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Abstract

The vast majority of the human genome (˜98%) is non-coding. A symphony
of non-coding sequences resides in the genome, interacting with genes and
the environment to tune gene expression. Functional non-coding sequences
include enhancers, silencers, promoters, non-coding RNA and insulators.
Variation in these non-coding sequences can cause disease, yet clinical se-
quencing in patients with rare Mendelian disease currently focuses mostly
on variants in the ˜2% of the genome that codes for protein. Indeed, vari-
ants in protein-coding genes that can explain a phenotype are identified
in less than half of patients with suspected genetic disease by whole ex-
ome sequencing (WES). With the dramatic reduction in the cost of whole
genome sequencing (WGS), development of algorithms to detect variants
longer than 50 bp (structural variants, SVs), and improved annotation of
the non-coding genome, it is now possible to interrogate the entire spectrum
of genetic variation to identify a pathogenic mutation.

A comprehensive pipeline is needed to analyze non-coding variation and
structural variation from WGS. In this thesis, I developed and benchmarked
a bioinformatics workflow to detect pathogenic non-coding SNVs/indels and
pathogenic SVs, and applied this workflow to unsolved patients with rare
Mendelian disorders. The pipeline detected ˜80-90% of deletions, ˜90% of
duplications, ˜65% inversions, and ˜50% of insertions in a simulated genome
and the NA12878 genome. The pipeline captured the majority of known
pathogenic non-coding single nucleotide variant (SNVs) and insertion dele-
tions (indels), and effectively prioritized a spiked-in known pathogenic non-
coding SNV. Several interesting candidate variants were detected in patients,
but none could be convincingly implicated as pathogenic.

The bioinformatic workflow described in this thesis is complementary to
sequencing pipelines that analyze only protein-coding variants from whole
genomes. Application of this workflow to larger cohorts of patients with rare
Mendelian diseases should identify pathogenic non-coding variants and SVs
to increase diagnostic yield of clinical sequencing studies, assist management
of genetic diseases, and contribute knowledge of novel pathogenic variants
to the scientific community.

ii



Preface

This thesis comprises unpublished work performed by the author. All anal-
yses of non-coding variation and structural variation described in this paper
were performed by the author. Patients with hereditary sensory and au-
tonomic neuropathy were recruited by Gabriella Horvath, who also helped
in interpretation of variants. Analysis to rule out pathogenic exonic vari-
ants was performed by Farah Zahir, past member of the Friedman lab, as-
sisted by Clara Van Karnebeek, Casper Shyr, and Maja Tarailo-Graovac
of the Treatable Intellectual Disability Endeavour (TIDE) BC team. Pa-
tients with Aicardi syndrome were recruited by Cristina Dias. Sequencing,
as well as analysis and interpretation of exonic variants were the collabora-
tive effort of Jan Friedman, Cristina Dias, Steven Jones, Farah Zahir, and
Yaoqing Shen. Allison Matthews, Jill Mwenifumbo, and Phillip Richmond
from Wyeth Wasserman's lab provided insight into variant interpretation
and structural variant analysis. Shaun Jackman assisted with interpreta-
tion of the DNMT1 tandem duplication.

This research was covered by the UBC Research Ethics Boards under
the project ”Genetic Alterations in Rare Diseases”, certificate number H09-
01228.

Figure 1.1 was adapted from Expert Review in Molecular Medicine, 17,
Philip Cowie, Elizabeth A. Hay, Alasdair MacKenzie, The Noncoding Hu-
man Genome and the Future of Personalised Medicine, p.4, Copyright (2015),
with permission from Cambridge University Press. Figure 1.3 was repro-
duced from Cell, 161:5, Dario G. Lupianez, Katerina Kraft, Verena Heinrich,
Peter Krawitz, Francesco Brancati, Eva Klopocki, Denise Horn, Hlya Kay-
serili, John M. Opitz, Renata Laxova, Fernando Santos-Simarro, Brigitte
Gilbert-Dussardier, Lars Wittler, Marina Borschiwer, Stefan A. Haas et al.,
Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring
of Gene-Enhancer Interactions, p.1014, Copyright (2015), with permission
from Elsevier. Figure 1.4 was adapted from Nature Methods, 17, Monya
Baker, Structural variation: the Genome’s Hidden Architecture, p.133, Copy-

iii



Preface

right (2012), with permission from Nature Publishing Group. Figure 1.5 was
adapted from Frontiers in Bioengineering and Biotechnology, 3, Lorenzo
Tattini, Romina D’Aurizio, Alberto Magi, The Noncoding Human Genome
and the Future of Personalised Medicine, p.2, Copyright (2015), with per-
mission from the authors under the Creative Commons Attribution License.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Human Genome . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Genome Regulation and Dysregulation . . . . . . . . . . . . 1

1.2.1 Promoters . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Enhancers and Silencers . . . . . . . . . . . . . . . . 3
1.2.3 Topologically Associated Domains . . . . . . . . . . . 3
1.2.4 Non-coding RNAs . . . . . . . . . . . . . . . . . . . . 6

1.3 Next Generation Sequencing and Clinical Studies . . . . . . 6
1.3.1 Exome Sequencing . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Whole Genome Sequencing . . . . . . . . . . . . . . . 7

1.4 Prioritizing Non-coding SNVs and Indels . . . . . . . . . . . 8
1.4.1 Combined Annotation Dependent Depletion (CADD)

score . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 Functional Analysis Through Hidden Markov Model

(FATHMM) score . . . . . . . . . . . . . . . . . . . . 9
1.5 Structural Variation . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.1 SV classes and detection from NGS . . . . . . . . . . 9
1.5.2 Algorithms for identifying SVs . . . . . . . . . . . . . 10

v



Table of Contents

1.6 Rare Disease Cohorts . . . . . . . . . . . . . . . . . . . . . . 10
1.6.1 Hereditary Sensory and Autonomic Neuropathy (HSAN)

10
1.6.2 Aicardi Syndrome . . . . . . . . . . . . . . . . . . . . 12

1.7 Thesis Rationale and Objective . . . . . . . . . . . . . . . . 12

2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Sequencing and Alignment . . . . . . . . . . . . . . . . . . . 13

2.1.1 Whole Genome Sequencing . . . . . . . . . . . . . . . 13
2.1.2 Alignment and SNV and Indel calling . . . . . . . . . 13

2.2 Structural Variant Calling and Benchmarking . . . . . . . . 15
2.2.1 MetaSV Consensus SV Caller . . . . . . . . . . . . . 15
2.2.2 VarSim Paired-End Read and SV Simulation . . . . . 15
2.2.3 SV Benchmarking with Biological Data: NA12878 WGS

16
2.3 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Gene Lists . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Identification of Regulatory Sequences in the Human

Genome . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Association of Regulatory Sequences to Known Genes 17

2.4 Benchmarking Regulatory SNV and Indel Detection . . . . . 18
2.5 Filtering and Annotation of SNVs and Indels . . . . . . . . . 18
2.6 Filtering and Annotating SVs . . . . . . . . . . . . . . . . . 19

2.6.1 VCF to BED format . . . . . . . . . . . . . . . . . . 19
2.6.2 Comparison to SV Control Databases . . . . . . . . . 19
2.6.3 Comparison to DGV . . . . . . . . . . . . . . . . . . 20
2.6.4 Comparsion to 1000G . . . . . . . . . . . . . . . . . . 20
2.6.5 Translocations . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Identifying Genic and Regulatory SVs . . . . . . . . . . . . . 21
2.8 HSAN Modifications to Workflow . . . . . . . . . . . . . . . 21
2.9 Aicardi Syndrome Modifications to Workflow . . . . . . . . . 21

2.9.1 Counting Variants in Common . . . . . . . . . . . . . 21

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1 Benchmarking Against Simulated Data . . . . . . . . . . . . 24

3.1.1 Comparison of SV callers . . . . . . . . . . . . . . . . 24
3.1.2 LUMPY and CNVnator Versus All Other Callers . . 25

3.2 Benchmarking Against Biological Data: WGS from NA12878 30
3.2.1 Deletion Detection . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Insertion Detection . . . . . . . . . . . . . . . . . . . 31

vi



Table of Contents

3.3 Genomiser Non-Coding Mendelian Variants . . . . . . . . . . 32
3.3.1 Detection of pathogenic non-coding variants . . . . . 32
3.3.2 CADD and FATHMM Scores for Non-Coding Variants 33
3.3.3 Spike-in of a Pathogenic SNV . . . . . . . . . . . . . 35

3.4 HSAN Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.1 HSAN SNVs and Indels . . . . . . . . . . . . . . . . . 36
3.4.2 HSAN SV Analysis . . . . . . . . . . . . . . . . . . . 39

3.5 Aicardi Syndrome Analysis . . . . . . . . . . . . . . . . . . . 43
3.5.1 Aicardi Syndrome SNV and Indel Analysis . . . . . . 43
3.5.2 Aicardi Syndrome SV Analysis . . . . . . . . . . . . . 43
3.5.3 Aicardi syndrome de novo variant analysis . . . . . . 45

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 VarSim Benchmarking Results and Limitations . . . . 47
4.2.2 NA12878 Benchmarking Results and Limitations . . . 48
4.2.3 Limitations to SV Calling from SRS . . . . . . . . . . 49

4.3 Genomiser Non-Coding Mendelian Variants . . . . . . . . . . 50
4.3.1 Detection of Pathogenic Non-Coding Variants . . . . 50
4.3.2 FATHMM and CADD Scores of Pathogenic Non-Coding

Variants . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.3 Spike-in of a Pathogenic Non-Coding SNV . . . . . . 51

4.4 HSAN Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 HSAN SNV and Indel Analysis . . . . . . . . . . . . 52
4.4.2 HSAN SV Analysis . . . . . . . . . . . . . . . . . . . 52
4.4.3 HSAN Analysis Limitations . . . . . . . . . . . . . . 54

4.5 Aicardi Syndrome Analysis . . . . . . . . . . . . . . . . . . . 54
4.5.1 Aicardi Syndrome SNV/Indel and SV Analysis . . . . 54
4.5.2 Aicardi Syndrome Limitations . . . . . . . . . . . . . 55

4.6 Conclusions and Future Directions . . . . . . . . . . . . . . . 55
4.6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6.2 Comparison to a study analyzing WGS from patients

with a heterogeneous disease . . . . . . . . . . . . . . 56
4.6.3 Future directions . . . . . . . . . . . . . . . . . . . . 57
4.6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 58

vii



Table of Contents

Appendices

A Python script . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



List of Tables

2.1 Software and parameters used . . . . . . . . . . . . . . . . . . 23

3.1 Deletion detection sensitivity for 30X 100 bp pair-end simu-
lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Duplication detection sensitivity for 30X 100 bp pair-end sim-
ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Inversion detection sensitivity for 30X 100 bp pair-end simu-
lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 SV detection in NA12878 genome . . . . . . . . . . . . . . . . 31
3.5 Regulatory variants associated with familial hypercholesterolemia

genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 HSANpatient phenotypes . . . . . . . . . . . . . . . . . . . . 37

ix



List of Figures

1.1 Flow of information in the cell . . . . . . . . . . . . . . . . . 2
1.2 Topological associated domains . . . . . . . . . . . . . . . . . 4
1.3 Disruptions to TAD boundaries cause rare limb malformations 5
1.4 Structural variation . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Structural variant detection . . . . . . . . . . . . . . . . . . . 11

2.1 Bioinformatic workflow . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Deletion detection sensitivity and F1 score . . . . . . . . . . . 26
3.2 Deletion detection sensitivity with LUMPY and CNVnator . 27
3.3 Duplication detection sensitivity with LUMPY and CNVnator 28
3.4 Inversion detection sensitivity with LUMPY and CNVnator . 29
3.5 Size of deletions detected in NA12878 . . . . . . . . . . . . . 32
3.6 Detection of known pathogenic non-coding SNVs and indels . 33
3.7 FATHMM scores of known pathogenic non-coding SNVs and

indels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 CADD scores of known pathogenic non-coding SNVs and indels 35
3.9 Regulatory variants in patients with HSAN . . . . . . . . . . 38
3.10 A regulatory variant in PMP22 in a patient with HSAN . . . 39
3.11 Summary of SVs in patients with HSAN . . . . . . . . . . . . 40
3.12 Tandem duplication impacting DNMT1 in three siblings with

HSAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.13 Regulatory variants in patients with HSAN . . . . . . . . . . 44
3.14 Summary of SVs in patients with Aicardi syndrome . . . . . 45

A.1 Python script for extracting TAD boundaries flanking candi-
date genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

x



List of Abbreviations

CRE cis-regulatory element
WGS whole genome sequence/sequencing
TFBS transcription factor binding site
TSS transcription start site
TAD topologically associated domain
BCA balanced chromosomal abnormality
lncRNA long non-coding RNA
snoRNA small nucleolar RNA
miRNA microRNA
siRNA short interfering RNA
WES whole exome sequence/sequencing
HGMD Human Gene Mutation Database
CNV copy number variant
SV structural variant
CADD combined annotation dependent depletion
SNV single nucleotide variant
Indel insertion deletion
FATHMM functional analysis through hidden Markov model
CMA chromosomal microarray analysis
PE paired-end
RD read-depth
RP read-pair
SR split read
AS de novo assembly
HSAN hereditary sensory and autonomic neuropathy
DGV Database of Genomic Variants
GIAB Genome in a Bottle
1000G 1000 Genomes Project
PPV positive predictive value
TP true positive
FN false negative

xi



List of Abbreviations

FP false positive
DECIPHER Database of Genomic Variation and
Phenotype in Humans
SRS short-read sequencing
LRS long-read sequencing
PacBio Pacific Biosciences
SMRT single molecule real-time

xii



Acknowledgements

For funding, I would like to thank NSERC for the Canada Graduate Schol-
arship Masters Program award, and my supervisor, Jan Friedman.

Many thanks to Jan Friedman for his uncompromising intellect, kind
support, and sage advice. I feel very fortunate to have had him as a su-
pervisor. Thank you to the past and present members of the Friedman lab.
Thank you to my committee members, Wyeth Wasserman and Inanc Birol,
for taking the time to advise me on my thesis.

Thank you to Green College for providing me with a warm and open-
hearted community for my first two years in Vancouver. Thank you to my
ever-supportive parents and siblings. Big thanks to my twin sister, Margot
Couse, for the countless hours spent mumbling and grumbling with me over
the phone. Thanks to my lovely friends in Vancouver and elsewhere. And
finally, thank you to Lucian Go, for putting up with me while I wrote this
thesis.

xiii



Chapter 1

Introduction

1.1 The Human Genome

The first draft of the human genome was published over fifteen years ago
[29]. The announcement was greeted with excitement and high expecta-
tions. With the sequence of the human genome, the blueprint for human
life, would scientists lay bare the mysteries encoded in our DNA? The hu-
man genome was seemingly simpler and yet more complex than previously
imagined. The genome encodes a mere ˜21,000 protein coding genes, less
than one quarter the number that had been predicted. On the other hand
only ˜2% of the genomes ˜3 billion bases comprise protein-coding genes.
Clearly, there was more to the genome than the simplistic and determinis-
tic genome-as-blueprint concept. Indeed, scientists uncovered a symphony
of cis-regulatory elements (CRE) residing in the non-coding genome: pro-
moters, enhancers, silencers, insulators, and various classes of non-coding
RNAs. These elements respond to dynamic environmental cues to tune
gene expression through space and time, guided by the genomes intricate
spatial architecture. As our understanding of the non-coding genome and
the overall genomic structure has deepened, so too has our knowledge of
their contribution to human disease.

Though we have begun to unravel the role of the non-coding genome in
shaping phenotypes, this knowledge has not yet been harnessed in clinical
sequencing pipelines for diagnosing disease. These pipelines focus on the 2%
of DNA in the protein-coding regions of the genome. This thesis will attempt
to integrate structural and CRE analysis into a whole genome sequence
(WGS) analysis pipeline for prioritizing regulatory and structural variants
in rare Mendelian disease.

1.2 Genome Regulation and Dysregulation

Gene expression regulation begins at the cell surface, where ligand-receptor
interactions initiate signal transduction cascades that eventually activate
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1.2. Genome Regulation and Dysregulation

transcription factors [35]. Such activated transcription factors bind CREs,
which then interact locally or distally with RNApolII at a gene promoter
to induce or repress gene expression (fig.1.1). Above the linear sequence of
DNA, the 3D topology of the genome directs and constrains interactions of
CREs with their cognate promoters to orchestrate gene expression.

Figure 1.1: The flow of information in a cell, greatly sim-
plified. Modified from Cowie et al. 2015, with permission
from Cambridge University Press. [11]

Variants in CREs may confer disease risk by altering transcription fac-
tor binding sites (TFBS), disrupting regulatory domains, or influencing sus-
ceptibility of a sequence to epigenetic modification [38]. Many examples of
pathogenic variants residing in or disrupting regulatory sequences have been
identified in recent years. Indeed, a recent paper compiled 453 different non-
coding variants associated with Mendelian diseases [52]. CRE structure and
function, as well as examples of diseases resulting from their disruption, are
described below.

1.2.1 Promoters

A promoter is the sequence upstream of a gene transcription start site (TSS)
that is bound by the transcriptional apparatus to initiate gene expression.
A core promoter refers to the ˜50 bases that bind the transcription pre-
initiation complex, which includes RNA polymerase II and basal transcrip-
tion factors [11]. Meanwhile, the non-core promoter may be kilobases in
length and encompass TFBS that are necessary for tissue-specific gene ex-
pression. Mutations in promoter sequences can introduce or remove TFBS

2



1.2. Genome Regulation and Dysregulation

to change levels of gene expression.
For example, a constitutional mutation in the promoter of telomerase

reverse transcriptase (TERT), which encodes a catalytic subunit of telom-
erase, was found to segregate with the disease in a family with hereditary
melanoma [23]. TERT is upregulated in 90% of cancers and is associated
with immortality in cancer cells. The germline mutation was located 57 bp
upstream of the transcription initiation site. Mutations occurring somati-
cally 124 and 146 bp downstream of the transcription initation site were also
found in tumors of several unrelated patients. These germline and somatic
mutations were found to create a CCGGAA/T binding motif for Ets/TCF
transcription factors that resulted in increased TERT expression.

1.2.2 Enhancers and Silencers

Enhancers and silencers are short (50-1500 bp) CREs that are bound by
transcription factors to upregulate or downregulate promoter activity, re-
spectively. Their activity is orientation and distance-independent [36]. In-
deed, enhancers may target promoters at a distance as far as one megabase;
this was observed fortuitously in a mutant mouse, sasquatch, generated by
random integration of a transgene into an intron of LMBR1, 1 Mb away
from the Sonic hedgehog gene (SHH) [31]. The transgene disrupted a long-
range enhancer that regulates developmental SHH expression and causes
preaxial polydactyly (PPD). Dysregulated SHH is ectopically expressed in
the anterior margin of the mouse limb bud, causing the limb to develop
preaxial digits. Point mutations in this long-range enhancer in both mice
and humans also cause PPD.

1.2.3 Topologically Associated Domains

Our DNA is bound by proteins, including histones and transcription factors,
as well as non-coding RNAs. This assemblage of molecules, termed chro-
matin, is folded like origami into the nucleus. It is thought that interactions
between distal CREs and genes are mediated by folding of the intervening
chromatin in regulatory domains termed topologically associated domains
(TADs) (fig. 1.2). TADs are discrete genomic regions about ˜1 Mb in size
that interact with themselves at a higher frequency than with the rest of
the genome. TADs are bordered by regions with low interaction frequency,
called TAD boundaries [37]. The TAD boundaries are associated with in-
sulator binding factor CTCF, housekeeping and tRNA genes, and SINE
elements[13]. Dixon et al performed Hi-C experiments in mouse embryonic

3



1.2. Genome Regulation and Dysregulation

stem (ES) cells, human ES cells, and human IMR90 cells and showed that
TAD boundaries are largely conserved between mice and humans (75.9% of
mouse boundaries are boundaries in humans, compared to 29.0% expected
by chance), and, further, TAD boundaries are largely invariant across cell
types.

Figure 1.2: DNA is partitioned into TADs. TAD bound-
aries prevent regulatory elements in one TAD from interact-
ing with genes in neighbouring TADs.

Disruptions to TADs can produce disease. In several families with rare
limb malformations, genomic rearrangements were observed at the WNT6
/IHH/EPHA4/PAX3 locus [32]. All of these rearrangements disrupted a
TAD boundary, either telomeric or centromeric to the EPHA4 TAD (fig.
1.3). Disruption of either boundary caused ectopic interactions of a 150 kb
region within the EPHA4 TAD with neighboring TADs. This region was
shown to contain a cluster of enhancers driving limb expression of EPHA4 ;
in mutants, this region targeted PAX3, WNT6, and IHH, resulting in ectopic
expression and limb malformations in mice and humans.

Translocations and inversions are referred to as balanced chromosomal
abnormalities (BCAs) if they do not cause any net gain or loss of genetic ma-
terial. TAD disruptions were recently shown to cause long-range genetic reg-
ulatory changes in 7% of a developmental anomaly cohort with BCAs studied
by whole genome sequencing [47]. Interestingly, BCA breakpoints in eight
patients impacted a TAD encompassing one particular gene, MEF2C, which
lies in the critical region of the 5q14.3q15 microdeletion syndrome. The
breakpoints in these patients were all at difference loci within the TAD, and

4
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Figure 1.3: Different Limb Pathogenic Structural Vari-
ations in Human and Mouse Map to the EPHA4 TAD
(A) Hi-C profile around the EPHA4 locus in human ESCs
(Dixon et al., 2012). Dashed lines indicate the EPHA4
TAD and boundaries. Cen, centromeric; tel, telomeric.(BD)
Schematic of structural variants (left) and associated phe-
notypes (right). (B) Brachydactyly-associated deletions in
families B1, B2, and B3. Note thumb and index finger short-
ening with partial webbing in a child (B1 patient) and adult
(B2 patient). (C) F-syndrome-associated inversion in family
F1 and duplication in family F2. Note similar phenotypes
of index/thumb syndactyly. (D) Polydactyly-associated du-
plication (P1) and deletion in the doublefoot (Dbf) mouse
mutant. The radiograph of the patients hand and the skele-
tal preparation of the Dbf/+ mouse show similar seven-digit
polydactyly. Reproduced from Figure 1 of Lupiez et al., 2015,
with permission from Elsevier. [32]
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1.3. Next Generation Sequencing and Clinical Studies

none affected the adjacent TAD boundaries, but all still changed MEF2C
expression and likely caused the developmental anomalies in these patients.

1.2.4 Non-coding RNAs

Much of the non-coding genome is transcribed, and the role of these non-
coding transcripts in regulating gene expression is well appreciated [17] .
Regulatory RNAs can be divided into long non-coding RNAs (lncRNA)
and small non-coding RNAs including small nucleolar RNA (snoRNA),
microRNA (miRNA), and short interfering RNA (siRNA). snoRNAs are
involved in chemically modifying other RNA, such as transfer RNA and
ribosomal RNA, while siRNAs and miRNAs repress gene expression after
transcription [6]. Small RNAs are associated with many regulatory roles,
notably in brain development. Indeed, small RNA dysregulation is associ-
ated with neurodevelopmental and neurodegenerative disorders, and with
brain cancer [6]. For instance, microdeletions at 15q11.2 resulting in loss
of the paternal copy of SNORD116 snoRNAs cause Prader-Willi syndrome
[15]. Heterozygous mutations in the seed region of the miRNA MIR96 cause
nonsyndromic progressive hearing loss [40].

lncRNAs are regulatory elements that are gene-like in structure, with
promoters, introns and exons. lncRNA expression is highly tissue-specific;
these RNAs are implicated in the regulation of cell maintenance and fate,
particularly in the brain [6]. De novo translocations disrupting LINC00299
are implicated in neurodevelopmental disability [55].

1.3 Next Generation Sequencing and Clinical
Studies

The estimated cost to sequence the first draft of the human genome via
Sanger sequencing was $300 million
(https://www.genome.gov/sequencingcosts/). Since the introduction of
next-generation sequencing a decade ago, that figure has dropped dramat-
ically, outpacing Moores law for computing costs. Remarkably, the cost of
sequencing the genome using Illuminas HiSeq X Ten machines (after the sys-
tem cost) has broken the US$1000 goal set by the National Human Genome
Research Institute; this represents a 10,000 fold price reduction compared
to 2004 [57]. With the human genome sequence known and increasingly
affordable next-generation sequencing technology available, the number of
Mendelian disease genes that have been identified increased from 100 to 3000
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within a decade [29]. Simultaneously, the number of sequenced genomes has
exploded. Large-scale sequencing projects like the 1000 Genomes Project
(The 1000 Genomes Project Consortium, 2015), and the ESP (NHLBI GO
Exome Sequencing Project, URL: http://evs.gs.washington.edu/EVS/)
have made hundreds of thousands of exomes and whole genomes publicly
available, benefitting clinical sequencing projects greatly with databases of
control exomes/genomes from many populations. Although single-gene test-
ing remains an appropriate diagnostic approach for non-heterogeneous dis-
orders with distinct phenotypes, whole exome sequencing (WES) and WGS
are the approaches of choice for investigating heterogeneous known or sus-
pected Mendelian disorders.

1.3.1 Exome Sequencing

WES is a sequencing method that targets the protein-coding regions of the
genome. It is the current method of choice for clinical sequencing studies
and has been the most commonly used tool for Mendelian disease gene
discovery[61]. WES interrogates less than 2% of the genome, yet it covers
˜85% of known disease-causing variants [57]. However, this proportion is
subject to ascertainment bias, as the search for disease-causing variants has
largely been limited to exonic analysis. WES studies on children with birth
defects or neurodevelopmental disorders have usually reported diagnostic
rates of ˜25-28% [59] but up to 50% with more stringent patient selection
criteria [44].

There are several limitations to the use of WES for identifying genetic
variation. First, WES captures exons in a non-uniform manner, resulting
in insufficient coverage of some genes. A recent study [14] with a TruSeq
capture kit demonstrated that an average of 10% of exons had a minimum
coverage of fewer than 10 reads, despite an overall mean coverage of over
80X. Of these exons, a quarter resided in genes harboring known or likely
disease-causing Human Gene Mutation Database (HGMD) variants. In ad-
dition, WES lacks reliability and sensitivity in detecting small copy number
variants (<100kb), large indels (<50bp), and other complex structural vari-
ants (SVs) [53]. Finally, WES does not capture the vast majority of the
non-coding genome.

1.3.2 Whole Genome Sequencing

Due in large part to its higher cost and challenges in data interpretation,
WGS has been performed far less frequently than WES for clinical diagno-
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sis. However, WGS covers both the coding and non-coding genome more
uniformly than WES, and, further, can detect SVs across a wide range of
sizes with single base resolution.

The advantages of WGS over WES have been demonstrated in a num-
ber of studies. In a cohort of 50 patients with severe intellectual disability
who remained undiagnosed after microarray analysis and exome sequencing,
Gilissen et al[20] detected 8 de novo copy number variants (CNVs), which
play an important role in neuropsychiatric disorders. Carss et al[7] used
WES and WGS to identify rare pathogenic variants in a phenotypically and
genetically heterogeneous cohort of 722 individuals with inherited retinal
disease. Forty five of the individuals unsolved by WES underwent WGS,
and pathogenic variants not detectable by WES were identified in a further
six individuals. For 3 of these patients, this was due to coverage in WGS at
a variant location that was absent from the bait in the exome capture kit.
Two other individuals had a large deletion and one individual had a large
indel not called by WES. In 605 patients who underwent WGS, a total of 33
SVs (31 deletions and 2 tandem duplications) were identified with precise
breakpoint resolution, which would not have been possible with WES. Fi-
nally, the authors demonstrated the superior uniformity of coverage in GC
rich regions afforded by WGS in comparison to WES, with the identification
of compound heterozygous mutations in one individual in the first exon of
GUCY2D, with a 76% GC content. This exon was not covered in the WES
capture kit.

1.4 Prioritizing Non-coding SNVs and Indels

The whole genome sequence of any individual varies from the reference hu-
man genome at millions of sites. Even after filtering variants that occur at
polymorphic frequencies in normal populations from WGS of patients with
rare Mendelian diseases, the variant list can contain hundreds of thousands
of non-coding and coding variants. Filtering for variants in regulatory re-
gions is one strategy to reduce the search space in order to identify the one
or two pathogenic non-coding variants responsible for a Mendelian disease.
Another is to use computational predictions of functionality based on mod-
els derived from diverse sets of genome annotations and known pathogenic
variants. These scores can help to prioritize genetic variants by providing
likelihoods that a variant is deleterious or functional. Two scores that ap-
ply to both coding and non-coding variants are the CADD score and the
FATHMM score.
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1.4.1 Combined Annotation Dependent Depletion (CADD)
score

The CADD score integrates diverse genome annotations of fixed or nearly
fixed alleles with simulated alleles to score the deleteriousness of any possi-
ble single nucleotide variant (SNV) or small insertion-deletion (indel) [28].
Deleteriousness, corresponding to a reduction in organismal fitness, corre-
lates with molecular functionality and pathogenicity. The CADD score is
derived from 63 distinct annotations including conservation metrics such as
GERP and phastCons, regions of DNAse hypersensitivity, transcription fac-
tor binding, and protein-level scores such as SIFT and PolyPhen. All 8.6
billion possible SNVs in the genome are given a CADD score. The CADD
scores are phred-scaled from 1 to 99, where variants in the highest 10% of
all scores are assigned scores of 10 or greater, variants in the highest 1% are
scored 20 or greater, variants in the highest 0.1% 30 or greater, and so on.

1.4.2 Functional Analysis Through Hidden Markov Model
(FATHMM) score

FATHMM is a machine learning approach integrating 46 sequence conserva-
tion, histone modification, transcription factor binding site, and open chro-
matin annotations to assess the functional consequences of non-coding and
coding variants [50]. Unlike CADD, FATHMM uses an algorithm to weight
different annotations according to relevance, and according to the paper,
outperforms CADD in predicting functional consequences of non-coding
variants. FATHMM scores for all possible SNVs are available, and range
from 0 to 1. Scores of greater than 0.5 indicate that a variant is likely to be
functional.

1.5 Structural Variation

1.5.1 SV classes and detection from NGS

SVs are balanced or unbalanced genomic rearrangements that affect more
than 50 bp of genomic sequence. Although SVs are estimated to impact
more than 1% of each human genome, versus 0.1% for SNPs [45], SVs are
under-ascertained in clinical sequencing studies, mainly due to the short-
comings of SV calling with WES. Pathogenic SVs are typically identified
clinically by karyotyping or chromosomal microarray analysis (CMA); how-
ever, WGS affords a finer resolution and broader scope of SV identification.
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SVs that can be detected from WGS are insertions, deletions, duplications,
inversions, and inter/intrachromosomal translocations (fig. 1.4). Although
the full spectrum of SVs can, in principle, be identified from WGS, SV de-
tection in practice is limited by the length of the reads; WGS read length is
typically 50-400 bp, shorter than most SVs. SV detection is further limited
in repetitive regions of the genome, which are known to be variable in struc-
ture but to which short reads cannot be uniquely mapped [41]. As such,
a number of strategies have been developed to identify SV signatures from
short-read paired-end (PE) sequencing.

1.5.2 Algorithms for identifying SVs

There are four different approaches designed to identify SVs from PE NGS:
read-depth (RD), read-pair (RP), split-read (SR), and de novo assembly
(AS) (fig. 1.5). RD methods are based on deviation of sequencing depth
from the local genomic average and are used to detect copy number variants
(CNVs). RP, SR, and AS methods use sequence signatures from PE reads
to identify SVs. PE sequencing produces reads sequenced from both ends
of DNA fragments, termed read pairs. On average, the length between
read pairs will be consistent (e.g. 350 bp). RP methods are based on read
pairs with insert-sizes or orientations that are inconsistent with expected
values. A read that aligns to two separate locations in the reference genome
and whose mate maps uniquely is termed a SR. SRs allow single base-pair
resolution of breakpoints. AS methods order reads and merge them into
larger fragments, called contigs, to reassemble the original sequence without
the use of a reference. A method that incorporates all methods should be
able to detect the broadest spectrum of SVs with high sensitivity.

1.6 Rare Disease Cohorts

1.6.1 Hereditary Sensory and Autonomic Neuropathy
(HSAN)

HSAN is a group of clinically and genetically heterogeneous disorders of
the peripheral nervous system. Our cohort is comprised of eight patients
in six families with early-onset HSAN whose symptoms include loss of pain
sensation, developmental delay, and gastrointestinal complications. WGS
was performed on these patients, and my colleagues performed an analysis
of rare exonic SNVs and indels. A genetic diagnosis was only reached in two
patients.

10



1.6. Rare Disease Cohorts

Figure 1.4: SV classes that are detectable by WGS. Modi-
fied from Baker, 2012, with permission from Nature Publish-
ing Group. [5]

Figure 1.5: PE read signatures for SVs from read count
(RC), read-pair (RP), split-read (SR), and de novo assembly
(AS) methods. Modified from Tattini et al 2015, with per-
mission under the Creative Commons Attribution License
[56].
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1.6.2 Aicardi Syndrome

Aicardi syndrome is an extremely rare neurodevelopmental disorder charac-
terized by chorioretinal lacunae, agenesis of the corpus callosum, and infan-
tile spasms. The disorder has been described almost exclusively in females
or in boys with Klinefelter syndrome (XXY), with a risk to siblings of less
than 1% [2]. It is, therefore, hypothesized to be caused by a dominant, male
lethal de novo mutation in a gene on the X chromosome. Chromosome mi-
croarray analysis and exome sequencing of patients with Aicardi syndrome
have not revealed the genetic cause for the disorder. Our Aicardi syndrome
cohort is comprised of 9 patients recruited from across Canada and the
United States. Analysis of protein-coding variations in these patients has
not revealed a candidate gene.

1.7 Thesis Rationale and Objective

WES can be used to investigate SNVs and small (<50 bp) indels in protein-
coding genes. WES is currently the technology of choice for clinical sequenc-
ing studies, but SNVs and indels in protein-coding genes that can explain
a phenotype are identified in less than 50% of patients with suspected ge-
netic disease by WES. There is growing interest in using WGS for clinical
diagnosis now that WGS is more affordable and functional annotation of the
genome is improving. In addition, numerous methods have been developed
for calling SVs from WGS data.

I hypothesize that SNVs and indels that disrupt regulatory sequences
and SVs in coding or non-coding sequences are a cause of genetic dis-
ease in patients who remain undiagnosed after CMA and WES (or coding
SNV/indel analysis of WGS). The objectives of this thesis are to 1) develop
and benchmark a bioinformatics workflow for detection of pathogenic non-
coding SNVs/indels and pathogenic SVs, and 2) to use this workflow to
analyze the WGS of unsolved patients recruited from in-house HSAN and
Aicardi syndrome studies to test my hypothesis.
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Chapter 2

Methods

Figure 2.1 illustrates the bioinformatics workflow created to identify regu-
latory variants and SVs from WGS. The steps taken in the pipeline and the
benchmarking performed to validate the tools are described below. Software
versions and parameters are listed in table 2.1.

2.1 Sequencing and Alignment

2.1.1 Whole Genome Sequencing

HSAN samples were sequenced following the manufacturers recommenda-
tions on Illumina HiSeq2000 machines in Corey Nislows lab at the Uni-
versity of British Columbia, Vancouver, B.C., Canada. Aicardi samples
were sequenced following the manufacturers recommendations on Illumina
HiSeq2000 machines at the Michael Smith Genome Sciences Centre, Vancou-
ver, B.C., Canada. Chastity-failed reads, or reads with a high frequency of
low quality bases at the beginning of the read, were excluded from further
analyses. HSAN samples were sequenced to 30X with 100 bp paired-end
reads. WGS was performed on samples from nine Aicardi syndrome pa-
tients to 30X with 125 bp paired-end reads. Of these nine patients, two
were additionally sequenced as trios; affected tissue from these probands
was sequenced to 100X with 100 bp paired-end reads and their parents were
sequenced to 30X with 100 bp paired-end reads. Many reads from one trio
probands affected tissue, however, were dropped due to low quality, leading
to a coverage of 30X.

2.1.2 Alignment and SNV and Indel calling

Fastq files were aligned with SpeedSeq, a wrapper with a modular architec-
ture for performing rapid, parallelized whole-genome alignment and variant
calling. Default parameters were used. SpeedSeq uses BWA mem to align
raw reads to a reference genome, SAMBLASTER to rapidly mark duplicate
reads, Sambamba to sort reads and covert SAM to BAM, and FreeBayes to
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Figure 2.1: Bioinformatic workflow for transforming raw
sequence reads to rare regulatory variants. The workflow for
processing SVs from a BAM file is illustrated in red on the
left branch, while the purple branch on the right illustrates
the workflow for processing SNVs and indels from a BAM
file.
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call SNVs/indels. SpeedSeq also extracts split reads and discordant reads
pairs for downstream SV calling with LUMPY. HSAN samples were aligned
to the human genome build 19, or hg19. Aicardi samples were aligned to
the human genome build 38, or hg38, to take advantage of its improvements
in the X chromosome assembly.

2.2 Structural Variant Calling and Benchmarking

2.2.1 MetaSV Consensus SV Caller

MetaSV is a consensus SV caller that was used to incorporate SV calls from
multiple tools to provide a high-sensitivity SV set [42]. This is useful as there
is no single SV calling tool that optimally detects all SVs across a range of
sizes. MetaSV provides support for output of CNVnator, an RD approach
[1], Breakdancer, an RP approach [8], Pindel, an SR and RP approach [60],
LUMPY, an SR and RP approach [30], and Manta, an SR and RP approach
[9]. These tools were selected to benchmark SV calling. MetaSV performs
intra- and inter-tool merging for SVs with significant overlap, and then
performs local assembly at SV breakpoints as an additional line of evidence
and to refine breakpoints. Finally, SVs are genotyped and annotated. SVs
detected by multiple tools (or multiple lines of evidence in one tool, e.g.
SR and RP or SR and RD) are considered to be high-confidence, or PASS.
SVs detected by only one tool or one line of evidence, e.g. just RD, are low-
confidence, or LOWQUAL. MetaSV is also augmented with a soft-clip-based
method for detecting insertions. A soft-clipped read refers to the SR and
its uniquely mapped mate. Candidate insertion intervals are generated from
soft-clipped reads, which are then assembled to generate insertion locations.

2.2.2 VarSim Paired-End Read and SV Simulation

To validate the sensitivity and specificity of the SV calling approach, Var-
Sim was used to simulate paired-end reads and SVs from a reference genome
and validate the results of alignment and variant calling [43]. VarSim is
able to simulate deletions, insertions, tandem duplications, and inversions.
Translocation simulations are not currently available but are planned for a
future version. VarSim inserts variants, e.g., previously reported SVs from
the Database of Genomic Variants (DGV), into a user-specified reference
genome. DGV is a curated catalogue of SVs from control individuals ob-
tained using microarrays and NGS [34]. VarSim then uses ART to simulate
reads in FASTQ format for secondary analysis. ART is a set of tools that
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uses error models or quality profiles from real sequencing data to simulate
synthetic reads [24]. After alignment and variant-calling through the user-
defined pipeline, VarSim compares the called variants to the SV truth set
used as input for simulating reads, breaking down sensitivity and precision
by SV type and size.

Using VarSim, 30X NGS 2x100 bp paired-end reads were generated from
hg19 using variants from DGV. Reads were then processed using SpeedSeq,
and SVs called with Pindel, CNVnator, Manta, Breakdancer, Lumpy, and
MetaSV.

2.2.3 SV Benchmarking with Biological Data: NA12878
WGS

The CEU NA12878 sample has been analyzed extensively by the Genome in
a Bottle (GIAB) Consortium (http://jimb.stanford.edu/giab) in order
to characterize its high-confidence SNPs, indels, and homozygous reference
regions. Preliminary benchmark deletions and insertions have also been
called [46]. Deletions were downloaded from ftp://ftp-trace.ncbi.nlm.

nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_

Information/Personalis_1000_Genomes_deduplicated_deletions.bed

and insertions were downloaded from ftp://ftptrace.ncbi.nih.nlm.gov/

giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/

Spiral_Genetics_insertions.bed. The deletions were called by the Per-
sonalis approach (http://www.personalis.com/assets/files/posters/
ashg2013/An_integrated_approach_for_accurate_calling.pdf) , which
is a consensus method that uses CNVnator, BreakDancer, Pindel, and Break-
Seq. This set of deletions was further refined by pedigree analysis of 16
family members and PCR validation [46]. The deletion call-set also includes
deletions called by the 1000 Genomes Project pilot phases, which were val-
idated by assembly or other independent technologies such as CMA. Inser-
tions were called using Spiral Genetics Anchored Assembly.

The NA12878 genome sequenced to 50X by the Platinum Genomes
project (https://www.illumina.com/platinumgenomes.html) was downloaded
from the BaseSpace Sequence Hub. FASTQ files were aligned using Speed-
Seq and SVs were called using LUMPY, CNVnator, and metaSV. Deletions
and insertions were extracted from the final SV call set and converted to
BED format using a custom bash script. Using intersectBED, deletions were
considered true positives if they shared a reciprocal overlap of 50% with a
benchmark deletion. In other words, deletion A must overlap deletion B
by at least a fraction of 1/2, and deletion B must overlap deletion A by
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at least a fraction of 1/2. Using windowBED, insertions were considered
true positives if a benchmark insertion resided within 10 bp of the insertion
point.

2.3 Annotations

2.3.1 Gene Lists

For the HSAN study, candidate genes were defined from the list of 50
genes in Gene Dxs hereditary neuropathy panel (https://www.genedx.com/
test-catalog/available-tests/hereditary-neuropathy-panel/). For
the Aicardi syndrome study, all RefSeq genes (1087 with unique HUGO Gene
Nomenclature Committee names) on the X chromosome were analyzed.

2.3.2 Identification of Regulatory Sequences in the Human
Genome

Publicly available databases were used to identify human regulatory se-
quences. The FANTOM5 genome-wide, tissue- and cell-specific atlas of
enhancers was downloaded from http://enhancer.binf.ku.dk/presets/

enhancer_tss_associations.bed. Vista enhancers, which have been tested
for biological activity in transgenic mice, were downloaded from UCSC
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/).
miRNA, snoRNA, and miRNA binding sites were also downloaded from
UCSC .The 2500 bp sequence upstream of each RefSeq gene (used as a
proxy for promoters), and RefSeq 3 and 5 untranslated regions (UTRs) of
genes were downloaded using the UCSC table browser (https://genome.
ucsc.edu/cgi-bin/hgTables). Genomic regions deemed ultrasensitive to
variation based on conservation and presence of transcription factor bind-
ing sites were downloaded from the supplementary information of Khu-
rana et al [27]. TADs identified in human embryonic stem cells by HiC
(combined replicates) were downloaded from the Ren lab Hi-C website at
http://chromosome.sdsc.edu/mouse/hi-c/download.html.

2.3.3 Association of Regulatory Sequences to Known Genes

UTRs and promoters regulate the genes in which they reside or to which
they are proximal. Distal elements, however, do not always target the closest
gene. Andersson et al. [3] performed pairwise correlations between RNA
expression from FANTOM5 enhancer elements and transcription start sites
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(TSSs) to associate enhancer function with genes. Vista enhancers, Ultra-
sensitive regions, and non-coding RNAs were associated to genes lying within
the same TAD using intersectBED; if a regulatory region lies within the
same TAD as a gene, there is evidence to suggest the two interact [37].
TAD boundaries flanking candidate gene-containing TADs were extracted
using a custom python script that defines the downstream and upstream
TAD boundaries for that gene (see Appendix).

2.4 Benchmarking Regulatory SNV and Indel
Detection

To determine the sensitivity of the regulatory region annotations in identi-
fying true pathogenic non-coding variants, the list of pathogenic non-coding
variants identified by Smedley et al [52] was intersected with the relevant
regions on hg19. Using intersectBed, 3UTR variants were intersected with
RefSeq 3UTRs, 5UTR variants with RefSeq 5UTRs, promoter variants with
the regions 2500 bp upstream of RefSeq genes, RNA genes with RefSeq
genes, miRNA variants with the UCSC wgRNA track (snoRNAs and miR-
NAs), and enhancer variants with FANTOM5, Vista enhancers, and Khu-
rana ultra-sensitive regions.

To compare the CADD and FATHMM scores for pathogenic non-coding
variants versus a random set of genomic variants, FATHMM and CADD
scores were computed for all pathogenic non-coding SNVs (343) and a set
of 343 randomly sampled rare variants from one HSAN patient. Pathogenic
non-coding indels (110) were excluded, as FATHMM does not support scores
for indels. To simulate the efficacy of the SNV/indel annotation and prior-
itization pipeline for a heterogeneous Mendelian disorder, a variant in the
promoter region of LDLR was selected and inserted into the vcf file of one
of the HSAN patients. This particular variant (hg19 chr 19:11200073C¿T),
present in the variant list compiled by Smedley et al, was chosen because it
is associated with familial hypercholesterolemia (MIM 143890), a heteroge-
neous phenotype associated with variants in APOA2, ITIH4, GHR, GSBS,
EPHX2, and LDLR.

2.5 Filtering and Annotation of SNVs and Indels

1000G, dbsnp147, esp6500, ExAC, the Haplotype Reference Consortium,
and Kaviar databases, as well as refGene annotations, segmental duplica-
tions, and functional scores were downloaded from ANNOVAR using the an-
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notate variation.pl script (e.g., annotate variation.pl -buildver hg19 -downdb
-webfrom annovar exac03 humandb/). Conserved TFBS and ENCODE
TFBS were downloaded from UCSC using the same script (e.g., anno-
tate variation.pl -buildver hg19 -downdb tfbsConsSites humandb/). Using
ANNOVARvariants reduction.pl script, variants present at a frequency of
greater than 1% in 1000G, dbsnp147, esp6500, ExAC, the Haplotype Ref-
erence Consortium, and Kaviar were filtered out. Using the ANNOVAR
table annovar.pl script, rare variants were annotated with refGene anno-
tations, segmental duplications, functional scores (CADD and FATHMM-
MKL), conserved TFBS as annotated by TRANSFAC, ENCODE TFBS,
regulatory regions associated with genes, and TADS containing candidate
genes. Upon manual inspection of variants in IGV and UCSC, variants that
were found to have rs numbers were excluded.

Indel annotation can vary by software, and therefore coordinates between
known indels and variants may differ. This can result in common indels not
being filtered out. Indels that appeared to be technical artefacts based on
their visual presence (or the presence of similar indels) in samples from
other cohorts upon inspection in IGV, were also excluded. After manual
curation, FATHMM and CADD scores were used to prioritize SNVs; variants
with a CADD score greater than 15 were flagged, as were variants with
a FATHMM non-coding score of greater than 0.5, as these scores above
these thresholds are considered to indicate functional variants. Genotype-
phenotype correlation, inheritance mode, and presence of TFBS were then
used to further narrow down candidate pathogenic variants.

2.6 Filtering and Annotating SVs

2.6.1 VCF to BED format

In order to compare SV intersections with common SVs and with regulatory
regions or genes, SV vcf files were converted to BED format using a custom
shell script where the SVLEN is extracted and added to the start coordinate
to find the end coordinate of the SV. For insertions, the end coordinate was
equal to the start coordinate plus one, regardless of the SVLEN.

2.6.2 Comparison to SV Control Databases

Methods for SV comparison to DGV and 1000G were modified from Hehir-
Kwa et al 2016 [22]. A reciprocal overlap was used to match deletions,
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duplications, and inversions, rather than comparison of SV length and cen-
ter.

2.6.3 Comparison to DGV

For HSAN, the SV calls were compared to the 2016-05-15 hg19 release of
the database of genomic variants (DGV) (http://dgv.tcag.ca/dgv/docs/
GRCh37_hg19_variants_2016-05-15.txt). For Aicardi syndrome, the SV
calls were compared to the 2016-08-31 hg38 release of DGV (http://dgv.
tcag.ca/dgv/docs/GRCh38_hg38_variants_2016-08-31). Deletions were
compared to DGV entries where varianttype was equal to CNV and vari-
antsubtype was deletion or loss. Duplications were compared to DGV en-
tries where varianttype was equal to CNV and variantsubtype was duplica-
tion, gain, or tandem duplication. For inversions, entries with varianttype
OTHER and variantsubtype inversion were used. Insertions were compared
to entries where varianttype was equal to CNV and variantsubtype was in-
sertion or novel sequence insertion or mobile element insertion. For SVs
other than insertions, variants with a reciprocal overlap of at least 80% with
a DGV entry were filtered out using bedtools subtractBed. Insertions were
filtered out with windowBed if a DGV variant resided within 500 bp from
the insertion point.

2.6.4 Comparsion to 1000G

The SV calls for HSAN were compared to the SV release of phase 3 of the
1000 Genomes Project for hg19
(ftp://ftptrace.ncbi.nih.gov/1000genomes/ftp/phase3/intergrated_
sv_map/ALL.wgs.integrated_sv_map_v2.20130502.svs.genotypes.vcf.

gz). Annotations for 1000G SVs aligned to hg38 are not yet available. Dele-
tions were compared to 1000G events where SVTYPE matched DEL, CNV,
DEL ALU, DEL HERV, DEL LINE1, or DEL SVA. Duplications were com-
pared to SVTYPES matching DUP or CNV. Inversions were compared to
records with SVTYPE=INV. Insertions were compared to SVTYPES ALU,
LINE1, or SVA. As described above for DGV, matching was done based on
overlap of the patient SV, or within a 500 bp window for insertions.

2.6.5 Translocations

Unfortunately, MetaSV does not handle the SVs annotated as BND (break-
point) by Lumpy, which represent translocations and insertions. As such,
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2.7. Identifying Genic and Regulatory SVs

these annotations are filtered out of the final MetaSV VCF output. In-
stead, a custom python script was used to extract entries annotated as
BND by Lumpy. 95% confidence intervals surrounding the breakends for
IMPRECISE variants were used to determine bed start and end coordi-
nates. Translocation bed files were then concatenated to the main SV bed
file and sorted using BEDtools sort.

2.7 Identifying Genic and Regulatory SVs

Rare SVs were intersected with genes and regulatory elements using inter-
sectBED.

2.8 HSAN Modifications to Workflow

Variants present in the HSAN patients for whom a genetic diagnosis had
been made by exome sequencing, HSAN3 and HSAN4, were subtracted from
the other HSAN patients. For SNVs and indels, this was done using the
Annovar annotate variation.pl script using the variant lists from HSAN3
and HSAN4 as filters. Similarly, HSAN3 and HSAN4 SVs were filtered out
using subtractBED with a reciprocal overlap of 0.8, comparing like SV types.

2.9 Aicardi Syndrome Modifications to Workflow

We hypothesized that the mutation causing Aicardi syndrome was a de novo
mutation on the X chromosome. As such, in trio probands, putative de
novo SNVs/indels were identified by filtering out parent SNV/indels using
Annovars annotate variation.pl script. Similarly, parent SVs were filtered
out using subtractBed with a reciprocal overlap of 0.8, comparing like SV
types. To filter out technical artefacts, parent variants were also filtered out
from all 9 Aicardi genomes.

2.9.1 Counting Variants in Common

Regulatory regions, as described in Methods 2.3.2, were selected for those
residing on the X chromosome using Unix command grep chrX. A custom
python script was used to count the number of patients in which chromo-
some X regulatory regions were mutated by SNVs/indels in the nine Aicardi

21



2.9. Aicardi Syndrome Modifications to Workflow

genomes and between the two trio probands for de novo SNVs/indels. Reg-
ulatory regions with variants in 9, 8, 7, 6, 5, or 4 patients were manually
inspected in IGV and the UCSC genome browser.
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2.9. Aicardi Syndrome Modifications to Workflow

Tool Version
Command-line arguments
(if not specified, default was used)

VarSim1

Art
0.6.3
03.11.14

-read length 100 vc num snp 3000000
vc num ins 100000 -vc num del 100000
vc num mnp 5000 vc num complex 5000
sv num ins 2000 sv num del 2000
sv num dup 200 sv num inv 100
sv percent novel 0.01 vc percent novel 0.01
mean fragment size 350
sd fragment size 50 vc min length lim 0
vc max length lim 49 sv min length lim 50
sv max length lim 1000000
nlanes 5 totalcoverage 30

SpeedSeq2

BWA

Samblaster
Sambamba
FreeBayes

0.10
0.7.15-r1140

0.1.22
0.5.9
0.9.21

-

Pindel3 0.2.5b8 -T 10 -w 5

CNVnator4 0.3.2
bin size: 100
-his 100 -stat 100 -partition 100 -calling 100

Breakdancer5 1.3.6 -m 1000000000 -r 2
Manta6 0.29.6 -m local -j 10
LUMPY7 0.2.13 -

MetaSV8 0.5.4
-min support ins 2
-max ins intervals 500000

ANNOVAR9 2016Feb01

variants reduction.pl:aaf threshold 0.01
table annovar.pl: -protocol
refGene,cadd*,fathmm*,genomicSuperDups,
tfbsConsSites,wgEncodeRegTfbsClustered,
wgRna,targetScanS
[plus regulatory region bed files specific to cohort]
Not available for hg38

BEDtools10 2.24.0 -

Table 2.1: Software and parameters used
1 https://github.com/bioinform/varsim
2 https://github.com/hall-lab/speedseq
3 https://github.com/genome/pindel
4 https://github.com/abyzovlab/CNVnator
5 https://github.com/genome/breakdancer
6 https://github.com/Illumina/manta
7 https://github.com/arq5x/lumpy-sv
8 https://github.com/bioinform/metasv
9 http://annovar.openbioinformatics.org/en/latest/
10 http://quinlanlab.org/tutorials/bedtools/bedtools.html
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Chapter 3

Results

A bioinformatic workflow was constructed to analyze WGS from patients
with rare Mendelian diseases. Several components of this workflow, in-
cluding SV detection, regulatory variant detection, and pathogenic regula-
tory variant prioritization, were tested to benchmark the performance of the
pipeline. Finally, the pipeline was tested on a cohort of patients with HSAN
and a cohort of patients of Aicardi syndrome and identified two candidate
variants of interest. The results are described in detail below.

3.1 Benchmarking Against Simulated Data

3.1.1 Comparison of SV callers

First, SV calls from metaSV based on input from Pindel, CNVnator, Break-
dancer, Manta, and LUMPY were compared to the set of calls for each tool
individually (fig. 3.1, deletions). metaSV calls were divided into metaSV all
and metaSV PASS. metaSV all represents the union of SVs called using any
number of SV tools or approaches, in other words, calls made by all five SV
tools and integrated by metaSV. SVs called by only one approach, for exam-
ple just by RD, are considered to be low-confidence. SVs called using two or
more tools/approaches are considered to be high-confidence. metaSV PASS
represents only high-confidence calls. Sensitivity is measured by the number
of true positive SV calls divided by the total number of true SVs (eqn. 3.1).
Precision, or positive predictive value (PPV), is measured by the proportion
of true positive SV divided by all SVs called (eqn 3.2). The F1 score is the
harmonic mean of PPV and sensitivity (eqn. 3.3).

Sensitivity = TP/(TP + FN) (3.1)

PPV = TP/(TP + FP ) (3.2)

F1 = 2TP/(2TP + FP + FN) (3.3)
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3.1. Benchmarking Against Simulated Data

Where TP = true positive, FN= false negative, FP=false positive

As expected, none of the individual tools was as sensitive as the set of
metaSV calls together (metaSV all). Surprisingly, LUMPY achieved F1
scores similar to the metaSV PASS calls across all deletion sizes and types,
and similar sensitivity to metaSV all calls (Fig. 3.1). LUMPY was therefore
was selected for more in-depth analysis of SV data.

3.1.2 LUMPY and CNVnator Versus All Other Callers

Figure 3.1 shows that LUMPY detected deletions as accurately as the con-
sensus of 5 SV callers. However, because we are searching for rare disease-
causing SVs of all types, it is important to consider the sensitivity of the
methods in more depth. metaSV all achieved a higher sensitivity than
LUMPY for deletions (fig. 3.1). Some SVs, such as large deletions and
large duplications, are missed by SR and RP methods but are identifiable
by a RD approach.

I predicted that LUMPY and CNVnator together, merged by metaSV,
would achieve a sensitivity equaling metaSV all because LUMPY and CN-
Vnator together combine SR, RP, and RD methods. While LUMPYs sen-
sitivity for deletions was nearly equivalent to metaSV all, it dropped no-
ticeably for deletions greater than 500,000 bp (fig 3.1), while CNVnators
sensitivity increased, indicating that SR and RP methods are not as sensi-
tive as an RD method in detecting larger deletions. Indeed, the sensitivity
of LUMPY and CNVnator together for deletions was 79% vs. 80% for
metaSV all (Fig. 3.2, Table 3.1). For duplications, LUMPY and CNVnator
together were equivalent to metaSV all at 89.4% sensitivity (Fig. 3.3, Table
3.2), and LUMPY and CNVnator together had slightly lower sensitivity for
inversions at 63.5% vs. 66.7% for metaSV all (Fig. 3.4, Table 3.3). CN-
Vnator does not detect inversions, so this reduction must be due to some
decrease in sensitivity introduced in either the merging process or local as-
sembly step when LUMPY and CNVnator are input to metaSV. Although
the addition of CNVnator calls decreased overall SV detection specificity
for deletions and duplications, reflected by a decrease in the F1 score, it is
important for capturing SVs that go undetected by LUMPY.
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3.1. Benchmarking Against Simulated Data

Figure 3.1: Deletion detection a) sensitivity and b) F1-
score of 5 SV callers and metaSV consensus calls on 30X
100 bp paired-end simulated reads. metaSV all represents
SVs called using only one tool or approach (LOWQUAL),
as well as SVs called using two or more tools/approaches.
metaSV PASS represents only SVs called using two or more
tools/approaches. The lines on the rectangle on the left of the
graph indicate the sensitivity or F1 score of each approach
for detecting all sizes of SVs. Inf=infinity.
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3.1. Benchmarking Against Simulated Data

Figure 3.2: Deletion detection sensitivity of metaSV (com-
bining 5 SV callers), LUMPY alone, CNVnator alone, and
LUMPY and CNVnator together, with 30X 100 bp paired-
end simulation. metaSV all represents SVs called using only
one tool or approach (LOWQUAL), as well as SVs called
using two or more tools/approaches. The lines on the rect-
angle on the left of the graph indicate the sensitivity of each
approach for detecting all sizes of SVs. Inf=infinity. Note
that the lines for metaSV all (blue) and LUMPY CNVnator
overlap.

Tool Called
True
Positives

F1 Sensitivity

MetaSV all 2319 1418 69.3 80.0

LUMPY 1430 1359 84.9 76.7

CNVnator 1635 808 47.4 45.6

LUMPY CNVnator 2193 1400 70.6 79.0

Table 3.1: Deletion detection sensitivity for 30X 100 bp
pair-end simulation
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Figure 3.3: Duplication detection sensitivity of metaSV
(combining 5 SV callers), LUMPY alone, CNVnator alone,
and LUMPY and CNVnator together, with 30X 100 bp
paired-end simulation. metaSV all represents SVs called
using only one tool or approach (LOWQUAL), as well as
SVs called using two or more tools/approaches. The lines
on the rectangle on the left of the graph indicate the sen-
sitivity of each approach for detecting all sizes of SVs.
Inf=infinity. Note that the lines for metaSV all (blue) and
LUMPY CNVnator overlap.

Tool Called
True
Positives

F1 Sensitivity

MetaSV all 762 161 34.2 89.4

LUMPY 221 142 70.8 78.9

CNVnator 702 138 31.3 76.7

LUMPY CNVnator 592 161 41.7 89.4

Table 3.2: Duplication detection sensitivity for 30X 100 bp
pair-end simulation
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3.1. Benchmarking Against Simulated Data

Figure 3.4: Inversion detection sensitivity of metaSV (com-
bining 5 SV callers), LUMPY alone, CNVnator alone, and
LUMPY and CNVnator together, with 30X 100 bp paired-
end simulation. metaSV all represents SVs called using only
one tool or approach (LOWQUAL), as well as SVs called
using two or more tools/approaches. The lines on the rect-
angle on the left of the graph indicate the sensitivity of each
approach for detecting all sizes of SVs. Inf=infinity.

Tool Called
True
Positives

F1 Sensitivity

MetaSV all 367 338 77.4 66.7

LUMPY 359 356 82.2 70.2

CNVnator 0 0 0 0

LUMPY CNVnator 328 322 77.1 63.5

Table 3.3: Inversion detection sensitivity for 30X 100 bp
pair-end simulation

Finally, Breakdancer, Pindel, and Manta are capable of detecting inser-
tions but captured a mere 0.5% of simulated insertions, calling 225 inser-
tions with only 9 true positives. Here, metaSVs insertion calling algorithm
achieved a sensitivity of 10.3%, which, while low, is a 20-fold increase over
the other tools. Similarly, the F1-score is ˜15 times higher for the metaSV
algorithm than for metaSV using the 5 SV callers. Further investigation
revealed that VarSim was incorrectly processing insertion variants from the
test set. Intersecting the test set of insertions generated by metaSVs inser-
tion boosting algorithm with the truth set of insertions using windowBED

29



3.2. Benchmarking Against Biological Data: WGS from NA12878

revealed 468 true positive insertions, as opposed to the 188 as judged by
VarSim. Further, intersection of LUMPY SVs where SVTYPE=BND de-
tected an additional 596 true positives, 163 of which overlap with metaSV
INS calls. LUMPY marks large intra/inter-chromosomal insertions as BND
(it cannot detect large novel insertions, however, as reads will be unmapped,
and does not support small insertion detection). In total, the pipeline de-
tected 1029 out of 1829 insertion breakpoints. The sensitivity for insertion
detection was therefore about 49%. When using a window of 10 bp around
insertion breakpoints, the sensitivity was 56%.

Based on the results of benchmarking on simulated data, the SV calling
pipeline was chosen to include LUMPY and CNVnator as input to MetaSV,
with the insertion-boosting algorithm set to true. Interestingly, LUMPY
performed substantionally better than Pindel in detecting deletions, with
a sensitivity of 76.7% versus 8.80%. On the other hand, the authors of
the metaSV paper reported sensitivities of 84.6% and 92.8% for LUMPY
and Pindel respectively[42]. This is perhaps due to suboptimal parameter
settings in this thesis, as default settings were used, where as the authors
of metaSV used non-default settings. Further, the authors reported SV
detection sensitivity for a genome with 50X coverage, rather than the 30X
coverage used in this thesis.

3.2 Benchmarking Against Biological Data:
WGS from NA12878

3.2.1 Deletion Detection

After performing benchmarking on simulated data to determine the most
sensitive combination of tools for calling SVs, SV analysis was performed on
the NA12878 50X genome from Platinum Genomes using LUMPY, CNVna-
tor, and metaSV. Deletions and insertions called using this approach were
compared to the svclassify deletion and insertion truth sets, respectively.
2,394 true positive deletions were called from a total of 2,676 truth set dele-
tions (Table 3.4). The deletions called ranged in size from 50 to 139,619
bp, with 75% of deletions under 1000 bp in length, and 66% under 500 bp.
Deletion detection sensitivity was 90% for all deletions called and 88% for
high-confidence deletions, with a near doubling in F1 score from 0.43 for
all deletions to 0.76 for high-confidence deletions. The average size of true
positive deletions was almost three times the size of false negative deletions
(1,451 bp vs. 533 bp). The modal size of the false negative deletions was
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53 bp, while the modal size of the true positive deletions was 314 bp. The
distribution of deletion sizes (fig 3.5) displays peaks at 300 bp and ˜6000
bp, consistent with Alu elements and L1/LINES, respectively.

3.2.2 Insertion Detection

The 28 true positive insertions ranged in size from 12 to 242 bp. Insertion
detection sensitivity was 47% for all insertions called, and 47% for high-
confidence insertions, with an increase in the F1-score from 0.03 for all
insertions to 0.05 for high-confidence insertions (Table 3.4). The average
size of true positive insertions was 74 bp, while the average size of false
negative insertions was 100 bp.

SV Type Called True Positives Sensitivity F1

Deletion 8381 2394 89.5 43.3

High-confidence
deletion

3510 2342 87.5 75.7

Insertion 2258 32 47.0 3.0

High-confidence
insertion

1286 32 47.0 5.0

Table 3.4: Deletion and insertion sensitivity and F1 scores
for SV calling on the 50X NA12878 genome.
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3.3. Genomiser Non-Coding Mendelian Variants

Figure 3.5: Size distribution of smaller deletions detected
in NA12878. The number of deletions detected is plotted
against the size of the deletion. The x-axis maximum was
set to 7,000 to highlight the peaks at 300 bp and 6,000 bp.
Maximum deletion size was 139,619 bp.

3.3 Genomiser Non-Coding Mendelian Variants

3.3.1 Detection of pathogenic non-coding variants

To determine if the non-coding pathogenic SNVs and indels compiled by
Smedley et al. (2016) could be detected by the analysis pipeline, these vari-
ants were intersected with their respective regulatory regions. This filtering
process identified all miRNA and RNA gene pathogenic variants, 97% of
5UTR variants, 93% of 3UTR variants, 87% of promoter variants, and 12%
of enhancer variants (fig. 3.6).
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Figure 3.6: Percentage of Genomiser pathogenic non-
coding variants compiled by Smedley et al. (2016) identified
by the corresponding regulatory region annotations.

3.3.2 CADD and FATHMM Scores for Non-Coding
Variants

Next, the CADD and FATHMM scores for 343 pathogenic non-coding SNVs
from the 453 SNVs and indels from the Smedley list were compared to a set
of 343 randomly sampled rare variants. The 110 pathogenic indels were not
examined, as FATHMM does not support scores for indels. For pathogenic
non-coding SNVs, the median FATHMM score was 0.94, while for random
rare variants it was 0.1 (fig. 3.7). Pathogenic non-coding SNVs had a
median CADD score of 13, while the median CADD score for random rare
variants was 2 (fig. 3.8). As expected, both FATHMM and CADD score
distributions for pathogenic non-coding variants and random rare variants
were very significantly different (two-sample Kolmogorov-Smirnov test, p-
value <2.2x10-16)

33



3.3. Genomiser Non-Coding Mendelian Variants

Figure 3.7: FATHMM non-coding score distributions
for pathogenic non-coding SNVs compiled by Smedley et
al. (2016) (turquoise) and random rare variants (pink).
FATHMM scores greater than 0.50 are considered to indi-
cate a likely functional variant.
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3.3. Genomiser Non-Coding Mendelian Variants

Figure 3.8: CADD score distributions for pathogenic non-
coding SNVs compiled by Smedley et al. (2016) (turquoise)
and random rare variants (pink). CADD scores greater than
15 are considered likely to indicate a deleterious variant.

3.3.3 Spike-in of a Pathogenic SNV

In order to determine the efficacy of the SNV/indel calling pipeline in pri-
oritizing pathogenic variants, a variant in the promoter region of LDLR
associated with familial hypercholesterolemia was selected and inserted into
the WGS vcf file of one of the HSAN patients. After filtering for rare vari-
ants and removing variants present in the two diagnosed HSAN patients,
76,761 SNVs and indels remained in the test vcf file. Of these, only two
(including the spike-in) impacted regulatory regions associated with famil-
ial hypercholesterolemia (table 3.5). Manual inspection of the variants in
IGV and the UCSC genome browser revealed that the APOA2 variant, an-
notated as a complex SNV, was composed of two common SNPs (rs3829793
and rs149905240). Thus, the true pathogenic variant in the LDLR pro-
moter was the only remaining candidate variant. Interestingly, this variant
was annotated as falling in the 5UTR and not the promoter, where it ac-
tually lies. The variant possesses pathogenic FATHMM and CADD scores
and falls within a conserved V$SREBP1 02 motif bound by sterol regulatory
element binding transcription factor 1. Consistency checks for correct in-
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3.4. HSAN Analysis

Locus(Hg19) Ref Alt
Regulatory
region

FATHMM CADD
TFBSCons
sites

1:161194396 GTGAC CTGAG
APOA2
promoter

. . .

19:11200073 C T LDLR 5'UTR 0.9992 15.16 SREBP1 02

Table 3.5: Regulatory variants associated with familial hy-
percholesterolemia genes identified in a patient genome with
variant chr 19:11200073C<T spiked in.

heritance mode (autosomal dominant, in this case) and genotype-phenotype
correlation would prioritize this variant as a candidate pathogenic mutation.

3.4 HSAN Analysis

Our lab performed WGS on eight patients with childhood-onset HSAN. Cod-
ing sequence analysis of these patients revealed pathogenic exonic variants
in two patients 1. The phenotypes for the undiagnosed HSAN patients are
listed in table 3.6.

3.4.1 HSAN SNVs and Indels

Prior to filtering, the genome of each HSAN patient differed from the refer-
ence sequence by an average of ˜4,301,000 SNVs and indels. Filtering out
variants from the two solved patients as well as common variants reduced
this to ˜73,000 SNVs/indels (range 64,027-81,973). On average, 7 regula-
tory variants associated with hereditary neuropathy genes were found per
patient prior to manual inspection in IGV, with the majority found in gene
promoters, the longest of the regulatory sequences (fig 3.9).

1After the analysis for this thesis was completed, my colleagues discovered a pathogenic
exonic variant in an additional HSAN patient, HSAN2, upon re-analysis of coding sequence
variants using an improved analysis pipeline.
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3.4. HSAN Analysis

Symptom
HSAN1-c1,
HSAN1-c2,
HSAN1-c3

HSAN2 HSAN5 HSAN6

Positive
intradermal
histamine skin
test for HSAN

Insensitivity
to pain

Developmental
delays

-

Recurrent
vomiting

- -

Other Anhidrosis
Mild white
matter disease

Chronic lung
disease from
aspiration

Severe
behavioural
problems

Table 3.6: HSAN patient phenotypes. A checkmark in-
dicates the presence of a symptom or test result. A minus
symbol indicates the absence of a symptom or test result.
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Figure 3.9: Average number of regulatory variants asso-
ciated with hereditary neuropathy genes in patients with
HSAN (n=6). Bold lines indicate the median number of
variants in a particular regulatory region. The upper and
lower hinges correspond to the 25th and 75th percentiles.
Upper and lower whiskers extend the hinge to the high-
est value within 1.5xinterquartile range (IQR) and from
the hinge to the lowest value within 1.5xIQR, respectively.
The circles represent outliers, with values greater or less
than the limits of the upper and lower whiskers, respec-
tively. The regulatory variants are categorized by the reg-
ulatory region into which they fall. wgRNA=miRNA and
snoRNA, VISTA=Vista enhancer, Khurana= Khurana et
al (2015) ultra-sensitive region, FANTOM5=FANTOM en-
hancer, miRNAbas = miRNA binding site, 5UTR=5'UTR,
3UTR=3'UTR, Promoter =2500 bp upstream of transcrip-
tion start site.

Only one regulatory SNV in one patient was scored as potentially pathogenic
and fit the predicted inheritance pattern for the proband (de novo muta-
tion). A heterozygous variant at a conserved locus (chr17:15165831, hg19) of
the peripheral myelin protein 22 (PMP22) 5'UTR, 58 bases downstream of
the transcription start site (NM 153321) was found in this patient (fig.3.10).
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The variant has pathogenic FATHMM non-coding (0.92) and CADD scores
(15.3). Further, it lies in HA-E2F1, GR, CTCF, Pol2, GATA-1, and E2F6 (H-
50) TFBS binding sites, as annotated by ENCODE. PMP22 is a hereditary
neuropathy gene, the expression of which is critical for normal peripheral
nerve myelination [39]. Duplications in PMP22 cause Charcot-Marie-Tooth
disease type 1A (CMT1A, a hereditary motor and sensory neuropathy),
deletions cause Hereditary Neuropathy with Liability to Pressure Palsies
(HNPP), and point mutations can cause either [39]. This particular patient
is a boy with mild white matter disease, learning disabilities, and dimin-
ished pain sensation. Although the phenotype of this patient is not typical
of either classical CMT1A or HNPP, PMP22 can cause a broad range of phe-
notypes and is dosage-sensitive. We performed Sanger sequencing on this
patient and both of his parents and found that the variant was inherited
from the unaffected mother. We, therefore, concluded that it is probably
not responsible for his severe phenotype.

Figure 3.10: IGV screen shot of a heterozygous variant at
a conserved locus of the PMP22 5UTR. The alternate allele
(T) is supported by 5 reads, while the reference allele (G) is
supported by 9 reads.

3.4.2 HSAN SV Analysis

On average, 7,627 SVs were detected in each HSAN patient. The majority
were deletions (55%), followed by duplications (23%), insertions (21%) and
inversions (1%) (fig. 3.11). 51% of these SVs were found in DGV or 1000G.
Of the SVs found in DGV or 1000G, 74% were high-confidence SVs. Of the
SVs not found in DGV or 1000G, 26% were high-confidence SVs. After sub-
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traction of SVs in the two diagnosed patients from the other HSAN patients
and intersection with hereditary neuropathy regulatory regions and genes,
˜1 high-confidence SV and ˜6 low-confidence SVs were found per patient, on
average. As mentioned in the Methods, metaSV does not handle LUMPY
SVs of type BND, representing translocations and insertions, so these were
considered separately. 2,745 BNDs on average were found per patient. After
subtraction of BNDs from the two diagnosed patients, on average ˜3 BNDs
were found to intersect with hereditary neuropathy regulatory regions and
genes.

Figure 3.11: Comparison of HSAN SVs to DGV and 1000G
(n=8). The SV numbers are averages. Presence in DGV
or 1000G was based on whether the SV shared at least 8%
reciprocal overlap with a DGV or 1000G variant of the same
type. SVs are further subdivided by quality, indicated by the
transparency of the bars. DEL=deletion, DUP=duplication,
INS=insertion, INV=inversion. LOWQUAL=low confidence
SV called by only one approach. PASS= high-confidence SV
called by two or more approaches.

A rare, heterozygous 6,666 bp SV duplicating the last two exons of DNA
methyl transferase 1 (DNMT1) was found in three affected siblings from
one family (fig. 3.12). The duplication (chr19: 10238761- 10245460, hg19)
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was called using RD, SR, and RP methods in one sibling, and RD alone in
the other two. The breakpoints of this SV overlap AluSz SINE elements,
and input of breakpoint split reads to BLAT revealed 88 bp of homology
at the junction. This duplication is not present in DGV or 1000G. The
region is overlapped by deletions greater than 100,000 bp in DGV, but not
by duplications. In the Database of Genomic Variation and Phenotype in
Humans using Ensembl Resources (DECIPHER), the region is overlapped
by a number of duplications ranging in size from 3 million to 6 million bp.

Analysis of this duplication in IGV indicates that it is a tandem du-
plication that does not disrupt the DNMT1 coding sequence. The reads
at the boundaries of the duplication show discordant orientation; the read
pairs map in an outward orientation rather than inward, which is diagnos-
tic of a tandem duplication (green reads, fig.3.12.a.) (http://software.
broadinstitute.org/software/igv/interpreting_pair_orientations).
The duplication is not inverted; an inverted duplication would be marked
by overlapping read pairs (blue and teal) at the SV boundaries. The du-
plicated sequence includes DNMT1 exons 40 and 41 and is adjacent to the
DNMT1 gene, thus creating a pair of exons orphaned from DNMT1 by the
intervening duplicated non-coding sequence. A schematic of the duplica-
tion is shown in figure 3.12b. The duplication extends ˜1 kb into the TAD
boundary downstream of the gene (purple bar, fig. 3.12a). While the RD,
SR, and RP signals of this SV are diagnostic of a high-confidence tandem
duplication, it should be noted that it has not been confirmed by Sanger
sequencing. Interpretation of the pathogenicity of this variant will be con-
sidered in detail in the Discussion (4.4.2).
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(a) Figure 3.12a

(b) Figure 3.12b

Figure 3.12: IGV screencap of a heterozygous 6,666 bp tan-
dem duplication spanning the last two exons of DNMT1 in
three siblings. a) Reads at this locus in IGV for each sibling
are shown. The red bar near the top of the figure represents
the span of the tandem duplication. The dashed vertical line
indicates the midpoint of the duplication. Reads are colored
by pair orientation: green reads indicate reads whose mate
is mapped in the opposite orientation to that expected. Blue
and teal reads indicate read pairs whose mates overlap. The
duplication is evidenced by the increased RD relative to the
adjacent regions, and the green discordant read pairs at the
boundaries of the duplication. The blue bar at the bottom
of the figure represents a TAD. The TAD boundary is illus-
trated in purple. b) Linear depiction of the DNMT1 tandem
duplication (not to scale). DNMT1 is illustrated in blue.
The sequence in the reference genome that is duplicated in
the siblings is depicted by diagonal pink lines.
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3.5 Aicardi Syndrome Analysis

3.5.1 Aicardi Syndrome SNV and Indel Analysis

Prior to filtering, each Aicardi syndrome patient had an average of 4,525,000
SNVs and indels in comparison to the reference sequence. Filtering out
variants from parents as well as common variants reduced this to 102,000
SNVs/indels per patient on average (range 75,846-126,700). Interestingly,
the number of de novo variants identified in the two trio probands differed
substantially: 170,977 in one patient (6,948 on the X chromosome) and 3,545
(135 on the X chromosome) in the other. This is likely due to the fact the
high coverage in the former patient (100X) identifies many inherited SNVs
and indels that are not picked up in the parents due to insufficient coverage
(30X). A mean of 91 regulatory variants was found on the X chromosome
in each of the Aicardi patients, with the majority falling in promoters (fig
3.13).

3.5.2 Aicardi Syndrome SV Analysis

On average, 800 X chromosome SVs were detected in each patient with
Aicardi syndrome (fig. 3.1.4). 42% of these SVs were found in DGV. Of the
SVs found in DGV, 44% were high-confidence SVs. Of the SVs not found
in DG V, 6% were high-confidence SVs. After subtraction of SVs from the
parent genomes and intersection with X chromosome regulatory regions and
genes, 269 SVs were found per patient, on average. 428 X chromosome BNDs
on average were found per patient. After subtraction of BNDs present in the
four parent genomes, on average ˜80 X chromosome BNDs were found to
intersect with X chromosome regulatory regions and genes. The number of
inversions in one patient genome was dramatically higher than the number
of inversions in all other genomes (2,112 X chromosome inversions vs. an
average of 54 standard deviation=60, in the other patients). Further, the
number of insertions in this patient was zero. This patient was therefore
excluded from SV analyses. The high number of inversions was reflected by
a high proportion of blue and teal reads (indicating overlapping mate pairs)
evident in IGV throughout the entire genome of this patient (indicating
overlapping mate pairs). This was also evident in the genome of this patient
aligned to hg19 from FASTQ by my colleagues, using a different pipeline.
It is unclear what the origin of these discordant read pairs is. It may be a
technical artifact originating from the sequencing in this patient.
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Figure 3.13: Average number of regulatory variants asso-
ciated with X chromosome genes in patients with Aicardi
syndrome (n=9). Bold lines indicate the median number
of variants in a particular regulatory region. The upper
and lower hinges correspond to the 25th and 75th per-
centiles. Upper and lower whiskers extend the hinge to
the highest value within 1.5xinterquartile range (IQR) and
from the hinge to the lowest value within 1.5xIQR, respec-
tively. The circles represent outliers, with values greater or
less than the limits of the upper and lower whiskers, respec-
tively. The regulatory variants are categorized by the reg-
ulatory region into which they fall. wgRNA=miRNA and
snoRNA, VISTA=Vista enhancer, Khurana= Khurana et
al (2015) ultra-sensitive region, FANTOM5=FANTOM en-
hancer, miRNAbas = miRNA binding site, 5UTR=5'UTR,
3UTR=3'UTR, Promoter =2500 bp upstream of transcrip-
tion start site.
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Figure 3.14: Comparison of Aicardi X chromosome SVs
to DGV (n=9). The SV numbers are averages. Presence
in DGV was based on whether the SV shared at least 80%
reciprocal overlap with a DGV variant of the same type.
SVs are further subdivided by quality, indicated by the
transparency of the bars. DEL=deletion, DUP=duplication,
INS=insertion, INV=inversion. LOWQUAL=low confidence
SV called by only one approach. PASS= high-confidence SV
called by two or more approaches.

3.5.3 Aicardi syndrome de novo variant analysis

De novo regulatory SNVs, indels, and SVs on the X chromosome were iden-
tified in the two trio probands. While there were several regulatory regions
harboring putative de novo SNVs or indels in the trio probands, inspection
of these variants in IGV indicated they were false positives. Thus, no can-
didate de novo regulatory SNVs or indels were identified that overlapped in
the two trio probands or with any of the other 7 Aicardi syndrome genomes.
MID1, IL1RAPL2, and TFDP3 were found to be overlapped by rare de
novo putative SVs in the two probands. All are putative de novo low qual-
ity duplications called by CNVnator. Manual inspection of these variants in
IGV did not support their existence; the RD distributions in the probands
looked very similar to that of the parents, despite these duplications not
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being called in the parents by CNVnator. The putative pathogenicity of
these variants is discussed further in the Discussion (4.5.1).
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Chapter 4

Discussion

4.1 Overview

The aim of this thesis was to identify non-coding variants and SVs from WGS
in patients with rare Mendelian diseases. More specifically, the objectives
were to 1) develop and benchmark a bioinformatics workflow for detection
of pathogenic non-coding SNVs/indels and pathogenic non-coding or coding
SVs, and 2) to use this workflow to analyze WGS data of unsolved patients
recruited from in-house HSAN and Aicardi syndrome studies to identify
candidate pathogenic variants.

A bioinformatic workflow was constructed to identify putative functional
regulatory variants from raw sequence data. SV calling was benchmarked
against SV truth sets from a simulated genome and the NA12878 genome. A
compilation of CRE annotations was selected to filter for functional variants
and permit comparison to known pathogenic non-coding variants. Finally,
the workflow was applied to HSAN and Aicardi syndrome patient genomes.
The workflow successfully detected and prioritized rare regulatory variants
and SVs. Several interesting candidate variants were detected, but none
could be convincingly implicated as pathogenic in these patients.

4.2 Summary of Findings

4.2.1 VarSim Benchmarking Results and Limitations

Five SV callers (Pindel, CNVnator, Breakdancer, Manta, and LUMPY) and
a consensus SV caller (metaSV) were used to call variants on a simulated
genome containing known deletions, duplications, inversions, and insertions.
LUMPYs F1 score for deletions, duplications, and inversions was compara-
ble to the consensus set of high-confidence calls generated by metaSV from
the input of all five callers. LUMPY, a SR and RP approach, and CNVna-
tor, a RD approach, together with metaSV, a consensus caller that performs
local assembly of candidate regions, had a sensitivity equivalent to the com-
bination of LUMPY, CNVnator, Pindel, Breakdancer, Manta, and metaSV
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together. Although insertion detection appeared to be poor, this seems
largely to reflect errors in varSims comparison method between truth and
test SVs of this type. Altogether, LUMPY, CNVnator, and metaSV had a
deletion detection sensitivity of 80%, a tandem duplication detection sen-
sitivity of 89%, an inversion detection sensitivity of 64%, and an insertion
detection sensitivity of 49%.

Simulated genomes, however, do not accurately reproduce artefacts such
as chimeric molecules and reads from poorly assembled genomic regions that
can confound SV calling in biological genomes. The SV calling approach
was therefore evaluated on the NA12878 genome, an extremely well-studied
genome in which SVs have been characterized.

4.2.2 NA12878 Benchmarking Results and Limitations

SVs were called from the NA12878 genome by analyzing a 50X coverage
data set from Illumina Platinum Genomes. SVs were called using LUMPY,
CNVnator, and metaSV. Based on comparison to truth SV calls from svclas-
sify, the estimated deletion detection sensitivity was 90% with an F1 score of
0.43. The modal size of false negative deletions was 53 bp, while the modal
size of true positive deletions was 314 bp, indicating that the SV pipeline
is limited in its ability to call small deletions. Insertion detection sensitiv-
ity was 47% for all insertions called and also for high-confidence insertions
alone, indicating that only high-confidence insertions were true positives.
These results were consistent with the results from benchmarking against
simulated data. The improvement in deletion detection sensitivity is most
likely attributable to the fact that the NA12878 genome was sequenced to
50X, while the simulated genome had a coverage of 30X.

Analyses of these gold standard SVs is subject to ascertainment bias.
The SVs in the deletion truth set were called from PE short-read sequencing
(SRS) data using SR, RD, and RP methods. Indeed, CNVnator was one
of the tools used to call deletions in the Personalis and 1000G set, so this
truth set is biased towards CNVnator, which was one of the tools used in
this thesis. Insertions in the truth set were called using an AS approach
from SRS data, which are limited in detecting long insertions. Indeed, the
maximum insertion size in the truth set was only 353 bp. It is likely that
larger insertions do exist in NA12878 and that the SV truth sets themselves
were biased towards SVs that are detectable by the approaches I used in my
research. Therefore, the sensitivity and F1 scores obtained in this study are
probably overestimates of the true values. The limitations to SV detection
from SRS are discussed in more detail below.
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4.2.3 Limitations to SV Calling from SRS

The set of SVs detectable with SRS approaches is limited as reads are gener-
ally shorter than most SVs (50-400 bp). Indeed, the human genome consists
of 50-69% repetitive sequences, patterns of DNA sequence that occur in
multiple copies of the genome[12] and 5% of the genome cannot be uniquely
mapped with 100 bp read length [21]. This repetitive sequence is composed
of transposable elements, low complexity regions, and pseuodogenes. These
regions present a challenge for SRS reference genome-based alignment, which
is the method of choice in clinical sequencing studies due to its cost effec-
tiveness and low per-base error rate .

Long-read sequencing (LRS) can overcome the SRS alignment challenges
by spanning SVs and repetitive regions by several kilobases or more. Indeed,
in one study characterizing SVs in a personal genome using a combination
of SRS and Pacific Biosciences(PacBio) LRS, SRS approaches to SV calling
identified only 57% of SVs identified using the long-read approaches [16].
PacBio single molecule real-time (SMRT) sequencing offers read lengths of
10 kb on average, with some reads close to 100 kb [10]. PacBio reads can
be used to assemble whole genomes de novo or scaffold assembly from SRS,
thereby improving completeness and considerably improving SV detection.

Recently, PacBio LRS data derived from two functionally haploid genomes
was analyzed to identify SVs [25]. The haploid genomes were obtained from
hydatidiform moles. Hydatidiform moles are abnormalities of human preg-
nancy that form from fertilization by sperm of an enucleated egg or by loss
of maternal chromosomes post-fertilization [26]. Some hydatidiform moles
are diploid due to subsequent duplication without cytokinesis of the fertiliz-
ing sperm; functionally, they can be considered haploid as they lack allelic
variation, as is true based on the analyses these authors performed. ˜20,500
SVs were identified from each genome (˜13,000 insertions, ˜7,500 deletions,
47 inversions). Half of the inserted or deleted sequences consisted of tan-
dem repeats or complex arrays of different repeat classes. The authors also
created a pseudo-diploid genome by down-sampling the genomes of the two
individuals and combining them. Interestingly, the study found that the
sensitivity of SV detection from this pseudo-diploid genome was less than
half that in either haploid genome due to difficulties in detecting heterozy-
gous SVs, regardless of coverage. 83% of SVs reported in the study had not
been described in previous SV studies, including 1000G. Of particular rele-
vance to my study, analysis of SRS data from the two haploid genomes using
LUMPY and WHAM, SR and RP methods, respectively, identified only 10%
of variants identified by LRS technology. Clearly, SV detection from SRS
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is seriously limited by short read length, especially in repetitive regions of
the genome. Thus, benchmarking with GIAB gold standard deletion and
insertion SV call-sets is biased towards SVs detectable by SRS.

Unfortunately, GIAB gold standard sets of duplications, inversions, and
translocations are not available for NA12878. This is likely due to the com-
putational difficulties in detecting these SV types and the difficulty in ob-
taining orthogonal validation. As a consequence, many SV tools are only
benchmarked against deletions and/or insertions. LUMPY, for example, is
benchmarked against deletions, duplications, inversions and translocations
from simulated data but only against deletions from NA12878 [30]. Indeed,
that LUMPY was trained on the NA12878 deletions biases its performance
in the analysis performed in this thesis.

4.3 Genomiser Non-Coding Mendelian Variants

4.3.1 Detection of Pathogenic Non-Coding Variants

As expected, detection of pathogenic non-coding SNVs and indels was high
for non-coding genic or proximal regulatory non-coding variants, with detec-
tion rates ranging from 87-100%. Variants missed by RefSeq UTR and pro-
moter annotations would be picked up by Ensembl gene predictions, which
are more comprehensive. This was apparent by looking at the Ensembl gene
prediction track in the UCSC genome browser.

Pathogenic enhancer variant detection by intersection with FANTOM5
enhancers, Vista enhancers, and ultra-sensitive regions was poor, at 12%.
Enhancers have been predicted using a range of methods, including en-
hancer RNA expression, EP300 binding sites, RNA polymerase II binding
sites, DNase I hypersensitivity sites, and histone modification patterns, but
there is little consistency in enhancer predictions based on different tech-
nologies [19]. A consensus set of enhancers integrating annotations should
be more comprehensive than enhancers predicted using any one technology,
like the FANTOM5 or VISTA sets. Until such a comprehensive truth set
of enhancers exists, detection of enhancer variants will be limited in sensi-
tivity, as reflected in the benchmarking performed here. Massively parallel
functional assays of enhancers will also contribute knowledge of enhancers
with biological function [4].
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4.3.2 FATHMM and CADD Scores of Pathogenic
Non-Coding Variants

With respect to categorization of non-coding variants as pathogenic or not,
a FATHMM score cutoff of 0.5 categorizes 80% of true positive variants
as pathogenic while scoring 5% of random rare variants as false positives.
A CADD score cutoff of 15 categorizes 35% of true positive variants as
pathogenic while scoring 1% of random rare variants as false positives. To
categorize 80% of true positive variants as pathogenic, a CADD score of
8 would have to be used; this would identify 9% of random rare variants
as false positives. Utilizing the FATHMM non-coding score identifies fewer
false positives than the CADD score with an equivalent rate of true posi-
tives, making it a more reliable indicator of the pathogenicity of non-coding
variants.

4.3.3 Spike-in of a Pathogenic Non-Coding SNV

One of the difficulties in analyzing non-coding variants is their sheer num-
ber. Even after filtering for rare variants, an average of 64027-126700 SNVs
and indels remained in each of our HSAN and Aicardi syndrome patients.
The efficacy in reducing this number by filtering for non-coding variants in
candidate gene-associated regulatory regions was demonstrated by spiking a
known pathogenic variant in the LDLR promoter into a patient variant file.
Filtering for rare regulatory variants associated with familial hypercholes-
terolemia genes detected only the true pathogenic variant and one additional
variant that was excluded after manual inspection. The spiked-in variant
was therefore successfully prioritized as the best candidate pathogenic vari-
ant. That this was the only true rare regulatory variant associated with
familial hypercholesterolemia in this genome indicates that the pipeline de-
scribed in this thesis identifies a limited number of rare regulatory variants
associated with each gene. Indeed, this was seen in the HSAN genomes,
where an average of 7 rare regulatory variants associated with a list of 50
candidate genes were identified per patient. In Aicardi syndrome patients,
an average of 91 rare regulatory variants associated with 1087 genes on the
X chromosomes were identified. The number of rare regulatory variants
identified is, of course, limited by the annotations used in the pipeline. The
true number of such variants is likely larger.
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4.4 HSAN Analysis

4.4.1 HSAN SNV and Indel Analysis

A heterozygous SNV identified in the PMP22 5UTR of one HSAN patient
was a good candidate based on FATHMM and CADD scores and its presence
within TFBSs. Indeed, a previous study explored the potential contribution
of variants in the highly conserved PMP225 region to gene expression, con-
cluding that rare variation in this region may alter PMP22 dosage and con-
tribute to the clinical variability of CMT1A and HNPP [51]. The genotype-
phenotype correlation for this patient was poor, but regulatory variants
are not necessarily expected to recapitulate phenotypes caused by coding
variants. For instance, coding variants in PTF1A cause syndromic pancre-
atic agenesis with neurological symptoms, while PTF1A enhancer mutations
cause an isolated pancreatic anomaly [49]. However, Sanger sequencing of
the proband and parents revealed that the variant was inherited from the
unaffected mother and was therefore likely to be benign. This emphasizes
the importance of a trio study design in sequencing studies, which can re-
duce the number of candidates by factoring in inheritance mode when the
parents phenotypes are known. Unfortunately, funds for WGS were limited
to sequencing only the probands in this cohort.

4.4.2 HSAN SV Analysis

An average of 7,627 SVs was detected in each of the WGS data sets from
HSAN patients. Only 50% of these were high-confidence calls. Of the SVs
found in DGV or 1000G (51%), 76% were high-confidence calls, while of
the SVs not found in DGV or 1000G, only 26% were high confidence calls.
This indicates that the set of rare SVs has a higher false positive rate than
those that intersect with common SVs. The frequency of rare structural
variation identified here is therefore inflated by false positive low-confidence
calls. With this in mind, after subtracting SVs present in the two diagnosed
HSAN patients and intersecting variants with regulatory regions, an average
of only 10 putative rare genic and regulatory SVs were identified in each
patient. Manual inspection and genotype-phenotype correlation narrowed
this down to one candidate SV in the three affected siblings of one family.

A rare, heterozygous 6,666 bp tandem duplication affecting the last two
exons of DNMT1 was identified in these three siblings. Autosomal domi-
nant SNVs in the targeting sequence domain of DNMT1 cause HSAN1E.
While these siblings all have mild HSAN phenotypes, with some insensitiv-
ity to pain and mild anhidrosis, HSAN1E is characterized by hearing loss,
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dementia, and sensory loss. It is typically adult-onset. The possibility that
these siblings may go on to develop further symptoms, such as hearing loss,
in the future cannot be excluded.

Interestingly, a recent case report describes a DNMT1 SNV in a patient
with childhood-onset HSAN1E and some phenotypic similarities to these
siblings: intermittent shooting pain in feet in childhood, repeated infections,
and insensitivity to pain [18]. The patient developed deafness in adulthood.
In spite of these parallels, the phenotype of the siblings we studied is not
typical of HSAN1E, as confirmed by the clinical expert who phenotyped
them.

The molecular pathology of HSAN1E is likely due to reductions in DNMT1
enzymatic activity resulting from mis-folding of the DNMT1 protein [54].
The duplication I found, on the other hand, is not predicted to disrupt
the protein. However, the orphaned exons may be translated, if alternative
splicing occurs between the full gene and the orphaned exons, which could
be could be further elucidated with RNA-seq. If the gene is mistranslated,
protein folding could be impaired. The SV does extend ˜1kb into the ad-
jacent TAD boundary, which is 240 kb in length, however disease-causing
TAD disruptions described in the literature fully delete, invert, or dupli-
cate a TAD boundary. It is therefore unlikely that this small duplication
interferes with DNMT1 regulation.

That the phenotypes of the siblings are not a close match to documented
HSAN1E cases and that neither the gene nor gene regulation are confidently
predicted to be affected makes it difficult to assess the pathogenicity of
this SV. Similarly, the mode of inheritance of HSAN in these patients is
unknown. One might expect an autosomal recessive mode of inheritance
given that all three siblings are affected, but it is possible that the mode of
inheritance is autosomal dominant with one parent affected. These siblings
are adopted, and little information about the biological parents is available,
complicating the interpretation of this SV. The duplication of DNMT1 I
found must, therefore, be classified as a variant of uncertain significance
(VUS) until new clinical evidence arises to support the likelihood that the SV
is either benign or pathogenic. For instance, if symptoms typical of HSAN1E
develop in these three siblings in adulthood, this would provide evidence for
the pathogenicity of the duplication. The presence of this duplication in
similarly affected patients would also support pathogenicity. Discovery of
this SV in unaffected individuals in population databases would support the
hypothesis that it is benign.
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4.4.3 HSAN Analysis Limitations

Detection of regulatory variants associated with HSAN is limited by both the
candidate gene list and the regulatory region annotations. This pipeline will
not detect variants in novel HSAN disease genes, nor will it detect variants
in as-yet unannotated regulatory regions. Furthermore, lower-than-expected
coverage (<30X) was obtained in two of the HSAN patients included in this
study, limiting variant detection. It is, therefore, possible that undiagnosed
patients possess variants in genes not on the candidate gene list or in reg-
ulatory regions that are not currently annotated. It is also possible that
pathogenic variants are present in these data sets that were not called due
to insufficient coverage. Lastly, the possibility that these patients are phe-
nocopies, in other words that the origin of their disease is environmental
and not genetic, cannot be excluded.

To search for regulatory variants in additional genes related to HSAN,
a tool like Phenolyzer could be used to compile a list of genes related to
known HSAN genes by protein-protein interactions, sharing a gene family or
biological pathway, or transcriptionally regulating another gene [58]. If more
funds become available, patients with low coverage should be re-sequenced,
and if possible, all of the parents should be sequenced by WGS.

4.5 Aicardi Syndrome Analysis

4.5.1 Aicardi Syndrome SNV/Indel and SV Analysis

Non-coding and SV analysis of Aicardi syndrome genomes failed to reveal
a candidate de novo X chromosome variant in these patients. CNVnator
called de novo duplications of IL1RAPL2, MID1, and TFDP3 in both trio
probands. IL1RAPL2 is about 1 mbp and is an orphan interleukin receptor
that was identified in fetal brain tissue [48]. MID1 is about 400 kb and is a
microtubule-associated protein; MID1 mutations cause Opitz syndrome, a
midline malformation syndrome (OMIM:300000). TFDP3 is less than 2000
bp in length and is a transcription factor that suppresses E2F1-induced
apoptosis-dependent P53. It is ubiquitously expressed in human tissues,
including brain [33]. Interestingly, the two probands have putative dupli-
cations that overlap a small region (2,600 bp) that encompasses TFDP3.
Given thatTFDP3 is only 1,679 bp long, it is far less likely for the two
probands to both have SVs in this gene by chance than it is in MID1 or
IL1RAPL2. However, all these SVs are low-confidence, as they have been
only called by CNVnator, which has an F1 score for duplications of only
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47.4% as measured by VarSim. Further, visual inspection in IGV did not
support the presence of these duplications, as the read depth distributions
of the probands appeared very similar to that of their parents. It is there-
fore very likely that these are false positives. Furthermore, these SVs are
not found in any of the other probands, making it unlikely that they cause
Aicardi syndrome, if it is indeed a genetically homogenous condition.

4.5.2 Aicardi Syndrome Limitations

There are several reasons that a causative mutation might not have been
identified in the Aicardi syndrome patients. First, it is possible that a
causative variant is located in a genomic region that is invisible to most
alignment methods, such as a segmental duplication, tandem repeat or other
poorly mapped genomic region. Second, it is possible that the causative
mutation is an SV that cannot be detected from SRS data due to its length
or repetitive content. Third, the variant may be in a regulatory region that
is not annotated, or insufficiently annotated, within the pipeline. Fourth, it
is possible that the causative mutation is somatic, and the read frequency
of the variant allele was too low to be detectable in the samples studied.
Indeed, some clinical features of Aicardi syndrome are patchy, which can be
indicative of mosaicism. To test this hypothesis, we could sequence affected
tissue from additional patients at high coverage, e.g. 100X, and compare
this to blood WGS from the same patients. Lastly, the chorioretinal lacunae,
or holes in the retina, and agenesis of the corpus callosum suggest that cells
carrying the causative variant die. In this case, a mosaic mutation would
not be detectable by sequencing DNA from viable tissue.

4.6 Conclusions and Future Directions

4.6.1 Summary

This thesis benchmarked and tested a bioinformatic workflow for identify-
ing pathogenic regulatory variants and SVs from WGS in rare Mendelian
disease. While typical sequencing pipelines analyze SNVs and indels in the
exonic regions of the genome, this workflow extends WGS analysis to cover
the full spectrum of genetic variation. The SV calling pipeline, validated
against a simulated genome, detected 80% of deletions, 89% of tandem du-
plications, 64% of inversions, and ˜50% of insertions. On experimental data,
the pipeline detected 90% of deletions and 47% of insertions. The SV truth
sets used for benchmarking likely only represent about 10% of structural
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variation in the genome due to difficulties in calling SVs in repetitive and
GC rich genomic regions from SRS data. Nevertheless, use of the analysis
pipeline I developed will detect many pathogenic SVs and increase diagnos-
tic yield from clinical sequencing studies.

Extending the analysis to non-coding regulatory regions identified only
0.14 variants per candidate gene in the HSAN study and 0.08 variants per X-
chromosome gene in the Aicardi syndrome study. This number of variants
is manageable for a bioinformatician to analyze manually. In a heteroge-
neous disorder like intellectual disability, which is associated with over 1000
different genes, the pipeline would identify more than 100 regulatory vari-
ants. In this case, a FATHMM threshold of 0.5 would filter out 95% of
rare SNVs, with a sensitivity of ˜80% for detecting pathogenic SNVs. Even
a FATHMM threshold of 0.2, with a sensitivity of 90%, would only filter
out 84% of rare SNVs. Manual inspection of indels, on the other hand, re-
vealed many to be sequencing or algorithmic artefacts. A large database of
in-house whole genome sequences, all processed through the same pipeline,
would filter many of these technical artifacts out.

4.6.2 Comparison to a study analyzing WGS from patients
with a heterogeneous disease

Given that only six HSAN patient genomes were studied and that, given
its extreme rarity and phenotypic homogeneity, Aicardi syndrome is likely
caused by pathogenic variants of just one gene [2], it is unsurprising that
no pathogenic non-coding variants or SVs were discovered. Relevant to this
thesis is a WGS study of 722 individuals with inherited retinal disease, a
heterogeneous disorder, 537 pathogenic alleles were identified in 404 individ-
uals [7]. This equated to a diagnostic rate of 56%. Of the pathogenic alleles,
only 31 were deletions, 2 were tandem duplications, and 3 were SNVs in reg-
ulatory regions. In other words, 4% of individuals in the cohort possessed
pathogenic deletions, 0.3% possessed pathogenic tandem duplications, and
0.4% possessed synonymous or regulatory region SNVs/indels. If we assume
that the prevalence of pathogenic SVs and non-coding SNVs in inherited
retinal disease is generalizable to other heterogeneous disorders, SRS would
reveal one patient in 25 with a pathogenic deletion, 1 patient in 333 with
a pathogenic tandem duplication, and one patient in 240 with a pathogenic
non-coding mutation. This study of retinal disease only looked at non-
coding mutations in introns of candidate genes and SVs disrupting exons
of candidate genes, and so the rate of discovery of these mutations might
be increased by expanding the search space. As with the limitations to the
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HSAN and Aicardi syndrome studies, the unsolved portion of this cohort
may have pathogenic variants in repetitive regions, regions of poor cover-
age, or genes not on the list of inherited retinal-disease associated genes.
Further, the inheritance may be oligogenic or influenced by environmental
factors. In spite of these limitations to whole genome SRS analysis and a
candidate-gene based approach, this study demonstrated the value of WGS
in identifying pathogenic non-coding variants and SVs.

4.6.3 Future directions

This thesis described the limitations to SV identification from SRS. LRS
is expensive, but there is an affordable alternative: 10X GemCode Tech-
nology is a library preparation and analysis method that leverages droplet
microfluidics and molecular barcoding to construct 40-200 kb linked reads
(pseudo-long reads) from short reads. Short reads from many long DNA
molecules are each tagged with molecular barcodes unique to the long frag-
ment of origin, giving the ability to link distant segments into a single
contig (https://www.10xgenomics.com/). Like PacBio SMRT sequencing,
pseudo-long read sequencing allows assembly of repetitive regions but is
more affordable. Given the added cost of these technologies, a practical ap-
proach for clinical diagnosis might be to perform LRS only after all other
analyses are exhausted. We have obtained funding to perform 10X Gem-
Code library preparation and Illumina sequencing on an Aicardi syndrome
patient. This may reveal variants undetected in Aicardi syndrome patients
by SRS.

Several months after designing the pipeline described in this thesis, a pa-
per was published describing a tool, Genomiser, for identifying pathogenic
SNVs and indels in Mendelian disease [52]). The paper presents a regu-
latory Mendelian mutation (REMM) score for prioritizing variants. The
score is based on machine learning from a set of 453 known pathogenic
non-coding variants and is claimed to be superior to FATHMM and CADD
scores in prioritizing pathogenic non-coding variants. Genomiser harnesses
TAD boundaries and FANTOM5 enhancers in prioritizing variants, as well
as patient phenotypes. However, Genomiser does not handle SVs, as it is
limited to input from vcf files containing SNVs and indels. In the future,
it may be enlightening to test Genomiser on our unsolved genomes. In
addition, a novel reference-free k-mer based algorithm, RUFUS, is in de-
velopment for de novo mutation detection from trios and quartets (https:
//github.com/jandrewrfarrell/RUFUS). We are in the process of testing
this software on Aicardi syndrome trios.
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4.6.4 Conclusions

The bioinformatic workflow described in this paper is complementary to
sequencing pipelines that analyze only protein-coding variants from whole
genomes. Benchmarking against simulated and real whole genome data, as
well as known pathogenic SNVs and indels, validated its utility in detecting
variants across the entire spectrum of genetic variation. Application of this
workflow to larger cohorts of patients with rare Mendelian diseases should
identify pathogenic non-coding variants and SVs, increasing diagnostic yield
of clinical sequencing studies, assisting management of genetic diseases, and
contributing knowledge of novel pathogenic variants to the scientific com-
munity.
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Appendix A

Python script

Figure A.1: This script takes a BED file of TADs from
combined replicates of human embryonic stem cells [13], and
a BED file with gene coordinates and names, and outputs the
TAD boundaries flanking the TAD in which a gene resides.
This script does not yet take into account genes that reside
inside TAD boundaries.
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