
KOLLECTOR: TRANSCRIPT-INFORMED TARGETED DE NOVO ASSEMBLY OF 

GENE LOCI  

by 

 

Muhammet Erdi Kucuk 

 

B.S., Bilkent University, 2013 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

 

MASTER OF SCIENCE 

in 

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES 

(Bioinformatics) 

 

THE UNIVERSITY OF BRITISH COLUMBIA 

(Vancouver) 

 

April 2017 

 

© Muhammet Erdi Kucuk, 2017 



ii 

 

Abstract 

 

The information stored in nucleotide sequences is of critical importance for modern biological 

and medical research. However, in spite of considerable advancements in sequencing and 

computing technologies, de novo assembly of whole eukaryotic genomes is still a time-

consuming task that requires a significant amount of computational resources and expertise, and 

remains beyond the reach of many researchers. One solution to this problem is restricting the 

assembly to a portion of the genome, which is typically a small region of interest. Genes are the 

most obvious choice for this kind of targeted assembly approach, as they contain the most 

relevant biological information, which can be acted upon downstream. Here we present 

Kollector, a targeted assembly pipeline that assembles genic regions using the information from 

the transcript sequences. Kollector not just enables researchers to take advantage of the rapidly 

expanding transcriptome data, but is also scalable to large eukaryotic genomes. These features 

make Kollector a valuable addition to the current crop of targeted assembly tools, a fact we 

demonstrate by comparing Kollector to the state-of-the-art. Furthermore, we show that by 

localizing the assembly problem, Kollector can recover sequences that cannot be reconstructed 

by a whole genome de novo assembly approach. Finally, we also demonstrate several use cases 

for Kollector, ranging from comparative genomics to viral strain detection. 
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Chapter 1: Introduction 

In this chapter we begin by providing a historical overview of DNA sequencing technologies and 

the sequence assembly methods in Section 1.1 and Section 1.2. Despite researchers’ best efforts 

to improve, the assembly problem is not yet solved, and the assembly of large eukaryotic 

genomes remains a computationally challenging task. These challenges sparked the development 

of targeted assembly approaches to perform local assembly of sequences of interest. We review 

the current crop of targeted assembly tools in Section 1.3. We then state our hypothesis as 

follows: utility of the targeted assembly approach can be greatly improved by taking advantage 

of different types of data and increasing the scalability to large eukaryotic genomes. Our main 

contribution, as summarized in Section 1.4, is Kollector, a targeted assembly pipeline that can 

utilize transcript sequences to assemble corresponding genic loci from whole genome shotgun 

sequencing data. 

1.1 DNA sequencing  

Knowledge of DNA sequences is indispensable in modern biological and medical research, as 

nucleotides carry the hereditary and biochemical information in all terrestrial organisms. 

However, the researchers’ ability to “sequence” or determine the precise order of nucleotides in a 

DNA molecule remained severely limited until 1977. In that year Sanger and colleagues 

achieved a major breakthrough with the development of chain-termination method (Sanger, et 

al., 1977). This technique relies on mixing radiolabelled dideoxynucleotides (ddNTPs) at a 

fraction of standard nucleotides into a DNA synthesis reaction. When incorporated into newly 

synthesized DNA, ddNTPs halt further extension, thus generating fragments of every possible 

length. By performing four parallel reactions with each ddNTP base and analyzing the length of 

the fragments with autoradiography, nucleotide sequence of the original template can be inferred. 
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The accuracy and robustness of dideoxy chain-termination method, which came to be called 

simply Sanger sequencing, led to its widespread adaptation as the most common method and the 

gold standard for DNA sequencing in the next 40 years (Heather and Chain, 2016). 

 Sanger method can be used to sequence DNA fragments or “reads” up to 1-kilobase pairs 

in length. In order to analyze longer sequences, researchers developed the ‘shotgun sequencing’ 

approach where the DNA molecule is fractured into overlapping fragments that are amplified 

and sequenced separately, and then reconstructed into the longer target sequence with 

computational methods (see Section 1.2). Shotgun sequencing came to be used in Human 

Genome Project (HGP), and is still the standard approach for whole genome sequencing efforts. 

However, Sanger sequencing proved to be a prohibitively expensive method for such large-scale 

projects, as exemplified by the cost of HGP around USD $3 billion (Heather and Chain, 2016). 

As a result, the turn of the 21st century saw the development of higher throughput and thereby 

lower cost DNA sequencing technologies as alternatives.  

1.1.1 Next-generation sequencing  

Next-generation sequencing (NGS) refers to the sequencing technologies that have become 

commercially available starting over a decade ago to replace Sanger sequencing for large-scale 

applications. Compared to Sanger sequencing NGS methods typically have shorter read lengths, 

but higher depth of coverage, which is defined as the number of times a nucleotide is read during 

sequencing (Goodwin, et al., 2016). This is achieved by relying on a massively parallel 

sequencing strategy, which involves random fragmentation and clonal amplification of DNA.  

An example of this would be the Solexa method of sequencing, a technology later 

acquired by the current market leader Illumina (Chaisson, et al., 2015). In the Solexa method, 

template DNA is first sheared into small (<1 kb) fragments, and small oligonucleotide sequences 
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called adapters are attached to both ends. These fragments, bracketed with adapters, are then 

passed over a flow cell with a lawn of oligonucleotides complimentary to the adapter sequence. 

Once bound, DNA fragments are amplified on the flow cell, generating clusters of clonal DNA. 

Sequencing itself is achieved during DNA replication, in which “reversible-terminator” 

nucleotides are used. These nucleotides contain a terminator domain, which halts the extension 

of the DNA strand that it is incorporated. The terminator domain also contains a fluorescent 

label, which can be detected with a camera. Since only one fluorescent color is used, each of the 

four bases must be added in separate cycles. In each cycle, nucleotides and DNA polymerases 

are washed off from the flow cell and incorporation of the nucleotide is determined by checking 

the fluorescent signal. After four cycles, the terminator domain is enzymatically cleaved off from 

the incorporated nucleotides, so sequencing can continue with the subsequent position in the 

DNA template for the next four cycles (Bentley, et al., 2008).  

Solexa/Illumina platform produces short (<300 base pairs) but highly accurate (1% error 

rate) reads. In order to compensate for the short read length, the Illumina platform can generate 

paired-end (PE) data, where matched reads contain sequence from opposite ends of the same 

DNA fragment. In paired-end sequencing, after sequencing one end of the bound DNA in the 

flow cell, a DNA extension step is performed and already-sequenced strand is removed. Since 

orientation of the template DNA is reversed, a second read can be obtained from the opposite 

end. As all input DNA fragments are of a known approximate length, the distance between the 

first and the second read can also be estimated. This extra information aids in the downstream 

processing of the PE reads, such as sequence assembly or mapping to a reference genome for 

structural variant detection (Voelkerding, et al., 2009). 
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In terms of application, NGS is mainly employed in two types of projects: de novo 

sequencing and re-sequencing (Goodwin, et al., 2016). In de novo sequencing projects, genome 

of an organism is sequenced for the first time and typically the goal is to reconstruct the whole 

genome using sequence assembly. This reconstructed genome is then can be used as a 

representative for the species in question, and is called a reference genome.  In contrast, re-

sequencing projects involve partial or whole sequencing of a genome from a species where a 

reference genome is already available. Re-sequencing is usually performed to characterize and 

study genomic variations in certain populations and individuals, such as cancer patients. Both de 

novo sequencing and re-sequencing rely on computational methods for downstream analysis and 

processing of the NGS data. Chief among them is the sequence assembly, which is described in 

the next section. 

1.2 The assembly problem  

Sequencing methods that were introduced in the previous section can typically yield reads with 

lengths ranging from 20 to 30000 base pairs, depending on the technology used. On the other 

hand, genomic features that interest researchers, such as genes, can typically range from a couple 

hundred to several millions of base pairs in length. Thus, sequence assembly methods have been 

developed to reconstruct longer sequences from the reads computationally, or in silico. 

To date, two main strategies have been employed in sequence assembly tools: the 

mapping approach, in which an existing reference sequence is used as a backbone to align and 

orient reads, and the de novo assembly approach, in which the full-length sequence is 

reconstructed solely in silico from the input reads (Chaisson, et al., 2015). 
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1.2.1 De novo assembly 

De novo assembly is a necessity for most research projects due to absence of high-quality 

reference genomes for many non-model organisms. Even in cases where a reference genome is 

available, using a mapping approach results in an inherent bias towards the reference sequence 

used. Some degree of ambiguity also occurs due to multi-mapping of the reads. Therefore, for 

some applications like structural variant calling, a de novo assembly approach might be preferred 

for better characterization (Alkan, et al., 2011).  

Two main computational strategies used for de novo assembly are overlap-layout-consensus 

(OLC) and de Bruijn graphs (Nagarajan and Pop, 2013). In the OLC approach, reads that overlap 

“sufficiently” (usually beyond a certain length) are organized into a graph, in which each read is 

a node, and overlapping reads are connected by edges. This graph is then traversed by the 

algorithm to reconstruct global sequences. First popularized by Gene Myers and his Celera 

assembler (Myers, et al., 2000), the viability of OLC became strained with the advent of high-

throughput short-read sequencing of NGS, since time-and-memory requirements of OLC 

algorithms scales quadratically with the number of reads. This led to the development of de 

Bruijn graph (DBG) assemblers, starting with Euler Pevzner, et al. (2001) and continuing with 

Velvet (Zerbino and Birney, 2008), ABySS (Simpson, et al., 2009) and SOAPdenovo (Li, et al., 

2010). These assemblers extract substrings of length k, called k-mers, from the input reads and 

neighboring information for each k-mer is recorded. Just like OLC, a graph is built in which k-

mers correspond to nodes while edges represent exact k-1 base pair overlaps between k-mers. 

The main advantage DBG approach is that it avoids the computationally intensive multiple 

sequence alignment step that is necessary for the OLC (Li, et al., 2012). For this reason, DBG 
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remains the dominant paradigm in modern assembler design, especially when dealing with short, 

highly accurate reads with high coverage. (Chaisson, et al., 2015). 

1.2.2 Evaluating de novo assemblies 

In the last decade, combination of NGS data and DBG assemblers has been used to produce de 

novo assemblies of genomes ranging in size from bacterial to that of giant panda. As more and 

more researchers began to rely on information provided by the de novo assembly approach, the 

critical assessment and evaluation of de novo assemblies became more crucial. Unsurprisingly, 

due to the limitations of the NGS technology and relative youth of the DBG assemblers, these 

assemblies have certain shortcomings compared to the reference genomes produced by 

traditional Sanger sequencing method. Chief among these shortcomings are fragmentation and 

assembly mistakes.  

 Fragmentation of de novo assemblies often occurs due to presence of low coverage 

regions, read errors or the inability of assembler to resolve repeat sequences (Baker, 2012). It is 

not unusual for a de novo assembly of a human-size genome to include millions of contigs. 

Therefore, an important goal of genome assembly process is increasing contiguity of the genome 

assembly, which is often measured by the N50 metric. N50 is defined as the length of the 

shortest contig in the set that contains fewest (longest) contigs that represent at least 50% of the 

assembly sequence. If the genome size is known, an alternative metric, NG50, can be defined as 

the length of the shortest contig in the set of longest contigs that represent at least 50% of the 

genome (Nagarajan and Pop, 2013). 

Limitations of NGS data (coverage, read errors) and DBG assemblers (resolving repeat 

regions) also cause mistakes in de novo assemblies, which are called mis-assemblies (Alkan, et 

al., 2011). Reported deficiencies of de novo assemblies typically include missing sequences, 
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nucleotide changes, contamination, order errors, orientation errors and systemic collapse of 

segmental duplications (Birney, 2011). Oftentimes, these assembly errors are only detectable if a 

high-quality reference genome is already available for comparison. For de novo sequencing 

projects, researchers have to use different methods for evaluating completeness and correctness 

of an assembly. These often make use of comparative genomics and independently derived data, 

such as using genomes of closely related organisms and transcriptomes. For instance, Core 

Eukaryotic Genes Mapping Approach (CEGMA) method takes advantage of the conserved 

sequences. CEGMA uses a statistical model built from 248 most conserved eukaryotic genes and 

detects these genes in a given set of sequences (Parra, et al., 2007). The number of Core 

Eukaryotic Genes (CEGs) found in an assembly is frequently reported as a metric of 

completeness. This is an important metric because improving genic reconstruction of draft 

genomes is a valuable target for computational biologists.  

1.3 Targeted assembly 

De novo assembly methods provided valuable insights for biological research, especially 

for the study of non-model organisms and characterization of large-scale genomic variants 

(Nagarajan and Pop, 2013). However, the de novo assembly process still involves significant 

computational challenges. Production of high quality reference genome sequences for non-model 

organisms remains a challenging endeavor, especially for large (>1Gbp) genomes. For such 

targets, de novo whole-genome assembly typically requires billions of sequencing reads from 

several different types of DNA libraries. Processing these large volumes of data, and using them 

to assemble a genome usually necessitates access to a high-performance computing environment 

and significant expertise with specialized software, which may be beyond the reach of many 

researchers (Nagarajan and Pop, 2013).  
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An attractive alternative to the production of a reference genome is the targeted assembly 

of gene sequences. Most of the sequence features that contain the most valuable biological 

information and therefore interest researchers, such as genomic variants and coding sequences, 

are located in the genic regions. Furthermore, most researchers in the life sciences focus their 

studies on a limited number of genes or gene families, so they can benefit from lower 

computational cost of a targeted approach. This is especially true for researchers working on 

non-model organisms that lack a reference genome. Obtaining high-quality gene sequences from 

these species is the first and most crucial step for many applications, such as comparative 

genomics and experimental design for further studies. 

In addition to the benefit of the low computational cost, the targeted assembly approach 

also reduces the complexity of the assembly graph, since only a subset of reads is used. Ideally, 

this can lead to more contiguous assemblies with fewer mistakes compared a whole genome 

assembly approach. For this reason, targeted assembly is frequently used for precise 

characterization of structural variants, such as gene fusion events (Warren, et al., 2012). 

 The majority of targeted assembly tools are designed for whole genome shotgun 

sequencing (WGSS) data and follow the same basic pattern of sequence categorization and 

assembly of categorized reads. In the first step, a user-provided sequence template is utilized to 

categorize reads in the WGSS dataset. The reads belonging to the target region are then used for 

the assembly, which can be de novo assembled or make use of the template sequence for 

mapping. Since the target region is often limited to a single gene, the computational cost of the 

actual assembly is not significant compared to the sequence categorization, which remains the 

bottleneck for the targeted assemblers described in the next section. 
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1.3.1 Existing tools 

The first solution for the reconstruction of specific targets was the k-mer based, alignment-free, 

targeted de novo assembly software Targeted Assembly of Short Reads, or TASR (Warren and 

Holt, 2011). TASR requires the entire target sequence as input, from which k-mers are extracted 

and stored in a data structure called a hash table. Hash tables map input keys (in this case k-

mers) to values (in this case, how many times they appeared) by using a hash function to 

compute an index into an array of values. Once the hash table is built, TASR k-merizes the 

genomic reads and uses the same hash function to look up any shared k-mers with the input 

sequence, thus localizing the assembly. A second hash table is then created from collected reads, 

which includes the identity and coverage of every base. This second table is used to derive a 

consensus sequence for the target region.  

This method was followed by Mapsembler (Peterlongo and Chikhi, 2012), which also 

uses a hash table based mapping method, and presents a more memory-efficient and faster 

alternative. Just like TASR, Mapsembler’s first step is mapping reads to the input sequence 

(starter). However, instead of deriving a single consensus Mapsembler does an error correction 

of collected reads and generates sub-starter sequences, which may differ from the initial starter 

sequences with single nucleotide variants (SNVs) and insertions and deletions (indels). Genomic 

reads are then re-mapped into sub-starters, which iteratively extend flanking regions of these 

sequences.  

These pioneering targeted assembly technologies were originally designed to reconstruct 

specific transcript variants, fusion transcripts, and genes from whole genome shotgun sequencing 

data, but now have found applications in human health research (Brown, et al., 2014; Warren, et 

al., 2012). Unfortunately, these applications are mostly confined to re-sequencing projects, as 
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these initial targeted assembly tools struggle when an incomplete or divergent sequence is used 

to localize reads for assembly. Furthermore, for eukaryotic genomes, these tools do not typically 

scale well when given a large (>1000) number of targets.  

Recently published automated Target Restricted Assembly Method or aTRAM (Allen, et 

al., 2015), is an alignment-based pipeline that can deal with incomplete input sequences, to some 

extent. aTRAM uses Basic Local Alignment Tool, or BLAST (Altschul, 1990) for aligning reads 

to a user-provided nucleotide or protein sequence. Aligned reads are then assembled with a de 

novo assembler, by default Velvet (Zerbino and Birney, 2008) for genomic sequences and 

Trinity (Grabherr, et al., 2011) for transcript sequences. These newly assembled sequences are 

then used as bait for the next iteration of BLAST alignments, ideally extending the resulting 

assemblies by the fragment length in each iteration. Users can specify higher number of 

iterations to further extend final assemblies, but this also increases the time cost. In order to 

alleviate the time cost that is associated with high number of iterations, aTRAM allows for 

random subsampling of the read set before the alignment, which reduces the time complexity for 

that step. However, subsampling also decreases the coverage of the recruited reads, which might 

not be desirable if the target region has low coverage to begin with. 

The main advantage of aTRAM is that it can start with a partial or divergent template 

sequence and extend it in every iteration. However, the need for an alignment step in each 

iteration exerts a significant computational cost. This severely limits the scalability of aTRAM as 

WGSS datasets of complex eukaryotic organisms typically include billions of reads.  

 Another recently published too, Genomic Region Assembly by Baiting (GRAbB) also 

utilizes iterative recruitment of the reads from target regions, thus allowing it to fill in the gaps in 

the case of an incomplete template sequence (Brankovics, et al., 2016). GRAbB uses a special 
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aligner called mirabait (Chevreux, 1999) to find reads that share a 31-mer (subsequence of 31 

base pairs length) in common with the target. The recruited reads are assembled with a de novo 

assembler of the user’s choice, the default option being Edena (Hernandez, et al., 2008). 

Assembled sequences are then used as bait for the next iteration. Users have several options for 

finishing criteria. Iterations can be stopped when the assembly N50 or longest contig legth reach 

a user-defined threshold, or original bait is completely mapped to the assembly with Exonerate 

(Slater and Birney, 2005). GRAbB also supports multiple targets as bait. In this mode, a general 

recruitment step is performed first using all the input sequences. This is followed by a 

specialized recruitment step, where each target is used as a separate bait to recruit from the 

pooled reads from the previous general recruitment step. Thus, search space for individual 

targets is reduced. Despite this heuristic, scalability of GRAbB to complex eukaryotic genomes 

is very limited. This is especially true when transcript sequences are used as bait for genic 

regions, since assembling long introns requires multiple iterations. 

1.4 Current work  

One resource that is currently under-utilized for targeted gene assembly is transcriptomic data. 

These datasets are typically obtained with an approach called RNA sequencing or RNA-Seq, 

where NGS methods are used to sequence cDNA libraries (Wang, et al., 2009). Last decade also 

saw the development of several specialized assemblers for RNA-seq datasets, foremost among 

them are Trinity (Grabherr, et al., 2011), Trans-ABySS (Robertson, et al., 2010) and IDBA-tran 

(Peng, et al., 2013). As a result, expansive transcriptomic information from many organisms is 

currently available to researchers (Moreton, et al., 2015), Even in species with scant 

transcriptomic sequence information, there are likely existing sequences that could be used to aid 

de novo assembly, such as homologous gene sequences from a related organism. Utilization of 
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these data can help to localize the assembly problem, and can ensure that the target gene 

sequences are fully reconstructed. A desirable consequence of this localization is a reduction in 

complexity and computational cost relative to that of a whole genome assembly.  

We also believe that the targeted gene assembly approach can be utilized to improve the 

reconstruction quality of genic sequences in draft genomes. Compared to the whole-genome 

assembly process, targeted assembly benefits from reduced complexity and can take advantage 

of the additional information in the user-provided templates. In practice, however, use of targeted 

assembly approaches in de novo genome assembly projects remains limited. This is because the 

computational cost of identifying reads related to the target sequences is challenging for genome-

scale applications in eukaryotic organisms, as it often scales linearly with the increasing number 

of targets. Furthermore, as explained above, existing tools are often unable take full advantage of 

different kinds of datasets such as transcriptomes, which limits their usefulness in improving 

genic reconstruction. With these considerations in mind, we have developed Kollector, an 

alignment-free, targeted assembly pipeline that can use whole transcriptome assemblies to filter 

whole genome shotgun sequencing reads, thereby localizing the de novo assembly of 

corresponding genic loci. 

The pipeline collects genomic reads related to target loci using BioBloom Tools (BBT) 

(Chu, et al., 2014), a Bloom filter (Bloom, 1970) based sequence classification tool. Just like 

hash tables, Bloom filters use hash functions to query whether an element is a member of a set. 

Unlike hash tables, the set is represented by a bit array with hash-indexed memory locations, 

significantly reducing the memory requirement. For the assembly step, Kollector uses ABySS 

(Simpson, et al., 2009), a de Bruijn graph short read de novo assembler (Pevzner, et al., 2001).  
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In this work we characterize the Kollector pipeline, compare it to the state-of-the-art and 

showcase several possible applications. We show that that Kollector can accurately assemble 

genic loci in Homo sapiens (Human) and model organism Caenorhabtidis elegans (roundworm). 

When using transcript input, Kollector outperforms other targeted assemblers in significantly less 

runtime. We demonstrate that Kollector can reasonably scale up to genome-wide applications in 

Picea glauca, which has an estimated genome size around 20 Gb (Warren, et al., 2015). We also 

successfully employed Kollector for improving genic reconstruction of the Rana catesbeiana 

draft genome. Other applications include medical and comparative genomics. 

We believe Kollector represents an improvement upon the state-of-the-art with its 

innovative use of Bloom filters. Most importantly, it opens up a myriad of new applications for 

the targeted assembly approach. As the sequencing continues to grow exponentially, we expect 

the interest for tools like Kollector to increase as well. 
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Chapter 2: The Method 

In this chapter, we provide a detailed description of the Kollector pipeline, and the tools and the 

technologies it uses. Kollector inputs a set of target transcripts and whole genome shotgun 

sequencing data, and reconstructs the corresponding genic space in four basic stages: (1) read 

tagging with a progressive Bloom filter, where genomic reads coming from the targeted regions 

are detected and stored in a Bloom filter (Section 1.1); (2) read recruitment with the Bloom filter 

from the first stage, where genomic reads are scanned for sequence similarity; (3) de novo 

assembly of recruited reads (Section 1.2); and (4) alignment of the transcripts to the assembly for 

 

Figure 2.1 Overview of the Kollector Pipeline 
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evaluation and post-processing of the results to report assemblies containing the targeted regions 

(Section 1.3). The performance and efficiency can be improved by filtering repeat sequences 

with a dedicated Bloom filter during the tagging stage, which is described in Section 1.4. 

Finally, implementation and availability of Kollector software is discussed in Section 1.5. 

2.1 Read tagging with progressive Bloom filters  

The first stage of Kollector pipeline is a sequence categorization step performed by BioBloom 

Tools (BBT) (Chu, et al., 2014). In order to incorporate intronic sequences, a novel 

implementation of Bloom filter data structure was developed within BBT. We called this 

implementation the progressive Bloom filter. Using this data structure, BBT detects (“tags”) 

reads that contain the target genic sequences, based on their sequence similarity to the input 

transcripts. The following is a description of the Bloom filter data structure, BBT and 

progressive Bloom filter implementation 

2.1.1 Bloom filters 

Bloom filters are memory-efficient probabilistic data structures that are used to test whether an 

element is part of a set (Bloom, 1970). A query can return false positive matches, but false 

negatives are not possible. Bloom filters are typically applied to large datasets that would require 

significant amount of space in the memory to store. In order to reduce this memory requirement, 

Bloom filters rely on a special type of mathematical functions that are called hash functions. 

Hash functions deterministically map data of an arbitrary size to data of a fixed size. For 

example, a hash function can take phonebook entries as input and return integers that range from 

0 to 100 for each entry. The returned values are called hash values, or simply hashes. Since hash 

values have a fixed range, the domain of a hash function (set of possible inputs, or keys) is 

typically much larger than its range (number of possible hash values). Therefore, several 
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different keys will map to the same hash value, a situation that is termed collision. Ideally, a 

good hash function will map its expected inputs as evenly as possible over its output range, thus 

reducing the number of collisions as much as possible. 

Hash functions are essential ingredients of Bloom filters, as they are used to insert or 

query new elements. Bloom filters store the input set in an array of m bits, initially all set to 0. 

An element is inserted into the Bloom filter by inputting it through n different hash functions. 

Each hash function returns a numerical value corresponding to an array position. The element is 

inserted to the Bloom filter by setting those n array positions to 1. To query the presence of an 

element in the Bloom filter, the same n hash functions are used to get n array positions for the 

queried element. Since hash functions are deterministic, inputting the same element will return 

the same array positions. If any of these returned positions is 0 in the bit array, then we can 

conclude that the queried element was not present in the original set. If all n positions are 1, then 

there are two possibilities: either the element was present in the original set, or those bits are set 

to 1 due to insertion of other elements, and their combination is by chance. The latter case means 

that Bloom filter will return a false positive by indicating that the queried element was in the 

original set, while it was not. The false positive rate of a Bloom filter can be calculated based on 

m and n, and n can be optimized for a desired false positive rate 

 The main advantage of Bloom filters is a significant reduction in memory requirements 

of a lookup operation. Rather than the entire queried set, only a bit array of fixed size needs to be 

stored in the memory. Furthermore, since there are no false negative results, sensitivity (or recall 

rate) is 100%. The trade-off is the computational cost of hashing and probability of false 

positives. Due to its advantages, Bloom filters have been used to store sequences for use in fast, 
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specific, and sensitive biological sequence classification (Chu, et al., 2014; Stranneheim, et al., 

2010).  

2.1.2 Biobloom tools 

Chu et al’s BBT is a Bloom filter implementation that is specifically designed for sequence 

categorization. For this application, input sequences are broken down to k-mers, which are then 

inserted into a Bloom filter. When querying, the query sequence is divided into k-mers of the 

same length, which are then checked for their presence in the Bloom filter (Figure 2.2). In 

addition to its lower memory requirements, BBT is faster than two industry-standard alignment 

tools, Burrows-Wheeler Aligner or BWA (Li and Durbin, 2009) and Bowtie2 (Langmead and 

Salzberg, 2012) while retaining comparable level of accuracy. This is achieved by including 

heuristics to control for false positive rate and increase speed. Following is a more detailed 

description of the BBT pipeline. 

 

 

Figure 2.2 Application of Bloom Filters to Sequence Categorization 

Using hash functions, k-mers generated from the input sequence are deterministically mapped to the specific 

locations in the memory, which are set to 1. An identical sequence can be detected with querying this Bloom filter, 

since using the same value of k and hash functions will return the memory positions that are previously set to 1. 
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There are two tools in the BBT pipeline. The first tool is biobloommaker, which takes a 

set of nucleotide sequences as input, extracts all possible substrings of length k (k-mers) and 

inputs them through a fixed number of hash functions. The returned hash values denote the bit 

signature for each k-mer, and together those bit signatures constitute the Bloom filter. 

Directionality is handled by comparing forward and reverse complements of every k-mer, and 

only including the alphanumerically smaller sequence in the filter. Users can input the length k 

and a desired false positive rate for the Bloom filter, which changes number of hash functions 

used. After the Bloom filter is built and saved, the second tool, biobloomcategorizer can be used 

to query the Bloom filter with a new sequence, which is also converted into k-mers in a sliding 

window fashion, i.e. starting from one end of the sequence and shifting one base pair at a time. 

These k-mers are checked against the Bloom filter one by one and a score is calculated. If a k-

mer generated from the query is present in the Bloom filter, the score is incrementally increased 

according to the formula below: 

Where c is the number of contiguous stretches of adjacent filter-matching k-mers until the 

current position in the query, and ai is the length of the i-th stretch, while l is the length of the 

query sequence and k is the k-mer length. The requirement for contiguous stretches of k-mers 

penalizes spurious false-positive hits. If the score reaches a user-defined threshold (the s 

parameter), biobloomcategorizer stops processing the query and classifies it as a match. During 

this process, biobloomcategorizer skips k k-mers when a non-matching k-mer is detected after a 

𝑠 =
1 − 1

(𝑗 + 1)
𝑙 − 𝑘
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long stretch of contiguous hits. This heuristic increases the speed efficiency in cases where a 

query has only a few mismatches with respect to the compared reference sequence. 

2.1.3 Progressive Bloom filters  

Progressive Bloom filter is a novel implementation of Bloom filter data structure that is provided 

as a part of BBT. It is based on the idea that, as long as the false positive rate is kept sufficiently 

low (by setting the size of the Bloom filter and the number of hash functions used), a Bloom 

filter can be expanded by adding more k-mers during the querying of a large database.  

Progressive Bloom filters use the user-inputted seed sequences to initially populate the 

filter, and then scan a read set. In the Kollector pipeline, users provide a list of files with the one 

containing seed sequences as the first one, followed by the genomic read files. Once the seeding 

is done, reads are compared against Bloom filter one by one, and any matching read (based on 

the r parameter, calculated the same way as the s parameter) is immediately k-merized and added 

to the Bloom filter. In the Kollector pipeline, r parameter is used during the tagging phase, hence 

it is defined as a separate parameter from s, which is used in the recruiting phase. It should be 

noted that any r threshold less than 1 requires only partial sequence identity between read and the 

filter for categorization as a match. Thus novel k-mers can be added to the filter from matching 

reads. During the scanning of the genomic reads, the progressive Bloom filter will add more and 

more k-mer content, allowing one to incorporate (tag) novel sequences not found in the original 

set of seed sequences (Figure 2.3). These tagged sequences will overlap with and extend the seed 

sequences. Read tagging process continues until the Bloom filter reaches a user-defined 

maximum number of k-mers (n parameter) or until all the genomic reads are processed.  

Progressive Bloom filter implementation also includes a heuristic to take advantage of 

paired-end nature of most Illumina datasets. The method works by processing read pairs rather 
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than single reads. When adding a read pair, Kollector uses slightly different criteria for a read 

pair to be considered a match between different stages. In the tagging stage, a read pair is added 

to the filter if one of its reads is matched. This increases the sensitivity of the tagging process, as 

it allows for incorporation of more k-mer content. In the recruiting stage, both reads have to 

match for the pair to be recruited, thus increasing the specificity of the recruited sequences with 

respect to filter.  

2.1.4 Progressive Bloom filters in the context of Kollector 

In the Kollector pipeline progressive Bloom filters are initialized with transcript sequences, and 

intronic regions are incorporated into the progressive Bloom filter by scanning genomic reads. 

An illustration of this process for single C. elegans transcript C17E4.10 is shown in Fig. 2.3. For 

generating this figure, all tagged reads were outputted in chronological order, and aligned to the 

reference genome. As one would expect, initially tagged reads overlap exonic regions totally or 

partially, but as those reads are added to the filter they incrementally allow reads from intronic 

regions to be tagged as well. When compared with raw coverage of the genomic reads, there are 

dips in coverage in the middle of longer introns for the tagged reads. This is presumably because 

these regions are incorporated into the filter later during the run, when most of the reads are 

already processed. It also indicates that the order of the reads in the input file can affect whether 

or not these regions will be tagged, as presumably the coverage can drop to zero in the middle of 

long introns. However, Figure 2.3 also shows that once the entire genic region is tagged, the 

coverage difference between exons and introns can be mitigated after the second stage of the 

Kollector pipeline (recruitment, which is described below), as the coverage of the recruited reads 

is almost equal to the raw coverage. 
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2.2 Read recruitment and de novo assembly 

In the second stage of Kollector, Bloom filter from the first stage is used with 

biobloomcategorizer to recruit read pairs that match with the filter (based on the s parameter), 

thus processing the whole genomic dataset once more. In order to increase the sequence 

specificity of recruited reads, Kollector requires both reads to match for recruiting a read pair.  

 

 

 

 

 

 

 

 

 

  

 

 

Figure 2.3 Read Tagging with Progressive Bloom Filters 

Fold coverage of tagged reads is shown at points in time (first 300, 600 and 1200 reads, and all tagged reads) during 

a single run with the C. elegans C17E4.10 gene as target. The raw read coverage is indicated solely as a baseline, to 

show the tagging process of the progressive Bloom filter. In the Gene Model track, the black rectangles depict the 

exons, and the connecting grey line depicts the introns. 
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The recruited reads are outputted in the fastq format and inputted into ABySS for de novo 

assembly in the third stage.  

 

2.2.1 De novo assembly with ABySS 

ABySS (Assembly By Short Sequences) is an assembly tool developed by Simpson et al for 

application to very large datasets produced by NGS (Simpson, et al., 2009). As a short read 

 

Figure 2.4 K-mer Accumulation Trend of  Progressive Bloom Filters 

 K-mer accumulation during a Kollector run on C.elegans transcripts demonstrates the greedy approach of 

progressive Bloom filters. In the absence of a k-mer cap, progressive Bloom filter continued to expand until all reads 

are processed and acculumated k-mer space slightly larger than entire C.elegans genome. 
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assembler, ABySS is based de Bruijn graph paradigm. In this approach, all possible substrings of 

length k, or k-mers, are generated from the sequence reads. K-mers that have k-1 nucleotides of 

sequence overlap are then linked together by a de Bruijn graph. This graph is then traversed to 

reconstruct the target sequence (Figure 2.5). The principal advantage of ABySS is that its de 

Bruijn graph need not to be stored in a single computer, it can be distributed over a network of 

computers, or nodes. This distributed representation of de Bruijn allows the assembly algorithm 

to run parallel computations in several nodes. This parallelization in turn enables processing and 

assembly of large NGS datasets, such as those from eukaryotic organisms, in a timely manner. 

Following is a more detailed description of the ABySS algorithm. 

ABySS first loads reads into the memory by breaking each of them into k-mers. From 

each input read of length l, (l-k+1) k-mers are generated in by sliding a window of length k over 

the read. A de Bruijn graph is built in which each k-mer is a vertex and a k-1 overlap between 

two adjacent k-mers is represented by an edge. In this graph, read errors cause death ends, or 

tips. So ABySS algorithm prunes these tips to remove erroneous reads from the assembly. 

Another issue that has to be dealt with is sequence variation in the input data. Variant sequences, 

or repeat sequences with small differences cause two or more local divergent paths to emerge 

and form a bubble, thus creating ambiguity in the graph. Hence, ABySS removes those variant 

sequences from the assembly by popping the bubble, i.e resolving the ambiguity in favor of 

single branch, typically the one with the higher k-mer coverage, and removing the others. After 

these steps, vertices that are linked by an unambiguous path of edges are merged, creating the 

uniquely assembleable contigs or unitigs. This concludes the first stage of the assembly, which is  
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also called the single end or unitig assembly, which stands uniquely assemble-able contigs. In the 

second stage, paired-end reads are aligned to the assembled unitigs, and an empirical distribution 

of the distance between two paired reads is obtained. Using this distribution and the paired reads 

 

 

Figure 2.5 Using de Bruijn Graph for Assembly 

Application of the de Bruijn graph to the assembly problem, with an example k value of 3. Input read is broken 

down to 3-mers, and a graph is built using the 3-mers that overlap by 2 nucleotides. Once the graph is built, an 

assembly algorithm can traverse the vertices using the illustrated path and reconstruct the original sequence.  
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which are aligned to different unitigs, ABySS estimates the distance between unitigs, and 

generates an adjacency graph of linked unitigs. It then finds the unambiguous paths along the 

adjacency graph that agree with the distance estimates, and merges the unitigs along these paths 

to create contigs. This is the paired-end, or the contig stage of the assembly. In the final stage, 

ABySS aligns sequences with more linkage information (input transcripts, in Kollector’s case) to 

the contigs and generates an adjacency graph based on contigs that aligned to the same transcript. 

In this adjacency graph, contigs that are linked on an unambiguous path are merged into longer 

sequences called scaffolds. Kollector pipeline uses these scaffolds for post-processing.  

2.3 Post-processing 

The main goal of the post-processing step is to identify and report scaffolds that contain the 

target genes. This is achieved by aligning the input transcripts to assembled scaffolds using the 

Genomic Mapping and Alignment Program or GMAP (Wu and Watanabe, 2005),  which is an 

aligner specifically designed for mapping cDNA sequences to the genome.  

GMAP optimizes cDNA to genome alignments by identifying splice sites and allowing 

large gaps in between splice sites, corresponding to introns. One advantage of GMAP is that it 

does not rely on pre-computed probabilistic models of splice sites for detection. Rather, cDNA is 

first mapped to the genome to get an overall approximate alignment. GMAP then re-computes 

the alignment in regions surrounding potential introns with a specialized algorithm. This 

algorithm includes several heuristics, such as reduced gap penalties for codon insertions or 

deletions. The absence of splice site models, which are usually generated from model organism 

data, in this process means that GMAP is generalizable across many different species. This is an 

important consideration for Kollector, as it aimed at applications involving non-model 

organisms. Another advantage is that GMAP-reported alignments reflect the given data rather 



26 

 

than prior probabilities. This enables GMAP to generate fairly accurate gene structures. Wu and 

Watanabe (2005) tested GMAP on a dataset of 882 full-length H. sapiens mRNAs with 

computationally induced mutations at a rate of 3 %. They observed that 99.3 % of the splice sites 

in the GMAP alignments agreed with Ensembl annotation, the gold standard used in their 

evaluation. This high accuracy makes GMAP suitable evaluating Kollector results. Lastly, 

GMAP can align a single cDNA to a human-sized genome in about a second, using as little as  

128 MB RAM and with the possibility of multi-threading to handle increased numbers of input. 

Therefore, the GMAP alignment step often does not constitute a bottleneck in Kollector pipeline 

when handling large eukaryotic genomes in reasonable time. 

  After the GMAP alignment, Kollector parses the results in the sequence-alignment/map 

(SAM) file. It calculates a percent sequence identity as well as a percent query coverage, which 

is defined as number of matched nucleotides over the total length of input transcript, for each 

alignment. Kollector then reports the alignments that have sequence identity and query coverage 

scores above a threshold (by default, 90 % for both) as successful. The scaffolds that are 

successfully aligned to input transcripts are extracted from the assembly and outputted in a 

separate fasta file. Figure 2.6 shows a sample from Kollector output, compared to the input 

transcript and the reference genome. As expected, Kollector assembled gene includes intronic 

regions, which are missing in the input transcript. 

2.4  Improving Kollector performance with repeat filtering and read shuffling 

Kollector is designed to work with large eukaryotic genomes. One of main challenges posed by 

these genomes is the relative abundance of low-complexity sequences and repetitive regions. 

When added to a progressive Bloom filter, these sequences would lead to incorporation of off-

target regions due to their sequence similarity to different genomic loci. When incorporated these  
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off-target regions can cause the progressive Bloom filter to reach the k-mer cap before target 

genic regions are tagged completely. Furthermore, the presence of reads from off-target regions 

increases the graph complexity during the assembly process, thus reducing the quality of 

assembled sequences. Not to mention the waste of computational resources that goes to 

assembling these off-target regions. For these reasons, we have developed a repeat filtering 

procedure for the tagging phase of Kollector, mainly in order to improve assembly performance 

in complex genomes. 

Biobloommaker can take a Bloom filter of repeat sequences as an additional input (-s 

option). Repeat sequences that are used to build the repeat filter can be obtained from a repeat  

 

 

Figure 2.6 Kollector Output 

Sample Kollector output for C. elegans aligned to the reference genome (A), alongside the input transcript (B) and 

the Ensembl annotated gene models (C). Notice that even though one of exons in the gene model is missing in the 

input transcript, progressive Bloom filter algorithm was able to recruit reads from these regions as well, and as a 

result the output encompasses the whole gene. 

A 
B 
C 
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database, or by recording k-mer multiplicities in input genomic reads and selecting those that 

have counts above a certain threshold. When adding new k-mers to progressive Bloom filters, 

they are checked against the repeat Bloom filter, and marked as repeats if they match. Those 

marked k-mers are added to the progressive Bloom filter, but they are not used for tagging new 

sequences, thus preventing the recruitment of off-target regions (Figure 2.7).  

 In order to observe the effects of repeat filtering, we performed Kollector runs for a 

single transcript with and without using Bloom filters. Figure 2.8 shows the differing k-mer 

accumulation patterns. In the absence of a repeat filter, progressive Bloom filter goes through a 

exponential recruitment phase, most likely induced by the incorporation of repeats and other off-

target regions. As a result, the ABySS assembly produced by this Kollector run contains many 

small contigs in addition to target gene, with a total reconstruction 500 kbp. Conversely, when a 

repeat filter is used, the exponential recruitment phase does not occur, and the resulting assembly 

 

 

Figure 2.7 Repeat Filters 

Repeat filtering during the tagging phase. K-mer space denotes sequence content covered by the totality of the k-

mers in the Bloom filter. Black bars show depict the k-mer space when the Bloom filter is imitated with the input 

transcripts. The grey bars depict the k-mer space after read tagging is started. When a read, shown here as arrows, 

overlaps with a repeat region, it cannot be used for tagging new reads.  
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contains a single contig of 8 kbp, which represents the target gene. The limiting of recruited k-

mer space also improves the reconstruction performance of Kollector. On a set of 4,500 Rana  

 

A  

 

B

 

 

Figure 2.8 Repeat Filters and K-mer Accumulation 

K-mer accumulation for single transcript progressive Bloom filter in the absence (A) and presence (B) of repeat 

filter in C. elegans, which suggest that exponential growth phase might be induced by repeats.  
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catesbeiana transcripts, usage of the repeat filter increases the number of successfully assembled 

transcripts from 403 to 1,820. Taken together, these results demonstrate the utility of repeat 

filters in preventing the recruitment of off-target regions and improving the performance. 

Another feature of the Kollector pipeline that improves the performance is the option to 

shuffle the genomic input reads before the tagging stage. Progressive Bloom filters are sensitive 

to the order of reads in the input file. This is caused by the greedy nature of the recruitment 

algorithm. For instance, it is more optimal if reads containing intron-exon boundaries are at the 

top of the file, since they can be added to the pBF early in the run, which makes it more likely to 

recruit intronic reads later on. On the other hand, if those regions are closer to the bottom of the 

file, certain introns may not be recruited. The read shuffling option aims to reduce such potential 

bias created by the read order. This is achieved by splitting the input read files into smaller ones 

containing around 1 million reads each, and then using Bash’s random sorting function to change 

the order of the file list that is fed into Kollector. Therefore, targets that are failed to assemble in 

a Kollector run can be re-tried in an another run with a different read order using this option. 

2.5 Implementation 

Kollector is implemented using Bash (https://www.gnu.org/software/bash/), the command-line 

interpreter for GNU, a Unix-like operating system. Kollector script is freely available for non-

commercial use at https://github.com/bcgsc/kollector. 
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Chapter 3: Experiments 

This chapter describes a series of experiments performed to evaluate the Kollector pipeline and 

showcase several of its possible applications. Section 1.1 describes the results of Kollector runs 

on H. sapiens and C. elegans datasets, including quality control of the assemblies and an analysis 

of failed cases. Section 1.2 shows the comparison of Kollector to the current state-of-the-art. 

Section 1.3 demonstrates several use cases for Kollector. These cases include comparative 

genomics, genome-scale targeted gene assembly, sequence detection and improving a draft 

genome with Kollector output. 

3.1  Performance of Kollector in model organisms 

We ran Kollector on publicly available H. sapiens and C. elegans datasets (Table 3.1). Since 

 

Table 3.1 Datasets used in targeted assembly experiments 

 # Species Read 
Lengths 

Total Bases Raw 
Cov. 

Source Bait  

  C. elegans 110bp 7.5Gbp 75x SRA Accession: DRR008444 13,556 Refseq mRNA sequences  (>1kb) 

 H. sapiens 250bp 229Gbp 70x SRA Accession: ERR309932 Trans-ABySS (v1.5.1; k = 42) assembly of 52,006 
transcripts from TCGA dataset barcode: 22-4593-
01 

  
 

P. glauca 150-300bp 1.2Tbp 48x SRA Accession: SRR1982100 16,386 high-confidence transcript models from  
Genome Annotation: GCA_000966675.1 

 P. schaeffi 100bp 12.8Gbp 128x SRA Accession: SRX390495 1,534 conserved P. humanus cDNA sequences 
Dryad DOI: http://dx.doi.org/10.5061/dryad.9fk1s 

  M. 
musculus 

150bp 116Gbp 41x SRA Accession: SRX1595526 4,025 H. sapiens orthologous transcripts from 
Emsembl bioMART 

  
 

H. sapiens 100bp 13.8Gbp 4x TCGA barcode: TCGA-BA-4077 (subset)  HPV type-16 reference genome from 
Papillomavirus Episteme 

  
 
 
 

R. 
catesbeiana 

150-250bp 382Gbp 66x BioProject ID: PRJNA285814 794,291 transcripts from Bullfrog Annotated 
Reference Transcriptome (BART) 
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these model organisms have high-quality reference genomes available, we were able to assess 

Kollector’s performance thoroughly by evaluating and characterizing the resulting assemblies.  

3.1.1 Kollector assemblies 

Before running Kollector on H. sapiens we randomly divided the transcriptome (Table 3.1) into 

five bins of 10,000 transcripts each. Each bin is used to initiate a single progressive Bloom filter 

in a separate Kollector run. We do the binning to prevent pBF from reaching the k-mer cap 

(n=100,000,000) prematurely, which is before incorporating all of the target gene sequences. The 

number of the transcripts in each bin is estimated based on the n parameter and average human 

gene length, which is around 10 kilobase pairs (Sakharkar, et al., 2004). Kollector performs 

incrementally better when used iteratively. In this mode, genes that are not assembled in initial 

stage are provided as input for the next iteration and re-tried with different parameters. After 

each iteration, the target transcript sequences are aligned to the Kollector output with GMAP 

(Wu and Watanabe, 2005), and those that have a perfect match to a single genomic contig along 

a certain fraction of their length (default = 90%) are deemed to have been successfully 

reconstructed. Transcripts that do not satisfy this criterion are re-tried in the subsequent iteration 

by setting a lower specificity for sequence selection during the read collection phase. This is 

achieved by lowering the r parameter in each iteration (e.g. 0.90, 0.70, 0.50, 0.30, 0.20), while 

keeping the other parameters constant (s = 0.50, n = 100,000,000 in our experiments). In addition 

to that, failed transcripts are re-binned before each iteration with the same number of bins, in 

order to reduce any bias that might be introduced by the binning. For C. elegans transcripts, we 

used the same parameters but skipped the binning step, as number of transcripts was low (Table 

1). 
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In our tests, we ran 10 independent experiments with the read shuffling option, and compared 

them to 10 independent experiments that are ran without this option (Figure 3.1). We ran the 

unshuffled experiment several times to observe the randomizing effect of using multiple threads.  

 

          A                                                                                               B 

 

Figure 3.1 Performance of Kollector for assembling target sequences in (A) C. elegans and (B)  H. sapiens. 

Genomic reads were randomly shuffled before each iteration (solid lines, mean of 10 independent experiments). For 

comparison, runs with no shuffling are also depicted (dashed lines, mean of 10 independent experiments). Error bars 

denote standard deviation. The success rate was calculated as the cumulative proportion of target genes successfully 

assembled over five iterations. 

 

In this mode, the exact order that reads are processed by BBT can change slightly from run to 

run, due to reads being assigned to different threads during the scanning phase. However, this 

shuffling effect is localized as it occurs within batches of approximately 100 reads, so compared 

to Kollector’s global shuffling option, its effects are quite limited and as expected, produced little 

variance in the success rate between independent unshuffled experiments (standard deviation < 

0.0001 % in both species). On the other hand, Kollector’s shuffling option led to statistically 

significant gains (determined by the Wilcoxon rank-sum test) in the overall assembly success 



34 

 

rate for both species, reaching 98.7% in C. elegans (p-value=0.00017) and 80.1% (0.00017) in 

H. sapiens. These results also indicate that the method can still fail to assemble certain genes. 

Properties of these failed cases in C. elegans are analyzed in the next section. 

3.1.2 Charecterization of failed cases 

One of our aims for running Kollector on model organisms was to characterize sequence features 

of genes that failed to assemble. Since our C. elegans transcript set has been annotated by NCBI 

Refseq with the gene names, we are able to obtain high-quality full sequences of all target genes. 

Using these sequences, we investigated the failed reconstruction of 199 C. elegans transcripts 

(unshuffled experiment, Fig 3.1A dashed line). By comparing the length distribution of two 

groups, we found that the missing genes were on average significantly longer than the 

successfully assembled ones (p=1.5x10-5; Student’s t-test; Fig. 3.2), indicating that the failure 

was due in part by the size of the gene. Although the distributions suggest substantial overlap, 

and there were many long targets with successful assembly, with lengths comparable to the 

failed targets, our statistical test suggests that Kollector has a bias towards assembling smaller 

 

 

Figure 3.2 Gene Length Comparison in Failed Cases 

Length comparison between the C. elegans target genes that are successfully assembled (bottom) vs. those that 

failed (top) to assemble with Kollector. Notches in the boxes represent a 95% confidence interval around the 

median. The length difference between two groups, represented on a logarithmic scale on the x-axis, is found to be 

statistically significant by t-test (p=1.5x10-5). 
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genes, likely due to the challenge of identifying enough genomic reads to connect exons 

separated by long introns. 

As Fig 2.3 shows, there is a drop in coverage in intronic regions during the tagging phase. 

The figure also shows that coverage in these regions is recovered in the recruiting stage. 

However long introns might not be tagged completely if coverage drops to zero inside the 

intronic sequence, which will result in gaps in the assembly. In order to investigate this 

possibility, we did a similar analysis to the gene length comparison, but this time we used the the 

length of longest intron, which is most likely to cause a substantial drop in coverage. We found 

that failed genes have significantly longer maximum intron lengths than successfully assembled 

genes (p=1.5x10-8; Student’s t-test; Fig. 3.3A). For targets with maximum intron lengths of 

approximately 20 kbp, we expect 50% of the reconstructions to fail reconstruction. However, we 

note that these large intron genes make-up a very small proportion of the total dataset (Fig. 

3.3B). We expect that the use of longer reads, high coverage datasets and and insert sizes 

(possibly mate-pair reads) could help alleviate some of these issues.  

3.1.3 Quality control of the Kollector assemblies 

To evaluate the accuracy of the genomic contigs produced by Kollector, we aligned the output of 

a Kollector run from H. sapiens and C. elegans to their respective reference genomes with 

BLAST (Altschul, 1990), calling a correct alignment at a threshold of 95% query coverage and 

95% sequence identity. Doing so, we found that 99.8% and 99.7% of the assembled genes satisfy 

these criteria in C. elegans and H. sapiens respectively (Table 3.2). Small number of Kollector 
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Figure 3.3 Analyis of Failed Cases  

A) Proportion of successful gene assemblies vs longest introns (bars) with number of genes in each bin (lines). 

The first and second bins make up 10,237 and 1,496 genes respectively, and make up 86% of all genes in the dataset 

B) Longest intron length comparison between the C. elegans target genes that are successfully assembled 

(bottom) vs. those that failed (top). Notches in the boxes represent a 95% confidence interval around the median. 

The length difference between two groups is found to be statistically significant by t-test (p=1.5x10-8). 

 

assemblies failed the QC in most part due to repeat number variation. Of the 32 C.elegans 

Kollector assemblies that failed QC, 27 had insertions and 5 had deletions in the repeat regions. 

A 

B 
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3.1.4  Off-target reconstruction in Kollector assemblies 

ABySS assemblies produced in the Kollector pipeline contain sequences that do not belong to 

the target genes. These off-target regions are incorporated into progressive Bloom filters due to 

presence of repeats and low-complexity sequences. After the assembly step, Kollector uses 

GMAP (Wu and Watanabe, 2005) to select for contigs that come from targeted genes, so these 

off-target contigs are not reported to the end user. However, they are still of interest from a 

software development perspective, since computational resources are wasted for assembling 

these off-target contigs. Furthermore, reads recruited from these regions also increase the 

complexity of the de Bruijn graph, which leads to less contiguous assemblies overall. Therefore, 

we decided to quantify the amount of off-target reconstruction. 

This analysis was performed on three bins of 10,000 H. sapiens transcripts each. First, sequences 

for target genes were extracted using transcript to reference genome alignments, including 1 kbp 

overhangs in upstream and downstream of the alignment. After the Kollector run is performed, 

resulting assemblies were aligned to the target genes with BWA (Li and Durbin, 2009). Contigs 

that aligned to a target gene with high quality are considered on-target. Multi-mapped contigs 

were considered as repeats and discarded from the total analysis. Remaining contigs are counted 

as off-target sequences. The results show that roughly sixty percent of assembled contigs are off-

target, and their combined length corresponds to forty percent of total reconstruction (Table 3.3). 

These proportions, which are not inconsiderable, ideally can be reduced by more stringent 

Table 3.2 Accuracy of Kollector-assembled genes 

Species Number of Genes Assembled Number of Genes Aligned Success Rate 

 C. elegans 13,378 13,356 99.8 

 H. sapiens 41,631 1,525 99.7 
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parametrization and repeat filtering. However, future development of Kollector pipeline, such as 

a method to determine target gene borders and limit read recruitment, can also be immensely 

useful for alleviating this problem.  

 

Table 3.3 Off-target reconstruction  

 

3.2 Comparison of Kollector with other targeted assemblers 

3.2.1 Comparison to aTRAM using cross-species assembly 

 We assessed Kollector’s performance against aTRAM (Allen, et al., 2015), which to our 

knowledge, is the only tool designed to assemble genes guided by an input protein sequence. 

This is achieved by an iterative pipeline, in which reads are recruited based on an alignment to 

the bait sequence. These reads are then assembled and used as the bait in the next iteration, thus 

incorporating sequences that are missing in the original input.  

In their study, Allen and co-workers (2015) used a dataset of 1,534 conserved proteins 

from human head lice (Pediculus humanus) (Johnson, et al., 2014). These were obtained by 

comparing sequence divergence rates between human, chimpanzee and P. humanus orthologous 

genes using pairwise alignment performed by MUSCLE (Edgar, 2004). This set of protein 

sequences was used as the bait to assemble orthologous genes in the chimpanzee lice (Pediculus 

schaeffi) genome. It is estimated that these two species have diverged 5.6 million years ago 

Bin Number of Contigs on Target>500 bp Length of Contigs on Target (Mbp) 

1 8617 (36.49%) 31.6 (48.79) 

2 10544 (42.70%) 42.9 (59.36) 

3 10581 (42.00%) 42.6 (58.97) 
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(Reed, et al., 2004). For comparative purposes it is worth noting that their host species, humans 

and chimpanzees, have begun diverging around 13 million years ago (Venn, et al., 2014).  

For comparison with aTRAM, we ran Kollector using the same whole genome shotgun 

reads and corresponding cDNA sequences for each orthologous gene, since Kollector cannot 

process amino acid sequences as input. For the aTRAM itself, we used protein sequences as 

input for best performance, since more conserved sequences are preferred for optimal read 

recruitment (Personal correspondence with Julie M. Allen). We compared the results from both 

tools using two metrics: length proportion of the target gene that aligned to the assembled 

scaffold with BLAST, and number of assembled genes that passed a reciprocal best BLAST hit 

test with each target gene. Passing the reciprocal BLAST test requires two sequences to be each 

other’s best hit when aligned as a query.  

In our tests, Kollector slightly outperformed aTRAM on both metrics. For 1,543 targets, 

Kollector’s average aligned length proportion was 99.3% to aTRAM’s 98.6%, and 1,552 genes 

passing the reciprocal BLAST test compared with 1,530 in aTRAM (Table 3.4). We’d like to 

note that Kollector outperformed even though it was using cDNA sequences, as opposed to 

aTRAM’s more conserved protein input. We suspect our method is more robust in capturing 

divergent sequences because our progressive filtering algorithm recruits reads from conserved 

regions first and then uses them to extend the sequence in possibly more divergent regions. 

Furthermore, reconstruction of divergent sequences can benefit from using a low r parameter 

(the specificity required for read tagging), which may be preferable if evolutionary distance 

between two species is considerable. aTRAM, on the other hand, does not have a comparable 

specificity parameter that can be optimized for divergent sequences. Also, in an iterative 

approach like aTRAM‘s, repeat regions and off-target sequences can recruit more reads in each 
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iteration, increasing the complexity of the graph. Kollector’s greedy approach reduces or 

eliminates the need for iterations, and also allows for repeat filters to prevent recruitment by such 

regions. 

 

Table 3.4 Comparison with aTRAM  

Method Proportion Reciprocal Best-BLASTn Time 
(h) 

Kollector 99.3 1,532 2 
aTRAM 98.6 1,530 25 

 

Kollector achieved this task in less than one tenth of aTRAM’s run time. The markedly 

greater speed of Kollector is mainly due to its use of alignment free classification with k-mers 

and Bloom filters, which allows it to process thousands of transcripts in a single run, whereas 

aTRAM relies on iterative alignments to individual targets to recruit enough reads for their 

assembly. For applications on this relatively small scale, the progressive read filtering algorithm 

used by Kollector eliminates the need for iterations, thus saving time. 

3.2.2 Comparisons against other targeted assemblers 

In addition to aTRAM, we have compared the performance of Kollector on the C. elegans 

dataset (Table 3.1) to a set of published targeted assembly tools. Although not originally and 

specifically designed for reconstructing genomic loci from transcript sequences, we tested 

Mapsembler2 (v2.2.4) and TASR (v1.5.1), since they are the most established and widely used 

targeted assembly tools available. For instance, TASR is used for structural variant detection in 

human health research (Brown, et al., 2014; Warren, et al., 2012). For testing these tools, we 

used the full set of 13,556 C. elegans transcripts as input, as well as the genomic read set. For 

Mapsembler2, we used the default k-mer size (k=31) and the consensus sequence mode (i=2), 
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which means extensions of the target sequence are collapsed. We ran TASR using the 

independent, de novo assembly mode (-i 1) with default parameters, meaning targets are only 

used for read recruitment and not for seeding the assembly. We evaluated results of these tools 

with the same GMAP alignment criteria that we reported for Kollector. In our tests, 

Mapsembler2 and TASR assembled 28% and 18% of the targets, respectively (Table 3.5). In 

contrast, Kollector was able to assemble 97% of the target gene set in the first iteration alone. 

This is mostly due to the fact that Mapsembler2 and TASR are designed for re-assembling input 

targets within their respective sequence boundaries, with only limited extension capability in the 

flanking regions, which limits their utility beyond single exon genes. Kollector’s progressive 

filtering algorithm, unlike the latter approaches, can incorporate reads derived from intronic 

regions for assembly. 

We also chose to compare Kollector against aTRAM and GRAbB, targeted assembly 

tools that can theoretically assemble the target sequence in full when given an incomplete or 

partial input. However, both tools require multiple iterations for achieving such an assembly, and 

we found out that their runtimes become intractable when the number of targets is increased. 

Therefore, we had to resort to using a random subset of 1000 C. elegans transcripts. Another 

important consideration was the choosing of finishing criteria for the iterative runs. For aTRAM, 

we used the default finishing criteria, so the is terminated after five iterations. In the case of 

GRAbB, users can choose between several parameters and one of them is the length of longest 

assembled contig. We set this parameter to the length of the NCBI Refseq gene for each target. 

This was done to ensure that GRAbB did not stop iterations prematurely. However, GRAbB was 

not able to assemble all the targets in a tractable amount of runtime. Therefore, we stopped the 

run after 48 hours and used sequences that were assembled up to that point for comparison. The 
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evaluation of these results was done by GMAP alignment, as described above. We found that on 

this transcript subset, aTRAM and GRAbB assembled 73.1% and 42.5% of the targets 

respectively, compared to the Kollector’s 94.5% success rate (Table 3.5). Furthermore, Kollector 

substantially outperformed both tools in speed and memory, proving the utility of progressive 

Bloom filters. 

  

3.2.3 Comparisons against de novo whole genome assembly 

 As stated before, Kollector’s targeted approach offers significant advantages compared to the 

whole genome de novo assembly. In addition to the reduced time-and-memory complexity, we 

expect Kollector to rescue regions that cannot be reconstructed by whole genome de novo 

assembly due to localization of the assembly problem. We tested this hypothesis by assembling 

C. elegans and H. sapiens datasets with ABySS, using the same assembly parameters with the 

respective Kollector run. Target transcripts that were used to seed the Kollector run were aligned 

to the whole genome assemblies. Using the same criteria (90% query coverage and 90% 

sequence identity), the proportion of successfully aligned transcripts was compared between 

Table 3.5 Comparison with other targeted assembly tools 

Method Number of Targets  

Attempted 

   Number of Targets 

Assembled 

Percentage of 

Targets Assembled 

Wall Clock  

Time (h) 

Peak Memory 

(GB) 

Kollector 13,556 13,144 96.96 2 4.8 

Mapsembler2 13,556 3,742 27.60 2 9.3 

TASR 13,556 2,418 17.83 3 15.6 

Kollector 1,000 945 94.5 0.5 0.66 

aTRAM 1,000 731 73.1 38 2.4 

GRAbB 1,000 425 42.5 48* 3.1 
* Run terminated by user 
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Kollector and whole genome approaches. In both species, Kollector assembled substantially 

more genes than whole genome assembly approach (Table 3.6). 

 

     Table 3.6 Comparion between Kollector and whole genome assembly by ABySS 

Species Number of Genes Assembled by Kollector                     Number of Genes Assembled by ABySS 

 C. elegans 13,378 (98.7%) 11624 (85.7%) 
 H. sapiens 41631 (80.1%) 37961 (72.9%) 

 

3.3  Applications of Kollector 

3.3.1 Cross-species assembly using Kollector 

Non-model organisms might not have extensive and well-annotated transcriptomes available to 

researchers. As such sequences are needed as input in Kollector, it can be argued that this 

limitation decreases Kollector’s utility. However, we believe that this is remedied by Kollector’s 

ability to use transcript sequences from one species to reconstruct the genic regions of a related 

species. Ideally, when used for cross-species assembly, Kollector will start recruiting reads from 

the most conserved regions, and then use those to incorporate more divergent regions into the 

progressive Bloom filter. 

In order to demonstrate its utility for cross-species assembly, we tested Kollector using 

H. sapiens transcript sequences as bait to assemble orthologous (>70% sequence identity) Mus 

musculus genes (Table 3.1, #4). Despite being separated by approximately 90 million years of 

evolution (http://timetree.org), Kollector was able to assemble 3,295 of 4,025 target genes in a 

single iteration (r=0.90 k=96), corresponding to an 81.9% success rate, as assessed using the 

orthologous M. musculus transcripts. This shows that Kollector’s r and s parameters allow for a 

certain degree of sequence divergence between seed and the target sequence. 
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3.3.2 Scaling to large genomes 

Assembling complex and very large eukaryotic genomes is a computationally demanding 

process. Therefore, a targeted assembly approach for retrieving biologically important gene 

sequences remains an attractive option for most researchers. We have tested such a use case for 

Kollector using Picea glauca (white spruce), which has a genome size in the 20 Gbp range 

(Warren, et al., 2015). For the species, Warren and colleagues derived a high-confidence set of 

16,386 gene predictions and associated transcripts. Using these transcript sequences, Kollector 

was able to reconstruct 13,277 (80.4 %) of the original target genes in a single iteration. It is 

worth noting that this was achieved by randomly dividing the transcript set into five bins of equal 

size. The Kollector run for each bin took 24 hours to complete using a maximum 43.3 gigabytes 

of RAM.  

Researchers are often also interested in the regions immediately upstream and 

downstream of genes, which typically contain promoters and other regulatory elements. Due to 

the nature of the progressive filtering algorithm, Kollector assemblies may extend into these 

regions. In order to demonstrate this, we aligned the aforementioned high-quality transcript 

models to the resulting Kollector assemblies and quantified the amount of sequence upstream 

and downstream with respect to the transcript. We show that, in addition to a gene’s exonic and 

intronic sequences, Kollector typically reconstructs approximately 1 kbp of sequence beyond the 

5’ and 3’ ends of the target transcript (Fig. 3.4). Such extensions would enable characterization 

of the regulatory factors and complexes in the proximal promoter of genes of interest by 

chromatin immunoprecipitation, and would be especially empowering to studies of non-model 

organisms without available reference genome sequences. 
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Figure 3.4 Length distribution of flanking regions, after Kollector assembly of P. glauca genes. 

In order to define the flanking regions, we aligned the high-confidence transcript models of white spruce to our 

Kollector assemblies and quantified the length of the sequence upstream (dashed line, upper x axis and right-side y 

axis) and the downstream (solid line, lower x axis and left y axis) of the input transcript alignment. 

 

3.3.3 Whole genome targeted assembly 

 A prominent application of de novo assembly is the detection of specific, yet novel, sequences, 

where a mapping approach can introduce bias, especially for detecting structural variants (Alkan, 

et al., 2011). However, the large sample size of many studies, such as those of cancer genomics 

consortia, such as International Cancer Genome Consortium (ICGC) and The Cancer Genome 
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Atlas (TCGA), can put a strain on computational resources when a de novo whole genome 

assembly is required. Therefore, a fast and reliable targeted assembler, like Kollector, might be 

an attractive option for researchers, especially when considering its ability to extend incomplete 

input sequences.  

In order to demonstrate the extent of its utility, we have used Kollector for the targeted 

assembly of Human Papilloma Virus (HPV) in a cancer sample. The Cancer Genome Atlas 

consortium has profiled 279 head and neck squamous cell carcinomas (HSNCs) and detected 

many HPV positive samples, which were experimentally confirmed with immunohistochemistry 

and in situ hybridization (Cancer Genome Atlas, 2015). We ran Kollector on the genomic data 

from one of the confirmed samples [TCGA-BA-4077] with HPV type -33. Kollector does not 

need the bait to match the exact target sequence, as demonstrated in Section 1.3.1, so we used 

HPV type-16 reference genome as bait, and were able to re-assemble the complete HPV type-33 

genome sequence in a single iteration with less than 15 minutes runtime and using 1 Gb of 

memory. We also used genomic reads from the matched normal sample as negative control, and, 

as expected, Kollector did not yield any assembled HPV sequences. Because Kollector uses only 

sequences contributed by the reads, the assembled strain remains unbiased relative to our bait 

sequence. 

3.3.4 Improving the Rana catesbeiana genome assembly  

Since Kollector pipeline localizes the assembly problem and reduces its complexity, it can be 

used to improve genic regions in a genome assembly, which might not be completely 

reconstructed with the conventional whole genome de novo assembly approach. In order to 

improve the assembly of genes, Kollector takes advantage of corresponding transcriptomic data. 
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 As a proof of concept, we used Kollector to improve the whole genome assembly of 

Rana catesbeiana, or American Bullfrog. Transcript information came from the Bullfrog 

Annotation Reference Transcriptome (BART) version 2.0. BART was made by collapsing Trans-

ABySS (Robertson, et al., 2010) assemblies of RNA-Seq data from five different tissues under 

different chemical and temperature conditions (Hammond, et al., 2017). BLASTx (Gish and 

States, 1993) was used to detect highly similar transcripts based end-to-end alignments and only 

the longest representative for each cluster of similar transcripts is retained. As a result, BART 

contains 794,291 transcripts that are longer than 500 base pairs, which was the input for the 

Kollector run. Genomic reads came from Illumina Hiseq PET datasets of 2x150 and 2x250 base 

pairs length (Table 3.1). 

Before the Kollector run, BART is randomly divided into 80 bins of 10,000 transcripts 

each. Kollector was then run iteratively on each bin and failed transcripts are re-tried in the next 

iteration with lower r and k. After 5 iterations, 78% of BART transcripts were successfully 

assembled. There are several factors limiting Kollector’s success rate in this case. Chief among 

them is the size and complexity of the Bullfrog genome.  More than 60% of the Bullfrog genome 

is identified as putative repeats (Hammond, et al., 2017). Furthermore, we expect BART 

transcripts to have mis-assemblies, since they are products of a de novo assembly process. 

The draft genome we used for the comparison is obtained by assembling the same 

genomic read set with ABySS (version=1.9.0, k=128). This assembly had an N50 value of 

16,865 base pairs and a total reconstruction size of 5.3 Gbp. 

 In the next step, Kollector assemblies were used to improve the draft genome assembly 

using ABySS’s long scaffolding function. For long scaffolding, ABySS aligns Kollector output 
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to the draft genome and generates an adjacency graph based on the ABySS contigs that 

successfully mapped to the same Kollector gene, which are then put together as scaffolds.  

 In order assess to contribution of Kollector, to the rescue of genic regions, we used Core 

Eukaryotic Genes Mapping Approach (CEGMA) (Parra, et al., 2007). CEGMA uses a statistical 

approach called Hidden Markov Model (HMM) to annotate 248 most conserve eukaryotic genes 

in a given sequence. The number of Core Eukaryotic Genes (CEGs) present in a draft genome 

was used as a metric to completeness of genic regions. We ran CEGMA on the Kollector output 

and our draft bullfrog genome, before and after long scaffolding (Table 3.7). These results 

clearly show that for genic regions, Kollector’s targeted approach is more successful in 

recovering CEGs, compared to whole genome assembly. Furthermore, long scaffolding with 

Kollector output improves the completeness of the draft genome. This shows for complex 

eukaryotic genome assemblies, there is value in using Kollector alongside whole genome 

assembly. 

 

Table 3.7 Scaffolding of a draft genome with Kollector output 

Dataset Complete CEGs Partial and Complete CEGs 

Kollector Output 100 182 
Draft Assembly 
Draft Assembly (scaffolded w/ Kollector) 

51 
65 

139 
168 
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Chapter 4: Conclusion 

We have presented Kollector, a targeted de novo genome assembly application that takes 

transcript sequences and whole genome sequencing reads as input, and assembles the 

corresponding genic loci. Input transcripts are used to seed progressive Bloom filters, a data 

structure that can efficiently expand into intronic regions using sequence overlaps. Due to our 

alignment free approach, we demonstrate that Kollector can scale well up to large genomes, such 

as that of human and white spruce. 

 We first evaluated the Kollector pipeline on datasets from H. sapiens and C. elegans. 

Using their reference genomes, we were able to confirm that Kollector can assemble a vast 

proportion of its target genes with high accuracy. We note that our H. sapiens transcript dataset 

is a de novo transcriptome assembly, so it is similar to the data input we expect to be used for the 

non-model organisms. On the other hand, our C. elegans transcript dataset is from NCBI Refseq 

database, and since these are annotated, we were able to characterize the failed cases by 

obtaining the full target gene sequences. We found that target genes that are failed to assemble 

are longer than those assembled successfully. Furthermore, they also have significantly longer 

maximum intron length, as determined by Student’s t-test. This is consistent with our 

characterization of progressive Bloom filter recruitment process, which shows a dip in coverage, 

as the intronic region gets longer. 

We then compared Kollector with four published targeted assemblers. Two of them, 

Mapsembler2 and TASR were chosen because they are well-established tools that are reported 

widely in the literature. The other two, aTRAM and GRAbB are more recent, but both can be run 

iteratively to extend an incomplete or partial input sequence. Therefore, they are better 

positioned to tackle transcript input for genic assembly.  
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In our comparisons, we showed that Kollector successfully assembled more complete 

gene loci in significantly less time than aTRAM when assembling the genic space of a related 

species, and assembles more genes than its four competitors when assembling genes from C. 

elegans transcripts with a significant advantage in time-and-memory complexity. However, we 

note that this was expected since Mapsembler2 and TASR were not designed specifically for 

targeted gene loci assembly using RNA transcripts, and aTRAM and Mapsembler2’s iterative 

pipelines do not scale well with increasing number of targets in an eukaryotic genome. Taken 

together, these comparisons show two main advantages of the Kollector with respect to state-of-

the-art: its ability to take full advantage of the transcriptome data and its scalability to large-scale 

applications in complex eukaryotic genomes.  

We also compared performance of Kollector to whole genome de novo assemblies 

performed by ABySS using C. elegans and H. sapiens datasets. We found that Kollector can 

reconstruct genes that cannot be rescued by whole genome approach. This proves the utility of 

localizing the assembly problem with a targeted approach. Furthermore, this result indicates that 

Kollector output can be of use to improve de novo whole genome assemblies of non-model 

organisms. This can be achieved by scaffolding a draft genome with the Kollector output, as we 

have demonstrated. Alternatively, Kollector assembled genes can be inputted to a de novo 

assembler alongside genomic reads, so they can be reconstructed in the de Bruijn graph. 

After our evaluations and comparisons, we showcased four use cases for Kollector. The 

first one showed that Kollector was able to effectively assemble gene sequences in P. glauca 

(white spruce), despite its large 20-Gbp genome. These gene assemblies typically included 1 

kilobase pairs of upstream and downstream sequence with respect to the input transcript, which 

could be examined for promoters and other regulatory elements, and enable downstream research 
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with implications for the study of mechanisms of gene expression. It should be noted that 

currently the Kollector pipeline does not recognize gene boundaries. In the future, k-mers that 

mark gene boundaries can be recorded with an additional data structure during the tagging phase. 

Users can then input a parameter to determine the minimum or maximum number of tagged k-

mers beyond gene boundaries, which in turn will affect the length of the flanking regions. As it 

stands, we already demonstrated that for gene-centric investigations, Kollector could be a robust 

substitute for de novo whole genome assembly, which remains computationally challenging at 

large scales. 

The second use case concerned comparative genomics, where Kollector assembled M. 

musculus genes using orthologous H. sapiens transcripts as input. In addition to evolutionary 

biology, this kind of comparative genomics approach is particularly valuable to researchers 

working on non-model organisms, which might not have extensive and well-annotated transcript 

sequences available. This application also indicates Kollector can still perform well in the case of 

limited sequence identity between the bait and the target, and this feature also formed the basis 

of our next application. 

Our third demonstration involved the detection and whole genome targeted assembly of 

HPV in a head and neck cancer sample from H. sapiens. Kollector’s main advantage for this 

application is that it de novo assembles reads of interest, without the risk of introducing artifacts, 

as typically is the case when aligning reads to a reference genome. Because Kollector can fill in 

missing sequences by recruiting reads with a progressive Bloom filter, it only requires a limited 

amount of sequence homology within the bait sequence to fully reassemble a viral sequence. We 

note that the extent of divergence of the seed sequence that Kollector can use was not fully 

explored and thus may be interesting to investigate in future studies. Those studies can also 
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involve using Kollector to detect structural variants that have sequence divergence in different 

samples. As a result of these studies, parameterization of Kollector can be optimized for more 

divergent sequences. For instance, r threshold can be automatically varied between k-mers that 

come from the seed sequence and those that recruited later from the reads. Therefore, a divergent 

seed sequence can be used to recruit reads with a low r threshold, while k-mers generated from 

these reads will have a higher r threshold for recruiting other reads, which ensures specificity. 

Finally, using the R. catesbeiana draft genome assembly, we demonstrated that Kollector 

output could be used to improve the assembly of genic regions with scaffolding. This is because 

Kollector localizes and reduces the complexity of the assembly problem, which was also 

indicated by previous comparison between Kollector and whole genome de novo assembly 

approach. Furthermore, Kollector allows researchers to take advantage of the additional 

information in the RNA-seq datasets, which is becoming increasingly available for non-model 

organisms. We should also note the size of R. catesbeiana genome, which is estimated to be 5.8 

gigabase pairs (Hammond, et al., 2017). This is another testament to the scalability of Kollector 

for genome-wide, large-scale applications. 

In the future, there remain ample opportunities to improve Kollector pipeline and 

progressive Bloom filters. Algorithm-wise, specificity of progressive Bloom filters can benefit 

from a more precise stop condition in the tagging stage. Currently, users have to set a k-mer cap 

rather arbitrarily, based on number of targets and their estimated length in genomic space. 

However, this rough estimate can lead to sub-optimal results. When set too low, the k-mer cap 

might cause the tagging step to be terminated before the target gene is completely inserted. On 

the other hand, setting the k-mer cap too high reduces the advantages of localized assembly, and 

is a waste of computational resources. So instead of a k-mer cap, a mapping approach can be 



53 

 

employed, where each tagged k-mer is mapped to a target transcript, either directly or via a k-

mer that is already mapped to the target. If this information is stored, tagging can be stopped 

once whole transcript (plus flanking regions, whose length can be determined by the user with a 

parameter) is mapped to inserted k-mers. As an added benefit, such an approach can track each 

transcript separately in the case of a multi-transcript progressive Bloom filter, rather than setting 

a global k-mer cap for all, which is currently the case. 

  Another feature that can benefit the Kollector pipeline is an option to use the partial 

assemblies from previous iteration as the input to the next iteration, thus extending the seed 

sequence. These sort of iterations are already implemented in aTRAM and GRAbB. Ideally, 

Kollector should not input off-target assemblies for the next iteration. Information from GMAP 

alignments or ABySS adjacency graph that was generated during the long scaffolding phase can 

be used select for assemblies that belong to the target region. However, this will most likely 

require parameterization and further testing. A simpler alternative would be having the 

progressive Bloom filter scan genomic read files several times, rather than just once, during the 

tagging stage. An additional second or third pass through the data would greatly reduce the effect 

of the read order in the tagging stage.  

 Yet another aspect of the pipeline that can be addressed in the future is the issue of 

alternative splicing, namely the presence of transcript isoforms with missing exons. If these 

transcripts are present in the input file, Kollector can still recruit genomic reads from their 

missing exons, as it does with intronic regions that are missing from the bait sequence in the first 

place. However, we already established that Kollector’s success rate in assembling targets is 

adversely affected as the length of the missing sequence gets longer, so it can be argued that 

assembling these isoforms is more challenging. Another issue with using shorter isoforms is that 



54 

 

they can affect the reporting phase. For instance, a transcript with an alternative last exon can 

align perfectly to a gene assembly that lacks the terminal exon, which will lead to its 

misreporting as a successfully assembled target. For these reasons, it is advisable to use the full-

length, or at least the longest isoform for each transcript input. However, this can be difficult to 

determine for users. In the future, Kollector can have a preprocessing step, where input 

transcripts are mapped to each other (preferably using a Bloom filter) and those that are 

completely subsumed by another transcript can be removed before the tagging stage. 

In conclusion, we expect Kollector to be a valuable addition to the current suite of 

targeted assembly tools. Kollector is unique in taking full advantage of transciptome data. The 

Progressive Bloom filter is a novel take on the data structure, and it ensures that Kollector does 

scale to large datasets. Kollector can also work with incomplete and divergent input sequences, 

so it can be used to reconstruct orthologous sequences in non-model organisms. We fully expect 

that Kollector will find utility in the reconstruction of large gene regions de novo, which can be 

used to improve on draft genome assemblies, as we have demonstrated. 
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