
A User-Customized Self-Paced Brain Computer Interface

by

Hossein Bashashati

B.Sc., University of Tehran, 2008

M.Sc., University of Tehran, 2011

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL
STUDIES

(Electrical and Computer Engineering)

The University of British Columbia
(Vancouver)

April 2017

c© Hossein Bashashati, 2017



Abstract

Much attention has been directed towards synchronous Brain Computer Interfaces (BCIs).

For these BCIs, the user can only operate the system during specific system-defined periods.

Self-paced BCIs, however, allow users to operate the system at any time he/she wishes. The

classification of Electroencephalography (EEG) signals in self-paced BCIs is extremely

challenging, as the BCI system does not have any clue about the start time of a control task.

Also, the data contains a large number of periods during which the user has no intention to

control the BCI.

For sensory motor self-paced BCIs (focus of this thesis), the brain of a user goes through

several well-defined internal state changes while performing a mental task. Designing clas-

sifiers that exploit such temporal correlations in EEG data can enhance the performance of

BCIs. It is also important to customize these BCIs for each user, because the brain charac-

teristics of different people are not the same.

In this thesis, we first develop a unified comparison framework to compare the per-

formance of different classifiers in sensory motor BCIs followed by rigorous statistical

tests. This study is the largest of its kind as it has been performed on 29 subjects of syn-

chronous and self-paced BCIs. We then develop a Bayesian optimization-based strategy

that automatically customizes a synchronous BCI based on the brain characteristics of each

individual subject. Our results show that our automated algorithm (which relies on less so-

phisticated feature extraction and classification methods) yields similar or superior results
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compared to the best performing designs in the literature.

We then propose an algorithm that can capture the time dynamics of the EEG signal

for self-paced BCI systems. We show that this algorithm yields better results compared

to several well-known algorithms, over 13 self-paced BCI subjects. Finally, we propose a

fully automatic, scalable algorithm that customizes a self-paced BCI system based on the

brain characteristics of each user and at the same time captures the dynamics of the EEG

signal. Our final algorithm is an important step towards transitioning BCIs from research

environments to real-life applications, where automatic, scalable and easy to use systems

are needed.
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Chapter 1

Introduction

A Brain Computer Interface (BCI) aims at detecting the presence of specific patterns in

a person’s brain activity. These patterns relate to the user’s intention to control a device

[102]. If such patterns are detected in the brain waves, then the BCI issues specific signals

to control the device.

Traditionally, the most popular application of BCIs has been to assist people with dif-

ferent kinds of motor impairments to communicate with the external world [78]. A BCI as

a non-muscular communication channel allows disabled people to control different assis-

tive devices. Besides rehabilitation applications, many new BCI applications have emerged

recently [101] [17] [1]. These applications include playing video games, mental state mon-

itoring, training and education, cognitive biometrics etc.

There are few different methods to record the brain activity of a person. Not all of

these however are practical to use in real life applications. There are at least three factors

that determine the practicality of BCIs. These factors include risk in use, signal temporal

resolution and device portability. Invasive BCIs such as (implanted) electrocorticography-

based ones record the brain activity from within the skull. Although the recorded signal has

a high signal to noise ratio and is less prone to artifacts, the practicality of these methods
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is limited because of the need for the surgical installation of the electrodes inside the skull

(risk of use) [66]. Magnetoencephalography and functional Magnetic Resonance Imaging

are non-invasive but bulky, non-portable, and have very low temporal resolution.

Among the various means to measure the brain activity, the non-invasive EEG-based

BCI systems can measure the changes in the brain activity within milliseconds (high tem-

poral resolution); they are inexpensive, non-invasive and portable [75]. However, they also

have several drawbacks. The signal to noise ratio of the EEG signal is low, i.e., the signals

have very low amplitude (i.e. about 10 to 100 micro volts) compared to the background

noise. They are also contaminated by artifacts. Therefore, detecting the intentions of a

person from his/her measured EEG brain signals is a challenging task and has been at the

forefront of research. Furthermore, the resolution of the EEG brain signals referred to as

the spatial resolution is low and dependent on the number of electrodes that could be placed

on the subject’s head.

1.1 Different Neurological Phenomena

Present-day EEG-based BCIs operate based on four major electrophysiological activities

of the brain [75].

Visual Evoked Potential (VEP) are typically generated in the EEG signal in response

to a visual stimulus while the user is looking at the screen. An example of such a BCI is

frequency-VEP in which a set of letters are flashing at different frequencies. When the user

gazes at a letter, the BCI recognizes the intended letter. This type of BCI does not need any

training but the drawback is that the user should stare at the screen while operating the BCI.

Therefore, it is not suitable for some users such as patients at late stages of ALS disease

[13].

P300 evoked potentials are generated in response to an irregular stimulus amongst sev-

eral different stimuli. 300 milliseconds after the appearance of an infrequent stimulus a
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positive peak appears in the EEG signal of the subject. An example of such a BCI is when

a grid of letters is shown to the subject. Each time one of the rows or columns of the grid

flashes. The subject focuses on the letter he/she wants to communicate. When the row or

the column containing the character flashes, a P300 evoked potential is generated [37].

Like VEP-based BCIs, P300 BCIs do not need user training. However, their need for

external stimulus restricts their applicability. Another drawback is that after sometime

of using a P300-based BCI, the user gets accustomed to the infrequent stimulus and the

detection of the peak becomes difficult [84]. Also, during the whole operation of the BCI,

the user should stare at the screen [40].

Slow Cortical Potentials (SCP) are slow voltage changes in the EEG generated by

the subject. SCP usually lasts between 0.5 to several seconds. Subjects need training to

self-regulate these SCPs, and usually the training needs up to several months of practice.

Self-regulation performance varies for different subjects and some subjects might not be

able to master SCP control. Besides, many factors such as the physiological and physical

state of the subjects can affect the performance of the SCP-based BCIs [48].

Sensory-motor BCIs rely on the changes in sensory-motor rhythms of the brain. Sensory-

motor rhythms consist of the mu, beta and gamma rhythms of the brain. The mu rhythms

of the brain are generally in the range 8-12 Hz, the beta band is 13-30 Hz and the gamma

is in the range 30-100 Hz.

Among the different ways to operate a BCI, those that rely on the sensory motor

rhythms have been of special interest, e.g. [71] [58] [89]. Unlike VEP-based and P300-

based BCIs, these kinds of BCIs do not need any stimuli from outside to control the system,

and the subject can learn to generate the appropriate brain pattern to control a device vol-

untarily. The training process for sensory-motor based BCIs is not lengthy like SCP-based

BCIs. Of particular interest is that a motor imagery activity (i.e., an imagined movement)

generates patterns in the EEG that are similar to those generated by actual movements [70].
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In addition, BCIs that are motor imagery-based are especially suitable for disabled people

who do not have control over their limbs [59].

Figure 1.1: (a) Self-paced BCI in which the user can control the system at any time
(b) Synchronous BCI in which the user is restricted to control the system at
system-defined periods.

1.2 Self-Paced vs. Synchronous BCIs

BCI systems can be classified into two categories: synchronous and self-paced systems [69]

[9]. In synchronous BCIs, subjects control the BCI output during specific short periods.

That is, the user can only issue a control command when he is prompted to operate the

system, therefore, the onset of the mental task is known beforehand. Figure 1.1 part (b)

shows a synchronous BCI system.

Self-paced BCIs, on the other hand give the users the option of controlling the system

whenever they wish to. The periods during which the user is controlling the system are

called control states and those during which the user is not controlling the system are called

No-Control (NC) states. During the NC states, the BCI system should not issue any control

signal i.e. a false positive output should not be produced. In Figure 1.1 part (a) a self-paced
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BCI is depicted.

Compared to synchronous BCI systems, designing self-paced BCIs remains extremely

challenging. The challenges faced by self-paced BCIs stem from the following two prop-

erties of these BCIs:

1) In self-paced BCIs, the user can control the system at any time. Therefore, the BCI

system does not have any clue about the start time of a control command. Also, the BCI

should analyze and classify the EEG data at all times. This makes the design and evaluation

of these BCIs more challenging.

2) During the NC periods, the user can do whatever he/she wants and can be in any

mental state (except for those intended to control the BCI). Therefore the vast majority

of EEG signals is formed of NC periods. This means that self-paced BCI data contains a

large variety and number of periods during which the user has no intention to control the

BCI. This makes it difficult to find specific patterns in the EEG during NC periods and

therefore classification and controlling false positives associated to NC states become very

challenging.

1.3 Block Diagram of a BCI

Figure 1.2 shows a simple block diagram of the signal processing part of an EEG-based

BCI. The main two components are Feature Extraction and Classification.

5



Feature 
Extraction 

Classification

Electrodes

Device

Figure 1.2: A simple block diagram of an EEG-based BCI.

The aim of the feature extraction block is to extract useful information i.e. specific

patterns from the brain signal. The features capture the characteristics of the brain signals

which are then used by the classification block to distinguish different mental tasks. Differ-

ent mental tasks produce different patterns in the brain signals. A good feature extraction

algorithm should be able to capture the information so that distinguishing between different

mental tasks becomes easy.

The features should be able to capture time information, as to when certain changes in

the brain signal occur. Frequency information should be considered because many mental

tasks are frequency specific. Also, spatial information should be exploited because different

mental tasks are related to different parts of the brain.

The aim of the classification block is to use the extracted features to detect the inten-

tion of the subject. Classifiers are calibrated using a small set of collected samples in the

training sessions. The calibrated classifier is used in the test sessions on unseen data. Sev-

eral different classifiers have been applied in different BCI studies. In general, simpler

algorithms are preferred to more complex algorithms [8][75].

1.4 Properties of EEG Signal

The following properties of the EEG signal makes classification of the data challenging:

6



Data is noisy and contains outliers. The amplitude of the EEG signal is small and

in the order of µV s, and the signal is usually contaminated with different types of noise

(or artifacts). The noise in the EEG signal can have physiological sources such as elec-

trooculogram and electromyogram signals or it might originate from outside sources such

as power-line noise [38].

Specific variations in the EEG signal over time should be taken into account. These

variations might happen in specific frequency bands. When a subject performs a sen-

sory motor mental task, the amplitude of the signal changes in specific frequency bands.

It is worth noting that these frequency bands vary from one person to another i.e. they are

subject specific [102]. Therefore, besides the time information in the EEG signal, the fre-

quency information should also be taken into consideration when designing feature extrac-

tion and classification algorithms. Equally important is that the BCI should be customized

for each person.

The EEG is of high dimensions. The EEG signal is collected by several electrodes

located on the surface of the scalp. Each electrode is referred to as an EEG channel. De-

pending on the mental task being performed, some locations on the scalp might provide

more discriminative information than the other locations (for classifying the mental tasks).

It is usually important to apply channel reduction algorithms to reduce the number of sig-

nals we are dealing with; this reduces the dimension of the feature space. It has been

shown that the performance of the BCI is affected by the choice of the selected channels

[45][5][56].

The EEG signal is non-stationary. The statistical properties of the EEG signal change

over time [57]. These changes originate from different causes such as changes in the mental

state of the subject, etc. Subsequently, the BCI needs to adapt according to the mental state

of the subject.

BCI datasets are usually very small. Since collecting data and subject training are
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very time consuming processes, the available EEG datasets are usually very small. This

makes it impossible to apply some powerful classifiers e.g. deep learning [62] to this data.

1.5 Motivations and Contributions

Even though much interest and progress have been made during the past two decades in

BCI research, this field is still at its infancy. Many improvements are still necessary in

order to encourage its widespread adoption. Current BCI systems are not accurate enough

and are far from ideal for use in on-line practical settings. Particularly, for noninvasive

BCIs which are by far the most widely used BCIs, the characteristics of the recorded signal

(e.g. the low signal to noise ratio, susceptibility to artifacts, etc.) make the extraction of

people’s intentions from their brain waves a challenging task. Therefore, the accuracy of

BCI systems has not yet reached the high level required for their use in day-to-day human

life applications. This is especially true for self-paced BCIs, which are the more natural

way to operate a BCI.

The main aim of this thesis is to design a sensory-motor based self-paced BCI. BCIs

that depend on sensory-motor rhythms are convenient because no stimulus is required in

the BCI control and there is no need for the constant involvement of the sensory modalities

such as vision or auditory systems. Because of the challenges in designing a self-paced

BCI, it is imperative to exploit the properties of the BCI data as much as possible. As

discussed in section 1.4, while the subject is performing the sensory motor mental task,

the variations over time in the EEG signal in specific frequency bands should be taken into

consideration. These frequency bands are the sensory motor (i.e. alpha, beta and gamma)

frequencies of the brain.

When a person performs a motor activity such as a limb movement, the amplitude of the

sensory motor rhythms in the motor cortex of the brain changes. Generally such changes

may result in a decrease or increase in the amplitude of the EEG signal in the sensory motor
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frequency bands of the brain [77]. The decrease in the amplitude is called Event Related

Desynchronization (ERD), and the increase is referred to as Event Related Synchronization

(ERS).

For the mu rhythm, ERD begins shortly before movement onset and continues for few

seconds. For the beta rhythm, after a short ERD, the ERS which is the increase in the

amplitude of the EEG signal occurs and lasts for a few seconds after the occurrence of

the movement. In addition to alpha and beta rhythms, the gamma rhythm also exhibits

amplitude changes during the onset of the movement.

The other important property is that the brain characteristics of each person is different

from that of others. These brain characteristics are fed to the BCI system in the form of

some parameters referred to as hyper-parameters. For instance, the frequency ranges of the

alpha and beta waves of the brain are some of the hyper-parameters of the system. The

optimal frequency bands of these waves that discriminate between different sensory motor

mental tasks vary between different subjects. The value of these frequencies should be

identified for each individual person.

Briefly, in this thesis, due to the lack of suitable benchmarks we first design and develop

a general BCI comparison framework (aim 1). Using this framework we then develop a

user-customized synchronous BCI to show the importance and feasibility of customizing

BCI based on each subject’s brain characteristics (aim 2). Then we propose new classifiers

that are able to capture the variations over time of the EEG signal in self-paced BCIs (aim

3). Finally, based on the frameworks and findings from aims 1-3, we design and develop

a user-customized self-paced BCI (aim of this thesis) that exploits the time and frequency

features of the EEG signal.

In the following we briefly describe the aims and contributions in this thesis:

9



Aim 1) Design and Implementation of a General BCI Comparison Framework.

Due to the large variations in BCI technologies and the lack of a general comparison frame-

work in BCIs, it is almost infeasible to compare existing BCI technologies. Consequently,

the progress in the field has been slow, from the signal processing and machine learning

point of view. There are some general purpose software systems [87] [85] that facilitate the

research in BCIs. However, these systems are mostly suitable for data acquisition and for

real time processing of brain signals.

In the first part of this thesis (Chapter 2), we design and develop a general framework

to compare the performance of different algorithms in sensory-motor-based BCIs. The

number of subjects considered in our experiments is 29 which is by far the largest study of

its kind in this field. Other studies have been performed on smaller sample sizes and as a

result, their findings may not be generalized for a larger subject pool.

We perform rigorous statistical tests to compare the performance of different algo-

rithms. This enables us to examine whether or not there is significant differences between

the performances of different classifiers. Other studies have not employed rigorous statis-

tical tests for comparisons. This is mainly due to the smaller sample sizes they employed.

They have relied on statistical tests that are not suitable for comparing several algorithms

on multiple datasets.

We believe that our work provides a more comprehensive comparison between well-

known BCI settings and will have profound impact in the progress of the BCI field.

Aim 2) Design and Implementation of a User-Customized BCI for Synchronous
BCIs.

As discussed in section 1.4, one of the characteristics of the sensory-motor BCI data is

that the changes in EEG signal are frequency-specific. ERD and ERS occur in specific

frequency bands which are different for each subject. The majority of approaches have
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treated the problem of finding optimal values for these frequency bands (and other hyper-

parameters of the system) separately from the methods used in the feature extraction and

classification blocks. These approaches usually need considerable knowledge and expertise

in EEG signal, and do not take into consideration the interconnection between preprocess-

ing, feature extraction and the classification parts of a BCI.

An optimal learning framework for a BCI problem should aim at studying preprocess-

ing of the data, feature extraction and classification jointly, considering the fact that the

performance of the classifier depends on the choice of the features and the frequency ranges

that are used to filter the raw EEG signal. In other words, we should customize the clas-

sifier and the feature extractor jointly i.e. based on each other. For instance, selecting a

particular feature extraction method might cause the data samples of different brain states

to be linearly separable in the feature space. As a result, selecting a linear classifier would

be a better choice for discriminating between the brain states.

Another problem in the BCI literature is that the majority of the approaches in the field,

have treated frequency, time, and the spatial dimensions of the BCI separately. The choice

of the frequency ranges are important in the accuracy of the BCI, but so is the choice of

the channels used for feature extraction. Usually the time segment from which features are

extracted is also important in order to achieve maximum discrimination. The BCI system

should exploit the interdependency between these dimensions to yield better performance.

In Chapter 3, we propose an automatic algorithm that jointly optimizes the values of the

BCI hyper-parameters for two different types of synchronous motor-imagery-based BCIs.

Our algorithm does not rely on the operator expertise and knowledge of EEG to obtain the

values of the hyper-parameters. It iteratively tunes the hyper-parameter values based on the

performance of the BCI.

Figure 1.3 shows a simple block diagram of our algorithm. In our approach the BCI is

like a self-regulating system which improves itself based on the feedback that it receives
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from the classification block. The performance of the classification block is given to the

hyper-parameter optimization block, and this block proposes new values for the hyper-

parameters for each iteration of the algorithm. The hyper-parameter values are used to

extract features from the EEG signal, and a new classifier is trained using the features

extracted from the training data. Based on the cross-validation performance of the classi-

fier, the hyper-parameter optimization block proposes another set of values, and the whole

process continues until the algorithm converges.

Feature 
Extraction 

Classification

Electrodes

Device

Hyper-parameter 
optimization

A
ccuracy

Hyper-parameter 
values, e.g. 
Frequency 
bands, time 
segment, 
channels

Figure 1.3: Our proposed hyper-parameter optimization in BCIs.

We show the importance of hyper-parameter optimization using 21 subjects from public

BCI competition datasets. We then compare our algorithm to other approaches used for

finding the hyper-parameter values, and finally we compare our method to the best reported

results in the literature.

Aim 3) Using Time Information in Designing a Self-Paced BCI.

Another characteristic of the BCI data is that the changes in EEG signal are time-specific.

As discussed in the previous sections, the changes in the EEG signal while a user is per-

forming the mental task are variable over time. For example, ERD and ERS occur during
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the movement onset and continue for few seconds after the occurrence of the movement.

Exploiting this time related information is crucial in improving the performance of the

BCI, Specially in self-paced BCIs where the start and the end time of the mental task is not

known, and the BCI should continuously analyze and classify the EEG data.

To exploit the time information, three possible approaches can be considered:

1) Extract features from different parts (i.e. time windows) of the EEG signal, con-

catenate the features and give the feature vector to the classifier. This is the most popular

approach in the literature [21] [43] [88] [99] [96], however this approach does not capture

the temporal ordering of different features.

2) Another approach is to train different classifiers on different parts of the EEG signal,

and then aggregate the results. The problem of this approach is that the correlation between

different parts of the signal is not taken into account.

3) None of the above approaches properly capture the dynamics of the EEG signal.

A better approach is to apply sequence labeling classifiers on the EEG data. Sequence

labeling classifiers predict a sequence of labels associated with a sequence of observations.

In this approach the EEG signal is divided into several consecutive segments which would

result in a sequence of observations and labels. The set of these observation/label sequences

builds the training set which forms the input to the classifier.

In chapter 4, we propose a sequence labeling algorithm which is a combination of neu-

ral networks and Conditional Random Fields. Our algorithm combines the power of neural

networks (to extract features from the EEG signal) with the conditional random field clas-

sifier (to capture the dynamics of the EEG signal). We performed our experiments on 13

(self-paced) BCI subjects and compared the performance of our algorithm to several se-

quence labeling and classical classifiers. All classifiers were evaluated in an online setting,

i.e. classifiers continuously classified the test data similar to real applications.
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Aim 4) Design and Implementation of a User-Customized BCI for Self-Paced BCIs.

Changes in the EEG signal while a subject is performing a mental task are time and

frequency-specific. In Chapter 5, we design a self-paced BCI which not only takes into

account the time information for self-paced BCIs but also is customized based on the char-

acteristics of each subject’s EEG signal.

Our BCI exploits the time information by using a sequence labeling classifier. We use

Bayesian optimization to tune subject specific frequencies, channels and other parameters

of the self-paced BCI system. Our algorithm is a combination of the methods proposed

in Chapters 3 and 4. While in Chapter 3, many different methods of customizing a syn-

chronous BCI are studied, in chapter 5, we use an ensemble approach which led to more

stable and better average performance across all subjects.

In Chapter 5, we describe our algorithm and compare our method to several well-known

classifiers. We conduct our experiments using 13 subjects in self-paced BCIs. In our

experiments, the aim is to discriminate the control from the no-control states of the brain.

All classifiers are evaluated in a setting similar to online BCIs, i.e. classifiers continuously

classify the test data by only looking at the past data. We show that tuning the hyper-

parameters of a self-paced BCI system and at the same time exploiting the dynamics of the

EEG signal, can considerably improve the performance of self-paced BCIs.
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Chapter 2

A Unified Comparison Framework for

Sensory-Motor BCIs

2.1 Introduction

Due to wide variations in BCI technologies and the lack of a general comparison frame-

work in BCIs, it is almost infeasible to compare existing BCI technologies and speed up the

progress in the field. As the first part of my thesis, I have developed a general framework to

compare the performance of different algorithms in EEG-based BCIs. As this research fo-

cuses mostly on the classification part of a BCI system, the unified comparison framework

that we developed was used to evaluate the performance of different classifiers on several

sensory motor BCI datasets. The data used are those from BCI competitions1, as well as

one of our own datasets [20].

There have been some efforts to compare the performance of different classifiers in BCI

systems [3] [63] [6] [91] [19]. However, these comparisons have been performed on a small

number of subjects and for a small number of classification methods. In [68], the authors

1http://www.bbci.de/competition
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surveyed the performance of different classifiers in BCIs that used different subjects and

different features. However, the best way to compare different classifiers is to evaluate their

performance in the same context, i.e., on the same set of subjects and using the same set of

features with the same set of parameters.

The general trend in EEG-based BCI systems has been to utilize the Linear Discrimi-

nant Analysis (LDA) classifier for classification purposes [8] [53]. The binary LDA classi-

fier has a very strong assumption that the conditional probability densities of the two classes

have a Gaussian distribution with the same covariance function. As a result, the discrimi-

nant function is linear and may thus not be suitable for non-linear separable feature spaces.

In addition, this classifier is very sensitive to outliers. On the other hand, as discussed in

section 1.4 the main challenges in classification of EEG data in BCIs is that the data are

non-stationary, noisy, contain outliers, are usually of high dimensions and the training set

is unfortunately small [67] [103]. As a result, the classification strategies in BCI systems

should be able to cope with these problems appropriately.

This part of our study provides open source comparison framework for BCI systems

and is unique in three aspects. First, the number of subjects considered in this chapter are

21 subjects that used synchronous BCIs and 8 subjects that used self-paced BCIs (i.e. an

overall of 29 subjects). Other studies were performed on smaller sample sizes (less than

5 subjects) and as a result, their findings may not be generalized to a larger subject pool.

Secondly, we have used rigorous statistical tests to compare the performance of different

algorithms. This will enable us to examine whether or not there are significant differences

between the performance of different classifiers. Other studies have not employed statis-

tical tests for comparisons, mainly because of their smaller sample sizes and have solely

relied on the mean performance of the classifiers (which is not a robust measure), as a

surrogate for the overall performance of a specific classifier. Thirdly, to increase the trans-

parency, the source code of our experiments has been made openly available so that other
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researchers can apply it on their own data and benchmark their algorithms with standard

methods.

In the following sections we first explain the general structure of the comparison frame-

work, then we explain the datasets used and finally the results of the different algorithms

are compared.

Figure 2.1: The BCI framework. Our framework has three main steps: 1. Filtering,
2. Feature Extraction and 3. Classification. The output of each step is fed to the
next step.

2.2 General Structure of Comparison Framework

The overall structure of our comparison framework is shown in Figure 2.1. This frame-

work has three main sequential processing components, Filtering, Feature Extraction and

Classification. All data from the available EEG channels are fed as the input, the Filtering

component performs frequency filtering and spatial filtering, and the Feature Extraction

component extracts features from the filtered data. Finally, in the last step the extracted

features are combined to build a dataset which is then fed to the classification component.

In the following subsections, the details of each of the above mentioned components are

explained.
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2.2.1 Spatial and Frequency Filtering

The first step of our framework was composed of frequency filtering and spatial filtering.

Frequency filtering was done using a filter bank. A filter bank is an array of band pass

filters and contains n blocks. Each block corresponds to filtering the original signal in a

specific sub-band. For frequency filtering, we used the fifth order Butterworth filter. This

filter has a flat frequency response in the pass band. The result of applying each filter-bank

block was fed to the next block in which spatial filtering is performed on the signal.

Common Spatial Patterns (CSP) [82] [18] was used for spatial filtering. CSP has been

widely used in BCI systems and has yielded considerable improvements in the signal to

noise ratio of the EEG signal. CSP projects multiple channels of the EEG data onto a sur-

rogate sensor space by applying a linear transformation on the EEG data. This technique

is a supervised method of combining multiple channels and has been developed for binary

classification. This method maximizes the variance of signals for one class while minimiz-

ing the variance of the signals for the other. As the signals are standardized before applying

CSP, the variance of the signals would be equivalent to their band power. Thereby, if we

use the band power as the extracted feature in the surrogate space, the discrimination of the

classes (e.g., right and left hand imagery movements) would be maximized.

Suppose that the normalized covariance matrices of both classes are given by Σc where

c ∈ {+,−}, and + and − correspond to different mental tasks in BCI. The CSP algorithm

maximizes the following equation:

argmax
W

W T Σ+W
W T Σ−W

(2.1)

where W is the projection matrix. This equation can be solved by applying simultaneous

diagonalization of the covariance matrices of both classes. By multiplying the projection

matrix by the original EEG signal we can obtain the uncorrelated brain signals.
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The benefit of applying CSP is that we can select a subset of filters that preserves

as much information as possible and discriminates the two classes very well. However,

choosing the number of filters (i.e., spatial patterns) is difficult, and is usually determined

by heuristic approaches. CSP is inherently designed for 2-class BCI tasks, and we have

used a one-against-one scheme to use CSP for the multi-class dataset. In a one-against-one

scheme a separate CSP filter is used to discriminate each pair of mental tasks.

2.2.2 Feature Extraction

In the feature extraction step, different kinds of features can be extracted from the filtered

signal. The extracted features should properly represent the information hidden in the raw

EEG signal. We used two of the most common and successful feature extraction methods

utilized in motor-imagery based BCI systems. Both methods calculate the band-power (BP)

of the signal [25] [24] [47].

In the first approach, the band-power of a signal is extracted by directly applying to a

signal, a filter that only allows the frequencies inside each filter band to pass. Assuming

a perfect block filter, we can then estimate the power of the filtered signal by summing

the squares of the magnitude of the filtered signal. Since the logarithm of band-power

features has also been used in the literature [25], we have included both the band-power

and its logarithm in our feature set. In this study, we extracted the band power features for

the α [8-12]Hz and β [16-24]Hz frequency bands of the brain signals. We refer to these

band-power features as the BP features in the remainder of the text.

In the second feature extraction approach, we used the Morlet wavelet to extract the

band-power features. This method is one of most the successful feature extraction methods

used in sensory motor BCI systems [25]. In this method, the EEG signal is decomposed

using the Morlet mother wavelet and the power in each frequency band is calculated. We

used the exact configuration as in [24] to extract these features; i.e., for each channel, all
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the frequency bands are chosen to be in the 4 to 30 Hz range. This results in 26 features

for each channel. This setting for extracting BP features will result in high-dimensional

feature spaces, especially for datasets with many EEG channels.

After extracting features from each block of the filter bank, the extracted features are

combined to build a feature vector, which is fed to the classification component of our

framework.

2.2.3 Classification

In supervised learning, given a set of training samples D = {( f1,y1),( f2,y2), ,( fn,yn)}, the

aim is to find an approximation of the unknown function g : F→Y which has generated the

samples. Each fi is a feature vector and yi is the label of the corresponding feature vector. F

is the feature matrix and Y is a vector corresponding to the label of each row (i.e. fi) of X. In

probabilistic classification, instead of approximating the function g, a posterior probability

P(c| f ) (where c is the predicted class labels vector and f is the feature matrix) is found.

Eventually the label is assigned to the class with the highest probability. This probability

can be calculated using the Bayes rule. P(c| f ) is called the posterior, and P( f |c) is the

class conditional density.

P(c| f ) = P( f |c)P(c)
P( f )

(2.2)

In the following, we briefly describe the classifiers we have compared using our frame-

work.

Gaussian Discriminant Analysis

When the class conditional density is assumed to have a Gaussian distribution, then the

resulting classifier is referred to as the Gaussian Discriminant Analysis [73]. This model

fits a Gaussian distribution to the samples of each class. If the covariance matrices of both
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classes are considered to be the same, the result will be a Linear Discriminant Analysis

(LDA) classifier in which the decision boundary is a linear surface. If we do not assume

any constraints on the covariance function, the resulting decision boundary is a quadratic

function and the corresponding classifier is called Quadratic Discriminant Analysis.

These classifiers impose very strong assumption on the underlying distribution of the

data. This has the advantage that the computation of the discriminative function is very

efficient. Therefore, the LDA classifier has been popular in the BCI field. It is important

to mention that various algorithms [105] [42] [65] have been proposed to eliminate the

shortcomings of LDA. These algorithms are more robust and some of them, such as Z-

LDA, [105] can handle the case where the covariance of two classes are different.

Logistic Regression (LR)

Unlike Linear Discriminant Analysis (LDA) which makes strong assumptions about the

underlying distribution of the data, logistic regression does not make any assumptions and

has been preferred over LDA in machine learning applications [80].

This classifier is a discriminative learning classifier that directly estimates the param-

eters of the distribution p(c| f ) where c is the class label and f is the feature vector. This

algorithm assumes the distribution p(c| f ) is modeled using a softmax function:

p(c| f ) =
exp(W T

k f )
Σ jexp(W T

j f )
(2.3)

where Wjs are the parameters to estimate. Then the maximum likelihood approach is used

to directly approximate Wjs. As the Hessian matrix for the logistic regression model is

positive definite, the error function has a unique minimum. Over-fitting can occur in logistic

regression when the data is sparse and high dimensional (which is the case in BCIs). We

used l1 and l2 regularization jointly to cope with the over-fitting problem.
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Random Forests (RF)

The Random Forest classifier is an ensemble learning algorithm that is constructed by com-

bining multiple decision trees at the training stage and produces a result that is the average

of the output of all individual trees [29]. This powerful learning algorithm injects random-

ness into each tree in two ways. The first uses bootstrapping to sample from the original

dataset (i.e. the algorithm takes M samples with replacement from the original dataset).

The second selects a subset of the features to split each node of the tree. Injecting random-

ness in the process of building Random Forests, makes these classifiers robust and cause

them to have a good performance when the data have many outliers, which is the case in

BCIs [33]. Another consequence of injecting randomness in random forests is the ability

to rank the different features and also to acquire a measure for feature importance.

The seminal paper of Random Forests [22] claims that increasing the number of trees

does not cause the random forest to over-fit. However, [90] has found that RFs can over-fit

with noisy datasets. As a consequence, along with other important parameters of RF we

have tuned the number of trees (2.2.5).

Support Vector Machines (SVM)

An SVM [51] is a discriminative classification algorithm which is able to find a decision

hyper-plane with the maximum distance (margin) to the nearest data points (Support Vec-

tors) of each class. As a result, this method has a high generalization power. The decision

function of an SVM is fully specified by a subset of the training data points, which leads to

a sparse solution for SVM. The cost function of an SVM is a convex function that leads to

an optimal solution for the optimization task.

The mathematical formulation of an SVM gives us the ability to use what is known as

the kernel trick, to map the original finite dimensional space into a destination space with

much higher dimensions. The use of the kernel trick is beneficial particularly when the data
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points cannot be separated with a hyper-plane in the original feature space. This may lead

to an easier separation of the data points in the destination space. In this study, we have

only used SVMs with a radial basis function (RBF) kernel. As stated in [55], under some

conditions, linear kernel SVM can be approximated with an RBF kernel. Even though the

data points might be mapped into a very high dimensional or even an infinite space, the

complexity of computing a kernel matrix can be far smaller. Hence, the SVM algorithm

circumvents the curse of dimensionality by relying on the data points only through the

kernel. SVMs are inherently designed for two-class classification tasks. Many different

methods have been proposed to adapt SVMs to multi-class problems [52]. We used a one-

against-one scheme to adapt SVMs for multi-class problems. Given a multi-class problem

with M classes, in a one-against-one scheme, we train
(M

2

)
classifiers to discriminate each

pair of classes. At the test time, a voting scheme is used to predict the label of a new unseen

sample.

Boosting Algorithm

A Boosting classifier [41] is a learning algorithm based on the observation that building

a highly accurate rule for classification is a really difficult task. This algorithm works by

building many rough rules of thumb. These rules are called weak classifiers. Each of these

weak classifiers is trained on a subset of the data points. These weak classifiers are then

combined into a single prediction rule which would be much more accurate than individual

weak classifiers.

There are many variants of the boosting algorithm. The differences amongst these

algorithms stem from two issues. The first is concerned with how to select the subset of the

data points for each weak learning algorithm. The second is related to how to combine the

output of a weak classifier into a single prediction rule. In this study, we used a variant of

boosting called the Adaboost algorithm. In this algorithm, the subset of data points that are
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used for training a weak learning are the ones that are misclassified by the previous weak

learner. For generating a single prediction rule, Adaboost takes a weighted majority vote

of the prediction of the weak learners.

Multi Layer Perceptron (MLP)

The last classifier used in this study is a feed forward neural network [14] with one hidden

layer. It has been shown that an MLP with enough number of neurons in the hidden layer

can approximate a wide variety of functions[50]. Despite the flexibility and capability of

this algorithm to approximate any nonlinear function, this algorithm can easily overfit and

the cost function to optimize is a non-convex function. The cost function we used is the

negative log-likelihood function with both l1 and l2 regularization to avoid overfitting.

2.2.4 Performance Measure

For the synchronous BCI datasets, we first obtained the labels of the different classes of

motor imagery tasks, then the classification accuracy was used as the measure to compare

the performance of different algorithms.

For self-paced datasets, the true positive rate (TPR) and the false positive rate (FPR)

are the most popular measures in the field. It is common to fix the FPR to a small value

(e.g. 1 percent) and compare the performance of TPRs of different methods. However, this

method does not exploit all the information given by the output of the classifiers because all

the classifiers applied in this research produce probability estimates (i.e. confidence) of a

sample belonging to each class. Since, the output of a classifier is not just the label of each

sample, a good performance measure should exploit the added information. The receiver

operating characteristic (ROC) [39] curve is the best way to compare these classifiers as

it illustrates the performance of the classifiers for varied discrimination thresholds. ROC

is well-suited for self-paced BCIs because ROC is suitable for evaluating the performance

when we have imbalanced data or unequal misclassification costs. To compare the perfor-
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mances of the methods, we use the Area Under the ROC Curve (AUC). AUC represents

the probability that a randomly selected positive sample gets a higher rank than a randomly

chosen negative sample. AUC varies between 0 and 1 and in general a higher AUC is better.

2.2.5 Model Selection

Model selection consists of finding the appropriate set of parameters for each learning al-

gorithm. We adjusted the value of a set of parameters (referred to as ”BCI parameters”)

consisting of parameters of the sensory motor EEG signal and the classifier-specific param-

eters using a grid-based approach.

For each individual subject, a set of candidate parameters including both the BCI pa-

rameters and the classifier parameters were tuned for each algorithm, and 5 times 5-fold

cross validation was performed to find the best value of the parameters. Then the parameter

values with the best mean performance were used to train a final classifier on the training

set for that subject. The final classifier was used to evaluate the performance on indepen-

dent test dataset for the same subject. The values of all these parameters (i.e. the BCI

parameters and the classifier parameters) were adjusted jointly.

The BCI parameters used in the synchronous BCI dataset consisted of selecting the time

segment from which the features are extracted and the number of CSP filters. To adjust the

values of these parameters, the system should be customized based on the brain character-

istics of each individual subject. To get an acceptable performance with the synchronous

datasets, the usual practice is to discard some parts of the movement period in each trial.

The choice of the time segment from which features are extracted, has a major role in the

performance of the learning system. In datasets with many channels we have also used

CSP to combine different channels. As a result, the number of CSP filters was included as

a parameter in model selection.

In self-paced BCIs, the classification problem is a sequential learning problem. To be
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able to apply static classifiers to this problem, we used sliding windows with overlap. The

size of the window, the overlap of two consecutive windows, and the number of CSP filters

formed the set of BCI parameters in the self-paced datasets.

The set of classifier-specific parameters that we adjusted for each classifier are given in

Table 2.1.

2.2.6 Statistical Tests

Instead of using empirical approaches that have been commonly used in the BCI field to

compare the performance of different algorithms, the Friedman statistical test is used in

this study. The Friedman test [32] [44] is a non-parametric statistical test, which ranks

different classifiers for each subject separately. Then it averages the ranks over all subjects.

The null hypothesis assumes that all algorithms have the same performance so they have

the same rank. In other words, it assumes the difference between different algorithms is

random. The test statistic has an approximate Chi-square distribution, and if the p-value is

low enough to reject the null hypothesis, we can conclude that the difference between the

algorithms is not random.
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Table 2.1: List of classifier parameters that were optimized using cross-validation in
the training phase.

Random Forest

Number of trees

Maximum number features evaluated to split each node

Maximum depth of each tree

Minimum number of samples in each leaf

SVM
C

Gamma

GLM
Regularization Type

Regularizer Coefficient

Boosting

Number of trees

Maximum number features evaluated to split each node

Maximum depth of each tree

Learning rate

MLP

Number of neurons in hidden layer

L1 coefficient

L2 coefficient

Learning rate

GDA None

If the null hypothesis is rejected, another statistical test is performed to identify which

algorithms are the source of difference. We then conduct the Holm’s test as the post-hoc

statistical test. The classifier with the best rank is selected as the control classifier, then a

pairwise comparison of all the other classifiers and the control classifier is performed. In

this statistical test, the null hypothesis states that the control classifier and the other clas-

sifier have the same mean rank. We have divided the algorithms based on the outcome of
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the Holm’s test into two categories: the recommended and not recommended. The recom-

mended classifiers include the control classifier, i.e., the best one and any other classifier

that we are not able to prove it has a worse performance than the best classifier. All the

others were deemed to belong to the not recommended category.

Table 2.2: Specification of datasets used in this thesis.

Dataset Type Number of Subjects Task Number of Channels

BCICIII3b Synchronous 3 left hand vs. right hand 2

BCICIV2b Synchronous 9 left hand vs. right hand 3

BCICIV2a Synchronous 9 left hand vs. right hand vs. both feet vs. tongue 22

BCICIV1 self-paced 4 left hand, right hand and foot vs. No-Control 59

SM2 self-paced 4 right index finger vs. No-Control 10

2.3 Datasets

Five sensory motor BCI datasets consisting of 29 subjects were used to evaluate different

methodologies studied in this chapter. These are the datasets I [15], IIa [26] and IIb [64]

of the BCI competition IV, and dataset IIIa [16] from BCI competition III and SM2 from

[20].

Table 2.2 shows the specifications of each dataset. While SM2 and BCICIV1 datasets

were used to evaluate different BCI designs in the self-paced paradigm, the remaining

datasets were used for synchronous BCI systems evaluation. For each subject in each

dataset we have two sets of data: calibration and evaluation data. The calibration data is

used to train (calibrate) the BCI system. The evaluation data is used for the evaluation of

the BCI system.

Dataset I from competition IV (BCICIV1) was recorded from four subjects performing

motor imagery tasks (left hand, right hand or foot imagery). Each subject participated in

two sessions of brain signal recording. The first session was used for training the BCI
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system, and the second session of signal recording was used for the evaluation of the BCI

system. This dataset consisted of 59 EEG channels (corresponding to 59 sensors). In the

calibration session, each subject was assigned to perform two of the three classes of motor

imagery tasks: left hand, right hand, or foot imagery movements. There were 200 trials

of imagery movements that were balanced between two classes. Each trial was 8 seconds

long, the length of the motor imagery intervals in the evaluation session varied from 1.5 to

8s. The NC intervals were also between 1.5 and 8s. Getting a very good performance on

this 3-class self-paced dataset is very challenging, therefore we converted the problem into

a binary classification in which the aim is to decide whether an output is a control state or

a No-Control state.

The SM2 dataset was collected from four subjects attempting to activate a switch. At

random intervals (mean = 7 seconds), a cue was displayed for the subjects. The subjects

attempted to activate the switch by moving their right index finger after the cue appeared.

In this dataset, the EEG was recorded from 10 channels positioned over the supplementary

motor area and the primary motor cortex (i.e. FC1-4, FCz, C1-4, Cz). For each subject,

an average of 10 sessions of EEG recording was performed for six days. In each session,

the period between any two trials varied and the subjects performed actual movement. For

each subject a fixed set of trials (mean = 500 trials) was used for training the BCI and the

rest for evaluating the BCI. A detailed description of this dataset can be found in [20].

Dataset IIa from the BCI competition IV (BCICIV2a) was recorded for nine subjects

performing 4-class motor imagery (left hand and right hand, both feet and tongue im-

agery movements) tasks. The data consisted of 19 channels along the scalp. The data

was recorded in two sessions and each session comprised of 288 trials. The first session

was used to train (calibrate) the BCI and the second session was used to evaluate the BCI

system.

Dataset IIb from BCI competition IV (BCICIV2b) was recorded for nine subjects per-
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forming 2-class motor imagery (left hand and right hand) tasks. The data consisted of three

channels (i.e. C3, CZ and C4) along the motor cortex of the scalp. For each subject, five

sessions were recorded. The first three sessions were used for training the BCI system, and

the remaining two sessions were used for testing the system.

Dataset IIIb from BCI competition III (BCICIII3b) was recorded from three subjects

performing 2-class motor imagery (left hand and right hand) tasks. The data had two chan-

nels (i.e. C3, C4) from the motor cortex area of the brain. For each subject, three sessions

of EEG recordings was provided.

2.4 Results and Discussion

We applied different combinations of feature extraction, classification and model selection

methods to five datasets. Tables 2.3 and 2.4 show the performance for synchronous and

self-paced datasets, respectively, with the best performing feature extraction/classification

combinations highlighted in blue. Qualitative comparison of the different feature extrac-

tion/classification combinations suggests the following: 1) for synchronous BCI systems,

logistic regression classification outperforms the other classifiers (Table 2.3). This is re-

gardless of the feature extraction methodology used. 2) For self-paced BCIs, (Table 2.4),

both logistic regression and MLP classifiers yield better performances. In addition, in both

self-paced and synchronous BCIs, Tables 1 and 2 show that for the subjects with the higher

number of EEG channels, the Band-Power (BP) outperforms the Morlet features mainly

due to the application of CSP on the channels. For datasets having a lower number of EEG

channels, the use of Morlet features outperforms that of BP features.

The Friedman statistical test was performed to compare the performance of the differ-

ent classification methods. This was done for both the BP and Morlet feature extraction

methods for both types of BCIs (synchronous and self-paced), resulting in four different

comparison settings. In Settings 1 and 2, the BP and Morlet features with different clas-
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sifiers were applied on the synchronous datasets, respectively, and in settings 3 and 4, the

BP and Morlet features with different classifiers were applied on the self-paced datasets,

respectively.
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Table 2.3: The accuracy of classifiers for synchronous BCI operation over all subjects. The accuracies are calculated using
the unseen test dataset. For each classification algorithm the first column shows the results of BP features and the second
column shows the results of Morlet features.

Subjects
Classifier Boosting Logistic Random Forest SVM LDA QDA MLP

BP Morlet BP Morlet BP Morlet BP Morlet BP Morlet BP Morlet BP Morlet
Subject1 (O3) 75.47 80.5 80.5 82.39 74.84 79.25 81.76 77.36 81.13 74.21 79.25 60.38 78.62 83.65
Subject2 (S4) 71.11 77.96 70.19 83.89 68.52 79.26 71.11 83.52 70 81.11 70.37 72.41 70.37 82.22
Subject3 (X11) 72.22 78.15 74.26 78.15 71.48 77.78 72.78 77.78 74.07 76.48 74.81 72.22 74.81 76.67
Subject4 (100) 66.23 61.84 60.96 68.86 63.6 65.35 64.04 64.91 61.4 75.88 63.16 58.77 63.6 69.3
Subject5 (200) 53.47 51.84 56.33 58.37 54.29 54.29 56.73 59.18 56.33 55.92 54.69 55.51 56.33 58.37
Subject6 (300) 56.52 54.35 56.09 53.48 51.74 51.74 51.74 45.22 56.09 49.13 54.35 46.52 57.83 51.74
Subject7 (400) 89.25 90.88 94.79 94.79 91.21 92.83 95.11 94.14 93.81 94.46 95.77 83.39 92.18 94.46
Subject8 (500) 61.9 86.45 67.77 91.58 63.37 85.71 68.13 85.71 65.57 87.18 67.03 76.56 67.4 85.71
Subject9 (600) 74.1 79.68 75.7 82.87 74.1 80.48 65.74 80.88 76.1 82.07 75.3 60.96 76.89 83.27
Subject10 (700) 54.31 70.69 53.02 72.84 49.14 76.29 52.59 70.69 59.05 71.55 57.33 64.66 51.29 71.12
Subject11 (800) 91.74 83.91 92.17 83.48 90 86.52 92.17 80.87 92.17 80.87 86.52 67.83 90.87 80
Subject12 (900) 78.37 82.45 77.55 86.12 75.92 82.86 76.73 86.12 77.96 76.33 77.96 68.57 77.14 83.67
Subject13 (1) 79 71.53 79 60.85 81.85 73.31 81.14 61.57 74.38 50.89 52.67 26.33 81.85 58.01
Subject14 (2) 51.59 53.36 61.13 54.42 53.36 51.24 57.24 57.6 62.9 32.86 38.87 25.8 58.3 54.77
Subject15 (3) 78.75 83.15 86.45 86.81 78.02 82.78 84.25 78.02 80.22 50.55 41.03 27.47 85.35 83.15
Subject16 (4) 71.49 32.02 73.68 41.23 73.68 45.18 71.05 36.84 60.96 35.53 36.84 30.26 72.81 34.65
Subject17 (5) 56.16 33.33 60.14 40.58 58.33 35.14 56.88 41.67 50 28.26 34.06 28.26 60.14 38.77
Subject18 (6) 51.63 24.65 56.74 26.98 52.09 26.05 57.21 25.58 54.42 27.91 33.95 26.98 59.07 26.05
Subject19 (7) 84.48 64.98 87.36 56.32 81.95 71.48 87.36 64.26 70.4 32.49 25.27 31.41 87 60.29
Subject20 (8) 77.12 54.98 80.81 61.62 79.34 63.47 81.55 62.36 75.65 37.27 46.49 31 80.44 61.62
Subject21 (9) 78.03 46.97 83.71 39.39 82.95 56.44 84.09 45.08 73.86 41.29 34.47 25 84.85 44.32
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The reason we compared the performance of different classifiers when a single feature

extraction methodology was used was that the nature of feature spaces was different for

each setting and the results could thus be misleading. For example, when we use the BP

features, the feature space is of low dimensions compared to the settings where the Morlet

feature is used. Therefore, different classification methodologies could only be compared

when they are applied on the same feature space. Since the classification problem in syn-

chronous and self-paced BCIs was different, it only make sense to compare the classifiers

on self-paced and synchronous datasets separately.
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Table 2.4: The Area Under the Curve (AUC) of classifiers for self-paced subjects. For each classification algorithm the first
column shows the results of BP features and the second column shows the results of morlet features.

Subjects
Classifier Boosting Logistic Random Forest SVM LDA QDA MLP

BP Morlet BP Morlet BP Morlet BP Morlet BP Morlet BP Morlet BP Morlet
Subject22 (22) 0.46 0.56 0.64 0.58 0.49 0.49 0.41 0.48 0.64 0.57 0.62 0.55 0.63 0.56
Subject23 (23) 0.54 0.61 0.67 0.68 0.53 0.55 0.5 0.59 0.64 0.68 0.63 0.53 0.66 0.7
Subject24 (24) 0.6 0.58 0.66 0.58 0.58 0.51 0.6 0.52 0.65 0.58 0.64 0.54 0.63 0.57
Subject25 (25) 0.36 0.31 0.78 0.77 0.6 0.69 0.47 0.6 0.79 0.77 0.68 0.66 0.79 0.73
Subject26 (a) 0.59 0.53 0.66 0.55 0.64 0.53 0.56 0.53 0.65 0.53 0.61 0.5 0.66 0.57
Subject27 (b) 0.79 0.77 0.82 0.83 0.78 0.81 0.72 0.76 0.66 0.8 0.72 0.73 0.82 0.83
Subject28 (f) 0.49 0.54 0.51 0.53 0.51 0.53 0.49 0.51 0.5 0.53 0.48 0.51 0.49 0.52
Subject29 (g) 0.52 0.5 0.53 0.58 0.52 0.51 0.53 0.51 0.53 0.55 0.58 0.52 0.53 0.58
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The comparison between different classifiers was performed as follows: (a) we ranked

each classification algorithm based on its performance on the test data. For example, for

subject1 (O3), when the Morlet features were used, the MLP was the best classifier, LR

was the second best and so on. We ranked the algorithms over each subject separately,

then we averaged the ranks, (b) the Friedman test was then applied on the resulting ranked

results. (c) if the null hypothesis was rejected by the Friedman statistical test, we performed

a second set of statistical tests. In particular, we used the Holm’s test and compared all

classifiers to the control classifier. The control classifier is the one with the best average

rank on the test data.

The average rank of the different classifiers that are based on the number of wins for

the synchronous and the self-paced datasets respectively are given in Table 2.5. These

results show that depending on the feature sets and the dataset type (synchronous versus

self-paced), both linear classifiers such as LR and LDA and non-linear ones (e.g., MLP,

RF) could be among the top performing classifiers. Another interesting observation is that

in all settings, the average rank of the LR classifier is better than the LDA’s. This is due the

fact that the BCI data is noisy and usually has many outliers. As discussed in the previous

sections, unlike LR, LDA is sensitive to outliers and is therefore not robust. Comparing

the ensemble classifiers shows that the RF classifier has a better average rank compared to

Ada-Boosting (i.e. BST); this is again due the sensitivity of BST to outliers.
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Table 2.5: Average Rankings of the classification algorithms for both synchronous
and self-paced datasets. The number in the parenthesis corresponds to the aver-
age rank of the algorithm among different subjects. For each feature extraction
method the classifiers typed in bold are the recommended ones. The recom-
mended classifiers are selected based on the results of the statistical tests.

Data Synchronous Self-paced

Feature BP Morlet BP Morlet

(Setting 1) (Setting 2) (Setting 3) (Setting 4)

1 MLP(2.92) LR(2.45) LR(1.81) LR(1.87)

2 LR(2.97) RF(3.3) MLP(2.75) MLP(2.56)

3 SVM(3.11) MLP(3.42) LDA(3.06) LDA(2.81)

4 LDA(4.09) SVM(3.57) QDA(4.18) BST(4.25)

5 BST(4.54) BST(4.16) RF(4.87) RF(4.87)

6 QDA(5.11) LDA(4.45) SVM(5.5) SVM(5.81)

7 RF(5.21) QDA(6.61) BST(5.81) QDA(5.81)

In Setting 1, as shown in Table 2.5, MLP was the best performing classifier, i.e., when

the BP features were used on synchronous datasets. Since the null hypothesis was rejected

by the Friedman statistical test (p-value=1.4e-4), the Holm’s post-hoc was performed and

all classifiers were compared to Multi-Layer Perceptron (control classifier).

The p-values corresponding to pairwise comparison of classifiers are shown in Table

2.6. For α = 0.1, all hypothesis with p-value less than 0.0333 were rejected. According

to the Holm’s test results, there is no significant difference between the performance of

MLP, LR, SVM and LDA. Thereby, these classifiers are the recommended ones for the

BP features in synchronous data. The other classifiers, i.e., BST, QDA and RF had a poor

performance for this type of features.
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Table 2.6: P-values corresponding to pairwise comparison of different classifiers. α

is chosen to be 0.1. For settings 1 and 2 all hypothesis with p-value less than
0.0333 are rejected. For setting 3 and 4 all hypothesis with p-value less than
0.05 are rejected. The results are rounded up to 4 decimal places.

Setting 1(Synchrounous, BP) Setting 2(Synchrounous, Morlet) Setting 3(Self-paced, BP) Setting 4(Self-paced, Morlet)

hypothesis P− value hypothesis P− value hypothesis P− value hypothesis P− value

RF vs. MLP 0.0006 QDA vs. LR 0.0 SVM vs. LR 0.0002 SVM vs. LR 0.0002

QDA vs. MLP 0.0010 LDA vs. LR 0.0026 BST vs. LR 0.0006 QDA vs. LR 0.0002

BST vs. MLP 0.0151 BST vs. LR 0.0101 RF vs. LR 0.0045 RF vs. LR 0.0054

LDA vs. MLP 0.0801 SVM vs. LR 0.0932 QDA vs. LR 0.0278 BST vs. LR 0.0278

SVM vs. MLP 0.7750 MLP vs. LR 0.1431 LDA vs. LR 0.2471 LDA vs. LR 0.3854

LR vs. MLP 0.9430 RF vs. LR 0.1985 MLP vs. LR 0.3854 MLP vs. LR 0.5244

In Setting 2, the best performing classifier was LR (Table 2.5). The p-value for the

Friedman test was 1.7e-8; therefore, the difference between the classifiers is not random.

The Holm’s test suggests that RF, MLP, and SVM are as good as the LR classifier (Table

2.6 setting 2).

In Settings 3 and 4, the LR classifier performed better than others (Table 2.5). In Setting

3 the Friedman’s test p-value was 7.16e-4, and in Setting 4 Friedman’s test p-value was

1.8e-4. The Holm’s test results suggested that there was no significant difference between

MLP, LDA and LR (Table 2.6 setting 3 and 4). All hypotheses with p-value less than 0.05

were rejected.

Among the classifiers used in this study, RF, BST and MLP are inherently designed to

handle multi-class classification and the others (i.e., SVM, LR, LDA and QDA) are used

in a one against others setting to handle multi-task problems. Therefore, in addition to the

four settings discussed above, we have also performed two other statistical tests. The aim

was to determine which classifiers would yield the best results in binary-task BCIs and

which one(s) would yield the best results in multi-task BCIs.
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Table 2.7: Average Rankings of the classification algorithms for binary and multi-
class classification in synchronous datasets. The number of subjects in binary
task was 12 and the number of subjects in multi-task BCIs was 9. The number in
the parenthesis corresponds to the average rank of the algorithm among different
subjects. For each feature extraction method the classifiers typed in bold are
the recommended ones. The recommended classifiers are selected based on the
results of the statistical tests.

Feature BP Morlet

Data Binary Multiclass Binary Multiclass

1 SVM(3.33) MLP(2.11) LR(1.87) RF(2.50)

2 LDA(3.41) LR(2.22) MLP(3.20) SVM(3.00)

3 MLP(3.54) SVM(2.83) RF(3.91) LR(3.22)

4 LR(3.54) RF(3.88) LDA(3.91) MLP(3.72)

5 QDA(3.70) BST(4.94) SVM(4.0) BST(3.94)

6 BST(4.25) LDA(5.0) BST(4.33) LDA(5.16)

7 RF(6.20) QDA(7.0) QDA(6.74) QDA(6.44)

From the total of 21 subjects in the synchronous BCIs datasets, 12 had performed binary

tasks and 9 had performed multi-task control of BCIs. Therefore, we performed separate

statistical tests for binary and for multi-task datasets. The average rank of different classi-

fiers for the binary and for the multi-task datasets are given in Table 2.7. This Table shows

that in binary-task BCIs for both BP and Morlet features the best performing classifier is

an inherently binary classifier (i.e., SVM in binary-task BCIs with BP features and LR in

binary-task BCIs with Morlet features). Furthermore, in multi-task BCIs for both kinds of

features the best performing classifier is an inherently multi-class classifier (i.e. MLP in

multi-task BCIs with BP features and RF in multi-task BCIs with Morlet features).
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Table 2.8: P-values corresponding to pairwise comparison of different classifiers. α

is chosen to be 0.1. For binary task BCIs with BP features all hypothesis with
p-value less than 0.02 are rejected. For multi-task BCIs with BP features all
hypothesis with p-value less than 0.0333 are rejected. For binary task BCIs with
Morlet features all hypothesis with p-value less than 0.1 are rejected. For multi-
task BCIs with Morlet features all hypothesis with p-value less than 0.025 are
rejected. The results are rounded up to 4 decimal places.

(Binary, BP) (Multi-task, BP) (Binary, Morlet) (Multi-task, Morlet)

hypothesis P− value hypothesis P− value hypothesis P− value hypothesis P− value

RF vs. SVM 0.0011 QDA vs. MLP 0.0 QDA vs. LR 0.0 QDA vs. RF 0.0001

BST vs. SVM 0.2986 LDA vs. MLP 0.0045 BST vs. LR 0053 LDA vs. RF 0.0088

QDA vs. SVM 0.6706 BST vs. MLP 0.0053 SVM vs. LR 0.0159 BST vs. RF 0.1560

LR vs. SVM 0.8132 RF vs. MLP 0.0808 RF vs. LR 0.0206 MLP vs. RF 0.2300

MLP vs. SVM 0.8132 SVM vs. MLP 0.4781 LDA vs. LR 0.0206 LR vs. RF 0.4781

LDA vs. SVM 0.9247 LR vs. MLP 0.9131 MLP vs. LR 0.1305 SVM vs. RF 0.6234

For each group of subjects, we performed the Friedman test and the Holm’s post-hoc

test. This is done to statistically compare the performance of other classifiers with respect

to the best performing classifier in each case. The p-values corresponding to pairwise com-

parison of classifiers are given in Table 2.8. Table 2.8 suggests that for the BP features,

MLP, LR and SVM are recommended for both the binary and multi-class BCIs. Accord-

ing to Table 2.5, these classifiers are also recommended in Setting 1 (corresponding to 21

subjects performing synchronous BCIs with BP feature extraction method). Table 2.8 also

suggests that, for Morlet features, LR and MLP classifiers are recommended for both the

binary and multi-class BCIs. According to Table 2.5, these classifiers are among the rec-

ommended ones in Setting 2 (corresponding to 21 subjects performing synchronous BCIs

with Morlet feature extraction method). The results suggest that among the classifiers that

are designed to handle multi-task classification, RF and MLP are recommended for multi-

task BCIs. The other observation is that even in multi-task BCIs, some inherently binary

classifiers are among the recommended classifiers. The results of Table 2.5 are, however,
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more reliable as the number of subjects in Settings 1 and 2 is almost twice the number of

subjects in Table 2.7.

2.5 Conclusion

In this chapter, we built a general open source framework to compare the performance

of different algorithms in BCIs. Using this framework, we performed a comprehensive

comparison between 14 different BCI designs (two feature extraction methods and seven

classification methods for each feature extraction methodology) over 29 BCI subjects per-

forming sensory motor tasks in synchronous and self-paced BCI paradigms. We backed

our results with rigorous statistical tests.

Our results show that the Logistic Regression (LR) and Multi-Layer Perceptron (MLP)

classifiers are among the best performing classifiers and are recommended for all different

designs. LR is a linear classifier like Linear Discriminant Analysis (LDA) while MLP is a

very powerful nonlinear classifier. Both LR and MLP classifiers are prone to over-fitting;

however, in both cases we have included regularization terms to avoid over-fitting. The

observation that LR was among the best classifiers suggested that the feature space of our

task was somewhat linearly separable.

Finally, we should emphasize that classification is just one step in our framework, and

to get acceptable performance other steps are also important. Pre-processing of the data,

feature extraction, and feature selection all change the distribution of the data in the feature

space and have a major role in getting good results. Therefore, a BCI system should be

viewed as a unit consisting of different blocks in which all the block settings and parameters

should be adjusted jointly for each individual subject.
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Chapter 3

Customizing Brain Computer Interfaces

3.1 Introduction

As discussed in chapter 1, different subjects have different brain characteristics, and a BCI

system should be customized for each individual subject. For example, the frequency bands

in which the alpha and beta activities occur differs from one individual to another. In sen-

sory motor BCIs, the event related desynchronization (ERD) and the event related synchro-

nization (ERS) occur in these frequency bands [79].

Generally the range of the alpha and beta brain waves are ≈ [8− 12]Hz and ≈ [16−

24]Hz respectively. However, the value of these brain waves vary from one person to

another [77]. Finding these frequency bands would thus play a significant role in obtaining

a desirable performance. In synchronous BCIs, the selection of the EEG time segment

(from which the features are extracted), for each person has a major role in determining

the accuracy of a learning system. Also, in BCI systems, the choice as to which channels

to use is very important. These subject-specific brain characteristics form some of the

hyper-parameters that are fed to a BCI system. The value of these hyper-parameters are

determined before the feature extraction and classification processes.
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The problem of finding the appropriate values for the hyper-parameters is known as

hyper-parameter optimization. This problem is of great importance in any machine learning

task. Two of the most common approaches for finding good values for hyper-parameters

are grid search and manual search. To apply a grid search method on a continuous space,

we usually discretize the space. In the grid search approach, when the dimensionality of

the search space, or the granularity of the discretization of continuous hyper-parameters

increases, the computation time to carry out the search process increases vastly (curse of

dimensionality). Manual search, has the drawback that its results are not reproducible.

This is because researchers usually do not report the hyper-parameter values used in their

methods, and this makes the reproduction of their results difficult. Both these methods

are thus not applicable in high-dimensional search spaces. Therefore, there is a need for

smart methods that find good solutions efficiently i.e. using a small number of function

evaluations.

In the BCI field, the values of these hyper-parameters have been mostly selected man-

ually i.e. selected by EEG experts. There exists some prior work in the field that have

partially addressed the hyper-parameter optimization task. Some studies only adjust the

frequency bands and the time interval [93] [18] [28] [94] [31] [11], and some others address

the channel selection problem [45] [104] [5] [61]. These methods are however not scalable,

they also do not optimize all the hyper-parameters jointly. Furthermore, in these methods

the process of selecting the subject specific hyper-parameters is completely independent

from the classification and feature extraction processes. That is, the hyper-parameter op-

timization task has no knowledge of the nature of the feature extraction and classification

algorithms.

In this work, we take a totally different approach from those in the literature. An ideal

learning framework for a BCI problem should aim at studying the hyper-parameter opti-

mization, the feature extraction and the classification processes jointly. In other words, the

42



hyper-parameters of the BCI system should be optimized based on the selected classifier

and feature extractor methods.

In this chapter, we first show the importance of finding the optimal values for the hyper-

parameters of BCIs. Then, we propose a learning framework that is capable of performing

subject-specific customization for BCIs. we use Bayesian optimization to tune the hyper-

parameters of the BCI system. The proposed framework is computationally in-expensive

and can be used to customize any number of hyper-parameters in a BCI, and the experi-

ments have led to significant improvements in motor imagery based BCIs.

3.2 Bayesian Optimization

Bayesian optimization (BO) is capable of optimizing functions that do not have closed form

mathematical expressions and are computationally expensive to evaluate [23]. This ap-

proach has several advantages over other global optimization algorithms [54] and has thus

gained much attention for hyper-parameter optimization in machine learning. Bayesian

optimization is very efficient in terms of the number of function evaluations. Its efficiency

originates from its ability to incorporate prior knowledge about the optimization task. Es-

pecially in the case of optimizing the hyper-parameters, the candidate points in the neigh-

borhood of a certain point x have almost the same function value (i.e. the function being

optimized is smooth). In Bayesian optimization, we can incorporate this domain knowledge

about the system through a Kernel function. Bayesian optimization uses all the information

gained from previous function evaluations to find a new candidate point. This is done by

utilizing the global information captured in the probability distribution fitted to the data to

propose a new candidate.

Bayesian optimization optimizes an objective function g(x) over some bounded set X .

The objective function does not have a closed form expression and its derivative is un-

known. A Bayesian optimization algorithm sequentially constructs a probabilistic model
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for g(x) and then uses this model to select a candidate for the optimization task. In our

case, the objective function is the accuracy of the learning framework used.

Let us assume that at time t − 1, the sequence D1:t−1 =

{(x1,g(x1)),(x2,g(x2)), ...,(xt−1,g(xt−1))} have been observed. The Bayesian opti-

mization algorithm creates a posterior distribution over the objective function g given the

observations i.e. P(g |D1:t−1). This posterior function expresses the algorithm’s belief

about the objective function g, and can be seen as a way of estimating the objective

function.

Based on this posterior function, the Bayesian optimization algorithm proposes another

candidate to be evaluated in the next iteration. In particular, it creates a new utility function

based on the posterior distribution P(g |D1:t−1). This function is called the acquisition

function. Unlike the original optimization task, finding the maximum of the acquisition

function is not difficult, however this function is still nonconvex. To optimize this function,

a gradient descent algorithm or a derivative free optimization algorithm can be used. A local

maximum of the acquisition function is the new candidate (i.e. xt). This whole process is

continued for T iterations.

For the Bayesian optimization algorithm, there are two main components that should

be determined in advance. The first component is how to model the posterior (P(g |D1:t))

distribution over the objective function. Such modeling should be powerful enough to be

able to model complex posterior distributions of the objective function. This is discussed

in Section 3.2.1. The second component is the choice of the acquisition function. This is

discussed in Section 3.2.2.

3.2.1 Modeling Posterior Distribution

To model the posterior distribution two of the most powerful methods for regression are

used. The first method utilizes Gaussian Processes (GP) [83] which is a very convenient
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method for modeling non-linear regression tasks (Section 3.2.1). GPs assume the corre-

lation between samples in all parts of the space has the same structure, and they fail to

model cases in which the dataset is piece-wise continuous. The second approach utilizes

Random Forests (RF) for the regression task (Section 3.2.1). In [29] Criminisi et al. have

compared the performance of RF and GP regression methods. They stated that GP and

RF have different behaviors when large gaps exist in the training data. In such cases RFs

can model the uncertainty in the gaps appropriately. They also concluded that RFs can

model multi-modal distributions of data in the gaps while GPs are intrinsically uni-modal

Gaussian distribution.

Gaussian Processes (GP)

Gaussian Processes (GPs) have been shown to be well-suited to estimate the posterior dis-

tribution over an objective function [72]. GPs are one of the most popular families of

stochastic processes for modeling regression problems. One characteristic of GPs is their

ability to model the uncertainty of predictions. A GP is a non-parametric learning algo-

rithm which represents an infinite dimensional Gaussian distribution over functions. A

good property of GP is that solving the prediction problem associated with GPs is straight-

forward and there is a closed form solution for that.

As is the case of an ordinary Gaussian distribution, Gaussian processes can be fully

determined by their first and second order moments. As a result, to model a regression

problem with a GP, the mean and the variance i.e. kernel function of the GP should be

determined. The family of functions represented by a GP is determined by the choice of

the mean and kernel function of the prior distribution. Usually we assume the mean of the

prior is zero and only the kernel function defines the functions represented by a GP. Such

a kernel function controls the smoothness of the functions represented by a GP. This is

specially useful in hyper-parameter optimization, where we can design a smooth posterior
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over the hyper-parameter space by choosing an appropriate kernel.

To model the posterior distribution with a GP, we assume that the sequence of hyper-

parameter candidates up to time t− 1 is x1:t−1 = [x1,x2, ...,xt−1]
T , and the corresponding

values of the objective function for this sequence are g1:t−1 = [g(x1),g(x2), ...,g(xt−1)]
T .

At time t, the joint density distribution of g1:t−1 and gt (i.e. g(xt)) is Gaussian, i.e.,

g1:t ∼ N

(
0,
[ K kt,1:t−1

kT
t,1:t−1 kt,t

])
, (3.1)

where K is the kernel matrix and is the result of applying the kernel function (ki, j = k(xi,x j))

on all pairs of previous observations x1:t−1:

K =



k1,1 ... k1,t−1

. . .

. . .

. . .

kt−1,1 ... kt−1,t−1


. (3.2)

In Equation 3.1, kt,1:t−1 is [kt,1,kt,2, ...,kt,t−1]
T and kt,t = k(xt ,xt). Then the posterior dis-

tribution is calculated using equation 3.3:

P
(
gt |g1:t−1,xt

)
= N

(
µt ,σ

2
t
)
, (3.3)

where

µt = kT
t,1:t−1K−1g1:t−1, (3.4)

σ
2
t = kt,t− kT

t,1:t−1K−1kt,1:t−1. (3.5)
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Random Forests (RF)

If we use random forests to model the posterior distribution, at each iteration t of the

Bayesian optimization algorithm, a random forest is trained using D1:t−1. Assuming M

regression trees are trained on the data, then:

p
(
gt |g1:t−1,xt

)
=

1
M

M

∑
m=1

pm
(
gt |g1:t−1,xt

)
(3.6)

where pm
(
gt |g1:t−1,xt

)
is the probability density function over the output variable produced

by the mth tree.

3.2.2 Acquisition Function

The second component of a Bayesian optimization algorithm is the acquisition function.

The role of the acquisition function is to direct the search process to the new candidate

points. The new points should be selected so that they have higher probability i.e., yield

higher values of the objective function. A good acquisition function should be able to

balance the trade-off between exploration and exploitation. In other words, the algorithm

should search globally in the beginning of the optimization process. As the search proceeds,

the posterior over the objective function becomes more accurate, and the algorithm should

become more exploitative.

One simple acquisition function is to select a candidate that has the maximum prob-

ability of improving the objective function value over the current best optimal solution.

However, this method does not explore the search space properly, and the points that are

infinitesimally greater than the current best value will have a higher chance to be selected.

A better alternative is to maximize the Expected Improvement (EI). EI considers both the
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probability of improvement and the amount of improvement.

xt = argmax
x

E(max(0,g(x)−g+) |D1:t−1), (3.7)

where g+ is the maximum observed value until iteration t − 1. The maximization inside

the expectation in equation 3.7 states that we only evaluate those points which our model

believes would result in improvement over the current best point.

Under the assumption of a Gaussian posterior distribution, EI can be evaluated ana-

lytically. Therefore, the expectation for a possible candidate xt in Equation 3.7 can be

evaluated, as following:


(
µt−g+

)
Φ
(
Zt
)
+σtφ(Zt) σt > 0

0 σt = 0
, (3.8)

and

Zt =
µt−g+

σt
, (3.9)

where φ(.) and Φ(.) are the probability density function and the cumulative distribution

function of a standard Gaussian distribution. The candidate with the maximum EI value in

equation 3.8 is selected as the candidate for the tth iteration of Bayesian optimization. For

both Gaussian process and random forest posteriors, we have used equation 3.8.

3.3 Proposed Algorithm

For any BCI system, the goal is to achieve the best possible accuracy. The traditional

approach is to model the BCI design task as a machine learning problem and solve the

problem accordingly. In this section however, we solve the BCI task from an optimization

point of view. We define an objective function (Section 3.3.1), and we then use a Bayesian
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optimization algorithm (Section 3.3.2) to optimize this function. Our objective function

is the performance of the learning system, and we optimize this function over the hyper-

parameter space. Subsequently, our algorithm builds an ensemble of classifiers (Section

3.3.3) using the results of the optimization phase.

The pseudo code of our algorithm is given in Algorithm 1. At each iteration (t) of

our algorithm, the optimizer suggests a new candidate (xt) in the hyper-parameter space,

then a new classifier (lt) is built based on the values of the new candidate. Based on the

performance of lt at iteration t, another candidate is suggested for iteration (t +1) and this

process continues for T iterations. After T iterations, we have T classifiers, each trained

on a different subset of the hyper-parameter space. The outputs of the classifiers are then

combined into a single prediction rule which is much more accurate than the individual

classifiers.
Algorithm 1: The pseudo-code of the proposed algorithm

1 Select an x1 from the hyper-parameter space uniformly at random;

2 Create a feature matrix f1 from the brain signals using x1;

3 Train a new Classifier (l1) using feature matrix f1, and calculate the its performance

g1;

4 Create the posterior distribution;

5 for t:=2 to T do

6 Find candidate (xt) from the hyper-parameter space (equation 3.7);

7 Create a feature matrix ft from the brain signals using xt ;

8 Train a new Classifier (lt) using feature matrix ft , and calculate the its

performance gt ;

9 Update the posterior distribution p(gt |g1,t−1,xt) (equations 3.3 for GP and 3.6

for RF);

10 end

11 Combine l1...lT to build an ensemble classifier;
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3.3.1 Learning Algorithm (Objective Function)

The objective function g : H→ A is a function that maps the hyper-parameter space (H) to

the set of possible performances (A) of the learning system. Using Bayesian optimization

we decide which hyper-parameters yield the best performance. Below, we explain our

learning system in more details.

We used the learning framework described in section 2.2 as our learning system. For

frequency filtering we used the fifth order Butterworth filter, and for spatial filtering we used

CSP (section 2.2.1). For feature extraction we used BP and Morlet features as described in

section 2.2.2. In our experiments the number of BP features extracted from each channel,

were either 2 or 4 (Section 3.3.1). For the classification step, we used Logistic Regression.

Comparing classifiers in sensory motor BCIs in chapter 2, Logistic Regression was among

the best performing classifiers. To select the appropriate values for the parameters of the

classifier, 5× 5-fold cross validation is performed. The parameters with the best mean

performance were used to train the classifier.

The accuracy in the classification is used as the performance measure for evaluating

different algorithms. As the number of samples are the same for different imagery move-

ments, this measure is appropriate to use in this study. Therefore, the output domain of the

objective function is taken as the cross validation accuracy of all possible classifiers. In

other words, our algorithm uses 5×5-fold cross-validation to assess each classifier.

Input Domain of the Objective Function (Hyper-Parameter Space)

In this section, we explain the domain i.e. the hyper-parameter space of the objective

function. We have considered three groups of parameters to form our hyper-parameter

space. We find the values of these hyper-parameters simultaneously for each subject:

(i) the time interval from which features are extracted: In order to explain this hyper-

parameter, a sequence of trials in a movement sensory BCI dataset is illustrated in Figure
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3.1. Each trial consists of a movement interval (left or right hand movement) and a No-

Control (NC) interval. During a movement interval, the subject is requested to perform

a movement imagery task, and in an NC interval the subject should stop controlling the

system.

As depicted in Figure 3.1, the movement and NC interval are consecutive. The presence

of these transition states (i.e. switching from a NC state to movement state or vice versa)

in each brain state segment makes classification more difficult. To alleviate this problem, a

chunk of the signal is discarded from the beginning and the end of the trials. The features

are extracted from the remaining signal.

Since, this BCI hyper-parameter has a real value, we have discretized the search space

in our experiments.

Figure 3.1: An example of sequences of trials in BCI calibration phase in which
each trial is 8s. In the first trial, the subject performed a left hand (L1) imagery
movement followed by a No-Control (NC1) interval of 4s. In the second trial,
the subject performed a right hand imagery movement (R1) followed by a 4s

NC interval.

(ii) EEG Channels: For datasets containing data from many channels (dataset IV2a),

selecting a small set of appropriate channels forms another hyper-parameter of the system.

Our algorithm selects the number of CSP filters (N = 2, 4, 6) or has the option of not

applying CSP (i.e. uses all the channels without applying any spatial filtering).
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(iii) Frequency bands: Another important hyper-parameter in sensory motor BCIs, is

the choice of the frequency bands used for feature extraction. As discussed in Section

3.1, ERD and ERS occur in the upper alpha and the lower beta rhythms. This hyper-

parameter only applies to BP features. As mentioned in Section 2.2.2, for Morlet features,

the frequency ranges were selected based on [24].

For BP features, in each iteration of the optimization algorithm, the algorithm selects

between two options. The first option is to apply a filter-bank with 2 separate blocks cor-

responding to the alpha and the beta frequencies of the brain on each channel, and then,

extract band-power of the filtered signal. The second option is to apply a filter with a large

bandwidth in the range ≈ [4−35]Hz that includes both alpha and beta brain waves of each

channel.

The frequency band hyper-parameter is real valued, therefore we have discretized the

space.

3.3.2 Selecting Hyper-Parameters in BCIs

Choice of the Bayesian Optimization Algorithm

Two different Bayesian optimization algorithms were used here. The first one uses Gaus-

sian process posterior with Matern 5/2 Kernel [92]. This covariance function results in

functions that are twice differentiable, an assumption used to perform quasi-newton opti-

mization. The behavior of the prior function is governed by the choice of its parameters.

The most common approach to derive appropriate values for the parameters is to use a point

estimate (e.g. Maximum Likelihood) of these values. However in [92] a fully Bayesian ap-

proach is used to obtain a marginalized acquisition function. The acquisition function is

the expected improvement (EI), as it can be written in a closed form.

As mentioned in Section 3.2.1, a Gaussian distribution is uni-modal, and it is not ap-

propriate for use in modeling the data when the underlying distribution is multi-modal. To
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handle such cases, we have also applied a second type of Bayesian optimization which

uses Random Forest (RF) posterior. The acquisition function used for RF posterior is the

expected improvement (EI).

Random search

In addition to the Bayesian optimization algorithm, we have also used random search for

finding the hyper-parameter values. Bergstra et al. have shown empirically and theoret-

ically that random search can perform as good as grid-search [10] in less computational

time.

3.3.3 Results Aggregation

After performing optimization on the objective function, we obtain T classifiers which are

trained using the T candidate points proposed by the search algorithm (i.e. Bayesian opti-

mization or random search). We can use the classifier with the minimum cross validation

error as our final classifier. However, instead of selecting a single classifier to predict the

class label of a given new sample, we exploit all the information gained from training

several classifiers on the data, by aggregating all the results. The above hyper-parameter

optimization leads to classifiers which are trained on different parts of the data. We call

these classifiers the level one classifiers. Each level one classifier can be considered as an

expert on a specific part of the dataset. We then combine all these classifiers into one final

meta-level classifier using three different methodologies as explained below:

(i) Voting: Given a new sample, the output of each classifier (i.e. the predicted class

label) is considered as the vote of that classifier. Then the label with the majority of votes

is selected as the final label for a given sample. This method is most useful for non-

probabilistic classifiers.

(ii) Averaging: In probabilistic classifiers, the classifier output represents its belief

about the class label of a new sample. Then based on the classifiers belief, we decide
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the label of the new sample. This refinement of the voting method for probabilistic clas-

sifiers, uses the belief of each classifier for final prediction. In this method we take the

average of the probabilities returned from each level one classifier. In our case the number

of classifiers is the same as the number of iterations of the hyper-parameter optimizer (i.e.

number of candidates we have examined).

P(C f inal = k| f ) ∝
1
T

T

∑
i=1

P(ci = k| f ) k ∈ 1,2, ...,K (3.10)

Where T is the number of iterations (i.e the number of level one classifiers), K is the number

of classes and f is the new sample. C f inal represents the final classifier’s label.

(iii) Stacking: In this method, a learning algorithm is employed to combine the classi-

fiers. A meta level learning algorithm decides the label of a new given sample.

One of the most successful stacking methods is the multi-response linear regression

(MLR) algorithm [36] [95]. In this meta learning algorithm, a classification problem with

K output classes is converted into K regression problems. Given a new sample, the be-

lief of the meta level classifier about each class label is a linear combination of the class

probability of all T classifiers. Therefore, the linear regression for class k is given by

P(C f inal = k| f ) =
T

∑
i=1

αkiP(ci = k| f ), (3.11)

where P(ci = k| f ) is the class probability of the ith classifier, P(C f inal = k| f ) corresponds

to the class probability of the final (meta) classifier and the parameters (αki) of the linear

models are learned using least squares.

Given a new sample f , we first plug f in all of the T classifiers, then we calculate the

class probabilities P(ci = k| f ) for each k. Finally, we plug the class probabilities corre-

sponding to the class k in each of the K linear models. The class k with the maximum value

of P(C f inal = k| f ) is selected as the final label of the given sample ( f ).
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3.3.4 Termination of the Algorithm

In our Bayesian optimization algorithm, the algorithm stops when the termination condition

is reached, otherwise the algorithm continues for T iterations. In fact, T is the maximum

possible number of iterations for our algorithm. The termination condition basically checks

if there has been an improvement in the cross-validation accuracy in the last τ iterations of

the algorithm. To check if there is no improvement, we use the following equation:

MAX−min
m1

≤ ε (3.12)

In equation 3.12, MAX is the maximum cross validation accuracy in the last τ iterations of

the algorithm, min is the minimum cross validation accuracy in the last τ iterations of the

algorithm, and m1 is the initial cross validation accuracy at time t = 1. ε is the threshold to

stop the algorithm.

3.3.5 Time Complexity of the Algorithm

There are three factors that govern the running time of the Bayeisan optimization algorithm.

1) the sum of the running times of feature extraction and classification, 2) the running

time of each iteration of the Bayesian optimization, and 3) the number of iterations of the

algorithm.

1) The sum of the running times of classification and feature extraction: In our case, the

running time of this part is small. The running time of extracting Morlet and BP features

is low. The running time of Logistic Regression is also very low. The Hessian of the cost

function in Logistic Regression can easily and quickly be calculated. Using second order

optimization algorithms makes the convergence of the algorithm very fast.

2) Running time of each iteration of Bayesian optimization: The running time of each

iteration of the Bayesian optimization is governed by the complexity of building the pos-
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terior distribution, and in finding the optimal value of the acquisition function. The com-

plexity of Gaussian process is O(T 3) (assuming the parameters of the covariance function

are known). T is the number of Bayesian optimization iterations. The complexity of gen-

erating a Random Forest is O(M(mT logT )), M is the number of trees, m is the number of

hyper-parameters selected to split each node of the tree. In our case M was equal to 50.

In Bayesian optimization, the size of T is very small so the complexity of one iteration of

Bayesian optimization is almost negligible.

3) The number of Bayesian optimization iterations: Depending on the dimensionality

of the hyper-parameter space, the number of iterations required by Bayesian optimiza-

tion (to converge) increases. The overall running time of the Bayesian optimization is the

number of iterations multiplied by the sum of the running time of feature extraction and

classification, and the running time of each step of Bayesian optimization.

3.4 Results and Discussion

Three sensory motor BCI datasets consisting of 21 subjects were used to evaluate the

methodology proposed in this chapter. These are datasets IIa [26] and IIb [64] of BCI com-

petition IV, and dataset IIIa [16] of BCI competition III. All datasets are for synchronous

BCIs. We have used the training data of these datasets for our training phase and tested our

method on their test data (section 2.3).

To show the importance of finding the appropriate values for hyper-parameters, we

have first compared the performance of different search (optimization) algorithms in Sec-

tion 3.4.1. Then in Section 3.4.2, we have compared our results to those reported in the

literature. In both cases, we have conducted separate statistical tests. To gain more in-

sights about the effects of the number of optimization iterations we have performed a set of

experiments which are described in Section 3.4.3.
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3.4.1 Comparing with Other Hyper-Parameter Search Algorithms

The purpose of this section is to compare our fully automated algorithm with other search

methods (e.g. random search, manual search), and demonstrate the importance of hyper-

parameter optimization.

The most common approach to search for the hyper-parameter values is the grid-search.

Since, the BCI hyper-parameter space has real valued hyper-parameters (e.g. frequency

bands for alpha and beta bands), we have discretized the search space (section 3.3.2). Un-

fortunately, even with discretization, the search space would still contain hundreds or thou-

sands of candidate points to examine. This makes it infeasible to find the optimal values

using the grid search. Therefore, we compare our method with the manual search method.

In the manual search method, a set of hyper-parameter values that were specified by the

user are tested.

We tested 3 different automated optimization algorithms: 1) Bayesian optimization

with Gaussian Process (BO-GP) posterior, 2) Bayesian optimization with Random Forest

(BO-RF) posterior and 3) random search. The initial point used to start the Bayesian op-

timization was selected randomly. For each of the 3 search algorithms, we aggregated the

results of the trained classifiers using the three methods discussed in section 3.3.3; MLR,

voting and averaging. We also reported the results of the best classifier. This classifier was

trained using the candidate hyper-parameter set that had minimum cross-validation error.

To extract the Band Power (BP) features, we optimized 1) the part of the movement

interval from which the features are extracted, 2) the frequency bands used to extract fea-

tures, and 3) the number of CSP filters for dataset (IV2a) with 22 channels. To extract the

Morlet features, we optimized the same parameters excluding the frequency bands, because

we used the same frequency bands as [24] for the Morlet features.

In addition to the results obtained by our proposed fully automatic algorithm and the

manual search method, we have also included the results of using the default values of
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the hyper-parameters. In our results, we refer to this as the ”No-Search” method. In this

method, the features were extracted from the whole segment of the movement interval, and

no channel selection was performed. Also, in the case of BP features, the frequency bands

were in the range [8−12]Hz and [16−24]Hz which correspond to the standard alpha and

beta frequencies of the brain.

The results of applying all these search algorithms when the Morlet features are used

are given in Table 3.1, and those for the BP features are given in Table 3.2. For datasets

III3b and IV2b, the maximum number of iterations was 40 (i.e. T = 40), the maximum

number of iterations for dataset IV2a was 60, and for all algorithms ε (equation 3.12) was

e−4. We have repeated our automatic search algorithms 10 times to reduce the effects of

the random seed.

The Qualitative comparison of the different algorithms in Tables 3.1 and 3.2 suggests

the following results: 1) for almost all subjects, Bayesian optimization significantly im-

proves the results compared to the manual search method. There are however some cases

in which Random Search has the best performance. 2) For all subjects, the results of ap-

plying Bayesian optimization is significantly better than the results of using the default

values of the hyper-parameters (i.e. No-Search columns in Tables 3.1 and 3.2). 3) For the

Morlet features (Table 3.1), Bayesian optimization with Random Forest posterior outper-

forms other methods. 4) For BP features (Table 3.2), Bayesian optimization with Gaussian

process posterior outperforms other methods.

As discussed in 2.2.6, according to Demšar et al. [32], when comparing several algo-

rithms across several datasets, comparing the average ranks of different algorithms is more

reliable than comparing average accuracies. Comparing the average ranks of different algo-

rithms shows that for the Morlet features, the best performing algorithm is BO-RF (AVG),

and for the BP features, the best algorithm is BO-GP (AVG).
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Table 3.1: Accuracy of each algorithm with Morlet features. For each search algorithm we used MLR, voting (VOTE)
and averaging (AVG) for aggregating the results of the classifiers. MIN is the result of the best level 1 classifier in
optimization phase. Highlighted cells show the configuration for which the performance is the best.

No Manual BO-GP BO-RF Random Search
Search Search MLR VOTE AVG MIN MLR VOTE AVG MIN MLR VOTE AVG MIN

subject 1 73.58 82.39 86.10±0.91 83.77±0.55 83.84±0.80 84.28±0.00 85.60±0.77 82.70±0.42 83.65±0.69 84.28±0.00 84.28±0.63 83.14±1.01 81.07±0.71 83.96±0.94
subject 2 83.88 83.89 84.19±0.09 83.30±0.26 83.35±0.23 83.15±0.00 84.20±0.12 83.11±0.23 83.28±0.35 83.15±0.00 83.81±0.42 82.17±0.58 82.80±0.29 82.39±1.20
subject 3 77.4 78.15 86.20±0.22 83.89±0.23 84.98±0.33 80.74±0.00 86.46±0.31 83.37±0.44 84.70±0.45 80.74±0.00 86.46±0.55 83.74±0.51 84.98±0.54 80.70±0.11
subject 4 68.85 68.86 73.33±0.26 70.44±0.59 70.70±0.70 70.18±0.00 73.68±0.48 70.83±0.35 71.40±0.75 69.69±1.45 73.51±1.24 70.13±1.15 71.80±0.79 70.35±2.15
subject 5 57.95 58.37 56.82±1.34 58.73±0.94 58.37±0.45 58.78±0.00 56.53±1.57 61.27±1.36 60.57±1.21 57.92±1.23 57.14±1.49 58.69±0.94 58.41±0.76 57.22±1.19
subject 6 55.21 53.48 53.26±1.74 54.96±0.71 55.74±0.91 56.87±0.26 53.48±0.00 58.52±0.40 58.09±0.29 56.96±0.00 53.48±1.63 54.87±1.06 55.70±1.31 55.35±3.03
subject 7 96.09 94.79 96.06±0.27 96.64±0.21 96.35±0.24 97.62±0.15 95.44±0.00 97.04±0.18 97.13±0.20 97.69±0.10 96.19±0.90 95.96±0.49 96.48±0.41 97.04±0.76
subject 8 86.44 91.58 88.86±0.72 91.61±0.45 91.50±0.32 88.39±0.17 89.19±0.34 90.22±0.33 91.32±0.23 88.46±0.18 89.41±1.09 90.84±0.91 90.33±0.85 86.92±3.03
subject 9 84.86 82.87 85.62±0.28 84.86±0.31 85.10±0.32 85.66±0.00 85.86±0.74 86.18±0.86 85.94±0.36 85.46±1.47 85.26±1.39 85.10±0.69 85.46±1.03 84.86±1.61
subject 10 73.27 72.84 72.11±0.51 75.34±0.42 74.57±0.61 72.41±0.00 72.41±0.70 77.37±0.59 76.98±0.65 72.59±0.52 74.83±1.52 76.98±0.93 75.86±0.96 72.41±1.49
subject 11 85.21 83.48 89.09±0.23 88.43±0.21 88.65±0.13 84.78±0.00 89.09±0.41 91.35±0.71 91.96±0.68 85.22±1.51 89.30±0.83 91.17±0.87 90.91±1.17 85.30±0.80
subject 12 85.3 86.12 81.96±0.31 85.92±0.46 87.06±0.41 85.71±0.00 79.71±1.16 84.61±0.73 84.53±0.76 85.63±0.24 81.55±1.81 84.78±1.13 84.82±0.87 84.82±1.25
subject 13 54.51 77.77 63.23±4.52 84.86±0.62 85.00±0.66 83.68±0.00 68.85±9.76 81.53±1.44 82.12±1.20 83.68±0.00 68.06±8.33 82.08±1.46 82.29±1.31 82.26±2.69
subject 14 34.72 52.77 35.49±1.35 44.51±0.43 44.03±0.97 46.53±0.00 30.07±2.80 40.94±1.48 44.86±2.15 42.43±3.10 33.72±1.64 40.76±1.17 42.33±0.91 46.08±3.40
subject 15 59.72 86.11 82.85±0.78 86.18±0.51 86.60±0.59 85.28±0.23 82.26±1.28 85.66±0.97 86.60±0.88 84.97±0.31 81.32±3.44 83.85±1.21 84.79±0.69 85.00±1.57
subject 16 44.44 47.91 43.65±4.79 60.49±0.73 61.98±1.31 59.38±0.00 41.04±6.30 64.86±1.06 66.28±1.44 58.82±1.06 48.23±8.20 61.91±1.61 62.33±1.95 58.19±2.28
subject 17 32.638 38.54 43.65±0.16 43.06±1.24 43.82±0.95 42.71±0.00 38.72±2.44 46.08±1.18 48.72±1.54 43.78±2.39 33.19±4.63 44.72±1.88 46.04±2.24 43.09±2.34
subject 18 36.8 42.7 47.29±1.61 44.90±0.68 47.50±1.16 41.94±1.60 44.10±0.38 53.61±1.57 53.30±1.55 44.79±0.00 41.70±2.81 47.74±1.93 51.32±1.46 42.53±1.30
subject 19 58.68 58.33 64.55±1.46 67.60±0.35 69.41±0.96 64.93±0.00 67.15±3.09 70.07±1.36 72.64±1.78 64.03±1.36 66.53±4.33 72.05±1.67 75.03±1.15 64.48±2.04
subject 20 43.75 79.16 83.51±0.70 82.57±0.58 83.75±0.67 83.40±0.14 79.76±6.44 80.66±1.97 82.33±2.18 79.55±3.18 72.50±10.80 82.50±1.84 83.23±1.70 80.66±1.53
subject 21 49.65 77.08 75.00±0.00 78.65±1.23 79.41±0.93 79.51±0.00 73.85±3.44 76.18±0.78 76.35±0.74 79.51±0.00 72.36±4.65 76.01±1.43 76.74±1.26 76.84±3.31
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Table 3.2: Accuracy of each algorithm with BP features. For each search algorithm we used MLR, voting (VOTE) and aver-
aging (AVG) for aggregating the results of the classifiers. MIN is the result of the best level 1 classifier in optimization
phase. Highlighted cells show the configuration for which the performance is the best.

No Manual BO-GP BO-RF Random Search
Search Search MLR VOTE AVG MIN MLR VOTE AVG MIN MLR VOTE AVG MIN

subject 1 69.81 80.5 83.08±0.82 83.21±0.63 83.33±1.02 84.03±0.50 74.09±1.46 74.59±0.64 75.41±0.66 74.21±0.89 81.19±1.88 80.44±1.24 81.51±1.23 80.88±1.47
subject 2 69.62 70.19 77.59±0.37 75.87±0.34 75.85±0.36 77.78±0.00 65.65±1.49 60.61±0.63 61.33±0.92 65.11±1.52 73.74±1.09 68.24±1.04 69.43±1.48 72.07±2.22
subject 3 74.07 74.26 78.65±0.51 78.46±0.37 78.70±0.51 77.78±0.97 61.56±4.15 59.63±1.10 60.30±1.13 63.28±1.36 77.39±0.84 73.89±0.77 74.85±0.72 77.33±1.54
subject 4 62.28 60.96 67.81±0.76 67.02±1.14 67.19±1.03 66.75±0.94 50.09±3.49 52.02±1.11 53.03±2.02 54.47±2.87 65.66±1.81 61.32±0.92 62.54±0.79 66.23±1.30
subject 5 57.55 56.33 59.35±1.24 60.73±1.35 61.80±1.23 60.78±1.54 50.61±2.45 53.27±0.58 55.22±1.28 52.78±2.42 61.63±1.49 59.88±1.10 62.45±0.77 60.86±1.59
subject 6 53.91 56.09 55.91±0.85 58.61±1.73 59.35±1.43 57.13±0.52 54.30±2.60 52.48±1.15 52.87±1.39 53.87±1.71 55.78±3.41 56.74±2.24 56.09±1.08 57.78±1.91
subject 7 92.18 94.79 94.82±0.57 92.87±0.63 93.39±0.39 92.44±1.07 78.44±3.81 66.38±3.47 71.63±3.62 78.14±4.54 95.08±0.98 93.84±0.79 94.20±0.65 92.25±1.41
subject 8 63.73 67.77 72.78±0.98 70.95±1.25 71.50±1.02 71.79±0.00 55.57±2.59 56.85±1.20 57.14±1.87 57.77±2.79 71.61±1.94 64.80±0.93 65.64±1.60 70.59±3.32
subject 9 72.11 75.7 83.55±0.99 79.40±1.17 79.52±0.80 80.52±2.24 65.66±3.15 60.88±1.47 62.47±1.29 65.46±2.78 82.07±1.83 75.78±1.10 77.73±1.55 80.12±2.02
subject 10 49.56 53.02 76.21±1.50 73.23±1.16 74.57±1.31 73.71±2.75 49.14±0.00 49.14±0.00 49.78±0.65 50.47±2.76 75.17±0.99 64.91±1.14 68.88±1.07 73.58±2.39
subject 11 92.17 92.18 91.96±0.40 91.57±0.62 91.61±0.62 91.00±1.08 53.48±5.22 51.61±3.62 51.48±7.56 52.87±11.22 90.22±1.09 90.43±0.75 90.83±0.36 90.43±1.73
subject 12 77.55 77.55 85.67±0.69 84.41±0.48 83.76±0.70 83.76±1.35 52.94±4.11 52.16±1.51 53.63±2.27 56.57±3.88 81.84±1.92 78.49±1.27 77.96±0.98 80.82±3.10
subject 13 53.47 72.56 74.86±2.42 80.56±1.20 79.65±1.19 76.98±2.60 64.10±3.88 64.72±2.13 63.78±2.31 67.78±1.12 69.76±4.19 78.58±2.14 79.13±1.10 75.45±2.74
subject 14 40.27 52.08 41.46±2.24 45.24±1.55 47.33±2.02 40.49±3.25 31.67±1.50 33.30±0.88 33.58±0.82 32.78±2.52 45.14±4.03 45.31±1.88 46.56±1.29 43.85±2.66
subject 15 62.15 71.18 70.35±2.27 72.85±0.89 73.30±0.77 69.44±1.98 73.96±1.31 75.31±0.94 75.73±1.12 75.21±1.10 68.96±2.23 71.15±0.78 71.98±0.91 68.61±2.22
subject 16 45.13 60.76 58.26±1.85 59.72±0.60 61.25±0.91 57.40±1.77 57.88±1.58 58.47±2.02 59.83±1.90 57.26±2.35 58.92±3.34 64.69±0.84 63.92±1.15 57.85±2.84
subject 17 35.76 31.59 32.19±1.15 37.57±1.67 35.56±1.42 30.97±0.21 36.88±1.76 36.49±2.39 36.25±2.87 32.99±2.50 36.01±2.13 40.24±1.07 40.49±1.73 34.69±1.70
subject 18 41.66 40.62 48.61±2.02 54.44±1.61 55.45±1.22 43.23±0.17 44.38±2.62 47.74±2.82 48.12±2.37 41.49±1.38 47.12±3.97 46.63±1.76 49.72±2.30 45.52±3.07
subject 19 56.59 60.06 75.42±2.63 77.53±0.84 77.64±0.70 73.99±2.28 70.83±3.69 71.46±3.52 70.90±2.21 68.40±4.73 67.57±2.58 75.28±0.77 74.69±1.37 67.85±4.82
subject 20 56.25 78.47 75.62±1.55 79.72±0.61 80.52±1.01 75.52±1.08 74.65±3.28 77.88±2.89 80.03±2.50 76.28±3.14 78.47±2.52 81.15±1.18 81.98±1.47 76.18±2.44
subject 21 61.45 66.66 75.03±2.57 80.76±1.43 81.15±1.28 72.26±2.92 76.18±2.34 77.01±1.18 77.43±0.89 76.18±1.09 73.85±4.11 78.44±2.03 79.51±1.64 72.85±3.67
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Statistical Tests

we use the Friedman test to statistically validate the obtained results. The null hypothesis

assumes that all algorithms have the same performance i.e., they have the same rank. If

the p-value is low enough to reject the null hypothesis, it is concluded that the difference

between the algorithms is not random. If the null hypothesis is rejected, we use Bergmann’s

test [44] as the post-hoc statistical test. For this test, we carried out a pairwise comparison

of all the five algorithms (i.e. No-Search, Manual Search, BO-GP, BO-RF and Random

Search). Since our goal is to show the importance of hyper-parameter optimization and

the power of our proposed method (in finding good candidate hyper-parameter values), we

have compared MIN column of the automatic methods to Manual Search and No-Search

scenarios. MIN column corresponds to the performance of the BCI in the test phase, when

the corresponding hyper-parameter value results in the best cross-validation accuracy in the

optimization phase.

In the Bergmann’s test, each null hypothesis assumes that two different algorithms have

the same performance. In pairwise comparison of algorithms, we have
(5

2

)
= 10 hypotheses

to test, and each of them can be true or false. These hypotheses are logically related i.e.

some combinations of true and false hypothesis cannot hold at the same time. Bergmann’s

test considers the logical relation between the different hypotheses. This algorithm takes

all the sets of hypotheses Ψ that can be true at the same time. Then it computes a set A, and

every hypothesis H which does not belong to A is rejected.

A = ∪{S : S ∈Ψ and for each hypothesis Hi ∈ S, Pi > α/|S|}, (3.13)

where Pi is the p-value corresponding to hypothesis Hi, and α is the significance level.

To perform the statistical tests for each feature extraction method, we first ranked the

five different search algorithms based on their performance. The ranking for each subject
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Table 3.3: Average ranking and average accuracy of the optimization algorithms with
(a) Morlet features and (b) BP features.

(a) Morlet Features

Method Average Ranking Mean Accuracy (%)
No-Search 4.21 63.95

Manual Search 3.19 71.29
BO-GP (MIN) 2.14 73.14
BO-RF (MIN) 2.30 72.83

Random Search (MIN) 3.14 72.40

(b) BP Features

Method Average Ranking Mean Accuracy (%)
No-Search 3.97 61.30

Manual Search 2.83 66.35
BO-GP (MIN) 2.0 69.42
BO-RF (MIN) 4.0 59.68

Random Search (MIN) 2.19 68.85

was done separately, then we averaged the rank of different algorithms over the subjects.

For both the Morlet and the BP features, the average ranks of each algorithm are shown in

Table 3.3.

For the Morlet features, after performing the Friedman’s test, the null hypothesis was

rejected (p-value = 1.2E-4), indicating that there is a significant difference between the

performance of different algorithms. Bergmann’s post-hoc test (Table 3.4) rejected the fol-

lowing hypotheses: No-Search vs. BO-GP (MIN) and No-Search vs. BO-RF (MIN). For

the BP features, the null hypothesis was also rejected (p-value = 3.7E-6) when we applied

Friedman statistical test. Therefore, there are significant differences between the algo-

rithms, and the differences between their performances are not random. The Bergmann’s

procedure rejected the following hypotheses: No-Search vs. BO-GP (MIN), No-Search vs.

Random Search (MIN), BO-GP (MIN) vs. BO-RF (MIN) and BO-RF (MIN) vs. Random

Search (MIN) (Table 3.4).

Based on the results of all the above statistical tests, we can conclude that for the Morlet
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features, Bayesian optimization with Random Forest or Gaussian process posterior are the

best suited methods for hyper-parameter optimization. Also, for the BP features, Bayesian

optimization with Gaussian process posterior and Random Search algorithms are the best

choices for hyper-parameter optimization.

The results of the performed statistical tests support the idea that searching for suitable

values for the hyper-parameters can significantly improve the performance of the algo-

rithm. In addition to the results of the statistical tests, we have also included in Table 3.3

the average accuracy of different algorithms across all subjects. As shown in Table 3.3, for

both feature extraction methods, Bayesian optimization can considerably improve the av-

erage accuracy. Comparing the average accuracies across all subjects shows that Bayesian

optimization can boost the accuracy from 63.95% to 73.14% for the Morlet features. For

the BP features, the average accuracy across all subjects increases from 61.30% to 69.42%

if we use Bayesian optimization.

3.4.2 Comparing the Results with Literature

As discussed in the previous section, for the Morlet features, Bayesian optimization with

Random Forest and averaging (BO-RF (AVG)) yields the best results, and for the BP

features, Bayesian optimization with Gaussian process posterior and averaging (BO-GP

(AVG)) yields the best results. Below, we compare the results in the literature with these

two algorithms (i.e. BO-RF (AVG) and BO-GP (AVG)).

Table 3.5 shows the results of comparing our algorithms to those reported in the litera-

ture for dataset III3b. For datasets IV2b and IV2a, the results are given in Tables 3.6 and

3.7 respectively. In all Tables, the last row shows the average rank of different algorithms.

To compare the results of our algorithm to those reported in the literature, we have used the

results of their best algorithms, reported in each of [25], [24], [106], [4] and [7].

To compare the different algorithms, we have performed the Friedman’s statistical test
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Table 3.4: P-values corresponding to pairwise comparison of different hyper-
parameter search algorithms (a) Morlet features and (b) BP features. α is chosen
to be 0.05. Bergmann’s procedure rejects hypotheses 9 and 10 for the Morlet
features. For the BP features, hypotheses 7, 8, 9 and 10 are rejected. The results
are rounded up to 3 decimal places.

(a) Morlet Features

i Hypothesis p-value
10 No-Search vs. BO-GP (MIN) 0.000
9 No-Search vs. BO-RF (MIN) 0.000
8 No-Search vs. Random Search (MIN) 0.028
7 Manual Search vs. BO-GP (MIN) 0.031
6 No-Search vs. Manual Search 0.035
5 BO-GP (MIN) vs. Random Search (MIN) 0.040
4 Manual Search vs. BO-RF (MIN) 0.071
3 BO-RF (MIN) vs. Random Search (MIN) 0.087
2 BO-GP (MIN) vs. BO-RF (MIN) 0.732
1 Manual Search vs. Random Search (MIN) 0.922

(b) BP Features

i Hypothesis p-value
10 BO-GP (MIN) vs. BO-RF (MIN) 0.000
9 No-Search vs. BO-GP (MIN) 0.000
8 BO-RF (MIN) vs. Random Search 0.000
7 No-Search vs. Random Search (MIN) 0.000
6 Manual Search vs. BO-RF (MIN) 0.016
5 No-Search vs. Manual Search 0.019
4 Manual Search vs. BO-GP (MIN) 0.087
3 Manual Search vs. Random Search (MIN) 0.187
2 BO-GP (MIN) vs. Random Search (MIN) 0.696
1 No-Search vs. BO-RF (MIN) 0.961

Table 3.5: Accuracy of our algorithms compared to the results reported in the litera-
ture for dataset III3b. Highlighted cells show the best performing algorithm. The
text inside the parenthesis corresponds to the original label of the subjects used
in the BCI competition.

BO-GP(AVG) BO-RF(AVG) results of results of results of
(BP) (Morlet) [25] [24] [106]

subject 1 (O3) 83.33 83.65 77.1 80.7 89.3
subject 2 (S4) 75.85 83.28 81.5 81.7 72.96
subject 3 (X11) 78.7 84.7 80.4 80.9 74.26
Average 79.29 83.88 79.67 81.1 78.84
Average Rank 3.67 1.33 3.67 2.67 3.67
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Table 3.6: Accuracy of our algorithms compared to the results reported in the litera-
ture for dataset IV2b. Highlighted cells show the best performing algorithm. The
text inside the parenthesis corresponds to the original label of the subjects used
in the BCI competition.

BO-GP(AVG) BO-RF(AVG) results of results of results of
(BP) (Morlet) [4] [25] [24]

subject 4 (100) 67.19 71.4 70 77.5 74.4
subject 5 (200) 61.8 60.57 60.5 56.4 56.1
subject 6 (300) 59.35 58.09 61 51.9 52.2
subject 7 (400) 93.39 97.13 97.5 93.4 95.6
subject 8 (500) 71.5 91.32 93 96.9 95.9
subject 9 (600) 79.52 85.94 80.5 87.8 89.1
subject 10 (700) 74.57 76.98 78 80.6 72.2
subject 11 (800) 91.61 91.96 92.5 80 89.1
subject 12 (900) 83.76 84.53 87 78.8 82.8
Average 75.85 79.77 80.0 78.14 78.6
Average Rank 3.8 2.6 2.1 3.2 3.3

Table 3.7: Accuracy of our algorithms compared to the results reported in the litera-
ture for dataset IV2a. Highlighted cells show the best performing algorithm. The
text inside the parenthesis corresponds to the original label of the subjects used
in the BCI competition.

BO-GP(AVG) BO-RF(AVG) results of results of
(BP) (Morlet) [4] [7]

subject 13 (1) 79.65 82.12 76 80.5
subject 14 (2) 47.33 44.86 56.5 53.5
subject 15 (3) 73.3 86.6 81.25 79
subject 16 (4) 61.25 66.28 61 62.5
subject 17 (5) 35.56 48.72 55 44.5
subject 18 (6) 55.45 53.3 45.25 50.5
subject 19 (7) 77.64 72.64 82.75 76.75
subject 20 (8) 80.52 82.33 81.25 78.25
subject 21(9) 81.15 76.35 70.75 82
Average 65.76 68.13 67.75 67.5
Average Rank 2.9 2.0 2.5 2.6
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for each dataset separately. The Last row in Tables 3.5, 3.6 and 3.7 show the average rank-

ing of different algorithms in datasets III3b, IV2b and IV2a, respectively. In all datasets,

the Friedman’s statistical test did not reject the null hypothesis. The p-values for the Fried-

man’s test in datasets III3b, IV2b and IV2a were 0.280, 0.138 and 0.471, respectively.

These results suggest that there is no statistical difference between the best performing

results in the literature and our results.

To be able to draw conclusions about the performance of different algorithms, we have

also compared the mean accuracy of different methods. In datasets III3b and IV2a, the

average accuracies of our algorithms are 2.78% and 0.38% better than the results reported

in the literature, respectively. In dataset IV2b, the mean accuracy of [4] is 0.23% better

than our algorithms. It is also important to mention that in both datasets III3b and IV2a,

the average rank of our algorithm is considerably better than the others.

While our proposed algorithm yielded similar or better performance compared to the

literature, it is important to note that the best reported results in the literature were achieved

based on manual fine-tuning of the hyper-parameters of the BCI system and based on more

sophisticated feature extraction and classification methods. Our results show that our au-

tomated parameter optimization of a BCI system with less sophisticated feature extraction

and classification methods yields similar/superior results compared to best performing de-

signs in the literature.

3.4.3 Effect of Number of Optimization Iterations

To gain more insights about the effects of the number of optimization iterations (i.e., the

number of classifiers) on the BCI performance results, we have conducted an experiment

to observe the cross-validation accuracy and test set accuracy with different numbers of

optimization iterations ranging from T=1 to T=80 iterations.

For subject 1 of dataset IV2a, Figure 3.2 shows the cross-validation accuracy and the
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Figure 3.2: Accuracy of our algorithm with the BP features versus the number of
iterations. The label of cross validation curves finish with ’ CV’ and the label
of test data accuracies finish with ’ Test’.

test set accuracy of our algorithm as a function of the number of optimization iterations

with BP features. Figure 3.3 repeats the same but with the Morlet features.

As shown in these figures, as the number of iterations increases the cross-validation

accuracy eventually reaches a plateau. The termination condition in our algorithm checks

when the cross-validation accuracy stops improving and then stops the optimization pro-

cess. In the case of MLR algorithm, if we do not stop the optimization process, we start to

see some signs of over-training i.e. the performance on the test set declines compared to

the cross-validation accuracy. This happens after about 25 iterations in the Morlet features

and 50 iterations in the BP features. We did not observe any signs of over-fitting with other

methods that combine the classifiers (i.e., AVG and VOTE). However, to decrease the risk

of over-training, we have used the termination condition described in Section 3.3.4 rather

than using a fixed number of iterations which is prone to over-fitting.
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Figure 3.3: Accuracy of our algorithm with the Morlet features versus the number of
iterations. The label of cross-validation curves finish with ’ CV’ and the label
of test data accuracies finish with ’ Test’.

We performed the same analysis for all the other subjects (in all datasets) and observed

the same results as subject 1 of dataset IV2a.

3.5 Conclusion

Customizing the parameters of a BCI system is a necessary step to capture each subject’s

unique brain signal characteristics. Such characteristics are captured by a collection of pa-

rameters of the different blocks of a BCI system, and form the hyper-parameters of a BCI

system. These hyper-parameters are either tuned manually based on the operator experi-

ence (which is very cumbersome and not optimal); or in a semi-automated approach.

In this chapter, we proposed a fully automated optimization-based approach for tuning

the hyper-parameters of a BCI system for each subject with the goal of achieving a user-

customized BCI. To be more specific, we demonstrated the utility of Bayesian optimization
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with Gaussian process and random forest posteriors to tune the parameters of a motor-

imagery BCI. The BCI was based on the band-power and the Morlet wavelet features and

Logistic Regression classification followed by ensemble classification. In our framework,

we treated each of the classifiers (built upon each set of hyper-parameters) as a member of

the ensemble of classifiers. This is to harness as much information as possible since each

hyper-parameter set captures specific characteristics of the brain signals.

The results of comparison of the performance of different algorithms on 21 subjects in

the previous section, showed that, when the BP features were used, Bayesian optimization

with GP posterior and averaging (BO-GP (AVG)) outperform other methods. When the

Morlet features were used, the proposed Bayesian optimization with RF posterior and av-

eraging (BO-RF (AVG)) yielded better performance. In addition to providing a framework

for automated tuning of the parameters of a BCI system for each subject, our findings con-

firm that customizing a BCI for each subject has a major role in improving the performance

of the system.

More specifically, using our proposed approach, the mean accuracies improved by

8.12% and 9.19% when the band power and the Morlet features were used in the BCI

systems respectively. These results highlight the importance of parameter optimization and

utility of our approach in finding optimal parameters of a BCI system. We have also backed

our results with proper statistical tests.

We have compared the performance of the optimized BCIs with those reported in the

literature and have shown that hyper-parameter optimization leads to similar or better per-

formance compared to the literature. To be more specific, in dataset III3b, our results were

better than the ones reported in the literature. The average accuracy before optimization

was 71.16% for the Morlet features. After applying our proposed algorithm, the average

accuracy is boosted to 83.88%. The best reported method in the literature has an average

accuracy of 81.1%. In dataset IV2b, the average accuracy across all subjects using the

69



hyper-parameter values usually used in the literature was 77.02%; our algorithm boosted it

to 79.77%. The average accuracy of the best reported results in the literature was 80%. For

dataset IV2a, the average accuracy for the Morlet features before optimization was 46.1%

and after optimization it became 68.13%. The competition winners average accuracy across

all subjects was 67.75%.

We demonstrated the utility of our proposed optimization-based approach to customize

the parameters of two BCI systems (based on the BP and the Morlet features) that perform

motor-imagery tasks. The proposed framework however can be applied to any BCI system

that is based on other neurological phenomena and to any combination of other feature

extraction and classification schemas.

Our results show that applying a good hyper-parameter selection algorithm can boost

a simple baseline algorithm’s performance to enable it to compete with the state of the

art BCIs. It is also important to mention that our algorithm can also be applied to any BCI

design irrespective of the number of parameters that need to be optimized. Our algorithm is

easy to apply, fully automatic, inexpensive and does not need expertise in EEG. In addition,

unlike similar works in the field, our algorithm is scalable and can tune any number of

hyper-parameters in a BCI system.
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Chapter 4

Discriminative Sequence Learning

Algorithms for Self-paced BCIs

4.1 Introduction

As we described in chapter 1, BCI systems can be classified into two categories: syn-

chronous and self-paced systems [9]. In synchronous BCIs, subjects control the BCI output

during short periods specified by the system, while self-paced BCIs, give users the option

of controlling the system whenever they wish to. For the latter type of BCIs, the periods

during which the user is controlling the system are called Control states and those during

which the user is not controlling the system are called No-Control (NC) states.

Designing a self-paced BCI which is ultimately the more natural way to operate BCIs

is extremely challenging compared to synchronous BCI systems. The task of classifying

brain signals in a self-paced BCI is formulated as a sequential supervised learning problem

[34]. In sequential learning, a sequence of observations and their corresponding labels are

known, and the goal is to construct a classifier that predicts the sequence of the labels of a

new sequence of observations.
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The most popular way to obtain observation sequences for sequential supervised learn-

ing is to use a sliding window over the signal (these windows might overlap). This approach

takes consecutive input windows of the EEG brain signal, each of length w milliseconds,

extracts features from each window and assigns a label to each window. The assigned label

corresponds to the intention of the user, as to whether or not he/she wants to operate the

device. The sequence of the extracted feature vectors and their corresponding labels are

used to train a classier. For a new sequence, the trained classifier estimates the label of

each window (i.e. the intention of the user).

The advantage of using the sliding window approach is that it converts the sequen-

tial supervised learning problem into a standard classification problem. Thus any classical

supervised learning method could be used to solve the problem. The majority of the pub-

lications in the field have used this approach to build different self-paced BCIs [8]. The

disadvantage of the sliding window approach is that the sequential correlation in the labels

of consecutive EEG windows is not exploited. The observations and the labels of nearby

windows are usually related to each other, and it is thus important to use the information

about sequential correlation between adjacent EEG windows.

In [77] the authors show that the brain goes through several well-defined internal state

changes while the subject is carrying out a motor imagery mental task. Utilizing an al-

gorithm that can model/exploit these state transitions can enhance the performance of the

BCI. The class of sequence labeling algorithms has been used to exploit the temporal struc-

ture of the EEG data. Among these algorithms the most popular is the Hidden Markov

Model (HMM) [81] which is a generative classifier. A generative classifier models the

joint probability of observations and label sequences. Although the HMM classifier has

been successful in synchronous BCIs, in [27] the authors concluded that the sliding win-

dow approach (i.e. using classical classifiers) is superior to HMM in self-paced BCIs. Due

to intractability issues, HMMs assume the observations are independent given the states.
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This makes it difficult to incorporate the knowledge about the structure of the EEG data

into the model by extracting informative overlapping observations.

Another type of sequence labeling classifiers (besides HMMs) are the discriminative

classifiers. These classifiers directly maximize the conditional likelihood of the label se-

quence given the observations. These algorithms have yielded very promising results in the

natural language processing [74], and activity recognition [100] fields (which have very

similar nature to the task of self-paced classification of BCIs). The advantage of these

models is that they give the user the freedom to extract many informative and overlapping

features from the observation sequence 1. These features might be extracted from previous

windows of the brain signal and may be correlated.

In [46] and [86], the authors applied discriminative sequence labeling algorithms to

self-paced BCIs to classify different motor imagery tasks. We, on the other hand, use

discriminative sequence labeling algorithms to discriminate between NC and control states.

As discussed above, during the NC periods the subject’s brain can be in any state therefore

it is extremely difficult to find specific patterns in the signal. This makes the discrimination

between NC and control states more difficult compared to the discrimination of different

movement imagery tasks.

In this chapter, we propose a new discriminative sequence labeling classifier to solve

the self-paced BCI problem. Our method combines the power of one of the most popu-

lar discriminative sequence labeling classifier, i.e. Conditional Random Fields (CRF) [60]

to exploit the correlation in consecutive EEG windows. It also utilizes a neural network to

extract high-level features from the observations. We call our method Neural Network Con-

ditional Random Fields (NNCRF). Using NNCRF the observation vector is passed through

a multi-layer neural network. The neural network applies several layers of nonlinear trans-

formation on the observations vector. Then, the output of the neural network is given to a

1These observations correspond to the features extracted from the raw EEG signal.
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CRF classifier. It is also important to note that the parameters of the CRF and the neural

network parts are learned jointly.

4.2 EEG Sequence Labeling with Hidden Markov
Models

Hidden Markov Models directly model the joint distribution of observations and labels

[81]. The non-stationary nature of EEG signals makes it difficult for the HMM to model

the observations. As this method is a generative learning algorithm, defining the emission

distribution is difficult when the feature space is of high dimensions. In such cases the

number of parameters is too large and this might lead to over-fitting. Therefore it is com-

mon to use simplifying assumptions, e.g. conditional independence of the elements of the

observation vectors given the labels. This however makes this technique less powerful. The

emission function we used here is the mixture of Gaussian distributions.

To apply HMMs on self-paced BCIs, we trained different HMMs for the different men-

tal tasks. We trained two different HMMs, one was trained using NC data and the other

one using the samples of the movement (Control) task. Then the likelihood of a new given

sequence was calculated using the forward-back algorithm and the classification was per-

formed by comparing the likelihoods of the different HMMs. In this case, each HMM

focuses on learning the structure of the mental task that it is trained on, instead of learning

to discriminate between different tasks.

The emission function used for HMM is the mixture of Gaussian distributions. The

parameters of the HMM include the transition probabilities, and the parameters of the mix-

ture of Gaussian distributions. The parameters are learned by maximizing the likelihood of

the training dataset. Baum-Weltch algorithm is used to learn the parameters of the HMM

model [12].
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4.3 Discriminative Sequence Labeling Algorithms

For sequence labeling algorithms, each data sample in the training set consists of a se-

quence of observations2, and its corresponding label sequence. Assuming the training set

is {xi,yi}N
i=1 where N is the number of training samples. For a training sample there are

K windows i.e. xi is the sequence of observation vectors from K consecutive windows and

yi is the corresponding sequence of K labels. As in the sliding window approach, every w

milliseconds of the EEG creates a window. xi is created by concatenating the vectors of

observations of each of K consecutive windows i.e. xi = [xi1, ...,xik, ...,xiK] and xik corre-

sponds to the vector of observations in the kth window in the sequence number i 3. Like-

wise, yi is created by concatenating the labels of each of these K consecutive windows i.e.

yi = [yi1, ...,yik, ...,yiK] and yik corresponds to the label of the kth window in the sequence

number i.

Discriminative sequence labeling classifiers directly maximize the conditional likeli-

hood of the label sequence given the observations. These models make it possible to extract

many informative and overlapping features from the observation sequence. Furthermore,

these models have the ability to represent long range dependencies between observations.

The conditional nature of these models gives them the freedom to relax the independence

assumptions made by HMM.

The power of these methods comes from their ability to design a set of features based

on the structure of the data. Each feature is a function of the joint observations and label

pair. In classical classification the feature vector is built based on the observations (X) only.

However, here the idea is to extract features from the joint observations (X) and label (Y )

spaces. In this way, each feature function Φ measures the compatibility of x (xi) and y (yi)

4. Although more complex types of features can be used, in all the following discriminative

2These observations correspond to the features extracted from the raw EEG signal.
3In our case, xik corresponds to the bandpower of the window in a specific frequency band.
4For the sake of clarity, we drop the index i in the remainder of the text
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sequence labeling classifiers the feature functions are inspired by a first order HMM.

In the following, we breifly describe three different discriminative sequence labeling

classifiers, the Hidden Markov Support Vector Machines (HMSVM), the Conditional Ran-

dom Fields (CRF) and the Neural Networks Conditional Random Fields (NNCRF).

4.3.1 Hidden Markov Support Vector Machines

Sequential supervised learning can be modeled as a special case of structured learning in

which both observations and labels are sequences. In structured learning problems, the

output of the classifier has a particular structure. It is possible to solve a structural learning

task using any multi-class classifier. However, in this case the internal structure of the

output is not exploited and the number of classes might be very large which makes using

these algorithms almost impossible. Structural Support Vector Machine (SSVM) [98] is a

generalization of multi-class SVMs which allows us to build classifiers for structured data

(such as sequence of observations and labels). SSVM has the advantage of being a large

margin classifier like SVM.

A Hidden Markov Support Vector Machine [2] is a special case of SSVM in which the

features are designed to capture the sequential nature of the data. The set of feature vectors

we use, capture the dependency between consecutive labels in a sequence (yk and yk−1), and

measure the relation between the observation in the kth window (xk) and its corresponding

label yk in a sequence.

The first set of features captures the dependency between two consecutive labels in a

sequence:

φ
σ1σ2
k(k−1) = φ(yk,yk−1)

= I(yk = σ1∧ yk−1 = σ2), σ1,σ2 ∈ Σ,

(4.1)

I(.) denotes the indicator function which has the value 1 when the input is true and 0

otherwise. Σ corresponds to the set of possible values of the label of each window i.e.
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movement imagery or NC state. The vector φk(k−1) is formed by stacking φ
σ1σ2
k(k−1) elements

for all possible values of σ1 and σ2.

The second type of features measures the relation between the observation token xk and

its corresponding label yk in the sequence:

φ
σ
k = φ(xk,yk) = I(yk = σ)xk,σ ∈ Σ, (4.2)

where xk represents the observations from the kth window of the sequence. The vector φk

is formed by stacking φ σ
k for all possible values of σ .

By concatenating the two type of feature vectors, we obtain a single vector of all fea-

tures for the kth window. Therefore, the whole set of features for the kth window (φ(x,y,k))

is equal to [φk,φk(k−1)]. To create the final set of features Φ(x,y) for the sequence, we sum

the feature vectors over the sequence:

Φ(x,y) =
K

∑
k=1

φ(x,y,k). (4.3)

Therefore, Φ(x,y) for type one features corresponds to the number of transitions between

different labels. For type two features, it is the sum of the band-power of the consecutive

windows in a sequence for each possible label. These types of features are very similar to

the maximum likelihood solution of an HMM.

As in [2], we have used a linear function of the observation/label pair for classification

of the brain signals. Given a new unseen sequence xN+1 the goal is to predict its corre-

sponding sequence of labels. For inference i.e. assigning a sequence of labels to xN+1 we

maximize the following equation:

ypredicted = argmax
y

W T
Φ(xN+1,y), (4.4)
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W T Φ(x,y) is a linear function defined on the joint space of observation/Labels sequences

pair. Like HMMs, the solution of Equation 4.4 is found using the Viterbi algorithm.

For the training phase i.e. finding an optimal value of the vector W , SSVM solves the

following minimization problem:

min
W,ξ

1
2
||W ||2 +C

N

∑
i=1

ξi,

s.t. ∀ j ∈ [1,N],∀y ∈ Y,

W T
Φ(x j,y j)−W T

Φ(x j,y)≥ ∆(y j,y)−ξ j,

(4.5)

where ∆(y j,y) is the loss function that measures the penalty of estimating a wrong label for

the sequence. This maximization problem is a convex problem however, it involves a large

number of linear inequality constraints. These constraints make the distance between the

true label of a sequence and all other possible values of the sequence label maximum [97].

4.3.2 Conditional Random Fields

The Conditional Random Field (CRF) is another discriminative classifier which is well

suited for sequential supervised learning. In general the linear chain Conditional Random

Fields classifier models the posterior distribution of the form

Pr(Y |X) =

exp(
J

∑
j=1

λ j

K

∑
k=1

Φ j(yk−1,yk,x,k))

Z(X)
, (4.6)

where K is the sequence length, J is the number of features extracted from the joint obser-

vation labels pair, and Φ j is the feature function. λ js are the parameters of the model which
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are learned based on the training data. Z(x) is the normalization factor (partition function):

Z(X) = ∑
y′1

∑
y′2

...∑
y′K

exp(
J

∑
j=1

λ j

K

∑
k=1

Φ j(y′k−1,y
′
k,x,k)) (4.7)

To calculate the partition function we use forward-backward algorithm which is a dynamic

programming algorithm.

The set of feature functions (φ j) should be specified before using CRF. The first feature

we used, is defined as

φ
σ
0 = I(yk = σ), σ ∈ Σ, (4.8)

where I represents the indicator function, and Σ corresponds to the set of possible label

values (i.e. NC states and movement states).

The second set of features φk,1:L captures the relation between the observation vector

and the kth label in the sequence. We are assuming the observation vector is of dimension

L. Each element φ σ
k,l of the vector φ σ

k,1:L is defined as

φ
σ
k,l = xk,lI(yk = σ), σ ∈ Σ, (4.9)

where xk,l is the lth dimension of the observation vector.

The third type of features is defined as

φ
σ1,σ2
k(k−1) = I(yk = σ1∧ yk−1 = σ2), σ1,σ2 ∈ Σ, (4.10)

where φ
σ1,σ2
k(k−1) captures the relation between the kth and (k−1)th labels in the sequence.

Using the above mentioned set of features (equations 4.8, 4.9 and 4.10) the posterior
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function will be of the form

Pr(y1:K|x1:K) =

exp
( K

∑
k=1

(byk +W T
yk,1:Lxk)+

K

∑
k=2

Vyk−1,yk

)
Z(X)

, (4.11)

where byk , Wyk,1:L and Vyk−1,yk are the parameters of the posterior distribution and should be

learned using the training dataset. The set of parameters byk , Wyk,1:L and Vyk,yk−1 captures

the importance of the first, second and third type of features respectively.

To learn the optimal values of the parameters, we minimize the L2 regularized negative

log likelihood

min
λ

N

∑
i=1
−LogPr(yi|xi)+Cλ

T
λ , (4.12)

where the vector λ consists of the parameters of the model (i.e. byk , Wyk,1:L and Vyk−1,yk),

and C is the regularization coefficient. To find the optimal value of the parameters, we

use the stochastic gradient descent algorithm. As the loss function is convex, the gradient

descent algorithm converges to the global optimum of the loss function.

For the inference i.e. assigning a sequence of labels to xN+1, we assign the most prob-

able sequence as the predicted labels i.e.

ypredicted = argmax
y

P(y|xN+1). (4.13)

We used a Viterbi like algorithm to find the most probable sequence of labels.

4.3.3 Neural Network Conditional Random Fields

The linearity of the exponent term in CRF classifiers makes them have less expressive

power compared to the models that exploit kernels. A good approach that makes these

algorithms more powerful is to combine feed-forward neural network with CRF. Neural

network transforms the observation vector into high level features which are then used as
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the input to the CRF. As a result, the exponent term in CRF (i.e. the exponent term in

equation 4.11) becomes non-linear because of the several layers of non-linear activation

functions that have been applied on the observation vector [35] [76].

Neural Network Conditional Random Field (NNCRF) can be viewed as a standard lin-

ear chain CRF that uses a high level representation of the observations. Therefore, the

posterior function of the NNCRF has the same form as that in equation 4.11 except that the

xk terms are replaced with the hM(xk) term which represents the output of a feed-forward

neural networks with M layers.

Pr(Y |X) =

exp(
K

∑
k=1

byk +W T
yk,1:Lh(M)(xk)yk +

K

∑
k=2

Vyk−1,yk)

Z(X)
. (4.14)

The output of the (M)th layer (h(M)) is

h(M)(xk) = tanh(b(M−1)+W (M−1)hM−1(xk)), (4.15)

where b(M−1) and W (M−1) are the weights of the (M− 1)th layer, hM−1(xk) is the output

of the (M− 1)th layer of the neural network, and h0(xk) = xk. To avoid over-fitting, the

weights of the neural networks are the same for all observations xk in a sequence i.e. the

values of the weights do not depend on k.

Initialization of a neural networks is very crucial for this algorithm to converge to a

good local optima. For initialization of the neural network, the value of each parameter is

a sample taken from a uniform distribution U [−γ,+γ] where

γ =

√
6√

size(M)+ size(M−1)
, (4.16)

where size(M) is the number of hidden units in the Mth layer of the neural networks.
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The loss function is the same as the loss function of the standard CRF (Equation 4.12).

We use the stochastic gradient descent algorithm to jointly optimize the values of the pa-

rameters of the neural networks and of the CRF. The learning rate of the stochastic gradient

descent algorithm is adjusted using the bold driver approach. For inference the same algo-

rithm as in standard linear chain CRF is used.

4.4 Datasets

To perform the experiments two self-paced sensory motor BCI datasets have been used.

The first dataset, SM2, was collected from 4 subjects attempting to activate a switch by

performing a right index finger movement (as explained in section 2.3).

The second dataset, BCICIV2a, is the dataset IIa from the BCI competition IV (Section

2.3) which is recorded from 9 subjects performing 4-class motor imagery (left hand and

right hand, both feet and tongue imagery movements) tasks. We have treated this dataset

as a self-paced BCI dataset. In other words, to evaluate the performance of the classifiers

on this dataset the time of transition from previous mental task to the new one (the time

cue was displayed) has not been used. We have also converted the problem into a binary

classification task i.e. separating movement imagery from NC states. All 4-classes of

motor-imagery are considered as movement (control states) and the periods in which the

subject did not control the system are considered as the No-Control class.

4.5 Results

We compared the performance of NNCRF with the standard CRF classifier, Hidden Markov

Support Vector Machines (HMSVM), Hidden Markov Models (HMM) and two popular

classical classifiers, Logistic Regression and Support Vector Machines (SVM).

For frequency filtering, we applied a filter-bank with 2 blocks in ranges [8-12]Hz and

[16-24]Hz corresponding to the typical ranges of the alpha and beta brain waves. For spatial
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filtering, we used CSP with 2, 4 and 6 filters. The values of these hyper-parameters along

with each classifier’s parameters are adjusted jointly using 5-fold cross-validation. Then

the parameters with the best mean cross-validation accuracy were used to train a classifier

on the training set. To evaluate the performance of the classifiers on the test dataset, we

used the Area Under the Curve (AUC) measure.

In our experiments, the band power of the EEG signal is used as the extracted features

(observations) for the classification phase. The window length was equal to the sampling

rate of the dataset and we used the last two seconds of the data to perform the classification

in the test phase.

Table 4.1 shows the results of comparing different classifiers. We also included the

average rank of each algorithm in Table 4.1. The average ranks of different classifiers

are calculated by ranking them based on their AUC for each subject separately, and then

averaging the ranks over all subjects.

Table 4.1: The results of comparing AUC of different algorithms on the test dataset.
Highlighted cells show the algorithm for which the performance is the best. The
last row shows the average rank of different classifiers across all subjects.

Subject LR SVM HMM HMSVM CRF NNCRF
1 0.617 0.472 0.470 0.567 0.554 0.565
2 0.605 0.535 0.577 0.602 0.640 0.681
3 0.666 0.659 0.646 0.643 0.690 0.691
4 0.673 0.618 0.556 0.593 0.594 0.540
5 0.559 0.560 0.511 0.510 0.473 0.493
6 0.679 0.653 0.484 0.629 0.692 0.701
7 0.725 0.710 0.605 0.683 0.672 0.666
8 0.709 0.706 0.509 0.542 0.629 0.718
9 0.616 0.606 0.527 0.565 0.591 0.588
22 0.767 0.723 0.711 0.708 0.789 0.840
23 0.724 0.728 0.762 0.706 0.828 0.798
24 0.610 0.604 0.548 0.580 0.615 0.638
25 0.585 0.574 0.604 0.588 0.669 0.707
Average Rank 2.54 3.62 5 4.54 2.85 2.46
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As shown in Table 4.1, the average rank of NNCRF is better than those of other algo-

rithms, the second best classifier is the LR classifier. Another observation is that HMM has

the worst performance, which suggests that HMM has no advantage over classical classi-

fiers (this observation has also been reported in [27]). It is worth mentioning that for some

subjects none of the discriminative sequence labeling classifiers have a good performance,

this means that these classifiers are not able to capture the temporal structure of the signal

in these subjects.

4.6 Conclusion

In this chapter, we proposed a discriminative sequence labeling algorithm (classifier), to

capture the dynamics of the EEG signal. We evaluated the performance of our algorithm

(which we denote as NNCRF) on two self-paced BCI datasets and showed that it is superior,

compared to classical classifiers and sequence labeling classifiers. NNCRF is a combina-

tion of a neural network and a CRF classifier. We demonstrated that CRF and NNCRF can

capture the temporal properties of the EEG signal and improve the accuracy of the BCI in

most of the subjects. In some subjects however, the temporal structure of the EEG data is

difficult to capture by these classifiers. The neural network part of NNCRF converts the

original observation vector into a new representation which is then fed to the CRF part.

The non-linear transformation (by the neural network) of the observation vector helps the

CRF part to discriminate between the different control and NC easily.

Overall, the reason for the poor performance of classical approaches is that they do not

exploit the inherent dynamics in the EEG signal. As for the HMM, although this algorithm

models the temporal correlations in an EEG signal, its poor performance stems from the

fact that it focuses on learning the mental task without learning to discriminate between the

different mental tasks. On the other hand, discriminative sequence labeling classifiers do

not only model the temporal properties of each mental task, they also model the transition
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from one mental task to another (e.g. transition from movement to NC state).
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Chapter 5

Ensemble of Discriminative Sequence

Labeling Classifiers for Self-Paced BCIs

5.1 Introduction

The aim of this chapter is to design a self-paced BCI that can be automatically customized

for each user. In Chapter 3, we showed the importance of customizing synchronous BCIs

based on the brain characteristics of each user. We then proposed an approach for customiz-

ing two different kinds of synchronous BCIs based on band-power features and Morlet fea-

tures with logistic legression classifier. Here, we adapt the same approach to customize

self-paced BCIs (proposed in chapter 4) based on the brain characteristics of each user.

So, our algorithm not only takes the correlation between consecutive EEG windows into

account, but also is customized based on the characteristics of each subject’s EEG signal.

Customizing a BCI for each subject involves optimizing a cost function over a hyper-

parameter space. The cost function used here is the cross-validation accuracy of the BCI on

the training data, and the hyper-parameters are the parameters of the BCI system which are

selected before feature extraction and classification. We use the algorithm we proposed in
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chapter 3 which is an iterative algorithm that optimizes the values of the hyper-parameters.

After the optimization is finished, we can either use the best performing classifier that our

classifier selected in the optimization phase or we can combine all the trained classifiers

into one final classifier.

In general, for our final classifier we seek a model with low bias and high variance as

our final classifier. When the training data is small but the classifier has high variance, then

by averaging the results of individual classifiers we reduce the variance of the final classifier

while preserving the low bias of a single model. Especially in the case of neural networks

which can get stuck in a local optimum and has a high variance, creating an ensemble of

neural networks which are trained on different parts of the hyper-parameter space, may

result in a better approximation of the best possible classifier.

In self-paced BCI, the hyper-parameter space of every classifier consists of the fre-

quency ranges over which the EEG signal is filtered, the selected channels (from which the

features are extracted), and the window length (w). For the first (i.e. frequency ranges) and

second (i.e. channels) types of hyper-parameters, we use the same settings as in section

3.3.1. The third hyper-parameter is the length w of the sliding window. For all the classi-

fiers, we have used the past two seconds of the EEG signal to build the observation vector

from. For classical classifiers, we only look at the past w milliseconds of the data i.e. only

the last window. For sequence labeling classifiers, we build a chain of consecutive windows

as our observation vector. The length of the chain is therefore 2
|w|×1000. For the proposed

NNCRF classifier which we proposed in chapter 4, we have an additional hyper-parameter

which is the number of neurons in the hidden layer of the neural network. We optimize all

these hyper-parameters jointly.

Using Bayesian optimization, we search through the hyper-parameter space to find the

best hypothesis (classifier) that makes a good prediction. Bayesian optimization iteratively

proposes different points (values) in the hyper-parameter space. Each of these points are
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Figure 5.1: Diagram of our optimization algorithm at iteration t.

used to train a classifiers. After the optimization is finished, we can either select the best

performing classifier obtained in the optimization phase as our final classifier or we can

combine all trained classifiers into one final classifier.

To make our algorithm clear, we have added the diagram (Figure 5.1) of our algorithm

that elaborates one iteration of our algorithm. In each iteration of our algorithm, we first

update the posterior distribution. Then based on the posterior distribution, we build the

acquisition function and find the maximum point of the acquisition function.
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The maximum point (proposed candidate by the Bayesian optimization) is used to per-

form filtering on the EEG. The features are then extracted and a classifier is trained on the

training samples. We then, calculate the accuracy of the classifier, this will be used in the

next iteration of our algorithm. In each iteration of our algorithm, we combine the classi-

fiers built in the previous iterations, and examine the stopping condition to decide whether

to stop the algorithm or continue to the next iteration.

5.2 Results

The set of classifiers and the feature extraction we used are the same as those of chapter 4.

The datasets are also the same and are explained in 4.4. For the experiments, we compared

the ensemble of the classifiers generated in the optimization phase.

Table 5.1 shows the results of comparing different classifiers when we used ensem-

ble of classifiers. The columns with the MIN label correspond to the results of applying

the best performing classifier obtained in the optimization phase on the independent test

dataset. The Bayesian optimization algorithm was run for at most 50 iterations or until

cross-validation accuracy plateaued. We have repeated our experiments five times to re-

duce the effect of the random seed. The average number of iterations of the Bayesian

optimization algorithm for all different classifiers was 27. In Table 5.1, the columns with

AVG label correspond to the results of using all the generated classifiers in the optimiza-

tion phase. To create the ensemble of classifiers, we averaged the results of all individual

classifiers.
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Table 5.1: The results of comparing different classifier after performing Bayesian optimization on the test dataset. MIN is the
results of applying the best performing classifier in optimization phase on the test data. AVG corresponds to the results
of the ensemble of classifiers. Highlighted cells show the algorithm for which the performance is the best.

LR SVM HMM HSVM CRF NNCRF
Subject MIN AVG MIN AVG MIN AVG MIN AVG MIN AVG MIN AVG

1 0.677±0.001 0.708±0.003 0.612±0.027 0.684±0.008 0.571±0.001 0.572±0.003 0.626±0.008 0.682±0.004 0.646±0.015 0.651±0.006 0.663±0.0 0.653±0.004
2 0.653±0.0 0.663±0.004 0.655±0.004 0.668±0.002 0.597±0.0 0.647±0.014 0.592±0.008 0.647±0.003 0.643±0.003 0.66±0.004 0.641±0.012 0.658±0.004
3 0.689±0.001 0.709±0.003 0.686±0.005 0.721±0.004 0.705±0.0 0.688±0.003 0.663±0.0 0.724±0.001 0.724±0.011 0.735±0.002 0.735±0.003 0.743±0.004
4 0.743±0.0 0.769±0.002 0.737±0.002 0.758±0.003 0.554±0.0 0.571±0.004 0.695±0.0 0.749±0.004 0.748±0.0 0.725±0.006 0.736±0.003 0.722±0.003
5 0.595±0.006 0.629±0.003 0.561±0.001 0.622±0.007 0.518±0.004 0.509±0.003 0.605±0.0 0.655±0.003 0.637±0.002 0.618±0.006 0.632±0.016 0.632±0.004
6 0.657±0.001 0.692±0.004 0.678±0.012 0.729±0.003 0.512±0.024 0.63±0.015 0.62±0.002 0.718±0.002 0.691±0.021 0.731±0.005 0.711±0.016 0.73±0.006
7 0.738±0.0 0.762±0.002 0.729±0.008 0.778±0.002 0.64±0.009 0.71±0.01 0.737±0.0 0.802±0.002 0.769±0.0 0.751±0.003 0.769±0.0 0.755±0.004
8 0.716±0.002 0.729±0.002 0.716±0.004 0.736±0.002 0.547±0.126 0.633±0.034 0.505±0.021 0.658±0.013 0.648±0.018 0.697±0.011 0.723±0.004 0.779±0.004
9 0.588±0.016 0.626±0.006 0.57±0.012 0.638±0.007 0.565±0.046 0.598±0.013 0.681±0.006 0.687±0.009 0.702±0.006 0.669±0.005 0.709±0.0 0.686±0.003
22 0.795±0.004 0.826±0.004 0.786±0.0 0.818±0.002 0.704±0.016 0.732±0.006 0.741±0.001 0.827±0.004 0.815±0.02 0.871±0.005 0.847±0.005 0.881±0.004
23 0.716±0.0 0.733±0.004 0.752±0.007 0.763±0.004 0.641±0.012 0.637±0.01 0.701±0.009 0.777±0.003 0.813±0.009 0.831±0.004 0.817±0.007 0.833±0.006
24 0.594±0.007 0.597±0.002 0.577±0.003 0.6±0.003 0.556±0.013 0.554±0.006 0.58±0.011 0.617±0.003 0.639±0.009 0.626±0.005 0.633±0.004 0.631±0.003
25 0.607±0.0 0.605±0.002 0.61±0.03 0.642±0.008 0.521±0.007 0.518±0.004 0.626±0.009 0.667±0.007 0.699±0.028 0.682±0.011 0.734±0.003 0.723±0.013

AVERAGE Rank 7.65 5.23 8.50 4.23 11.23 10.65 9.54 4.15 4.92 4.65 3.88 3.35
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Figure 5.2: Average AUC of different settings for each classifier across all subjects.
The blue bars correspond to the average AUC when the default value of the
hyper-parameters have been used. The red bars correspond to the average AUC
after using Bayesian optimization. The green bars correspond to the average
AUC when we used an ensemble of different classifiers.

Qualitative comparison of different algorithms in Tables 4.1 and 5.1 suggests the fol-

lowing: 1) optimizing the values of the hyper-parameters improves the performance of any

classifier considerably (comparing MIN columns of Table 5.1 with Table 4.1), 2) in almost

all subjects and for almost all classifiers, using an ensemble of classifiers improves the

performance, 3) HMM is the worst performing classifier, 4) NNCRF outperforms other al-

gorithms in terms of average rank of the algorithm, and 5) interestingly, for some subjects

none of the discriminative sequence labeling classifiers have yielded a good performance,

this means that these classifiers are not able to capture the temporal structure of the signal

in these subjects.

Figure 5.2 shows the average AUC of different algorithms across all subjects. The blue

bars correspond to the average AUC when the default value of the hyper-parameters is

used. The red bars correspond to the average AUC after using Bayesian optimization. The

green bars correspond to the average AUC when we use an ensemble of different classifiers.
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Figure 5.2 shows that for all classifiers using Bayesian optimization considerably improves

the average AUC of classifiers across all subjects, and using an ensemble of the trained

classifiers further improves the results. The best performing algorithm is the one that uses

an ensemble of NNCRF classifiers.

5.3 Conclusion

To further improve the performance of our algorithms used in chapter 4, we customized the

hyper-parameters of the BCI (using the algorithm proposed in 3). We evaluated different

algorithms on the same subjects that we used in chapter 4. We showed that customizing

the BCI hyper-parameters improves the performance of every classifier used in this study.

After customizing the parameters of every classifier used, the best performing classifier

was NNCRF, while CRF was the second best classifier.

We also showed that using an ensemble of classifiers that have been trained on dif-

ferent parts of the BCI hyper-parameter space can further improve the performance mea-

sure (AUC). We used Bayesian optimization to find the different values of the BCI hyper-

parameters. Selecting different values for the hyper-parameters exposes the classifier to

different parts of the BCI hyper-parameter space. We believe that this diversification is the

key to the superiority of using the ensemble of classifiers compared to the single classifier

approach. The performance of the classifiers is very sensitive to the choice of the hyper-

parameters of the BCI and using an ensemble of classifiers can decrease the variance of the

classifiers. The best performing algorithm was the ensemble of NNCRF classifiers.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Our Contributions

This thesis addresses the design of Brain Computer Interface (BCI) systems, in general, but

specifically self-paced BCIs. In designing a self-paced BCI system that is based on sensory

motor rhythms, it is important to exploit the properties of the brain signal. We should take

into consideration the variations over time of the EEG signal in specific frequency bands. It

is common to filter the data in these specific frequency bands during specific time segments

and exploit the information embedded in the signal so as to gain maximum discrimination

between different mental tasks. These frequency bands vary from one person to another.

The optimal value of these frequency bands should be adjusted for each individual subject.

Also, the spatial information as to which channels should be used for a specific men-

tal task has a major role in the performance of the BCI. All such information about the

characteristics of the EEG signal is fed to the BCI system as a set of hyper-parameters.

Thus the selection of the value of these parameters is very important as they determine the

success and accuracy of the BCI. The value of all BCI hyper-parameters should be cus-

tomized based on the brain characteristics of each subject. Furthermore, in sensory motor
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self-paced BCIs, while the subject is performing a mental task, his/her brain goes through

several well-defined internal state changes. Therefore, it is important to use a classifier that

is able to capture the dynamics of the EEG signal (i.e. takes the time course of the EEG

signal into account).

In this thesis we study 1) how to automatically adjust the values of self-paced BCI

parameters, and 2) how to exploit the time-frequency properties and user-specific charac-

teristics of the EEG. Our final algorithm exploits the brain characteristics of the user in

self-paced BCIs. Our algorithm has the following advantages, it is easy to apply to any

BCI, it is fully automatic, it does not need EEG expertise, scalable in the number of hyper-

parameters and computationally inexpensive. Moreover, in contrast to the general trend in

BCIs our algorithm uses the sequential information in the EEG signal that further improves

the performance of a self-paced BCI system.

We believe that our proposed system is an important step towards transitioning BCIs

from research devices to in-home communication assistive devices. In the following, we

will describe a summary of our contributions in each chapter of this thesis.

Chapter 2

In this chapter of the thesis, we developed an open source framework for comparing dif-

ferent BCI systems that is unique in two aspects. First, we performed a comprehensive

comparison between 14 different sensory-motor-based BCI designs over 29 subjects. This

is the first study that includes large number of designs and subjects. Secondly, we per-

formed rigorous statistical tests to statistically validate the results. The strength of this

study is that the source code and data of our experiments are openly available so that other

researchers can (a) apply it on their own data and benchmark their data with standard meth-

ods, and (b) extend the framework to include other machine learning and signal processing

methodologies.
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Unlike most publications in the BCI field which recommend the linear discriminant

analysis classifier as the best classifier, our findings show that for each feature extraction

method many classifiers should be tried, and then the best classifier should be selected

based on the cross-validation results of the classifiers. In general, we found that there is

not a best classifier or best feature extraction method that outperforms all others. For each

subject, the combination of the classifier, the features and model parameters should all be

tuned together, and finally the method with the best performance on the training data set

should be selected as the final model for testing on unseen data.

Chapter 3

In the third chapter of this thesis, we proposed an algorithm to automatically customize

a BCI based on the brain characteristics of each user. The study was performed on 21

subjects in synchronous BCIs from the BCI competitions.

In our first set of experiments, we showed the importance of the joint tuning of hyper-

parameters in BCIs. We showed that tuning the values of the BCI parameters using Bayesian

optimization can considerably improve the mean accuracy across all 21 subjects. In the

second part of the experiments, we compared our algorithms to several other approaches

for tuning the values of the hyper-parameters. We also backed our results with the proper

statistical tests.

Moreover, we compared the results of the proposed algorithm to the results reported in

the literature on the same subjects. We have shown that our algorithm has at least similar

performance, but usually outperforms the results reported in the literature.

A big advantage of our proposed method is that it is fully automatic. While our pro-

posed algorithm yielded similar or better performance compared to the literature, it is im-

portant to note that the best reported results in the literature were achieved based on lengthy

extensive manual fine-tuning of the parameters of the BCI system and based on more so-
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phisticated feature extraction and classification methods. Our results show that our au-

tomated parameter optimization of a BCI system that relies on less sophisticated feature

extraction and classification methods yields similar/superior results compared to the best

performing designs in the literature.

Overall the results show the importance of selecting the appropriate values for the

hyper-parameters of the system. Furthermore, these results show that applying a good

hyper-parameter selection algorithm can boost a simple baseline algorithm’s performance

so it can compete with the state of the art algorithms and results.

Chapter 4

In chapter 4, we proposed an algorithm that can capture the time dynamics inherent in the

EEG signal. The study was performed on 13 self-paced BCI subjects. The aim was to

evaluate the performance of different algorithms in discriminating between a control task

(movement or imagery movement) and no-control states. The main challenges in self-paced

BCIs are that the start and end times of the control task and the No-Control (NC) state are

not known, and it is extremely difficult to find the specific patterns in the NC states, this is

because the subject can be in any mental state during the NC periods.

In chapter 4, we proposed a discriminative sequence labeling algorithm (classifier) to

capture the dynamics of the EEG signal. The advantage of such classifiers is that they not

only model the temporal properties of each mental task, but also model the transition from

one metal task to another (e.g. transition from a movement to an NC state).

We evaluated the performance of our algorithm (which we denoted as NNCRF) and

showed that it is superior, compared to classical classifiers and the sequence labeling classi-

fiers. The proposed NNCRF is a combination of a neural network and a conditional random

field classifier. The neural network part of NNCRF converts the original observation vector

into a new representation which is then fed to the CRF part. The non-linear transformation
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(by the neural network) of the observation vector helps the CRF part to better discriminate

between a control task and NC states easily. We demonstrated that the CRF and NNCRF

can capture the temporal properties of the EEG signal and improve the accuracy of the BCI

in most subjects.

Chapter 5

In chapter 5, we proposed an algorithm that customizes a self-paced BCI to each user i.e.

exploits the brain characteristics of each subject. Our algorithm not only fine-tunes the

(hyper-)parameters of the self-paced BCI, but also exploits to the time information specific

to each user. The study was performed on 13 self-paced BCI subjects.

In this chapter, we showed that customizing the self-paced BCI hyper-parameters im-

proves the performance of every classifier used in the study. We also showed that using

an ensemble of classifiers (where every classifier has been trained on a different part of

the BCI hyper-parameter space) can further improve the performance measure of the BCI.

We used the algorithm proposed in chapter 3 to find the different values of the BCI hyper-

parameters. Selecting different values for the hyper-parameters exposes the classifier to

different parts of the BCI hyper-parameter space. We believe that this diversification is the

key to the superiority of using an ensemble of classifiers compared to the single classifier

approach. The performance of a classifiers is very sensitive to the choice of the hyper-

parameters of the BCI and using an ensemble of classifier can decrease the variance of the

classifiers.

The algorithm proposed in chapter 5, exploits the time and frequency characteristics

of the specific user’s brain in self-paced BCIs. We believe that our proposed system is an

important step towards transitioning BCIs from research environment to real-life applica-

tions, this is because it is fully automatic, scalable and easy to use. Overall our results

show the importance of selecting good values for the hyper-parameters, and at the same
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time exploiting the time information in self-paced BCI systems.

6.2 Future Work

Some possible future directions of this work are briefly discussed below:

In this study, we used linear chain discriminative sequence labeling classifiers for self-

paced BCIs, however, using other more complex classifiers that can better capture the time

correlation between different parts of the EEG signal could be beneficial. Another possi-

ble future direction is to use more advance feature functions for discriminative sequence

labeling classifiers to incorporate more knowledge about the EEG. The type of the feature

functions used in this study were all inspired by Hidden Markov Models. So they are all

local in nature, i.e. each feature function only depends on the current or the previous label

in the sequence. It is possible to use global features such as the ones that capture higher

orders of dependency of the transition between consecutive labels, or feature functions that

capture dependency between the EEG signal and labels of the EEG signal from distant past.

These types of feature functions have the ability to capture more complex structures in the

data and increase the power of classifier.

One of the major problems in BCIs is that the datasets are very small. Collecting more

data will enable us to use deep learning algorithms [62]. Specially in our proposed NNCRF

algorithm, having larger datasets would enable us to utilize a deep neural network which

will eventually gives the algorithm the ability to extract better and more informative fea-

tures from the EEG signal. The current trend in BCIs is to hand-craft feature extractors from

EEG signal that result in high level features from EEG signal. On the other hand, by using

deep learning algorithms feature extraction process becomes a part of the automated sys-

tem which can lead to easier classification of the BCI data. In addition to NNCRF, another

class of deep learning algorithms which can be used here, are recurrent neural networks.

These algorithms have been very successful in different sequence labeling applications that
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are very similar in nature to the self-paced classification of BCIs [49] .

Non-stationarity of the EEG data makes real-life applications of (sensory-motor) BCIs

difficult to use. These variations in the EEG signal properties might deteriorate the BCI

performance. One possible approach to overcome this problem is to use semi-supervised

learning algorithms. These algorithms have the ability to use a small set of labeled data with

a large amount of unlabeled data. Specially, in deep learning methods unlabeled data can be

used to pre-train the neural network and the labeled data can be used to perform supervised

fine-tuning of the network. The semi-supervised sequence learning [30] algorithms can be

especially useful for self-paced BCIs. These classifiers can be trained using a small amount

of training data. While the subject is operating the BCI, the classifier can improve itself

based on the new coming EEG data.
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competition 2008–graz data set b. → pages 28, 56

[65] Xu Lei, Ping Yang, and Dezhong Yao. An empirical bayesian framework for
brain–computer interfaces. Neural Systems and Rehabilitation Engineering, IEEE
Transactions on, 17(6):521–529, 2009. → pages 21

[66] Eric C Leuthardt, Kai J Miller, Gerwin Schalk, Rajesh PN Rao, and Jeffrey G
Ojemann. Electrocorticography-based brain computer interface-the seattle
experience. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
14(2):194–198, 2006. → pages 2

[67] Peiyang Li, Peng Xu, Rui Zhang, Lanjin Guo, and Dezhong Yao. L1 norm based
common spatial patterns decomposition for scalp eeg bci. Biomed. Eng. Online, 12,
2013. → pages 16

[68] Fabien Lotte, Marco Congedo, Anatole Lécuyer, Fabrice Lamarche, Bruno Arnaldi,
et al. A review of classification algorithms for eeg-based brain–computer
interfaces. Journal of neural engineering, 4, 2007. → pages 15

105



[69] Steven G Mason and Gary E Birch. A brain-controlled switch for asynchronous
control applications. Biomedical Engineering, IEEE Transactions on,
47(10):1297–1307, 2000. → pages 4

[70] Dennis J McFarland, Laurie A Miner, Theresa M Vaughan, and Jonathan R
Wolpaw. Mu and beta rhythm topographies during motor imagery and actual
movements. Brain topography, 12(3):177–186, 2000. → pages 3
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