had.
Definition 2.36 (Derived Assignments A(ℝG)). Let A be a feasible assignment on
some G. Then A(ℝG) is a derived assignment that can be defined in two ways:
binary and proportional.

In a binary assignment, for each ertij ∈ Ert, Ert ∈ ℝG, xrtij = 1 if there is at
least one vertex in r

i adjacent to a vertex in t
j , and xrtij = 0 if there isn’t. In the

proportional assignment, xrtij is a proportional measure of such edges, defined by

xrtij ∶=

|

|

|

|

{

xabcd
|

|

|

Aab ∈ A(̉rt), h(vac) = r
i and h(vbd) = t

j

}

|

|

|

|

|

|

|

|

{

xabcd
|

|

|

Aab ∈ A(̉rt), h(vac) = r
i

}

|

|

|

|

(2.22)

where h(⋅) is the layer function which returns the layer of a vertex19.
Binary assignments are used to indicate whether it’s possible to move directly

between layers of adjacent regions. Proportional assignments give a measure of
how likely such movement is as the ratio of the number of adjacencies that exist
between two layers of two adjacent regions to the total number of possible adja-
cencies for the same layers. The proportional assignment A(ℝG) is one instance of
where assignment flow values xrtij are non-binary.

Note that in a binary assignment xrtij = xtrji. This is not generally true in a
proportional assignment. In Section 2.5 we introduce a technique for ensuring that
feasible assignments are such that A(ℝG) is always binary, the Uniform Adjacency
Constraint. There are theoretical reasons why binary assignments are desirable.
These are discussed in Section 7.1 and Chapter 8.

2.4 Feasibility of Non-Simple Stacked Graphs

The distinguishing characteristic between simple and non-simple stacked graphs
is that non-simple stacked graphs contain loop stacks and multi-edge stacks, or cy-
cle stacks of length one and two, respectively. Curiously, however, and much to our
satisfaction, little difference exists between the two from a feasibility perspective.

19The function is undefined in the absence of an assignment.

33

2.4. Feasibility of Non-Simple Stacked Graphs

Lemma 2.37 (Feasible Assignments on Loop Stacks). For any asingular stacked
loop Epp, or 1m, the only feasible assignment App is such that

App ∶= {e
pp
ii |i = 0, 1,… , |Epp − 1|}, (2.23)

or xppij = 1 if i = j and x
pp
ij = 0 otherwise.

Proof. App is feasible if vpi and vpj are disjoint when i ≠ j. Thus eppij ∉ App when i ≠
j. Therefore, App can consists only of edges eppii , which is a valid assignment.

The assignment defined in Lemma 2.37 will play an important role throughout
this work, and so is worthy of its own notation. Figure 2.19 illustrates the assign-
ment.
Definition 2.38 (Identity Assignment). For any asingular edge stack Epq, the iden-
tity assignment A∗ is

A∗pq ∶= {e
pq
ii |e

pq
ii ∈ Epq, i = 0, 1,… , |Epq| − 1}, (2.24)

or xppij = 1 if i = j and xppij = 0 otherwise. As A∗ has the same construction for all
Epq, the subscript of A∗pq can be dropped.

Figure 2.19: The identity assignment A∗.

Lemma 2.39 (Feasible Assignments on Multi-Edge Stacks). Let 2m be the asin-
gular cycle stack defined by Epq − Eqp. Then assignment A on 2m is feasible if

epqij ∈ Apq ⟺ eqpji ∈ Aqp. (2.25)
Equivalently, if Epq and E′p′q′ are two different edge stacks between Vp and Vq, then
Apq and A′pq are feasible if and only if Apq = A

′
pq.

34

2.5. Singular Constraints

Proof. The forward and backward components involve identical proofs. If epqij ∈
Apq but eqpji ∉ Aqp, then A(2m) is not feasible as epqij − epqjk, k ≠ j, is a path in
A(2m) so that vpi and vpk are not disjoint. Therefore, eqpji ∈ Aqp.

Lemmas 2.37 and 2.39 lead directly to the following theorem concerning non-
simple stacked graphs.
Theorem 2.40 (Degeneracy of Non-Simple Stacked Graph Assignment Feasibil-
ity). Let G be an asingular, non-simple stacked graph. In addition, let G′ be the
sub-graph of G formed by removing all loop stacks and all but one edge stack in
every multi-edge stack. Then, for any feasible assignment A′ on G′, there is exactly
one feasible assignment A on G such that A′ ⊂ A.

Proof. The only edges in G that are not in G′ are those associated with loop and
multi-edge stacks. In addition, the only cycles in G that are not in G′ are likewise
associated with loop and multi-edge stacks. By Lemma 2.37, there is only one
feasible assignment on loop stacks, A∗. Thus, if G′′ is the stacked graph formed by
adding the loop stacks of G to G′, there is only one feasible assignment A′′ on G′′
such that A′ ⊂ A′′.

Similarly, let Epq
i be the ith edge stack for some multi-edge stack in G and let

Epq
k be the one edge stack preserved in G′. Then, by Lemma 2.39, it must be the

case that Apqi and Apqk have the same structure for all i. Thus, if G′′′ is the stacked
graph formed by adding the multi-edge stacks ofG not inG′ toG′, there is only one
feasible assignment A′′′ on G′′′ such that A′ ⊂ A′′′.

As A′′ and A′′′ are uniquely feasible and defined by G′′ and G′′′, it follows that
A ∶= A′′ ∪ A′′′ is the only feasible assignment on G for which A ⊂ A′.

In short, Theorem 2.40 states that every asingular, non-simple stacked graph
degenerates into an asingular, simple stacked graph where finding feasible assign-
ments on the latter immediately produces an associated - and unique - assignment
on the former. We can therefore ignore non-simple stacked graphs and focus our
attention solely on simple ones.

2.5 Singular Constraints

Our definition of assignment feasibility ignores singular edge stacks (Definition
2.17). This does not imply that singularities are entirely free of constraints, however.
There may be conditions on singular assignments which need to be met in order for
them to be considered feasible in the context of whatever problem is beingmodelled
using G.

35

2.5. Singular Constraints

The assignment feasibility condition in Definition 2.17 is in a sense the basic
condition. It may be necessary to impose additional conditions to reflect known or
suspected relationships existing in the data that vertex stacks represent. To this end,
we introduce non-basic singular feasibility constraints.
Definition 2.41 (Non-Basic Singular Constraints). Let Epq ∈ G be singular with
|Vp| > |Vq|. A set of non-basic singular feasibility constraints on Epq define addi-
tional restrictions that must be satisfied by any A on Epq for Apq to be considered
feasible. Collapsing constraints define how Vp maps to Vq, while expanding con-
straints define the reverse, from Vq to Vp. When both collapsing and expanding
constraints are part of the definition, then the constraint is mixed.

If feasibility constraints are at least partially defined on labelled structures20,
then they are labelled constraints, otherwise they are unlabelled constraints.

If the same constraints are applied to every edge stack in G̉, then singular fea-
sibility is consistent, otherwise it is inconsistent.

If no additional constraints are used so that only that of Definition 2.17 hold,
the singular feasibility constraints are considered basic.

One such non-basic constraint is Uniform Layer Adjacency.
Definition 2.42 (Uniform Layer Adjacency). Let A be an assignment G with re-
gions r and t, |r| > |t|, and a non-empty ̉rt. The Uniform Layer Adja-
cency constraint (ULA) requires that all vertices in the collapsing vertex stacks of
A(̉rt) of the same layer must be adjacent to vertices in expanding vertex stacks all
belonging to the same, single layer.

Formally, A(̉rt) is feasible if for any xcdab = 1 in A(̉rt) with vca ∈ r and
vdb ∈ t such that

h(vca) = r
x and h(vdb) = t

y (2.26)
then

h(vpi) = r
x and h(vqj) = t

y (2.27)
for all xpqij = 1 with vpi ∈ r and vqj ∈ t.

The ULA constraint means that movement between layers through singular
boundaries is consistent (Figure 2.20). It also plays nicely with derived assign-
ments.
Lemma 2.43. Feasible assignments A on G satisfying the ULA constraint produce
derived assignments A(ℝG) whose proportional and binary forms are identical.

20Such as on specific vertex or (sub-)layer numbers.

36

2.5. Singular Constraints

(a) (b)

Figure 2.20: Let V0 and V1 be of size 3 and in the same region r, V2 be size 2 in
t, and ̉rt = {E02, E13}. ULA requires that sub-layers in r (blue, yellow, and
red vertices) map uniformly to sub-layers int (grey and green vertices). Both (a)
and (b) are feasible assignments as (a) maps {blue, yellow} → green and {red} →
grey, while (b) maps {yellow, red} → grey and {blue} → green.

37

2.5. Singular Constraints

Proof. Either all vertices inr
x are adjacent to vertices int

y, or none are. Conse-quently, the set in the numerator of Equation 2.22 is the same as the denominator
or empty. The proportional measure xrtij is therefore either 0 or 1.

38

Chapter 3

Stacked Graphs and Symmetric
Groups

In this chapter we explore the connection between stacked graphs and the sym-
metric groups Sm, namely, how any desingularized stacked graph G̐ can be written
as a system of group compositions, and vice versa. The relationship between sin-
gular edge stacks and Sm is not discussed in this work, being unimportant to the
project, but is certainly worthy of future consideration

To better reflect their connection with stacked graphs, group compositions of
the form

� ∗ � ∗ � ∗ � (3.1)
are read left to right, not right to left as is general practice. The basic properties and
definitions of group theory below are based on [Fra03].

3.1 Assignments and Sm
The elements of symmetric group Sm are defined as the m! permutations of m

element, which we’ll take to be the first m integers, including 0. Elements can be
represented in a two-line notation. For example, in

� ∶=
(0 1 2 3

2 1 3 0
)

, (3.2)

where � ∈ S4, the sequence
0 1 2 3 (3.3)

is permuted into
2 1 3 0 (3.4)

with � mapping 0 to 2, 1 to 1, 2 to 3, and 3 to 0. These individual mappings are
called transpositions. The transposition of a with b is written as

(a b) (3.5)

39

3.1. Assignments and Sm

with every element of Sm capable of being written as a product of transpositions.
For example

� =
(0 1 2 3

2 1 3 0
)

= (11)(02)(03). (3.6)
Theorem 3.1. [Fra03, Corollary 9.12] Any permutation of a finite set of at least 2
elements can be written as a product of transpositions. [Corollary 9.12, Fraleigh]

Permutations on m elements can be viewed as perfect matching on the com-
plete bipartite graph mm21. This is equivalent to a bijection between two sets of m
elements, or an automorphism on m elements. Figure 3.1 illustrates � as a perfect
matching on 44.

Figure 3.1: The complete bipartite graph44 consists of every edge, thick and thin,
while � - a perfect matching or, in our case, bijective mapping of the left vertices
to the right vertices - consists of only the thick lines. The matching is a graphical
representation of the two-line permutation Equation 3.2.

Clearly, there is a relationship between Figure 3.1 and our edge stacks and as-
signments.
Definition 3.2 (Edge Stack Group Duals). LetA be an assignment on asingularEpq
of size m. Then Apq is isomorphic to an element �pq ∈ Sm. Apq is the (stacked)
graph dual of �pq and �pq the (symmetric) group dual of Apq. If no assignment
exist on Epq, then group dual of Epq is denoted by �pq, where �pq is an unidentified
element in Sm. Formally

epqij ∈ Apq ⟺ (ij) ∈ �pq. (3.7)
Every edge in an assignment is isomorphic to a transposition. If epqij ∈ Apq,

then epqij is the graph dual of transposition (ij) in �pq, which is denoted by �pqij .
21Matchings on graphs are subsets of edges that are edge-independent (i.e. share no common

vertices) while perfect matchings are those that cover a graph’s vertex set [Fou92].

40

3.1. Assignments and Sm

If the transposition details of �pq are unknown so that the value of j is unknown
in �pqij , then we define the ith transpose of �pq to be �pqi , which always exists22. As
�pq is a group element, �pqi is also used to indicated the (unknown) ith transposition
of �pq 23.

The two-line notation of �pq is written as

�pq =
(

�p0 �p1 . . . �pm−1
�qw0 �w1 … �qwm−1

)

(3.8)

where �pi and �qwi are the group duals of the vertices vpi and vqwi in epqiwi 24. The groupduals of vertices are precisely the integers 0 through m − 1
�pi , �

q
wi
∈ {0, 1,… , m − 1} (3.9)

with �pi = �pj and �qwi = �qwj only when i = j.
Finally, the group dual of xpqij is denoted by �pqij .
For every assignment Apq on an asingular edge stack, there is a corresponding

symmetric group element; for every edge in Apq, a transposition. In light of Figure
3.1, the isomorphisms are obvious enough to avoid a formal proof 25.

The graph dual of � (Figure 3.2) is identical to Figure 3.1, save for the vertex
labels.

The two-line notation for group duals is cumbersome for general �pq. For a
concrete example, the two-line notation for � is

(

�p0 �p1 �p2 �p3
�q2 �q1 �q3 �q0

)

. (3.10)

Notice that the subscripts in Equation 3.10 are identical to the values in Equation
3.2.

The single most important group dual is, of course, the identity element, whose
associated graph dual is a familiar one.

22This is the group interpretation of the ith edge flow in Definition 2.15.
23There is some abuse of notation here. Technically, �pq should be Epq , or capital epsilon, sincegroup elements are sets of transpositions. However, we’ve intentionally restricted ourself to lower-

case Greek letters for group theoretic concepts.
24The group dual is Greek nu. The visual similarity is deliberate.
25The relationship between perfect matchings and permutations is not novel to this work. However,

I’ve been unable to locate existing literature generalizing the relationship to sequences of matchings
- our ‘stacked’ graphs - and sequences of permutations, or compositions, in Sm. This chapter is
therefore original, up to the knowledge of it’s author.

41

3.1. Assignments and Sm

Figure 3.2: To form a graph dual, � requires - at this stage arbitrary - double
subscripts. Thus if � → �pq, the graph dual is Apq.

Fact 3.3. The identity element � of Sm
(

0 1 . . . m-1
0 1 . . . m-1

)

(3.11)

is the group dual of A∗.

A note of caution. The term �pq represents an abstract element in Sm, or a set
of unidentified transpositions. There are some difficulties with using �pqij and �pqi as
it’s possible to write group elements as a product of transpositions (Theorem 3.1)
in multiple ways. For example

� ∶= (12)(35)

can also be written as
� = (12)(35)(46)(46).

Transpositions (46)(46) - which together can represent the identity � [Fra03] - are
part of the second representation of �, but not the first. The statement ‘transposition
(ij) of �’, is therefore poorly defined. To correct this, we’ll assume that transpo-
sition representations are minimal so that if � ∈ Sm, exactly m transposition are
present, which may include one or more identities (ii) as in the case of � in Equa-
tion 3.6.

Group duals can be extended to path and cycle stacks.
Definition 3.4 (Duality of Path and Cycle Stacks). Let nm be the asingular path
stack

nm ∶= E01 − E12 −⋯ − E(n−2)(n−1). (3.12)

42

3.1. Assignments and Sm

The symmetric group dual of nm is the composition
�n ∶= �01 ∗ �12 ∗⋯ ∗ �(n−2)(n−1). (3.13)

If A is an assignment on nm such that
A(nm) = A01 − A12 −⋯ − A(n−2)(n−1), (3.14)

then the group dual of A(nm) is the composition
�(�n) ∶= �01 ∗ �12 ∗⋯ ∗ �(n−2)(n−1). (3.15)

Similarly, for nm
nm ∶= E01 − E12 −⋯ − E(n−1)0, (3.16)

the group dual of nm is the composition
�n ∶= �01 ∗ �12 ∗⋯ ∗ �(n−1)0 (3.17)

while the group dual of A on nm is the composition
�(�n) ∶= �01 ∗ �12 ∗⋯ ∗ �(n−1)0. (3.18)

The stacked graph structures nm and nm are the (stacked) graph duals of �n and
�n, respectively, while A(nm) and A(nm) are the (stacked) graph duals of �(�n)
and �(�n), respectively.

If the size of the symmetric group that each dual belongs to is important, group
duals of path and cycle stacks can be augmented to �nm and �nm, respectively.
Fact 3.5. Path stacks, cycle stacks, and assignments on them are isomorphic to
their group duals.

While it is common practice to omit the operation symbol ∗, it will be main-
tained here to emphasize the relation between path and cycle stacks with their group
compositions as well as to space an otherwise cramped notation. The operationwill,
however, be dropped when dealing with transpositions.

As withEpq andApq, it’s important to stress the difference between �pq and �pq:
�pq is an unspecified element in Sm while �pq is a particular value that �pq takes on.
If �n is the group dual of nm and �(�n) the group dual of an assignmentA on nm,
the underlying structure of �(�n) is defined by �n; �(�n) is a particular valuation
of �n.

This highlights a key conceptual difference between stacked graphs and their
group duals: even when there is no assignment on some Epq, there is an implicit,
unknown assignment associated with �pq. There is always a perfect matching or
set of network flows xpqij associated with some �pq, which is not the case with edge
stacks. This, as we’ll soon see, is a wonderful property.

Being elements of a group, group duals have inverses.

43

3.1. Assignments and Sm

Theorem 3.6 (Inverse of Edge Stack Group Duals). Let A be an assignment on
some asingular Epq. Then the inverse of its group dual �pq is �qp. That is,

�−1pq = �qp.

Proof. Let |Epq| = m. The edge set of Apq is a vertex disjoint set
{epqij |i, j = 0, 1,… , m − 1} (3.19)

while that of Aq′p′ is
{eq

′p′
ij |i, j = 0, 1,… , m − 1} (3.20)

with eq′p′ij = eqpji
26. As a result, the path stack

Epq − Eq′p′ (3.21)
has the assignment

Apq − Aq′p′ , (3.22)
where each disjoint path Pi is of the form epqij −e

q′p′
ji , which is equivalent to epqij −eqpji .An example of this is shown in shown in Figure 3.3. In two-line notation, the group

dual of Apq − Aq′p′ is

�pq ∗ �q′p′ =
(

�p0 . . . �pm−1
�qw0 . . . �qwm−1

)

∗

(

�q
′

0 . . . �q
′

m−1
�p

′

w0 . . . �p
′

wm−1

)

(3.23)

=
(

�p0 . . . �pm−1
�qw0 . . . �qwm−1

)

∗
(

�qw0 . . . �qwm−1
�p0 . . . �pm−1

)

(3.24)

=
(

�p0 . . . �pm−1
�p0 . . . �qm−1

)

(3.25)

or the identity element �. Therefore �−1pq = �qp.
Implicit in Theorem 3.6, which also applies to unassigned Epq and its dual �pq,

is that while stacked graphs can often be treated as undirected, group duals treat
them as inherently directed, with inverses denoting changes in direction.
Theorem 3.7 (Inverse of Path Stack Group Duals). If A is an assignment on nm

so that
A(nm) = A01 − A12 −⋯ − A(n−1)n (3.26)

26Primes are introduced to prevent Epq − Eq′p′ from being a pair of parallel edges between Vp and
Vq .

44

3.1. Assignments and Sm

Figure 3.3: An example of Apq − Aq′p′ where |Epq| = 4.

with group dual
�(�n) = �01 ∗ �12 ∗⋯ ∗ �(n−1)n (3.27)

then the inverse of �(�n) is the group dual of

A(̄nm) = An(n−1) −⋯ − A21 − A10, (3.28)
or

�(�̄n) = �n(n−1) ∗⋯ ∗ �21 ∗ �10, (3.29)
where ̄nm is nm in the opposite direction.

Proof. For any composition � ∗ �, the inverse of � ∗ � is �−1 ∗ �−1 [Rom12].
Thus the inverse of �(�n) is

�(�n)−1 = �−1(n−1)n ∗⋯ ∗ �−112 ∗ �
−1
01 . (3.30)

By Theorem 3.6, we have
�−1(n−1)n ∗⋯ ∗ �−112 ∗ �

−1
01 = �n(n−1) ∗⋯ ∗ �21 ∗ �10 (3.31)

so that
�(�n)−1 = �(�̄n) (3.32)

with
�(�n) ∗ �(�̄n) = �01 ∗ �12 ∗⋯ ∗ �(n−1)n ∗ �n(n−1) ∗⋯ ∗ �21 ∗ �10

= �. (3.33)

45

3.1. Assignments and Sm

Theorem 3.8 (Inverse of Cycle Stack Group Duals). If A is an assignment on nm
so that

A(nm) = A01 − A12 −⋯ − An0 (3.34)
with group dual

�(�n) = �01 ∗ �12 ∗⋯ ∗ �n0 (3.35)
then the inverse of �(�n) is the group dual of

A(̄nm) = A0n −⋯ − A21 − A10, (3.36)
or

�(�̄n) = �0n ∗⋯ ∗ �21 ∗ �10, (3.37)
where ̄nm is nm in the opposite direction.

Proof. The proof is similar to that of Theorem 3.7.
The double indices imposed on group duals by their stacked dual counterparts

restricts right and left composition of additional elements. For example, given
�45 ∗ �57 ∗ �73 = � (3.38)

for some � ∈ Sm, one can normally compose both sides by the same arbitrary
element

�45 ∗ �57 ∗ �73 ∗ �89 = � ∗ �89 (3.39)
without changing the relationship between the left and right sides of the equation.
Unfortunately, the left side of Equation 3.39 is not a group dual for any path stack
as �73 and �89 don’t share an intervening index (Figure 3.4).

Figure 3.4: The graph dual of �45 ∗ �57 ∗ �73 ∗ �89 is not a path stack.

In general, group dual compositions cannot be operated on arbitrarily since
group elements represent edge stacks: pre-pending or appending elements to a
group dual composition is equivalent to either changing the connectivity or adding
edge stacks to the corresponding stacked dual. There is, however, a notable excep-
tion.

46

3.1. Assignments and Sm

Definition 3.9 (Cyclicity Condition). A composition
�n ∶= �w0w1 ∗ �w1w2 ∗⋯ ∗ �wn−1wn (3.40)

satisfies the cyclicity condition if wn = w0 and
�w0w1 ∗ �w1w2 ∗⋯ ∗ �wn−1wn = �w1w2 ∗ �w2w3 ∗⋯ ∗ �wn−1wn ∗ �w0w1

= �w2w3 ∗ �23w4 ∗⋯ ∗ �wn−1wn ∗ �w0w1 ∗ �w1w2
⋮

= �wnw0 ∗ �w0w1 ∗ �w1w2 ∗⋯ ∗ �wn−1wn . (3.41)
If �n satisfies these conditions, then it is a cyclic composition. Otherwise it is a
path composition. The compositions above are the cyclic forms of �n.

Similarly, �(�n) is cyclic if
�w0w1 ∗ �w1w2 ∗⋯ ∗ �wn−1wn = �w1w2 ∗ �w2w3 ∗⋯ ∗ �wn−1wn ∗ �w0w1

= �w2w3 ∗ �23w4 ∗⋯ ∗ �wn−1wn ∗ �w0w1 ∗ �w1w2
⋮

= �wnw0 ∗ �w0w1 ∗ �w1w2 ∗⋯ ∗ �wn−1wn . (3.42)
Lemma 3.10 (Inverse of Cycle Stack Group Duals). Let �n be a cyclic composition
and �ni be one of its cyclic forms. Then the inverse of �

n
i is �̄

n
i .

Proof. The proof involves the application of Theorem 3.7 to each cyclic form �ni .

Group duality can be generalize to entire stacked graphs.
Definition 3.11 (Group Dual of G). Let G be asingular and defined by a collection
of k asingular path and cycle stacks i and j , each possibly of different length,
such that the union of their edge stack sets is  of G 27. Then the vector

 ∶=<
0,
1,… ,
k > (3.43)
is the (symmetric) group dual of G, the system of compositions
r where each
r is
the group dual of a unique i or j .

If
 is the group duals of G, then G is the (stacked) graph dual of
 .
Similarly, if G is not asingular, then G̐ and
̐ are duals of each other.

27Each i and j need not be disjoint on their edge stacks.

47

3.2. Assignment Feasibility and Symmetric Group Duals

The key differences between G and G̐ is that each composition
̐i in
̐ may be-
long to symmetric groups of different sizes, depending on the size of each asingular
path and cycle stack. For mixed G, G̐ is a forest, in which case each composition
̐i
of different sized groups will share no group elements in common. In this case, G̐
and
̐ are better treated on a regional basis, namely in termsi and their associated
group duals.

The group duals of singular edge stacks aremappings between symmetric groups
of different sizes. While undoubtedly important, they are not necessary for our
project and would be an unprofitable digression. We’ll leave treatment of them for
a future work.

3.2 Assignment Feasibility and Symmetric Group Duals

We now turn to the group dual equivalent of feasibility.
Definition 3.12 (Constrained Group Duals). If an assignmentA on asingularEpq is
fully constrained (Definition 2.33) to beA′, so thatApq = A′pq, then the (symmetric)
group dual constraint of Apq is �pq, with

�pq ∶= �′pq. (3.44)
Similarly, let A be an assignment on nm with

nm = E01 − E12 −⋯ − E(n−1)n. (3.45)
If A(nm) is fully constrained so that each path Pi starting on v0i must end on a
specific vnwi , then the group dual constraint is �

�01 ∗ �12 ∗⋯ ∗ �(n−1)n = �, (3.46)
where � is defined to be

(

�00 . . . �nm−1
�0w0 . . . �nwm−1

)

. (3.47)

If A(nm) is unconstrained, then � is free and can be any element in Sm. If
A(nm) partially constrained so that � is restricted to a subset of Sm, then � is
restricted. Otherwise, � is bound.

Fact 3.13 follows directly from Lemma 2.34 and the definition of constrained
group duals.

48

3.2. Assignment Feasibility and Symmetric Group Duals

Fact 3.13. The group dual constraint � of any cycle stack assignment A(nm) is
bound.

We next introduce paths defined by transpositions.
Definition 3.14 (Transposition Paths). Let �(�n) be the group dual of someA(nm)

�(�)n = �01 ∗ �12 ∗⋯ ∗ �(n−1)n. (3.48)
Each �pq consists of m transpositions of the form (�pi �

q
j), where �pi and �qj are ver-tex group duals. Let the succession of transpositions starting in �01 and ending in

�(n−1)n taking �0i to some �nwn
(�0i �

1
w1
)(�1w1�

2
w2
)… (�n−1wn−1

, �nwn) (3.49)

wherewk = 0, 1,… , m−1, be the ith transposition path �i of �(�n). �i is the group
dual of Pi, the ith disjoint path in A(nm) (Theorem 2.18).

Similarly, if �(�n) is the group dual of some A(nm)
�(�)n = �01 ∗ �12 ∗⋯ ∗ �(n−1)0, (3.50)

the ith transposition cycle �i of �(�n) is
(�0i �

1
w1
)(�1w1�

2
w2
)… (�n−1wn−1

�0w0). (3.51)

�i is the group dual of Ci, the ith disjoint cycle in A(nm) (Theorem 2.23).
As �n and �n are compositions of elements, whatever those elements may be,

transposition paths are likewise defined on them.
The dualities between �i and Pi, �i and Ci, are intuitively clear and should not

require proof. However, the follow lemma is included to further emphasize the
relationship between the two.
Lemma 3.15. For any �n or �(�n) in Sm, there are exactly m transposition paths
which form a disjoint cover of their vertex group duals. That is, every �ji in �

n or
�(�n) is in exactly one of m transposition path �k or �(�k).

Proof. We prove this in the case of �n. The case of �(�n) is identical. Let
�n = �01 ∗ �12 ∗⋯ ∗ �(n−1)n. (3.52)

Every �pq is an element in some Sm, and therefore a one-to-one, onto mapping
exists from the vertex group duals �pi , i = 0, 1,… , m− 1, to �qj , j = 0, 1,… , m− 1.

49

3.2. Assignment Feasibility and Symmetric Group Duals

This can be written as a collection of transpositions of the form (�pi �
q
j), where eachvertex group dual belongs to a single transposition. If n = 1, then the transposition

paths are of length one and form a cover of �n. If n ≥ 2, then �n is a succession
of these one-to-one mappings. Since each transposition path consists of adjacent
transpositions of the form

(�r−1i �rj)(�
r
j�
r+1
k) (3.53)

or, more generally, mappings of the form
�r−1i → �rj → �r+1k (3.54)

it follows that every vertex group dual belongs to exactly one transposition path.
That there are m transition paths follows directly from the bijective nature of the
mapping.

Lemma 3.15 is the group dual interpretation of Theorem 2.18. The group dual
constraints for cyclic compositions are special.
Theorem3.16 (Cyclic Compositions andConstraints). For every constrained cyclic
composition �n+1 = �, � = � for all n ≥ 0.

Proof. Let
�n+1 ∶= �01 ∗ �12 ∗⋯ ∗ �n0 (3.55)

where the ith transposition cycle �i is
(�0i �

1
w1
)(�1w1�

2
w2
)… (�nwn�

0
w0
). (3.56)

As �n+1 has n + 1 equivalent, cyclic forms
�01 ∗ �12 ∗⋯ ∗ �(n−1)n�n0
�12 ∗ �23 ∗⋯ ∗ �n0 ∗ �01
�23 ∗ �34 ∗⋯ ∗ �01 ∗ �12

⋮

�n0 ∗ �12 ∗⋯ ∗ �(n−2)(n−1) ∗ �(n−1)n, (3.57)
�i also has n + 1 equivalent forms, namely

(�0i �
1
w1
)(�1w1�

2
w2
) … (�n−1wn−1

�nwn)(�
n
wn
�0w0)

(�1w1�
2
w2
)(�2w2�

3
w3
) … (�nwn�

0
w0
)(�0i �

1
w1
)

(�2w2�
3
w3
)(�3w3�

4
w4
) … (�0i �

1
w1
)(�1w1�

2
w2
)

⋮

(�nwn�
0
w0
)(�0i �

1
w1
) … (�n−2wn−2

�n−1wn−1
)(�n−1wn−1

�nwn). (3.58)

50

3.2. Assignment Feasibility and Symmetric Group Duals

However, the forms of �i collapse, respectively, into
(�0i �

0
w0
)

(�1w1�
0
w0
)(�0i �

1
w1
)

(�2w2�
0
w0
)(�0i �

2
w2
)

⋮

(�nwn�
0
w0
)(�0i �

n
wn
). (3.59)

Due to the subscript constraints placed on group duals by their stacked counterparts
(Figure 3.4), it must be the case that w0 = i. Thus the forms further collapse into
the identity transpositions

(�1w1�
1
w1
)

(�2w2�
2
w2
)

⋮

(�nwn�
n
wn
). (3.60)

This applies to all transposition paths, implying that
�n+1 = �01 ∗ �12 ∗⋯ ∗ �n0 = � = � (3.61)

and that the group dual constraint of each cyclic form of �n+1 is also �. Therefore
� = �.

This leads to the following important theorem relating assignment feasibility
and group duals.
Theorem 3.17 (Feasible Cycle Stack Assignments and Group Duals). Let �n+1 be
the group dual of (n+1)m. Then �(�n+1) is cyclic if and only if its stacked dual
A((n+1)m) is feasible.

Proof. For the forward component, a feasible A((n+1)m) consists of m disjoint cy-
cles Ci, each with a group dual of the form

(�0i �
1
w1
)(�1w1�

2
w2
)… (�nwn�

0
i) (3.62)

By reasoning similar to that of the forward component of the proof for Theorem
3.16, we can show that

�(�n+1) = � = � (3.63)
and that � = � for every cyclic forms of �(�n+1). Therefore, by Theorem 3.16,
�(�n+1) is cyclic.

51

3.2. Assignment Feasibility and Symmetric Group Duals

For the backward component, by the proof of Theorem 3.16, each transposition
path �i of �(�n+1) must take the form

�i = (�0i �
1
w1
)(�1w1�

2
w2
)… (�nwn�

0
i) (3.64)

so that the graph dual of �i is some cycle Ci in A((n+1)m) of length n + 1
Ci = e01iw1 − e

12
w1w2

−⋯ − en0wni. (3.65)
Therefore, as there are m transposition paths of length n + 1 (Lemma 3.15), and so
m cycles of length n + 1, by Theorem 2.23 A((n+1)m) is feasible.

This is the primary benefit of working with group duals: feasibility of cycle
stack assignments are maintained by requiring that their group dual constraints be
the identity element.

Assignment duals are easily extended to entire stacked graphs.
Definition 3.18 (Group Dual of A(G)). Let G be asingular and defined by a col-
lection of k asingular path and cycle stacks i and j , of which each may be of
different length, such that the union of their edge stack sets is  of G, and let
 be
its group dual. Then, if A is an assignment on G, the vector

�(
) ∶=< �(
0), �(
1),… , �(
k) > (3.66)
is the (symmetric) group dual of A(G), the system of compositions �(
i), for all
i
in
 . If �(
) is the group duals of A(G), then A(G) is the (stacked) graph dual of
�(
).

The constrained group dual of A(G) is the vector
� ∶=< �0, �1,… , �k >, (3.67)

with �i the group dual constraint of �(
i), such that
�(
) = �. (3.68)

Similarly, if G is not asingular, then �(G̐) and �(
̐) are duals of each other with
�̐ the group dual constraint.

Included in the constrained group dual are all fully and partially constrained
edge stack group duals �ij , so that

�ij ∈ �ij , (3.69)
where �ij is the subset of Sm elements that �ij is restricted to. In the presence of
non-free compositions, the notation �(
) = � is one of convenience since the usage
of ‘=’ is not strictly correct.

The following two theorems and single definition reformulate the key findings
regarding assignment feasibility in terms of graph duals.

52

3.2. Assignment Feasibility and Symmetric Group Duals

Theorem 3.19 (Feasible Assignments and Group Duals). LetG be asingular andA
an assignment on it, and
 and �(
) their respective group duals, where
 includes
the graph dual of every cycle stack in G. Then, A(G) is feasible if and only if, for
every � in
 , �(�) is cyclic.

Proof. By Theorem 3.17 every cycle composition �(�) in �(
) has a feasible graph
dual in A(G) and every feasible cycle stack assignment A(nm) in A(G) has cyclic
group dual �(�). By Theorem 2.25, A(G) is therefore feasible and every �(�) is
cyclic.
Definition 3.20 (Fundamental Forms of Group Duals). Let G be asingular, A a
feasible assignment on it, and T a spanning tree stack of G. Then the group dual

of G is in fundamental form if its path compositions �i are formed solely on edge
stacks in G̃ while its cyclic compositions �i are formed solely by the fundamental
cycle stacks in T .

If G is not asingular, then fundamental forms are based on the fringe and fun-
damental cycles of G̐.
Theorem 3.21 (Feasible Assignments and Fundamental Forms). Let
 be the group
dual of some G in fundamental form. Then an assignment A on G is feasible if and
only if, for every �i in
 , the group dual �(�i) is cyclic, or, equivalently by Theorem
3.16, if �(�i) = �.

Proof. The proof follows directly from Theorems 2.31 and 3.19.
Theorems 3.19 and 3.21 have rather profound implication. Group duals, in

particular those in a fundamental form, provide a means of representing the struc-
ture of stacked graphs while preserving assignment feasibility in an elegant form.
We are no longer forced to deal with edges, vertices, and network flow values, only
group elements and transposition. We also now have access to group theoretic tools
with which to study feasibility, and which may provide more efficient optimization
techniques than the LP formulation described in Chapter 4 to find the best feasible
assignment for a givenG. Conversely, graph duals introduce a method of modelling
at least one class of group theoretic problems in terms of graphs and network flows.

Most forms of problemmodelling using stacked graphswill likely involveweighted
edges, edge stacks, and assignments.
Definition 3.22 (Weighted Stacked Graphs, Assignments, and Group Duals). For
any stacked graph G, a weighting of G assigns, to each epqij ∈ G, a real-valued
weight wpq

ij . For any assignment A on Epq, the weight of Apq is
w(Apq) ∶=

∑

epqij ∈Epq

wpq
ij x

pq
ij (3.70)

53

3.3. Duality and Non-Simple Stacked Graphs

where xpqij is the flow value of epqij under Apq (Definition 2.15). The weight of an
assignment A on G, feasible or otherwise, is

w(A(G)) ∶=
∑

Apq∈A(G)
w(Apq) =

∑

Epq∈G

∑

epqij ∈Epq

wpq
ij x

pq
ij . (3.71)

If �pq is the group dual of some Apq, the weight of transposition (ij) is
w((ij)) ∶= wpq

ij (3.72)
while the weight of �pq is

w(�pq) ∶=
∑

(ij)∈�pq

w((ij)) = w(Apq) (3.73)

3.3 Duality and Non-Simple Stacked Graphs

In Section 2.4we looked at assignment feasibility for loop andmulti-edge stacks,
concluding that the only feasible assignment for the former is the identity assign-
ment A∗ (Lemma 2.37). For the latter, all feasible assignments on some Epq −Eqp
are of the form Apq − Aqp (Lemma 2.39). The graph duals of both non-simple
structures satisfy similar constraints.
Lemma 3.23. The group dual to any feasible assignment A on a loop stack Epp is
�.

Proof. See Fact 3.3.
Lemma 3.24. Let Epq

i and Epq
j be any two edge stacks between vertex stacks Vp

and Vq, so that they form a multi-edge stack. The group duals to any feasible as-
signments on Epq

i and Epq
j are

apqi = apqj ∀ i, j. (3.74)
That is, if assignments on multi edge stacks are feasible, then each has identical
assignments.

Proof. This follows directly from Lemma 2.39.
Group duals of non-simple stacked graphs degenerate to group duals of simple

stacked graphs.

54

3.3. Duality and Non-Simple Stacked Graphs

Theorem 3.25. Let G be an asingular, non-simple stacked graph with group dual

 . In addition, let G′ be the sub-graph of G formed by removing all loop stacks and
all but one edge stack in every multi-edge stack, and let
 ′ be it’s group dual. Then
the group dual �′(
 ′) of any feasible assignment of A′ on G′ generates a unique
group dual �(
).

Proof. The proof is similar to that of Theorem 2.40: the only group dual of feasible
assignments on loop stacks is � (Lemma 3.23) while the group dual of a single edge
stack �pqk in multi-edge stack generates the (unique) group dual of each other �pqi(Lemma 2.39).

55

Chapter 4

Linear Programming:
Communication, Capacity, and
Contiguity

In this chapter, we construct a linear program (LP) which satisfies the con-
straints of Theorem 2.31 and whose optimal solution is a minimally weighted fea-
sible assignment. A basic knowledge of linear programming and network flows is
assumed.

Let G be a weighted stacked graph. An assignment A on G is optimal if it
provides a solution to the following objective function

min
∑

Apq∈A(G)

∑

epqij ∈Epq

wpq
ij x

pq
ij (4.1)

with xpqij ∈ {0, 1}, which will be shorthanded to

min
∑

wpq
ij x

pq
ij . (4.2)

Before we discuss the linear constraints that apply Equation 4.1, we should note
that there are different ‘scales’ of ‘levels’ of optimization that can be conducted.
Given the size of G and its relative complexity in terms of number of layers, re-
gions, and proportion of singular to asingular edge stacks, any one of three general
optimization approaches can be used: local, regional, or global.

4.1 Local, Regional, and Global Optimization

Local optimization involves finding minimal weightings to each singular and
asingular edge stack assignments Apq independent of all others. It is equivalent to
solving a collection of bipartite matching problems, for which there exist network-
flow algorithms far more efficient than a standard LP formulation [AMO93]. As
eachApq is independent, assignments can be solved in parallel. The difficulty is that

56

4.2. The 3C Constraints of Assignment Feasibility

the set of edge stack assignments, taken as the definition for a single assignment on
G, may not be feasible.

Regional optimization refers to optimizing over the regions G of G. Regional
assignments A(i) for each i ∈ G are solved for independently, as with local
optimization. The key difference is that assignment feasibility needs to be consid-
ered: at the local level, assignments are on path stacks of length one and so all
assignments are feasible (Corollary 2.19), where this is rarely the case at the re-
gional level. Assignments on asingular edge stacks are solved for individually and
independently, as at the local level.

The last level of optimization, global, solves the entirety ofA(G) at once - every
Apq is solved for simultaneously, including asingular edge stacks, and any non-basic
singular constraints are enforced (Definition 2.41).

If singularity constraints are basic and either regional or global optimization is
used, the process can be reduced to three distinct, independent stages: local sin-
gular, local fringe, and core. Local singular applies local optimization to each
Epq ∈ G̉, local fringe does the same for G̃, while core optimizes over the funda-
mental cycles in G̊. The partitions of  for any G (Lemma 2.14) thus partition the
optimal feasible assignment problem.

In general, only global optimization is guaranteed to yield an optimal solution
to Equation 4.1. However, local and regional approaches are expected to be faster
and, depending on the structure of G and underlying problem, produce result that,
if not optimal, may near enough to optimality to be useful. In the LP constructs
below, local core optimization is conducted first, followed by the ULA non-basic
constraint.

4.2 The 3C Constraints of Assignment Feasibility

There are three kinds of linear constraints required to ensure assignment feasi-
bility on asingular stacked graphs, such as G̊: communication, capacity, and con-
tiguity. Communication refers to where the disjoint paths of a feasible assignment
on path and cycle stacks start and stop, also known as asingular constraints (Def-
inition 2.33). As A(nm) is fully constrained for every nm (Lemma 2.34), every
path in A(Cnm) must start and end on the same vertex. In effect, any start vertex
‘communicates’ with itself. For any path stack nm, the start and end vertices of
the connected components of A(nm) may or may not be different. In our LP con-
struction, we shall assume that path stacks are unconstrained, as constraints are not
required for feasibility.

The necessity that connected components of feasible assignments are disjoint
requires that each edge in an edge stack has a ‘capacity’ of 1 [AMO93]. Path and cy-

57

4.2. The 3C Constraints of Assignment Feasibility

(a) (b)

Figure 4.1: 32 as (a) a standard cycle stack and (b) as a linear cycle stacks 32L .

cle stacks that are joined (Theorem 2.27) are required to have identical assignments
where they are ‘contiguous’.

The linear constraints for communication, capacity, and contiguity are described
below. In their constructions, we treat cycle stacks as a variation of a path stack.
These linear cycle stacks are easier to read from a diagrammatic perspective and
illustrate how communication constraints can be put on path stacks.
Definition 4.1 (Linear Cycle Stacks). For any asingular cycle stack

nm = Eab − Ebc −⋯ − Eyz − Eza (4.3)
split Va into two vertex stacks Va′ and VL, so that Eab becomes Ea′b and Eza be-
comes EzL. This converts nm into

nmL ∶= Ea′b − Ebc −⋯ − Eyz − EzL, (4.4)
where nmL is a linear cycle stack, specifically, the linearisation of nm. If A is an
assignment on nmL , then A(nmL) is defined to be feasible if va′i is path connected to
vLj for all i = j and disconnected for all i ≠ j.

The weight of ea′bij and ezLij are

wa′b
ij = wab

ij and wzL
ij = w

za
ij . (4.5)

Figures 3.3 and 4.1 demonstrate linear cycle stacks.
The definition of feasibility for linear cycle stacks satisfies Theorem 2.23 and is

a special case of Theorem 2.19. Assignments on linear cycle stacks are an example
of fully constrained path stack assignment (Definition 2.33).

58

4.2. The 3C Constraints of Assignment Feasibility

In what follows, we’ll assume that a spanning tree stack T has been found for
G̊ as well as a cycle stack basis T , and that each cycle stack is in T . Though
discussed in the context of a single cycle stack nm, the constraints below apply to
every cycle stack in T .

4.2.1 Communication

For A(CnmL) to be feasible, a path must exist between va′i and vLi . As we’re
looking for minimally weighted paths, the condition can be modelled as a minimal
path length LP problem, treating va′0 as the source vertex and vL0 as the sink vertex
[AMO93]

m−1
∑

j=0
xpqij −

m−1
∑

j=0
xqpji =

⎧

⎪

⎨

⎪

⎩

1, if i = 0 and p = a′
−1, if i = 0 and q = L
0, otherwise

, (4.6)

∀i ∈ 0,… , m − 1, ∀Epq ∈ nmL .
The same is true for the remaining m− 1 paths. Modelling distinct source-sink

pairs on a single network is problematic: if paths are not disjoint, then information
concerning where each path starts and stops is lost (Figure 4.2).

Figure 4.2: The four shortest paths for some 44. Although the blue and red paths
share edge e1210, by backtracking from vL1 and vL2 it’s possible to extract both paths.
In the case of path components e1221 − e2312 and e1223 − e2332, this is not possible: whichis black and which yellow?

Path information can be maintained by treating paths as distinct commodities
in a multi-commodity flow problem [AMO93]. To keep things simple and uni-
commodity, we’ll instead createm identical instances of nm (and therefore of nmL),
one for each path, and model a shortest path algorithm on each.

59

4.2. The 3C Constraints of Assignment Feasibility

m−1
∑

j=0
xk pq
ij −

m−1
∑

j=0
xk qp
ji =

⎧

⎪

⎨

⎪

⎩

1, if i = k and p = a′
−1, if i = k and q = L
0, otherwise

,

∀i ∈ 0,… , m − 1, ∀Epq ∈ nmL , ∀k = 0,… , m − 1. (4.7)
The kth path is defined to begin on vertex k.

Each of the m copies of nmL have identical edge weights. The optimal solution
for the shortest path problem for each of the m paths will therefore be the same as if
they were solved on a single nmL . However, the third index k allows us to maintain
communication information (Figure 4.3).

Figure 4.3: The same solution as Figure 4.2, but modelled on four copies of 44:
0,1,2, and 3. All paths are well-defined.

4.2.2 Capacity

Though the m copies of nmL technically give us disjoint paths, they are not
disjoint in the original nmL (Figure 4.2). To ensure disjointedness, we introduce the
capacity constraint, which limits each edge to be used at most once throughout all
m copies of nmL

m−1
∑

k=0
xk pq
ij ≤ 1, ∀i, j ∈ {0,… , m − 1}, ∀Epq ∈ nmL . (4.8)

60

4.2. The 3C Constraints of Assignment Feasibility

4.2.3 Contiguity

Finally, we generalize xk pq
ij to xk pq

r ij so as to tie together all joined cycle stacks
in T . Let r and s be any two cycle stacks in T which share common set  of
edge stacks28. Then the shared edge flows (assignments) are the same if

xk pq
r ij = xk pq

s ij = x
pq
ij , ∀i, j, k ∈ {0, 1,… , |Epq|}, ∀Epq ∈  . (4.9)

4.2.4 Asinglular LP Problem Statement

Combining the 3C constraints yields the following general LP for finding the
minimally weighted feasible assignment for any G̊
min

∑

wpq
ij x

pq
ij (4.10)

s.t.
|Epq−1|
∑

j=0
xk pq
r ij −

|Epq−1|
∑

j=0
xk qp
r ji =

⎧

⎪

⎨

⎪

⎩

1, if i = k and p = a′
−1, if i = k and q = L
0, otherwise

, (4.11)

∀ i, k ∈ {0, 1,… , |Epq|}, ∀ Epq ∈ r,
∀r ∈ T (4.12)

|Epq−1|
∑

k=0
xk pq
r ij ≤ 1,

∀ i, j ∈ {0, 1,… , |Epq|}, ∀ Epq ∈ r,
∀r ∈ T (4.13)

xk pq
r ij = xk pq

s ij = xpqij ,

∀ i, j, k ∈ {0, 1,… , |Epq|}, ∀ r,s ∈ T ,
∀Epq ∈ r and s (4.14)

xpqij ∈ {0, 1}. (4.15)
The LP does not account for fully or partially constrained path stacks.

The 3C constraints are sufficient conditions to ensure that any feasible solution
to the LP is also an assignment on G.
Theorem 4.2 (3C Constraints Produce Feasible A(G̊)). The 3C constraints define
a system of linear constraints which produce feasible assignments on any G̊.

28i.e. They’re ‘joined’ in the sense of Lemmas 2.26 and 2.27.

61

4.2. The 3C Constraints of Assignment Feasibility

Proof. The communication constraint produces m paths on nmL , where each path
i starts on va′i and ends on vLi . The capacity constraint ensures that the paths are
disjoint. That an assignment is produced on each Epq is clear as |Epq| = m, there
are m edges in Epq with non-zero flow values, and those edges are all disjoint.
This implies a one-to-one, onto mapping from the vertices Vp to those of Vq. This
is the definition of an asingular edge stack assignment (Definition 2.15). Thus,
communication and capacity produce assignments on CnmL . By the construction of
linear cycle stacks (Definition 4.1), this implies that each path is a cycle in nm. By
Corollary 2.20 and the construction of nmL , the disjoint paths in nmL cycles form a
disjoint cover cycle of Cnm. As the disjoint cover cycle is also an assignment, the
assignment is feasible by Theorem 2.23.

The contiguity constraint ensures that joined asingular cycle stacks have the
same assignments on shared edge stacks. By Lemmas 2.26 and 2.27, joinedness
preserves feasibility. Therefore, the 3C constraints define linear constraints which
produce feasible assignments on any G̊.

The above LP for A(G̊) is a form of restricted regional optimization, applying
only to cyclic edge stacks (Definition 2.12). There is no need to apply it to the
entirety of G̊ as the same optimal feasible assignment can be found by restricting it
to each i ∈ G.

4.2.5 Size Complexity of Asingular LP

Our LP introduces a large number of additional edges. Linearisation of cycle
stacks adds at most |T| edge stacks while communication constraints require at
most

m = max{||| ∈ T} (4.16)
copies of  , yielding a total of

m(|| + |T|) (4.17)
edge stacks. Capacity constraints do not add additional edge stacks, though conti-
guity constraints introduce at most |T| additional copies of  , since it’s possible
for an edge stack Epq ∈  to occur in every i ∈ T (Figure 4.4). Finally, the
largest edge stack in G̊ is also m. The size complexity VLP , in terms of number
of vertices, required to create the graph necessary to model our LP for some G̊ is

62

4.2. The 3C Constraints of Assignment Feasibility

(a) (b)

Figure 4.4: (a) Spanning tree TG produces two fundamental cycle stacks (b) 0 and
1, both containing E02.

therefore bounded above by
VLP ≤ 

(

m2(|T| + m)(|| + |T|)
) (4.18)

= 
(

m2(|T||| + |T|2 + m|| + m|T|)
) (4.19)

≤ 
(

m2(||2 + ||2 + m|| + m||)
) (4.20)

= 
(

m2||2 + m3||
) (4.21)

≤ 
(

m2||4 + m3||2
) (4.22)

≤ 
(

m3||4
)

. (4.23)
The replacement of |T| with || in Equation 4.20 is made as at most every edge
stack is restricted29. The replacement in Equation 4.22 follows from the fact that
the number of edge stacks are bound by | |

2, just as the number of edges in a
simple graph are bound by the square of the number of vertices30.

We can therefore model the assignment problem for G̊ with size complexity of

(

m3||4
). In the case of nucleic acid phosphate backbones, we’ll see thatm ≤ 16

or infinite, so that the constant factor is at most 256. As stacked graphs have only
been defined for the finite case, infinite values of m are ignored.

29Every edge stack is restricted if every edge stack forms a loop stack. In this case, however, there
is no optimization problem in light of Lemma 2.37

30There are at most (N
2

) edges in a simple graph consisting ofN vertices, with


((

N
2

))

= 
(

N(N − 2)
2

)

= 
(

N2) . (4.24)

63

4.3. Modelling Singular Constraints: ULA

4.3 Modelling Singular Constraints: ULA

The only non-basic constraint we’ve considered is ULA (Definition 2.42). It’s
a fortunate consequence of our construction of the contiguity constraint that the
index k, which indicates the copy number of a cycle stack nm, also represents the
layer number (Theorem 2.32) for the region to which nm belongs. Equation 4.9
forces shared edge stacks for two joined cycle stacks to have the same flow value
for the same copy k; contiguity is defined on copies of cycle stacks, not the stacks
themselves. Thus, all connected edges in A(G̊) have the same copy index k if they
belong to the same region. Since the flow value is the same for k for a given region
regardless of the cycle stack number s, the index can be dropped to produce

xk pq
ij .

Once A(G̊) has been found, we no longer need the cycle stack copies created to for
the communication constraint.

Modelling ULA constraints as an LP requires us to formulate constraints as bi-
nary logical ones. Casting techniques are from Discrete Optimization course notes.

If a vertex is in layer k ofr, then it’s incident on one or two edges, otherwise
it’s incident on none31.

|r|−1
∑

j=0
xk pq
ij +

|r|−1
∑

j=0
xk qp
ji ∈ {0, 1, 2}, ∀k = 0,… , |r| − 1,∀Epq ∈ r (4.25)

We next cast Equation 4.25 into binary form so that its solution is either 0 or 1.
The constraints for the layer indicator value yk p

i of v
p
i ∈ r

k are
0 ≤ yk p

i ≤ 1 (4.26)

yk p
i ≤

|r|−1
∑

j=0
xk pq
ij +

|r|−1
∑

j=0
xk qp
ji (4.27)

|r|−1
∑

j=0
xk pq
ij +

|r|−1
∑

j=0
xk qp
ji ≤ 2 ⋅ y

k p
i (4.28)

where the summation conditions are those of Equation 4.25. Replacing the sum-
mations with 1 or 2 forces yk p

i = 1 while a value of 0 forces yk p
i = 0.We also want to know whether two layersr

a andt
b from adjacent regionsr

andt (Definition 2.11) are themselves adjacent throughApq for a givenEpq ∈ ̉rt.
31Recall that cycle stacks are in linear form, hence the existence of vertices incident on only single

edges in a path.

64

4.3. Modelling Singular Constraints: ULA

First, we create a new variable that indicates when ya p
i and yb q

j are simultaneously
true

yab pq
ij ∶= ya p

i ∧ yb q
j (4.29)

with constraints
− ya p

i + yab pq
ij ≤ 0 (4.30)

− yb q
j + yab pq

ij ≤ 0 (4.31)
ya p
i + yb q

j − yab pq
ij ≤ 1. (4.32)

When both ya p
i = yb q

j = 1, yab pq
ij = 1. Otherwise, yab pq

ij = 0. Next, we note that
yab pq
ij ⋅ x

pq
ij = 1 (4.33)

precisely when vpi is incident on vqj under Apq, h(vpi) = a, and h(vqj) = b. Equation
4.33 therefore indicates whether r

a is incident on t
b through Apq.The definition of ULA requires that all vertices in r

a that are adjacent on t

are all adjacent on the same t
b. Since there are |̉rt| edge stacks between r and

t, it follows that
∑

Epq∈̉rt

|Vp|−1
∑

i=0

|Vq|−1
∑

j=0
yab pq
ij ⋅x

pq
ij ∈ {0, |̉rt|}, ∀a ∈ 0,… , |r|−1, b ∈ 0,… , |t|−1.

(4.34)
As the equation is non-liner, each product

yab pq
ij ⋅ x

pq
ij

must be replaced with an indicator value similar to Equation 4.29. Let
ℎab pq
ij ∶= yab pq

ij ∧ x
pq
ij (4.35)

with constraints
− yab pq

ij + ℎab pq
ij ≤ 0 (4.36)

−xij + ℎab pq
ij ≤ 0 (4.37)

yab pq
ij + x

pq
ij − ℎab pq

ij ≤ 1 (4.38)
so that Equation 4.34 can be written as

∑

Epq∈̉rt

|Vp|−1
∑

i=0

|Vq|−1
∑

j=0
ℎab pq
ij ∈ {0, |̉rt|}, ∀a ∈ 0,… , |r| − 1, b ∈ 0,… , |t| − 1.

(4.39)

65

4.3. Modelling Singular Constraints: ULA

As |̉rt| is fixed, Equation 4.39 can be normalized to
∑

Epq∈̉rt

|Vp|−1
∑

i=0

|Vq|−1
∑

j=0

1
|̉rt|

ℎab pq
ij ∈ {0, 1}, ∀a ∈ 0,… , |r| − 1, b ∈ 0,… , |t| − 1.

(4.40)
Let ℎrtab be the summation in Equation 4.40 for given a and b so that

ℎrtab = {0, 1}. (4.41)
The variable ℎrtab is the layer adjacency indicator, with ℎrtab = 1 if r

a and s
bare mutually uniformly adjacent, and wrt

ab = 0 if r
a and t

b are completely and
mutually non-adjacent.

Equations 4.25 to 4.41 define the ULA non-basic singularity constraint for ev-
ery pair of regions r and t with a non-empty boundary ̉rt in A(G), where ℎrtabindicates when two layersr

a andt
b are uniformly adjacent to each other. We shall

not conduct an analysis ULA’s space complexity.
It’s possible to reduce the number of ULA constraints. Equation 4.34 becomes

non-linear if A(G̊) is solved for first prior to enforcing ULA on A(G̉). The term
yab pq
ij becomes a fixed binary value as the layers to which vpi ∈ r and vqj ∈ s

are are explicitly solved for in A(G̊). Equations 4.35 through 4.38 can be removed.
In general, however, we cannot solve for A(G̃), A(G̊), and A(G̉) independently and
assume the resulting global solutionA(G) is optimal. Figure 4.5 illustrates this with
a simple mixed G. Whether or not optimal A(G) is solved for globally or through
local iterations (Section 4.1) will depend on the number of vertices and edges of
G as well as whether A(G) must be optimal or only reasonably so.

This ends our discussion of stacked graphs. In the following chapters we turn
to the structure of RNA and the process of writing the conformation problem as an
optimal feasible assignment on stacked graphs.

66

4.3. Modelling Singular Constraints: ULA

(a) (b)

(c)

Figure 4.5: (a) Weighted G defined by mixed 3 with asingular E01 and singular
E12 and E20. (b) The optimal assignment on E01 (solid lines) has a weight of 0.
However, all assignments on E12 and E20 must consist of forms similar to those in
dashed lines in order to satisfy ULA. In each case, the total weight of A12 and A20
is always 30. In (c), however, A01 has a weight of 2 while A12 and A20 total to 0.
Thus optimization over A(G̃) first yields a different solution than optimizing over
A(G̉) first.

67

Chapter 5

Kinematic Chains

Kinematic chains are mathematical models of rigid objects interconnected by
joints, or ‘lower pairs’, that allow for a variety of relativemotions. Their primary ap-
plication is in mechanical engineering, particularly robotics. They can, however, be
used to model chemical molecules by treating bonds as rigid structures and atomic
rotation about bonds as rotational joints.

The literature on kinematic chains is vast and deep. The aim of this chapter
is simply to introduce their general structure and demonstrate how RNA can be
modelled as one, including only those concepts relevant to our project.

The following discussion is based heavily on [Ang07] and [McC90]. The term
chain will be used as a shorthand for ‘kinematic chain’ throughout the remainder
of this work.

5.1 Denavit-Hartenberg Parameters

Kinematic chains are defined primarily by the details of their joints. A pris-
matic pair, P , produces translational motion between successive reference frames
Fi and Fi+1 (Figure 5.1(a)) while a rotational pair, R, provides a rotational trans-
formation (Figure 5.1(b)). Composition of pairs produces both translational and
rotational transformations between frames Fi and Fi+2 (Figure 5.1(c)). The rigid
components being modelled are implied by the relative location and orientation of
adjacent reference frames. The composite chain in Figure 5.1(c) is termed a PR
chain while its sub-chains are P and R chains, respectively. In general, chains are
named after ordered, serial sequence of their joints, with repeated sub-sequences
replaced by a numeric value. Thus, a chain formed by three prismatic joints fol-
lowed by a single rotational joint is a PPPR chain, or a 3PR chain. The last frame
of reference in a chain is commonly termed the end-effector and will, in this work,
be denoted by a red circle.

There are a number of other joint types, such as helical and spherical, however
all can be reduced to combinations of prismatic and rotational [Ang07]. In addition,
non-serial or parallel chains are possible (Figure 5.2).

Another categorization relates to the space in which the chain exists. Planar

68

5.1. Denavit-Hartenberg Parameters

(a) Prismatic Pair (b) Rotational Pair (c) PR Chain

Figure 5.1: The two fundamental kinematic pairs: (a) prismatic, P , and (b) rota-
tional, R. P pairs produce translational motion while R pairs produce rotational
motion, with each providing a single degree of freedom. Their composition (c) re-
sults in a PR chain, which has two degrees of freedom. The end-effector is indicated
in red.

chains are where the entire range of motion for the end-effector exists in a plane,
while for spherical chains it exists on a sphere. Spatial chains have no such restric-
tions. Finally, open chains are those wherein the end-effector is free to move, while
in closed chains the final reference frame is fixed [McC90].

In our study of RNA, we will concern ourselves solely with 6R, serial, spatial
open chains. However, we will have recourse to 2R and 3R chains to illustrate
certain concepts due to the ease in visualizing their motions.

There are a variety of mathematical treatments for chains, including the use of
quaternions and screws [McC90]. The most common approach involves standard
matrix transforms, which is what we shall use here as the particular notation is of
little consequence to us and matrices are more widely known.

Matrix representations of lower pairs are constructed usingDenavit-Hartenberg
parameters. In the context of purely rotational chains, the parameters are defined
as follows [Ang07]:
− ai, the distance between the primary axis, Zi, of joints i and (i + 1)
− �i, the angle or twist between the primary axis of joints i and (i + 1)
− bi, the Zi-coordinate or offset between the intersection of Zi and Xi+1

69

5.1. Denavit-Hartenberg Parameters

Figure 5.2: An example of a complex parallel kinematic chain with six ‘legs’
[Ang07].

− �i, variable torsion angle about the x-axis of rotational joint i, with respect
to positive Zi.

Figure 5.3 illustrates the parameters for a 6R spatial chain.
The matrix formation of the ith rotational pair is

Qi(�i) =

⎡

⎢

⎢

⎢

⎣

cos �i −cos �i sin �i sin �i sin �i ai cos �i
sin �i cos �i cos �i − sin �i cos �i ai sin �i
0 sin �i cos �i bi
0 0 0 1

⎤

⎥

⎥

⎥

⎦

. (5.1)

Each set of parameter values defines a unique pair. Composition of pairs is
accomplished via the production of transformation matrices. In the case of a 6R
chain, we have

Q ∶= Q1Q2Q3Q4Q5Q6, (5.2)
where Q encodes the position and orientation of the final reference frame F6 (i.e.
the end-effector) with respect to the base frame, F032. Q, being the product of six
single-variable functions, can be treated as a single six-variable function

Q(�) ∶= Q(�1, �2, �3, �4, �5, �6). (5.3)
32This explains why variable indexing begins at 1 and not 0.

70

5.1. Denavit-Hartenberg Parameters

Figure 5.3: The Denavit-Hartenberg parameters associated with a 6R chain. Miss-
ing are the twist angles. In the case of �3, this would be the angle between rotational
axes Z3 and Z4. From [Ang07].

Every chain has an associated workspace which describes the locations and
orientations reachable by its end-effector [Ang07]. Like a human arm, ‘mathemat-
ical arms’ have limited mobility. As we have difficulties touching the point of our
backs between the shoulder blades, kinematic chains have difficulties touching por-
tions of space around them. The 3R in Figure 5.4(a), for example, cannot place its
end-effector immediately above or below the base reference fame, indicated by the
origin.

However, like human arms, some locations of space are easier to reach than
others. There are multiple sets of angles for shoulder, elbow, and wrist joints that
place our hands in front of our face with a given orientation. So too with kinematic
chains. The workplace of a chain is divided into distinct regions. All end-effector
positions, which are encoded in Q, that lay within a given region have the same
number of torsion solutions

� ∶= ⟨�1, �2, �3, �4, �5, �6⟩ (5.4)
that produce their respective Q.

For example, the 3R chain workspace in Figure 5.4(b) is divided into 2 regions.
There exist two sets of torsion angles � = ⟨�1, �2, �3⟩ and �′ =

⟨

�′1, �
′
2, �

′
3

⟩ that
would place the end-effector anywhere within the outer region, while four exist for
the central region.

71

5.2. Forward and Inverse Kinematics

(a) (b)

Figure 5.4: (a) A 3R chain and (b) its workspace. The shaded sections of the work-
place indicate different regions. From [Ang07].

5.2 Forward and Inverse Kinematics

There are two general problems associated with kinematic chains, termed the
forward and inverse kinematic problems, or FK and IK. In the context of 6R chains,
FK asks: ‘Given a set of torsion angles � =< �1,… , �6 >, what is Q?’33. The
solution is trivial - evaluate Q at �.

The inverse problem asks: ‘Given Q, what is the set of all � that produce Q?’.
This question, like other inverse problems, has an exceptionally non-trivial answer.

Fortunately, for our 6R case, general solutions do exist. For 6R chains, there
exist either a) at most 16 solutions or b) infinite solutions to the IK problem for a
given Q [Ang07]. Figures 5.5(a) and 5.5(b) give an example of finite and infinite
solutions, respectively.

The workspace of any chain is a subspace of ℝ3 × [0◦, 360◦)3. The real com-
ponents ℝ reflect the three Cartesian coordinates of the end-effector while the an-
gular components [0◦, 360◦) represent the three Euler angles associated with the
end-effector’s orientation. These will be referred to as the cartesian and eulerian
components of a workspace, respectively, and collectively as the workspace.

The torsional space of a 6R chain is [0◦, 360◦)6, and is the range of values that
� can take. Q is a many-to-one function from torsion space to workspace

Q ∶ [0◦, 360◦)6 → ℝ3 × [0◦, 360◦)3. (5.5)
33i.e. ‘What is the location and orientation of F6 with respect to F0?’

72

5.3. Kinematic Nucleic Acids

(a) (b)

Figure 5.5: There are two solutions to the IK problem for (a) the 3R chain atQ (red
circle): s00 with � = ⟨135◦, 90◦, 135◦⟩ and s01 with �′ = ⟨45◦, 270◦, 135◦⟩. Infinite
solutions exist for (b) the 2R chain atQ if both joints rotate at equal rates in opposite
directions. In contrast with (a) where joint rotation axes are perpendicular to the
page, the joints of (b) are vertically parallel to the page.

The FK problem can therefore be stated as finding the image of x ∈ [0◦, 360◦)6
underQ, while the IK problem involves finding the pre-image of y ∈ ℝ3×[0◦, 360◦)3
underQ. The image of the entirety of [0◦, 360◦)6 underQ is the conformation space
associated withQ, or a particular parametrization of a 6R chain. There exist fast al-
gorithms to calculate all 6R chain IK solutions for any single y ∈ ℝ3 × [0◦, 360◦)3
[MC94], a fact we’ll use in the next chapter. However, no such algorithms exist
to find the entire pre-image of a conformation space, which is what we wish to
approximate (see Chapter 1).

Conformation spaces encapsulate how motion in [0◦, 360◦)6 is reflected, under
Q, inℝ3×[0◦, 360◦)3. It is not a synonym for workspace, as workspaces are essen-
tially volumes of space in ℝ3 × [0◦, 360◦)3 and it’s possible for two different chains
to have the same workspace.

5.3 Kinematic Nucleic Acids

Converting a phosphate backbone into a kinematic chain is straightforward. Let
the atoms, bond angles, bond lengths, and torsion - or dihedral - angles of the back-
bone be, respectively,

73

5.3. Kinematic Nucleic Acids

Atom ∶=
⟨

P5, O5, C5, C4, C3, O3, P3
⟩

Angle ∶=
⟨

180◦, 180◦, P5 − O5 − C5, O5 − C5 − C4, C5 − C4 − C3,
C4 − C3 − O3, C3 − O3 − P

⟩

Bond ∶=
⟨

0, P5 − O5, O5 − C5, C5 − C4, C4 − C3, C3 − O3, O3 − P3
⟩

T ors ∶=
⟨

0, �, �,
, �, �, �
⟩ (5.6)

where each element ofAngle andBond is the angle between three successive atoms
about their interior bonds and distance between two successive bonds, respectively
(Figure 5.6).

Figure 5.6: Atoms of the phosphate backbone. Atomic bond angles are indicated
by thin black arrows and torsion angles are indicated by thick blue arrows. Note
that there is no offset between successive atoms. Hydrogen atoms are excluded, but
can be incorporated with some modifications.

Accordingly, frame Fi about atom Atom[i] is defined by
ai = Bond[i]
�i = Angle[i] − 180◦

�i = T ors[i]
bi = 0, (5.7)

providing a parametrization of Equation (5.1). Index 0 orients the base frame about
the P5 atom and is technically not needed (see Equation 5.2). It is included for com-
pleteness’ sake. For our RNA chain,Q defines the relative position and orientation
of the two phosphate atoms, P 5 and P3, in the backbone.

74

5.4. Outline of Converting IK Solutions and Stacked Graphs

5.4 Outline of Converting IK Solutions and Stacked
Graphs

The following chapter details the technique we’ll use to sample the conforma-
tion space for kinematic chains, in general, and single phosphate backbones, in the
specific. This sample set will, in Chapter 7, be converted into a stacked graph G,
feasible assignments on which are point-wise approximation of the space’s struc-
ture, as described in Section 2.1. Figure 5.7 illustrates the general process.

75

5.4. Outline of Converting IK Solutions and Stacked Graphs

(a) (b)

(c) (d)

Figure 5.7: (a) A lattice is projected onto a chain workspace  , after which (b)
IK solutions are found at each lattice vertex. (c) Vertex stacks are formed from the
solutions and edge stacks created between samples adjacent on the lattice with the
number of solutions at each location defining regions and boundaries (dotted lines)
for a stacked graph G. Finally, (d) an optimal feasible assignment A is found for G
using the LP described in Chapter 4.

76

Chapter 6

Conformation Space Sampling

In this chapter we describe the process by which chain conformation spaces are
sampled, including a limited analysis of the number of samples that will be needed
for the case of phosphate backbones. The first section introduces the technique
while the second formally defines terms.

6.1 Sampling Technique

As noted in Section 5.2, every 6R chain workspace is a subspace of ℝ3 ×
[0, 360◦)3. The extent of the ℝ3 (cartesian) components, or the maximum distance
that can be had between the P5 and P3 atoms, are determined by the bond lengths
ai and angles �i of the chain and are therefore dependent on specific parametriza-
tions. Large values of ai and values of �i close to 180◦ tend to produce subspaces
ofℝ3 with a greater maximal extent than smaller ai and more acute �i (Figure 6.1).
This is a basic geometric result. Eulerian component extent is affected by chain
parametrization to a lesser degree, given that the super-space [0, 360◦)3 is of finite
extent.

Ideally, a sampling lattice bounds the workspace as tightly as possible as we
wish to sample the workplace exterior as infrequently as we can (i.e. the 0 so-
lutions in Figure 5.7(b)). However, we would also like a lattice that can be used
irrespective of chain parametrization, and therefore of workspace shape. To this
end, we normalize all workspaces by dividing each ai lengths by the maximal ex-
tent of the workspace. This produces normalized workspaces with maximal extents
of 1, fitting nicely into the cubic space [−1, 1]3 when our base frame F0 (i.e. atom
P 5) is located at the origin < 0, 0, 0 > (Figure 6.2).

Determining maximal workspace extents will not be covered here. For pure
rotational chains with no offset (see Section 5.1), such as the phosphate backbone
6R chain, maximal extents are derivable by trigonometric arguments. Figure 5.6
illustrates a backbone conformation with maximal extent.

Sampling itself is done via bisection, repeatedly halving the [−1, 1] and [0, 360◦)
lattice components and taking samples on the resultant grid. We denote the number
of bisections for the ith cartesian interval to be nci . The number of sample points

77

6.1. Sampling Technique

(a) (b)

Figure 6.1: Planar 2R example of how small changes in parameter values (� → �′)
can impact maximumworkspace extent (d → d′). Only the cartesian components
of the workspaces (pink annuli) are shown.

on the ith interval (including the ±1 ends of the interval) is 2nci +1, so that the total
number for the entire cartesian component is

(2nc1 + 1)(2nc2 + 1)(2nc3 + 1). (6.1)
Similarly, the number of eulerian samplings, defined by the number of bisections
nei , is

(2ne1)(2ne2)(2ne3) (6.2)
with the +1 dropped due to the the circularity of [0, 360◦).

While each nci and nej are allowed to be different, to simplify matters, we’ll
assume that each nci take on the same value, as well as each nej . This allow us to
refer to nc and ne without the additional subscripts. The total number of samples
for a lattice becomes

(2nc + 1)3(2ne)3 ≈ 23(nc+ne) = 8nc+ne . (6.3)
For small values, the number of samples is rather large: at nc = ne = 4, we

have 16.7 million samples, and at nc = ne = 5, a little over a billion. These figures
are for samples, not solutions, the later of which are bound by a constant

k8nc+ne (6.4)

78

6.1. Sampling Technique

Figure 6.2: Normalizing workspaces A and B allows the same sampling lattice to
be used.

with k <= 16. Recall from Section 5.2 that 6R chains have at most 16 IK solutions
in the finite case.

But how accurately do four bisections approximate the underlying space? What
of five bisections? Can we get away with ‘only’ a billion samples? Fortunately,
there is a practical upper limit on the values of nc and ne resulting from the accuracy
of current RNA crystallography data.

The Nucleic Acid Database (NDB) is a primary repository for nucleic acid in-
formation. The standard structural geometries of nucleic acids used by the NDB
[Dat16] - including bond lengths and angles - are those of [GSC+96]. Table 6.1
displays the standard bond lengths, from which we can determine that the maximal
extent of any unnormalized kinematic RNA workspace is, at most, 9.141 Å, a gross
overestimation given that it supposes all bond angles are 180◦.

Minimum bond length error is approximately 0.001Å. Any sampling lattice

79

6.1. Sampling Technique

associated with the workspace of maximal possible extent with an (unnormalized)
grid size less than 0.001Åwould thus provide a sampling resolution below the error
bounds. This in turn provides us a practical upper limit on the value of nc .

Table 6.1: RNA phosphate backbone mean bond lengths (x̄) in Angstroms (Å),
including their standard deviations (esd), number of samples (N), standard errors
(se), and upper bounds of the mean lengths within two standard deviations. Total
lengths indicate maximum possible extent of workspace, where all bond angles are
assumed 180◦. * from [GSC+96].

Bond Lengths
Bond x̄∗ esd∗ N∗ se x̄ + 2se
P-O5 1.593 0.010 15 0.003 1.599
O5-C5 1.440 0.016 14 0.004 1.448
C5-C4 1.510 0.013 80 0.001 1.512
C4-C3 1.524 0.011 80 0.001 1.526
C3-O3 1.433 0.019 13 0.005 1.443
P-O3 1.607 0.012 13 0.003 1.613
Total Length 9.107 - - - 9.141

The value of ne is easier to restrict, since it’s parameter - and thereforeworkspace
- independent. From Table 6.2, we see that the smallest standard error for phosphate
backbone bond angles is roughly 0.2◦.

Table 6.2: RNA phosphate backbone mean bond angles (x̄) in degrees, including
their standard deviations (esd), number of samples (N), and standard errors (se). *
from 4.5[GSC+96].

Bond Angles
Angle x̄∗ esd∗ N∗ se
P-O5-C5 120.9 1.6 15 0.4
O5-C5-C4 109.4 0.8 14 0.2
C5-C4-C3 115.5 1.5 80 0.2
C4-C3-O3 110.6 2.6 80 0.3
C3-O3-P 119.7 1.2 13 0.3

The effect of bisections on grid lengths - including the maximal and normalized
cartesian lengths - is described in Table 6.3. At nc = 14 and ne = 12 bisections,
sampling resolutions is below 0.001Å and 0.2◦, respectively.

80

6.1. Sampling Technique

Table 6.3: Effect of the number of bisections on the mean, maximal, and normal-
ized cartesian grid lengths (Å), as well as the angular eulerian grid lengths (de-
grees). Bold values indicate cut-off points where lengths fall below standard error
of existing experimental data.

Bisects Mean Maximal Normalized Angular
0 9.107 9.141 1 360
1 4.554 4.570 0.5 180
2 2.277 2.285 0.25 90
3 1.138 1.143 0.125 45
4 0.569 0.571 0.0625 22.5
5 0.284 0.286 0.03125 11.3
6 0.142 0.143 0.01563 5.6
7 0.071 0.071 0.00781 2.8
8 0.035 0.036 0.00391 1.4
9 0.018 0.018 0.00195 0.7
10 0.009 0.009 0.00098 0.4
11 0.004 0.004 0.00049 0.2
12 0.002 0.002 0.00024 <0.1
13 0.001 0.001 0.00012 < 0.1
14 <0.001 <0.001 0.00006 < 0.1

81

6.2. Formal Definitions

It is important to note that the distances associated with these values of nc and
ne are not indicative of actual crystallographic resolutions, but the errors associated
with means. Some of the best existing data has a resolution of 0.48Å with values
< 1Å being considered highly accurate [BHA15]. nc = 5 therefore provides a
higher resolution than most, if not all, existing data.

Calculating a more realistic limit for ne is difficult. For our purposes, we’ll take
ne = 7, equivalent to 2.8◦, to be a reasonable upper limit.

This equates to 85+7 ≈ 69 billion sample points. Even in light of the existence
of high-speed IK algorithms, sampling the space is somewhat problematic: at a
solving rate of (at least) 10 ms per sample [MC94], a total of 7,986 days - or 22
years - of CPU time is needed. Samples, however, are independent, so that the
solving process is trivially parallelizable and therefore a candidate for distributed,
cloud, or supercomputing.

Fortunately, wemay need significantly fewer than 70 billion samples. The semi-
rigid nature of backbone chains means that the accuracy of a conformation space
approximated by any single chain parametrization may be quite low, depending on
the value distributions on the parameters. It is therefore not necessary to obtain a
large number of samples. What is important is how conformation spaces change
under a distribution of parametrizations, changes which may manifest at low sam-
pling resolutions (i.e. small values of nc and ne). Chapter 8 covers techniques for
analysing such changes.

6.2 Formal Definitions

To be consistent across RNA chain parametrizations as well as nc and ne val-
ues, sample points require unambiguous labels. Using lattice coordinates alone is
insufficient. For one, there are two lattices: the normalized lattice, with rational
cartesian coordinates in [−1, 1], and the lattice corresponding to the actual, unnor-
malized workspace, with real cartesian coordinates. For another, coordinates with
real or rational values are awkward to work with in algorithmic contexts, where
iterating over integers is common place.

There is also the issue of comprehension. If normalized coordinates are treated
as canonical sample names, what, for instance, is the relationship between samples
Sa and Sb below?

Sa ∶
⟨

−1
2
, 1
2
.3
4
, 45◦, 270◦, 180◦

⟩

(6.5)
Sb ∶

⟨

−3
4
, 1
4
, 0, 180◦, 90◦, 225◦

⟩

(6.6)
Are they close to each other on the lattice relative to their sampling resolutions,

82

6.2. Formal Definitions

or quite distant? Do they even exist in the same set of resolutions, or is each vec-
tor component from different nc and ne values34? This isn’t clear from the vectors
alone, and knowing whether samples are adjacent to each other on a lattice is im-
portant.

We address these problems by introducing a formal sample naming scheme,
followed by a set of functions that allow us tomove between normal and non-normal
lattices and alternative labelling techniques which will prove useful. First, sample
naming.

We’ll begin with the one dimensional case, where each sample is either on
[−1, 1] or [0, 360◦), then generalize to samples on [−1, 1]3 × [0, 360◦)3.

At nc = 0, there are only two samples, located at −1 and +1 (Figure 6.3). We
define these as S0 and S1, respectively. Increasing to nc = 1 yields a third sample,
S2. At nc = 2, S3 and S4 appear. The process continues, labelling new samples at
successive midpoints, starting from the −1 end and working towards +1, naming
them by increasing integer subscripts.

Figure 6.3: Sample labelling on cartesian components up to nc = 3 bisections.
Successive lines indicate sample labels introduced at particular nc values (in red)
as well as previously generated samples (in black). The bottom axis indicates the
coordinate value of each sample in the normalized sample space.

Definition 6.1 (Bisectors). The ith cartesian and jth eulerian bisectors are nci and
nej , respectively. The integers generated by nci and nej fall in distinct ranges (Table6.4).

34For example, Sa[1] = − 1
2
and Sb[1] = − 3

4
are produced by nc = 2 and 3, respectively.

83

6.2. Formal Definitions

The values in Table 6.4 result from the following theorem.
Theorem 6.2 (Resolution). Let k > 1 and k′ > 1 be generated by nc and ne,
respectively. Then

k ∈ [2nc−1 + 1, 2nc] (6.7)
k′ ∈ [2ne−1, 2ne − 1] (6.8)

and

nc = ⌈log2 k⌉ (6.9)
ne = ⌊log2 k′ + 1⌋. (6.10)

In this context, bisectors nc and ne are the resolutions of k and k′, respectively.
Proof. The first part can be proved via induction on Figure 6.3 for nc and a similar
figure for ne. For the second part, from Equation 6.9 we have

2nc−1 + 1 ≤ k ≤ 2nc

2nc−1 ≤ k ≤ 2nc

nc − 1 ≤ log2 k ≤ nc
log2 k ∈ [nc − 1, nc]. (6.11)

However, the upper-bound for the range generated by nc is always a power of 2 so
that k can be such that log2 k = nc . Thus

nc = ⌈log2 k⌉. (6.12)
Similarly, from Equation 6.8 we get log2 k′ ∈ [ne − 1, ne], though this time k′ can
be such that log2 k = ne − 1 so that

ne = ⌊log2 k + 1⌋. (6.13)

Values generated by multiple nci and nej are used to name conformation space
samples.
Definition 6.3 (SampleName andResolution). LetSk be a sample inℝ3×[0, 360◦)3.
The name of Sk is the vector

Sk ∶= ⟨k0, k1, k2, k3, k4, k5⟩ , (6.14)

84

6.2. Formal Definitions

with ki ≥ 0 ∀ i. The resolution of Sk is the vector returned by Res(⋅)
Res(Sk) ∶=

⟨

nc0 , nc1 , nc2 , ne0 , ne1 , ne2
⟩

(6.15)
where

nc0 = ⌈log2 k0⌉, ne0 = ⌊log2 k3 + 1⌋ (6.16)
nc1 = ⌈log2 k1⌉, ne1 = ⌊log2 k4 + 1⌋
nc2 = ⌈log2 k2⌉, ne2 = ⌊log2 k5 + 1⌋.

The terms ‘sample’ and ‘name’ are synonymous.

Table 6.4: The ranges of k generated by nc/ne.

nc/ne nc Range ne Range
0 [0,1] [0]
1 [2] [1]
2 [3,4] [2,3]
3 [5,8] [4,7]
4 [9,16] [8,15]
5 [17,32] [16,31]
6 [33,64] [32,63]
7 [65,128] [64,127]
8 [129,256] [128,255]
9 [257,512] [256,511]
10 [513,1024] [512,1023]
11 [1025,2048] [1024,2047]
12 [2049,4096] [2048,4098]
13 [4097,8192] [4096,8191]
14 [8193,16384] [8192,16383]

The notation ‘Sk’ references a name, not the subscript k. It’s possible to derive
a unique value for k from a name (Appendix A), however it isn’t as useful to work
with. As such, subscripts will be used solely to differentiate samples, such as S3
and S9.
Definition 6.4 (Normal Coordinates). The normal coordinates of Sk is the vector
returned by Norm(⋅)

Norm(Sk) ∶= ⟨w0, w1, w2, w3, w4, w5⟩ (6.17)

85

6.2. Formal Definitions

where w0, w1, w2 ∈ [−1.1] and w3, w4, w5 ∈ [0◦, 360◦). Norm(Sk) are the coor-
dinates of Sk in [−1, 1]3 × [0, 360◦)3.

Construction of wi is described in Appendix B.
Definition 6.5 (Absolute Coordinates). Let d be the maximum linear distance be-
tween base frame F0 and frame F6 for a given parametrization of a 6R chain35. The
absolute coordinates of Sk is the vector returned by Abs(⋅)

Abs(Sk) ∶= ⟨a0, a1, a2, a3, a4, a5⟩ (6.18)
= ⟨d ⋅w0, d ⋅w1, d ⋅w2, w3, w4, w5⟩ (6.19)

Abs(Sk) are the coordinates ofSk in the original chainworkspaceℝ3×[0◦, 360◦)3.
Definition 6.6 (Sample Adjacency). Let r = ⟨n0, n1, n2, n3, n4, n5⟩ be a sample
resolution and let Su and Sv be two samples such that

Res(Su)[i] ≤ r[i] (6.20)
Res(Sv)[i] ≤ r[i], (6.21)

with 0 ≤ i ≤ 5. In other words, Sp and Sq exist at resolution r. Then, Sp and Sq
are adjacent at resolution r if there exist no Sw, Sw ≠ Sp or Sq, that satisfies the
following two conditions

1. Res(Sw)[i] ≤ r[i] (6.22)
and either of

2a. Norm(Sp)[i] ≤ Norm(Sw)[i] ≤ Norm(Sq)[i] (6.23)
2b. Norm(Sq)[i] ≤ Norm(Sw)[i] ≤ Norm(Sp)[i] (6.24)

for all i ∈ 0,… , 5.
The conditions of Definition 6.6 define vertex adjacency on a lattice graph with

varying scales across axes. Consider, for example, the planar graph in Figure 6.4.
The nodes (0, 0), (12 , 0), and (0, 1) are all adjacent, but Sp = (0, 0) and Sq = (12 , 1)
are not because Sw = (12 , 1) satisfies Condition 2a.For a full example, consider the two samples S1 and S2

S1 =
⟨

1, 5, 4, 7, 3, 9
⟩ (6.25)

S2 =
⟨

6, 10, 1, 11, 2, 8
⟩ (6.26)

35In our case, d is the maximum linear distance that atom P5 can be from P3 for a given set of
bond length and angle values.

86

6.2. Formal Definitions

Figure 6.4: A planar lattice graph whose x-axis components are half the scale of
the y-axis components.

which have normal coordinates
Norm(S1) =

⟨

− 1, 3
4
,−1
2
, 315◦, 270◦, 67.5◦

⟩ (6.27)
Norm(S2) =

⟨1
4
, 5
8
,−1, 157.5◦, 90◦, 22.5◦

⟩ (6.28)

and resolutions
Res(S1) =

⟨

0, 3, 2, 3, 2, 4
⟩ (6.29)

Res(S2) =
⟨

3, 4, 0, 4, 2, 4
⟩

. (6.30)
In addition, let the sample resolution be r = ⟨

3, 4, 2, 4, 3, 4
⟩. At r, S1 and S2 are

adjacent. Figure 6.5 illustrates why.
Adjacency is defined at specific resolutions. If r[1] and r[2] were both any

larger, then S1 and S2 would no long be adjacent.
That brings us to solutions, which also require unambiguous names.

Definition 6.7 (Sample Solutions). Every sample Sk consists of a set of solutions
ski of the form

ski ∶=
⟨

�0, �1, �2, �3, �4, �5
⟩ (6.31)

with �j ∈ [0◦, 360◦) ∀j = 0,… , 5 being a torsion angle. Each ski is a unique IKsolution to a kinematic chain sampled at coordinates Abs(Sk).
Unlike samples, solutions don’t require explicit, vectorized names.
There is no inherent ordering to solutions. However, numbering must be con-

sistent. While any ordering will do, one system will prove particularly useful when
it comes time to optimize. The ordering is based on the absolute value of solution
torsion angles.

87

6.2. Formal Definitions

Figure 6.5: A vertical diagram for determining sample adjacency. The left hand
side describes the (Res)olution, Name, and (Norm)al labels for the cartesian com-
ponents of a sample, while the right hand side describes the eulerian, replacing
normal distances with angular ones. The central component shows the values gen-
erated by r = ⟨

3, 4, 2, 4, 3, 4
⟩ (green triangles), S1 and S2 (blue and red circles,

respectively), and valid locations for any sample at resolution r (white and green
triangles). To be adjacent, there must be at least one ki where there are no valid
locations between S1 and S2 (i.e. no triangles between red and blue circles). Both
k1 and k2 satisfy this condition. Thus S1 and S2 are adjacent.

88

6.2. Formal Definitions

Definition 6.8 (Absolute Torsion Angle). The absolute value of a torsion angle �i
is

|�i| ∶=

{

�i, if �i ≤ 180o
360o − �i, otherwise. (6.32)

Solutions are ordered by increasing values of |�0|, then |�1|, etc. In the event
of ties, the smallest non-absolute value is used. For example, let s10, s11, and s12 bethe three solutions of some S1

s10 =
⟨

33◦, 167◦, 347◦, 12◦, 298◦, 101◦
⟩ (6.33)

s11 =
⟨

92◦, 2◦, 311◦, 321◦, 134◦, 296◦
⟩ (6.34)

s12 =
⟨

33◦, 193◦, 55◦, 277◦, 176◦, 4◦
⟩

. (6.35)
As

|s11[0]| > |s10[0]| = |s12[0]|

s11 is last in the ordering. Since |s10[0]| = |s12[0]|, we need to look at the next index
to determine ordering for s10 and s12. While

|s10[1]| = |s12[1]|,

the non-absolute angles yield
s10[1] < s

1
2[1].

This implies that the ordering should be
s10 < s

1
2 < s

1
1.

Definition 6.9 (Absolute Torsion Angle Ordering). Let Sk be a sample with solu-
tions ski . Then, the absolute (torsion angle) ordering of Sk is the ordering of all skiby the smallest absolute value |ski [j]|, for increasing indices j beginning at j = 0.
Ties are broken by the smallest non-absolute value, ski [j].

For the remainder of this work, an absolute ordering of solutions will be as-
sumed in all cases.

It should be noted that absolute coordinates are defined as a scaling of normal
coordinates, not the other way around. This is done to emphasis the independence of
our modelling technique from any specific 6R chain parametrization. Parametriza-
tions are treated as special cases of a generalized normal form.

The notion of distance between two arbitrary solutions spu and sqv is an important
one.

89

6.2. Formal Definitions

Definition 6.10 (Angular Distance Between Solutions). The angular distance be-
tween two angles �, � ∈ [0◦, 360◦) is

d(�, �) ∶= |� − �|. (6.36)
The angular distance between two vectors of angles of equal length � = ⟨�0, �1,… , �m⟩
and � = ⟨�0, �1,… , �m⟩ is

d(�, �) ∶=
m
∑

i=0
d(�i, �i). (6.37)

The angular distance between two solutions spu and sqv can therefore be written as
d(sup, svq). (6.38)

Angular distances arise from modelling changes in solution torsion angles re-
sulting from small changes in the location of Q in its workspace. These small
change in Q correspond to moving between adjacent samples on the normalized
sampling lattice. We can thus drop all reference to Q and deal strictly with (the
normal coordinates of) sample points. We’ll demonstrate how with an example
using the 3R planar chain of Figure 5.5(a).

Consider the two solutions of S0 in Figure 6.6,
s00 =

⟨

135◦, 90◦, 225◦
⟩ (6.39)

s01 =
⟨

45◦, 270◦, 135◦
⟩

. (6.40)
At sufficiently high resolutions, an adjacent solutionS1 will have the same num-

ber of solutions as it will be in the same region36, whose torsion angles are similar
to those of S0, say

s10 =
⟨

120◦, 120◦, 210◦
⟩ (6.41)

s11 =
⟨

60◦, 240◦, 150◦
⟩

. (6.42)
The angular distances between the first solutions and the second solutions of S0 and
S1

d(s00, s10) = 60◦

d(s01, s11) = 60◦

36See Theorem 7.2.

90

6.2. Formal Definitions

Figure 6.6: An example of conformational paths for a planar R3 chain. At each
sample point (red circle) Si, there are two distinct solutions, si0 and si1. If successive
Si are assumed to be adjacent at some resolution, then the sequences s00 − s10 − s20and s01 − s11 − s21 represent two disjoint conformational pathways from S1 to S3.
With the incorporation of S4, however, the paths are no longer disjoint: s00 − s10 −
s20 − s

3
0 − s

2
1 − s

1
1 − s

0
1 is a conformational path.

are much less than between s00 and s11, and s01 and s10
d(s00, s11) = 300◦

d(s01, s10) = 300◦.

Assume a new sample S2 adjacent to S1 (Figure 6.6) with solutions
s20 =

⟨

105◦, 150◦, 195◦
⟩ (6.43)

s21 =
⟨

75◦, 210◦, 165◦
⟩

. (6.44)
Then similar results exist between the solutions of S1 and S2

d(s10, s20) = 60◦

d(s11, s21) = 60◦

d(s10, s21) = 180◦

d(s11, s20) = 180◦.

91

6.2. Formal Definitions

There is a kind of natural ‘path’ between s00, s10, and s20, as well as between s01, s11,and s21. These are the conformational pathways of the sample sequenceS0−S1−S2.
If we were to continuously ‘pull’ the end-effector from its position at S0 to S2 in
Figure 6.6, it’s clear that s00 would transform into s10, then into s20. Similarly with
s01, s11, and s21. The pathways are discreet approximations of an otherwise smooth
transformation.

A problem occurs when the number of solutions at a sample changes. In Figure
6.6, S3 only has one solution

s30 =
⟨

90◦, 180◦, 180◦
⟩

. (6.45)
Both the solutions at S2 are equidistant from s30

d(s20, s30) = 60

d(s21, s31) = 60,

violating what was previous bijection between solutions in adjacent samples. This
‘collapsing’ of solutions (or ‘expansion’, if going from fewer to more) is termed a
singularity 37.
Definition 6.11 (Singularity). A singularity is a pair of adjacent samples Su and
Sv such that |Su| ≠ |Sv|. An edge in a sampling lattice is a singular edge if it is
adjacent on a singularity.

It should be clear that the angular distance between any two solutions of the
same sample, ski and skj , is always non-zero. If d(ski ,skj) were zero, they would cease
to have distinct torsion angles, implying that ski = skj . This yields an interesting
property: no conformational pathway exists between ski and skj in the absence of
singularities. In order to for a conformational pathway to exist between ski and skj ,
passage through a singularity must occur. This is apparent for s00 and s01 in Figure
6.6 and is proved for general kinematic chain conformation spaces in Theorem 7.2.
Definition 6.12 (Conformational Pathways). Let S be a path on a sampling lattice

S ∶= S0 − S1 −⋯ − Sn (6.46)
37Singularities also occur in the proper study of kinematic chains, representing losses of linear

independence between certain axes in lower pairs, often producing sample points with infinite IK
solutions. Our usage of the term is strictly to indicate changes in the number of solutions, or regional
boundaries. We won’t be working with ‘proper’ singularities, so there should be no difficulty in using
the terminology.

92

6.2. Formal Definitions

and let m = max{|S0|, |S1|,… , |Sn|}. In addition, let P be an ordered set of m
vectors pi of samples solutions

pi ∶=
⟨

s0a0 , s
1
a1
,… , snan

⟩

(6.47)
on S, denoted by P (S). Then each pi is a conformational pathway, or conpaths,
and P (S) is a bundle of conpaths. Let the weight of any conpath pk be

w(pk) =
n−1
∑

i=0
d
(

siai , s
i+1
ai+1

)

. (6.48)

P (S) is a bundle of potential conpaths if every solution spu of every sample Sp is an
element of at least one conpath pk38.

The weight of a bundle P (S) is
w(P (S)) ∶= ∑

pk∈P
w(pk). (6.49)

P (S) is a bundle of likely conpaths if P (S) has the smallest weight of all possible
bundle of potential conpaths on S.

The difference between potential and likely conpaths is one of weighting. In
the next chapter, we’ll see that bundles of conpaths with smaller weightings will,
at sufficiently high sampling resolutions, better reflect path connectedness in the
actual conformation space being approximated.

Conformational pathways, can be extended into include entire sampling lattices.
Definition 6.13 (Conformational Pathways of a Sampling Lattice). Let  be a sam-
pling lattice and  be a set of bundles of potential conpaths on  consisting of
exactly one bundle Ppq on every pair of adjacent samples Sp and Sq in .  is
called a conpath bundle set.

Two solutions spu and sqv are considered path connected in () if there exists a
sequence of solutions

spu − s
a1
b1
− sa2b2 −⋯ − sambn − s

q
v (6.50)

where every successive pair of solutions sri and stj form a conpath in bundle Prt.
Let ppquv be a path between spu and sqv for a given (). Then () is a feasible if

the following conditions hold:
p = q ⟹ ∃ sri , s

t
j ∈ p

pq
uv ∋ |Sr| ≠ |St|. (6.51)

38i.e. the conpaths of P (S) cover the solution samples of S

93

6.2. Formal Definitions

In other words, there only exists a path between two solutions in a single sample if
the path passes through a singularity. If () is not feasible, it’s infeasible.

Let ℙ() be the set of all feasible bundle sets k for sampling lattice  and let
the weight of any k be

w(k) ∶=
∑

P kpq∈k

w(P kpq). (6.52)

The bundle set in ℙ which has minimal weight is the optimal conformational space
for .

The relationship between sampling lattices and conformational pathways with
stacked graphs and assignments should be apparent. Every sampling lattice can be
represented by a stacked graph G, every bundle set  on  corresponds to a unique
assignment A on G, and feasibility of () is the same as feasibility on A(G). As
the size of edge stacks and the disjoint paths of their assignments define regions
and layers in G and A(G), respectively, so too do bundle sizes and conpaths define
conformational regions and conformational layers in  and (), respectively.
Definition 6.14 (Conformational Regions and Layers). Let  be a sampling lattice
for a workspace and  be a feasible bundle on . In addition, let ′ be  less all
singular edges. Then

 ∶= {Ri|i = 0, 1, 2,…} (6.53)
is the set of path connected components, or conformational regions, Ri of ′ while

i ∶= {Lij|j = 0, 1, 2,…} (6.54)
is the set of path connected components, or conformational layers, Lij of (i).

94

Chapter 7

Stacked Graphs of Conformation
Spaces

In this chapter, we formally re-write sampling lattices in the language of stacked
graphs. Prior to doing this, we must demonstrate that sampling lattices actually
approximate conformation spaces as well as prove the path-disjointedness of any
two sample solutions ski and skj in the absence of singularities. The process of doingso is reminiscent of Section 2.1, where we introduced the process of approximating
an unknown function f using ‘special pairs’ of approaching images (i.e. sample
solutions). In what follows below, approaches are defined in terms of shrinking
open neighbourhoods and limits.

Kinematic chains are manifolds [McC90]. As sampling resolution increases,
the distance between solutions for adjacent samples points on the sampling lattice
decrease, with the distance between certain pairs of approaching 0◦ in the limit.
These pairs are what defined conformational pathways in the previous chapter. We
now prove that conpaths, as described in Definition 6.13, exist in connected mani-
folds. The proof assumes some knowledge of topology.
Definition 7.1 (Manifold). [Mun00] An m-manifold is a Hausdorff space Y with a
countable basis such that each point y of Y has a neighbourhood that is homeomor-
phic with an open subset of ℝm.
Theorem 7.2 (Layers and Regions of Manifolds). Let f be a continuous function
on a connected metric space X

f ∶ X → Y (7.1)
such that Y is an m-manifold and f−1 is multi-valued on at least some yi ∈ Y .
Denote the set of pre-images f−1(yi) as Si

Si ∶= {xij|xj ∈ f
−1(yi)}. (7.2)

In addition, letK be a connected set in Y where |Si| = |Sj| for all ki, kj ∈ K , with

XK ∶= f−1(K) =
⋃

ki∈K
Si. (7.3)

95

Chapter 7. Stacked Graphs of Conformation Spaces

Then for each ki ∈ K , all xij ∈ Si are mutually path disconnected in XK . These
components are the sub-layers hKi of XK .

The boundary of Y under f is the set of boundary points B in Y , where b ∈ Y
is a boundary point if every neighbourhood of b contains at least two points yr and
yt such that |Sr| ≠ |St|. A layer i of X under f is a connected component in
f−1(Y − B), with the set of all layers denoted as ℍX .

The regions of Y under f are the connected components of Y − B.

Proof. The proof for the path disconnectedness of all xij ∈ Xk for all j, for a given
i, is by contradiction.

For any xpa, xpb ∈ Sp, yp not a boundary point, the distance between xpa and xpbis
d(xpa, x

p
b) > 0 (7.4)

when a ≠ b. This follows immediately from the fact that xpa and xpb are distinct
values in X. Next, let Bp be an open m-ball centred on yp with radius e and which
doesn’t include a boundary point. Since Y is Hausdorff, such a neighbourhood
always exists. For any yq ∈ Bp, the following two conditions hold:
1. for each xpu ∈ Sp there is exactly one xqv ∈ Sq such that

d(xpu, x
q
v)→ 0 as e→ 0, (7.5)

2. for each xqv ∈ Sq, there is exactly one xpu ∈ Sp such that
d(xpu, x

q
v)→ 0 as e→ 0. (7.6)

Assume that these are not true. Then there are four cases, two for each condi-
tion. We treat the first condition only as the proofs for the second are similar.

In the first case, there exists an xpu such that there is no xqv where
d(xpu, x

q
v)→ 0 as e→ 0. (7.7)

In the limit of e → 0, Bp → yp39. Thus, yq → yp as e → 0. However, this implies
that xqv ∈ Sp in the limit, meaning that

|Sp| → |Sp| + 1 as e→ 0. (7.8)
This is impossible. Therefore there must be at least one xqv ∈ Sp for every xpu ∈ Sq
such that

d(xpu, x
q
v)→ 0 as e→ 0. (7.9)

39i.e. the open ball contracts to point yp at its centre

96

Chapter 7. Stacked Graphs of Conformation Spaces

In the second case, there exist at least two elements in Sq such as Equation 7.5
holds. Let these be xqa and xqb. However, the existence of xpa and xpb imply that Bp
contains a branch point, which, by definition, it doesn’t. Specifically, in the limit of
e→ 0, |Sq| → k with k < |Sq|: the size of Sq shrinks as Sq → Sp.

This is a contradiction. Therefore there exists at most one xqv ∈ Sq such that
Equation 7.5 holds.

Therefore, for any Sk, every xki ∈ Sk is path disconnect in S. In addition, this
implies that if xki and xkj are path connected in f−1(Y), the path must contain a
boundary point.
Corollary 7.3. Let X, Y , f , and B be as in Theorem 7.2. Then, for any xpu, x

q
v ∈

f−1(Y −B), xpu and x
q
v in different layers, every path connecting x

p
u and x

q
v contains

at least one boundary point b.

Proof. Since xpu and xqv belong to difference layers, they are path disconnected in
f−1(Y −B). Therefore, if their path connected in f−1(Y), it must be through some
element in B.

Given that Equation 5.2 is continuous on a connected metric space, Theorem
7.2 applies to kinematic chains with the boundary points equivalent to singularities
(Definition 6.11). The key difference is that in sampling lattices we treat infinite
IK solutions as boundaries as well, the reason for which being that stacked graphs
have not been generalized to infinite stack sizes.

Boundary points may be similar to branch points in complex functions. As I
have not studied complex analysis - and to avoid digression into yet another math-
ematical field - the notion of boundary points are used instead.

It should be clear from Corollary 7.3 and the proof of Theorem 7.2 why it’s the
minimally weighted potential conpath bundles are what we’re interested in: so long
as our sampling lattice  gives good coverage of the workspace, and so long as a
sufficiently high number of samples are used, the connected components in ()
approximate the layers of Q−1.

Re-writing a sampling lattice as a stacked graph is straightforward.
Definition 7.4 (Stacked Graphs of Sampling Lattices). Let  be a sampling lattice
consisting of samples Si, each composed of a set of solutions sij . Then the stacked
graph formed on  is G = ( , ), where Vi ∈  if Si ∈ , Epq ∈  if Sp and Sq
are adjacent in , and epquv ∈ Euv if spu ∈ Sp and sqv ∈ Sq.

The weight of any epquv is
wpq
uv ∶= d

(

spu, s
q
v
)

. (7.10)
An edge stackEpq is singular if and only if |Sp| ≠ |Sq| and asingular otherwise.

97

7.1. Validating the ULA Constraint and Disconnecting Assignment Components

Theorem 7.5. Let  be a sampling lattice graph andG be the stacked graph formed
on it. Then, for any path S in , every bundle P on S is isomorphic to a unique
assignment A on  in G, where  is the path stack associated with S. Thus, ()
is feasible or optimal if and only if A(G) is feasible or optimal, respectively.

Proof. That every bundle is isomorphic to an assignment is obvious. The rest fol-
lows directly from the isomorphism.

The structure of G, the vertex stacks and their adjacency, is defined by the tech-
nique used to sample spaceX, with assignments A on G representing possible pre-
images and connected components of Y and Y −B under f . The weightings of each
edge in G, the distances between point-wise pre-images f−1(yi), are what guide
the choice in which assignment best represents f−1(Y) or f−1(Y − B).

It should be emphasised that Theorem 7.2 and Corollary 7.3 apply to any con-
tinuous functions on a connectedmetric space that producemanifolds, not just those
dealing with kinematic chains. Stacked graphs can therefore be used as a tool for
study certain classes of manifolds.

7.1 Validating the ULA Constraint and Disconnecting
Assignment Components

In Section 2.5 we introduced the non-basic Uniform Layer Adjacency (ULA)
constraint for singular edge stacks. The rational given for it was so that the pro-
portional and binary forms of the derived assignment A(ℝG) would be the same
(Lemma 2.43), which would assist in calculating metrics for how well optimal as-
signments approximate conformation manifolds (Chapter 8). Enforcing ULA using
linear programming is, however, not straightforward (Section 4.3), and increasing
the difficulty of one set of calculations to easy another set does not imply an over-
all reduction in complexity. There should be a inherent reason for using ULA. We
provide such a rational in this section by demonstrating the conformation spaces
exhibit the ULA property, or some variation of it.

Returning to the annulus boundary example of Section 2.1, with the primary
image reproduced in Figure 7.1 below, we’ll recall that singularities were introduced
as size discrepancies between successive image sets f (xi) and f (xi+1). In terms of
stacked graphs, this correspond to asingular edge stacks. One such singularity is
between the images of x3 and x4. What is visually quite clear is that singularities to
not uniformly impact the images they include. The existence of an edge between y31and y42 and another between y30 and y41 (Figure 7.1(b)) is questionable, however theedge between y31 and y43, and that between y30 and y40, are certainly not. Regardless of

98

7.1. Validating the ULA Constraint and Disconnecting Assignment Components

how points on the outer ring related to those of the inner ring, intra-ring adjacency
is fixed.

In terms stacked graphs, for any asingularEpq, |Vp| > |Vq| if their exist a pair vpiand vqj such that the distance between them approaches zero in the sampling limit,
then a singularity should have no impact on adjacency of the layers which vpi and
vqj belong to. There is some degree of independence suggesting a degree of uni-
form adjacency between certain layers of adjacent regions. Whether this property
is exactly ULA is an open question, but one which merits the use of ULA until the
proper constraint(s) can be derived.

On the other hand, the existence of pairs vpi and vqj which do not approach eachother in the limit gives a mechanism for identifying disjoint components in f (X).
Clearly, y31 and y42 do not approach each other, nor do y30 and y41. If the set S is
enlarged to include samples between x3 and x4, and it’s found that the same lack of
convergence occurs, then this would be strong evidence for the existence of disjoint
components or layers in f (X). If an optimal assignment A on G is found and a lack
of convergence is discovered, any edge epqij in A(G) whose flow value xpqij is 1, but
whose weightwpq

ij - which corresponds to angular distance - is not sufficiently close
to zero can be be deleted from A(G). Deleting all offending edge stacks could pro-
vide a more accurate approximation. Figure 7.2 does this for our annulus example.

99

7.1. Validating the ULA Constraint and Disconnecting Assignment Components

(a)

(b)

Figure 7.1: (a) The annulus f (X) of Section 2.1 and (b) and optimal linear approx-
imation to it based on the sampling regime.

100

7.1. Validating the ULA Constraint and Disconnecting Assignment Components

Figure 7.2: More accurate approximations of f (X) can be had removing the edges
between successive image elements yia and yi+1b whose mutual distance are sus-
pected to be non-diminishing in the sampling limit.

101

Chapter 8

Conformation Space Simulations

In Chapters 2 and 3 we explored the mathematics of stacked graphs and, in
Chapters 5 through 7, approximated the conformation spaces of kinematic chains
and nucleic acid phosphate backbones using these structure. The conformation
space problem for was reduced, in Chapter 7, to finding an optimal feasible assign-
ment, a problem that was solved in Chapter 4 through the construction of a linear
program that satisfied the assignment feasibility conditions of Theorem 2.31. This
chapter develops a collection metrics to study how well an optimal assignment ap-
proximates a conformation space. In addition, it generalizes what has thus far been
the study of rigid chains to semi-rigid chains, allowing us to account for flexibility
in chemical bond lengths and angles.

For this chapter, all stacked graphsG are assumed to be associated with normal-
ized lattices generated by sampling a chain conformation space using the bisection
technique described in Chapter 6 at some fixed resolution (Definition 7.4). Unless
otherwise stated, all assignments A are assumed to be optimal. Graphs of the form
A(G) will henceforth be termed conformation graphs. When referring to normal
coordinates and vertex stacks, Norm(Vk)will be used as a short hand for ‘Norm(Sk),
where Sk is the sample associated with Vk’ (see Definition 7.4).
Definition 8.1 (Similar and Dissimilar Stacked Graphs). LetG andG′ be generated
by two different chain parametrizations. If the parametrizations are approximately
the same, then G and G′ are similar, otherwise they are dissimilar.

Whether two parametrizations are ‘approximately the same’ is context depen-
dant. For our purposes, parametrizations drawn from the same distributions will
usually be similar.

8.1 Comparing Normalized Workspaces

This section discusses four possible congruence metrics for comparing stacked
graphs: ΩA∗ , ΩV , Ω, and Ω . Additional metrics are certainly possible.

102

8.1. Comparing Normalized Workspaces

8.1.1 A∗ Congruence Metric ΩA∗

In Chapter 2 we introduced the identity assignment A∗ (Definition 2.38). It
turns out that, besides being the graph dual of the identity element in Sm (Fact 3.3),
A∗ is potentially an optimal feasible assignment for asingular edge stacks at infinite
sampling resolutions. This applies only in the case where an absolute torsion angle
(Definition 6.9) or equivalent ordering is used. The result stems from the continuous
nature of conformation spaces.

Recall from Theorem 7.2 and its proof that for pairs of adjacent samples Sp and
Sq in the same region, there exists, for each sample spu, precisely one sample sqv such
that the angular distance between spu and sqv approaches 0◦ as the distance between
Sp and Sq approaches zero40. In the context of stacked graphs, this means that the
weight for edge epquv is nearly zero at sufficiently high resolutions, with u = v under
absolute ordering. The absolute torsion angle ordering ensures that, at sufficiently
high resolutions, two vertices having the same second index, belonging to adjacent
vertex stacks, and existing in the same region, have nearly identical corresponding
angular solution vectors (Definition 6.7).

The implication is that at high resolutionsA∗ is a nearly optimal (i.e. minimally
weighted feasible) assignment for asingular Epq, and by extension, for every region
i ∈ G. The graph dual interpretation is that �pq ≈ � for all p, q.

With this in mind, it’s possible to define a single value that reflects how well a
particular sampling regime approximates the finite IK components of a conforma-
tion space.
Definition 8.2 (A∗ Convergence Metric ΩA∗). Let A be any feasible, though not
necessarily optimal, assignment on some G. Then the A∗ convergence metric for
A(G) is

ΩA∗(A(G)) ∶=

∑

Apq∈A(G̐)

|Vp|
∑

i=0
xpqii

∑

Epq∈G̐
|Vq|

. (8.1)

Equivalently,ΩA∗ is the ratio between the number of identity transpositions (ii)
in the graph dual
 of G and the total number of possible identity transpositions41.
Lemma 8.3. If xij ∈ {0, 1}, ΩA∗(A(G)) → 1 as the sampling resolution of G
approaches infinity.

40i.e. as the radius of Bp goes to zero.41Under the assumption that the transposition representation is minimal (Section 3.1).

103

8.1. Comparing Normalized Workspaces

One issue with usingΩA∗ is that the value can be misleading at low resolutions.
It’s entirely possible that ΩA∗(A(G)) = 1, with ΩA∗ decreasing dramatically before
converging once more to 1 at high resolutions.

Another issue is that the convergence rate ofΩA∗ is both unknown and likely de-
pendent on the details of the conformation space being approximated. Convergence
is predicted to be non-uniform within a region as areas near singular boundaries are
expected to converge slower then areas distant from them. This prediction is based
on the kinematic singularities that haunt singular edge stacks, which can produces
extremely high angular velocities [Ang07], manifesting as large angular distances
between the solutions of adjacent samples even when resolutions are high. It may,
however, be possible to approximate convergence rates by locally sampling confor-
mation spaces at high resolutions and averaging the resulting convergence values.
This approach is not covered here.

8.1.2 Vertex Stack Congruence Metric ΩV

When comparing two similar stacked graphs G and G′, it’s not necessary that
both exist at the same resolution. One can compare vertex stacks which exist in
both G and G′, corresponding to vertex stacks having the same normal coordinates
(Definition 6.4).
Definition 8.4 (Shared Vertex Stacks ∩V). For any two G and G′, the shared vertex
stacks of G and G′ are

G ∩V G′ ∶= {Vi|Vi ∈ G, V ′
j ∈ G′,Norm(Vi) = Norm(V ′

j)}. (8.2)
Definition 8.5 (Vertex Stack Congruence MetricΩV). LetG andG′ be two stacked
graphs and

̃ ∶= G ∩V G′. (8.3)
Then the vertex stack congruence metric of G with respect to G′ is

ΩV (G,G′) ∶= 1 −

∑

Ṽi∈̃
||Vi| − |V ′

i ||

∑

Ṽi∈̃
|Vi|

. (8.4)

For graph duals, the metric is a comparison between the size of the symmetric
groups that a vertex dual belongs to in
 and
 ′.

Though simplistic, ΩV is straightforward to calculate, providing a quick and
dirty comparison technique that doesn’t require expensive assignment calculations.
Intuitively, if G and G′ are similar and ΩV (G,G′) ≈ 1, then the conformational
spaces should be nearly identical.

104

8.1. Comparing Normalized Workspaces

Lemma 8.6. For any two G and G′ generated by the same chain parametrizations,
but possibly at different sampling resolutions, ΩV (G,G′) = 1.

8.1.3 Regional Congruence Metric Ω

Higher level comparisons between similar stacked graphs begin with identify-
ing regions between them.
Definition 8.7 (Regional CongruenceMetricΩ). LetGa andGb be similar stacked
graphs at the same resolution. Let Gc be a stacked graph consisting of two vertex
stacks Va and Vb, where

Va ∶= {vai |i ∈ Ga} (8.5)
and

Vb ∶= {vbj |j ∈ Gb}, (8.6)
and a single edge stack Eab. Assign to each eabij a positive weight wab

ij . Then, when
A(Gc) is optimal.

Ω(Ga,Gb) ∶= 1 − A(Gc) (8.7)
is a regional congruence metric if the weights wab

ij are defined such that
Ω(Ga,Gb)→ 1 (8.8)

as the parametrizations of Ga and Gb approach each other.
If a

i ∈ Ga and b
j ∈ Gb are adjacent in A(Gc)42, then a

i and b
j identify

with each other, denoted bya
i ≡ b

j . Otherwise,a
i andb

j do not identify with
each other, or a

i ≢ b
j .

The optimal feasible assignment A(Gc) identifies, for each region in Ga, the
region in Gb that best correlates with it, based on the weighting metric chosen. If
the parametrizations ofGa andGb are sufficiently close, thenEab is likely asingular
and the total weight of A(Gc) should be nearly zero regardless of the weighting
scheme used. One weighting scheme is based on centres of mass.
Definition 8.8 (Centre of Mass). Let  be a set of vertex stacks Vi associated with
some G. Assign to each Vi a mass Mass(Vi). Then Norm() are the normal coordi-
nates for the centre mass of the vertex stacks using normal coordinates. The centre
of mass for G is Norm(G).

42That is, if xabij = 1.

105

8.1. Comparing Normalized Workspaces

Figure 8.1: The regions of bothGa andGb are treated as vertices in vertex stacks of
a new Gc . Edges weights (suppressed) between ‘region vertices’ are a measure of
difference between the two regions, such as distance between centres of mass. The
optimal feasible assignmentA onGc (red lines) identify the regions ofGa with those
of Gb. Bold black edges indicate adjacency between regions in the same stacked
graph.

Inmost cases, themass of each vertex stack will all be 1. Regions, being stacked
graphs, have centres of mass. The weights wab

ij are simply the euclidean distance
between Norm(a

i) and Norm(b
j).One problem withΩ is that it doesn’t necessarily preserve regional adjacency.

In Figure 8.1,a
0 anda

2 are both adjacent inGa, and are identified with theb
0 and

b
1, respectively, which are likewise adjacent inGb. This is to be expected asGa and

Gb are assumed to be similar. However, there is a problem with the identifications
a
0 ≡ b

0 and a
1 ≡ b

1 as a
0 and a

1 are adjacent but b
0 and b

1 are not. Theidentification in Figure 8.1 does not preserve regional adjacency.
Adjacency can be preserved with the following restrictions.

Definition 8.9 (Regional Adjacency Constraint). Leta
i anda

j be regions in Ga,
b
x andb

y be regions in Gb, with Ga and Gb similar. Then
a
i ≡ b

x and a
j ≡ b

y (8.9)
only if

̉ij = ∅ and ̉xy = ∅ (8.10)
or

̉ij ≠ ∅ and ̉xy ≠ ∅. (8.11)

106

8.1. Comparing Normalized Workspaces

The regional adjacency constraint is similar to the non-basic ULA constraint in
Section 2.5.

Note that Definition 8.9 says nothing about adjacency when two regions in Ga
identify with the same region in Gb, and vice versa. The identifications of a

1 and
a
2 with b

1 in Figure 8.1 are therefore valid.Like ΩV , Ω can be performed in the absence of assignments.

8.1.4 Layer Congruence Metric Ω

When the regions of similar Ga and Gb have been identified and optimal as-
signments have been calculated for both, the next natural comparison is between
the layers of both assignments. The process is identical to regional identification,
save for being based on regional stacked graphs (Definition 2.35).
Definition 8.10 (Layer Congruence Metric Ω). Let Ga and Gb be similar, have
identified regions, and have optimal assignments Aa and Ab, respectively. If the
regional stacked graphs of Ga and Gb are ℝGa and ℝGb , respectively, denote theirvertex stacks as V a

i and V b
j , respectively.Create a new stacked graph Gc composed of the vertex stacks of both ℝGa and

ℝGb , where Eab
pq ∈ Gc if a

p ≡ b
q.

Assign to each eab pq
ij a positive weight wab pq

ij . Then
Ω(Ga,Gb) ∶= 1 − A(Gc), (8.12)

where A(Gc) is optimal, is a layer congruence metric if the weights wab pq
ij are de-

fined such that
Ω(Ga,Gb)→ 1 (8.13)

as the parametrizations of Ga and Gb approach each other.
Layer a p

i in Aa(Ga) is adjacent to layer b q
j if xab pq

ij = 1. If so, they identify,
a p
i ≡ b q

j . Otherwise, they do not identify, a p
i ≢ b q

j .
Distances between centres of mass, this time for layers in Aa(Ga) and Ab(Gb),

provide a weighting scheme that produces a layer congruence metric.
As withΩ, when the regions ofGa andGb consist of more than one layer each,

issues of layer adjacency preservation in Ω can arise. For example, let Ga and Gb
consist of two regions each: a

0,
a
1,

b
0, and b

1, where |a
0| = 4, |a

1| = 3,
|b

0| = 3 and |b
1| = 4. To simplify matters, assume that the derived assignments

Aa(ℝGa) and Ab(ℝGb) are binary (Definition 2.36), and that layer adjacency is that
described by the assignment in Figure 8.2. We’ll also assume that regional identi-
fication is a

0 ≡ b
0 and a

1 ≡ b
1. Finally, let Ac(Gc) be as illustrated in Figure

8.2.

107

8.1. Comparing Normalized Workspaces

Figure 8.2: The assignments on Ea
01 and Eb

01 are the derived assignments Aa(ℝGa)and Ab(ℝGb), respectively, indicating layer adjacency. The red lines indicate the
assignment Ac(Gc), which is also indicates layer identification.

Layer identities a 0
1 ≡ b 0

2 and a 1
0 ≡ b 1

3 preserve layer adjacency since
xaa 01
10 = 1 in Aa(ℝGa) (8.14)

and
xbb 01
23 = 1 in Ab(ℝGb) (8.15)

On the other hand, we have a 0
2 ≡ b 0

1 and a 1
2 ≡ b 1

1 , which don’t preserve
adjacency as

xaa 01
22 = 1 in Aa(ℝGa) (8.16)

but
xbb 01
11 = 0 in AbℝGb . (8.17)

Visually, two red edges eab xy
ij and eab wz

kl preserve adjacency if both eaa xw
ik and

ebb yz
jl are black in Figure 8.2.As with regions in Ω, layer adjacency in Ω can be enforced with an addi-

tional constraint. The constraint is exactly the Uniform Layer Adjacency constraint
discussed in Section 2.5 (Definition 2.42).

The assumption of binary A(ℝGa) and A(ℝGb) is a large one. In its absence,
assignments are proportional, resulting in layer identifications that are also pro-
portional. ‘Proportional adjacency’ is something we wish to avoid at this stage of

108

8.1. Comparing Normalized Workspaces

research, which is one of the reasons we introduced binary derived assignments
to begin with (Definition 2.36). We also have reason to suspect that conformation
space are binary in nature, as noted in Section 7.1.

It’s possible to calculate Ω in the absence of Ω, in which case the layers of
Ga and Gb each form a single vertex stack. If Ga and Gb are sufficiently similar,
then the loss of regional data should not impact optimal identifications.

We noted at the end of Section 2.3 that regional stacked graphs give a broad-
scale description of the conformational pathways between conformations. Full con-
formation graphs are large, complex structures whose size is exponential to their
sampling resolution (Equation 6.4), but regional stacked graph sizes eventually sta-
bilize since the number of regions and layers for conformation graphs are finite43. If
the resolution is high enough to pick out each region, general connectivity between
conformations can be studied via the connectivity of layers on a graph of reasonable
size.

8.1.5 Metrics At Infinite Resolutions

In the previous sections, we assumed that G and G′ were similar, but still born
from distinct chain parametrizations. An alternative is to assume that G and G′ fol-
low from the same parametrization but exist at different resolutions. Applying met-
rics ΩV , Ω, and Ω to different resolutions of the same parametrizations allows
us to estimate the impact that increased sampling resolution has on conformation
space approximations. In fact,ΩA∗ is such an estimation, since it’s essentially com-
paring some conformation graph G, which exists at a finite resolution, with what it
should be at infinite resolution.
Definition 8.11 (Reflexive Congruence Metrics). Let Gi be generated at resolution
ri =< i, i, i, i, i, i > for some chain parametrization. Then ΩV (Gi,Gj), Ω(Gi,Gj),
and Ω(Gi,Gj) are reflexive congruent metrics. If j = i+ 1 or i = j + 1, then they
are step-wise reflexive.

If conformation graphs are generated iteratively through increasing resolutions
of nc = ne, we can produce, for any single parametrization, a vector of four values
which measure how accurate the approximations are.

43This follows from the proof of Theorem 7.2. For every non-boundary point yp ∈ Y , there is an
open m-ball centered on yp that doesn’t contain boundary points. It follows then that every connectedcomponent in Y −B, or region in Y , has a non-trivial extent. AsX is of finite size, being the product
finite intervals [0◦, 360◦), so too must Y be a finitem-manifold. Thus there can only be a finite number
of regions. By assumption, stacked graphs only involve finite IK solutions, so that every region has
finitely manly layers. Therefore both the number of regions and layers in any chain conformation
space are finite.

109

8.1. Comparing Normalized Workspaces

Definition 8.12 (Reflexive Congruence Vector). Let Gi and Gi+1 be stacked lattice
graphs associated with a single chain parametrization with resolution

ri =< i, i, i, i, i, i > . (8.18)
If the weightings of Ω and Ω are such that

lim
i→∞

Ω(Gi,Gi+1) = 1 (8.19)
lim
i→∞

Ω(Gi,Gi+1) = 1, (8.20)
then the step-wise reflexive congruence vector is

Ω(Gi) ∶=
⟨

ΩA∗(Gi),ΩA∗(Gi+1),Ω(Gi,Gi+1),Ω(Gi,Gi+1)
⟩ (8.21)

and the total step-wise reflexive congruence metric is

ΩGi ∶=

3
∑

j=0
Ω(Gi)[j]

4
(8.22)

where ΩGi → 1 as i→∞.
With the advent of additional reflexive congruence metrics, the definitions of

Ω(Gi) and ΩGi can be extended to accommodate them.

8.1.6 Metrics on Groups of Conformation Graphs

ΩA∗ ,ΩV ,Ω, andΩ can be applied pair-wise to collections of similar stacked
graphs in order to determine how chain parametrizations impact conformation space
geometry.
Definition 8.13 (Collective Congruence Metrics). Let G be a set of m similar
stacked graphs Gi. The collective A∗, vertex stack, regional, and layer congru-
ence metrics ΩCA∗ ,ΩCV ,ΩC, and ΩC , respectively, are defined as the mean value of
applying ΩA∗ to every Gi ∈ G, and ΩV ,Ω, and Ω to every pair Gi,Gj ∈ G,
respectively. For example

ΩCV (G) ∶=

∑

Gi∈G

∑

Gj∈G,i≠j
ΩV (Gi,Gj)

(m
2

) . (8.23)

The collective congruence vector is
ΩC (G) ∶=

⟨

ΩCA∗(G),Ω
C
V (G),Ω

C
(G),Ω

C
(G)

⟩ (8.24)

110

8.1. Comparing Normalized Workspaces

while the total collective congruence metric is

ΩCG ∶=

3
∑

j=0
ΩC (G)[j]

4
. (8.25)

In the case of RNA, the stacked graphs Gi ∈ G are parametrized by values
pulled from the distribution of backbone bond length and angle values (Tables 6.1
and 6.2). As |G| →∞, we may find that the values of ΩCA∗ , ΩCV , ΩC, and ΩC con-
verge to particular values. These values would represent the degree to which chain
flexibility impacts conformation space geometry. More flexible chains, defined by
wider parameter distributions, should have lower values than less flexible chains,
defined by narrower distributions.

A variant of collective congruence metrics are the mean congruence metrics,
which measure how strongly conformation graphs generated by parameter distribu-
tions diverge from that generated by mean values.
Definition 8.14 (Mean Congruence Metrics). Let G be a set of n similar stacked
graphs Gi generated from a set of chain parameter distributions, where G0 is gen-
erated from the mean values. The mean A∗ congruence metric is

ΩMA∗(G) ∶=

n−1
∑

i=1
|ΩA∗(G0) − ΩA∗(Gi)|

n − 1
(8.26)

while the mean vertex stack, regional, and layer congruence metrics ΩMV ,ΩM , and
ΩM , respectively, are of the form

ΩMV (G) ∶=

n−1
∑

i=1
ΩV (G0,Gi)

n − 1
. (8.27)

The mean congruence vector is
ΩM (G) ∶=

⟨

ΩMA∗(G),Ω
M
V (G),Ω

M
 (G),Ω

M
 (G)

⟩ (8.28)
while the total mean congruence metric is

ΩMG ∶=

3
∑

j=0
ΩM (G)[j]

4
. (8.29)

Variant congruence metrics based on median values are also possible.

111

8.2. Averaged Stacked Graphs

Mean (and median) congruence metrics are likely to be those most useful for
our purposes, being measures of how the conformation space of a kinematic chain
is impacted by converting its rigid (mean-/median-valued) components into semi-
rigid components.

8.2 Averaged Stacked Graphs

The previous section developed a number of metrics for comparing different
stacked graphs and assignments on them. We now turn to averaging a collection of
stacked graphs.
Definition 8.15 (Averaged Stacked Graphs). Let G be a set of similar stacked
graphs Gi all at the same resolution r and generated by the same sampling tech-
nique. The averaged stacked graph of G, denoted by Ḡ, is composed of the vertex
stack set ̄ . Vertex stacks V̄k ∈ ̄ are the set of vertices v̄kj returned by a represen-
tative function f acting on the set

{vpj |v
p
j ∈ Vp ∈ Gi ∈ G ∋ Norm(Vp) = Norm(Vk), ∀p, i}, (8.30)

or the set of all vertices vpj across all Gi whose containing vertex stacks have the
same normal coordinates as Vk. Each element in v̄kj ∈ V̄k is a representative vertex.A representative function is one that either a) selects from a set of vertices a
sub-set that represents the distribution of sample torsion vectors skj associated withthe vertex set, or b) creates a new, smaller set of vertices with representative sample
torsion vectors.

Edges stack Ēpq exists if V̄p and V̄q are adjacent in some Gi ∈ G.
A common class of representative functions would be clustering algorithms,

which aggregate sub-sets of vertices into groups based on their associated sample
torsion angles. A set of representative vertices would be formed by either a single
vertex drawn from each group or a single vertex created from each group whose tor-
sion angles are some statistical average of its group. Detailed discussion of possible
representative functions is beyond the scope of this work.

In the context of kinematic chains and phosphate backbones, Ḡ describes a con-
formation space for a rigid chain containing the key characteristics of a semi-rigid
chain. This rigid chain is not necessarily the rigid chain generated by mean valued
chain parameters, whose conformation graph isG0 (Definition 8.14). By subjecting
G0 and Ḡ to congruence analysis, we can determine how well a rigid, mean valued
conformation space models, ‘on average’, a semi-rigid conformation space, for a
given set of representative functions

112

8.3. Energetics and Simulations

The benefit of using averaged stacked graphs over a collection G is that only
two optimal assignments need to be found, one each for G0 and Ḡ. In the previ-
ous section, comparing a collection of stacked graphs G required, depending on
the metric used, finding feasible/optimal assignments Ai for every Gi ∈ G, in ad-
dition to the already time-intensive inverse kinematic sampling process (Chapter
6). Whereas a complete analysis of even a small sized G may not be practical, an
average comparison almost certainly is.

Finally, it’s likely possible to generalize averaged stacked graphs so that each
Gi ∈ G need not be at the same resolution.

8.3 Energetics and Simulations

For any single conformation graphGwith feasible assignmentA,A(G) is a non-
stacked graph on which simulations can be carried out using random processes.
These processes require some kind of decision making variable. For phosphate
backbones, the variables are driven by atomic forces.

Molecular energetics, the attractive and repulsive forces between atoms, pro-
vides ameans of converting our conformation graphsA(G) into digraphs andMarkov
chains. As each A(G) is an approximation of some conformation space, or, in the
case of Ā(Ḡ), an averaged approximation, any energetics model we incorporate
need only be reasonably accurate. We do not need highly accurate quantum me-
chanical descriptions of inter-atomic forces as the approximate nature of our graphs
will likely override the energetic precision such descriptions would provide. We can
satisfy ourselves with any model that quickly calculates the potential energy con-
tained by a single phosphate backbone with torsion angles equal to some solution
sji . Such a model could simply be the sum total of the Lennard-Jones potential
[LMS03] between every pair of atoms in the backbone.

Regardless of the specific energetics model used, simulation begins by assign-
ing an energetics value qi to each vertex vi ∈ G

44. Next, each edge eij ∈ G is
assigned a weight

wij ∶= qj − qi. (8.31)
All energies can be considered finite, with any infinite or undefined values resulting
from overlapping atomic nuclei being replaced with sufficiently large numbers. In
addition, we treat eij and eji as distinct, directed edges so that wij = −wji.
Definition 8.16 (Energized Conformation Graphs). Let A(G) be a directed confor-
mation graph with edge weights representing energy difference between vertices,
as described above. Then A(G) is an energized conformation graph. A(G)+ is the

44Vertex/sample solution energetics are independent of any assignment

113

8.3. Energetics and Simulations

positive sub-graph consisting of all edges with positive weights, while A(G)− is the
negative sub-graph consisting of all edges with negative weights.
Lemma 8.17. If A(G) is an energized conformation graph, then A(G) contains no
directed cycles with all negative edge weights. A(G)− and A(G)+ are either trees
or forests.

Proof. Every vertex has a single, finite, real-valued energy, implying that there is
no infinite, repeating sequence of vertices

⋯ − v0 − v1 − v2 −⋯ − vn − v0 − v1 −… (8.32)
whose energies are monotonically decreasing. Therefore there are no directed cy-
cles consisting entirely of negative edge weights. Since A(G)+ is A(G)− with edge
directions and weight signs reversed, and asA(G)− contains no cycles, neither does
A(G)+. Both must therefore be trees or forests.

Lemma 8.17 provides a simple way of identifying stable conformations and
conformational pathways.
Lemma 8.18 (Stable Conformations and Conformational Pathways inA(G)−). Ev-
ery leaf in A(G)−, or vertex with no out-going edges, is a stable conformation and
every directed path is a conformational pathway or conpath.

Proof. A conformation is stable if there are no lower energy conformations it can
move into. This is indicated by an outgoing, negative edge. Thus, every leaf in
A(G)− is stable as it has no outgoing edges.

The existence of multiple directed paths beginning at some vertex vi ∈ A(G)−
indicates that multiple conpaths are possible. It’s reasonable to assume that the
paths actual phosphate backbones will take are the most energetically favourable
(i.e. minimally weighted) edges at each branching point. Still, it’s possible that
less than optimal, though still negative, paths are chosen, perhaps do to atomic
forces external to the backbone interacting with it. Path-choice can be modelled
probabilistically by replacing each edge weight wij with the proportional value

w̃ij ∶=
qj − qi

∑

k∶eik∈A(G)−
(qk − qi)

(8.33)

with w̃ii ∶= 1 when there are no outgoing edges from vi.
Probabilistic forms of energized A(G)− have a useful property.

114

8.4. Model Validation and Real-World Data

Theorem 8.19. Probabilistic, energized A(G)− are absorbing Markov chains 45.

Proof. The definition of w̃ij implies that A(G)− is a Markov chain as the sum of
all edge weights leaving any vi is 1. That A(G)− is absorbing is implied by Lemma
8.17: every conpath eventually ends in a stable conformation, which is an absorbing
state.

The calculation for determining the probability that any path starting at vi will
end at any particular absorbing state is well known for absorbing Markov chains
[TK98]. Given the torsion angles for some initial RNA conformation and a prob-
abilistic conformation graph A(G)−, we can therefore predict which final confor-
mation it is most likely to stabilize at, up to the resolution of A(G)−. This applies
equally to rigid, mean valued conformations graphs A(G0), semi-rigid, averaged
conformation graphs A(Ḡ), and collections of conformation graphs G with their
associated assignments. In the third case, the long-term behaviour of each A(Gi)
Markov chain is calculated and compared.

Additional analysis techniques can be used to identify which vertices contribute
most to these probabilities. The implication is that these vertices are conformational
bottlenecks, which are precisely those conformations that would be targeted for drug
development (Chapter 1).

It’s possible to study pathways on an energized conformation graph without
removing A(G)+. To account for energetic fluctuation in a backbones environment,
a random value can be add or subtracted from each conformation’s energy after each
movement on the graph. While complicating the analysis, it may help to illuminate
transient pathways, pathways which, on average, are only mildly unfavourable do to
slightly positive edge weight values. Edges in A(G)+ which are close to zero may
provide occasional energetically favourable pathways which would circumvent the
effects of conformation-targeting drugs.

8.4 Model Validation and Real-World Data

One way to validate our model is to compare the predicted distributions of con-
formations using absorbing Markov chains against real-world data, such as the Nu-
cleic Acid Database’s massive collection of RNA crystallography data. At the time
of this writing, the online database consists of over 1100 pure RNA structures,
some composed of several hundred nucleotides, with each nucleotide representing

45A Markov chain is absorbing if there is at least one absorbing state (i.e. a state where the proba-
bility of leaving it is 0) and every state can reach an absorbing state [TK98].

115

8.4. Model Validation and Real-World Data

(a)

(b)

Figure 8.3: Sample names of real-world data (blue circles) are assigned new names
and coordinates to match the theoretical sample (black circles) contained by the
half-open lattice interval the real-world data falls in. These intervals are based
on the lattice’s resolution. For the cartesian case (a) with nc = 2, a real-world
data point with normal coordinate −0.489 would be labelled 3 with coordinate −12 .In the eulerian case (b) with ne = 2, 348.9◦ would be labelled as sample 0 with
coordinate 0◦.

a stable conformation46. Unfortunately, NDB’s RNA data does not come ready-
packaged with normalized chain parametrizations. Each nucleotide needs to be
processed. The process of converting raw NDB data into an appropriate chain for-
mat is a technical exercise we’ll not undertake here. For our purposes we’ll assume
that any real-world conformation data we have access to is in such a format.

There is also the issue that real-world chains involve real-valuedworkplace sam-
pling locations which do not fit nicely on the vertices of our sampling lattices (Chap-
ter 6). This problem can be resolved by grouping data based on lattice resolution.
Figure 8.3 illustrates one such grouping technique.

A small difficulty arises when we consider that there are two related sets of val-
46Though not necessarily energetically favourable. See below.

116

8.4. Model Validation and Real-World Data

ues: euclidean sample names and torsion angles. Recall that every euclidean sam-
ple corresponds to a specific set of torsion angles, or inverse kinematic solutions
(Sections 5.2 and 6.2). However we group real-world data on our sampling lattices,
the correspondence needs to be consistent: if a data point is grouped with sample
S6, then its associated torsion angles need to be sufficiently close to some solution
s6i . What constitutes ‘sufficiently close’ is debatable, but for averaged conforma-
tion graphs, within two standard deviations of the averaged solutions’ distribution
should suffice.

Assume, then, that we have both a technique for grouping data as well as a
method for ensuring consistent correspondence between sample grouping and sam-
ple solutions. Comparing model predictions with real-world data amounts to count-
ing the number of real-world data points existing in each lattice grouping, finding
the proportion of all counts in each group, and comparing these proportions to the
long term behaviour of our absorbing Markov chains. If our model is accurate, the
proportions should be similar. If not, something may be amiss.

There is a hidden assumption we’re making in this comparison which is that
real-world data is energetically favourable. If we find that a large proportion of
these nucleotides exist in conformations which we predict to be unstable, then it
need not mean our approach is flawed. Recall that we’re modelling a single nu-
cleotide backbone in isolation of its nucleoside (Chapter 1). Additional energetics
are involved with stacking and base pairing of nucleosides in polynucleotides which
may force individual backbones into unstable conformations while maintaining an
overall energetically favourable conformation for an entire strand.

A second validation technique is to compare the conformational pathways of
energized conformation graphs with those produced by other, more sophisticated
molecular modelling software, ones wherein detailed energetics calculations are
used. Existing software is computationally expensive47. Should stacked graphs
and assignments provide similar, though perhaps less accurate, results than other
techniques at a fraction of the time, the former could be used to guided simulations
on the latter. Kinematic simplification of transition structures may prove useful to
force field algorithms by way of providing ranges of probable conformations.

47Based on discussions with Al Vasius

117

Chapter 9

Concluding Remarks and Future
Research

The aim of this thesis has been to develop a technique for studying how nucleic
acids move, in particular, ribonucleic acid. Three research goals were outlined in
Chapter 1 which were formally met in Chapter 8
1. The approximation of conformation spaces for semi-rigid kinematic chains,

in the form of optimal assignments on averaged stacked graphs;
2. The identification of energetically favourable backbone conformations, in the

form of absorbing states in Markov chains;
3. The identification of energetically favourable conformational pathways, in

the form of directed paths on negative energized conformation graphsA(G)−.
It was in the chapters that preceded it, however, that the goals were substantively de-
veloped. The technique was developed conceptually, if not entirely chronologically,
as follows. We began by restricting our attention to the phosphate backbone of a
single nucleotide as it provides the lowest level restrictions on movement. The full
range of motion for a single backbone was viewed as a pre-image problem, namely,
finding an approximation to Q−1 where Q is continuous (Equation 5.3) and forms
a connected manifold [McC90]. To do this, we took advantage of the existence of
high-speed algorithms for finding the inverse kinematics of 6R kinematic chains
[MC94], which a single backbone can be modelled as, to sample Q−1. These sam-
ples were ‘stitched together’ to produce stacked graphs, on which optimal feasible
assignments formed the approximations of Q−1. Finally, we developed a number
of metrics for investigating the accuracy of the approximation, generalized approx-
imations to account for semi-rigid nature of phosphate backbones, and converted
the approximations into absorbing Markov chains to find stable conformations and
conformational pathways.

The end result is a graph A(G) on which walks form a sequence of conforma-
tional changes in a single phosphate backbone; small, discrete changes in torsion
angles that approximate continuous motion. Determining whether one backbone

118

Chapter 9. Concluding Remarks and Future Research

conformation can be reached from another conformation is reduced to finding a
low energy path between two vertices. While there nevertheless exist computa-
tional barriers to be overcome, namely that of finding large numbers of IK solutions
and solving collections of linear programs, the computational burden is all upfront:
once solutions and assignments have been found, the actual process of finding path-
ways is straightforward.

There remains, of course, the issue of validation. This refers not solely to
whether the technique presented above performs as required - namely, whether
approximations to the conformation problem can be produced with a reasonable
degree of accuracy - but also whether those approximations can be had within a
reasonable period of time. The computational requirements for producing high res-
olution maps of a single phosphate backbone conformation space are dependent on
both the speed of inverse kinematic algorithms (Section 6.1) and on the formulation
of feasibility algorithms, such as that outlined in Chapter 4. Fortunately, the nature
of the technique is less restricted in terms of production than theory. Assuming
that, practically, useful approximations to the conformation space can be had, the
issue of timely production is of limited import. The nature of the technique allows
for improvements to be had over a period of time. Samples can gradually be added
and optimal assignments found quickly on local regions. While local optimization
is may not yield global optimality (Section 4.1 and Figure 4.5), actual globally opti-
mal assignments are not necessarily necessary, as we noted in the previous chapter.
We know what an optimal feasible assignment looks like with a sufficiently large
number of samples - the A∗ congruence metric ΩA∗ (Section 8.1.1). What will
likely be of most interest in conformation spaces are the areas near singular bound-
aries, specifically, the connectivity between layers of distinct regions. Regions and
layers are themselves dull structures, uniform regions of space that may very well
be represented by single vertex stacks48. Once singular boundaries have been delin-
eated at a particular sampling resolution, further approximation improvements will
almost certainly take the form of increased sampling along these boundaries to re-
fine them. Rather then improving global resolution, restricted, local improvements
should greatly reduce overall computational burdens.

With regards to future research beyond that of model validation, there exists at
least one other application for stacked graphs. During its development, I discovered
that it can also be used for modelling certain kinds of object tracking problems,
which could be explored. There is also the relationship between stacked graphs
and symmetric groups which is in need of additional investigation, having only
been briefly considered here. It is unknown whether there exist other symmetric
group problems which can benefit from a graph dual interpretation. The issue of

48Hence regional stacked graphs ℝG (Definition 2.35).

119

Chapter 9. Concluding Remarks and Future Research

improving the computational complexity of solving the assignment feasibility prob-
lem could also be addressed.

Finally, I think it important to note that the approach we’ve taken to address the
conformation problem appears to be a novel one and is, at least conceptually, fairly
straightforward. While a diverse range of mathematical knowledge is required to
understand and develop it, the technical depth required of each field is limited. The
graph theory component (Chapter 2) is elementary, as is the group theory (Chap-
ter 3). Linear programming (Chapter 4), while necessary to find (optimal) feasible
assignments, it is not required to determine necessary and sufficient conditions for
feasibility (Theorem 2.31). Kinematic chains are used casually. What we require
from them is the boundedness of the number of inverse kinematic solutions for our
particular chain [Ang07], the existence of high speed algorithms to find these solu-
tions [MC94], and the knowledge that they are continuous functions that produce
manifolds [McC90]. Even the topological connection between stacked graphs and
the conformation space problem (Chapter 7) is fundamental.

This is said not to discourage the technique. At its core, the complex issue of
how to approximate the conformation space of a nucleic acid backbone has been re-
duced to solving a collection of interrelated assignment problems, problems which
are well-know and simple to understand. That it can be done with a suite of seem-
ingly mundane mathematics is, I believe, worthy of attention. Nearly every mathe-
matical course I’ve taken as both an undergraduate and graduate student has directly
contributed to the production of this thesis.

There is a scene early in Dumas’ ‘The Count ofMonte Cristo’ [Dum45] wherein
Edmond Dantès, a prisoner of the Château d’If, is conversing with abbé Faria, an-
other prisoner, in the former’s cell. Dantès, awed by Faria’s breadth of reading,
remarks that the abbé must know many languages, to which Faria responds that he
knows several and that:

‘... I can [also] understand modern Greek with the help of Ancient
Greek, but I speak it poorly; I am studying it now.’
‘You are studying it?’ Dantès exclaimed.
‘Yes, I have compiled a vocabulary of the words that I know and have
arranged them, combined them, turned them one way, then the other,
so as to make them sufficient to express my thoughts. I know about
one thousand words, which is all I absolutely need, though I believe
there are a hundred thousand in dictionaries. Of course I shall not
be a polished speaker, but I shall make myself understood perfectly,
which is good enough.’

I would be a poor student if I claimed that I knew all I absolutely needed and I
can only hope that this work is as clear to others as it is to myself.

120

Bibliography

[AMO93] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, New Jersey, 1993. →
pages 9, 20, 21, 29, 30, 56, 57, 59

[Ang07] J. Angeles. Fundamentals of Robot Mechanical Systems: Theory,
Methods, and Algorithms, 3rd Edition. Mechanical Engineering Se-
ries. Springer, 2007. → pages 2, 68, 69, 70, 71, 72, 104, 120

[BHA15] M.P. Blakely, S.S. Hasnain, and S.V. Antonyuk. Sub-atomic reso-
lution x-ray crystallography and neutron crystallography: Promise,
challenges and potential. IUCrJ, 2(4):464–474, 2015. → pages 82

[Bol79] B. Bollobas. Graph Theory: An Introductory Course. Springer-
Verlag, 1979. → pages 13, 29

[BW97] A.S. Brodsky and J.R. Williamson. Solution structure of the hiv-2 tar-
argininamide complex. J. Mol. Biol., 267(3):624–639, 1997. → pages
5, 6

[Dat16] Nucleic Acid Database. Ideal geometries [online]. 2016 [cited Febru-
ary 27, 2016]. → pages 2, 5, 79

[Dum45] A. Dumas. The Count of Monte Cristo. Penguin Classics, 1844-45.
→ pages 120

[Fou92] L.R. Foulds. Graph Theory Applications. Springer, 1992. → pages
9, 40

[Fra03] J.B. Fraleigh. A First Course in Abstract Algebra, 7th Edition. Addi-
son Wesley, 2003. → pages 39, 40, 42

[GSC+96] A. Gelbin, B. Schneider, L. Clowney, S. Hsieh, OlsonW.K., and H.M.
Berman. Geometric parameters in nucleic acids: Sugar and phosphate
constituents. J. Am. Chem. Soc., 118(3):519–529, 1996. → pages 79,
80

121

http://ndbserver.rutgers.edu/ndbmodule/standards/ideal_geometries.html

Bibliography

[KHP11] K. S. Keating, E.L. Humphris, and A.M. Pyle. A new way to see rna.
Quarterly Reviews of Biophysics, 44(4):433–466, 2011. → pages 1, 2

[LMS03] K.J. Laidler, J.H. Meiser, and B.C. Sanctuary. Physical Chemistry,
Fourth Edition. Houghton Mifflin, 2003. → pages 113

[LNC93] A.L. Lehninger, D.L. Nelson, and M.M. Cox. Principles of Biochem-
istry, 2nd Edition. Worth, 1993. → pages 1, 3

[Mak08] C.H. Mak. Rna conformational sampling. i. single-nucleotide loop
closure. J. Comput. Chem., 29(6):926–933, 2008. → pages 1, 2, 4

[MC94] D. Manocha and J.F. Canny. Efficient inverse kinematics for gen-
eral 6r manipulators. IEEE Transactions on Robotics and Automaton,
10(5):648–657, 1994. → pages 4, 73, 82, 118, 120

[McC90] J.M. McCarthy. An Introduction to Theoretical Kinematics. The MIT
Press, 1990. → pages 68, 69, 95, 118, 120

[MCM11] C.H. Mak, W.Y Chung, and N.D. Markovskiy. Rna conformational
sampling. ii. arbitrary length multinucleotide loop closure. J. Chem.
Theory Comput., 7:1198–1207, 2011. → pages 2

[MLL08] R.J. Milgram, G. Liu, and J.C. Latombe. On the structure of the in-
verse kinematics map of a fragment of protein backbone. J. Comput.
Chem., 29(1):50–68, 2008. → pages 1, 4

[Mun00] J.R. Munkres. Topology, 2nd Edition. Prentice Hall, 2000. → pages
95

[PRT+07] J.M. Porta, L. Ros, F. Thomas, F. Corcho, J. Cantó, and J.J. Pérez.
Complete maps of molecular-loop conformation spaces. J. Comput.
Chem., 28(13):2170–2189, 2007. → pages 2, 4

[Rom12] S. Roman. Fundamentals of Group Theory: An Advanced Approach.
SpringerLink, 2012. → pages 45

[TK98] H.M. Taylor and S. Karlin. An Introduction to Stochastic Modelling,
3rd Edition. Academic Press, 1998. → pages 115

[WKM+08] X. Wang, G. Kapral, L. Murray, D. Richardson, J. Richardson, and
J. Snoeyink. Rnabc: Forward kinematics to reduce all-atom steric
clashes in rna backbone. J. Math. Biol., 56:253–278, 2008. → pages
1, 2

122

Appendices

123

Appendix A

Constructing Unique Subscripts

In the one dimensional case, where the name of any sample Sr is < k >, then
setting r = k is sufficient to provide a unique sample subscript. In higher dimen-
sions, unique integral subscripts depend on the number of dimensions or length, of
Sr. On way to create integral subscripts is via ‘spiralling’. Figure A.1 demonstrates
the process in the two-dimensional cartesian case. Higher dimensions with eulerian
components are similarly constructed.

Table A.1 lists the first twenty-eight sample names generated from unique sub-
scripts, in accordance with the process in Figure A.1.

Table A.1: The first 27 samples with unique subscripts generated for the two-
dimensional cartesian case using a spiralling technique.

Sample Name Sample Name
S0 < 0, 0 > S14 < 1

2
, 1
2
>

S1 < −1, 0 > S15 < 0, 1
2
>

S2 < −1,−1 > S16 < −1
2
, 1
2
>

S3 < 0,−1 > S17 < −1, 1
2
>

S4 < 1,−1 > S18 < −1,− 12 >
S5 < 1, 0 > S19 < −12 ,−1 >
S6 < 1, 1 > S20 < 1

2 ,−1 >
S7 < 0, 1 > S21 < 1,−12 >
S8 < −1, 1 > S22 < 1, 12 >
S9 < − 12 , 0 > S23 < 1

2 , 1 >
S10 < − 12 ,−

1
2 > S24 < −12 , 1 >

S11 < 0,− 12 > S25 < −14 , 0 >
S12 < 1

2 ,−
1
2 > S26 < −14 ,−

1
4 >

S13 < 1
2 , 0 > S27 < 0,−14 >

124

Appendix A. Constructing Unique Subscripts

‘Spiral integral’ construction resembles the bisection technique for sample names
(Figure 6.3). The pattern can spiral in or out, clockwise or counter-clockwise, and
generates all subscripts for samples at and above a given resolution.

As this work does not define each sampleSr by unique subscripts, but instead by
its name (Definition 6.3), and as there are a variety of spiralling patterns, an explicit
algorithm for finding spiral integers based on sample names is not included.

125

Appendix A. Constructing Unique Subscripts

(a) Lattice for nc0 = nc1 = 0 and 1 (b) Lattice for nc0 = nc1 = 2

(c) Lattice for nc0 = nc1 = 3

Figure A.1: One method for spiral integer construction on the square [−1, 1]2
generated by nc0 and nc1 . Coordinates correspond to sample names (see Figure
6.3). (a) Beginning at the origin (black circle) and with counter-clockwise rota-
tion, follow the red arrows to visit each sample generated by nc0 = nc1 = 0 (red
vertices) and 1, labelling them by increasing integers with 0 for the origin (labels
suppressed). Labels form the unique subscript values. (b) Add the samples gener-
ated by nc0 = nc1 = 2. The next label corresponds to the sample immediately left
of the origin. Repeat step (a), labelling samples in a counter-clockwise direction,
spiralling outwards. Vertices and arrows indicated in blue are those generated by
previous values of nc0 and nc1 . (c) Repeat step (b) with nc0 = nc1 = 3. Only the firstfew red arrows are shown for readability.

126

Appendix B

Constructing Normal
Coordinates

We begin with the cartesian case, followed by the eulerian case, both in one
dimension. The higher dimensional cases are cartesian products of the single di-
mensional cases. The aim is to assign each sample a rational sort value p

q
∈ [0, 1]

in the cartesian case so that samples form a partially ordered set. The sort values
are then transformed into normal coordinates in [−1, 1]. In the eulerian case, the
rational sort value is in [0, 1) with a normal coordinate value of [0, 360◦)

Assume that sample Sr is generated by nc > 0. The denominator q of its sort
value is defined to be one less than the total number of samples generated by nc
bisections. From Table 6.4, nc = 0 generates two samples, with each increment
of nc increases the number of solutions by a power of two. The total number of
samples generated by nc bisections is

q = (2 + 20 + 21 +⋯ + 2nc−1) − 1 (B.1)

= 1 +
nc−1
∑

i=0
2i (B.2)

= 1 + 1 − 2
nc

1 − 2
(B.3)

= 2nc . (B.4)
The numerator p of the sort value for Sr is the number of ‘ticks’ from the left-

hand side that Sr is located at in Figure 6.3. For example, if nc = 2, then p = 1 for
sample 3 and p = 3 for sample 4.

According to Table 6.3, the last label generated by (nc − 1) is
2nc−1

so that if the sample name of Sr is k, then k is the
k − 2nc−1 (B.5)

sample name generated by nc bisections. Thus, label 2nc−1+1 should be at the first
position, 2nc−1 + 2 should be at the second, etc. However, labels generated by nc

127

Appendix B. Constructing Normal Coordinates

have positions which alternate with those generated by (nc − 1), so that the former
labels have even p values and the later have odd ones. This implies that

p = 2(k − 2nc−1) − 1
= 2k − 2nc − 1. (B.6)

The rational sort value p
q
for Sr is therefore
p
q

= 2k − 2nc − 1
2nc

= 2k − 1
2nc

− 1 (B.7)
when nc > 0. For nc = 0, there are only two samples, which are always at the
end-points of the interval. We therefore define p ∶= 0 and p ∶= 1 for k = 0 and
k = 1, respectively, giving rational sort values of 0 and 1 for Sr with names k = 0
and k = 1, respectively.

Conversion of rational sort values to normal coordinates is accomplished by
transforming [0, 1] into [−1, 1]

p
q
∗ 2 − 1 =

(2k − 1
2nc

− 1
)

∗ 2 − 1

= 2k − 1
2nc−1

− 3. (B.8)

Rational sort values p′

q′
for eulerian components are generated in a manner sim-

ilar to that above. If Sr has name k′ and is generated by ne > 0, then q′ is

q′ =
ne−1
∑

i=0
2i (B.9)

= 1 − 2ne
1 − 2

(B.10)
= 2ne − 1 (B.11)

as only one sample is generated by ne = 0. The numerator remains the same at
p′ = 2k′ − 2ne − 1 (B.12)

yielding a rational sort value of
p′

q′
= 2k′ − 2ne − 1

2nc − 1
(B.13)

= 2k′
2ne − 1

− 1 (B.14)

128

Appendix B. Constructing Normal Coordinates

for ne > 0. As with the cartesian components, forSr with name k′ = 0 generated by
ne = 0, the rational sort value is defined to be 0. This produces rational sort values
in [0, 1). Normal coordinates are formed by transforming [0, 1) into [0◦, 360◦)

p′

q′
∗ 360◦ =

(

2k′
2ne − 1

− 1
)

∗ 360◦ (B.15)

In the general case of sample
Sk = ⟨k0, k1, k2, k3, k4, k5⟩

with resolution
Res(Sk) =

⟨

nc0 , nc1 , nc2 , ne0 , ne1 , ne2
⟩

we have the following construction for function Norm(⋅) (Definition 6.4)
Norm(Sk) = ⟨w0, w1, w2, w3, w4, w5⟩

where

w0 = 2k0−1
2nc0−1

− 3, w1 =

(

2k′3
2ne0 − 1

− 1

)

∗ 360◦ (B.16)

w2 = 2k1−1
2nc1−1

− 3, w3 =
(

2k4
2ne1 − 1

− 1
)

∗ 360◦

w4 = 2k2−1
2nc2−1

− 3, w5 =
(

2k5
2ne2 − 1

− 1
)

∗ 360◦.

129

	Thesis Committee
	Abstract
	A Note on Notation
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction
	2 Stacked Graphs
	2.1 Motivating Example
	2.2 Constructing Stacked Graphs
	2.3 Assignments and Feasibility
	2.4 Feasibility of Non-Simple Stacked Graphs
	2.5 Singular Constraints

	3 Stacked Graphs and Symmetric Groups
	3.1 Assignments and Sm
	3.2 Assignment Feasibility and Symmetric Group Duals
	3.3 Duality and Non-Simple Stacked Graphs

	4 Linear Programming: Communication, Capacity, and Contiguity
	4.1 Local, Regional, and Global Optimization
	4.2 The 3C Constraints of Assignment Feasibility
	4.2.1 Communication
	4.2.2 Capacity
	4.2.3 Contiguity
	4.2.4 Asinglular LP Problem Statement
	4.2.5 Size Complexity of Asingular LP

	4.3 Modelling Singular Constraints: ULA

	5 Kinematic Chains
	5.1 Denavit-Hartenberg Parameters
	5.2 Forward and Inverse Kinematics
	5.3 Kinematic Nucleic Acids
	5.4 Outline of Converting IK Solutions and Stacked Graphs

	6 Conformation Space Sampling
	6.1 Sampling Technique
	6.2 Formal Definitions

	7 Stacked Graphs of Conformation Spaces
	7.1 Validating the ULA Constraint and Disconnecting Assignment Components

	8 Conformation Space Simulations
	8.1 Comparing Normalized Workspaces
	8.1.1 A* Congruence Metric A*
	8.1.2 Vertex Stack Congruence Metric V
	8.1.3 Regional Congruence Metric R
	8.1.4 Layer Congruence Metric H
	8.1.5 Metrics At Infinite Resolutions
	8.1.6 Metrics on Groups of Conformation Graphs

	8.2 Averaged Stacked Graphs
	8.3 Energetics and Simulations
	8.4 Model Validation and Real-World Data

	9 Concluding Remarks and Future Research
	Bibliography
	Appendices
	A Constructing Unique Subscripts
	B Constructing Normal Coordinates

