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Abstract

Individual cells adapt their morphology as a function of their differenti-
ation status and in response to environmental cues and selective pressures.
While it known that the great majority of these cues and pressures are me-
diated by changes in intracellular signal transduction, the precise regulatory
mechanisms that govern cell shape, size and polarity are not well under-
stood. Systematic investigation of cell morphology involves experimentally
perturbing biochemical pathways and observing changes in phenotype. In
order to facilitate this work, experimental biologists need software capable
of analyzing a large number of microscopic images to classify cells and recog-
nize cell types. Furthermore, automatic cell classification enables patholo-
gists to rapidly diagnose diseases like leukemia that are marked by cell shape
deformation.

This thesis describes a methodology to identify cells in microscopy im-
ages and compute quantitative descriptors that characterize their morphol-
ogy. Phase-contrast microscopy data is used for the purpose of demonstra-
tion. Cells are identified with minimal user input using advanced image
segmentation methods. Features (e.g. area, perimeter, curvature, circular-
ity, convexity, etc.) are extracted from segmented cell boundary to quantify
cell morphology. Correlated features are combined to reduce dimensionality
and the resulting feature set is clustered to identify distinct cell morpholo-
gies. Clustering results obtained from different combinations of features are
compared to identify a minimal set of features without compromising clas-
sification accuracy.
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Chapter 1

Introduction

Modern medicine and high throughput quantitative biology have fueled
demand for computational methods that enable practitioners to analyze
large quantities of data in an efficient manner. Data science and data mining
can be used to inform experimental design, test diagnostic protocols, make
predictions, verify and generate new hypotheses. Historically, the bioinfor-
matics community has been at the forefront of developing tools that leverage
advancements in parallel processing, GPU computing and machine learning
to process ‘omics’ (e.g. genomics, proteomics, metabolomics) data. Increas-
ingly, methods for extracting useful information from microscopic data are
receiving greater attention [4]. From a modeling perspective, quantification
of microscopic data is crucial to understand cell and tissue scale biology, in-
cluding developmental, vascular and cancer biology. Translationally, avail-
ability of computational tools to process microscopic images is necessary for
automating diagnoses and generating patient-specific treatments.

This thesis describes a methodology for identification of cells from phase-
contrast microscopy images, quantification of cell geometry and morphology-
based cell classification. The implementation of this methodology, resulting
in an image processing and machine learning pipeline that operates semi-
automatically (with minimal manual intervention), is suitable for analyzing
a large number of images. Since the methodology does not rely on label-
ing cells with biomarkers, it can be easily adapted to work with confocal
or fluorescent images. However, to illustrate how the method works, in-
vitro phase-contrast images of pancreatic carcinoma cells (MIA PaCa-2 cell
line) are used in this thesis. The MIA PaCa-2 cell line exhibits a number
of different morphologies in monolayer culture. Therefore, it is ideal for
testing, developing and benchmarking new analytical tools designed for two
dimensional image analysis, cell recognition and classification. Phase mi-
croscopy was chosen for demonstration purposes because phase images are
particularly challenging to segment [39].
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1.1. Literature Review

The methodology described herein has numerous applications. The pre-
cise mechanisms for regulation of cell shape and size are not well understood.
Such methodology can be used as an image-based screening procedure to
determine whether an experimental perturbation (e.g. treatment with a
chemical compound, small interfering RNA or genetic manipulation) leads
to changes in cell morphology [35]. It can be used to detect outlier cell mor-
phologies, i.e. cells that appear different from a control or reference group.
Therefore, the methodology constitutes a systematic approach for scientific
investigation of cell morphology. In a medical context, ability to identify
and count different cell types from biological samples (e.g. blood, biopsy)
can be used for diagnoses, estimation of risk and prognosis.

1.1 Literature Review

Manual classification of cells using computerized image analysis and quan-
tification of morphological descriptors was well established before classifica-
tion using machine-learning techniques became the norm. For instance,
Merson-Davies and Odds classified Candida albicans cells into spherical,
pseudohyphae (elongated) and true hyphae by computing morphology in-
dex (Mi) of each yeast cell using maximum length (l), maximum diameter
(d) and septal diameter (s) obtained from image analysis [23]. They found
that Mi = ls/d2 is correlated with the content of chitin (a cell wall compo-
nent) in cells and can be reliably used in place of subjective descriptions to
identify cell morphology.

Machine learning techniques can be broadly categorized into two groups:
supervised learning and unsupervised learning. In the context of using ma-
chine learning to classify data, supervised classification refers to techniques
that require training data (i.e. subset of input data for which the classifica-
tion outcome is known a priori) in order to “teach” a classification algorithm
to recognize patterns in input data and get the desired output. In contrast,
unsupervised classification does not require any training data, instead the
input data is clustered or organized into different classes based on the inher-
ent properties of the data. For the purpose of cell classification, input data
is typically a randomized list of feature vectors, where each feature vector
is an ordered set of “features” (sometimes referred to as “descriptors”) that
quantify the morphology of a cell. The terms “ features” and “descriptors”
are used interchangeably throughout this thesis. The remainder of this sec-
tion describes recent work (2013 onwards) in the field of morphology based

2



1.1. Literature Review

cell classification and its applications.

A significant proportion of recent cell classification literature is devoted
to diagnosis of leukemia. Putzu and Di Ruberto segmented nuclei of lym-
phocytes from blood samples in order to identify patients with acute lym-
phoblastic leukemia (ALL) [31]. They computed 30 shape descriptors, 4
color descriptors and 16 texture descriptors to quantify irregularities in nu-
clear shape and used a Support Vector Machine (SVM, a supervised learning
method) to perform supervised binary classification. Textural descriptors
were calculated for 0, 45, 90 and 135 degree rotations of the nucleus to
maintain rotational invariance. Patients with ALL were identified with 0.25
percent mis-classification rate. The technique for segmenting nuclei using
watershed algorithm described in this paper is also part of the methodology
presented in this thesis.

Amin et al. further developed ALL classification methodology by com-
puting a richer set of 77 geometrical and statistical features from blood
and bone marrow smears to further categorize cell nuclei into 3 subtypes:
L1, L2 and L3, based on the French-American-British (FAB) classification
system [2]. Soon thereafter, Reta et al. classified bone marrow images to
distinguish between families of acute leukemia (ALL and AML), subtypes
of ALL (L1 and L2) and subtypes of AML (M2, M3 and M5) using a variety
of classifiers [33].

Chankong et al. proposed a method for automatic cervical cell segmenta-
tion and classification using single-cell images obtained from a Pap test [7].
Nuclear and cytoplasmic regions of cells were separated computationally.
Cells were classified into normal, low grade squamous intraepithelial lesion
(LSIL), high grade squamous intraepithelial lesion (HSIL), and squamous
cell carcinoma (SCC) phenotypic categories (in increasing order of malig-
nancy) with over 95% accuracy. The authors computed six features to
quantify the shape and coarseness of the nucleus, including some dimen-
sionless shape factors that are described in the feature extraction section
of Chapter 2. The feature vector also included three descriptors of overall
cell shape and the size of the nucleus in relation to cell size. The authors
compared results obtained from various supervised classifiers. These include
K-nearest neighbors (KNN), artificial neural network (ANN) and SVM, not
reviewed in this thesis.

3



1.1. Literature Review

Nosaka and Fukui classified fluorescence staining patterns of human ep-
ithelial type 2 (HEp-2) cells into six categories in order to perform automatic
antinuclear antibody (ANA) analysis [26]. They trained a SVM classifier us-
ing features computed from multiple size-scaling and rotations of each cell
image. The classifier outperformed other methods using the HEp-2 images
data set created by the Mivia Lab at the University of Salermo.

Nanni et al. developed a methodology to classify phase-contrast mi-
croscopy images of retinal pigment epithelial (RPE) cells (derived from hu-
man pluripotent stem cell) using ensembles of cell texture descriptors [25].
Cells were classified into three maturation stages to asses suitability for
implantation or in-vitro use. The methodology is generally applicable to
a variety of biological image classification problems. However, it requires
availability of an annotated data set to train SVM classifiers.

As co-culture systems gain popularity in the study of interactions between
different cell types, automatic identification of distinct morphologies and
cell types in co-culture microscopy is becoming more relevant. Logan et al.
developed a pixel-based learning methodology (where pixel intensities of cell
images are used as features) that can accurately identify multiple fluorescent
morphologies [20]. Although it requires customized tuning for each cell type
with distinct morphology, the authors demonstrated that the method can
segment and count hepatocytes and fibroblasts in an unsupervised manner,
without requiring explicit feature computation.

Ahonen et al. used unsupervised clustering methods to classify simulated
tumor spheroids and images of PC3 human prostate cancer spheroids. They
used geometrical features calculated from ellipse fitting, boundary features
obtained from principal curve fitting and texture features comprised of local
sample moments and local binary patterns to classify tumors using a clus-
tering algorithm [1]. The complete feature vector consisted of 193 shape-
based descriptors and 178 texture-based descriptors. After dimensionality
reduction using principal component analysis (PCA), the authors identified
4 clusters using only geometrical features, 4 clusters using only boundary
features and 3 clusters using only texture features. The four distinct clus-
ters correspond to smooth spherical, spherical with rough borders, spherical
with appendages and highly irregular phenotypes.
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1.2. Research Objective

Finally, it should be noted that morphological classification of neurons
presents a distinct set of challenges and idiosyncrasies. According to a recent
review, supervised methods outperform unsupervised clustering methods
despite the availability of large amounts of data due to lack of consensus in
class delineation, sensitivity to algorithm parameters, limitations in feature
extraction and lack of robustness in cluster identification [41].

1.2 Research Objective

The primary goal of the research described in this thesis is to develop a
methodology for unsupervised classification of cells based solely on morphology-
based features. While supervised classifiers have been shown to perform well,
they require annotated input data for training and perform poorly if input
data is too dissimilar to training data. In practical applications, annotated
data is typically not available and generally requires significant time and
effort to acquire. The insistence on using only morphological descriptors
(called label-free classification) serves to keep the methodology generally
applicable and free from limitations of labeling techniques or adverse effects
of staining reagents. To facilitate development of the methodology and for
the purpose of validation, phase-contrast images of pancreatic carcinoma
cells (MIA PaCa-2) are used, although any microscopic data with reason-
able spatial resolution and heterogeneity in cell shape would suffice. Cur-
rent label-free classification methodologies mostly rely only on qualitatively
singular type of features and cannot achieve multi-class classification [9].
Conversely, some methodologies that compute multiple feature descriptors
cannot process high-throughput data due to computational complexity of
feature extraction. Therefore, an objective of this work is to identify a min-
imal set of feature descriptors that can classify cells without compromising
on the outcome.

1.3 Thesis Overview

The thesis assumes some background knowledge in image processing and
machine learning. An attempt is made to define terminology and introduce
concepts without detracting from the main content of the research. The
thesis is organized into five chapters. Their contents are summarized below:

Chapter 1 provides an introduction to the research problem and a brief sum-
mary of recent literature in this field.
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1.3. Thesis Overview

Chapter 2 describes the methodology used to perform image segmentation,
feature extraction, dimensionality reduction and cluster identification. To-
gether, the techniques described in this chapter form the basis of an unsu-
pervised cell classification pipeline.

Chapter 3 illustrates a typical application of the methodology using the MIA
PaCa-2 pancreatic cancer data set provided by the Roskelley Lab at UBC.

Chapter 4 summarizes the advantages and limitations of the methodology
compared to other existing approaches.

Chapter 5 identifies areas for improvement and describes future work.

Appendix A describes classification results obtained by using t-SNE instead
of PCA for dimensionality reduction.

6



Chapter 2

Methodology

This chapter describes a methodology for unsupervised classification of
cells from phase contrast microscopy images. Typically, the machine learn-
ing algorithm is embedded into a processing pipeline that converts mi-
croscopy images into numerical data corresponding to individual cells [35].
The pipeline consists of image processing, feature extraction, dimensionality
reduction, classification and validation steps, which are described in detail
below.

The first phase of image processing is to enable separation of foreground
and background by removing artifacts, reducing noise and compensating
for uneven illumination. Subsequently, image segmentation methods (tech-
niques that divide an image into regions of interest) are used to identify
cells amongst the foreground pixels. The choice of segmentation algorithm
depends on the image and cell type. No single algorithm is capable of iden-
tifying cells from multiple image sources. Often, manual tuning of algorithm
parameters is required to achieve optimal performance.

Once cells are segmented, quantifiable descriptors of cell shape and size
are computed. These are referred to as feature vectors and they form the
basis for distinguishing between cells using a classification algorithm. Fea-
ture vectors are normalized to have zero mean and standard deviation of
unity in order to prevent discrimination between features due to difference
in their magnitudes or signs. The performance of the classifier depends on
the quality of segmentation and accuracy of features. Two cells can be dis-
tinguished (i.e. assigned different labels by the classifier) if their feature
vectors differ to a significant degree. Furthermore, in order to identify a cer-
tain morphology, one or more features must capture unique characteristics
of that morphology.

Most widely used classification algorithms that rely on computation of
distance metric between features tend to perform well for low dimensional

7



2.1. Image Processing

feature vectors. Dimensionality reduction techniques convert high dimen-
sional feature vectors to low dimensional vectors by identifying correlations
and combining multiple features in a manner that maximizes the variance
between projections of the data in the low dimensional space. Two pop-
ular dimensionality reduction techniques, Principal Component Analysis
(PCA) and t-distributed Stochastic Neighborhood Embedding (t-SNE) are
described in Section 2.3 and Appendix A respectively.

After dimensionality reduction, clustering algorithms are used to classify
data points corresponding to individual cells. Several clustering algorithms
are publicly available and have been empirically evaluated using synthetic
data for their performance, robustness and accuracy [29]. Although other
algorithms may yield better results, the k-means algorithm is widely used for
its ease of implementation and the availability of several parameter estima-
tion techniques to estimate the parameter k, corresponding to the number
of clusters in the data set.

Figure 2.1: Standard pipeline for cell classification using microscopy data

Figure 2.1 illustrates the overall methodology organized in a data pro-
cessing pipeline. The pipeline is implemented in a modular manner and
individual components can be replaced if required. For instance, to classify
fluorescent images instead of phase-contrast images, replacing the image
segmentation method would suffice. Similarly, if the k-means classification
algorithm is unable to find clusters in the input data or the algorithm fails to
converge, then it can be easily swapped for a more sophisticated algorithm.

2.1 Image Processing

Identifying cells in an image is essential for automating the recognition
of multiple cell types in large cell populations. Automated processing of
2-D images to count cells and identify cell types using morphological mea-
surements has been steadily gaining traction since the 1960s. Over the past
decades, literature on the subject has grown exponentially, with more than
half of the bulk of papers appearing after the year 2000 [22].

8



2.1. Image Processing

With the exception of neuron segmentation, the vast majority of current
segmentation methods are based on few basic approaches; namely, intensity
thresholding, feature detection, morphological filtering, region accumulation
and deformable model fitting. These methods are reviewed in [22]. Region
accumulation methods such as Voronoi-based methods or watershed trans-
form can result in inaccurate cell boundaries by mis-specifications of the cell
region to be divided or by over-segmentation. Similarly, popular deformable
model approaches such as geodesic active contours or level sets, which de-
tect cell boundaries by minimizing a predefined energy functional, can result
in poor boundary detection because they use local optimization algorithms
that only guarantee to find a local minimum or use the gradient vector field
of the image to decode the boundary information [10].

Segmentation of bright field and phase contrast images is generally more
challenging compared to fluorescent images. The latter usually have better
contrast and deformable model fitting techniques like active contour or level
sets work well [39]. Distinctive bright white patches or halo surrounding cells
in bright field and phase contrast images prevent accurate determination of
cell boundary. Therefore, a custom approach is required for each application
that takes heterogeneity in cell shape, population density, variability in cell
compartmentalization, etc., into account.

The following sections describe an approach for segmenting phase contrast
images using a combination of edge detection, thresholding, mathematical
morphology and watershed transform.

2.1.1 Foreground Detection

Foreground detection is performed in three stages. Firstly, the Sobel-
Feldman derivative filter is applied to the original grayscale image to find
edge points. These points are pixel locations in the image corresponding
to non-zero intensity changes. The Sobel-Feldman operator uses two 3 × 3
kernels, one for derivative in a horizontal direction and the other for deriva-
tive in a vertical direction, which are convolved with the original image to
calculate gradient approximation. The result is binarized by thresholding,
with the value of the threshold specified by the user.

9



2.1. Image Processing

(a) Original Image (b) Edge Detection

(c) Dilated & Filled (d) Foreground Binary Mask

Figure 2.2: Foreground detection from phase contrast image
(a) Original phase contrast microscopy image of MIA PaCa-2 pancreatic
carcinoma cell line courtesy of the Roskelley Lab at UBC. (b) Edge point
detection by applying Sobel-Feldman derivative filter and conversion from
grayscale to binary by thresholding. (c) Dilation by line-shaped structural
element. (d) Resulting foreground markers obtained after filling, removal of
small artifacts and objects connected with image boundary.

The binary image produced by edge detection is further manipulated using
mathematical morphology, as shown in Figure 2.2. Mathematical morphol-
ogy is a collection of set-theoretic operations on binary images that have
been used for image enhancement, noise removal, edge detection, etc. Foun-
dations of mathematical morphology are based on two operations: erosion
and dilation.

Erosion of image A by structural element (abbreviated “strel”) B, resulting

10



2.1. Image Processing

in image E is defined as:

A	B = {z ∈ E|Bz ⊆ A},

where Bz is the translation of B by the vector z:

Bz = {b+ z|b ∈ B}, ∀z ∈ E.

In practice, erosion leads to shrinking or thinning of the binary image, as
shown in Figure 2.3.

(a) Original Image (b) Eroded by disk strel (c) Eroded by square strel

Figure 2.3: Mathematical morphology: image erosion
(a) Original image of UBC logo. (b) Image eroded by disk structural element
with radius of 5 pixels. (c) Image eroded by square structural element with
side length of 7 pixels. The diagonal length of the square element is 10
pixels, which is equivalent to the diameter of the disk element.

Dilation of image A by structural element B, resulting in image E is defined
as:

A⊕B =
⋃
z∈B

Az,

where Az is the translation of A by the vector z:

Az = {a+ z|a ∈ A}.

Dilation is used to grow or thicken regions in a binary image, as shown in
Figure 2.4. All other morphological operations can be defined by composing
erosions and dilations.
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2.1. Image Processing

(a) Original Image (b) Dilated by disk strel (c) Dilated by square strel

Figure 2.4: Mathematical morphology: image dilation
(a) Original image of UBC logo. (b) Image dilated by disk structural element
with radius of 5 pixels. (c) Image dilated by square structural element with
side length of 7 pixels. Notice that corners are rounded in Figure 2.4b as
a consequence of the shape of the disk, whereas corners remain sharp in
Figure 2.4c.

In the second stage of foreground detection, edge points are connected
by dilating the image with line shaped structural elements. The size of the
structural elements is specified by the user. This leads to the formation
of closed loops around isolated cells or clusters of tightly packed cells. The
final stage involves filling of closed loops (using imfill in MATLAB), removal
of small objects whose size is below user-specified threshold and removal of
objects that cross the image boundary.

Cell Segmentation

Foreground detection resulted in separation of foreground and background
from the original image. The foreground binary image is eroded multiple
times (number of erosions and size of structural element is specified by the
user) to obtain foreground markers, a majority of which lie inside cell bound-
aries. The marker-based watershed transform is a region accumulation ap-
proach that segments cell boundaries using foreground markers and gradient
of the original image. The number of correct segmentations in the result de-
pends on the pre-processing of markers prior to the segmentation [36].
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(a) Foreground Markers (b) Background Markers

(c) Watershed Segmentation (d) Manual Selection

Figure 2.5: Cell segmentation
(a) Eroded binary foreground markers overlaid on top of original image.
(b) Background markers computed by applying watershed transform to the
distance transform of foreground markers. (c) Result of watershed segmen-
tation using foreground and background markers. (d) Manual selection of
correctly segmented cells.

The watershed segmentation algorithm requires both foreground and back-
ground markers. Foreground markers specify regions inside individual cells
whereas background markers specify regions between adjacent cells. To pre-
vent over-segmentation due to background markers being too close to objects
of interest (i.e. cells), background markers are computed by calculating the
skeleton by influence zones (SKIZ) of the foreground markers [24]. The in-
fluence zone of a foreground marker is the set of neighboring pixels that
are closer to that foreground marker than to any other foreground markers.
SKIZ is the boundary between influence zones of all foreground markers. It
is analogous to the Voronoi tessellation of foreground markers in the image
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plane. In practice, the background markers are computed using a simple
two-step procedure. Firstly, the distance transform of the foreground mark-
ers is computed. Then, ridge lines (corresponding to background markers
or SKIZ, as shown in Figure 2.5b) are determined by computing the water-
shed transform of the distance-transformed foreground markers [32]. Once
both foreground and background markers are computed, the priority-flood
watershed algorithm is applied to the original image, resulting in watershed
lines corresponding to the boundary of the cells as shown in Figure 2.5c. An
outline of the watershed algorithm follows:

Priority-Flood Watershed Algorithm [3]:
Step 1: Foreground and background markers are chosen. Each set of con-
nected markers is assigned a different label.
Step 2: The neighboring pixels of each marked area are inserted into a pri-
ority queue (a list of objects sorted by their priority level), with a priority
level corresponding to the magnitude of the gradient of intensity at that
pixel.
Step 3: The pixel with the lowest priority level is extracted from the pri-
ority queue. If all labeled neighbors of the extracted pixel have the same
label, then the pixel is assigned their label. All non-marked neighbors that
are not yet in the priority queue are put into the priority queue.
Step 4: Step 3 is repeated until the priority queue is empty.

The entire image segmentation process requires minimal user input. The
user has to specify the threshold parameters, size of structural elements
and number of iterations for morphological operations. Finally, the user is
required to manually select correct segmentation from the result of applying
the watershed transform. This ensures that only correctly segmented cells
are assigned unique ID numbers (and serialized) for further processing in
the pipeline.

2.2 Feature Extraction

In general, there are two approaches for extracting morphological features
from segmented cell shapes: boundary-based methods that extract informa-
tion from points on the cell boundary and area-based methods which use
all points on the interior and boundary of the cell shape. The area based
methods are more robust to small perturbations in cell shape and are easy
to compute. For example, to accurately estimate the area of a given shape it
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is sufficient to count the number of pixels that make up the shape, whereas
perimeter estimation is not so straightforward [18]. The main advantage of
boundary based features such as curvature functions, cubic spline interpo-
lation of cell boundary, normalized Fourier shape descriptors, etc., is that
they provide a good quantization of angles, corners and curves in the im-
age. These details are lost when summing over all image pixels to compute
area based features like Hu’s moment invariants and non-dimensional shape
factors.

2.2.1 Hu’s Moment Invariants

The mathematical concept of moments can be used to quantify global prop-
erties of an image. Global image properties refer to an image as a whole
rather than its components. Consider a binary segmented cell image defined
by intensity function f : R2 → {0, 1} that maps each pixel (x, y) to 0 or 1
depending on whether the pixel lies outside or inside/on the cell boundary.
Raw image moments mpq of order p+ q are defined as projections of image
f(x, y) to basis xpyq:

mpq =

∫ ∞
−∞

∫ ∞
−∞

xpyqf(x, y)dxdy.

In a discrete setting, the integral is replaced by a sum over all pixels in the
raster image:

mpq =
∑
x

∑
y

xpyqf(x, y).

The zeroth raw moment, m00, is the sum of intensities over all pixels in
the image. For a binary image, where pixel intensity is equal to 1 if the
pixel is part of the cell and 0 otherwise, m00 corresponds to the area of the
cell. x̄ = m10/m00 and ȳ = m01/m00 are coordinates (x, y) of the centroid.
To confer translational invariance, one can compute central image moments
about the mean:

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qf(x, y).

It can be easily verified that the zeroth central moment, µ00, is equivalent
to m00 and it corresponds to the area of the segmented cell.
Now, consider an image scaled by factor λ: f ′(x, y) = f(x/λ, y/λ). The
scaled image (defined by function f ′) can be smaller (if λ > 1) or larger
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(if λ < 1) compared to the original image (defined by function f). Central
moments of the scaled image are given by:

µ′pq =

∫ ∫
xpyqf(x/λ, y/λ)dxdy.

Substituting x′ = x/λ and y′ = y/λ, we derive:

µ′pq =

∫ ∫
(λx′)p(λy′)qf(x′, y′)λ2dx′dy′,

µ′pq = λ(p+q+2)µpq.

Therefore, normalized central moments that are translation and scale in-
variant can be obtained by setting area (µ′00) equal to unity:

µ′00 = λ2µ00 =⇒ λ = µ
− 1

2
00 .

Normalized central moments of order p+ q are typically denoted by η:

ηpq = µ
−(p+q+2)

2
00 µpq.

However, a similar calculation corresponding to image rotated by angle
θ: f ′(x, y) = f(x cos(θ) + y sin(θ),−x sin(θ) + y cos(θ)) does not yield ro-
tationally invariant moments. Rotational invariance requires a nonlinear
transformation that is not trivial to compute. Hu derived these nonlinear
expressions from normalized central moments up to order three using alge-
braic invariants [16]. Hu’s moment invariants are widely used for translation,
scaling and rotation invariant pattern recognition, including recognition of
typed English language characters [17]. Typically a feature vector for image
classification is comprised of seven invariants:

φ1 = η20 + η02,

φ2 = (η20 − η02)2 + 4η211,

φ3 = (η30 − 3η12)
2 + (3η21 − η03)2,

φ4 = (η30 + η12)
2 + (η21 + η03)

2,

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

+(3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2],

φ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03),

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

−(η30 − 3η12)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2].
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Note that φ7 has the additional property of being skew invariant and
therefore can be used to distinguish between mirror images. Unlike raw
or central moments, these finite order invariant moments do not form a
complete set of image descriptors. While higher order moments can be
calculated, image reconstruction given a set of Hu’s moment invariants is
not straightforward. Furthermore, all seven invariant moments are zero for
images that are rotationally symmetric [30].

Dunn and Brown used shape measures (extension, dispersion and elonga-
tion) and principal axis orientation calculated using φ1 and φ2 to charac-
terize the shape and alignment adopted by chick heart fibroblasts on micro-
fabricated grooved substrata [11]. However, recent literature on morphology-
based cell classification omits the use of Hu’s moment invariants. The role
of these invariants and their usefulness is investigated in Chapter 3 and
Appendix A.

2.2.2 Geometrical and Boundary Features

In order to achieve high-throughput cell classification, the feature vector
describing the shape of the cell should be concise and computationally in-
expensive to calculate. Hu’s moment invariants meet this criterion but do
not have any intuitive meaning. Given an arbitrary set of Hu’s moment
invariants, one cannot easily imagine the shape of the object that produced
those moments.

Normalized Fourier shape descriptors (FSD) represent the boundary of
an object using a subset of coefficients from the Fourier transform of its
contour [13]. However, the number of coefficients required to accurately
represent a given object depends on the curvature of the object and usually
a large number is required. Furthermore, it is not evident how the number
of coefficients required can be estimated a priori without trial and error.

Curvature functions are computed from the contour of an object and
describe how much a curve bends at each point. Peaks in the curvature
function correspond to corners on the object. Urdiales et al. describe a
non-parametric method for efficient computation of a short feature vector
for a planar shape using its curvature function [40]. However, in order to
produce a short feature vector, their algorithm requires pre-computing a set
of representative curvature functions by calculating the Fourier transform
of curvature functions of typical shapes. Then, for a given input shape, the
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algorithm returns similarity measures of the shape’s curvature function com-
pared to the representative set. The pre-computation step is not desirable
for high-throughput cell classification (particularly for on-line classification
where the entire data set is not available in advance), therefore curvature
function-based features are omitted.

In view of the above, geometrical descriptors included in the feature set
constitute estimates of dimensions of the cell obtained by fitting conics (cir-
cles and ellipses) as well as uncertainty in those estimates obtained from
goodness of fit measures. Conic fitting is universally applicable to all planar
objects and requires only a set of boundary points (obtained from segmen-
tation) as input. Boundary descriptors are obtained from cubic spline in-
terpolation of the boundary of the cell, where the number of spline points is
estimated using a manually adjusted smoothing parameter. These descrip-
tors encode information about the shape and size of the cell that is easy to
visualize (as shown in Figure 2.6) and understand. Like Hu’s moment invari-
ants, these features are resistant to affine transformations (scaling, rotation
and translation) as well as to noise in the shape boundary.

Consider an arbitrary geometry f(θ) = 0 parametrized by M features,
θ = (θ1, ..., θM )T . To fit this geometry to a set of boundary points (xi, yi)

N
i=1,

consider the following optimization problem:

argmin
θ

N∑
i=1

r2i (θ),

where ri is the orthogonal distance between boundary point (xi, yi) and
shape f(θ) = 0.

For example, to fit a circle f(θ) = 0 ⇐⇒ x2 +y2−r2 = 0, where θ = (r).
Similarly, for ellipse fitting, f(θ) = 0 ⇐⇒ ax2 + by2 + cxy+ dx+ ey+ f =
0, where θ = (a, b, c, d, e, f). However, the application of ordinary least
squares does not return consistent estimates for parameter(s) θ. Therefore,
typically one of the following techniques are used: gradient-weighted least
squares fitting, bias-corrected renormalization fitting or extended Kalman
filtering [6].
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Figure 2.6: Geometrical fits and boundary interpolation
Left: Circle, ellipse and polygon fits for three distinct cell geometries. Mid-
dle: Rectangle fit is used to compute maximum and minimum Feret diame-
ter. Right: Cubic spline interpolation of cell boundary colored by magnitude
of curvature.

Ellipse and Circle Fitting

Consider an ellipse centered at (xc, yc) and rotated by angle α. Let (xt, yt)
be the closest point on the ellipse to boundary point (xi, yi). Then the
shortest distance Di from the boundary point to the ellipse is given by:

xt = xc + a cos(α) cos(t)− b sin(α) sin(t),

yt = yc + a sin(α) cos(t) + b cos(α) sin(t),

Di =
√

(xi − xt)2 + (yi − yt)2.

In this case, the optimal least squares solution can be computed directly
without an iterative approach [15]. The stable and robust fitting method
returns parameters θ = (xc, yc, a, b, α). In addition to parameters obtained
from fitting, goodness of fit is estimated by calculating its variance as fol-
lows [28]:

19



2.2. Feature Extraction

Suppose (x̄, ȳ) is the centroid and (xi, yi)
N
i=1 are the boundary points on

the contour of the shape that is being fitted. Then covariance matrix of the
contour is:

C =
1

N

N∑
i=1

ViV
T
i =

(
cxx cxy
cyx cyy

)
,

where

Vi =

(
xi − x̄
yi − ȳ

)
,

and,

cxx =
1

N

N∑
i=1

(xi − x̄)2,

cxy =
1

N

N∑
i=1

(xi − x̄)(yi − ȳ),

cyx =
1

N

N∑
i=1

(yi − ȳ)(xi − x̄),

cyy =
1

N

N∑
i=1

(yi − ȳ)2.

Lengths of the two principal axes of the ellipse fit can be obtained by cal-
culating eigenvalues of the covariance matrix:

det(C − λ1,2I) = 0,

λ1 =
1

2
[cxx + cyy +

√
(cxx + cyy)2 − 4(cxxcyy − c2xy)],

λ2 =
1

2
[cxx + cyy −

√
(cxx + cyy)2 − 4(cxxcyy − c2xy)],

Ellipse eccentricity, e =
λ2
λ1
.

Variance is the standard deviation of radial distance from the centroid to
the boundary points divided by the mean. Variance close to zero indicates
a good fit.

Variance of fit =
σR
µR

,
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where,

µR =
1

N

N∑
i=1

di,

σR =

√√√√ 1

N

N∑
i=1

(di − µR)2,

and di =
√
V T
i C

−1Vi.

The following table summarizes features obtained from ellipse and circle
fitting:

Feature Range Description

Ellipse Eccentricity [0, 1]
Close to 0, the ellipse is circu-
lar. Close to 1, it is elongated.

Ellipse Major Axis
Length

[0,∞)
The length of the major axis
of the ellipse fit.

Ellipse Minor Axis
Length

[0,∞)
The length of the minor axis
of the ellipse fit.

Ellipse Area [0,∞) Area of the ellipse fit.

Ellipse Perimeter [0,∞) Perimeter of the ellipse fit.

Ellipse Variance [0, 1]
A goodness of fit measure for
the ellipse fit.

Circle Radius [0,∞) Radius of the circle fit.

Circle Area [0,∞) Area of the circle fit.

Circle Variance [0, 1]
A goodness of fit measure for
the circle fit.

Table 2.1: Features extracted from ellipse and circle fits of cell images

Rectangle Fitting

Fitting a bounding rectangle to boundary points obtained from segmen-
tation is different from fitting conic sections because a rectangle cannot be
described by a single continuous function. A rectangle consists of four such
functions with constraints between them. Chaudhuri and Samal describe a
step-wise procedure: 1) finding the centroid of the object, 2) determining
principal axes, 3) computing the upper and lower furthest edge points along
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the boundary, and finally, 4) finding the vertices of the bounding rectan-
gle [8]. The following table summarizes features obtained from rectangle
fit of a cell. These features are used in computation of elongation (a non
dimensional shape factor) below. MoHan Zhang, an undergraduate student
at UBC, implemented this method as part of a research experience program
project.

Feature Description

Maximum Feret Diameter Furthest distance between any two
parallel tangents on the cell

Minimum Feret Diameter Shortest distance between any two
parallel tangents on the cell

Table 2.2: Features extracted from bounding rectangle fits

Polygon Fitting

A polygon fit along the cell boundary is computed using the 3-pixel vector
(3PV) method described by Inoue and Kimura [18]. The 3PV method is de-
signed for calculating the perimeter of low resolution raster objects, where
counting the number of pixels at the boundary of the object results in inac-
curacies. Starting from an arbitrary location, adjacent boundary pixels are
assembled in an ordered set. Each element in the set is an ensemble of three
adjacent pixels enumerated in counterclockwise order. The spatial configu-
ration of each 3-pixel ensemble is specified using a pair of integers from 0
to 7. The integers specify the direction of counterclockwise travel between
consecutive pixels. Integers 0, 2, 4, 6, represent east, south, west and north
directions respectively, as shown in Figure 2.7. Similarly, integers 1, 3, 5, 7,
are used to encode southeast, southwest, northwest and northeast directions
respectively for diagonal placement of pixels. Therefore, a 3-pixel ensemble
corresponding to “L” shape (Figure 2.7) is represented by integers [4, 6] in-
dicating west and north direction of travel in counterclockwise manner. The
ordered set of integer representations for 3-pixel ensembles starting from the
arbitrary location is defined as the chain code of the object boundary.
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Figure 2.7: Computing chain code from boundary pixels
(a) Reference diagram from computing chain code. (b) An example of 3-
pixel configuration corresponding to

√
2 length. (c) An example of 3-pixel

configuration corresponding to
√

5 length.

As part of geometrical feature extraction, 3PV method is used to compute
the perimeter of segmented cell images from the chain code representation of
the cell boundary. Adjacent pair of elements in the chain code is referred to
as a chain pair. Inoue and Kimura [18] specify corrections to typical perime-
ter calculation (the so-called 1,

√
2,
√

5 method, illustrated in Figure 2.7, for
computing distances for straight, diagonal, and straight followed by diago-
nal placement of pixels respectively) for all possible combinations of chain
pairs. A set of vectors consisting of pairs of points along the cell boundary
(called 3-pixel vectors, since they are derived from chain pairs corresponding
to 3-pixel ensembles) is computed where the sum of lengths of these vectors
provides an accurate estimate of the perimeter of the cell boundary. With
minor adjustments (to account for cases where adjacent vectors do not align
head to tail) as shown in Figure 2.8, the 3-pixel vector is used to obtain a
polygonal fit to the cell geometry. Darrick Lee, an undergraduate summer
research student at UBC, implemented the 3PV method and the cubic spline
interpolation of cell boundary (derived from the polygonal fit) described in
the next section.
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Figure 2.8: Computation of polygonal fit from chain code

(a) 3-pixel vectors obtained from chain code [0, 1, 7] corresponding to east,
southeast and northeast direction of travel between two adjacent 3-pixel
ensembles on the cell boundary. (b) Ordered set of points along the cell
boundary corresponding to the 3-pixel vectors. (c) Connecting points in
order results in incorrect polygon segment as 3-pixel vectors are not aligned
head to tail. (d) A vertex is removed to correct the boundary segment.

Feature Method Description

Cell Area Pixel Counting
Number of pixels inside seg-
mented cell boundary.

Cell Perimeter
3-pixel Vector
(3PV) Method

Estimate obtained from chain
code for pixels on cell boundary.

Table 2.3: List of other geometrical features

Cubic Spline Boundary Fitting

A cubic spline interpolation along the cell boundary is computed from ver-
tices of the polygon fit described in the previous section. Curvature is calcu-
lated by sampling points on the spline. As expected, the number of changes
in sign (positive to negative and vice-versa) correlates with convexity of the
cell shape. Convex circular cells have positive curvature throughout the
boundary and zero changes in curvature sign. For cells with non-zero num-
ber of sign flips, areas of high positive curvature correspond to protrusive
regions on the boundary. Boundary descriptors in the feature vector include
number of changes in the curvature sign (i.e. number of zero crossings),
global maximum and global minimum of curvature.

24



2.2. Feature Extraction

Feature Description

Number of sign flips
Number of times curvature changes
sign from positive to negative and
vice-versa.

Maximum curvature
Absolute maxima of curvature on
cell boundary.

Minimum curvature
Absolute minima of curvature on
cell boundary.

Table 2.4: Features extracted from curvature of cubic spline fit

2.2.3 Shape Factors

The previous section described features obtained by fitting various geome-
tries to a cell boundary. Shape factors are non-dimensional quantities that
are computed by counting pixels in a segmented cell image, and its convex
hull, bounding box and bounding rectangular fit. Note the distinction be-
tween bounding box and the rectangle fit. The edges of the bounding box
are parallel to Cartesian axes whereas the major axis of the bounding rect-
angular fit is aligned to the principal axis of the cell shape. Shape factors
are widely used to classify particulate matter [5, 27] and often used as part
of feature vectors designed to classify cell shapes [7, 31].

Extent

The ratio of the number of pixels belonging to a segmented cell to the
number of pixels in its bounding box is defined as the extent. The bounding
box spans horizontally from the leftmost pixel to the rightmost pixel and
vertically from the topmost pixel to the bottommost pixel. Extent is close
to zero if a cell is elongated and close to unity if the cell is uniformly spread
out.

Solidity

Solidity is a measurement of the overall concavity of an object. It is defined
as the ratio of the number of pixels belonging to the segmented cell to the
number of pixels in its convex hull. As cell shape deforms from a convex
polygon or circle to a more elliptical or protrusive shape, its convex hull area
increases compared to the cell area and solidity correspondingly decreases.
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For the MIA PaCa-2 pancreatic cancer data set, rounded cells typically have
solidity values that approach unity.

Compactness

Compactness is defined as the ratio of the circular equivalent diameter to
the maximum Feret diameter obtained from the bounding rectangular fit:

Compactness =

√
4(Acell)

π

Max. Feret diameter

The circular equivalent diameter, also known as area-equivalent diameter,
is defined as the diameter of a circle with the same area as the object. Like
extent, compactness is close to zero if a cell is elongated or ‘I’ shaped.

Elongation

Elongation is defined as (1 − Aspect Ratio). Aspect ratio is obtained from
the rectangle fit as the ratio of minimum to maximum Feret diameters. For
elongated cells, maximum Feret diameter is much larger than minimum Feret
diameter, therefore their elongation is close to unity. Conversely, for circular
cells, both diameters are roughly the same. Therefore the elongation of such
cells is close to zero.

Circularity

Circularity measures the degree to which an object is similar to a circle:

Circularity =

√
4πAcell

P 2
cell

It can be easily verified that circularity for a perfect circle is unity. Regular
polygons approach a circle as their number of edges increases. It should be
noted that a low value of circularity does not necessarily mean that the cell
shape lacks rotational symmetry. Circularity close to zero typically indicates
elongated or protrusive (e.g. starfish-like) morphology.

Convexity

Convexity is defined as the ratio of the convex hull perimeter and the ac-
tual perimeter of the object. It is highly sensitive to deviations from convex
geometry. Convexity is close to zero for highly non-convex cell geometries
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and close to unity for epithelial-like cells with polygonal morphology (absent
from MIA PaCa-2 data set) or circular cells.

The following table describes non-dimensional shape factors included in
the feature vector and formulas for their computation:

Feature Range Equation Description

Extent [0, 1]
Acell

Abounding box

Ratio of pixels belonging to
segmented cell to pixels in the
bounding box.

Solidity [0, 1] Acell
Aconvex

Ratio of pixels belonging to
segmented cell to pixels in the
convex hull.

Compactness [0, 1]
√

4(Acell)

π

Max. Diameter

Ratio of circular equivalent di-
ameter to maximum Feret di-
ameter.

Elongation [0, 1] 1− Min. Diameter
Max. Diameter

1 - Aspect Ratio. Close to 1
for elongated cells and close to
0 for circular cells.

Circularity [0, 1]
√

4πAcell

P 2
cell

Degree of resemblance to a
circle.

Convexity [0, 1] Pconvex hull
Pcell

Ratio of the convex hull
perimeter to the cell perime-
ter.

Table 2.5: List of non-dimensional shape factors

2.3 Dimensionality Reduction

High-dimensional data exhibits “curse of dimensionality”, i.e. distances
between all pairs of points converges to the same value in higher dimensions.
Therefore, unsupervised classification methods that rely on clustering algo-
rithms to categorize the data set using some distance metric fail to perform
well for high dimensional feature vectors. To prevent this problem, cluster-
ing is typically performed on a low-dimensional data set after dimensionality
reduction.
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2.3.1 Principal Component Analysis (PCA)

Principal Component Analysis is a mathematical technique that exploits
variance in a given data set in order to make patterns in the data salient.
It is commonly used in machine learning to visualize and manipulate high
dimensional feature vectors. PCA transforms high dimensional data into a
low dimensional subspace, where the basis for the low dimensional subspace
is a linear combination of high dimensional basis vectors. The linearity as-
sumption reduces the problem of finding an appropriate transformation to
the problem of finding an appropriate projection. The linear combination of
the original basis is determined in a manner such that the low dimensional
basis vectors (also known as principal components) correspond to direction
with the greatest variance in the data. In other words, PCA projects high
dimensional feature vectors to a new (low dimensional) coordinate system,
ensuring that the first axis in the new coordinate system (PCA 1) has maxi-
mum variation, the second axis (PCA 2) has the second-most variation, and
so on.

Mathematically, the principal components are the eigenvectors of the co-
variance matrix of the original data set. These eigenvectors are orthogonal
since the covariance matrix is symmetric. Reducing dimensionality of the
feature space by projecting all feature vectors to a low dimensional space
reduces the complexity of cluster identification and k-means clustering. The
number of principal components (i.e. dimensionality of the transformed
space) is chosen by plotting the variance in data explained by each princi-
pal component versus the number of components. Typically, the number
of principal components is determined by finding an “elbow” in this plot.
The elbow signifies the turning point where the trade-off between including
additional variance is offset by the complexity of dealing with more compo-
nents. Generally, most of the variance in the original data is explained by
a small number of principal components. Sometimes 2 or 3 components are
chosen for ease of plotting. As a rule of thumb, in this thesis, the number is
components is chosen such that the total explained variance exceeds 80%.

2.4 Unsupervised Classification

Unsupervised classification refers to grouping of quantifiable objects by
inferring relationships between these objects. Clustering algorithms are used
to automatically group the data points (also called descriptors or features
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in the context of machine learning) corresponding to the objects of inter-
est. The terms “clustering” and “unsupervised classification” are used in-
terchangeably throughout this thesis. Multiple methods for clustering exist
and they are generally categorized into one of four types [37]:

Prototype-Based Methods: Objects belong to the same cluster if their
distance (a measure of similarity) to the prototype that defines the cluster
is smaller compared to their distance to prototypes of other clusters. The
prototype is the most representative point of a given cluster, often lying
at the center of that cluster. k-means, k-medoids and X-means algorithms
belong to this category.

Graph-Based Methods: Relationships between objects (nodes in this
context) are represented by edges between nodes in a graph. Objects are
clustered by identifying connected components, cliques and neighboring
nodes in the graph. Some advanced algorithms define criteria for splitting
edges in the Minimum Spanning Tree (MST) of the graph to obtain a forest
of clustered points. The Fuzzy C-Means MST Clustering algorithm, Markov
Clustering algorithm, Iterative Conductance Cutting algorithm, Geometric
MST Clustering algorithm and Normalized Cut Clustering (NCC) algorithm
belong to this category [12].

Density-Based Methods: Objects are represented by points in space. A
cluster refers to group of densely packed points surrounded by a region of
low density. DBSCAN (density-based spatial clustering of applications with
noise) and OPTICS (ordering points to identify the clustering structure)
algorithms are examples of density-based approach to clustering.

Shared Property or Conceptual Methods: This is a catch-all category
that defines a cluster as groups of objects that share some common property.

Irrespective of the method used for clustering the data, it is important
to find parameters to optimize algorithm performance and ensure that the
results obtained from the algorithm are meaningful. Many clustering al-
gorithms are known to be very sensitive to their input parameters [19].
Measures for assessing the efficacy of clustering like Davies-Bouldin index
and silhouette score (defined below) are useful for evaluating the results of
clustering algorithms.
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2.4. Unsupervised Classification

The k-means algorithm and DBSCAN are two widely used methods for
clustering data in low dimensions. While the k-means algorithm requires one
parameter (k), the DBSCAN algorithm requires two parameters (minPts,
the minimum number of points in the neighborhood of a core point and
neighborhood distance ε) for distinguishing between core points, boundary
points and non-reachable points. The k-means algorithm is used for clus-
tering data in this thesis due to its ease of implementation and availability
of methods for parameter estimation. Due to the modular nature of the
unsupervised cell classification pipeline, the k-means clustering algorithm
can be swapped for more sophisticated algorithms like X-means or OPTICS
that do not require any input parameters in the future.

2.4.1 K-means Clustering Algorithm

The k-means algorithm partitions input data points, xi (i = 1, . . . , N),
into k subsets or clusters, where points in a cluster Cp (p ∈ {2, . . . , k}) are
associated with cluster center µp. The partitioning is determined by min-
imizing the distance between points and their cluster centers according to
some user-specified distance metric.

K-means Algorithm:
Step 1: Randomly pick k points µ1, . . . , µk, from input data xi as cluster
centers. Initialize k clusters, C1, . . . , Ck, with these points.
Step 2: Assign each point xi to the “nearest” cluster, Cp. The nearest clus-
ter is determined by minimizing the sum of squared intra-cluster distances
between points and their cluster centers:

argmin
p

∑
xj∈Cp

(D(xj, µp))2.

Typically, Euclidean measure is used to compute distance D.
Step 3: Calculate new cluster centers by computing the mean of points in
each cluster:

µp =
1

|Cp|
∑

xj∈Cp

xj

Step 4: Repeat steps 2 and 3 until cluster centers stop changing.

Typically, the algorithm is run multiple times with different random initial
choices of cluster centers to ensure stable convergence. In addition to the
input data points, the user has to supply parameter, k, which denotes the
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2.4. Unsupervised Classification

number of clusters in the data. There are four popular methods to find
the optimal number of clusters in an arbitrary data set: elbow heuristic,
Bayesian information criterion (abbreviated BIC), silhouette analysis [34]
and gap statistic [38]. In practice, using features computed from the MIA
PaCa-2 data set, silhouette analysis (described below) performed best in
terms of robustness and convergence.

2.4.2 Silhouette Score Analysis

Silhouette analysis is the study of the degree of separation between clusters
of data points using silhouette coefficients. The silhouette coefficient for a
given data point, P , is a measure that quantifies the degree to which the data
point belongs to its assigned cluster, C. It is computed as follows. Let a be
the mean distance between point P and every other point in its own cluster
C. Let b be the mean distance between P and every point in the nearest
neighboring cluster. Then, the silhouette coefficient for point P is (b −
a)/max (a, b). The silhouette coefficient ranges from -1 to 1. A coefficient
value near 1 indicates that P has undoubtedly been classified correctly, a
value around 0 indicates that the clustering of P has some ambiguity, and
a value near -1 indicates it is likely that P was classified incorrectly.

Rousseeuw described a heuristic using silhouette coefficients to identify
the number of clusters in a given data set [34]. Points are clustered us-
ing k-means for various values of parameter k. Assuming that the algorithm
converges and gives stable results, the silhouette score is computed by calcu-
lating the average of silhouette coefficients for all data points. The number of
clusters in the data set, i.e. the optimal value for k, is one that maximizes
the silhouette score. This technique is demonstrated using synthetically
generated data in Figure 2.9. 10,000 data points corresponding to 10 clus-
ters (1000 points per cluster) are generated by transforming and combining
uniform random distributions (see Figure 2.9a). Figure 2.9b shows a plot
of silhouette score computed for various values of parameter k. The most
probable value of k is automatically determined by finding the maximum in
this plot. For the synthetic data set, the silhouette score is maximized at
k = 10. Figure 2.9c shows the k-means clustering result (corresponding to
k = 10), with points colored according to their cluster label. Sorted values
of silhouette coefficients for individual data points (grouped by cluster la-
bel) are shown in Figure 2.9d, with the vertical red line depicting the overall
silhouette score obtained by averaging.
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2.4. Unsupervised Classification

(a) 10,000 synthetic data points corre-
sponding to 10 user-defined cluster shapes

(b) Determining optimal k automatically
by computing average silhouette score

(c) Labeled data points (obtained by k-
means) corresponding to 10 clusters

(d) Sorted silhouette scores for data
points in each cluster

Figure 2.9: Clustering synthetic data using silhouette score analysis
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Chapter 3

Results and Discussion

This chapter illustrates the methodology described in Chapter 2 using
data acquired by segmenting phase-contrast microscopy images of the MIA
PaCa-2 cancer cell line. MIA PaCa-2 is a human cell line that was estab-
lished by A. Yunis, et al. [42] from primary tumor tissue of the pancreas. It
is currently used as an in-vitro model to study carcinogenesis in pancreatic
ductal adenocarcinoma [14]. The morphological and genetic characteristics
of cells belonging to the MIA PaCa-2 cell line are well understood and read-
ily available in the literature [14]. Therefore, unsupervised classification of
these cells based on their morphology is of little biological relevance. This
cell line was chosen for the purpose of demonstrating the methodology, since
MIA PaCa-2 cells exhibit several distinct morphological shapes.

Phase-contrast MIA PaCa-2 images are segmented using the methodology
described in Section 2.1. Using 40 images acquired by the Roskelley Lab at
UBC, 149 correctly segmented cells are identified by visually inspecting the
segmentation result and comparing it to the original phase image. A typical
segmentation result is shown in Figure 3.1. Cells that cross the boundary
of the image are removed during mathematical morphology stage of image
processing. Note that boundaries of cells that are closely packed cannot be
resolved by the watershed algorithm (see Figure 3.1b), since these cells share
foreground markers and are treated as one object. The number of iterations
required to separate foreground markers (obtained from mathematical mor-
phology) of closely packed cells using erosion is high. Since all foreground
markers are eroded equal number of times to keep the image segmentation
process as automated as possible, too many erosion operations prevents cor-
rect segmentation of elongated cells due to the loss of foreground markers
in their long thin “tails”. Therefore, the number of iterations of erosion is
a parameter that affects the range of cell sizes and population density at
which correct segmentations can be obtained. Once this parameter is man-
ually chosen, the user must identify correctly segmented cells (by selecting
IDs assigned to watershed outlines, as shown in Figure 3.1b) for serializa-
tion. Serialization refers to the process of saving segmented boundaries in a
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Chapter 3. Results and Discussion

database for feature extraction and further processing.

Each cell is assigned a unique ID (henceforth referred to as UID) after all
images are segmented and manually selected cells are serialized. UID is used
to keep track of cells (and the original image from which they are obtained)
through the remainder of the classification process.

(a) MIA PaCa-2 image acquired using phase-contrast microscopy

(b) Boundaries (tagged with IDs) ob-
tained using mathematical morphology
and watershed segmentation

(c) Correctly segmented cells are serial-
ized by manually selecting IDs (from Fig-
ure 3.1b)

Figure 3.1: Selection of correctly segmented cells

34



Chapter 3. Results and Discussion

As proof-of-concept, a manually curated subset of the 149 segmented cells
is used for unsupervised classification in this thesis. The subset, consisting of
63 segmented cells, is preselected to only include cells with clear and distinct
morphologies. The remaining cells with ambiguous morphology are omitted
from the data set as follows. A preliminary set of features is computed for
all 149 cells. Each feature vector is reduced to a two dimensional vector
using principal component analysis (PCA). Outlier points (corresponding
to anomalous cell morphologies) are identified and manually removed from
the data set. UIDs of outliers are noted for further inspection as these cells
are often of interest to experimental biologists. Manual outlier removal is a
time-consuming task that does not scale with input data size. Automatic
techniques for outlier detection (currently under development) will remove
this bottleneck in the future. In addition, points that appear to lie between
clusters in the two-component PCA space are removed to retain groups of
cells that have distinctive morphologies. Removal of points between clusters
improves stability of the k-means clustering algorithm. Stability and conver-
gence of the algorithm is crucial for estimating parameter k (corresponding
to number of clusters in the data set) using silhouette score analysis.

Four distinct morphologies are evident in the MIA PaCa-2 phase images
(see Figure 3.2). The manually curated data set contains 15 cells with “cir-
cular” morphology. These rounded cells appear brighter compared to other
cells in the phase images. Typically, cells are assumed to adopt a circular
morphology and become stationary before undergoing mitosis. The data
set contains 12 cells with “protrusive” morphology. In the absence of live-
imaging data for verification, these cells are assumed to be migratory with
the presence of one or more lamellipodia on their cell boundary. The data set
also contains 16 and 20 cells exhibiting “elliptical” and “elongated” morphol-
ogy respectively. Elliptical cells are non-circular, oval or teardrop shaped
and lack distinctive lamellipodia. Elongated cells are highly stretched along
their principal axis. In other words, the maximum Feret length of elongated
cells is much larger compared to their minimum Feret length.
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3.1. Exploratory Data Analysis

Figure 3.2: Four distinct morphologies in MIA PaCa-2 phase images

Validation of any unsupervised classification methodology requires com-
parison with ground truth. Ground truth refers to annotated data set where
each data point is assigned a label based on the category to which it be-
longs. In this case, the data set consists of 63 cells, further categorized into
four labeled groups. The four labels correspond to 12, 15, 16 and 20 cells
with protrusive, circular, elliptical and elongated morphology respectively.
The clustering algorithm also assigns labels (one label per identified clus-
ter) to each data point. The efficacy of the methodology is determined by
measuring the number of incorrect classifications. Labels assigned by the
clustering algorithm are compared to ground truth labels in order to identify
misclassified cells.

3.1 Exploratory Data Analysis

Unsupervised classification requires extraction of features from segmented
cell images. A feature vector is computed for each cell using the feature
extraction process described in Section 2.2. Feature extraction decomposes
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3.1. Exploratory Data Analysis

cell images into their morphological characteristics using mathematical tech-
niques to quantify cell shape and size. Each feature vector contains 27 fea-
tures, including 7 Hu’s invariant moments, 11 geometrical features, 3 bound-
ary features and 6 shape factors. This section provides insight into diversity
within the curated data set (consisting of 63 cells represented by points in
the feature space) as well as relationships between different features.

(a) φ1 and φ2
(b) φ3, φ4 and φ6

(c) φ5
(d) φ7

Figure 3.3: Plots of Hu’s moment invariants for all cells in the data set
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3.1. Exploratory Data Analysis

Hu’s moment invariants are plotted against cell UID (arranged in no par-
ticular order) in Figure 3.3. Surprisingly, all moment invariants are corre-
lated. The high degree of correlation is evident in Figure 3.3a, where φ1 and
φ2 follow the same peak and trough pattern. Similarly, φ3, φ4, φ5 (plotted
separately in Figure 3.3c due to their low values) and φ6 peak simultane-
ously for certain cells. Furthermore, φ2, φ3, φ4, φ6 and φ5 increasingly lack
resolution (in that order) and fail to provide any information that cannot
be obtained from φ1.

Rotationally symmetric objects have moment invariant values close to
zero. Therefore, one can distinguish between circular cells and non-circular
“stretched” cells (those that have a more elliptical or elongated morphology)
by thresholding φ1, as shown in Figures 3.4 and 3.5. Although cells with
stretched morphology are typically larger in size in the MIA PaCa-2 data
set, the discrimination is based on cell shape rather than cell size, as values
of Hu’s moment invariants are not affected by scaling cell size.

Figure 3.4: Thresholding Hu’s invariant moment φ1

The threshold value, 0.3, is determined by trial and error to separate cells
into two groups as follows. Cells (identified by their UID on the horizontal
axis) with circular morphology have φ1 values below the threshold. Con-
versely, those with stretched morphology have φ1 values above the threshold.
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3.1. Exploratory Data Analysis

(a) Segmented cell images for subset of cells with φ1 > 0.3

(b) Segmented cell images for subset of cells with φ1 < 0.3

Figure 3.5: Manual classification of cells by thresholding φ1

Skew invariants, φ7 are plotted against cell UIDs in Figure 3.3d. Values of
φ7 occupy a narrow range from −8× 10−7 to 6× 10−7. On first inspection,
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3.1. Exploratory Data Analysis

it appears that one can classify cells into three distinct categories using two
thresholds (see Figure 3.6). However, there is no clear visually apparent
morphological difference between cells corresponding to positive peaks in φ7
values and cells corresponding to negative peaks in φ7 values, as shown in
Figures 3.7a and 3.7b.

Figure 3.6: Thresholding Hu’s invariant moment φ7

Thresholds are arbitrarily chosen in an attempt to classify cells using φ7.
Cells with φ7 values close to zero have circular morphology (not shown in
this figure).
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3.1. Exploratory Data Analysis

(a) Segmented cell images (and corresponding UIDs) for cells with φ7 values above
the upper threshold (corresponding to φ7 > 10−7).

(b) Segmented cell images (and corresponding UIDs) for cells with φ7 values below
the lower threshold (corresponding to φ7 < −10−7).

Figure 3.7: Manual classification of cells by thresholding φ7

Pairs of shape factors, cell area and perimeter computed from segmented
cell images are plotted against each other in Figure 3.8. Correlation be-
tween these features offers insight as to which features might be combined
together during dimensionality reduction (PCA). Sum of squared residuals
(R2) quantifies the error in linear regression between pairs of shape factors.
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3.1. Exploratory Data Analysis

(a) Compactness vs. Extent (b) Convexity vs. Solidity

(c) Elongation vs. Circularity (d) Cell Area & Perimeter

Figure 3.8: Correlation between shape factors, cell area and perimeter

Strong positive correlation (evidenced by low R2 value) is observed be-
tween convexity and solidity, as shown in Figure 3.8b. Note that the major-
ity of cells in the data set are highly convex. The data set contains cells that
represent values across a wide range of elongation and circularity. Circu-
lar cells can be identified by plotting perimeter versus area and identifying
points that lie close to the curve P =

√
4πA in Figure 3.8d. The more a cell

deforms from circular shape, the further away from the curve will its (A,P )
value be on this graph.
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3.2. Clustering Using Hu’s Moment Invariants

3.2 Clustering Using Hu’s Moment Invariants

As demonstrated in Section 3.1, Hu’s moment invariants can be used (with
manually assigned thresholds) to distinguish between circular and stretched
cell morphology. However, the goal of this thesis is to determine whether
cells can be classified automatically. Can appropriate thresholds be deter-
mined implicitly and automatically by performing dimensionality reduction
and clustering? To investigate further and answer similar questions regard-
ing geometrical descriptors and shape factors in the following sections, the
following procedure is implemented.

(a) PCA Elbow Plot (b) 1-component PCA

(c) 2-component PCA (d) 3-component PCA

Figure 3.9: PCA of Hu’s moment invariants
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3.2. Clustering Using Hu’s Moment Invariants

Principal Component Analysis (PCA) is used to transform segmented
cells denoted by points in seven dimensional feature space (consisting of all
moment invariants, φ1 . . . φ7) to a lower dimensional subspace. Dimension-
ality reduction in this manner facilitates the identification of clusters using
silhouette analysis.

According to the elbow plot (Figure 3.9a), two principal components ac-
count for over 80% of the explained variance. Since all moment invariants
computed from MIA PaCa-2 segmented cell images happen to be correlated
(see Section 3.1), most of the variance in the data can be captured by a
single principal component, as shown in Figure 3.9b. This is further verified
in 2-component and 3-component PCA plots (Figures 3.9c and 3.9d), where
majority of the data points are clustered and outliers are responsible for the
variance. However, in conformity with the rule of thumb (retaining over
80% of variance in data) and the elbow heuristic, two principal components
are used in subsequent analysis.

The coefficients or weights assigned to the linear combination of features
(φ1 . . . φ7) for the first and second principal component are (up to 2 decimal
digits):

PC1 = (0.32, 0.322, 0.44, 0.44, 0.42, 0.44,−0.15),

and, PC2 = (−0.58,−0.58, 0.16, 0.15, 0.27, 0.13,−0.42),

respectively. By definition, majority of the variation in data is explained
by the first principal component (PC1), represented by the horizontal axis
in the 2-component PCA plot (Figure 3.9c). Projecting points on this axis
provides an approximation of 1-component PCA, shown in Figure 3.9b.

Typically, this information is visualized in a biplot, like the one depicted in
Figure 3.10. A biplot, in the context of PCA, consists of points and vectors
drawn on a plot where the axes represent the principal components. Points
are used to represent the transformed data set on the principal component
axes, same as plots in Figure 3.9. Vectors, drawn on the same axes, represent
the feature variables expressed in terms of the basis vectors of (PCA1, 0) and
(0,PCA2).
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3.2. Clustering Using Hu’s Moment Invariants

Figure 3.10: Biplot for 2-component PCA using Hu’s moment invariants

The alignment of vectors in the biplot indicates their degree of correla-
tion. Notice the correlation between φ1 and φ2, also evident in Figure 3.3a.
Figure 3.10 suggests that if outliers (points scattered on the right) are re-
moved, then majority of variation in the data will be captured in φ1 and φ2,
as expected from the exploratory data analysis in Section 3.1.

Correlation between features can also be visualized with the aid of a fea-
ture agglomeration tree, shown in Figure 3.11. The tree is built bottom-up
by recursively merging features (or combination thereof) using Ward’s link-
age method for hierarchical cluster analysis. Ward’s method combines clus-
ters of features using the sum of squared deviations from points to centroids
as a distance metric. In other words, features are combined based on the
proportion of variance explained by those features, in a manner similar to
PCA. The leaves of the feature agglomeration tree are individual features
in the feature vector. The number assigned to internal nodes indicates the
degree of correlation between its children, with a higher number indicating
greater correlation. The root of the tree is assigned the lowest number, since
it combines two sub-trees (or clusters of features) with minimal correlation
between them.
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3.2. Clustering Using Hu’s Moment Invariants

Figure 3.11: Feature agglomeration tree for Hu’s moment invariants

Silhouette analysis using data points projected on two-component PCA
axes predicted two clusters, as shown in Figure 3.12. Labeled data points
are shown in Figure 3.12c. Same exact results, with regard to number of
clusters and allocation of points to clusters, are obtained using 1-component
or 3-component PCA.

k-means clustering (with k = 2) using Hu’s moment invariants as feature
vector classified cells into two groups: 58 cells corresponding to black cluster
labels and 5 cells corresponding to green cluster labels. Since the value of
Hu’s moment invariants is not affected by cell size, separation of cells in
two clusters is based on cell shape. Cells labeled in green have morphology
that is highly non-circular and corresponds to high values of Hu’s moment
invariants seen in Figures 3.4 and 3.5. Segmented cell images corresponding
to labeled points in the clustering result are shown in Figure 3.13.
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3.2. Clustering Using Hu’s Moment Invariants

(a) Identifying number of clusters (b) Silhouette scores for K = 2

(c) Labeled data points (annotated with UID) for 2-component PCA

Figure 3.12: Silhouette score analysis of Hu’s moment invariants
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3.3. Clustering Using Geometrical Feature Descriptors

(a) Subset of cells corresponding to black cluster label

(b) All cells corresponding to green cluster label

Figure 3.13: Classification of cells using Hu’s moment invariants

3.3 Clustering Using Geometrical Feature
Descriptors

This section describes results obtained by following the same procedure
as Section 3.2, but using geometrical features instead of Hu’s moment in-
variants. Geometrical features (summarized in Tables 2.1 and 2.2) consist of
information obtained from circle, ellipse, rectangle and polygon fits. PCA
reveals that two principal components retain over 80% of explained vari-
ance, as shown in Figure 3.14a. Features expressed in terms of principal
components are shown in the biplot (Figure 3.15). Ellipse perimeter and
minimum Feret length are correlated and aligned with the second principal
component. Majority of variance in the data (over 70% according to Fig-
ure 3.14a) is captured by the remaining features which are aligned in the
direction of the first principal component. The feature agglomeration tree
(Figure 3.16) confirms this observation.
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3.3. Clustering Using Geometrical Feature Descriptors

(a) PCA Elbow Plot (b) 2-component PCA

Figure 3.14: PCA of normalized geometrical features

Figure 3.15: Biplot for 2-component PCA using geometrical features

Features obtained from ellipse fit, circle fit, rectangle fit and polygonal fit
are plotted in red, magenta, yellow and green respectively.
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Figure 3.16: Feature agglomeration tree for geometrical features

Note that polygon area (denoted “Area” in graph above) and ellipse area are highly correlated. Similarly, polygon
perimeter (denoted “Perimeter” in graph above) and circle perimeter are highly correlated. This is also noticeable
in the alignment and (almost) equal magnitude of their vectors in the biplot (Figure 3.15), representing the
(almost) equal weights assigned to these features in the principal components.
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3.3. Clustering Using Geometrical Feature Descriptors

Two clusters are identified by performing silhouette analysis on geomet-
rical feature data transformed using PCA, as shown in Figure 3.17a. The
transformed data is clustered using k-means algorithm with parameter k =
2, to assign label to each cell UID (see Figure 3.17b).

(a) Identifying number of clusters using silhouette score

(b) Labeled data points (annotated with UID)

Figure 3.17: Silhouette analysis and clustering of geometrical features
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3.4. Clustering Using Geometrical and Boundary Features

Clustering using geometrical features resulted in improved classification
of cells, clearly demonstrated by plotting segmented cell images correspond-
ing to cluster labels in Figure 3.18. There is clear morphological difference
between cells in Figure 3.18a and cells in Figure 3.18b. Cells corresponding
to the 23 points in the green labeled cluster are smaller in size compared
to cells corresponding to 40 points in the black labeled cluster. The clas-
sification is primarily based on cell size rather than cell shape, in contrast
to classification using Hu’s moment invariants. This can be easily verified,
since some large cells with circular or protrusive morphology are labeled in
black (see Figure 3.18c) as opposed to the majority of such cells that are
labeled in green.

The results described above are obtained by classifying transformed fea-
tures using k-means algorithm, using parameter k = 2 corresponding to
the maximum silhouette score. However, if geometrical features are classi-
fied with k = 4 (not shown), using a priori knowledge that the data set
contains four different morphologies, then morphologically similar cells are
placed in the same cluster with only two mis-classifications. Consequently,
employing a better cluster identification mechanism instead of silhouette
score or replacing k-means with another clustering algorithm can improve
unsupervised cell classification using geometrical features.

3.4 Clustering Using Geometrical and Boundary
Features

Another approach for improving results obtained in the previous section
is to consider increasing variance in the data set by introducing additional
features. Performing PCA on a larger set of features exploits increased
variance and enables k-means to identify new clusters. Since geometrical
features lack information about the boundary of cells, it is natural to as-
sume that the combination of geometrical and boundary features will lead
to better classification. Boundary features encode information about peaks
and changes in the curvature of cell boundary. Therefore, boundary fea-
tures can be used to distinguish between cells with multiple protrusions (i.e.
more sign flips in curvature of boundary) and circular/elliptical cells that
have mostly positive curvature. This hypothesis is tested in the this section.
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3.4. Clustering Using Geometrical and Boundary Features

(a) Subset of cells corresponding to green cluster label

(b) Subset of cells corresponding to black cluster label

(c) Circular/protrusive cells in black cluster

Figure 3.18: Classification of cells using geometrical features
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3.4. Clustering Using Geometrical and Boundary Features

(a) PCA Elbow Plot
(b) Identifying number of clusters

(c) Labeled data points (annotated with UID)

Figure 3.19: PCA, silhouette analysis and clustering of combined (geomet-
rical and boundary) features
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3.4. Clustering Using Geometrical and Boundary Features

As shown in Figure 3.19, addition of boundary features did not lead to
identification of any new clusters. In the two-component PCA space, place-
ments of points in Figure 3.19c is almost identical to Figure 3.17b. The
green cluster contains 40 points and the black cluster contains 30 points.
There is no difference in the allocation of points to cluster labels. Possible
reasons for lack of improvement can be ascertained by looking at correlations
between features.

Figure 3.20: Biplot for 2-component PCA using combined features

The color scheme for geometrical features is same as Figure 3.15. Boundary
features are plotted in blue.

Both biplot (Figure 3.20) and feature agglomeration tree (Figure 3.21)
confirm that minimum boundary curvature is correlated to ellipse perimeter
and minimum Feret perimeter. Maximum boundary curvature is correlated
to ellipse variance and other features in the left sub-tree obtained by splitting
the feature agglomeration tree at its root node.
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Figure 3.21: Feature agglomeration tree for combined features
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3.5. Clustering Using Shape Factors

3.5 Clustering Using Shape Factors

Six non-dimensional shape factors, extent, solidity, compactness, elonga-
tion, circularity and convexity (see Section 2.2.3 for definitions) were com-
puted for each segmented cell image. Principal component analysis (Fig-
ure 3.22) reveals that over 80% of variance in data set can be captured
using two principal components.

(a) PCA Elbow Plot (b) 2-component PCA

Figure 3.22: PCA of non-dimensional shape factors

Biplot diagram (Figure 3.23a) and feature agglomeration tree (Figure 3.23b)
both confirm that compactness, extent and circularity are highly correlated.
This indicates that similar clustering results (for the MIA PaCa-2 data set)
can be obtained by computing just one out of these three shape factors.

Silhouette analysis confirms the presence of four clusters, as shown in
Figure 3.24. Cell UIDs corresponding to the four cluster labels are shown
in Figure 3.24c.
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3.5. Clustering Using Shape Factors

(a) Biplot for 2-component PCA using shape factors

(b) Feature agglomeration tree for shape factors

Figure 3.23: Analyzing correlation in shape factors using biplot and feature
agglomeration
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3.5. Clustering Using Shape Factors

(a) Identifying number of clusters
using silhouette score (b) Silhouette scores for each cluster

(c) Labeled data points (annotated with UID)

Figure 3.24: Silhouette analysis and clustering of shape factors
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3.5. Clustering Using Shape Factors

(a) Subset of cells corresponding to black cluster label

(b) Subset of cells corresponding to blue cluster label

(c) Subset of cells corresponding to yellow cluster label

(d) Subset of cells corresponding to green cluster label

Figure 3.25: Classification of cells using shape factors

Classification results are further improved using shape factors. A subset of
cells corresponding to each cluster label are shown in Figure 3.25. The black,
blue, yellow and green labels identify cells with predominantly elongated,
circular, protrusive and elliptical morphology respectively. According to
original annotations, four cells were mis-classified. An elliptical cell was mis-
classified and incorrectly labeled as elongated. Three protrusive cells were
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3.5. Clustering Using Shape Factors

mis-classified: two were labeled as elliptical and one was labeled circular.
Note that adding boundary features to the feature vector (in addition to
shape factors) does not improve the result.

In summary, using shape factors as features led to automatic identification
of four clusters corresponding to the elliptical, elongated, circular and pro-
trusive morphologies evident in the manually vetted data set. Unsupervised
classification of shape factors through a combination of PCA, silhouette
score analysis and k-means resulted in just four mis-classifications. Hu’s
moment invariants, geometrical and boundary features did not perform as
well as shape factors using this methodology. Classification of cells using
Hu’s moment invariants can be improved further by using t-SNE instead
of PCA for dimensionality reduction. Results obtained using t-SNE are
described in Appendix A.
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Chapter 4

Conclusions

Correctly identifying specific objects such as cells in grayscale images with
noise remains a challenging problem. Even the human visual system, that
has evolved to recognize complex shapes within highly unstructured back-
grounds can fail to find specific objects, misinterpret visual cues, or fail to
detect cryptic shapes. What is more, even when all cells in a microscopy
image are detected and outlined (segmented), it is still challenging to hu-
mans to distinguish between discrete classes when the classes have some
overlap. For this reason, computational methods, which have nowhere near
the discriminating power of the human visual system (at least for a small
number of objects) are extremely challenging to develop. In this thesis, MIA
PaCa-2 pancreatic carcinoma images are used to develop and test a pipeline
for unsupervised cell classification, using a number of pre-existing methods
that are adapted, improved, or modified. The process of assembling this
pipeline has led to several areas of learning, both of the underlying biology,
and of aspects of mathematical and computational aspects of the problems.

An image segmentation procedure that combines mathematical morphol-
ogy and marker-based watershed segmentation algorithm is used to auto-
matically obtain cell boundaries from phase-contrast images of MIA PaCa-2
cells. Correctly segmented cell boundaries are manually selected for feature
extraction. The feature extraction process is not only an important com-
ponent of the unsupervised classification pipeline, but it is also a means to
quantify cell morphology in a manner that is useful for other applications.
By constructing a feature vector through geometrical fitting, computation
of boundary spline interpolation and shape factors as part of the overall
methodology, the wealth of information gathered can be used by biologists
to quantify cell and tissue morphology, determine the presence of multiple
cell types, and/or mutations or epigenetic changes that affect cell shape.
With additional development, the methods discussed here can be used to
study changes in tissue geometry during morphogenesis using images ac-
quired through time-lapse microscopy.
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After feature extraction, a manually curated subset of cell features is
used to identify circular, elliptical, protrusive and elongated cells. While
the necessity for manual curation indicates some of the limitations of this
methodology, it should be noted that MIA PaCa-2 cells do not exhibit a
discrete set of shapes. As is the case with majority of other cell types, the
morphology of MIA PaCa-2 cells lies in a continuum of shapes which makes
their classification difficult, even for trained experts. For typical applications
that require identification of distinct shapes in a heterogeneous population
(arising from co-cultures, mixture of control and experimental group, etc.),
variability in features is expected to be much higher compared to variability
in the MIA PaCa-2 single cell line data. This suggests that one aspect of
future work would be to test the methods on a variety of cell images, where
there is a clearer distinction between cell types or morphologies.

Cell features are classified using the k-means clustering algorithm after
performing dimensionality reduction to take advantage of correlation be-
tween features. PCA is used to compute a linear combination of features in
order to project data from high dimensional feature space to low dimensional
principal component space while retaining at least 80% of the variance in
the original feature data. Silhouette analysis is used to determine the most
probable number of clusters in the low dimensional space. After clustering,
segmented cell images corresponding to cluster labels (assigned to cell UIDs)
are used to identify the number of mis-classifications.

One of the goals for this thesis is to identify a minimal set of features
that are computationally inexpensive to calculate but also competent in
classifying cells. The number of mis-classifications is used to evaluate the
performance of different kinds of features. As shown in Chapter 3, cluster-
ing using shape factors resulted in fewest mis-classifications. Improved cell
classification using Hu’s moment invariants is possible, although it requires
the use of a non-linear embedding for dimensionality reduction (detailed in
Appendix A). It should be noted that more information (besides global ex-
trema and number of sign flips in curvature) can be obtained from the spline
boundary fit, which may result in improvement of classification as well as
identification of new classes based on locations of cell protrusions. Sugges-
tions for improvement in the methodology and potential areas for future
work are identified in the next chapter.
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Chapter 5

Future Work

The previous chapters describe a general methodology for unsupervised
cell classification. The methodology is implemented in a modular pipeline
that consists of algorithms used to perform image segmentation, feature
extraction, dimensionality reduction and cluster identification techniques,
in a sequential order. Each stage of the process takes input and produces
output in a specified format, making the components of the pipeline re-
placeable. For example, the phase-contrast image segmentation component
can be replaced by another component to segment images obtained through
a different kind of microscopy. The pipeline is designed to handle high-
throughput data, eliminating the need for manual intervention as much as
possible. Currently, correctly segmented cells have to be manually identified
and only a curated subset of the data is passed on to the dimensionality re-
duction step. With the improvements in methodology suggested below, it is
possible that a fully automated pipeline will become a reality in the future.

The addition of more quantifiable morphology based features can be used
to increase the distance between non-similar cells represented by points in
high dimensional feature space. This naturally improves the clustering of
points after dimensionality reduction, potentially eliminating the need for
manual curation. Suggestion for new features are highlighted below:

The curvature of the cubic spline interpolation of cell boundary identifies
cell protrusions as regions of positive curvature, as demonstrated in Fig-
ure 5.1. However, for cells with long straight segments in cell boundary (see
Figure 5.2), there are large number of changes in sign of curvature along the
straight edges. Therefore, the number of positive curvature segments does
not correspond to number of protrusions. As a result, the number of pro-
trusions along the cell boundary is not represented in the boundary feature
vector. Furthermore, information about the location of protrusions along
the cell boundary is also missing from the boundary feature vector. This
limits the methodology, preventing it from distinguishing between cells that
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have protrusions oriented in the same direction and those cells that have
random placed protrusions along their boundary.

(a) Cropped phase con-
trast microscopy image
showing a protrusive MIA
PaCa-2 cell

(b) Cubic spline interpola-
tion of cell boundary show-
ing regions of positive cur-
vature (in red) and nega-
tive curvature (in blue)

(c) Spline color-coded by
magnitude of curvature,
using the same color
scheme as 5.1b

Figure 5.1: Boundary curvature of a protrusive cell

(a) Cropped phase con-
trast microscopy image
showing an elliptical MIA
PaCa-2 cell

(b) Cubic spline interpola-
tion of cell boundary show-
ing regions of positive cur-
vature (in red) and nega-
tive curvature (in blue)

(c) Spline color-coded by
magnitude of curvature,
using the same color
scheme as 5.1b

Figure 5.2: Boundary curvature of an elliptical cell

In addition to Hu’s moment invariants, geometrical features, boundary
features and shape factors, objects (including segmented cell images) can be
classified by the degree of symmetry in their shape. In order to classify cells
irrespective of their position and orientation, features should be invariant to
image translation and rotation. Therefore, quantifying symmetry in a cell
shape would require identifying its principal axes and computing features in
relation to those axes. Furthermore, cell polarity (dissimilarity of “front” vs
“back”) is known to be an important aspect of cell motility. Future work
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should aim to quantify this feature.

The choice of clustering algorithm and cluster identification strategy can
significantly impact the outcome of unsupervised classification. While k-
means and silhouette analysis are employed in this thesis due to their sim-
plicity and widespread use elsewhere, replacing them with advanced cluster-
ing algorithms (e.g. OPTICS, variants of DBSCAN, Voronoi-based meth-
ods) will likely result in improved identification of clusters and robustness
to noise. While two principal components captured over 80% of variance in
data for all cases considered in Chapter 3, any choice of clustering algorithm
should have the ability to deal with three or more principal components.

Methods for supervised classification of cells (based on morphological fea-
tures) are not covered in this thesis for two reasons. Firstly, supervised
classifiers like Support Vector Machines (SVMs), random forests and deep
neural networks have already been shown to work for similar problems in
recent publications (see Section 1.1). These methods require training using
annotated data, a major disadvantage compared to unsupervised classifi-
cation. Annotation of data is a laborious process that typically requires
labeling cells experimentally (while making sure that the labeling technique
does not have unintended consequences for structural and functional aspects
of the cell) or manually assigning labels to each cell after image acquisition.
Secondly, supervised classifiers like convolutional neural networks (CNNs)
that do not require pre-computed features can easily achieve the end goal
(i.e. cell classification based on morphology), but valuable quantitative in-
formation obtained as part of the feature extraction process is lost. CNNs
belong to the class of pixel-based learning methods, which require a list of
pixel intensities in the segmented cell image as input. Features are implicitly
encoded in the weights and biases of neurons during the training process,
thus eliminating the need for feature extraction. While a trained CNN can
be used to identify distinguishing features in segmented cell images through
deconvolution, the information thus obtained often lacks biophysical mean-
ing.

Deconvolution of a CNN provides a list of image filters (a subset of which
can be interpreted as edge and corner detectors) that can be applied to a
segmented cell image in order to extract features for the purpose of classi-
fication. However, these filters typically do not correspond to measurable
quantities like magnitude of curvature, perimeter length, etc. Despite the
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lack of biophysical meaning, filters obtained by deconvolution might be used
in conjunction with other feature extraction techniques described in Chap-
ter 3 to yield improved classification results.

Certain artificial neural networks (ANNs) can be used in an unsuper-
vised manner to perform feature extraction without training data. However,
the features computed by these ANNs lack biophysical meaning, similar to
CNNs. Autoencoders, a type of ANN, is widely used to perform dimension-
ality reduction. The efficacy of using an autoencoder network instead of
PCA or t-SNE for the purpose of cell classification will be evaluated in the
future.

The work described in this thesis is limited to the classification of cells
in still images. By (re)-constructing the trajectory of cells and their lineage
using images acquired through time-lapse microscopy, the feature vector
can be augmented with information about cell movement and interactions
between cells. Future work in this direction would involve computing “live
imaging features” to study collective cell migration in wound-healing assays.
The live imaging features will include cell velocity, neighbor count and es-
timate of cell cycle time. This would enable classification of cells based on
migratory patterns and identification of cells that morph (from one shape
to another) over time.
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Appendix A

Dimensionality Reduction
Using t-SNE

t-distributed stochastic neighborhood embedding (t-SNE) is a dimension-
ality reduction technique that produces a non-linear embedding from high
dimensional space to low dimensional space. t-SNE is often used in place of
PCA due to its tendency to preserve local structure in data. Unlike PCA,
t-SNE is a non-parametric learning algorithm that handles non-linearity in
the data very well. The embedding is learned in the process of moving
data to the low dimensional space. Consequently, t-SNE does not provide
a function for transforming data from the high dimensional space to the
low dimensional space. Furthermore, the t-SNE algorithm requires multiple
input parameters including perplexity, early exaggeration, learning rate and
number of iterations. While default values of these parameters work well
for widely publicized open data sets, the algorithm is sensitive to perplexity
and learning rate parameters for features included in the MIA PaCa-2 data
set. The perplexity parameter is similar to k in the k-nearest neighbors
(KNN) classifier algorithm. It is used to build a nearest neighbor graph
in the high dimensional feature space. The t-SNE model building process
involves performing random walks on this feature graph. The learning rate
parameter plays an important role in preventing the algorithm from getting
stuck in a local minimum while minimizing the Kullback-Leibler divergence,
a non-convex cost function. For more details on the t-SNE algorithm, please
refer to Maaten and Hinton (2008) [21].

Shortcomings of t-SNE, including its stochastic nature (requiring multiple
runs to ensure convergence), absence of parameter estimation techniques and
lack of simplicity (compared to PCA where the linear transformation can be
easily analyzed), are the main reasons for its exclusion from the main text
of this thesis.
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As shown in Chapter 3, Figure 3.12c, Hu’s moment invariants did not
cluster properly using PCA. However, using 2-component t-SNE, four clus-
ters corresponding to circular, protrusive, elliptical and elongated cells are
easily identifiable (see Figures A.1 and A.2). The results described in this
appendix are limited to 2-component t-SNE to allow for comparisons with
results obtained by using PCA.

Figure A.1: Clustering Hu’s moment invariants using 2-component t-SNE

13 circular cells, 13 elliptical cells, 13 protrusive cells, 19 elongated cells
and 5 outliers are identified in the 2-component t-SNE plot. Contrary to
observations in Section 3.1, a non-linear transformation of Hu’s moment
invariants is capable of distinguishing between various cell morphologies.
However, finding parameters for the t-SNE algorithm (perplexity = 10 and
learning rate = 500) requires manual exploration of the parameter space.
Furthermore, if new data is made available, then a new embedding has to
be learned in order to transform the data into the two dimensional space.
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(a) Subset of circular cells clustered within blue region

(b) Subset of elliptical cells clustered within red region

(c) Subset of protrusive cells clustered within yellow region

(d) Subset of elongated cells clustered within green region

Figure A.2: Improved classification of cells using Hu’s moment invariants

Clustering is not evident when combination of geometrical features and
boundary features are embedded in two-dimensional space using t-SNE, as
shown in A.3. A similar t-SNE plot of (only) geometrical features (not in-
cluded here) has nearly identical placement of points. Thus, adding bound-
ary information to geometrical features does not result in improvement of
unsupervised classification, reinforcing the result obtained using PCA.
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Figure A.3: t-SNE using combination of geometrical and boundary features

Figure A.4: Clustering shape factors using 2-component t-SNE

Six clustered regions are identified in the two component t-SNE plot of
shape factors, as shown in Figure A.4. Clusters 1, 2 and 3 correspond to
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a more elongated morphology (see Figure A.5), while clusters 4, 5 and 6
correspond to protrusive, circular and elliptical cells respectively (see Fig-
ure A.6). One can argue that some of the outlier points (see Figure A.7)
correspond to cells with somewhat ambiguous morphology.

(a) Cluster 1

(b) Cluster 2

(c) Cluster 3

Figure A.5: Subset of elongated cells corresponding to clusters 1, 2 and 3

Notice the subtle distinction in morphology between different clusters of
elongated cells in Figure A.5.
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(a) Subset of protrusive cells corresponding to Cluster 4

(b) Subset of circular cells corresponding to Cluster 5

(c) Subset of elliptical cells corresponding to Cluster 6

Figure A.6: Protrusive, circular and elongated cells identified in Figure A.4

Figure A.7: Segmented cell images of outlier points in Figure A.4
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