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Abstract

As a classic topic that has been studied for decades, image restoration is still a

very active research area. Developing more effective and efficient methods are

highly desirable. This thesis addresses image restoration problems for applications

in computational imaging including Time-of-Flight (ToF) imaging and digital pho-

tography.

While ToF cameras have shown great promise at low-cost depth imaging, they

suffer from limited depth-of-field and low spatial-resolution. We develop a compu-

tational method to remove lens blur and increase image resolution of off-the-shelf

ToF cameras. The method solves latent images directly from the raw sensor data

as an inverse problem, and supports for future ToF cameras that use multiple fre-

quencies, phases and exposures.

Photographs taken by hand-held cameras are likely to suffer from blur caused

by camera shake during exposure. Removing such blur and recovering sharp im-

ages as a post-process is therefore critical. We develop a blind deblurring method

that is purely based on stochastic random-walk optimization. This simple frame-

work in combination with different priors produces comparable results to the much

more complex state-of-the-art deblurring algorithms.

Blur causes even more serious issues for document photographs as slight blur

can make Optical Character Recognition (OCR) techniques fail. We address the

blind deblurring problem specifically for common document photographs. Ob-

serving that the latter are mostly composed of high-order structures, our method

captures such domain property by a series of high-order filters as well as cus-

tomized response functions. These parameters are trained from data by discrim-

inative learning approach and form an end-to-end network that can efficiently and
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jointly estimate blur kernels and legible images.

Discriminative learning approaches achieve convincing trade-off between im-

age quality and computational efficiency, however, they require separate training

for each restoration task and problem condition, making it time-consuming and

difficult to encompass all tasks and conditions during training. We combine dis-

criminative learning and formal optimization techniques to learn image priors that

require a single-pass training and share across various tasks and conditions while

keeping the efficiency as previous discriminative methods. After being trained, our

method can be combined with other likelihood or priors to address unseen restora-

tion tasks or further improve the image quality.
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Chapter 1

Introduction

Image restoration aims at computationally enhancing the quality of images by un-

doing the adverse effects of image degradation such as noise and blur. As a key

area of image and signal processing it is an extremely well studied problem and

a plethora of methods exists, see for example [74] for a recent survey. Restora-

tion tasks, such as denoising, deblurring, demosaicing and resolution enhancement,

have to be addressed as part of most imaging and machine vision systems.

Although tremendous efforts have been dedicated to this topic, image restora-

tion is still a very active research area due to the following major reasons. From

a Bayesian perspective, solving restoration tasks as statistical estimation problems

does not only require physically-motivated models for the data likelihood, but re-

lies on effective prior knowledge on the latent images, a.k.a. priors or regularizers,

as a key component. Good image priors are still an active area of investigation.

While traditional methods focus on local image statistics and aim at maintain-

ing edges such as Total Variation (TV) [88], bilateral filter [102] and anisotropic

diffusion [105], more recent methods exploit the non-local statistics of images

[2, 22, 25, 37, 71, 101]. In particular, the highly successful Block Matching and

3D Filtering (BM3D) method [22] searches for similar patches within the image

and combines them through a collaborative filtering step.

On the other hand, efficiently solving restoration problems with the priors is

important as well. Image restoration tasks are typically formulated as inverse

problems, where the latent images are estimated by solving corresponding nu-
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merical optimization problems. Significant progress has been made recently in

optimization algorithms. Representative techniques such as Half Quadratic Split-

ting method (HQS) [30], Split Bregman [35], Alternating Direction Method of

Multipliers (ADMM) [79], First Order Primal Dual method (PD) [15], etc, have

been widely used in image restoration and significantly improved the restoration

performance both in time and quality. In spite of this, as the rise of mobile imaging

systems such as smartphone cameras and autonomous vehicles, developing even

more power- and time-efficient optimization techniques are still highly desirable.

Furthermore, through the successful application of machine learning and data-

driven approaches, image restoration has seen revived interest and significant progress

more recently. Broadly speaking, recently proposed state-of-the-art data-driven

methods can be grouped into two classes: generative approaches that aim at prob-

abilistic models of undegraded images and discriminative approaches that try to

learn a direct mapping from degraded to clean images. Generative methods seek

to learn probabilistic models of undegraded images. A simple, yet powerful sub-

class include models that approximate the sparse gradient distribution of natural

images [58, 59, 68]. More expressive generative models include Field-of-Experts

(FoE) [86], K-Singular Value Decomposition (KSVD) [26] and Expected Patch

Log Likelihood (EPLL) [118]. Discriminative models have become increasingly

popular for image restoration due to their attractive tradeoff between high image

restoration quality and computational efficiency. Methods include trainable ran-

dom field models such as Cascaded Shrinkage Fields (CSF) [92], Regression Tree

Field (RTF) [51], Trainable Nonlinear Reaction Diffusion (TRD) [18], as well as

deep convolutional networks [50] and other multi-layer perceptrons [13]. Discrim-

inative approaches achieve great computational efficiency at run-time by defining

a particular feed-forward structure whose trainable parameters are optimized for

a particular task during training. Those learned parameters are then kept fixed at

run-time resulting in a fixed computational cost.

This thesis presents our researches on above topics in image restoration and

demonstrate applications for Time-of-Flight (ToF) imaging and digital photogra-

phy, as detailed below.

2



1.1 Time-of-flight depth imaging
Fast and high-quality depth-sensing cameras are highly desirable in mobile robotics,

human-machine interfaces, quality control and inspection, and advanced automo-

tive applications. Among the wide variety of depth-sensing technologies available

(depth from stereo, structured lighting, Lidar scanning, etc), continuous-wave ToF

cameras have emerged as an efficient, low-cost, compact, and versatile depth imag-

ing solution, such as Microsoft Kinect-2, Photonic Mixer Device (PMD), Swiss-

Ranger, etc.

The active light source required to produce these ToF images presents signif-

icant drawbacks, however. To create a ToF image with high Signal-to-Noise Ra-

tio (SNR), the light signal must be sufficiently intense to overcome sensor noise and

quantization effects. Factors determining the signal strength include light source

power, integration time, imaging range, and lens aperture. In practice, light power

is often limited for eye safety and energy considerations, and the integration time

must be short enough to allow real-time operation. Consequently, ToF systems

ideally would need to use imaging optics with large numerical aperture to make

better use of available light. However, this would come at a cost; large apertures

have a shallow depth of field and hence introduce defocus blur in the raw ToF im-

ages. Another shortcoming is the limited spatial resolution of currently available

ToF sensors. Most commercial ToF cameras have fewer than 0.04 megapixels.

Due to the non-linear image formation model of ToF cameras, such depth of

field blur and low resolution present a significant problem for ToF cameras, gener-

ating artifacts such as “flying pixels” around depth discontinuities as well as loss

of texture detail.

Chapter 3 addresses this problem by introducing a new computational method

to simultaneously remove the defocus blur and increase the resolution of off-the-

shelf ToF cameras post capture. The method directly works on the raw sensor data

and solves the deblurring and superresolution problem in a principled way. Un-

like previous ToF deblurring techniques, our approach applies regularizers directly

to the latent intensity and depth images, and supports deblurring ToF images cap-

tured with multiple modulation frequencies, phases or exposures. This work was

published in [110].
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1.2 Blind deblurring of natural images
Taking photographs has become increasingly common due to the popularity of

mobile cameras in recent years. However, photos taken by hand-held cameras

are likely to suffer from motion blur caused by camera shake during exposure,

especially in low-light environment. The blur in an image can prevent humans from

resolving scene details and make machine vision algorithms (object recognition,

segmentation, etc) fail. Therefore, removing such blur and recovering sharp images

as a post-process is critical.

When the camera motion trajectories are pre-known, the problem to estimate

the sharp latent images is called non-blind deblurring. However, in most practical

cases these information are unknown, and need to be estimated together with the

sharp images. This more challenging problem is called blind deblurring. Solv-

ing blind deblurring typically requires good prior knowledge of the latent image

and blur. While good priors for both the images and the blur kernels are still an

active area of investigation, many choices that have been proposed are non-linear

and often even non-convex. This makes it difficult and time consuming to exper-

iment with different image priors, since each new candidate typically requires a

customized optimization procedure that can require a significant effort to imple-

ment.

Chapter 4 presents a blind deblurring method that is purely based on simple

stochastic sampling. The method relies entirely on local evaluations of the ob-

jective function, without the need to compute gradient information. This makes it

effortless to implement and test new image and kernel priors. We demonstrate such

stochastic optimization solver for a variety of non-convex and non-smooth priors

and likelihood. In combination with different image and kernel priors, the method

produces results that match or exceed the results obtained by much more com-

plex state-of-the-art algorithms, which typically require customized optimization

solvers. This work was published in [112].

1.3 Blind deblurring of document photographs
Taking photographs of text documents (printed articles, receipts, newspapers, books,

etc) instead of scanning them has become quite common recently. The motion blur
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caused by camera shake is critical for document photographs taken by hand-held

cameras, as slight blur can prevent existing Optical Character Recognition (OCR)

techniques from extracting correct text from them. Removing blur and recovering

sharp, legible document images is thus highly desirable.

Recent text image deblurring methods use sparse gradient priors (e.g., total

variation [16], `0 gradient [19, 78]) and text-specific priors (e.g., text classifier [19],

`0 intensity [78]) for sharp latent image estimation. These methods can produce

high-quality results in many cases, however their practical adaptation is hampered

by several drawbacks. Firstly, their use of sparse gradient priors usually forces the

recovered image to be piece-wise constant. Although these priors are effective for

images with large-font text (i.e., high Pixel Per Inch (PPI)), they do not work well

for photographs of common text documents such as printed articles and newspapers

where the font sizes are typically small [48]. Furthermore, these methods employ

iterative sparse optimization techniques that are usually time-consuming for high

resolution images taken by modern cameras.

Chapter 5 presents a new algorithm for practical document deblurring that

achieves both high quality and high efficiency. Observing that document images

are usually dominated by small-scale high-order structures, the algorithm learns a

series of scale- and iteration-wise high-order filters to capture the domain-specific

property of document photographs. The method uses a discriminative learning ap-

proach to train such filters and other parameters of a feed-forward network that

takes a single blurry document photograph as input and produces high-quality la-

tent image and blur kernel rapidly. This work was published in [111].

1.4 Learning proximal operators for general image
restoration

State-of-the-art models such as FoE [86], EPLL [118], Weighted Nuclear Norm

Minimization (WNNM) [37] etc, are generic in the sense that they can be ap-

plied for various restoration tasks. However, the resulting iterative optimization

problems are prohibitively expensive, rendering them impractical for applications

that require real-time processes and for use on mobile vision systems. Recently,

a number of works [18, 87, 92] have addressed this issue by truncating the iter-
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ative optimization and learning discriminative image priors, tailored to the like-

lihood and optimization approach. While these methods allow one to trade-off

quality with the computational budget for a given application, the learned priors

are highly specialized to the image formation and noise parameters, in contrast

to optimization-based approaches. Since each individual problem instantiation re-

quires costly learning and storing of the model coefficients, current proposals for

learned priors are impractical for vision applications with dynamically changing

(often continuous) parameters. This is a common scenario in most real-world vi-

sion settings, as well as applications in engineering and scientific imaging that rely

on the ability rapidly prototype methods.

Chapter 6 presents an algorithm that combines discriminative learned models

with formal optimization methods to learn generic priors that truly share across

problem domains. Using proximal optimization methods [10, 30, 79] allows us

to decouple the likelihood and prior which is key to learning such shared mod-

els. It also means that we can rely on well-researched physically-motivated models

for the likelihood, while learning priors from example data. By learning general-

ized proximal mappings as a prior model, our approach is computationally cheap

while being general. We verify our technique using the same model for a variety

of diverse low-level image reconstruction tasks and problem conditions, demon-

strating the effectiveness of our approach. Benefiting from the proximal splitting

techniques, our approach can naturally be combined with existing state-of-the-art

priors after being trained to further improve the reconstruction quality. This work

was published in [109].

1.5 Organization
The remaining part of this thesis is organized as follows: Chapter 2 reviews back-

ground knowledge and previous work; Chapter 3, 4, 5 and 6 present our methods

and results for each individual topic; and Chapter 7 concludes this thesis work and

discusses potential research directions for future work.
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Chapter 2

Background and Related Work

Let vector b be the observed image, vector x be the latent (desired) image and

function f be the sensing operator, the image formation process is represented as

in Eq. 2.1.

b = f(x) (2.1)

The sensing operator f differs for each imaging task. For denoising task, f(x) =

x + n where n is the noise. For inpainting and demosaicing tasks, f(x) = a �
x + n where vector a is a binary mask representing the measurement pattern,

and � represents element-wise multiplication. For non-blind deconvolution tasks,

f(x) = k ⊗ x + n where vector k is the blur kernel, and ⊗ represents two-

dimensional (2D) convolution between x and k. The sensing operators f are linear

for these tasks, thus the image formation process can be re-written as:

b = Ax + n (2.2)

where matrix A represents the sensing operation. Specifically, for denoising task

A is an identity matrix, for inpainting and demosaicing A is a binary diagonal

matrix with diagonal element a, and for non-blind deconvolution task A is a Block

Circulant matrix with Circulant Blocks (BCCB) that represents 2D convolution

with k. For other imaging tasks such as time-of-flight depth imaging and phase

retrieval, the sensing operators f are non-linear and more complex. The time-of-
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flight depth imaging task is discussed in Section 2.4.

Image restoration tasks are typically formulated as inverse problems in ad-

vanced methods. As the original problems are typically ill-posed, prior knowledge

of the latent images are required as regularization. The general form of such regu-

larized inverse problems is given in Eq. 2.3.

x = argmin
x

λ

2
||b−Ax||22 +R(x), (2.3)

where the first squared term in the objective is the data fidelity (likelihood), R(x)

is the image prior, and λ is a positive scalar controlling the relative weight between

the data fidelity and prior in the objective. The well-known TV prior [88], for

example, is formulated as R(x) = ||∇x||1 where ∇ computes the derivatives of

image x, and the `1 norm promotes sparsity of∇x.

The remaining part of this chapter is organized as follows: Section 2.1 reviews

previous work on image restoration in general; Section 2.2 and 2.3 review previous

work on blind deconvolution of natural images and document images respectively;

Section 2.4 reviews related work on time-of-flight deblurring and enhancement;

and Section 2.5 reviews several advanced numerical optimization methods that are

frequently used in literature for image restoration.

2.1 General image restoration
Broadly speaking, recently proposed state-of-the-art image restoration methods

can be grouped into three classes: classical approaches that make no explicit use

of machine learning, generative approaches that aim at probabilistic models of un-

degraded natural images and discriminative approaches that try to learn a direct

mapping from degraded to latent images. Unlike classical methods, methods be-

longing to the latter two classes depend on the availability of training data. We

review each class in the following sections.

2.1.1 Classical models

Traditional models focus on local image statistics and aim at maintaining edges

such as TV [88], anisotropic diffusion models [105], and bilateral filter [102]. More
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recent methods exploit the non-local statistics of images such as Non-Local Mean

(NLM) [2], BM3D [22], non-local variants of sparse representation methods [25,

71], WNNM [37], and [101].

In particular, the seminal work of bilateral filter [102] and NLM [2] can be an-

alyzed within the same scheme for image filtering that is based on pixel similarity,

as given in Eq.2.4.

x̂(i) =
1

Ci

∑
j∈Ωi

w(i, j) · x(j)

s.t., Ci =
∑
j∈Ωi

w(i, j),
(2.4)

where x̂ is the estimated (filtered) image from input x, i, j are pixel indices, Ωi

represents the neighbor region of pixel x(i), scalar weight w(i, j) represents the

contribution of pixel x(j) to the estimated pixel x̂(i), and scalar Ci is the normal-

ization weight. The weight w(i, j) is defined on the similarity between pixel x(i)

and x(j), that is, the more similar pixel x(j) is to pixel x(i), the more contribution

is from pixel j when estimating x̂(i).

With this scheme, we give the representation of Gaussian filter, bilateral filter

and NLM in Eq.2.5,2.6 and 2.7 respectively.

(Gaussian filter) x̂(i) =
1

Ci

∑
j∈Ωi

e−
|i−j|2

σ2 · x(j) (2.5)

(bilateral filter) x̂(i) =
1

Ci

∑
j∈Ωi

e
− |i−j|

2

σ2v
− |x(i)−x(j)|2

σ2s · x(j) (2.6)

(non-local mean) x̂(i) =
1

Ci

∑
j∈x

e−
||α(x(Ni)−x(Nj))||

2
2

σ2 · x(j) (2.7)

The Gaussian filter (Eq.2.5) defines the pixel similarity on their spatial distance

|i− j|2. The bilateral filter (Eq.2.6) defines the pixel similarity on both the spatial

distance and the intensity difference, thus can preserve edges while reducing noise

in the image. NLM (Eq.2.7) defines the similarity between pixels i, j on the sim-

ilarity between patches x(Ni), x(Nj) centered at x(i) and x(j) respectively, and

the pixel x(j) can be from any region in the image x rather than only from the local
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neighborhood of pixel i as in previous methods. α in Eq.2.7 is a pre-defined Gaus-

sian kernel that gives more weight at central regions of each patch. NLM builds

on the fundamental observation that similar patches often can be found within an

image, and this idea has stimulated many follow-up extensions.

BM3D method extends the non-local similarity idea which searches for simi-

lar patches across the image as in NLM, but combines them through collaborative

patch-filtering steps rather than simple pixel averaging. The non-local sparse rep-

resentation methods [25, 71] explores the patch similarity idea as well while en-

forces the similar patches to have similar coefficients in the transformed domain.

WNNM [37] filters similar patches within the image by applying low-rank con-

straints on singular value decomposition.

2.1.2 Generative learning models

Methods of this class seek to learn probabilistic models of undegraded natural im-

ages. A simple yet powerful subclass include models that approximate the sparse

gradient distribution of natural images [58, 59, 68]. The `p-norm (0 < p < 1) on

image derivative has been shown as an effective prior to enforce the heavy-tailed

distribution of the gradient of natural images [58, 68].

More expressive generative models include KSVD [26], Convolutional Sparse

Coding (CSC) [12, 41, 108], FoE [86] and EPLL [118]. Both the KSVD and CSC

methods assume small patches in an image can be approximated by a linear com-

bination of a few atoms from an overcomplete dictionary D that is learned from

training data. The dictionary D consists of K atoms {d1,d2, ...,dK}, ||dk||22 ≤ 1.

The problem KSVD aims to solve is given in Eq.2.8.

α = argmin
α
||α||0, s.t. x =

K∑
k=1

αkdk, (2.8)

where x is a small patch from the image, and α = {α1,α2, ...,αK} are the coeffi-

cients. The `0-norm enforces the coefficients α to be sparse. As KSVD operates on

each image patch separately, it ignores the coherence between patches across the

image, and the resulting dictionary D typically presents redundancy. To address

this issue, CSC methods [12, 41, 108] are recently proposed where the dictionary
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and coefficients are learned on the entire images rather than patches. The problem

that CSC methods solve is given in Eq.2.9.

α = argmin
α
||x−

K∑
k=1

dk⊗αk||22 + λ||α||1, (2.9)

where the image x is approximated by a linear combination of K atoms dk each

convolved with a sparse coefficient map αk. Each αk has the same support as the

image x.

KSVD and CSC are categorized as synthesis-operator methods. The counter-

part are the analysis-operator methods, of which a representative work is the FoE

model as given in Eq.2.10.

x = argmin
x

λ

2
||b−Ax||22 +

N∑
i=1

φi(Fix), (2.10)

where matrix Fi represents 2D convolution with filter fi, and function φi represents

the penalty on corresponding filter response Fix. Both the filters fi and penalty

functions φi are learned from training data. The well-known TV regularizer can

be viewed as a special case of the FoE model where fi is the derivative operator ∇
and φi the `1 norm.

EPLL [118] models image patches through Gaussian Mixture Models (GMM)

and applies such patch prior to the whole image by HQS optimization technique.

All of these methods have in common to be agnostic to the image restoration task,

i.e., they can be used for any image degradation and can be combined with any

likelihood and additional priors at test time.

2.1.3 Discriminative learning models

Discriminative models have become increasingly popular for image restoration re-

cently due to their attractive tradeoff between high image restoration quality and

efficiency at test time. Discriminative approaches owe their computational effi-

ciency at run-time by defining a particular feed-forward structure whose trainable

parameters are optimized for a particular task during training. Those learned pa-

rameters are then kept fixed at run-time resulting in a fixed computational cost.
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Representative methods in this class include trainable random field models

such as RTF [51], CSF [92], TRD [18], as well as deep convolutional networks [50]

and other multi-layer perceptrons [13]. Both CSF and TRD are derived from the

FoE model (given in Eq.2.10) by unrolling corresponding optimization iterations of

Eq.2.10 to be feed-forward networks. All parameters of the network are trained by

minimizing the error between its output images and ground truth images. Specif-

ically, CSF and TRD unroll HQS and Gradient Descent (GD) iterations that solve

Eq.2.10, respectively. More details of these methods can be found in Chapter 5 and

Chapter 6.

The downside of discriminative models is that they cannot generalize across

tasks and typically necessitate separate feed-forward architectures and separate

training for each restoration task (denoising, demosaicing, deblurring, etc) and ev-

ery possible image degradation (noise level, Bayer pattern, blur kernel, etc). In

Chapter 6, we try to address this issue.

2.2 Natural image deblurring
In this section we review previous deblurring work on natural images. As most

blind deblurring methods alternatively estimate the blur kernel and the sharp la-

tent image as non-blind subproblems, we first review the state-of-the-art non-blind

deblurring methods in Section 2.2.1 before the blind methods in Section 2.2.2. Al-

though the non-blind deblurring is typically an important component of the blind

methods, note that, the priors and optimization methods developed for high-quality

non-blind deblurring may not be effective for the blind case.

2.2.1 Non-blind deconvolution

The classic Wiener deconvolution method [107] uses an inverse filter in Fourier

domain by assuming the image and noise power spectra are known, and the re-

sults typically suffer from overly smoothed edges and ringing artifacts. The TV

prior, which promotes piece-wise constant images, has become very popular in

imaging problems since it was first introduced in [88]. The heavy-tailed distri-

bution of natural image gradients is another effective regularization for image de-

blurring [27, 65]. Several non-local priors were developed to model the patch
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recurrence across an image and showed significant improvement on image deblur-

ring [21, 23, 24, 54]. [94] first removes the blurriness in the image with a simple

constrained least squares minimization and then trains a neural network to remove

the noise and ringing artifacts in the result image from the previous step. This

method needs to train separate neural network for each blur kernel, which limits

its application in practice. More recently, several methods were proposed to use

trainable random field models for image restoration including deblurring [92, 93].

The CSF method [92] reduces the optimization problem of random field models

into cascaded quadratic minimization problems that can be efficiently solved in

Fourier domain.

2.2.2 Blind deconvolution

When the blur kernel is not readily available, the problem becomes much more

challenging especially for single image input, where both the latent sharp image x

and blur kernel k need to be recovered, as shown in Eq. 2.11.

(x,k) = argmin
x,k

λ

2
||b− k⊗ x||22 +R(x) + T (k), (2.11)

where T (k) represents priors on the blur kernel. Typically k is assumed to be

non-negative and sum up to one, i.e., k ≥ 0 and ||k||1 = 1. This is an ill-posed

problem to solve. It is highly under-constrained and non-convex, and is subject to

many degenerate solutions, including one where the estimated kernel is simply a

Dirac peak and the latent image is the blurry input.

In order to make the non-convex optimization converge to a good local opti-

mum, the regularizers should be discriminatively designed for the blind problem,

while directly applying the image priors from non-blind deblurring research (e.g.,

TV) usually works poorly especially when k is large or complex. Another, the de-

signed regularizers should be efficiently solvable by the optimization method for

practical use.

Recent success arises from the use of sparse priors and multi-scale scheme.

Fergus et al [27] fits the heavy-tailed prior by a mixture of Gaussians and solves

the intrinsic image gradient and blur kernel by a variational Bayesian method [75].
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Richardson-Lucy algorithm [70, 84] is then applied to reconstruct the final intrinsic

image with the estimated kernel. Krishnan et al [59] introduced a scale-invariant

`1/`2 prior, which compensates for the attenuation of high frequencies in the blurry

image. Xu et al [114] used the `0 regularizer on the image gradient. Goldstein et

al [34] estimated the kernel from the power spectrum of the blurred image. Yue et

al [115] improved [34] by fusing it with sparse gradient prior. Sun et al [99]

imposed patch priors to recover good partial latent images for kernel estimation.

Michaeli and Irani [73] exploited the recurrence of small image patches across dif-

ferent scales of single natural images. Anwar et al [5] learned a class-specific prior

of image frequency spectrum for the restoration of frequencies that cannot be re-

covered with generic priors. Zuo et al [119] learned iteration-wise parameters of

the `p regularizer on image gradients. Schelten et al [90] trained cascaded inter-

leaved RTF [93] to post-improve the result of other blind deblurring methods for

natural images.

Another type of methods employs filtering approaches to extract strong im-

age edges from which kernels may be estimated rapidly. Cho et al [20] adopted

shock filter [77] and bilateral filter [102] to predict sharp edges. Xu et al [113]

improved [20] by neglecting edges with small spatial support as they impede ker-

nel estimation. Schuler et al [95] learned such nonlinear filters with a multi-layer

convolutional neural network.

In case of highly noisy input, Tai et al [100] proposed a method for jointly

denoising and deblurring the image. Zhong et al [116] applied directional low-

pass filters at different orientations to the input image and estimated the Radon

transform of the blur kernel from each filtered image, while the final blur kernel is

computed by inverse Radon transform.

For non-uniform blur due to camera rotation, Whyte et al [106] proposed a pa-

rameterized geometric model of the blurring process considering the rotational ve-

locity of the camera during exposure. Gupta et al [38] modeled the spatially vary-

ing kernels by a motion density function which records the fraction of time spent in

each discretized portion of the space by the camera during exposure. Harmeling et

al [40] and Hirsch et al [46] combined the global camera motion model and local

patch uniform deblurring to accelerate the non-uniform kernel estimation.
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2.3 Document photograph deblurring
In this section we review previous deblurring work on text document photographs.

Most recent methods of text deblurring use the same sparse gradient assumption

developed for natural images, and augment it with additional text-specific regular-

ization. Chen et al [16] and Cho et al [19] applied explicit text pixel segmentation

and enforced the text pixels to be dark or have similar colors. Pan et al [78] used

`0 regularized intensity and gradient priors for text deblurring. The use of sparse

gradient priors makes such methods work well for large-font text images, but fail

on common document images that have smaller fonts.

Hradiš et al [48] trained a convolutional neural network to directly predict

the sharp patch from a small blurry one, without considering the image forma-

tion model and explicit blur kernel estimation. With a large enough model and

training dataset, this method produces good results on English documents with se-

vere noise, large defocus blurs or simple motion blur. However, this method fails

on more complicated motion trajectories, and is sensitive to page orientation, font

style and text languages. Furthermore, this method often produces “hallucinated”

characters or words that appear to be sharp and natural in the output image, but are

completely wrong semantically. This undesirable side-effect severely limits its ap-

plication range as most users do not expect the text to be changed in the deblurring

process.

2.4 Time-of-flight imaging

2.4.1 Imaging principle

We explain the principle of ToF depth imaging with Fig.2.1. The active light source

emits modulated light wave with frequency f , i.e., s(t) = sin(2πft), where t

denotes time. The light reflected from the object surface with reflectance α falls on

the sensor with a phase delay φ, i.e., r(t) = α sin(2πft − φ). The phase delay φ

relates to the depth z of the surface point by Eq.2.12:

z =
cφ

4πf
(2.12)
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Figure 2.1: Principle of ToF imaging.

where c is the light speed. In the sensor, the received signal r(t) is further modu-

lated with two reference signals sin(2πft) and cos(2πft), and the resulting mod-

ulated signals are integrated over time duration 0−T to generate the ToF measure-

ments p = α cos(−φ)/2 and q = α sin(−φ)/2. With these two measurements, the

phase φ and the reflectance α can be calculated as:

φ = arctan(−q
p

) (2.13)

α = 2
√
p2 + q2, (2.14)

while the depth of the object surface point can be calculated by Eq.2.12. Note that

by Euler’s formula, the two ToF measurements p, q can be viewed as the real and

imaginary part of the complex value αe−iφ/2, that is, ae−i(
4πf
c
·z), where a = α/2.
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The complex measurements for all sensor pixels are represented as

a ◦ e−i(
4πf
c
·z), (2.15)

where a and z represent the amplitude and depth map respectively, and ◦ represents

Hadamard product (pixel-wise multiplication) of vectors.

2.4.2 ToF defocus deblurring

Most existing ToF enhancement methods take as input the naive depth map from

the camera software, rather than the raw complex-valued measurements. Lidar-

Boost [96] and KinectFusion [49] utilized captures from multiple viewpoints to

increase the depth resolution. Zhu et al [117] explored the complementary char-

acteristics of ToF and stereo geometry methods and combined them to produce

better-quality depths. Other methods ([28, 53, 80]) used a high-resolution RGB or

intensity image to guide the upsampling of the low-resolution depth map, based

on the assumption about the co-occurrence of image discontinuities in RGB and

depth data. These methods assume the scenes are all in-focus, while in this paper

we deal with the scenes degraded by defocus blur. Furthermore, these methods

require additional hardware or multi-view captures, while our method uses single-

view captures from a single ToF sensor.

Godbaz et al [32] proposed a two-stage method for parametric blind deconvo-

lution of full-field continuous-wave Lidar imaging. They estimate the lens parame-

ters from a pair of Lidar measurements taken at different aperture settings, and then

deconvolve these complex-domain measurements, from which the final depth map

is computed. Godbaz et al [31] applied the coded aperture technique to extend the

depth of field for full-field continuous-wave Lidar imaging. The complex-domain

Lidar measurement is iteratively deconvolved with a simple Gaussian derivative

prior, while at each iteration the blur kernel of each pixel is updated according to

the currently estimated Lidar image. These two methods are close to ours in the

sense of directly working on the raw measurements. In contrast to these methods,

which aim to deblur the complex measurements, our approach directly estimates

the latent amplitude and depth from the degraded measurements. This allows us

to apply separate regularizations on the amplitude and depth, and also supports for

17



the next generation ToF cameras with multiple modulation frequencies, phases and

exposures [33, 55].

Single-frequency ToF cameras have limited unambiguous distance range. Ob-

jects separated by the integer multiples of the full range are indistinguishable. The

next generation of ToF cameras use multiple modulation frequencies and phases

to reduce the ambiguity [33, 55]. The multi-frequency/phase data can also help

resolve “flying pixels” (mixtures of foreground and background depth) at the ob-

ject boundaries, and suppress artifacts due to global illumination [29]. The ToF

data captured with single exposure could be noisy or saturated due to scene prop-

erties such as surface materials and reflectivity. Multiple exposures are proposed

to increase the dynamic range of the measurements and remove those unreliable

pixels [33, 39]. Our algorithm adapts well to these cameras, since it directly es-

timates the latent amplitude and depth from raw measurements that could come

from multiple sequential captures.

2.5 Proximal optimization techniques
Numerical optimization methods play important roles in image restoration. Re-

cently, a class of algorithms, called proximal algorithms, have attracted widespread

interest in computational imaging and image processing as they are very generally

applicable and well-suited to large-scale problems [79]. In proximal algorithms,

the basic operation is evaluating the proximal operator of a function, which in-

volves a small optimization problem and possibly has a closed-form solution. In

the remaining part of this section, we present the definition of the proximal oper-

ators and review two specific proximal algorithms (HQS, ADMM) that are widely

used in recent work.

2.5.1 Proximal operators

Given function f : Rn → R, its proximal operator is defined as

proxf/λ(v) = argmin
x

f(x) +
λ

2
||x− v||22 (2.16)

proxf/λ(v) can be interpreted as a point in domain Rn that compromises be-
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tween minimizing the function f and being close to point v. The positive scalar

λ can be interpreted as the trade-off parameter. More details of proximal opera-

tors can be found in [79]. Below we present several representative functions and

corresponding proximal operators.

When f is an indicator function,

f = IC(x) =

{
0,x ∈ C

+∞,x /∈ C
, proxf/λ(v) = argmin

x∈C
||x− v||22 (2.17)

When f is the `0 norm, its proximal operator is called hard-shrinkage:

f = ||x||0, proxf/λ(v) =

{
0, |v| ≤ 1/λ

v, otherwise
(2.18)

When f is the `1 norm, its proximal operator is called soft-shrinkage:

f = ||x||1, proxf/λ(v) =


v + 1/λ, v < −1/λ

0, |v| ≤ 1/λ

v − 1/λ, v > 1/λ

(2.19)

2.5.2 Half quadratic splitting

In this section, we explain the HQS algorithm. For simplicity purposes, we take

the widely used TV prior as an example. Eq. 2.20 gives the objective function to

minimize.

λ

2
||b−Ax||22 + ||∇x||1 (2.20)

The objective function in Eq. 2.20 is non-smooth and difficult to solve with

traditional optimization methods such as Newton’s method. HQS [30] relaxes the

original objective in Eq. 2.20 to be:

λ

2
||b−Ax||22 + ||z||1 + ρ||z−∇x||22 (2.21)
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where a slack variable z is introduced to approximate x, and ρ is a positive scalar.

Eq. 2.21 is iteratively minimized by solving the latent image x and the slack vari-

able z alternately, as given in Eq. 2.22 and 2.23.

xt = argmin
x

λ||b−Ax||22 + ρt||zt−1 −∇x||22 (2.22)

zt = argmin
z
||z||1 + ρt||z−∇xt||22 (2.23)

Importantly, ρt increases as the iteration t continues. The latter forces z to become

an increasingly good approximation of x, thus making Eq. 2.21 an increasingly

good proxy for Eq. 2.20.

The latent image x update step in Eq. 2.22 is a linear least squares problem,

which can be efficiently solved by Conjugate Gradient Descent (CGD), or has

closed-form solution in Fourier domain when the sensing matrix A is identity at

denoising task or BCCB at deconvolution task as given in Eq. 2.24.

xt = F−1

(
F(λATb + ρt∇Tzt)

F(λATA + ρt∇T∇)

)
, (2.24)

where F and F−1 represent Fourier and inverse Fourier transform respectively.

The slack variable z update step in Eq. 2.23 is pixel-wise separable and has a

closed-form solution with the proximal operator soft-shrinkage:

zt = soft-shrinkage(∇xt, 0.5/ρt) =


∇xt + 0.5/ρt, ∇xt < −0.5/ρt

0, |∇xt| ≤ 0.5/ρt

∇xt − 0.5/ρt, ∇xt > 0.5/ρt

(2.25)

The soft-shrinkage operator is introduced in Eq.2.19.

HQS typically requires only a few iterations to converge with proper setting of

ρt in practice.
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2.5.3 Alternating direction method of multipliers

ADMM [9, 79] relaxes the original objective in Eq. 2.20 to be:

x = argmin
x

λ

2
||b−Ax||22 + ||z||1 + ρ||z−∇x + u||22 (2.26)

where slack variables z and u are introduced. Eq. 2.26 is iteratively minimized

by solving for the latent image x, slack variable z and u alternately, as given

in Eq. 2.27, 2.28 and 2.29.

xt = argmin
x

λ||b−Ax||22 + ρ||zt−1 −∇x + ut−1||22 (2.27)

zt = argmin
z
||z||1 + ρ||z−∇xt + ut−1||22 (2.28)

ut = ut−1 + zt −∇xt (2.29)

where in contrast to HQS method, the scalar ρ does not need to be increased with

the iteration t. ADMM typically requires tens of iterations to converge in practice.
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Chapter 3

Time-of-Flight Defocus
Deblurring and Superresolution

3.1 Introduction
Continuous-wave ToF cameras show great promise as low-cost depth image sen-

sors in mobile applications. However, they also suffer from several challenges,

including limited illumination intensity, which mandates the use of large numeri-

cal aperture lenses, and thus results in a shallow depth of field, making it difficult

to capture scenes with large variations in depth. Another shortcoming is the limited

spatial resolution of currently available ToF sensors.

In this chapter, we address this problem by introducing a new computational

method to simultaneously remove defocus blur and increase the resolution of off-

the-shelf ToF cameras. We do this by solving a semi-blind deconvolution problem,

where prior knowledge of the blur kernel is available. Unlike past ToF deblurring

techniques, our approach applies sparse regularizers directly to the latent ampli-

tude and depth images, and supports deblurring ToF images captured with multiple

frequencies, phases or exposures.

Continuous-wave ToF sensors are designed to have an image formation model

that is linear in amplitude a, but non-linear in depth z, such that the captured raw
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(a) Amplitude a (b) Depth z (c) HSV map

Figure 3.1: Simulated Buddha scene. The HSV map uses amplitude a as
value and depth z as hue. The value and hue visualizes the magnitude
and scaled phase of the complex-valued a◦g(z) in Eq.3.1, respectively.

sensor data is given as

a ◦ g(z) ≈ a ◦ e−i(
4πf
c
·z), (3.1)

where ◦ represents Hadamard product, f represents the frequency of the continuous-

wave modulation, and c is the constant speed of light. The function g(z) can either

be calibrated [42], or, more commonly, is simply approximated by the complex-

valued function from Eq. 3.1 (“cosine model” [33]). The derivation of the image

formation model is given in Section 2.4. Fig. 3.1 shows a simulated scene with

visualization.

We aim to compute a solution to the following ill-posed inverse problem intro-

duced in [31]:

b = SK(z) (a ◦ g(z)) , (3.2)

where the complex-valued vector b represents the raw ToF measurements, the real-

valued matrix S is a downsampling operator, and the real-valued matrix K(z) rep-
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resents the spatially-varying blur kernel for a given depth map z. The problem is

ill-posed because the matrix SK(z) is usually not invertible, and semi-blind be-

cause the matrix K(z) is known at each depth z. In past work, S is assumed to be

the identity matrix.

It is important to note that Eq.3.2 becomes the conventional image deblurring

problem when f = 0, such that a ◦ g(z) = a. Estimating the amount of defocus

blur from a blurry amplitude map a is a particularly challenging problem in this

case, requiring either multiple photos or specialized optics [68]. Unlike conven-

tional cameras, ToF cameras provide additional depth information that can be used

to recover the defocus blur kernel much more robustly [31].

Our method focuses on solving Eq.3.2 to recover the deblurred amplitude and

depth maps from a single blurry image, captured with an off-the-shelf ToF cam-

era. Because this inverse problem is still an ill-conditioned problem, it’s critical

to choose appropriate regularizers to reflect prior information on the solution (i.e.,

sparse edges). Godbaz et al [31] proposed differential priors that operate on the

complex ToF image representing the cosine model, but it remains unclear what a

good regularizer should even look like in this space. We instead choose to regu-

larize our solution in the amplitude and depth map space directly. This introduces

certain numerical challenges, because of the highly nonlinear relation between the

depth components and the raw ToF measurements (Eq.3.1). We relax this problem

by splitting the optimization procedure into two parts, alternating between optimiz-

ing for amplitude and depth. Our method can seamlessly include a super-resolution

component, helping to overcome the limited sensor resolution in current generation

ToF cameras. Unlike earlier approaches, our method is also not inherently limited

to the cosine model, and could be easily extended to calibrated waveforms in the

future.

3.2 Method

3.2.1 Algorithm overview

Given the raw measurements b from a single view, our algorithm aims to remove

optical lens blur and produce high quality depth map z and amplitude map a. The
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latent depth z and amplitude a are coupled in the measurements, thus we solve

them as a joint optimization problem.

(a, z) = argmin
a,z

||b− SK (a ◦ g(z)) ||22 + Φ(a) + Ψ(z) (3.3)

Eq.3.3 shows the objective function we aim to minimize. The quadratic term

represents a data-fitting error, assuming zero-mean Gaussian noise in the measure-

ments. Φ(a) and Ψ(z) represent regularizers for amplitude a and depth z respec-

tively. The algorithm alternatively estimates a and z, and update the blur kernel

matrix K at the end of each iteration according to currently estimated z.

Sparse gradient priors [68] have been widely used in natural image deblurring,

but are improper for depth where the gradient could be non-zero for most pixels.

The sparse second-order derivative priors have been used in surface denoising [6,

7, 104], but fail to model the discontinuity at object boundaries and thus do not

distinguish the blurred and latent sharp depth. In this paper, we use the second-

order Total Generalized Variation (TGV) [11] for both the amplitude and depth, as

shown in Eq.3.4 and3.5.

Φ(a) = min
y
λ1||∇a− y||1 + λ2||∇y||1 (3.4)

Ψ(z) = min
x
τ1||∇z− x||1 + τ2||∇x||1 (3.5)

The TGV prior automatically balances the first and second order derivative

constraints. Following Knoll et al [56], this can be intuitively understood as fol-

lows. In flat regions of z, the second order derivative ∇2z is locally small, thus

it benefits the minimization problem in Eq.3.5 to choose x = ∇z, and minimize

the second order derivative ||∇x||1. While in the sharp edges of z (i.e., at object

boundaries), ∇2z is larger than ∇z, thus it benefits to choose x as zero, and mini-

mize the first order derivative ||∇z||1. Similar analysis applies for a as well. The

parameters λ1, λ2, τ1, τ2 define the relative weights of the first and second order

constraints. A modified version of TGV was used in Ferstl et al [28] for image
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Algorithm 1 Defocus deblurring for ToF depth camera

Input: Raw measurements b; modulation frequency f ; upsampling ratio r
Output: Estimated depth z and amplitude a

1: a = upsample(magnitude(b), r)
2: z = upsample(phase(b)/(4πf/c)), r)
3: for n = 1 to N do
4: K = updateKernel(z)
5: c = argmin

c
||b− SKc||22 + ρ||c− a ◦ g(z)||22

6: a = argmin
a

ρ||c− a ◦ g(z)||22 + Φ(a)

7: z = argmin
z

ρ||c− a ◦ g(z)||22 + Ψ(z)

8: end for

guided depth upsampling.

a◦g(z) in Eq.3.1 is highly nonlinear regarding to z. To reduce the computation

complexity in this nonlinear problem, the algorithm splits the data-fitting term in

the objective (Eq.3.3) into a linear Least Squares (LSQ) and a pixel-wise separable

nonlinear LSQ term, as in Eq.3.6. The scalar ρ defines the relative weight of the

splitting term.

(a, z) = argmin
a,z,c

linear LSQ for c︷ ︸︸ ︷
||b− SKc||22 +

separable nonlinear LSQ for z︷ ︸︸ ︷
ρ||c− a ◦ g(z)||22

+ Φ(a) + Ψ(z)

(3.6)

Algorithm 1 shows the high-level pseudocode of the proposed method. The

amplitude a and depth z are initialized as the magnitude and phase of the complex-

valued measurement b, respectively, and upsampled by nearest-neighbor method

if superresolution wanted. Then the algorithm iteratively updates the blur kernel

matrix K, slack variable c, amplitude a and depth z. The number of iterations N

is typically set as 10. Details of each subproblem are described in Section 3.2.2 -

Section 3.2.5.
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3.2.2 Updating kernel estimate

The blur kernel is pre-calibrated at each pixel and sampled depth. The algorithm

updates K by a simple interpolated lookup in the pre-calibrated table of kernels ac-

cording to the currently estimated depth z. The details of the calibration procedure

are explained in Section 3.2.6.

3.2.3 Updating slack variable

The update of the slack variable c requires solving a linear LSQ problem (Algo-

rithm 1, Line 5). Since the resulting linear equation system is positive-definite, a

number of options for efficient solvers exist.

3.2.4 Update amplitude estimate

Algorithm 2 Update amplitude

Input: c, A, ρ, ρa, λ1, λ2, number of iterations: M
Output: Estimated amplitude a

1: for n = 1 to M do
2: a = argmin

a
ρ||c−Aa||22 + λ1ρa||∇a− y − p1 + u1||22

3: y = argmin
y

λ1||∇a− y − p1 + u1||22+

λ2||∇y − p2 + u2||22
4: p1 = argmin

p1

||p1||1 + ρa||∇a− y − p1 + u1||22
5: p2 = argmin

p2

||p2||1 + ρa||∇y − p2 + u2||22
6: u1 = u1 +∇a− y − p1

7: u2 = u2 +∇y − p2

8: end for

By substituting Φ(a) into the update rule for the amplitude (Algorithm 1,

Line 6), we obtain the following optimization problem

min
a,y

ρ||c−Aa||22 + λ1||∇a− y||1 + λ2||∇y||1, (3.7)

where A is a diagonal matrix composed of g(z). This problem is solved by ADMM [9]),

as shown in Algorithm 2. The a and y updates are linear least squares problems.
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The p1,2-updates are soft shrinkage problems and have closed form solutions [9].

The number of ADMM iterations M is typically set to 20. More details of each

subproblem are provided in Appendix A.1.

3.2.5 Updating depth estimate

Algorithm 3 Update depth
Input: c, a, ρ, ρx, τ1, τ2, number of iterations: M
Output: Updated depth z

1: for n = 1 to M do
2: z = argmin

z
ρ||c− a ◦ g(z)||22 + τ1ρx||∇z− x− q1 + v1||22

3: x = argmin
x

τ1||∇z− x− q1 + v1||22 + τ2||∇x− q2 + v2||22
4: q1 = argmin

q1

||q1||1 + ρx||∇z− x− q1 + v1||22
5: q2 = argmin

q2

||q2||1 + ρx||∇x− q2 + v2||22
6: v1 = v1 +∇z− x− q1

7: v2 = v2 +∇x− q2

8: end for

In a similar fashion, we can substitute Ψ(z) into the update rule for the depth

(Algorithm 1, Line 7), and obtain the optimization problem

min
z,x

ρ||c−a ◦ g(z)||22+τ1||∇z−x||1+τ2||∇x||1 (3.8)

Once again, we apply the ADMM method to reduce this problem into easier sub-

problems, as shown in Algorithm 3. For the sparse nonlinear least squares prob-

lem of updating z (Algorithm 3, Line 2), we use the Levenberg-Marquardt algo-

rithm [61, 76] with an analytical Jacobian for the cosine model. To adapt our

method to arbitrary (calibrated) waveforms, the only required change would be to

replace this derivative estimate with a tabulated version based on the calibration

data. We use the cosine model for the experiments in Section 3.3 for fair com-

parisons with previous work, which makes the same assumption. Again, the q1,2

updates are soft shrinkage problems, we use M = 20 iterations, and all further

details are provided in Appendix A.1.
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(a) PMD-Digicam camera (b) Scene setup for PSF calibration

Figure 3.2: Experimental setup.

3.2.6 Calibration

The blur kernel (PSF) pre-calibration for real measurements is done by a similar

approach to [44]. Fig. 3.2 shows the experiment setup. Printed random noise

patterns are attached on a flat white board, which is held on a translation stage.

The translation stage moves the white board to place from 60cm to 160cm away

from the camera, with 1cm incremental. At each place, the camera captures with

large aperture (the same aperture used for real measurements). Then, this process

is repeated but with a small aperture so that the scene is nearly in-focus. Next, the

amplitude images of the two captures at each place are used to estimate the PSF as

a non-blind deconvolution problem.

3.3 Results
We test the proposed algorithm on both synthetic and real datasets, and compare

with two methods: the naive method, which computes the amplitude and depth

as the magnitude and phase of the raw complex images respectively; and Godbaz

et al [31], which alternatively updates blur kernels and deconvolves the complex

image with a Gaussian prior.
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(a) Estimated a, from left to right, by ground truth, naive method (29.1dB), Godbaz method
(31.9dB) and ours (34.5dB).

(b) Estimated z, from left to right, by ground truth, naive method (36.2dB), Godbaz method
(37.3dB) and ours (43.0dB).

Figure 3.3: Results on simulated Buddha scene with 0.5% white noise. Our
method significantly reduces the blurriness and suppresses noise in both
a and z, and reducing the flying pixels at object boundaries. PSNR of
the results are provided in the brackets.
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Figure 3.4: PSNR of our estimated amplitude a and depth z on the Buddha
scene at each iteration.

3.3.1 Synthetic data

The results on a simulated Buddha scene is shown in Fig. 3.3. The naive amplitude

a and depth z are blurry and contain strong noise and flying pixels. In the visu-

alized depth map, the flying pixels appear in different color than the foreground

and background surface at the boundaries. Godbaz et al method is highly sensitive

to noise. Their result to some extent reduces the blurriness, but contains obvious

noise, ringing artifacts and flying pixels. The proposed method significantly re-

duces the blurriness and flying pixels, and suppress the noise in both the amplitude

a and depth z. The results are compared with ground truth data. Our approach

produces much higher PSNR than the other methods.

In Fig. 3.4, we show the PSNR values of our estimated a and z at each iteration

(i.e., n in Algorithm 1).

3.3.2 Real data

We captured real datasets using the Digicam camera from PMDTechnologies (Fig. 3.2)

with a 6-15mm and f/1.4 lens. 30MHz modulation frequency and 300 microsec-

ond exposure time are used, and a single frame is captured for each scene. We crop
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(a) Camel scene (b) Character scene

(c) Board scene

Figure 3.5: RGB Photographs of the real scenes.

out the pixels near image boundaries and the typical resolution of input images is

250 × 180 pixels. The pre-calibrated PSFs have a width of 5-11 pixels at depths

between 0.6 and 1.6m.

In Fig. 3.5 we show the photographs of the captured scenes. The results and

comparisons are shown in Fig. 3.6, 3.7 and 3.8, and cropped regions are shown

in Fig. 3.9, 3.11 and 3.12. In Fig. 3.10, we show the mesh geometry color-coded

according to surface normal to better illustrate the depth results. Please zoom in

for better views.

Similarly as in the synthetic example, Godbaz et al method is unable to handle

noise (which is common in low-end ToF cameras), and fails to recover sharp scene

features. Our method produces much higher quality amplitude and depth, in term

of suppressing the noise, recovering sharp features and reducing flying pixels. We

also run our algorithm with 2x superresolution (i.e., upsampling ratio r = 2 in
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(a) Real part of b (b) Imaginary part of b

(c) Naı̈vea (d) Naı̈vez

(e) Godbaz a (f) Godbaz z

(g) Our a (h) Our z

(i) Our a with superresolution (j) Our z with superresolution

Figure 3.6: Results on the Camel scene. In (a-b) the red color indicates pos-
itive values and blue negative in the raw measurements. The cropped
regions are shown in Fig. 3.9.
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(a) Real part of b (b) Imaginary part of b

(c) Naı̈vea (d) Naı̈vez

(e) Godbaz a (f) Godbaz z

(g) Our a (h) Our z

(i) Our a w/ superresolution (j) Our z w/ superresolution

Figure 3.7: Results on the Character scene. The cropped regions are shown
in Fig. 3.11.
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(a) Real part of b (b) Imaginary part of b

(c) Naı̈vea (d) Naı̈vez

(e) Godbaz a (f) Godbaz z

(g) Our a (h) Our z

(i) Our a w/ superresolution (j) Our z w/ superresolution

Figure 3.8: Results on the Board scene. The cropped regions are shown in
Fig. 3.12.
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Figure 3.9: Two insets of the results on the Camel scene in Fig. 3.6. From left
to right shows the naive method, Godbaz et al method, ours, and ours
with superresolution.

(a) Naı̈vez (b) Godbaz z

(c) Our z (d) Our z with superresolution

Figure 3.10: Mesh visualization for the Camel scene in Fig. 3.6. The color
indicates the surface normal in horizontal direction, i.e., blue indicates
left-faced surface and red the opposite.
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Figure 3.11: Two insets of the results on the Character scene in Fig. 3.7. From
left to right shows the naive method, Godbaz et al method, ours, and
ours with superresolution.

Figure 3.12: Two insets of the results on the Board scene in Fig. 3.8. From
left to right shows the naive method, Godbaz et al method, ours, and
ours with superresolution.
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Figure 3.13: We run the proposed algorithm on an inset of the Character
scene with different upsampling ratios. From left to right shows the
result of naive method, and ours with 1x, 2x, 4x, 6x superresolution
respectively. We observed that little more details are recovered beyond
4x upsampling.

Algorithm 1), and show that we achieve even better results with superresolution

in our joint optimization framework. We use bicubic interpolation for the down-

sampling operator S. In Fig. 3.13, we show our results with different upsampling

ratios, and observe that little more details are recovered beyond 4x upsampling for

our dataset.

We tune the parameters to generate results of compared method and ours. For

our results, ρ (in Algorithm 1), ρa (in Algorithm 2) and ρx (in Algorithm 3) are

fixed as 0.125, 10 and 10 respectively. In Algorithm 2, λ1 is typically set as 0.001

or 0.002, and λ2 as 20 or 40 times λ1. In Algorithm 3, τ1 is typically set as 0.0005

or 0.001, and τ2 as 20 or 40 times τ1.

We run our unoptimized Matlab code with a single core on an Intel i7 2.4GHz

CPU. The running time is reported taken the Character scene as an example. Dur-

ing the total 10 iterations in Algorithm 1 with no superresolution, our code took 80

seconds for updating the slack variable c (Sec. 3.2.3), 16 seconds for the amplitude

(Sec. 3.2.4), and 347 seconds for the depth (Sec. 3.2.5). We believe the code can

be further accelerated by choosing more efficient solvers for some subproblems

or running on GPU. For example, the current Levenberg-Marquardt Matlab solver

used in Algorithm 3 can be replaced with much more efficient ones [3].
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(a) Estimated a (b) Estimated z

Figure 3.14: Experiment results using the TGV prior on the complex im-
ages. The estimated amplitude is over-smoothed while the depth is
still highly noisy.

3.4 Discussion

Regularization strategy

To verify the benefit of directly regularizing and solving the latent amplitude and

depth, we replaced the Gaussian derivative prior in Godbaz et al [31] with the

TGV prior on the complex image, and solved the complex image using ADMM

framework. The result on the Camel scene is shown in Fig. 3.14. Even though the

prior weight is high enough to over-smooth the amplitude, the estimated depth still

contains strong noise compared to Fig. 3.6. This demonstrates the high quality of

our results is to a large part owed to the approach of regularizing z and a directly.

Joint deblurring and superresolution

To show the advantage of our joint deblurring and superresolution from ToF raw

measurements, we compare with the results of superresolution after deblurred by

each method. Two example insets are shown in Fig. 3.15. Our jointly deblurred

and super-resolved depth and amplitude preserve sharp features and reduce flying

pixels better than the others.
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Figure 3.15: The top row shows depth results, and bottom amplitude.
From left to right: (a) naive method; (b) naive method + post-
superresolution; (c) Godbaz et al + post-superresolution; (d) our de-
blurred + post-superresolution; and (e) our jointly deblurred and su-
perresolved. The TGV prior is used for all post-superresolution. These
two scenes are from Fig. 3.9 and 3.11.

Multiple frequencies, phases and exposures

The latest generation of ToF cameras uses multiple frequencies or phases in or-

der to reduce range ambiguity and improve depth resolution. Multiple exposures

could be used to increase the dynamic range of the raw measurements and remove

artifacts due to lack of reflection or over-saturation in one shot. The proposed algo-

rithm well adapts for these cameras since the latent amplitude and depth is solved

directly from the raw measurements, which could come from different captures

and put together in the data-fitting term.

Defocus level

The pixel width of current ToF sensor is approximately 45µm, compared with RGB

sensors which have approximately 5µm pixel size. As the ToF sensor resolution

increases as the technology matures, the defocus effect in ToF imaging is expected

to be more obvious and the importance of deblurring ToF images will become more

pronounced.
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Limitations and future work

Both the proposed method and the compared Godbaz et al [31] assume white Gaus-

sian noise in the raw measurements. This noise model is inaccurate due to the non-

linear image formation model, typically relatively low light conditions, as well as

ambient light canceling in ToF imaging [33], which amplifies shot noise. As a

future work we would like to study more accurate noise models for ToF cameras.

3.5 Conclusion
In this paper we proposed an effective method to simultaneously remove lens blur

and increase image resolution for ToF depth cameras. Our algorithm solves the la-

tent amplitude and depth directly from the raw complex images, and separate priors

are used for each to recover sharp features and reduce flying pixels and noise. We

show our algorithm significantly improves the image quality on simulated and real

dataset compared with previous work. Unlike previous approaches, our method is

not fundamentally limited to the cosine model for continuous-wave ToF cameras,

which has been shown to be inaccurate for many systems (e.g., [42]) and should

adapt to multi-frequency, multi-phase or multi-exposure ToF cameras.
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Chapter 4

Stochastic Blind Motion
Deblurring

4.1 Introduction
The goal of deconvolution is to recover a sharp intrinsic image x from a blurred

image b. The image formation process can be modeled as

b = k⊗ x + n, (4.1)

where k represents the blur kernel, ⊗ represents discrete convolution, and n is a

noise term. We first assume Gaussian noise for simplicity, and extend our algorithm

for Poisson noise in later sections.

While there are many applications in which the kernel k is known or can be

calibrated a priori (e.g., aberration correction) or is considered to be from a small

set of possible kernels (defocus blur), in other situations the kernel is unknown

since it is generated by a process that cannot be replicated (e.g., object motion or

camera shake).

This blind case, where both the kernel and the intrinsic image is unknown, is

highly under-constrained, and is subject to many degenerate solutions, including

one where the estimated kernel is simply a Dirac peak. It is therefore obvious that

blind deconvolution is only feasible with the use of additional information, either

42



in the form of additional sensor data (e.g., inertial sensors [52] or multiple input

images of the same scene [83]), or in the form of prior information (image priors).

While good priors for both the images and the blur kernels are still an active area

of investigation, many choices that have been proposed are non-linear and often

even non-convex. This makes it difficult and time consuming to experiment with

different image priors, since each new candidate typically requires a customized

optimization procedure that can require a significant effort to implement.

In this chapter we extend the recent work in stochastic non-blind deconvolu-

tion [36] to derive a blind method that is purely based on stochastic sampling. The

method relies entirely on local evaluations of the objective function, without the

need to compute the gradient of the objective function. This makes it effortless

to implement and test new image priors. Specifically we present the following

contributions:

• a stochastic framework for blind deconvolution,

• a demonstration of stochastic optimization for non-convex priors for the im-

age (e.g. sparse derivatives and cross-channel information), the kernel (e.g.

anisotropic diffusion), and even the data term (handling of saturation and

clamping, as well as an Anscombe transformation for Poisson noise).

• an implementation with a range of sparsity and color priors for the image, as

well as sparsity and smoothness priors for the kernel, that together match or

outperform existing state-of-the art methods,

• a method for recovering colored blur kernels that arrive, e.g. in remote sens-

ing where the exposure time varies per channel (e.g., [60]), and

• a method for dealing with clipped color values in non-blind deconvolution.
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4.2 Basic algorithm

Algorithm 4 Stochastic blind deconvolution framework
Input: Blurry image b; weights for priors on intrinsic image: θx; weights for

priors on the kernel: θk; maximum blur kernel size φ; number of iterations T .
Output: Estimated intrinsic image x; estimated kernel k.

1: S = d2 log2(φ/3) + 1e //number of scales
2: for s = 1 to S do
3: bs = downsample(b, s, ‘bilinear’)
4: if s == 1 then
5: xs = bs

6: ks = initializeKernel(b)
7: else
8: xs = upsample(xs−1,

√
2, ‘bicubic’)

9: ks = upsample(ks−1,
√

2, ‘nearest-neighbor’)
10: end if
11: for t = 1 to T do
12: xs = updateIntrinsicImage(bs,ks,xs, θx)
13: ks = updateKernel(bs,xs,ks, θk)
14: end for
15: [θx, θk] = updateWeights(θx, θk)
16: end for
17: k = ks //final estimated kernel
18: x = updateIntrinsicImage(b,k,xs, θx) //final intrinsic image restoration

Our algorithm is based on a multi-scale approach that iterates between kernel

estimation and solving a non-blind deconvolution step (Algorithm 4). The algo-

rithm uses a scale space to avoid local optima, working its way from the coarse

scales to the fine scales (also see Fig. 4.1). At each scale, the method upsamples

the kernel and intrinsic image from the next coarser scale using nearest-neighbor

and bicubic upsampling respectively and then alternately updates the current esti-

mates for the intrinsic image (Section 4.2.1) and the kernel (Section 4.2.2) at the

current scale in an inner loop. Next, prior weights are adjusted (Section 4.2.3) be-

fore moving to the next finer scale. At the coarsest scale, the kernel is initialized

as a 3 by 3 image with either a horizontal or vertical stripe depending on the domi-

nant gradient direction [27], while the blurry image for each scale is obtained with

bilinear downsampling from the full-resolution blurry image.
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Figure 4.1: Our multi-scale scheme on the scene shown in Fig.4.8. Row 1
& 2: intrinsic images estimated at each scale. Row 3: kernel estimated
at each scale. In contrast to most existing blind deconvolution meth-
ods, our algorithm can recover all color channels of the intrinsic image
simultaneously using the cross-channel information.

4.2.1 Updating the intrinsic image

Given the kernel estimated at the current scale ks, the function updateIntrinsicIm-

age(.) in Algorithm 4 updates our estimate of the intrinsic image by solving a non-

blind deconvolution problem using a stochastic random walk optimization (Algo-

rithm 5, also see [36]), which minimizes objectives of the form:

f(xs) = ||bs − ks ⊗ xs||22 + θx · g(xs) (4.2)

The quadratic term gives the data-fitting error. g(.) = [g1(.), . . . , gR(.)]T is a

vector of individual regularizers, and θx = [θx1, . . . , θxR]T is the corresponding

vector of weights for each regularization term. The total weighted penalty (scalar)

is the dot-product of θx and g(.). Examples of gi(.) are given in Eq. 4.8 - 4.12.
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The intrinsic image updating method described in this section is heavily based

on the previous work [36] with small modifications. We review its details here for

self-completeness and provide additional analysis about its convergence.

Random walk process

As summarized in Algorithm 5, we create a random walk chain of pixel location

pi in the support domain of the intrinsic image at which we propose to add to or

remove from an energy quantum edx:

xsi = xsi−1 ± edx · δpi , (4.3)

where δpi is the characteristic function (i.e., Kronecker delta function) for the sam-

ple pixel pi, and xsi the estimated intrinsic image at ith iteration of the random

walk. Both the positive and negative energy are evaluated at the sample pixel but

only the sample that decreases the objective function most is kept.

The quantity c(pi) measures the change of the objective function f(.) if the

proposed sample pi with value ±edx were to be accepted, i.e.,

c(pi) = f(xsi )− f(xsi−1) (4.4)

If the sample decreases the objective (i.e. c(pi) < 0), it is accepted and Eq. 4.3 is

applied (lines 6-9, Algorithm 5).

The quantity a measures the rate of objective change given the new proposed

sample pi, as defined in Eq. 4.5.

a = c(pi)/c(pi−1) (4.5)

If a is lower than a uniform-randomly generated real number between 0 and 1

(a.k.a.Russian roulette strategy in Metropolis-Hasting sampling techniques [14]),

and the previous sample pi−1 decreased the objective, the new sample is discarded

entirely leaving the intrinsic image and random walk chain unchanged (lines 11-

13, Algorithm 5). Otherwise, the random walk chain is updated to the new sample

location pi.
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Algorithm 5 Stochastic random walk optimization
Input: x0 as the initial value of the signal x to optimize, with support domain Ω;

function c(pi) evaluating the change of objective given sample pi; function
t(pi|pi−1) mutating sample location from pi−1 to pi; ed as the initial mag-
nitude of the sample energy; ε as a constant scalar (by default 0.001); γ as a
constant scalar between 0 and 1 (by default 0.1);N as the number of iterations;
M as the total number of proposed samples in each iteration.

Output: Updated signal x.
1: p0 = random(Ω) //initialize the random walk chain by uniform-randomly

sampling the support domain Ω.
2: for j = 1 to N do
3: β = 0 //number of accepted samples in each iteration
4: for i = 1 to M do
5: pi = sample(pi−1, t(pi|pi−1), ed) //propose a new sample pi with en-

ergy ed given the previous sample pi−1 and transition function t(.).
6: if c(pi) < 0 then
7: β = β + 1
8: accept(pi) //if the new sample pi decreases the objective, accept it and

update x (e.g., by Eq. 4.3).
9: end if

10: a = c(pi)/c(pi−1) //compute the rate of objective change given the new
sample pi.

11: if a < random([0, 1]) and c(pi−1) < 0 then
12: pi = pi−1 //if a is lower than a uniformly distributed random real num-

ber between 0 and 1, and the previous sample pi−1 decreased the ob-
jective, keep the random walk chain at previous sample location pi−1;
otherwise, update the random walk chain to pi.

13: end if
14: end for
15: p0 = pN //update the root of random walk chain for next iteration.
16: if β < ε ·N and ed < ε then
17: break //if too few samples were accepted and ed is too small meanwhile,

stop the iterations.
18: else if β < γ ·N then
19: ed = 0.5·ed //reduce the sample magnitude by half when too few samples

were accepted.
20: end if
21: end for

47



Evaluating c(pi)

Given a proposed sample, the objective function in Eq. 4.2 changes locally because

of the compact support of the blur kernel ks and priors g(.). We can efficiently

evaluate c(pi) by only considering the local neighborhood of the given sample

pixel.

In practice, we keep a second sequence of images b̂si = ks ⊗ xsi , which repre-

sents the blurred image we would expect if the intrinsic image was xsi . The b̂si can

be updated efficiently by splatting ks ⊗ δpi during the random walk process:

b̂si = b̂si−1 ± edx(ks ⊗ δpi) (4.6)

The splat ks ⊗ δpi is just a shifted, and mirrored copy of the kernel ks and is pre-

computed for acceleration. The change in the regularization term is evaluated in an

analogous manner but is specific to chosen regularizers.

Sample mutation

The function sample(.) generates a new sample pi from the previous sample pi−1

by the mutation function t(pi|pi−1). Two types of mutation strategies are used.

The first strategy generates pi by a zero-mean Gaussian-distributed random

offset η(0, σ) from pi−1. This mutation allows more samples to be drawn in the

regions where they can reduce the objective function more effectively. Using a

Gaussian distribution ensures ergodicity of the random walk process. The standard

deviation of the Gaussian kernel σ is set to 4 pixels when updating intrinsic image.

The second mutation strategy chooses the new sample randomly in the support

domain with uniform probability. We stimulate this mutation with 2% probabil-

ity during the random walk process. This helps to avoid start-up bias and also

contributes to ergodicity of the random walk process.

Eq. 4.7 gives the formula of the above mutation strategies:

pi =

{
random(Ω), if q < 0.02;

pi−1 + η(0, σ), otherwise
(4.7)

where random(Ω) means a random pixel across the image support domain Ω, and
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q is a random real number between 0 and 1 generated online at each mutation.

Sample energy

The magnitude of the sample energy edx is reset to be an initial large value at the

beginning of each scale, and adjusted iteratively at each scale. It is reduced by half

whenever the percentage of accepted samples over all proposed ones in previous

iteration goes below a constant scalar γ ∈ [0, 1]. This allows the method to take

large steps early and make more subtle changes as the minimization proceeds. In

our experiments we use the initial value of edx as 0.02 and γ as 0.1. Note that the

blurry and intrinsic images are normalized to be between 0 and 1.

Stopping criteria

The random walk process is terminated if the percentage of accepted samples in

previous iteration goes below a constant threshold ε and the magnitude of the sam-

ple energy edx is smaller than ε meanwhile (lines 16-20, Algorithm 5). In our

experiments we set ε to 0.001.

Regularizers g(.)

A benefit of the stochastic optimization framework is that it allows very general

priors to be used with no change to the overall algorithm. We have used a selection

of well-known and frequently used regularization terms listed below. ∇h and ∇v
are horizontal and vertical first-order derivative operators respectively. ∇hh, ∇hv
and ∇vv are corresponding second-order derivative operators.

• Anisotropic total variation [35] (convex, but non-smooth):

||∇hxs||1 + ||∇vxs||1 (4.8)

• Isotropic total variation [35] (convex, but non-smooth):

||(|∇hxs|2 + |∇vxs|2)1/2||1 (4.9)

• Sparse first-order derivatives [27, 66] (non-convex):

||∇hxs||p + ||∇vxs||p, p ∈ (0, 1] (4.10)
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True intrinsic and an inset kernel 1 kernel 2 kernel 3 kernel 4

Figure 4.2: Ground truth intrinsic image (800x800 pixels) and kernels (25x25
pixels) used for empirical convergence test in Fig. 4.3 and 4.6. The
kernels are upsampled by nearest neighbor for visualization.

• Sparse gradient [27, 66] (non-convex):

||(|∇hxs|2 + |∇vxs|2)1/2||p, p ∈ (0, 1] (4.11)

• Sparse second-order derivatives [62] (non-convex):

||∇hhxs||p + 2||∇hvxs||p + ||∇vvxs||p, p ∈ (0, 1] (4.12)

In addition we use other priors, including one to reduce chromatic artifacts (see

Section 4.3.1) as well as non-convex data term, e.g., in the case of images with

Poisson noise (Section 4.3.4).

Empirical convergence

Following the analysis in [36], our stochastic random walk framework is a form

of Stochastic Coordinate Descent (SCD) [69, 89, 97]. In each iteration, the algo-

rithm picks a single pixel in the image and checks if the objective can be reduced

by depositing energy in this pixel. This corresponds to picking a single degree-

of-freedom (i.e. a single coordinate axis in the vector of unknowns) and descend-

ing along that direction, without computing full gradient of the objective function.

The difference to other SCD methods is that our algorithm uses the random walk

process to exploit spatial coherence in the deconvolution problem and focus the

computational effort on regions with sharp edges, where most work is to be done

in deconvolution (see Fig. 4.4).

For smooth objectives, SCD methods provably converge as long as there is a
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Figure 4.3: Example of non-blind intrinsic image estimation. In (a)-(d), the
1st row shows the inset of blurry input simulated with the true intrinsic
image and each kernel given in Fig. 4.2, and the 2nd row shows the inset
of non-blind estimated intrinsic image by our stochastic random walk
method. Only insets are shown due to limited space. The bottom row
show the change of objective function f and PSNR when the number
of iterations increases. In each iteration, 50000 samples were proposed.
Sparse gradient prior (Eq. 4.11 with p = 0.8, non-convex) was applied.
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(a) Initial residual

(b) Distribution of accepted sample energy edx

(c) Distribution of proposed sample locations
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Figure 4.4: Visualization of sample distribution for the non-blind examples
in Fig. 4.3. From left to right, the columns show the example with ker-
nel 1,2,3,4. (a) shows the residual between initial intrinsic image and
ground truth. (b) shows the map of accepted sample energy edx. The
values of the residuals and sample energy in (a)-(b) are 10× magnified
before coded in CMYK colorspace, where magenta channel indicates
positive values and yellow negative. (c) shows the normalized distribu-
tion of proposed sample locations pi (including both accepted and re-
jected samples.), coded in key channel in CMYK colorspace. (d) shows
the histogram of the number of proposed samples in (c). The horizontal
axis indicates the bins of the number of proposed samples (clamped at
45 for limited space), and vertical axis indicates the number of pixels at
each bin. 52



(a) Initial (b) Iteration 20 (c) Iteration 60 (d) Iteration 200

Figure 4.5: Visualization of the residual between the ground truth and our
estimated intrinsic image at different iterations, for the example shown
in Fig.4.3(a). The values of the residual are 10×magnified before coded
in CMYK colorspace, where magenta channel indicates positive values
and yellow negative.

finite probability of choosing each possible coordinate axis. This is ensured by the

ergodicity of our mutation strategy. For general, non-smooth objectives no such

proof exists (see details in [36]), but in Fig. 4.3, we show empirical convergence

experiments for our method in the case of non-smooth and non-convex objectives

in non-blind intrinsic image estimations.

In Fig. 4.5, we visualize the residual between the true intrinsic and our esti-

mation in selected iterations for the example in Fig. 4.3(a). The algorithm reduces

the residual progressively. In Fig. 4.4, we visualize the sample distribution in the

random walk process for the examples in Fig. 4.3. As shown in Fig. 4.4(a), the

residual is large mostly at pixels near the image edges. Fig. 4.4(b) shows the dis-

tribution of accepted sample energy edx, which are mostly located at pixels where

the residual is large. Note that the positive and negative edx partially overlap dur-

ing the random walk process. Fig. 4.4(c) shows the distribution of the number of

proposed samples (including both accepted and rejected ones). More samples are

proposed near the image edges. Fig. 4.4(d) shows the histogram of the number of

proposed samples in Fig. 4.4(c). The majority of pixels consume 5-30 samples.

The intuitive reasons why such an apparently small amount of samples are re-

quired are: 1) the samples are not uniform-randomly proposed. The algorithm uses

random walk to exploit the spatial coherence in the images, thus enforce impor-

tance sampling; 2) the sample energy ed is initialized as a large value to reduce the
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number of required samples at the beginning (as larger ed can reduce the objective

more effectively), and then progressively reduced to better recover smaller details

in the image. This multi-weight strategy help reduce the total number of required

samples; 3) each proposed sample is evaluated with both positive and negative

energy.

4.2.2 Updating the kernel

The updateKernel(.) function is used to perform kernel estimation, i.e., to find

the kernel that best explains the blurry input bs and intrinsic image xs for a given

scale s. This operation is performed in derivative domain, minimizing the objective

function in Eq. 4.13 consisting of a data term and set of priors g(.) with weights

θk:

f(ks) = ||∇h,vbs − ks ⊗∇h,vxs||22 + θk · g(ks), (4.13)

where ∇h,v represents the set of horizontal and vertical first-order derivative oper-

ators, i.e., ∇h,v = {∇h,∇v}, and thus ∇h,vxs = {∇hxs,∇vxs}. We observed

that the optimization converges faster when the data-fitting error is computed in

the derivative domain rather than in the intensity domain. This is consistent with

the findings of Cho et al [20]. On the other hand, the cross-channel prior (see

Section 4.3.1) requires the image to be represented in the intensity domain. Since

mixing the intensity domain and the gradient domain in a single subproblem would

be too costly, we use the gradient domain only for the kernel subproblem.

The same stochastic random walk algorithm (Algorithm 5) is used for updating

the kernel except samples are now drawn from the kernel image. As before, an

energy quantum edk is added or removed at each sample location pi causing the

kernel to be updated by Eq. 4.14, where ksi is the estimated kernel at ith iteration

of the random walk, and δpi is the characteristic function (i.e., Kronecker delta

function) for the pixel located at pi. Non-negativity of the kernel is enforced by

rejecting any sample that causes a kernel pixel to become negative.

ksi = ksi−1 ± edk · δpi (4.14)
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Updates to the kernel result in a change to the entire blurry image. To evalu-

ate the data efficiently, the algorithm maintains an estimate of the gradient of the

current blurry image, ∇h,vb̂si , which is compared to the down-sampled captured

blurry image to evaluate the change to the objective function. Each sample at pi

is a scaled Dirac function ±edk · δpi , resulting in an update rule whereby a shifted

and scaled copy of the current estimate for the intrinsic image xs is added:

∇h,vb̂si = ∇h,vb̂si−1 ± edk(δpi ⊗∇h,vxs) (4.15)

As in the intrinsic image update, it is necessary to apply a regularizer to the

kernel estimation in order to enforce specific properties. For motion blur kernels

we expect kernels to be i) smooth ii) sparse, in the sense that most kernel entries

will be zero and iii) continuous, in that the kernel should be a smooth curve over

the exposure time. We enforce these properties with the priors from Eq. 4.16-4.18

respectively:

• Smoothness [62]:
||∇2ks||22 (4.16)

• Sparsity:
||ks||p, 0 ≤ p < 1 (4.17)

• Continuity:
||ks −AD(ks)||22 (4.18)

For the continuity prior, Eq. 4.18, anisotropic diffusion [81] is used for the

filter AD(.). This is a non-linear filter that favors long continuous features which

helps to reconstruct thin motion-blur trails. A benefit of the stochastic optimization

algorithm is that this function may be computed exactly for each sample, rather

than linearized per iteration. As with the intrinsic update, the key benefit of the

stochastic framework is that only local evaluations of the regularizers are required.

After updating the kernel, a simple denoising filter is applied that sets any pixel

in ks to zero whenever its eight neighboring pixels are near zero. This removes

isolated speckles that sometimes occur with the stochastic random walk. The pixels

whose intensity is lower than a threshold (i.e., 0.05 times the highest pixel intensity

of current estimated kernel) are also set to be zero. This can be interpreted as an
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Figure 4.6: Example of non-blind kernel estimation. The true intrinsic image
and kernel are given in Fig. 4.2. The input blurry images are given in
Fig. 4.3. (a) shows the histogram of the number of proposed samples
(including both accepted and rejected samples). The bottom row shows
the change of objective function f and PSNR as the number of itera-
tions increases. The initial kernels can be arbitrary for non-blind kernel
estimation. Note that the sample energy is non-zero at the region where
the pixel intensity is zero in both initial and final recovered kernel. This
is due to the post-processing (remove isolated pixel, shrinkage, and nor-
malization) at the end of each iteration. This post-processing also causes
non-monotonicity in the objective and PSNR curve. The priors defined
in Eq. 4.16, 4.17 and 4.18 were applied. In each iteration, 200 samples
were proposed.
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additional shrinkage operator that ensures kernel sparsity. The kernel image is

normalized to 1 at the end of each iteration.

In Fig. 4.6, we show empirical convergence test of our method for non-blind

kernel estimations. Regarding the parameters in Algorithm 5, we use the initial

value of edk as 0.01, and γ as 0.1 in the experiments.

4.2.3 Updating the weights

The weights θx and θk define the relative strength of the data-fitting error and

regularizers in the objective functions for intrinsic image and kernel updates. The

algorithm begins with initially high θx (except for the cross-channel prior explained

in Section 4.3.1) at the coarsest scale and halves them whenever a new scale is

started, until minimum thresholds are reached. This helps to avoid local optima in

the subproblem. θk is kept unchanged for all scales in our experiments.

After the kernel is estimated at the finest scale, the function updateIntrinsicIm-

age(.) is applied again to generate the final estimation of intrinsic image x (i.e.,

line 18, Algorithm 4).

In Fig. 4.7, we visualize the progress of intrinsic and kernel estimation at multi-

scale process.

4.3 Algorithmic Extensions
Having described the basic algorithm in Section 4.2 we now proceed to intro-

duce several useful extensions, including non-convex priors for color images (Sec-

tion 4.3.1) and chromatic kernels (Section 4.3.2), as well as partially saturated pix-

els (Section 4.3.3). Finally, we demonstrate how non-linear versions of the image

formation model can also be included to account for non-Gaussian noise models

(Section 4.3.4).

4.3.1 Color images

To recover color images corrupted by motion blur, a simple extension of the basic

algorithm might perform kernel estimation as described in Section 4.2.2 (summing

the data term over all three channels) followed by separately deblurring each in-

trinsic channel. However, better results can be obtained by jointly deblurring all
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(a) Blurry input (b) Our estimation (c) Ground truth
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Figure 4.7: Example of our blind estimation of intrinsic and kernel. The two
plots show the PSNR value of intermediate estimation of intrinsic and
kernel at multi-scale scheme. To compute the PSNR values, at each
scale we upsample the intrinsic and kernel to the finest resolution by
bicubic or nearest neighbor and remove the possible shifts first. The
“final” step in the plot means the final restoration of the intrinsic image,
i.e., line 18, Algorithm 4.
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(a) Input

(b) Fergus et al [27]

(c) Cho et al [20]

(d) Xu et al [1]

(e) Ours
Figure 4.8: Results on a noisy real-world image. Our algorithm significantly

reduces chromatic artifacts compared with previous methods (better
view on screen).

59



(a) Input (b) Fergus et al [27] (c) Shan et al [98]

(d) Cho et al [20] (e) Xu & Jia [113] (f) Hirsch et al [46]

(g) Krishnan et al [59] (h) Xu et al [114] (i) Ours

Figure 4.9: Results on a real-world image and visual comparisons of state-
of-the-art methods. A closeup is shown in Fig. 4.10.
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(a) Input (b) Shan et al [98] (c) Cho et al [20]

(d) Xu & Jia [113] (e) Xu et al [114] (f) Ours

Figure 4.10: Closeup of the cloth region in the scene shown in Fig. 4.9. Our
result contains much fewer chromatic artifacts than the other methods.

intrinsic channels simultaneously since the majority of edges in the true intrinsic

image occur in all channels, with sparse hue changes. Based on this observation,

Heide et al [43] proposed a cross-channel prior to remove chromatic aberrations

caused by low-quality lenses:

∑
i,j∈{r,g,b}

λij ||xsi · ∇h,vxsj − xsj · ∇h,vxsi ||p, 0 < p ≤ 1 (4.19)

Adding the cross-channel priors to the regularizers g(.) for the intrinsic image

results in a non-convex objective. Heide et alused an alternating minimization in

which one channel is deblurred with the other two fixed. We instead reconstruct all

channels simultaneously by running one sampling chain per channel run in lock-

step. Although the method still alternates between the channels, this occurs so
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Figure 4.11: Results on chromatic blur kernel. Left column: input image
blurred with a chromatic kernel (right bottom); Right column: our re-
covered intrinsic image and blur kernel (right bottom).

frequently that the optimization is effectively performed simultaneously over all

channels. Our algorithm begins with low weight for cross-channel prior at the

coarsest scale and doubles it when a new scale is started.

We find that the cross-channel prior proposed in [43] improves deblurring per-

formance even for achromatic kernels by suppressing color artifacts that would

be introduced by separate deblurring of each channel. Example comparisons are

shown in Fig. 4.8, 4.9 and 4.10.
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4.3.2 Chromatic kernels

It is further possible to extend the method to estimating chromatic kernels that oc-

cur in sensor fusion where individual channels have unique exposure times (e.g. [60]).

This is accomplished by separately updating each kernel channel, but using the

cross-channel prior in Eq. 4.19 during the intrinsic image update at each scale

as described in Section 4.3.1. Synthetic examples of this strategy are shown in

Fig. 4.11.

4.3.3 Saturated or missing data

Saturated pixels are a common occurrence when taking photos with consumer cam-

eras, as is missing or unreliable data due to lens debris. Deblurring data with satu-

rated pixels often results in visually objectionable ringing artifacts since the capture

process clamps the input data in a way that is not consistent with the image for-

mation model, while for debris it may be preferable to mask out such regions and

allow the deblurring algorithm to inpaint plausible content. In the following dis-

cussion, we consider only the case of saturated blurry pixels, however the approach

applies equally well to lens debris.

To handle such saturated pixels, our algorithm performs kernel estimation as

usual using all non-saturated pixels. When reconstructing the final intrinsic image,

previous work, including [36], simply uses a data term that omits saturated blurry

image pixels, leading to improved results over deblurring naively. However we

have found that a two-phase approach to intrinsic image estimation yields much

improved results.

The two phase algorithm divides the intrinsic image into two regions: a reliable

region which does not contribute to saturated blurry image pixels and an unreliable

region that contains pixels do contribute saturated blurry pixels. Four binary masks

are defined:

• mb
s Saturated pixels in the blurred input.

• mx
v Mask of unreliable intrinsic pixels with a saturated pixel from mb

s in

their support.

• mx
u Mask of reliable intrinsic pixels, the inverse mask of mx

v .

63



(a) True intrinsic image

(b) Input blurry image

(c) Recovered intrinsic without two-phase approach

(d) Recovered intrinsic with two-phase approach

Figure 4.12: Results on partially saturated image. The dynamic range of
pixel intensities in the true intrinsic image is [0, 68]. The simulated
blurry image is clamped to 1. The proposed two-phase approach helps
reduce ringing artifacts near saturated pixels.
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• mb
d Mask of blurred pixels with a contribution from an unreliable pixel,

i.e., where k⊗mx
v 6= 0.

Using these masks we perform the intrinsic image reconstruction in two phases.

First the intrinsic image is estimated for reliable intrinsic image pixels in mx
u,

masking out data term contributions from unreliable blurred pixels in mb
d by min-

imizing:

f(x) = ||(b− k⊗ x) · (1−mb
d )||22 + θx · g(x) (4.20)

This optimization outputs the estimated intrinsic image everywhere that the lin-

ear image formation model holds, generating samples everywhere in the image as

needed to minimize both data term and the priors g(.). The second phase recon-

structs the unreliable regions, leaving the intrinsic image in the reliable regions (i.e.

in mx
u) fixed.

f(x) = ||(b− clip(k⊗ x)) ·mb
d ||22 + θx · g(x) (4.21)

The second phase only generates samples within the mask mx
v . By performing

the reconstruction in this method, ringing is constrained to the non-reliable image

region unlike in the typical approach where it can spread well beyond as a conse-

quence of the data fitting term. Fig. 4.12 shows our results on synthetic partially

saturated data. When dealing with color images, the proposed two-phase recon-

struction is the same as described except that the masks vary in different color

channels.

4.3.4 Poisson noise

In previous sections, we use quadratic fidelity in the objective by assuming white

Gaussian noise in the input images. Here we extend our algorithm to deal with

images containing Poisson noise, using the Anscombe transform [4]:

Ansc(z) = 2
√
c · z + 3/8, (4.22)

65



(a) True intrinsic (b) Input blurry (21.23 dB)

(c) Ours, Gaussian (24.24 dB) (d) Ours, Poisson (24.70 dB)

Figure 4.13: Results on a synthetic image with Poisson noise (peak intensity
= 500). Each subfigure contains an inset at the right-bottom corner
for better view. (c) shows our result with Gaussian noise assumption
(using Eq. 4.2, 4.13). (d) shows our result with Poisson noise assump-
tion and the Anscombe transform (using Eq. 4.23, 4.24). The result
with Poisson noise assumption recovers more details and is less noisy
especially in bright regions. We run both experiments with numerous
parameters and select the results with highest PSNR.
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where vector z represents the input image, c is a scalar for converting z to its

corresponding photon number.

The Anscombe transform (denoted as Ansc(.)) converts Poisson noise to ap-

proximately Gaussian noise. It allows us to use quadratic term for data-fitting error

in the transform domain, and thus fits our multi-scale framework. Similar transfor-

mations are available for other noise models, including mixtures of Gaussian and

Poisson noise, which are common in real images.

Specifically, as shown in Eq. 4.23 and 4.24, we apply the Anscombe transform

on the observed blurry image b before downsampling it into each scale s. At

each scale, the data-fitting error is computed in the transform domain, while the

regularizers on the intrinsic image g(xs) are still computed in regular domain. This

is because all the intrinsic image priors were learned from natural images, and may

not hold well in the transform domain.

f(xs) = ||(Ansc(b))s −Ansc(ks ⊗ xs))||22 + θx · g(xs) (4.23)

f(ks) = ||∇h,v(Ansc(b))s −∇h,vAnsc(ks ⊗ xs)||22 + θk · g(ks) (4.24)

Note that the data-fitting terms are non-convex now. In Fig. 4.13, we show a

synthetic example with Poisson noise (peak intensity = 500). We run our frame-

work with Gaussian noise assumption (using Eq. 4.2, 4.13), and with Poisson noise

assumption (using Eq. 4.23, 4.24). The latter produces visually and quantitatively

better results.

4.4 Results

Visual comparisons

In Fig. 4.8, 4.9, and 4.10 we compare the results of our algorithm with several

state-of-the-art methods on real-world images. Our algorithm significantly reduces

chromatic artifacts in the recovered intrinsic images. Fig. 4.11 shows our results on

simulated data with chromatic blur. Our algorithm recovers the chromatic kernel

well and produces a clean intrinsic image without color artifacts. Fig. 4.12 con-
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tains results for partially saturated data. The proposed simple two-phase method

effectively reduces the ringing artifacts near the saturated pixels. Fig. 4.13 shows

our results with the proposed non-convex data-fitting error in Eq. 4.23 and 4.24.

Qualitative comparisons

We also tested our algorithm on a real-world database that contains both ground

truth intrinsic images and kernels [57]. The database consists of 4 images, each of

which is blurred with 12 kernels. 8 of the kernels are approximately uniform across

the image, while 4 kernels are both large and exhibit strong spatial variation. The

dataset provides 199 unblurred frames recorded during the camera motion trajec-

tory for each image. We run the provided script to compute the PSNR value for

each of our results. The script first estimate the optimal intensity scaling and trans-

lation between the recovered image and the unblurred reference image such that

their `2 error over three color channels becomes minimal. PSNR is then computed

using these calibrated images. The final PSNR values reported in the paper is de-

fined as the maximum PSNR between the recovered image and any of the 199

unblurred reference images along the trajectory.

In Table 4.1, we show the PSNR values averaged over all 4 images for each ker-

nel by our algorithm, and compare with Fergus et al [27], Shan et al [98], Cho et

al [20], Xu and Jia [113], Krishnan et al [59], Whyte et al [106], Hirsch et al [46]

and Xu et al [1]. The downloadable software by Xu et al [1] incorporates tech-

nologies proposed in [113] and [114]. We adjusted the parameters in their software

to produce the best results possible. For the other methods we use the published

PSNR results directly from the database [57]. The PSNR value and recovered in-

trinsic image for each image can be found in the supplementary material.

On mostly spatially-invariant kernels (#1-7 and #12), our algorithm produces

results that are either close to or better than the best published methods. We notice

that the state-of-the-art Xu et al [1]’s results sometimes look sharper than ours,

but are actually oversharpened at the edges and thus have lower PSNRs. We show

examples in Fig. 4.14, where their results even look sharper than the ground truth

and contain halo artifacts at the edge pixels. This may be caused by the use of

explicit shock filter and bilateral filter in their kernel estimation.
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(a) Ours (38.82dB) (b) Xu [1] (33.34dB) (c) Reference

(d) Ours (33.29dB) (e) Xu [1] (30.72dB) (f) Reference

Figure 4.14: Comparison on image #1 with kernel #3 and image #4 with ker-
nel #4 from the dataset [57]. The filter-based method Xu et al [1]
over-sharpens the image and creates halo artifacts near the edges (bet-
ter view on screen).
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Table 4.1: PSNR (dB) comparisons on the benchmark dataset [57]. On
mostly spatially-invariant kernels (#1-7 and #12), our algorithm produces
results close to or better than the state-of-the-art methods. Our algorithm
fails to produce the best results on the extremely large and spatially-
variant kernels #8-11 (with size over 141 by 141 pixels). The resolution
of each input image is 800 by 800 pixels. Please see Section 4.4 for more
details.

Kernel 01 Kernel 02 Kernel 03 Kernel 04 Kernel 05 Kernel 06 Kernel 07 Kernel 12

Kernel width 35 35 17 35 35 35 35 49

Input 24.89 27.85 32.34 28.09 29.22 25.22 24.94 23.85

Fergus [27] 20.63 29.38 31.51 29.48 25.76 22.34 20.70 20.11

Shan [98] 29.42 28.28 30.77 28.60 30.04 26.85 26.83 23.76

Cho [20] 32.49 31.86 31.44 30.89 32.38 30.01 30.91 28.98

Xu and Jia [113] 32.45 32.58 32.22 32.01 32.98 30.43 31.40 29.51

Krishnan [59] 31.57 31.09 31.67 30.77 30.58 24.59 25.80 23.32

Whyte [106] 32.08 32.20 34.61 32.10 32.54 30.89 29.06 28.21

Hirsch [46] 32.04 30.09 33.94 32.13 32.82 29.53 29.32 26.81

Xu et al [1] 31.94 31.71 31.42 31.30 31.78 30.06 30.87 29.18

Ours 32.65 32.68 35.35 33.74 32.56 31.74 30.96 30.12

Kernel 08 Kernel 09 Kernel 10 Kernel 11

Kernel width 141 141 141 141

Input 19.55 19.82 20.50 22.90

Fergus [27] 17.93 18.87 18.72 16.95

Shan [98] 19.19 22.90 20.49 23.56

Cho [20] 22.34 28.00 23.96 24.54

Xu and Jia [113] 22.54 28.35 24.12 25.87

Krishnan [59] 15.35 22.14 20.15 21.68

Whyte [106] 19.07 19.80 20.38 23.19

Hirsch [46] 19.49 23.50 20.19 23.40

Xu et al [1] 19.52 26.46 21.77 25.77

Ours 19.79 21.16 21.02 22.88
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All methods perform significantly worse on the spatially-variant kernels #8-

11. Our software does not currently deal with spatially-variant kernels, and instead

recovers an average kernel for the whole image. As a result, our method only pro-

duces PSNR values in the middle of the field for these kernels. Fixing this problem

would require cutting the image into tiles, solving a blind deconvolution problem

for each tile, realigning the resulting tiles (since blind deconvolution can introduce

an offset in the kernel and intrinsic image), and stitching the results back together.

This should be easily feasible in the future, but is not currently implemented.

Computational cost

We compared the runtime with two state-of-the-art methods, Cho et al [20] and

Xu et al [1], using the executable files provided by the authors. The method by

Cho et al [20] requires only a few seconds per megapixel, but their results are

consistently worse than ours (see Fig. 4.8, 4.9 and 4.10 and Table 4.1). In Fig. 4.8

for an 848 by 636 blurry/noisy RGB image and a 19 by 19 achromatic kernel, our

method requires 197.0 seconds in total (140.4 seconds for blind kernel estimation,

and 56.6 seconds for non-blind deconvolution). Xu et al’s method [1] is relatively

faster than ours at 121.9 seconds, but their results show suffer from more artifacts.

We also run our algorithm on different size images and kernels and report the

runtime in Table 4.2. The code was compiled with gcc and the experiments were

done on an Intel i7 CPU with 16GB RAM. The result images and parameters are

shown in the supplementary document.

Influence of the noise

To test the influence of noise on the performance, we run our algorithm on synthetic

data with various noise levels. The parameters are tuned roughly for the results.

The results are shown in Fig. 4.15.

Priors and parameter selection

Our framework allows us to easily adapt any priors or data-fitting term in the ob-

jective function. We use smoothness (Eq. 4.16), sparsity (Eq. 4.17, p = 0.8) and

continuity (Eq. 4.18) as kernel priors for all results in the paper. We use sparse
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Table 4.2: Run-time analysis. The reported time are in seconds. We run our
unoptimized code on images with pixel resolution 400×400, 800×800,
1200 × 1200, and kernels with pixel resolution 15 × 15, 25 × 25, 35 ×
35. The blurry images are simulated with resized intrinsic image and
blur kernel at each resolution. (a) shows the experiments on gray-scaled
images. (b) shows the experiments on RGB images, where all channels
were recovered simultaneously. We increased the number of proposed
samples as the image size and kernel size increase. The result images
and parameters are shown in the supplementary.

(a) Experiments on gray-scaled images

Image
width

Kernel
width

Multiscale estimation Final
restoration

Total
Intrinsic update Kernel update

400
15 4.68 7.61 2.92 15.71
25 13.44 14.58 5.45 34.03
35 23.24 21.44 15.74 61.12

800
15 11.53 54.64 7.05 74.93
25 19.94 59.64 14.24 95.48
35 53.81 80.31 37.03 172.99

1200
15 18.15 132.56 13.06 167.85
25 30.63 139.03 25.81 199.09
35 75.55 186.19 53.85 319.42

(b) Experiments on color images

Image
width

Kernel
width

Multiscale estimation Final
restoration

Total
Intrinsic update Kernel update

400
15 13.02 25.96 8.13 47.62
25 36.67 49.74 16.24 103.21
35 65.02 72.77 47.33 185.81

800
15 32.58 180.57 19.94 234.81
25 56.32 187.81 40.33 286.04
35 155.47 439.09 116.72 713.16

1200
15 48.99 402.35 35.83 491.09
25 83.42 408.32 71.85 567.12
35 217.86 594.26 154.54 971.14
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(a) σ = 0 (b) σ = 0.01 (c) σ = 0.02

(d) σ = 0.03 (e) σ = 0.04 (f) σ = 0.05

Figure 4.15: Results on synthetic data with difference levels of white Gaus-
sian noise. In subfigure (a-f), the standard derivation (σ) of the noise is
set to be 0, 0.01, 0.02, 0.03, 0.04 and 0.05 respectively. In each subfig-
ure, the 1st row shows the input blurry image, and the 2nd row shows
our deblurred result. The PSNR values are shown at the left-top corner
of each image. An inset is shown at the right-bottom corner of each
image for better view.
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gradient (Eq. 4.11, p = 0.6 or 0.8), sparse second-order derivatives (Eq. 4.12, p =

1) and cross-channel prior (Eq. 4.19, p = 1) as intrinsic image priors for Fig. 4.7,

4.8, 4.9, 4.10 and Table 4.1. And we use isotropic total variation (Eq. 4.9) and

cross-channel prior (Eq. 4.19, p = 1) as intrinsic image priors for Fig. 4.11.

Regarding the number of iterations and sample mutations in our experiments,

we usually use T (in Algorithm 1) as 5-10, N (in Algorithm 2) as 5 for both

intrinsic and kernel updating, andM (in Algorithm 2) as 10000-50000 for intrinsic

updating and 100-500 for kernel updating in the multi-scale process. In the final

intrinsic image restoration step (line 18, Algorithm 4), we usually use N as 5,

and M as 100000-500000. These numbers are proportionally adjusted with the

resolution of input image and kernel for better convergence.

The prior weights θx and θk are roughly tuned for best results. In our experi-

ments we set the initial and minimum-threshold weight of sparse gradient as 0.05-

0.5 and 0.0005-0.002, the initial and maximum-threshold weight of cross-channel

prior as 0.0001 and 0.0005 (see Section 4.2.3 for the strategy of weights updating).

In the final intrinsic image restoration step, we set the weight of sparse gradient

and cross-channel prior as 0.0005-0.002 and 0.0005-0.002.

4.5 Conclusion and future work
In this paper we present an attempt using simple random search technique for com-

plex imaging problems: a simple and effective algorithm for blind motion deblur-

ring from a single input image. We propose to use cross-channel information to

reduce chromatic artifacts in the estimated intrinsic images and to recover chro-

matic blur kernels. We also propose a two-phase method to reduce ringing artifacts

when deblurring saturated or missing pixels. Furthermore, we propose to use a

non-convex data-fitting term to deal with Poisson noisy images.

Our algorithm provides an easy-to-use framework for blind deconvolution prob-

lems. It allows us to easily test new priors for both the kernel and the intrinsic im-

age. This kind of experimentation would be much harder with other optimization

methods.

The computational efficiency of our method is below those highly optimized

specialized solvers. However, such solvers typically include only a single regular-
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(a) Blurry input (b) Cho et al [20] (c) Xu et al [1] (d) Ours

Figure 4.16: Results on more real data from [20] and [1].

ization term, whereas we can easily combine many, for improved image quality.

In the future, we would like to extend our algorithm to handle spatially variant

kernels with the method outlined above. We also would like to further improve on

the handling of saturated pixels. We observe that pixels saturated in one channel

might not be saturated in another. By employing the cross-channel information

together with neighboring pixels, we should be able to recover the saturated pixels

better.
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Chapter 5

Document Image Deblurring

5.1 Introduction
In this chapter, we propose a new algorithm for practical document deblurring

that achieves both high quality and high efficiency. In contrast to previous works

relying on low-order filter statistics, our algorithm aims to capture the domain-

specific property of document images by learning a series of scale- and iteration-

wise high-order filters. A motivational example is shown in Fig. 5.1, where we

compare small patches extracted from a natural image, a large-font text image and

a common text document image. Since most deblurring methods adopt a multi-

scale framework in order to avoid bad local optima, we compare patches extracted

from multiple scales. Evidently, the natural image and large-font text image both

contain long, clear edges at all scales, making the use of sparse gradient priors

effective. In contrast, patches from the document image with a small font size are

mostly composed of small-scale high-order structures, especially at coarse scales,

which makes sparse gradient priors to be inaccurate. This observation motivates us

to use high-order filter statistics as effective regularization for deblurring document

images. We use a discriminative approach and learn such regularization terms by

training a multi-scale, interleaved cascade of shrinkage field models [92], which

was recently proposed as an effective tool for image restoration.
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Figure 5.1: Visual comparison between a natural image (left), a large-font
text image (middle) and a common text document image at 150 PPI
(right) at various scales.

Our main contributions include:

• We demonstrate the importance of using high-order filters in text document

image restoration.

• We propose a new algorithm for fast and high-quality deblurring of docu-

ment photographs, suitable for processing high resolution images captured

by modern mobile devices.

• Unlike the recent Convolutional Neural Network (CNN) based document

deblurring method [48], our approach is robust to page orientation, font style

and text language, even though such variants are not included at our training.

5.2 Method
As in most previous work, we assume a simple image formation model for each

local text region as

b = Kx + n, (5.1)

where b represents the degraded image, x the sharp latent image, matrix K the

corresponding 2D convolution with blur kernel k, and n white Gaussian noise.
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The goal of the post-processing is to recover x and k from single input b.

The Shrinkage Field (SF) model has been recently proposed as an effective and

efficient tool for image restoration [92]. It has been successfully applied to both

image denoising and non-blind image deconvolution, producing state-of-the-art re-

sults while maintaining high computational efficiency. Motivated by this success,

we adopt the shrinkage field model for the challenging problem of blind deblur-

ring of document images. In particular, we propose a multi-scale, interleaved CSF

which estimates the unknown blur kernel while progressively refining the estima-

tion of the latent image. This is also partly inspired by [90], which proposes an

interleaved cascade of RTF to post-improve the results of state-of-the-art natural

image deblurring methods. However, in contrast to [90], our method does not de-

pend on an initial kernel estimation from an auxiliary method. Instead, we estimate

both the unknown blur kernel and latent sharp image from a single blurry input im-

age.

5.2.1 Cascade of shrinkage fields

The shrinkage field model can be derived from the FoE model [87]:

argmin
x
D(x,b) +

∑N

i=1
ρi(Fix), (5.2)

where D represents the data fidelity given measurement b, matrix Fi represents

the corresponding 2D convolution with filter fi, and ρi is the penalty on the filter

response. Half-quadratic optimization [30], a popular approach for the optimiza-

tion of common random field models, introduces auxiliary variables ui for all filter

responses Fix and replaces the energy optimization problem in Eq. 5.2 with a

quadratic relaxation:

argmin
x,u

D(x,b) +
∑N

i=1

(
β||Fix− ui||22 + ρi(ui)

)
, (5.3)

which for β →∞ converges to the original problem in Eq. 5.2. The key insight of

[92] is that the minimizer of the second term w.r.t. ui can be replaced by a flexible

1D shrinkage function ψi of filter response Fix.

Different from standard random fields which are parameterized through po-
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tential functions, SF models the shrinkage functions associated with the potential

directly. Given data formation model as in Eq. 5.1, this reduces the original op-

timization problem Eq. 5.2 to a single quadratic minimization problem in each

iteration, which can be solved efficiently as

xt = F−1

[
F(KT

t−1b + λt
∑N

i=1 Ft
i
T
ψti(F

t
ix
t−1))

F(KT
t−1) · F(Kt−1) + λt

∑N
i=1F(Ft

i
T

) · F(Ft
i)

]
, (5.4)

where t is iteration index, K is the blur kernel matrix, F and F−1 indicate Fourier

transform and its inverse, and ψi the shrinkage function. The model parameters

Θt = (f ti , ψ
t
i , λ

t) are trained by loss-minimization, e.g. by minimizing the `2 error

between estimated images xt and the ground truth. Performing multiple predic-

tions of Eq. 5.4 is known as a cascade of shrinkage fields. For more details on the

shrinkage fields model we refer readers to the supplemental material and [92].

5.2.2 Multi-scale interleaved CSF for blind deconvolution

We do not follow the commonly used two-step deblurring procedure where ker-

nel estimation and final latent image recovery are separated. Instead, we learn

an interleaved CSF that directly produces both the estimated blur kernel and the

predicted latent image. Our interleaved CSF is obtained by stacking multiple SFs

into a cascade that is intermitted by kernel refinement steps. This cascade gener-

ates a sequence of iteratively refined blur kernel and latent image estimates, i.e.

{kt}t=1,..,T and {xt}t=1,..,T respectively. At each stage of the cascade, we employ

a separately trained SF model for sharp image restoration. In addition, we learn

an auxiliary SF model which generates a latent image zt that is used to facilitate

blur kernel estimation. The reason of including this extra SF model at each stage is

to allow for selecting features that might benefit kernel estimation and eliminating

other features and artifacts. Note that the idea of introducing such a latent feature

image for improving kernel estimation is not new, and is a rather common practice

in recent state-of-the-art blind deconvolution methods [20, 113]. Fig. 5.2 depicts a

schematic illustration of a single stage of our interleaved CSF approach.

More specifically, given the input image b, our method recovers k and x si-
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Figure 5.2: Algorithm architecture.

multaneously by solving the following optimization problem:

(x,k) = argmin
x,k

||b− k⊗ x||22 +
∑N

i=1
ρi(Fix) + τ ||k||22,

s.t. k ≥ 0, ||k||1 = 1

(5.5)

To this end, our proposed interleaved CSF alternates between the following blur

kernel and latent image estimation steps:

Update xt. For sharp image update we train a SF model with parameters Θt =

(f ti , ψ
t
i , λ

t). Analogously to Eq. 5.4 we obtain the following update for xt at

iteration t:

xt = F−1

[
F(KT

t−1b + λt
∑N

i=1 Ft
i
T
ψti(F

t
iz
t−1))

F(KT
t−1) · F(Kt−1) + λt

∑N
i=1F(Ft

i
T

) · F(Ft
i)

]
(5.6)

Update zt and kt. For kernel estimation we first update the latent image zt from

xt by learning a separate SF model. Denoting convolution with filter gti by

matrix Gt
i, we have:

zt = F−1

[
F(KT

t−1b + ηt
∑N

i=1 Gt
i
T
φti(G

t
ix
t))

F(KT
t−1) · F(Kt−1) + ηt

∑N
i=1F(Gt

i
T

) · F(Gt
i)

]
(5.7)

For kernel estimation we employ a simple Tikhonov prior. Given the esti-

mated latent image zt and the blurry input image b, the update for kt reads:

kt = F−1

[
F(zt)

∗ · F(b)

F(zt)∗ · F(zt) + τ t

]
, (5.8)
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where ∗ indicates complex conjugate. The model parameters learned at this

step are denoted as Ωt = (gti, φ
t
i, η

t, τ t). Note that Ωt are trained to facilitate

the update of both kernel kt and image zt.

The xt update step in Eq. 5.6 takes zt−1 rather than xt−1 as input, as zt−1 improves

from xt−1 w.r.t. removing blur by Eq. 5.7 at iteration t− 1. xt and zt is observed

to converge as the latent image and kernel are recovered.

Algorithm 6 Blind deblurring at one scale

Input: blurry image b
Output: estimated image x and kernel k.

1: for t = 1 to 5 do
2: Update xt by Eq. 5.6.
3: Update zt by Eq. 5.7.
4: Update kt by Eq. 5.8.
5: kt = max(0,kt),kt = kt/||kt||1.
6: end for

Algorithm 6 summarizes the proposed approach for blind deblurring of doc-

ument images. Note that there is translation and scaling ambiguity between the

sharp image and blur kernel at blind deconvolution. The estimated kernel is nor-

malized such that all its pixel values sum up to one. In Algorithm 7 for training, xt

is shifted to better align with the ground truth image x̄, before updating k. We find

that our algorithm usually converges in 5 iterations per scale.

5.2.3 Learning

Our interleaved CSF has two sets of model parameters at every stage t = 1, .., 5,

one for sharp image restoration, Θt = (f ti , ψ
t
i , λ

t), and the other for blur kernel

estimation, Ωt = (gti, φ
t
i, η

t, τ t). All model parameters are learned through loss-

minimization.

Note that in addition to the blurry input image, each model receives also the

previous image and blur kernel predictions as input, which are progressively re-

fined at each iteration. This is in contrast to the non-blind deconvolution setting of

[92], where the blur kernel is known and is kept fixed throughout all stages. Our

interleaved CSF model is trained in a greedy fashion, i.e. stage by stage such that
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Algorithm 7 Learning at one scale

Input: blurry image b; true image x̄; true kernel k̄.
Output: model parameters (f ti , ψ

t
i , λ

t,gti, φ
t
i, η

t, τ t)
1: for t = 1 to 5 do
2: Train model parameters: (f ti , ψ

t
i , λ

t) to minimize ||xt − x̄||22 with gradient
given in Eq. 5.9.

3: Update xt by Eq. 5.6.
4: Shift xt to better align with x̄.
5: Train model parameters: (gti, φ

t
i, η

t, τ t) to minimize ||kt−k̄||22+α||zt−x̄||22
with gradient given in Eq. 5.10.

6: Update zt by Eq. 5.7.
7: Update kt by Eq. 5.8.
8: kt = max(0,kt),kt = kt/||kt||1.
9: end for

the learned SF models at one stage are able to adapt to the kernel and latent image

estimated at the previous stage.

More specifically, at each stage we update our model parameters by iterating

between the following two steps:

Update xt. To learn the model parameters Θt, we minimize the `2 error between

the current image estimate and the ground truth image x̄, i.e. ` = ||xt− x̄||22.

Its gradient w.r.t. the model parameters Θt = (f ti , ψ
t
i , λ

t) can be readily

computed as

∂`

Θt
=
∂xt

∂Θt

∂`

xt
(5.9)

The derivatives for specific model parameters are omitted here for brevity,

but can be found in Appendix A.2.

Update zt and kt. The model parameters Ωt of the SF models for kernel estima-

tion at stage t are learned by minimizing the loss function ` = ||kt − k̄||22 +

α||zt − x̄||22, where k̄ denotes the ground truth blur kernel and α is a cou-

pling constant. This loss accounts for errors in the kernel but also prevents
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blurry input

true kernel

x at scale 1, iter 5 x at scale 2, iter 5 x at scale 3, iter 5 x at scale 4, iter 5

k at scale 1, iter 5 k at scale 2, iter 5 k at scale 3, iter 5 k at scale 4, iter 5

Figure 5.3: Example intermediate results of our algorithm on a synthetic test
image.

the latent image used in Eq. (5.8) to diverge. Its gradient w.r.t. the model

parameters Ωt = (gti, φ
t
i, η

t, τ t) reads

∂`

∂Ωt
=
∂zt

∂Ωt

∂kt

∂zt
∂`

∂kt
+
∂kt

∂Ωt

∂`

∂kt
+
∂zt

∂Ωt

∂`

∂zt
(5.10)

Again, details for the computation of the derivatives w.r.t. to specific model

parameters are included in the supplemental material. We want to point out

that the kernel estimation error ||kt − k̄||22 is back-propagated to the model

parameters (gti, φ
t
i, η

t) in the SF for zt. Hence, the latent image zt is tailored

for accurate kernel estimation and predicted such that the refinement in kt in

each iteration is optimal. This differs from related work in [90, 119].

Multi-scale approach

Our algorithm uses a multi-scale approach to prevent bad local optima. The kernel

widths that are used at different scales are 5, 9, 17, 25 pixels. At each scale s, the

blurry image bs, the true latent image x̄s and k̄s are downsampled (and normalized

for k̄s) from their original resolution. The scale index s is omitted for convenience.

At the beginning of each scale s > 1, the estimated image x is initialized by bicubic

upsampling its estimation at the previous scale, and the blur kernel k is initialized
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blurry input x at scale 1, iter 5 x at scale 2, iter 5 x at scale 3, iter 5

k at scale 1, iter 5 k at scale 2, iter 5 k at scale 3, iter 5

Figure 5.4: Example intermediate results (cropped) of our algorithm on a
real-world test image (shown in Fig.5.8 in Chapter 5).

by nearest-neighbor upsampling, followed by re-normalization. At the coarsest

scale s = 1, x is initialized as b and k is initialized as a delta peak. The coupling

constant α in kernel estimation loss is defined as α = r · η, where r is the ratio

between pixel numbers in kernel kt and image zt at current scale, η is initialized

with 1 at the coarsest scale and at each subsequent scale it is multiplied by a factor

of 0.25. Algorithm 7 summarizes our learning procedure for a single scale of our

CSF model. Fig. 5.3 and 5.4 shows intermediate results of our estimated image

x and kernel k at each scale. Note that our algorithm simultaneously estimates

the latent image and blur kernel, and does not need extra non-blind deconvolution

steps.

Model complexity

In both the model Θt for xt and model Ωt for (zt, kt), we choose to use 24 filters

f ti of size 5× 5 for trade-off between result quality, model complexity and time ef-

ficiency. As in [92], we initialize the filters with a DCT filter bank. Each shrinkage

function ψti and φti are composed of 51 equidistant-positioned radial basis func-

tions (RBFs) and are initialized as identity function. We further enforce central

symmetry to the shrinkage functions, so that the number of trainable RBFs reduces
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(a) Learned filters f ti and shrinkage functions ψti in Eq. 5.6.

(b) Learned filters gti and shrinkage functions φti in Eq. 5.7.

Figure 5.5: Learned filters and shrinkage functions (at 3rd scale, 1st itera-
tion) for updating xt (Eq. 5.6) and zt, kt (Eq. 5.7), respectively. Other
parameters learned at this iteration: λt=0.5757, ηt=0.0218, τ t=0.0018.

by half to 25. Fig. 5.5 visualizes some learned models.

Training datasets

We have found that that our method works well with a relatively small training

dataset without over-fitting. We collected 20 motion blur kernels from [92], and

randomly rotated them to generate 60 different kernels. We collected 60 sharp

patches of 250 × 250 pixels cropped from documents rendered around 175 PPI,

and rotated each with a random angle between -4 and 4 degrees. We then generated

60 blurry images by convolving each pair of sharp image and kernel, followed by

adding white Gaussian noise and quantizing to 8 bits. Fig. 5.6 visualizes example

blur kernels and images used at our training. We used the L-BFGS solver [91] in

Matlab for training, which took about 12 hours on a desktop with an Intel Xeon

CPU.
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Figure 5.6: Example kernels and images used at training of our algorithm.
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Figure 5.7: Comparison on a real image taken from [48]. Row 1-5 from top
to bottom show the blurry image, result of Xu [1], Pan [78], Hradiš [48]
and our method. Two cropped regions are shown here, the full resolution
results along with more examples can be found in the supplemental.

5.3 Results
In this section we evaluate the proposed algorithm on both synthetic and real-world

images. We compare with Pan [78] and Hradiš [48], the state-of-the-art meth-

ods for text image blind deblurring, and the natural image deblurring software

produced by Xu [1], which are based on recently proposed state-of-the-art tech-

niques [113, 114]. We used the code and binaries provided by the authors and

tuned the parameters to generate the best possible results.
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Figure 5.8: Comparison on a real image taken from [48]. Row 1-4 from top
to bottom show the blurry image, result of Pan [78], Hradiš [48] and
our method. Two cropped regions are shown, the full resolution results
along with more results can be found in the supplemental.

Real-world images

In Fig. 5.7 and 5.8 we show comparisons on real images. The result images of

Xu [1] and Pan [78] contain obvious artifacts due to ineffective image priors that

lead to inaccurate kernel estimation. Hradiš [48] fails to recover many characters

and distorted the font type and illumination. Our method produces the best results

in these cases, and our results are both visually pleasing and highly legible. The

full resolution images and more results can be found on the author webpage.

Quantitative comparisons

For quantitative evaluation, we test all methods on a synthetic dataset and compare

results in terms of PSNR. We collect 8 sharp document images with 250×250 pix-

els cropped from documents rendered at 150 PPI (similar PPI as used for training

in [48]). Each image is blurred with 8 kernels at 25×25 collected from [63], fol-

lowed by adding 1% Gaussian noise and 8-bit quantization. In Fig. 5.9, we show

the average PSNR values of all 8 test images synthesized with the same blur kernel.

Our method outperforms other methods in all cases by 0.5-6.0 dB. Hradiš [48] has
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Figure 5.9: PSNR and OCR comparison on a synthetic test dataset with 8
blur kernels.

(a) Blurry (b) Pan [78] (c) Hradiš[48] (d) Ours (e) GT

Figure 5.10: Comparison on synthetic images from the PSNR experiments in
Fig. 5.9. Note that the original results of [48] break the illumination of
the images. We clamp the intensity of their results to match the ground
truth image before computing the PSNR values.

close performance to ours on kernel #3, which is close to defocus blur. It also per-

forms reasonably well on kernel #6 which features a simple motion path, but fails

on other more challenging kernels. Some results along with the estimated kernels

are shown in Fig. 5.10 for visual comparison.

An interesting question one may ask is whether improved deblur can directly

lead to better OCR accuracy. To answer this question we evaluate OCR accuracy

using the software ABBYY FineReader 12. We collected 8 sharp document images
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Table 5.1: Run-time comparison (in seconds).

Image size 2562 5122 10242

Xu [1] (C++) 14.8 33.4 -
Pan [78] (Matlab) 19.6 84.3 271.9
Hradiš [48] (C++) 48.5 193.7 594.9
Hradiš [48] (GPU) 0.3 1.0 3.1
Ours (Matlab) 2.0 3.9 11.4
Pre-computation (Matlab) 1.8 4.6 15.3

from the OCR test dataset in [48]. Each document image contains a continuous

paragraph. We synthesized 64 blurry images with the 8 kernels and 1% Gaussian

noise similarly as in the PSNR comparison. We run the OCR software and used

the script provided by [48] to compute the average character error rate for all 8 test

images synthesized with the same kernel1. The results are shown in Fig. 5.9. They

are consistent with the PSNR results also in Fig. 5.9. Hradiš [48] performs well

on kernel #3 and #6 but fails on other challenging kernels, while our method is

consistently better than others. All the test images and results for PSNR and OCR

comparisons are included in the supplemental material.

Run-time comparison

Table 5.1 provides a comparison on computational efficiency, using images blurred

by a 17×17 kernel at three different resolutions. The experiments were done on

an Intel i7 CPU with 16GB RAM and a GeForce GTX TITAN GPU. Assuming

the image sensor resolution is a known priori2, we pre-compute the FFTs of the

trained filters fi and gi for maximal efficiency. We report the timing of our Matlab

implementation on CPU. A GPU implementation should significantly reduce the

time as our method only requires FFT, 2D convolution and 1D look-up-table (LUT)

operations, which is our future work.
1We used the script “eval.py” downloaded from the author webpage [48] to compute the error rate.
2This is a common assumption especially for batch processing of document images.
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(a) Blurry (b) Hradiš[48] (c) Ours (d) GT

Figure 5.11: Comparison on non-English text and severely rotated images.
Note that such non-English text and large rotation were not included
in our training dataset.

Robustness

In Fig. 5.11, we show results on non-English text and severely rotated image. Al-

though both Hradiš [48] and our method are only trained on English text data, our

method can be applied to non-English text as well. This is a great benefit of our

method as we do not need to train on every different language, or increase the

model complexity to handle them as [48] would need to do. Our method is also

robust against a significant change of page orientation, which cannot be handled

well by [48].

In Fig. 5.12, we show the results of our method when the noise level and PPI of

the test data differs from the training data. Fig. 5.12(a) shows that the performance

of our method is fairly steady when the noise level in the test images is not too

much higher than that of the training data, meaning that the models trained at

sparse noise levels are sufficient for practical use. Fig. 5.12(b) shows that our

method works well in a fairly broad range of image PPIs given the training data are

around 175 PPI.

In Fig. 5.13, we show a comparison on a real image with large-font text. Fol-
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Figure 5.12: Robustness test on noise level and image PPI.

(a) Blurry (b) Xu [1] (c) Pan [78] (d) Hradiš[48] (e) Ours

Figure 5.13: Comparison on a real image with large-font text. The reference
results are from [48]. Following [48], the input of (d) Hradiš’ and (e)
our method was downsampled by factor of 3.

lowing [48], the input of Hradiš’ and our method was downsampled by factor of 3

in order to apply the trained models without re-training. Although such downsam-

pling breaks the image formation model in Eq. 5.1, our method can still generate

reasonable result.

Non-uniform blur

Our method can be easily extended to handle non-uniform blur by dividing the

image into overlapped tiles, deblurring each tile with our proposed algorithm, and

then realigning the resulting tiles to generate the final estimated image. An example

is shown in Fig. 5.14.

Documents with color figures

Our algorithm can be easily extended to handle the documents with color figures.

We first run the blind deblurring algorithm on text regions to recover the latent text
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(a) Blurry

(b) Hradiš [48]

(c) Ours

(d) Our estimated kernel

(e) Ground truth kernel

Figure 5.14: Results on spatially-varying blur kernels. The blurry input is
synthesized with the EFF model [47] to approximate practical pixel-
wise variant blur.
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(a) Blurry input (b) Our deblurred image

Figure 5.15: Result on example document containing color figures. The
right-bottom corner in (b) shows the blur kernel estimated from the
text regions. In this example we simply use [58] for the non-blind de-
blurring step, although [92] can be used instead for improved results.

images and blur kernels. Then we take the kernels estimated from the text regions

around the color figures (optionally interpolate the kernels using the Efficient Filter

Flow (EFF) method [47] for spatially-varying blur), and deblur the color figure

regions as non-blind deconvolution. Finally, we align the text and figure regions to

generate the final image. An example is shown in in Fig. 5.15.

It is a benefit that our algorithm jointly estimates the latent image and the

blur kernel, and the latter can be further used for deblurring non-text regions non-

blindly. Hradiš et al [48] does not recover the blur kernel thus cannot handle the

figure regions in the document.

5.4 Conclusion and future work
In this chapter we present a new algorithm for fast and high-quality blind decon-

volution of document photographs. Our key idea is to to use high-order filters for

document image regularization, and propose to learn such filters and influences

from training data using multi-scale, interleaved cascade of shrinkage field mod-
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els. Extensive experiments demonstrate that our approach not only produces higher

quality results than the state-of-the-art methods, but is also computational efficient,

and robust against noise level, language and page orientation changes that are not

included in the training data.

Our method also has some limitations. It cannot fully recover the details of

an image if it is degraded by large out-of-focus blur. In such case, Hradiš [48]

may outperform our method given its excellent synthesis ability. As future work it

would be interesting to combine both approaches. Although we only show learning

our model on document photographs, we believe such a framework can also be

applied to other domain-specific images, which we plan to explore in the future.
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Chapter 6

Learning Proximal Operators for
Image Restoration

6.1 Introduction
Recently several discriminative learning approaches [18, 92] have been proposed

for effective image restoration, achieving convincing trade-off between image qual-

ity and computational efficiency. However, these methods require separate training

for each restoration task and problem condition. This makes it time-consuming and

difficult to encompass all tasks and conditions during training. In this chapter, we

combine discriminative learning technique with formal optimization methods to

learn generic priors that truly share across problem domains. Our models require a

single-pass training and allow reuse across various problems and conditions while

achieving comparable efficiency as previous discriminative approaches.

In particular, we make the following contributions:

• We propose proximal fields as a convolutional model for image priors that

are computationally cheap to train and are shared across different image

restoration tasks and problem conditions.

• Proximal fields are formulated as proximal operators, allowing their use in

advanced proximal optimization algorithms.
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• We show that our approach is general by demonstrating proximal fields for

diverse low-level problems, such as denoising, deconvolution and inpainting,

for varying noise settings.

• We show that our method can naturally be combined with existing likelihood

and priors after being trained, to cover unseen tasks and to further improve

reconstruction quality.

6.2 Method
The seminal work of FoE [87] generalizes the form of filter response based regu-

larizers in the objective function given in Eq. 6.1. Vector b and x represents the

observed and latent (desired) image respectively, matrix A is the sensing opera-

tor, matrix Fi represents 2D convolution with filter fi, and function φi represents

the penalty on corresponding filter response Fix. The positive scalar λ controls

relative weight between the data fidelity (likelihood) and the regularization term.

λ

2
||b−Ax||22 +

N∑
i=1

φi(Fix) (6.1)

The well-known anisotropic total-variation regularizer can be viewed as a special

case of the FoE model where fi is the derivative operator∇ and φi the `1 norm.

It is difficult to directly minimize Eq. 6.1 when the penalty function φi is non-

linear and/or non-smooth (e.g., `p norm, 0 < p ≤ 1). Proximal algorithms [10,

15, 30] instead, relax Eq. 6.1 and split the original problem into several easier

subproblems that are solved alternately until convergence.

In this paper we employ the HQS algorithm [30] to relax Eq. 6.1, as it typically

requires much fewer iterations to converge compared with other proximal meth-

ods such as ADMM [10] and PD [15]. The relaxed objective function is given in

Eq. 6.2:

λ

2
||b−Ax||22 +

ρ

2
||z− x||22 +

N∑
i=1

φi(Fiz), (6.2)

where a slack variable z is introduced to approximate x, and ρ is a positive scalar.
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While most related approaches [58, 92] relax Eq. 6.1 by splitting on Fix rather

than x, it would limit the model flexibility in our method. This will be explained

more clearly in the next sections.

With the HQS algorithm, Eq. 6.2 is iteratively minimized by solving for the

slack variable z and the latent image x alternately as in Eq. 6.3 and 6.4 (t =

1, 2, ..., T ).

zt = argmin
z

(
ρt

2
||z− xt−1||22 +

N∑
i=1

φi(Fiz)

)
, (6.3)

xt = argmin
x

(
λ||b−Ax||22 + ρt||zt − x||22

)
, (6.4)

where ρt increases as the iteration continues. The latter forces z to become an

increasingly good approximation of x, thus making Eq. 6.2 an increasingly good

proxy for Eq. 6.1.

6.2.1 Proximal fields

The zt-update step in Eq. 6.3 can be viewed as a proximal operation:

zt := proxΘ(xt−1, ρt), (6.5)

where proxΘ is called proximal operator with model parameters Θ, which in-

cludes a number of filters fi and corresponding penalty functions φi. To distinguish

it from traditional proximal operators which typically contain a single filter, we call

our generalized proximal operators proxΘ as proximal fields.

Inspired by the state-of-the-art discriminative methods [18, 92], we propose to

learn the proximal fields model proxΘ and the weight scalar λ from training data.

With the above HQS relaxation, the image prior and data-fidelity term in the origi-

nal objective (Eq. 6.1) are contained in two separate subproblems (Eq. 6.3 and 6.4).

This makes it possible to train an ensemble of diverse tasks (e.g., denoising, deblur-

ring, or with different noise levels) each of which has its own data fidelity term and

weight λ, while learning a single prior model proxΘ that is shared across ensem-

ble tasks. This is in contrast to state-of-the-art discriminative methods such as

CSF [92] and TRD [18] which train separate priors for each task.
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The proximal operator proxΘ(xt−1, ρt) can be interpreted as processing xt−1

corrupted by zero-mean Gaussian noise. With this interpretation, we propose to

define proxΘ(xt−1) as a multi-stage non-linear diffusion process modified from

the TRD [18] model, as given in Eq. 6.6.

ztk = ztk−1 −
N∑
i=1

Fk
i
T
ψki (Fk

i z
t
k−1),

s.t. zt0 = xt−1, k = 1, 2, ...,K.

(6.6)

where k is the stage index, filters Fk
i , function ψki are trainable model parameters

at each stage, and zt0 is the initial value of ztk. Note that, different from TRD, our

model does not contain the reaction term which would be −ρtαk(ztk−1 − xt−1)

with step size αk. The main reasons for this modification are:

• The data constraint is contained in the xt update in Eq. 6.4;

• More importantly, our model gets rid of the weight ρt which changes at

each HQS iteration. Therefore, our proximal operator proxΘ(xt−1, ρt) is

simplified to be:

zt := proxΘ(xt−1) (6.7)

Note that our proximal fields model Θ = {Fk
i , ψ

k
i |k ∈ {1, . . . ,K}} is re-used

at all HQS iteration t, making it different than previous discriminative methods

(CSF, TRD). The parameters to learn in our method Ω includes λ’s for each prob-

lem class p (restoration task and problem condition), and the proximal fields model

Θ shared across different classes, i.e., Ω = {λp,Θ}. Even though the scalar pa-

rameters λp are trained, our method allows users to adjust them at test time for best

performance and non-trained problem classes. This contrasts to previous discrim-

inative approaches whose model parameters are fixed at test time. The subscript p

indicating the problem class in λp is omitted below for convenience. The values of

ρt are pre-selected: ρ1 = 1 and ρt = 2ρt−1 for t > 1.

Note that a multi-stage model as in Eq. 6.6 is not possible if we split on Fix

instead of x in Eq. 6.1 and 6.2. For clarity, an overview of the proposed algorithm

98



Algorithm 8 Proposed algorithm

Input: degraded image b, weight λ (optional)
Output: recovered image x

1: x0 = b, ρ1 = 1 (initialization)
2: for t = 1 to T do
3: (Update zt by Eq. 6.6 below)
4: zt0 = xt−1

5: for k = 1 to K do
6: ztk = ztk−1 −

∑N
i=1 Fk

i
T
ψki (Fk

i z
t
k−1)

7: end for
8: zt = ztK
9: (Update xt by Eq. 6.4 below)

10: xt = argminx λ||b−Ax||22 + ρt||zt − x||22
11: ρt+1 = 2ρt

12: end for

is given in Algorithm 8.

6.2.2 Learning

We consider denoising and deconvolution tasks at training, where the sensing op-

erator A is an identity matrix, or a block circulant matrix with circulant blocks that

represents 2D convolution with blur kernels respectively. In denoising tasks, xt

update in Eq. 6.4 has closed-form solution:

xt =
λb + ρtzt

λ+ ρt
(6.8)

In deconvolution tasks, xt update in Eq. 6.4 has closed-form solution in Fourier

domain:

xt = F−1

(
F(λATb + ρtzt)

F(λATA + ρt)

)
, (6.9)

where F and F−1 represent Fourier and inverse Fourier transform respectively.

Note that, different than CSF [92], our method does not require FFT computation

for denoising tasks.

We use L-BFGS solver [91] with analytic gradients for training. The training
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(a) Filters f1i at stage 1.

(b) Filters f2i at stage 2.

(c) Filters f3i at stage 3.

Figure 6.1: Trained filters at each stage (k in Eq. 6.6) of the proximal operator
proxΘ in our model (3 stages each with 24 5×5 filters).

loss function ` is defined as the average PSNR of reconstructed images. The gra-

dient of ` w.r.t. the model parameters Ω = {λp,Θ} is computed by accumulating

gradients at all HQS iterations, as shown in Eq. 6.10.

∂`

∂Ω
=

T∑
t=1

(
∂xt

∂λ

∂`

∂xt
+
∂zt

∂Θ

(
∂`

∂zt
+
∂xt

∂zt
∂`

∂xt

))
, (6.10)

where the back-propagation inside our proximal operator is computed as:

∂zt

∂Θ
=

K∑
k=1

∂ztk
∂Θ

∂zt

∂ztk
(6.11)

The 1D functions ψki in Eq. 6.6 are parameterized as a linear combination of

equidistant-positioned Gaussian kernels whose weights are trainable. More details

of the derivation of analytic gradients can be found in Appendix A.3.
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Progressive training

A progressive scheme is proposed to make the training more effectively. First, we

set the number of HQS iterations to be 1, and train λ′s and the model Θ of each

stage in proxΘ in a greedy fashion. Then, we gradually increase the number of

HQS iterations from 1 to T where at each step the model Ω = {λ,Θ} is refined

from the result by previous step. The L-BFGS iterations are set to be 200 for the

greedy training steps, and 100 for the refining steps. Fig. 6.1 shows examples of

our learned filters in proxΘ.

6.3 Results

Denoising

We compare our method with state-of-the-art image denoising techniques, includ-

ing KSVD [26], FoE [87], BM3D [22], LSSC [71], WNNM [37], EPLL [118],

opt-MRF [17], ARF [8], CSF [92] and TRD [18]. Our method is denoted in short

as “ProxF”. The subscript in CSF5 and TRD5 indicates the number of cascaded

stages (each stage has different model parameters). The subscript and superscript

in ProxF5
3 indicate the number of diffusion stages (K = 3 in Algorithm 8) in our

proximal operator proxΘ, and the number of HQS iterations (T = 5 in Algo-

rithm 8), respectively. Note that the complexity (size) of our model is linear to K,

but independent of T . CSF, TRD and ProxF use 24 filters of size 5×5 pixels at all

stages in this section.

The compared discriminative methods, CSF5 and TRD5 both are trained at

single noise level σ = 15 that is the same as the test images. In contrast, our model

is trained on 400 images (100×100 pixels) cropped from [87] with random and

discrete noise levels (standard deviation σ) varying between 5 and 25. The images

with the same noise level share the same data fidelity weight λ at training.

All the methods are evaluated on the 68 test images with noise level σ = 15

from [87] and the averaged PSNR values are reported in Table 6.1. Our results are

comparable to generic methods such as KSVD, FoE and BM3D , and very close

to discriminative methods such as CSF5, while at the same time being much more

efficient which is demonstrated later. Besides, we simply use λ learned for images
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with noise σ = 15 at training to generate all the test results, although adjusting

its value at test time can expectedly improve our results. Note that the compared

discriminative methods (CSF, TRD) do not allow for such parameter tuning.

Table 6.1: Average PSNR (dB) on 68 images from [87] for image denoising.

KSVD FoE BM3D LSSC WNNM EPLL
30.87 30.99 31.08 31.27 31.37 31.19
opt-MRF ARF CSF5 TRD5 ProxF3

3 ProxF5
3

31.18 30.70 31.14 31.30 30.91 31.00

15
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noise level at test

input TRD15 TRD25 ProxF

Figure 6.2: Analysis of model generality on image denoising. In this plot,
“TRD15” denotes the TRD model trained at noise σ = 15, and
“TRD25” at noise σ = 25. “ProxF” denotes our model trained with
mixed noise levels in a single pass.

To verify the generality of our method on varying noise levels, we test our

model ProxF3
3 (trained with varying noise levels in a single pass) and two TRD

models (trained at specific noise levels 15 and 25) on 3 sets of 68 images with

noise σ = 5, 15, 25 respectively. The average PSNR values are reported in Fig. 6.2

and example images are shown in Fig.6.3-6.8. Despite performing slightly below

the TRD models trained for the exact noise level used at test time, our method

is more generic and works robustly for various noise levels. Note that our model

contains 40% fewer trainable parameters than the compared TRD models. Besides,
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(a) Input w/ noise σ 5 (34.15dB) (b) TRD15 (32.57dB)

(c) TRD25 (29.33dB) (d) ProxF (37.14dB)

Figure 6.3: Results with input noise level σ=5.

(a) Input w/ noise σ 15 (24.61dB) (b) TRD15 (31.09dB)

(c) TRD25 (29.31dB) (d) ProxF (31.10dB)

Figure 6.4: Results with input noise level σ=15.
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(a) Input w/ noise σ 25 (20.17dB) (b) TRD15 (23.74dB)

(c) TRD25 (28.44dB) (d) ProxF (28.45dB)

Figure 6.5: Results with input noise level σ=25.

our method uses the fidelity weight λ that is learned for each noise level at training,

although adjusting its value at test time can expectedly improve our results. The

learned value λ = 20.706 for σ = 5, λ = 2.475 for σ = 15, and λ = 0.033

for σ = 25. In sharp contrast to discriminative methods, which are inherently

specialized for a given problem setting, i.e., noise level, the proposed approach

transfers across different problem settings. We demonstrate this generality below

for a variety of different image reconstruction tasks.

Run-time comparison

In Table 6.2 we compare the run-time of our method and state-of-the-art meth-

ods. The experiments were performed on a laptop computer with Intel i7-4720HQ

CPU and 16GB RAM. WNNM and EPLL ran out-of-memory for images over

4 megapixels in our experiments. CSF5, TRD5 and our method ProxF3
3 all use

“parfor” setting in Matlab. ProxF3
3 is significantly faster than all compared generic

methods (WNNM, EPLL, BM3D) and even the discriminative method CSF5. Run-

time of ProxF3
3 is about 1.5 times that of TRD5, which is expected as they use 9
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(a) Input w/ noise σ 5 (34.15dB) (b) TRD15 (33.29dB)

(c) TRD25 (29.95dB) (d) ProxF (38.02dB)

Figure 6.6: Results with input noise level σ=5.
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(a) Input w/ noise σ 15 (24.61dB) (b) TRD15 (32.31dB)

(c) TRD25 (30.11dB) (d) ProxF (32.03dB)

Figure 6.7: Results with input noise level σ=15.
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(a) Input w/ noise σ 25 (20.17dB) (b) TRD15 (23.94dB)

(c) TRD25 (29.72dB) (d) ProxF (29.40dB)

Figure 6.8: Results with input noise level σ=25.
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Table 6.2: Run-time (seconds) comparison for image denoising on different
size images.

Image size 2562 5122 10242 20482 40962

WNNM 157.73 657.75 2759.79 - -
EPLL 29.21 111.52 463.71 - -
BM3D 0.78 3.45 15.24 62.81 275.39
CSF5 1.23 2.22 7.35 27.08 93.66
TRD5 0.39 0.71 2.01 7.57 29.09
ProxF3

3 0.60 1.19 3.45 12.97 56.19
ProxF3

3 (Halide) 0.11 0.26 1.60 5.61 20.85

versus 5 diffusion steps in total. In addition, we implement our method in Halide

language [82], which has become popular recently for high-performance image

processing applications, and report the run-time on the same CPU as mentioned

above.

Deconvolution

Our general model supports image deconvolution tasks in the HQS framework. In

this experiment, we train a model with an ensemble of denoising and deconvolution

tasks on 400 images (100×100 pixels) cropped from [87], in which 250 images are

generated for denoising tasks with random noise levels σ varying between 5 and

25, and the other 150 images are generated by blurring the images with random

25×25 kernels (PSFs) and then adding Gaussian noise with σ between 1 and 5.

All input images are quantized to 8 bits.

We compare our method with state-of-the-art non-blind deconvolution methods

including Levin et al [68], Schmidt et al [93] and CSF [92] on the benchmark

dataset of [63]. Note that TRD [18] does not support non-blind deconvolution.

We test the methods on 32 images from [64] and report the average PSNR values

in Table 6.3. The results of compared methods are quoted from [92]. We run a

grid search on the adjustable fidelity weight λ (the same value for all the 32 test

images) and report the best result in Table 6.3. In Fig. 6.9, we show our results with

different λ. Within a fairly wide range of λ, our method outperforms all previous

methods. In Fig.6.10, we show example images of our results and more images
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Table 6.3: Average PSNR (dB) on 32 images from [64] for non-blind decon-
volution.

Input Levin [68] Schmidt [93] CSFpw
3 ProxF3

3

22.86 32.73 33.97 33.48 34.34

34.0

34.1

34.2

34.3

34.4

100 125 150 175 200 225 250 275 300

PS
N

R 
(d

B)

fidelity weight λ

our result with different fidelity weight λ

Figure 6.9: Our results with different fidelity weight λ for the non-blind de-
convolution experiment reported in Table 6.3.

can be found in the supplementary material of [109].

In addition, in Fig.6.11 -6.12, we show a comparison for non-blind decon-

volution on the dataset from Schuler et al [94] that features Gaussian blur with

standard deviation 1.6 and noise level σ = 2. We compare our method ProxF3
3

with EPLL [118], Krishnan et al [58], Levin et al [67], DEB-BM3D [24], IDD-

BM3D [24] and MLP [94]. Note that the MLP method is tailored for the task of

non-blind deconvolution only and is trained with exactly the same (single) blur

kernel and noise level as those at test time [94]. In contrast, our method ProxF3
3 is

trained with an ensemble of denoising and deconvolution tasks including various

blur kernels and noise levels. In particular, our training data does not comprise any

Gaussian blur kernels. Nonetheless, our method is close to MLP in terms of PSNR

while at the same time outperforming all other competitors. Please zoom in the

figures for better view.
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(a) Ground truth (b) Input (23.69dB) (c) ProxF3
3 (33.81dB)

(d) Ground truth (e) Input (22.61dB) (f) ProxF3
3 (33.24dB)

(g) Ground truth (h) Input (23.74dB) (i) ProxF3
3 (33.86dB)

(j) Ground truth (k) Input (24.58dB) (l) ProxF3
3 (34.74dB)

Figure 6.10: Results on images with blur kernel #1 in the dataset.
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(a) Ground truth (b) Input (32.98dB) (c) EPLL (35.25dB)

(d) Krishnan (35.12dB) (e) Levin (35.00dB) (f) DEB-BM3D (35.01dB)

(g) IDD-BM3D (35.26dB) (h) MLP (35.36dB) (i) ProxF3
3 (35.39dB)

Figure 6.11: Results on non-blind deconvolution with Gaussian blur.
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(a) Ground truth (b) Input(23.26dB) (c) EPLL (25.48dB)

(d) Krishnan (25.56dB) (e) Levin (25.53dB) (f) DEB-BM3D (25.58dB)

(g) IDD-BM3D (25.73dB) (h) MLP (25.93dB) (i) ProxF3
3 (25.76dB)

Figure 6.12: Results on non-blind deconvolution with Gaussian blur.
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Collaborative with existing priors

As shown above, even though the fidelity weight λ is trainable, our method allows

users to adjust its value for better performance at test time. Moreover, this property

makes it possible to combine our model (after being trained) with existing state-

of-the-art priors at test time, in which case λ typically needs to be adjusted. Again,

this is not possible with previous discriminative methods (CSF, TRD).

In Fig. 6.13 we show an example to incorporate a non-local patch similar-

ity prior (BM3D [21]) with our method to further improve the denoising quality.

BM3D performs well in removing noise especially in smooth regions but usually

over-smoothes edges and textures. Our original model (ProxF5
3) well preserves

sharp edges however sometimes introduces artifacts in smooth regions when the

input noise level is high. By combining those two methods, which is easy with our

HQS framework, the result is improved both visually and quantitatively.

We give the derivation of the proposed hybrid method below. Let S(x) repre-

sents the non-local patch similarity prior. The objective function is:

λ

2
||b−Ax||22 +

N∑
i=1

φi(Fix) + τS(x) (6.12)

Applying the HQS technique described in Section 6.2, we relax the objective to be:

λ

2
||b−Ax||22 +

ρ

2
||z− x||22 +

N∑
i=1

φi(Fiz)

+
ρs
2
||v − x||22 + τS(v)

(6.13)

Then we minimize Eq. 6.13 by alternately solving the following 3 subproblems:

zt = proxΘ(xt−1)

vt = argmin
v

ρts
2
||v − xt−1||22 + τS(v) ≈ BM3D (xt−1,

τ

ρts
)

xt = argmin
x

λ||b−Ax||22 + ρt||zt − x||22 + ρts||vt − x||22,

(6.14)

where proxΘ is from our previous training, and the vt subproblem is approxi-
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(a) Input (20.17dB) (b) BM3D (29.62dB)

(c) ProxF5
3 (29.48dB) (d) ProxF5

3 + BM3D (29.74dB)

Figure 6.13: Experiment on incorporating non-local patch similarity prior
(BM3D) with our model after being trained. The input noise level
σ = 25. Please zoom in for better view.
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(a) Ground truth (b) Input (20.18dB)

(c) TRD5 (28.06dB) (d) ProxF5
3 (27.80dB)

(e) TV + cross (26.89dB) (f) ProxF5
3 + cross (28.69dB)

Figure 6.14: Experiment on incorporating a color prior [45] with our model
after being trained. The input noise level σ = 25. (e,f) show the
results by combining TV denoising with a cross-channel prior, and
our method with cross-channel prior, respectively. Please zoom in for
better view.
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mated by running BM3D software on xt−1 with noise parameter τ
ρts

following [45].

Similarly, our method can incorporate color image priors (e.g., cross-channel

edge-concurrence prior [45]) to improve test results on color images, despite our

model being trained on gray-scale images. An example is shown in Fig. 6.14. The

hybrid method shares the advantages of our original model that effectively pre-

serves edges and textures and the cross-channel prior that reduces color artifacts.

Transferability to unseen tasks

Our method allows for new data-fidelity terms that are not contained in training,

with no need for re-training. We demonstrate this flexibility with an experiment on

the joint denoising and inpainting task shown in Fig. 6.15. In this experiment, 60%

pixels of the input image are missing, and the measured 40% pixels are corrupted

with Gaussian noise with σ = 15. Let vector a be the binary mask for measured

pixels. The sensing matrix A in Eq. 6.1, assumed to be known, is a binary diagonal

matrix (hence A = AT = ATA) with diagonal elements a. To reuse our model

trained on denoising/deconvolution tasks, we only need to specify A and λ. The

subproblems of our HQS framework are given in Eq. 6.15.

zt = proxΘ(xt−1),

xt = (λATb + ρtzt)./(λa + ρt),
(6.15)

where ./ indicates element-wise division.
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(a) Input (b) Delaunay interp.(23.19dB)

(c) ProxF5
3 (25.10dB) (d) Ground truth

Figure 6.15: Experiment on joint denoising and inpainting task. The input
image (a) misses 60% pixels, and is corrupted with noise σ = 15. Our
method takes the result of Delaunary interpolation (b) as the initial
estimation x0. Please zoom in for better view.

117



(a) Ground truth

(b) Noisy input (20.18dB) (c) Iter 1 (22.85dB)

(d) Iter 2 (25.93dB) (e) Iter 3 (28.14dB)

Figure 6.16: Results at each HQS iteration of our method on image denoising
with noise level σ = 25. Inside brackets show the PSNR values. Please
zoom in for better view.
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(a) Ground truth

(b) Blurry input (23.37dB) (c) Iter 1 (27.32dB)

(d) Iter 2 (28.48dB) (e) Iter 3 (29.36dB)

Figure 6.17: Results at each HQS iteration of our method on non-blind de-
convolution with a 25×25 PSF and noise level σ = 3. Inside brackets
show the PSNR values. Please zoom in for better view.
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Table 6.4: Test with different HQS iterations (T ) and model stages (K) for
image denoising. Average PSNR (dB) results on 68 images from [64]
with noise σ = 15 and 25 are reported (before and after “/” in each cell
respectively).

# HQS iterations
1 3 5

#
stages

1 29.80 / 26.81 30.89 / 28.12 30.96 / 28.28
3 30.54 / 27.82 30.91 / 28.19 31.00 / 28.42
5 30.54 / 27.83 30.92 / 28.18 -

Analysis of convergence and model complexity

To better understand the convergence of our method, in Fig. 6.16 and 6.17 we

show the results of each HQS iteration of our method on denoising and non-blind

deconvolution.

To understand the effect of model complexity and the number of HQS iter-

ation on results, in Table 6.4 we report test results of our method using models

trained with different HQS iterations (T in Algorithm 8), and with different stages

in proxΘ (K in Algorithm 8). The results are generated using the λ values learned

at training without post-tuning.

Connections to plug-and-play priors

We noticed that recent plug-and-play methods [72, 85, 103] make a similar ob-

servation that the zt-update step in 6.3 can be interpreted as a Gaussian denoising

processing on xt−1. However, while they replace the zt-update step with existing

generic Gaussian denoisers, our method trains such step as part of the whole prox-

imal optimization iterations by discriminative learning for good trade-off between

high-quality results and time-efficiency.

6.4 Conclusion and future work
In this paper, we proposed the trainable proximal fields model, a generalization

of traditional proximal operators. By combining advanced proximal optimization

algorithms and discriminative learning techniques, a single training pass leads to
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a transferable model useful for a variety of image restoration tasks and problem

conditions. Furthermore, our method is flexible and can be combined with existing

priors and likelihood terms after being trained, allowing to improve image quality

on a task at hand. In spite of this generality, our method achieves comparable

run-time efficiency as previous discriminative approaches, making it suitable for

high-resolution image restoration and mobile vision applications.

We believe that in future work, our framework incorporating advanced opti-

mization with discriminative learning techniques can be extended to deep learn-

ing, for training more compact and shareable models, and to solve high-level vi-

sion problems. Another plan is to train our models for ensemble tasks with larger

datasets and use advanced learning optimization techniques, which can potentially

further improve results.
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Chapter 7

Conclusions

As a classic topic that has been studied for decades, image restoration is still a very

active research area. While significant progress has been made, developing more

time-, memory- and power-efficient methods are still highly desirable especially

as the rise of mobile imaging systems such as smartphone cameras, ToF cameras,

autonomous vehicles, etc. Recent advances in machine learning and data-driven

techniques have been inspiring new perspectives and strategies for image restora-

tion problems. This thesis presents our researches on these topics and addresses

several image restoration problems for applications in computational imaging in-

cluding ToF imaging and digital photography.

While continuous-wave ToF cameras have shown great promise at low-cost

depth imaging, they suffer from limited depth of field and low spatial resolution. In

Chapter 3, we develop a computational method to remove the lens blur and increase

image resolution of off-the-shelf ToF cameras. In contrast to previous work, our

method solves the depth and amplitude image directly from the raw sensor data

and supports more advanced ToF cameras that use multiple frequencies, phases

and exposures.

Taking personal photographs have become increasingly common due to the

popularity of mobile cameras. However, photos taken by hand-held cameras are

likely to suffer from blur caused by camera shake during exposure. Therefore,

removing such blur and recovering sharp images as a post-process is highly de-

sirable. In Chapter 4 we develop a blind image deblurring method that is purely
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based on simple stochastic random-walk sampling for optimization, which allows

us to easily test new priors for both image and blur kernel. We demonstrate that

this simple framework in combination with different priors produces comparable

results to the much more complex state-of-the-art deblurring algorithms.

Blur causes even more serious issues for text document photographs, as slight

blur can prevent existing OCR techniques from extracting correct text from the im-

ages. In Chapter 5 we address the blind deblurring problem specifically for com-

mon text document photographs. Observing that the latter are mostly composed of

high-order structures, our method proposes to capture such domain property by a

series of iteration- and scale-wise high-order filters as well as customized response

functions. These filters and functions are learned from data by discriminative learn-

ing approach and form an end-to-end network that can efficiently estimate both blur

kernel and sharp/legible text images.

Discriminative learning approaches have been recently proposed for effective

image restoration, achieving convincing trade-off between image quality and com-

putational efficiency. However, these methods require separate training for each

restoration task and problem condition, making it time-consuming and difficult to

encompass all tasks and conditions during training. In Chapter 6 we combine the

discriminative learning idea and formal numerical optimization method, to learn

image priors that require a single-pass training and share across various tasks and

conditions, while keeping the efficiency as previous discriminative methods. More-

over, after being trained, our model can be easily combined with other likelihood

or priors to address unseen restoration tasks or further improve the image quality.

Throughout this thesis work, developing both effective image priors and effi-

cient optimization solvers have been the central tasks for a given image restoration

problem. In Chapter 3 we investigate the classic prior (TGV) and the advanced nu-

merical optimization methods (ADMM and Levenberg-Marquardt algorithm). In

Chapter 4 we develop a stochastic-sampling based optimization method for solv-

ing general image priors. In Chapter 5, we apply discriminative learning approach

to learn the priors and the iterative optimization process from data. The learned

models are highly optimized and customized for the trained task. In Chapter 6 we

combine the numerical optimization method (HQS) with the discriminative learn-

ing approach to learn prior models that can be shared across a variety of restora-
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tion tasks while keeping the efficiency as previous discriminative learning methods.

While this is a first attempt, I believe that the emerging between formal numerical

optimization techniques and the data-driven machine learning techniques will stim-

ulate more new ideas and successes in the field of image restoration, and I would

like to keep investigating on it as future work.
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Appendix A

Supplemental Materials

A.1 Supplemental material for Chapter 3
This section provides implementation details for Algorithm 2 (updating amplitude

estimate) and Algorithm 3 (updating depth estimate) in Chapter 3. The symbol ∇
defines the derivative operator, T defines the matrix transpose, and I defines the

identity matrix.

Algorithm 2, Line 2:

a = argmin
a

ρ||c−Aa||22 + λ1ρa||∇a− y − p1 + u1||22 (A.1)

equals to the solution of the linear equation system:

(ρATA + λ1ρa∇T∇)a = ρATc + λ1ρa∇T(y + p1 − u1) (A.2)

and we solve it by the left division function in Matlab.

Algorithm 2, Line 3:

y = argmin
y

λ1||∇a− y − p1 + u1||22 + λ2||∇y − p2 + u2||22 (A.3)
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equals to the solution of the linear equation system:

(λ1I + λ2∇T∇)y = λ1(∇a− p1 + u1) + λ2∇T(p2 − u2) (A.4)

and solved by the left division function in Matlab.

Algorithm 2, Line 4:

p1 = argmin
p1

||p1||1 + ρa||∇a− y − p1 + u1||22 (A.5)

is a soft shrinkage problem and has closed form solution:

p1 = soft-shrinkage(∇a− y + u1,
0.5

ρa
) (A.6)

where the soft-shrinkage operator is defined as:

soft-shrinkage(x, ε) =


x + ε; x < −ε

0;−ε ≤ x ≤ ε

x− ε; x > ε

(A.7)

Algorithm 2, Line 5:

p2 = argmin
p2

||p2||1 + ρa||∇y − p2 + u2||22 (A.8)

is a soft shrinkage problem and has closed form solution:

p2 = soft-shrinkage(∇y + u2,
0.5

ρa
) (A.9)

Algorithm 3, Line 2:

z = argmin
z

data fitting constraint︷ ︸︸ ︷
ρ||c− a ◦ g(z)||22 +

prior constraint︷ ︸︸ ︷
τ1ρx||∇z− x− q1 + v1||22

(A.10)
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is a nonlinear least squares problem due to the nonlinearity of the modulation

function g(z). We solve this problem by the Levenberg-Marquardt method imple-

mented in the lsqnonlin(.) function in Matlab. We provide the analytical Jacobian

for acceleration:

J(z) =

[
Jdata(z)

Jprior

]
(A.11)

where the matrix Jdata(z) and Jprior define the Jacobian of the 1st (data fitting

constraint) and 2nd (prior constraint) least squares in Eq.A.10 respectively.

Since the 1st least squares are pixel-wise separable (benefit from our splitting

method explained in Section 3.2.1 in Chapter 3), Jdata(z) is simply a diagonal

matrix composed of:

−ak ·
∂g(zk)

∂zk
· √ρ (A.12)

where k is the pixel index. For the ToF cameras based on cosine model modulation

(see Eq.3.1 in Chapter 3), the diagonal element in Eq.A.12 becomes:

ak · i
4πf

c
· e−i(

4πf
c
·zk) · √ρ (A.13)

For arbitrary modulation waveforms in the future, the diagonal element in Eq.A.12

can be estimated from calibration data. Jprior is simply the matrix version of the

derivative operator∇ multiplied by
√
τ1ρx, which is independent of z.

Algorithm 3, Line 3:

x = argmin
x

τ1||∇z− x− q1 + v1||22 + τ2||∇x− q2 + v2||22 (A.14)

equals to the solution of the linear equation system:

(τ1I + τ2∇T∇)x = τ1(∇z− q1 + v1) + τ2∇T(q2 − v2) (A.15)

and solved by the left division function in Matlab.
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Algorithm 3, Line 4:

q1 = argmin
q1

||q1||1 + ρx||∇z− x− q1 + v1||22 (A.16)

is a soft shrinkage problem and has closed form solution:

q1 = soft-shrinkage(∇z− x + v1,
0.5

ρx
) (A.17)

Algorithm 3, Line 5:

q2 = argmin
q2

||q2||1 + ρx||∇x− q2 + v2||22 (A.18)

is a soft shrinkage problem and has closed form solution:

q2 = soft-shrinkage(∇x + v2,
0.5

ρx
) (A.19)
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A.2 Supplemental material for Chapter 5
This section gives the derivation details of Eq.5.6 -5.10 in Chapter 5.

Derivation of Eq.5.6 and5.7

The objective of latent image estimation at t-th iteration is defined as

xt = argmin
xt

||b− kt−1 ⊗ xt||22 +
N∑
i=1

ρti(F
t
ix
t) (A.20)

Applying the half-quadratic splitting [30] on each filter response Ft
ix
t, we have

xt = argmin
xt,uti

||b− kt−1 ⊗ xt||22 +
N∑
i=1

(
ρti(u

t
i) +

βt

2
||Ft

ix
t − uti||22

)
(A.21)

The half-quadratic optimization technique [30] solves Eq.A.21 by alternatively up-

dating xt and uti. More specifically, for xt update,

xt = argmin
xt

||b− kt−1 ⊗ xt||22 +
N∑
i=1

βt

2
||Ft

ix
t − uti||22 (A.22)

This is solved by setting the gradient of the right-hand linear least squares to be

zero, (
KT
t−1Kt−1 +

βt

2

N∑
i=1

Ft
i
T
Ft
i

)
xt = KT

t−1b +
βt

2

N∑
i=1

Ft
i
T
uti (A.23)

where matrix Kt−1 represents corresponding convolution with blur kernel kt−1.

Because Kt−1 and Ft
i represent convolution process, Eq.A.23 can be efficiently

solved in Fourier domain. Let λt = βt/2, we have

xt = F−1

[
F(KT

t−1b + λt
∑N

i=1 Ft
i
T
uti)

F(KT
t−1) · F(Kt−1) + λt

∑N
i=1F(Ft

i
T

) · F(Ft
i)

]
(A.24)
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For uti update,

uti = argmin
uti

ρti(u
t
i) +

βt

2
||Ft

ix
t−1 − uti||22 (A.25)

This minimization problem is pixel-wise separable. The key idea of [92] is to

replace this minimization problem with a shrinkage function ψti , i.e.,

uti = ψti(F
t
ix
t−1) (A.26)

By Substituting Eq.A.26 to Eq.A.24, we have

xt = F−1

[
F(KT

t−1b + λt
∑N

i=1 Ft
i
T
ψti(F

t
ix
t−1))

F(KT
t−1) · F(Kt−1) + λt

∑N
i=1F(Ft

i
T

) · F(Ft
i)

]
(A.27)

Note that we replace xt−1 with zt−1 in our blind deblurring framework. Therefore,

Eq.A.27 becomes

xt = F−1

[
F(KT

t−1b + λt
∑N

i=1 Ft
i
T
ψti(F

t
iz
t−1))

F(KT
t−1) · F(Kt−1) + λt

∑N
i=1F(Ft

i
T

) · F(Ft
i)

]
(A.28)

which is Eq.5.6 in Chapter 5. Eq.5.7 in Chapter 5 can be derived in similar way

thus it’s omitted here.

Derivation of Eq.5.8

The objective of kernel estimation is defined as

kt = argmin
kt

||b− kt ⊗ zt||22 + τ t||kt||22 (A.29)

This is solved by setting the gradient of the right-hand linear least squares to be

zero,

(ZT
t Zt + τ t)kt = ZT

t b (A.30)
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where matrix Zt represents corresponding convolution with image zt. Eq.A.30 can

be efficiently solved in Fourier domain:

kt = F−1

[
F(zt)

∗ · F(b)

F(zt)∗ · F(zt) + τ t

]
(A.31)

which is Eq.5.8 in the main paper. ∗ represents conjugate transpose.

Calculation of Eq.5.9

For xt update, the training loss ` = ||xt − x̄||22. Its gradient w.r.t. the model

parameters Θt = (f ti , ψ
t
i , λ

t) is computed as

∂`

Θt
=
∂xt

∂Θt

∂`

xt
= 2

∂xt

∂Θt
(xt − x̄) (A.32)

In order to compute ∂xt/∂Θt, xt in Eq.A.28 can be rewritten as

xt =

(
KT
t−1Kt−1 + λt

N∑
i=1

Ft
i
T
Ft
i

)−1(
KT
t−1b + λt

N∑
i=1

Ft
i
T
ψti(F

t
iz
t−1)

)
(A.33)

Then ∂xt/∂Θt can be derived following the matrix calculus rules, and we refer the

derivation details of ∂xt/∂Θt to the supplemental material of [92].

Calculation of Eq.5.10

For zt and kt update, the training loss ` = ||kt − k̄||22 + α||zt − x̄||22. Its gradient

w.r.t.the model parameters Ωt = (gti, φ
t
i, η

t, τ t) is computed as

∂`

∂Ωt
=
∂zt

∂Ωt

∂kt

∂zt
∂`

∂kt
+
∂kt

∂Ωt

∂`

∂kt
+
∂zt

∂Ωt

∂`

∂zt
(A.34)

where

∂`

∂kt
= 2(kt − k̄) (A.35)

∂`

∂zt
= 2α(zt − x̄) (A.36)
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In order to compute ∂kt/∂zt and ∂kt/∂Ωt, kt in Eq.A.31 can be rewritten as

kt = (ZT
t Zt + τ t)−1(ZT

t b) (A.37)

For brevity, we denote (ZT
t Zt + τ t) as Π, and (ZT

t b) as Λ, then kt = Π−1Λ. We

use the square bracket around any image a, i.e. [a], to indicate the matrix repre-

senting convolution with a. Moreover, we define matrix R representing rotating a

2D image by 180 degrees, i.e.,Ra means rotating the 2D image a by 180 degrees.

Then, we have

∂kt

∂zt
=
∂(Π−1Λ)

∂zt

=
∂Λ

∂zt
Π−1 −ΛTΠ−1∂Π

∂zt
Π−1

=
∂(ZT

t b)

∂zt
Π−1 − ∂(Πkt)

∂zt
Π−1

=
∂([b]Rzt)

∂zt
Π−1 − ∂((ZT

t Zt + τ t)kt)

∂zt
Π−1

= RT[b]TΠ−1 − ∂(ZT
t Ztk

t)

∂zt
Π−1

= RT[b]TΠ−1 − (RT[Ztk
t]
T

+ KT
t Zt)Π

−1

= (RT[b]T −RT[Ztk
t]
T −KT

t Zt)Π
−1

(A.38)

And,

∂kt

∂Ωt
=
∂Π−1Λ

∂τ t

=
∂Λ

∂τ t
Π−1 −ΛTΠ−1∂Π

∂τ t
Π−1

= −ΛTΠ−1∂(ZT
t Zt + τ t)

∂τ t
Π−1

= −KT
t Π−1

(A.39)
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By substituting Eq.A.35, A.36, A.38, A.39 into Eq.A.34, we have

∂`

∂Ωt
= −2KT

t Π−1(kt − k̄)

+ 2
∂zt

∂Ωt

(
(RT[b]T −RT[Ztk

t]
T −KT

t Zt)Π
−1(kt − k̄) + α(zt − x̄)

)(A.40)

The derivation of ∂zt/∂Ωt is similar as ∂xt/∂Θt, and we refer the details to the

supplemental material of [92]. We will make our training code publicly available

with the paper.
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A.3 Supplemental material for Chapter 6
This section gives the derivation of the analytic gradients that are required for train-

ing in Chapter 6.

The HQS iterations (t = 1, 2, ..., T ) in our method read as follows:

zt = proxΘ(xt−1)

xt =
(
λATA + ρt

)
︸ ︷︷ ︸

Πt

−1 (
λATb + ρtzt

)
︸ ︷︷ ︸

Λt

(A.41)

For both denoising and deconvolution tasks, the xt-update in Eq.A.41 has a closed-

form solution, which is given in Eq.6.8 and 6.9 in Chapter 6. In this supplemental

document we present a derivation with the more general formula xt = Π−1
t Λt.

In our method, the trainable parameters Ω = {λp,Θ} include the fidelity

weight λp for each problem class p, and the model parameters Θ of the proxi-

mal fields that are shared across all problem classes. The training loss function ` is

defined as the negative of the average PSNR between the reconstructed and ground

truth images. The gradient of the loss ` w.r.t. Θ is computed by averaging the

gradients of all images, while the gradient of the loss ` w.r.t. λp is computed by av-

eraging the gradients of only those images that belong to class p. For convenience,

we give the derivations for one image, and omit the class label p below.

` = −20 log10

(
255
√
M

||xT − xtrue||2

)
, (A.42)

where M is the number of pixels in each image, xtrue is the ground truth image,

and xT is the reconstructed image.

∂`

∂Ω
=

T∑
t=1

(
∂xt

∂λ

∂`

∂xt
+
∂zt

∂Θ

(
∂`

∂zt
+
∂xt

∂zt
∂`

∂xt

))

=
T∑
t=1

(
∂xt

∂λ
+
∂zt

∂Θ

∂xt

∂zt

)
∂`

∂xt

(A.43)

whereby we used ∂`/∂zt = 0. Next, we provide the derivation for the partial
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derivative terms in Eq.A.43:

∂xt

∂λ
=
∂Λt

∂λ
Π−1
t −

(
Π−1
t Λt

)T∂Πt

∂λ
Π−1
t =

(
∂Λt

∂λ
− ∂Πtx

t

∂λ

)
Π−1
t

=
(
ATb−ATAxt

)T
Π−1
t

(A.44)

∂xt

∂zt
=
∂Λt

∂zt
Π−1
t −

(
Π−1
t Λt

)T∂Πt

∂zt
Π−1
t =

∂Λt

∂zt
Π−1
t = ρtΠ−1

t
(A.45)

∂`

∂xt−1
=

∂xt

∂xt−1

∂`

∂xt
=

∂zt

∂xt−1

∂xt

∂zt
∂`

∂xt
= ρt

∂zt

∂xt−1
Π−1
t

∂`

∂xt
(A.46)

To compute the gradient of zt w.r.t. xt−1 and Θ, i.e. ∂zt
/
∂xt−1 and ∂zt

/
∂Θ ,

let’s first recall Eq. 6 in the main paper:

ztk = ztk−1 −
N∑
i=1

Fk
i
T
ψki (Fk

i z
t
k−1), s.t. zt0 = xt−1, k = 1, 2, ...,K.(A.47)

Note that xt−1 only appears at the first stage k = 1:

zt1 = zt0 −
N∑
i=1

F1
i
T
ψ1
i (F

1
i z
t
0) = xt−1 −

N∑
i=1

F1
i
T
ψ1
i (F

1
ix

t−1) (A.48)

Therefore,

∂zt

∂xt−1
=

∂ztK
∂xt−1

=
∂zt1
∂xt−1

∂ztK
∂zt1

=

(
I−

N∑
i=1

F1
i
T
ψ′1i (F1

ix
t−1)F1

i

)
∂ztK
∂zt1

,(A.49)

where I is an identity matrix, and ∂ztK
/
∂zt1 can be computed by following the

rule below:

∂ztk
∂ztk−1

= I−
N∑
i=1

Fk
i
T
ψ′ki (Fk

i z
t
k−1)Fk

i , k = 1, 2, ...,K (A.50)

∂zt
/
∂Θ in Eq.A.43 is composed of ∂zt

/
∂fki and ∂zt

/
∂ψki , which are computed
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as follows:

∂zt

∂fki
=
∂ztk
∂fki

∂ztK
∂ztk

= −
∂Fk

i
T
ψki (Fk

i z
t
k−1)

∂fki

∂ztK
∂ztk

(A.51)

∂zt

∂ψki
=
∂ztk
∂ψki

∂ztK
∂ztk

= −
∂Fk

i
T
ψki (Fk

i z
t
k−1)

∂ψki

∂ztK
∂ztk

(A.52)
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