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Abstract

The emerging use of multi-homed wireless devices along with simultaneous multi-path

data transfer offers tremendous potentials to improve the capacity of multi-hop wireless

networks. Concurrent Multi-path Transfer (CMT) over Stream Control Transmission Pro-

tocol (SCTP) is a form of reliable multi-path transport layer protocol with unique features

that resonate with multi-path nature of the multi-hop wireless networks. The present the-

sis identifies and addresses some of the challenges of CMT-SCTP over wireless multi-hop

networks.

One main challenge raised by the multi-hop wireless network for CMT-SCTP is the

out-of-order packet arrival. SCTP uses packet sequence number to ensure delivery. As

such, the out-of-order packet arrival triggers receive buffer blocking in CMT-SCTP that

causes throughput degradation. Another challenge in using CMT-SCTP over multi-hop

wireless networks is the unfair resource allocation towards flows coming from farther away

hops.

The first part of this thesis focuses on integrating machine learning and network coding

in CMT-SCTP to resolve the receive buffer blocking problem. Our state-of-the-art scheme

uses Q-learning, a form of Reinforcement Learning (RL), to enable the network coding

module to adjust to network dynamics. We confirm the veracity of our proposal by a

queuing theory based mathematical model. Moreover, the effectiveness of the proposed

scheme is demonstrated through simulations and testbed experiments.

In the second part of the thesis, we investigate the fairness behavior of CMT-SCTP
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towards other CMT or non-CMT flows coming from farther away hops on a multi-hop

wireless network. We introduce a Q-learning distributed mechanism to enhance fairness

in CMT-SCTP. The proposed method uses Q-learning to acquire knowledge about the

dynamics of the network. Consequently, the acquired knowledge is used to choose the best

action to improve the fairness index of the network. We evaluate our proposal against

standard CMT-SCTP and Resource Pool CMT-SCTP (CMT/RP-SCTP).

In the third part of this thesis, we apply our findings in the second part to TCP to

demonstrate that the benefits of our fairness mechanism can be extended to other transport

layer protocols. The findings of this thesis bring us closer to realization of the vast potential

of multi-path data transfer over multi-hop wireless networks.
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Chapter 1

Introduction

Multi-hop wireless networks have gained attention in recent years as they can extend the

network coverage via providing non-line-of-sight connectivity. Moreover, the low deploy-

ment costs of these networks, as compared to for example cellular single-hop technologies

such as cellular in which the coverage area depends on the number of base stations, makes

multi-hop wireless networks an attractive solution for the last mile Internet access [3].

However, multi-hop wireless networks also have certain disadvantages as well. The present

thesis aims to mitigate some of these disadvantages, and offers the possibility of making

multi-hop wireless networks a more attractive solution for last mile access.

Multi-hop wireless networks operate based on the idea of cooperation among the nodes

for packet forwarding. Multi-hop wireless networks exist in different sizes and shapes; it

can be a small residential network or a network in a large commercial complex. When

the destination is out of the transmission range of the sender, intermediate nodes act

as relays and forward the packet to the destination. Therefore, a packet may pass via

multiple hops before reaching its final destination. However, the multi-hop nature of these

networks makes them vulnerable towards link failure or variable link quality which may

result in dynamic/frequent data path changes. This drastically degrades the transport layer

protocol performance [4]. The objective of the transport layer protocol is to provide an

end-to-end connection between the peers and to relieve the upper layer from the concerns

and issues of the lower layers. The Transmission Control Protocol (TCP) is the oldest

available reliable transport layer protocol that is widely used over the network. TCP was

1
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designed for and does well in a wired environment. TCP relies on the smooth changes

in Round Trip Time (RTT) of packets, but, the dynamic nature of the paths in a multi-

hop wireless environment can cause substantial and sudden changes in RTT. Moreover,

the lack of knowledge on the available resources of the shared medium, i.e., the wireless

channel, and the dynamic network topology violates the design principles of TCP. Hence,

TCP fails to perform well over multi-hop wireless settings. Stream Control Transmission

Protocol (SCTP), another connection oriented transport layer protocol, shares similarities

with TCP; yet, SCTP addresses some of the short comings of TCP for newer applications.

The unique built-in features of SCTP, such as multi-homing and multi-streaming, makes

it an attractive choice as a reliable multi-path transport layer protocol in data networks.

Multi-homing is the ability of an end-point to support more than one IP addresses. Multi-

streaming is the ability of the transport layer protocol to segment and transmit the data

into parallel streams. Multi-homing and multi-streaming position SCTP as a promising

candidate for newer applications over multi-hop wireless networks. Newer applications

use parallel streams to transmit data to maximize the network utilization. This feature

resonates with the multipath nature of the multi-hop wireless networks. However, without

a proper transport layer protocol that can support multi-path transfer, the great potentials

of newer applications cannot be realized completely over multi-hop wireless networks.

At present, two main approaches account for reliable multi-path transport layer proto-

cols: the Multi-Path TCP (MPTCP) extension for Transmission Control Protocol (TCP)

[5], and the Concurrent Multi-path Transfer (CMT) extension for Stream Control Trans-

mission Protocol (SCTP) [6]. CMT-SCTP is a more attractive approach for multi-path

data transfer, since SCTP already supports multi-homing and the work required to ad-

dress the shortcomings of CMT-SCTP over multi-hop wireless environment is minimal as

compared to MPTCP. CMT-SCTP [7][8] is one of the first proposals to incorporate con-

2
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current transfer of data over multiple disjoint sub-flows into the original SCTP. The main

objective of CMT-SCTP is to increase network utilization and resource usage via parallel

data transfer over different paths between the sender and receiver.

The multi-path data transfer in CMT-SCTP offers great potentials to multi-hop wireless

networks in terms of resource usage and reliability. However, there are some limitations of

using CMT-SCTP over multi-hop wireless settings:

• One of the key challenges of designing a multi-path transport layer protocol over

wireless multi-hop networks is the receive buffer blocking caused by the out-of-order

packet arrivals [8][9][10] [11]. The receive buffer stores out-of-order packets and de-

livers them to the application layer consequently after having received all the missing

packets. Due to path discrepancies in multi-path data transfer, the receive buffer can

be flooded by out-of-order packets. As a result, the data sender can be throttled,

which causes the overall throughput of the connection to be reduced or even become

zero at times. This phenomenon is called receive buffer blocking. Receive buffer

blocking results in performance degradation at the transport layer. The receive

buffer blocking exacerbates over wireless multi-hop networks as the unreliability of

the paths creates more complexity for the transport layer. Of the existing literature,

that focuses on addressing receive buffer blocking over simplified scenarios, none of

the methods have been tested over multi-hop wireless networks [10][11] [12][13][8][9].

• The fairness behavior of a multi-path transport protocol is another major challenge

when deployed in wireless multi-hop networks. It can inflict harm not only to the

protocol itself but also to the performance of other existing protocols such as TCP

flows or other single-homed SCTP flows [14][15][16][17]. The fairness of CMT-SCTP

has been partially investigated over simple bottleneck scenarios [18] and [19]; however,

studies that have focused on fairness behavior of CMT-SCTP over wireless multi-hop

3
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networks against non-CMT flows coming from farther away hops are limited.

A significant portion of the proposed algorithms have focused on wired settings and the

resulting insights cannot be applied to wireless multi-hop networks [20] [21] [22] [23][24]

[25][9] [10] [26][8] [27]. The wireless multi-hop setting introduces both severe path dissim-

ilarities and severe unfairness to the picture for CMT-SCTP. Therefore, novel proposals

are required to accommodate the intrinsic characteristics of the wireless multi-hop network

within the CMT-SCTP. We focus our interest on the performance of CMT-SCTP over a

wireless multi-hop setting to address the shortcomings of the literature available.

The main questions of this thesis are (1) how to address the fairness issue of the multi-

path transport layer protocol over multi-hop wireless networks and (2) how to enhance

performance of the multi-path transport layer over multi-hop wireless settings by alleviating

receive buffer blocking.

The present thesis is divided into two main parts: the first part focuses on algorithms to

alleviate receive buffer blocking in CMT-SCTP over wireless multi-hop networks, whereas

the second part focuses on improving CMT-SCTP fairness against non-CMT flows coming

from farther away hops within the wireless multi-hop setting. The results provide insight

into the behavior of CMT-SCTP over wireless multi-hop networks which can be used to

improve the performance of CMT-SCTP over the existing infrastructure. The proposals in

the present thesis are one step ahead in transiting swiftly from legacy transport protocols

to multi-path transport protocols. In addition, the requirements of newer applications are

addressed.

The remainder of this chapter is organized as follows: In Section 1.1 we highlight

details of CMT-SCTP and its known issues. Subsequently, we identify the challenges

of using CMT-SCTP over wireless multi-hop networks and explain how addressing these

challenges may contribute to the overall goal of this thesis, which is the focus of Section
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1.2. In Section 1.3, we focus on the mechanisms proposed in this thesis, and explain the

contribution and novelty of the solutions. In Section 1.4, a detailed map of the thesis is

presented.

1.1 Overview of CMT-SCTP

Except for some minor differences, SCTP and TCP share the same congestion control

mechanism. TCP uses Acknowledgment packets (ACK) to inform the transmitter about

the missing packets using the packets’ sequence numbers. However, SCTP uses Selective

Acknowledgment (SACK) to acknowledge both the received data and the gaps in the

received data. Moreover, TCP is byte oriented, whereas SCTP is message (chunk) oriented.

Aside from the minor differences in the congestion control mechanism of SCTP and TCP,

multi-homing and multi-streaming are unique to SCTP. In multi-homing, SCTP socket

holds more than one IP addresses for each host and creates redundancy for transport layer.

Therefore, should any of the interfaces fails, the SCTP association continues to transmit

data on the other interface. In multi-streaming, the SCTP association divides the data

into multiple streams and transmits each stream independently. SCTP association uses the

Transition Sequence Number (TSN) of each packet to keep track of packet losses within

each stream. The association uses the stream identifier/stream sequence number to track

any gaps in data delivery to the application layer. When there is a missing packet in one

of the streams in a multi-stream association, data chunks from unaffected streams can be

delivered to the upper layer. The main objective of multi-streaming in SCTP is to increase

redundancy and resilience against network failure. Multi-streaming in its original form

does not support simultaneous data transmission over all streams. Therefore, Concurrent

Multi-path Transfer of data was proposed as an adds-on suite to SCTP [8] . CMT-SCTP

uses multi-homing in an SCTP association to transmit data concurrently over all available
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sub-flows within the association. The main objective of CMT-SCTP is to increase network

utilization and resource usage.

1.2 Challenges of CMT-SCTP over Wireless Multi-hop

Networks

The wireless multi-hop environment induces unexpected characteristics that are not ad-

dressed in the original design of CMT-SCTP. Therefore, CMT-SCTP fails to enhance

network utilization over multi-hop wireless networks. The un-addressed challenges create

interesting research topics.

1.2.1 Receive buffer blocking

Considering the drawbacks of receive buffer blocking on the performance of the multi-

path transport layer protocol, the receive buffer blocking topic is investigated by many

researchers. One of the common practices is to set aside enough space in the receive buffer

[12]. To decrease the possibility of receive buffer blocking during the lifetime of the trans-

port connection in multi-path transport protocol, Barre et al. [13] suggested to reserve a

space of twice the bandwidth delay product of the path. Although the proposed mech-

anism in [13] mitigates the receive buffer blocking, reserving space in the receive buffer

decreases the receiver tolerance against the changes in path delays. To solve the issue of

receive buffer blocking in CMT-SCTP, Iyengar et al. [8] proposed different retransmission

policies. These policies are based on the packet loss rate and the congestion window size of

each path [8]. Although Iyengar’s approach of using a proper retransmission policy allevi-

ates the receive buffer blocking problem, in the presence of non-negligible and unavoidable

path dissimilarities, none of the proposed retransmission policies is effective in eliminat-

ing the receive buffer blocking problem. To improve the performance of SCTP-CMT over
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dissimilar paths, Deibholz et al. [2] proposed a resource pooling algorithm that divides

the receive buffer among all the paths to prevent the receive buffer from being flooded by

out-of-order packets from one path and prevent other paths from sending data. Deibholz’s

resource pooling partially alleviates buffer blocking and reduces the receive buffer blocking

problem from the entire buffer to a portion of the buffer. However, in the presence of severe

path dissimilarities, the local blocking infiltrates to the rest of the buffer. In Chapter 3, we

propose an adaptive network coding mechanism to desensitize the receiver against packet

reordering and consequently eliminate the receive buffer blocking problem. Our mechanism

integrates network coding [28][29] into CMT-SCTP to resolve receive buffer blocking. Our

state-of-the-art network coding scheme uses a combination of Q-learning [30] and logistic

regression for rare data events to control the number of redundant packets based on the

network dynamics.

1.2.2 Fairness

Fairness measures have different definitions based on the perspective and can be categorized

into three groups [18]:

• Link-centric sub-flow fairness only focuses on how the resources of a bottleneck

is divided among the passing by sub-flows without taking into account of the total

resource allocation to each flow. For example, if there are n sub-flows belonging to

m flows passing through the bottleneck link l with a capacity of C(l), assigning a

bandwidth of C(l)
n

to each sub-flow is considered link-centric sub-flow fair.

• Link-centric flow fairness focuses on resource allocation to flows sharing a bot-

tleneck regardless of the number of sub-flows. Assuming n sub-flows belonging to m

flows passing through the bottleneck link l with a capacity of C(l), assigning a band-

width of C(l)
m

to each flow is considered link-centric flow fair. As such, in link-centric
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flow fairness, each flow divides the allocated resource evenly among its sub-flows.

• Network-centric fairness divides the network resources evenly among all flows in

the network regardless of the bottlenecks. (the present thesis perspective for fairness

measure)

Whenever fairness is mentioned throughout this thesis, we are referring to network-

centric fairness.

A substantial portion of the available literature of transport layer fairness over wireless

multi-path networks is focused on link-centric fairness resolutions for TCP [4, 31–43].

Studies that focus on the fairness of SCTP or CMT-SCTP are limited. As TCP and SCTP

share a similar congestion control mechanism, studying the available fairness solutions

for TCP over wireless multi-hop settings provides insights into the fairness behavior of

both SCTP and CMT-SCTP. Therefore, we focused on studying the available fairness

mechanisms for TCP over wireless multi-hop networks. Subsequently, we developed a

distributed fairness mechanism for SCTP and CMT-SCTP using a reinforcement learning

approach. Eventually, we adopted the reinforcement learning fairness mechanism with

additional changes to TCP [44][45]. Our methodology offers both backward compatibility

towards TCP and enhances CMT-SCTP fairness over the multi-hop setting.

Fairness of TCP

The existing literature on TCP fairness solutions over wireless multi-hop networks can

be categorized into cross-layer designs e.g., [44, 46–54], and layered proposals e.g., [55–68].

While layered proposals aim to keep the end-to-end semantic of TCP intact, the cross-layer

designs use the information from different layers to adjust TCP parameters. Random Early

Detection (RED) is among one of the first proposals to enhance TCP fairness over wired

connections. Neighborhood RED (NRED) is a cross-layer adaptation of RED for wireless
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multi-hop settings [48]. NRED is implemented in Medium Access Control (MAC) and uses

channel utilization from the physical layer to calculate the probability of packet dropping.

In [49], the gateway triggers Explicit Congestion Notification message (ECN) for the nearby

TCP sources with a higher probability to favor the farther away flows and allow them to

use more network resources. The fact that the gateway controls the ECN mechanism is one

of the key limitations of the cross-layer approach of [49]. Raniwala et al. [50] proposed a

cross-layer solution that uses the topology of the network to create a connection graph and

calculate the flow rates. The heavy overhead of feedback messages caused by [50] to create

the global graph of the network is undesirable. The cross-layer method of [51], which is

called TCP-AP, attempts to eliminate the reliance of TCP fairness solutions on feedback

messages. The approach of [51] relies on the information from the physical layer to infer

the fair share of each node of network resources. The main drawback of TCP-AP is the

reliance on received signal strength indication (RSSI), which is not an accurate estimate

of the receiver power level. Therefore, TCP-AP relies on feedback from the receiver to

function effectively. XCP, another example of cross-layer design [53], uses the feedback

from routers to adjust the congestion control window size. XCP suffers from excessive

overhead in presence of heavy traffics. CoDel [69] is another cross-layer example that uses

active queue management on selected bottle neck links, i.e., links with large queuing delay.

CoDel uses spacing in transmission times as the queue management method over bottle

neck links. D2TCP is a recent variation of TCP for on-line data intensive applications

that uses a varying rate based on a deadline set by the application and the congestion

condition of the network reported by ECN [54]. D2TCP is a cross-layer approach that

needs compatibility in both application layer and routing protocol to perform effectively

which is a huge disadvantage. In [44], a cross-layer algorithm, More Hops Higher Priority

(MHHP), is proposed that assigns higher priority to flows traversing a larger number of
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hops. Although MHHP improves TCP fairness in a multi-hop environment, the design

does not fully capture the dynamic nature of the wireless environment.

Unlike the cross-layer approaches, the layered solutions preserve the end-to-end se-

mantic of Open Systems Interconnection (OSI) model. According to Gambiroza et al.

[55], the binary back-off mechanism, Request-to-Send/Clear-to-Send signaling mechanism

(RTS/CTS), and the end-to-end congestion mechanism play key roles in TCP unfairness.

Gambiroza et al. [55] proposed a MAC layer solution in which each access point calculates

the fair share of incoming and outgoing flows in terms of flow rates and broadcasts the rates

to other nodes. Reference [57] is another MAC layer approach in which nodes negotiate to

set up a fair transmission schedule throughout the network. The proposed methods in [55]

and [57] rely on feedback messages, which significantly increases the network overhead. In

[59], a layered approach is proposed that uses the TCP advertised window and delayed

ACK to control flow rates of different flows. The algorithm in [59] only works in scenarios

where all flows are destined to the gateway. In [60], authors proposed a mechanism that

prioritizes TCP ACK packets in the reverse path to enhance TCP fairness. TCP BIC

(Binary Increase Congestion) is an end-to-end layered approach that uses a combination

of additive linear increase and binary search of the congestion window to ensure fairness

among the flows [64]. When the congestion window is small, TCP uses the binary search

algorithm to find the correct size of the increase to the congestion window to let the flow

utilizes its network share. TCP CUBIC is an enhanced version of TCP BIC that uses the

cube of the elapsed time from the last window reduction to control the congestion window

size [65]. The TCP CUBIC approach creates independence for congestion control window

from Round Trip Time (RTT). Therefore, TCP CUBIC increases fairness in favor of flows

with longer RTT. TCP Veno, another instance of layered solutions to TCP [66], gained a

lot of attention in recent years due to its better performance over wireless settings. Veno is
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basically an integration of the idea of congestion detection of TCP Vegas into TCP Reno

and does not significantly contribute to the fairness. TCP Jersey [70] is another flavor of

TCP that focuses on recognizing the random losses of the wireless environment from the

congestion loss. Among the end-to-end solutions to enhance TCP performance, only few

use machine learning as an interactive tool to observe network dynamics and change TCP

parameters based on some prediction of the network behavior. Sprout is a good example

of the interactive transport layer protocol [67]. Sprout uses the arrival time of packets to

predict how many bytes the sender can successfully transmit without creating congestion in

the network while maximizing network utilization. The main disadvantage of Sprout is the

fact that it needs to run over CoDel to outperform other TCP variants. Thus, it requires

changes to the infrastructure to enable active queue management. TCP ex Machina, also

known as Remy, is another end-to-end interactive solution that uses machine learning to

create a congestion control algorithm, which controls the packet transmission rate based

on the perceived network model by the learning algorithm [68]. The main disadvantage of

TCP ex Machina is its resource-intensive nature that results in lengthy learning time. It

takes almost forever for a single Linux machine to come up with a congestion algorithm

suitable for a specific network using TCP ex Machina.

Fairness of CMT-SCTP

Although TCP fairness for over both wired and wireless environments has been extensively

studied, SCTP fairness, specifically CMT-SCTP fairness, over wireless environment is a less

explored field. One of the initial studies on CMT-SCTP performance over wireless multi-

hop networks [71] focused on the throughput of CMT-SCTP over a multi-hop network

in QualNet without considering the fairness issues. In another study [19], Ilknur Aydin

et al. investigated CMT-SCTP fairness against TCP and SCTP in a wired setting and

concluded that CMT-SCTP is indeed fair on wired bottleneck scenarios. However, the
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superior loss-recovery mechanism in CMT-SCTP results in a better bandwidth utilization

in CMT-SCTP as compared to TCP. The fairness study in [19] did not include any wireless

scenarios. In a previous study that focused on CMT-SCTP fairness alone [72], it was shown

that CMT-SCTP is not fair to non-CMT flows when handling the congestion control of

each path independently. Consequently, authors of [72] proposed Resource Pool CMT

(CMT/RP-SCTP) that integrates resource pooling into congestion control mechanism of

CMT-SCTP to improve fairness against non-CMT flows. Based on [72], a CMT/RP-

SCTP-based transport layer has three main objectives:

• CMT/RP-SCTP should have a throughput gain over SCTP and non-CMT flows as

it is using extra paths for concurrent data transfer.

• CMT/RP-SCTP must be fair for non-CMT flows over bottlenecks.

• CMT/RP-SCTP must apply congestion control as a whole to balance the load on all

the paths.

Although the above goals are satisfied in CMT/RP-SCTP over wired settings, not a single

study reports on the use of CMT/RP-SCTP over a multi-hop wireless environment. Fol-

lowing [72], the same group of authors proposed a change in congestion control mechanism

of CMT-SCTP to balance the congestion on each path while keeping it fair to single path

transport protocols. The proposal used in [18] increases the congestion window size of

each path proportional to the average RTT of all paths. While the fairness mechanism

in [18] makes multi-path transport layer fair to single path transport layers, it does not

offer Quality of Service (QoS) for costumers paying for higher bandwidths, and thus the

proposal is not financially attractive to service providers. In [73], authors proposed a TCP-

friendly congestion control mechanism. The method in [73] applies a Vegas-like congestion

control mechanism based on the RTT variant of the paths to balance the load of each
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path within the CMT-SCTP association. The algorithm in [73] is evaluated in ns-2 using

a very abstract model. More detailed investigation is required to study the fairness of the

proposal on competing non-CMT flows within the network.

To the extent of our knowledge, a major portion of the available literature on CMT-

SCTP is focused on improving performance of CMT-SCTP as compared to SCTP [74], [75],

[8], [76], [77], [78], [79]. In publications, such as [80] and [81], the performance of CMT-

SCTP over wireless networks was investigated without any fairness evaluations. Studies

described in [80] and [81] proposed methods to improve packet loss and quality of service

of multimedia without any fairness considerations.

The importance of fairness in CMT-SCTP over wireless multi-hop networks against

other non-CMT flows cannot be overemphasized. In recognition of this importance and

due to the lack of extensive literature on this topic, Chapter 4 investigates the fairness

of CMT-SCTP over a wireless multi-hop testbed and proposes a dynamic algorithm to

improve the fairness of CMT-SCTP against non-CMT flows. Our proposal is an attempt

to integrate fairness to the current CMT-SCTP design to create a more coherent network

body.

In Chapter 5, we adapted our distributed fairness mechanism to TCP. In our approach,

we deployed Q-learning, a reinforcement learning mechanism, to monitor the dynamics of

the network. The Q-learning agent creates a state map of the network based on the MAC

parameters and takes actions to enhance TCP fairness and throughput of the starved flows

in the network. The proposal creates a distributed cooperative mechanism where each

node hosting a TCP source uses local fairness index and aggressiveness index of the flow

to adjust its TCP parameters.
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1.3 Summary of Results and Contributions

This thesis contains new proposals to accommodate the intrinsic characteristics of the

wireless multi-hop network within CMT-SCTP in terms of fairness and performance. The

contributions of the chapters are:

• In Chapter 3, we address the issue of receive buffer blocking in CMT-SCTP. We

propose a network coding scheme for CMT-SCTP that creates cooperation among

the multiple sub-flows of a CMT-SCTP association to eliminate the receive buffer

blocking problem. We use Random Linear Network Coding (RLC) to create coop-

eration among the sub-flows of a CMT-SCTP association. The cooperation among

the sub-flows evenly distributes the loss rate probability on all sub-flows. Thus, the

discrepancy among the sub-flows diminishes. Our contributions are as follows:

– We integrated network coding into CMT-SCTP (called coded CMT-SCTP).

– We proposed an adaptive network coding scheme to control the number of re-

dundant packets depending on the network dynamics.

– We proved that our scheme increases the frequency of receive buffer unloading

using a queuing theory approach.

– Our coded CMT-SCTP scheme outperforms the original CMT-SCTP by 22%-

62% depending on the path dissimilarities and receive buffer size.

• In Chapter 4, we investigated the effect of utilizing more than one path on the

fairness of CMT in competing with other SCTP or TCP flows coming from farther

away sources. The results of our investigation motivated us to design a dynamic

mechanism using reinforcement learning to alleviate the aggressive behavior of CMT-

SCTP by fine tuning CMT-SCTP parameters. Note that our investigation is focused
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on multi-hop networks with minimal to zero mobility, such as wireless mesh networks.

The result of this study is one step forward in practical exploitation of CMT-SCTP

in multi-hop home or office area networks or even in larger scale wireless networks.

The contributions are as follows:

– We evaluated the fairness of CMT-SCTP against non-CMT flows coming from

farther away hops in a real multi-hop wireless environment.

– We used our findings to develop a dynamic distributed fairness mechanism to

alleviate the aggressive behavior of CMT-SCTP towards non-CMT flows coming

from farther away hops.

– We compared the results of our findings to standard CMT-SCTP and CMT/RP-

SCTP. Our proposal outperforms the standard CMT-SCTP with a high margin.

• In Chapter 5, we adapted the idea of the distributed fairness mechanism to TCP. In

our proposed algorithm, each node uses a reinforcement learning approach to model

the dynamics of the network and fine tune TCP parameters based on the perceived

characteristics of the environment. Our algorithm preserves autonomy of each node

in the decision making process and does not require a central control mechanism

or control message exchange among nodes. Unlike the existing machine learning

solutions, our proposal is compatible with the computational capacity of the current

infrastructure. We have named our approach Q-learning TCP. The contributions of

Chapter 5 can be summarized as:

– We proposed a dynamic distributed fairness mechanism for TCP over wireless

multi-hop networks that does not require any feedback messages or a central

control.
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– We evaluated our proposal against standard TCP, TCP ex Machina and other

TCP flavors over a real testbed.

– Our proposal enhances TCP fairness by 10% to 20% without any feedback

messaging and any extra overhead to the medium.

1.4 Thesis Organization

The present thesis is organized as follows: In Chapter 2, we presented a brief summary

of the tools we used to design our proposed algorithm along with details of our testbed

setup. In Chapter 3, we proposed the coded CMT-SCTP to address the receive buffer

blocking in CMT-SCTP over a multi-hop environment. The proposed mechanism is eval-

uated and compared against standard CMT-SCTP and proved to be effective. In Chapter

4, we proposed our distributed fairness mechanism for CMT-SCTP over multi-hop wire-

less networks. We evaluated our proposal against other available fairness mechanism for

CMT-SCTP over multi-hop wireless setting. We used our findings in Chapter 4 to enhance

TCP fairness over multi-hop wireless networks in Chapter 5. The proposed mechanism in

Chapters 5 and 4 uses Q-learning to monitor the dynamics of the network and fine-tune

the parameters of the transport layer to enhance fairness against flows coming from farther

away hops. We used real testbeds to evaluate the performance of our proposals both in

Chapter 5 and 4. Finally, this thesis is concluded in Chapter 6 and directions for future

work are discussed. The findings of each chapter have been published in a journal paper.
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Preliminaries

In this chapter, we go over the tools we used to address the issues of the transport layer

protocol over multi-hop wireless networks. Besides, we explain the details of our testbed

setup. The testbed is used with different number of nodes and different topologies in each

chapter; the network topology of each chapter is explained in each chapter in the testbed

section.

Section 2.1 provides a brief summary on network coding. Sections 2.2 and 2.2.3 present

an introduction to Markov Decision Process (MDP) and Q-learning. We go over our testbed

setup in Section 2.3.

2.1 Network Coding

We use network coding in Chapter 3 to address receive buffer blocking in CMT-SCTP. But

why network coding is an effective solution for addressing the receive buffer blocking?

2.1.1 Why network coding?

SCTP uses transmission sequence number of the packets as a mean to guarantee the reliable

delivery of the data to the receiver. In case of a packet loss, the packets with higher

transmission sequence number are stored in the receive buffer until the arrival of the missed

packet. The conventional transport protocols are designed to recover from congestion losses

by reducing congestion, and are inefficient when random losses are encountered. Network

coding is one way to introduce redundancy in the transmitted data stream so that the
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receiver needs not wait for retransmission of a dropped packet if it can be recovered from

coded versions of the packet.

2.1.2 What is network coding?

Network coding is a simple but effective method in communication networks in which

packets are combined together instead of simply being forwarded at the routers. The

coded packets are processed to recover the original packets in the receiver. The coded

packets are categorized into two groups: redundant and innovative. An innovative packet

is a coded combination which is linearly independent from the previously coded packets;

while a redundant packet is a coded combination with dependency on previously coded

packets. The idea was first implemented by Ahlswede et al. [82] in a butterfly network.

Following Ahlswede’s work, extensive literature on practical and theoretical analysis of

network coding demonstrate that network coding results in substantial improvement in

both throughput and reliability of a network [83][84][28][85][86][87].

The pioneer work of Sundararajan et al. [86][87] in adding a network coding layer

between the IP and TCP layer demonstrates that RLC can be adopted to higher layers

and enhance throughput. Sundararajan et al. used the concept of degrees of freedom at the

receiver side to decide whether an ACK should be sent out. If the recently arrived coded

packet carries a new linear combination of the original packets (innovative packet), the

receiver increases the number of seen packets so far and sends an ACK confirming a new

packet arrival. The number of seen packets is a representative of the number of independent

linear equations received so far. Every time a new packet is seen at the receiver, the

decoding process is triggered and an original packet is recovered with a high probability. As

such, network coding does not disturb the timing of the TCP acknowledgment mechanism.

One of the drawbacks of the Sundararajan et al. approach is that the method has to be

tailored to the byte-oriented nature of TCP and hence requires extra packet pre-processing.
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However, the message-oriented nature of SCTP eliminates the need for pre-processing of the

packets. In addition, the coding algorithm proposed in [86] is not attuned to a dynamic

environment. Instead, it assumes a constant packet loss rate and transmits redundant

packets just to cover the pre-calculated loss regardless of any changes in the environment

which makes the proposed method less suitable for dynamic and unreliable environments

such as multi-hop wireless networks.

2.1.3 How to estimate the number of redundant packets?

To recover all the original packets involved in the linear network coding process, we need to

have enough linear combinations at the receiver. Thus, we need to add enough redundant

packets to mask the random losses of the network. When using network coding in a

dynamic environment such as multi-hop wireless network, the packet loss rate is unknown.

Therefore, we need to find a way to estimate the number of redundant packets to mask

the random losses of the network. We need a sequential decision making process to decide

when to send an innovative and when to send a redundant packet based on the dynamics

of the network. Markov Decision Process (MDP) is a powerful technique for sequential

decision making problems in dynamic environments. We are going to elaborate more on

MDP in 2.2.

in Chapter 3, we adapt Sundararajan’s degrees of freedom approach to CMT-SCTP

to eliminate the reliance of the congestion control algorithm on the packet’s transmission

sequence number. First, our approach creates cooperation among multiple sub-flows of data

within an CMT-SCTP association by combining packets from different sub-flows together;

this way, different characteristics of the paths are less disruptive for packet processing at the

receiver side. Second, the machine learning aspect of our scheme addresses the inflexible

behavior of [86] by monitoring the ever-changing nature of an underlying network and

adjusting the number of redundant packets accordingly.
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2.2 Markov Decision Process

In Chapters 3, 4, and 5, we use MDP [88] to model the multi-hop wireless network.

2.2.1 What is MDP?

Each MDP has finite number of states and there is a limited number of actions available to

the learner module in each state. The learner module monitors the changes of environment

via the feedback of the reward function. The transition probability matrix of the MDP

is not known at the beginning of the learning process. One popular way to learn the

transition probabilities of the states on an MDP is to use Q-learning [89].

MDP is a powerful tool to model a multi-hop wireless network. These networks have a

stochastic environment that changes frequently; each node within the network is a decision

maker or an agent that interacts with the environment via taking actions. The actions

can be complex such as deciding whether to send a redundant or innovative packet or as

simple as changing the maximum congestion window size of TCP or CMT-SCTP. The

objective of the network can be translated into a reward function to give feedback to the

node. The environment can be modeled as an MDP to optimize the network objective

such as fairness, network utilization, or any other network objective. Besides, MDPs are

very versatile and can be defined with different parameters and states to serve the design

requirements of each network. For instance, in Chapter 3, we use MDP to optimize the

network coding process while in Chapters 4 and 5, we use MDP to optimize the fairness

aspect of the network with unique state definition in each case.

2.2.2 Why MDP is a good fit for multi-hop wireless environment?

In dynamic environment such as a multi-hop wireless network, static decision commands

can lead to inefficient resource allocation. Thus the dynamic set of policies by MDP is
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a logical choice. Moreover, MDP can support a balance utility function with different

objectives.

When the transition probabilities of the MDP are not known, reinforcement mechanism

such as Q-learning are used to infer the transition probabilities via learning. More details

on Q-learning as presented in 2.2.3.

2.2.3 Q-learning

Q-learning is a class of Reinforcement Learning mechanism (RL) first introduced by Watkins

et al. [89]. RL algorithms model the world as a Markov Decision Process (MDP). RL algo-

rithms are based on the basic idea of learning via interaction. The learner module is called

an agent, and the interactive object which is the subject of learning is the environment.

During the learning process the time is divided into decision epochs. Each Q-learning

agent has four elements: a set of states, a set of actions, a state-action dependent reward

function, and a state-action dependent transition probability matrix.

The learning agent uses a reward function to receive feedback on the consequences of

taking an action. The interaction between the agent and the environment helps the agent

to construct a mapping of the possible states-actions. The agent mapping is called the

policies and shows how the agent changes its decisions based on the different responses

from the environment. As time passes, the mapping gets more inclusive and the agent

learns almost all the possible (state, action) pairs and their associated reward/penalty

values and can cope with any changes in the environment. The memory of the agent is

kept in a matrix called Q. The rows of Q represent the current state of the system and the

columns represent the possible actions leading to the next state. At the beginning of the

learning process, the learning agent does not know the transition probabilities of the MDP

and the associated reward with each transition. After each decision epoch, Q is updated
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as in equation (2.1).

new value︷ ︸︸ ︷
Qt+1(st, at) = (1− α)

old value︷ ︸︸ ︷
Qt(st, at) +

learned value︷ ︸︸ ︷
α[r(st, at)︸ ︷︷ ︸

reward observed after performing at in st

+

estimated future value︷ ︸︸ ︷
γmax

a
Qt(st+1, a)] (2.1)

Equation (2.1) is called the Q-learning or Ballard rule [88]. The objective of the Q-learning

rule is to inform the agent of the possible future rewards along with the immediate rewards

of the latest action. α is the learning rate of the agent and determines the importance of

the newly acquired reward. α varies between 0 and 1. A factor of 0 causes the agent not

to learn from the latest (action, state) pair, while a factor of 1 makes the agent to only

consider the immediate rewards without considering the future rewards. γ is the discount

factor and determines the importance of future rewards. γ varies between 0 and 1. A 0

discount factor prohibits the agent from acquiring future rewards, while a factor of 1 pushes

the agent to only consider future rewards. The goal of the learning agent is to maximize

its total reward via taking the suitable action in each state.

Choosing α and γ has a direct effect on the convergence of the Q-learning mechanism

[88]. Based on the recommendation of [89][90] choosing γ = 0.9 and α = 1
(1+t)ω

can decrease

the convergence time to a polynomial degree. Authors of [90] showed that ω = 0.77 can

be an optimum for the learning rate.

The reward function plays a key role in the Q-learning process [90][91][92]. The learning

agent uses the reward function to determine the consequence of the latest action and to

encourage the learning agent to stay in/approach the goal state. The reward function

serves as a gradient function to the learning agent. The correct direction to maximize the

learning rule is conveyed by the reward function through immediate rewards or penalties

after each action. Choosing a Gaussian reward function complies with the suggestions of
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[93] for a good reward function. The Gaussian function is almost uniform in states far from

the goal state, and has an increasing gradient in a belt around the goal state. As such, the

Gaussian reward function can provide efficient direction to the agent on how to approach

the goal state from any other state.

2.3 Testbed Setup

To evaluate the performance of our proposals, we set up a testbed in an actual office envi-

ronment (Figure 2.1). We used Raspberry Pies as wireless nodes in our testbed. Raspberry

Pi [94] is a tiny affordable computer that can host multiple wired/wireless interfaces. In our

testbed, A and B are the client (data sender) nodes, D, E, and F are data forwarder/router

nodes, and G is the server (data receiver) node. We used FreeBSD [95] on client and server

nodes and Debian 7 [96], another Unix-like operating system, on nodes acting as a router.

While FreeBSD provides a very extensive SCTP suite, including the CMT feature, it only

supports Wi-Fi adapters in the client mode, and not in the host or forwarder mode. As

such, we used Debian 7 for nodes in the middle that has to play a role in forwarding/routing

packets. We used TP-LINK nano USB adapters as 802.11 g Wi-Fi interface [97], as they

are cheap and they work well with FreeBSD and Debian 7.

In terms of the interference, note that there are additional sources of noise from the

40 laptop users, 5 Cisco routers, and other wireless devices (such as the cell phones of the

staff) present in the office area where we set up our testbed. The data collections took

place in different hours of the day to make sure that all possible outcomes are covered in

our data set. We used Wireshark [98] for data collection in our measurements.
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2.3.1 CMT-SCTP testbed setup

To evaluate the performance of our CMT-SCTP related proposals, we set up the testbed

with the following characteristics: The testbed is set up in a way that one wireless interface

of node B and C communicates with node D, which forwards data to one wireless interface

of node G. The other wireless interface of node B and C communicates with node F, which

forwards data to node E (using static routing). In turn, node E forwards data from node

F to the other wireless interface of node G. Node A can communicate with either node D

or node B depending on the testing scenario ( node D for evaluations of Chapter 3 and

node B for evaluations of Chapter 4), which forwards the data to one wireless interface of

node G.

A

B

C
D

E

F
G

Raspberry Pi
wireless interface on channel 1
wireless interface on channel 6
wireless interface on channel 11
wired interface

Figure 2.1: Testbed setup for CMT-SCTP evaluations

As depicted in Figure 2.1, nodes A, D, E, and F have only one wireless interface; while

nodes B, C, and G have two wireless interfaces. In addition nodes D, E, and F have wired

interfaces to allow static routing. Note that D has two wired interfaces. Each wireless

interface is setup on a different channel (see Figure 2.2) to guarantee an independent data

path for sub-flows. Only wireless interface of node A, one wireless interface of node B and

C (forwarding data to node with D), only wireless interface of node D, and one wireless

interface of node G (receiving data forwarded by wireless interface of node D) are tuned to

channel 1; the other wireless interface of node B and C (forwarding data to node F) and
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only wireless interface of node F are tuned to channel 6; only wireless interface of node

E and the other wireless interface of node G (receiving data forwarded from the wireless

interface of node E) are tuned to channel 11.

1 
2.4

2 
2.4

3 
2.4

4 
2.4

5 
2.4

6 
2.4

7 
2.4

8 
2.4

9 
2.4

10 
2.4

11 
2.4

channel 
central frequency (MHz)

Figure 2.2: IEEE 802.11 channels

2.3.2 TCP testbed setup

To evaluate the performance of our proposal in real world setting, we set up the topology as

follows: The blue nodes in Figure 2.3 are the employees with their laptops (MacBook Pro

or MacBook Air) which connect to the Internet via Router R1 (extender) or R2. Routers

R1 and R2 connect to the Internet through the gateway (purple node). We added node B

which is both a source and forwarder node. Node B can forward to R1 and R2; moreover,

we set up a static routing table inside node B that forwards packets from node A to node

C without forwarding them to R1 or R2.

gateway
router
wireless nodes
sample wireless nodes
forwarder/wireless nodes

A

B C

R1

R2

Figure 2.3: Testbed setup for TCP evaluations
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Chapter 3

Network Coding As a Performance Booster for

Concurrent Multi-path Transfer of Data In Multi-hop

Wireless Networks

3.1 Introduction

In this chapter, we propose a network coding scheme for CMT-SCTP that creates cooper-

ation among the multiple sub-flows of a CMT-SCTP association to eliminate the receive

buffer blocking problem. The main cause of the receive buffer blocking in reliable transport

layer protocols is the dependency of the congestion control mechanism on transmission se-

quence number of packets. The proposed scheme eliminates the reliance of transport layer

protocol on TSN of packets using RLC. RLC is a technique where all participating nodes

send out random linear combination of the packets in hand to utilize the lossy path ca-

pacity [29][28]. RLC uses redundant packets to mask the random losses of the path and

to guarantee that the receiver is capable of recovering the original packets. Our proposed

network coding scheme uses machine learning to control the number of redundant packets.

In particular, we use a Q-learning mechanism [89](See Section 2.2.3) along with a classifier

inside the Q-learning mechanism to determine when the sender has to transmit redundant

packets. Our contributions are as follows:

• We integrated network coding to the multi-path transport protocol CMT-SCTP

(called coded CMT-SCTP).
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• We proposed an adaptive network coding scheme based on a Q-learning algorithm

[89] to control the number of redundant packets depending on the network dynamics.

• Using a queuing theory approach, we proved that our coded CMT-SCTP scheme

reduces the possibility of receive buffer blocking.

• Our coded CMT-SCTP scheme outperforms the standard CMT-SCTP with a high

margin (up to 62% depending on the path dissimilarities and receive buffer size).

• We also set up a real testbed and confirmed our theoretical and simulation results.

This chapter is organized as follows. Section 3.2 presents the details of our coded CMT-

SCTP scheme. Our claims in eliminating receive buffer blocking using coded CMT-SCTP

is proved using queuing theory in Section 3.3. The accuracy of the machine learning mech-

anism is evaluated on a testbed in Section 3.4. Section 3.5 and 3.6 discuss the simulation

and testbed results on performance of coded CMT-SCTP, respectively. Section 3.7 dis-

cusses how to adapt coded CMT-SCTP to more general network settings rather than just

multi-hop wireless networks. Section 3.8 concludes this chapter.

3.2 Coded CMT-SCTP

Coded CMT-SCTP is designed as an extension to the multi-path transport protocol CMT-

SCTP [6]. Coded CMT-SCTP has the sender and the receiver sides. Most of the changes to

the standard SCTP-SCTP scheme happens at the sender side. Coded CMT-SCTP at the

sender side consists of three parts: the CMT-SCTP module, a coding module, and a group

of learning agents, one for each sub-flow within the CMT-SCTP association. The coding

module manages the network coding process in coordination with the learning agents on

each sub-flow. The learning agent is designed to monitor and track the dynamics of the

path on each sub-flow to ensure the recovery of the coded packets at the receiver side.
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One of the main challenges of coding module in managing the coding process over an

unreliable environment such as multi-hop wireless setting is the recovery of the original

packets at the receiver despite the random losses of the network. Using redundant packets

to cover the random losses of network and to assure the recovery of all the packets involved

in the coding at receiver side is one of the known techniques in network coding. However,

one of the main issues of the available network coding proposals is that they simply assume

a prior knowledge of the path loss rate and inject redundant packets based on the assumed

loss rate [86][87]. Our proposal addresses this issue by using a Q-learning agent to estimate

the number of redundant packets needed to mask the random losses of the environment.

We go over the details of coded CMT-SCTP at both sender and receiver side in Sections

3.2.1 and 3.2.2, respectively.

3.2.1 Sender side

The sender side of coded CMT-SCTP is composed of the standard CMT-SCTP suite,

coding module and a group of Q-learning agents (one per sub-flow of the association).

Coding module

The coding module is responsible for generating the coded packets from the original

packets and to keep track of original packets within the sender buffer. The coding module

creates a coded packet pk in the form of pk = Σiαipi where αi is a randomly picked

coefficient and pi is the ith original packet in the send buffer. The coded packet can be

either redundant or innovative. The redundant packets carry linear equations with the same

unknown set as the previous coded packet but with different random coefficients. When

a coded packet is not redundant, i.e., it carries a different set of unknowns compared to

the previous coded packet, it is called an innovative packet. The details of our coding

algorithm at the sender side is presented in Algorithm 3.1. In Algorithm 3.1, destinationi
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Algorithm 3.1 Coding Module at Sender Side
1: numSacked = 0
2: for each sub-flowi do
3: numSackedi = 0, numInnovativei = 0
4: numRedundanti = 0, numSenti = 0
5: end for
6: if packet from application layer then
7: if destinationi is the next destination then
8: while CWNDi has room do
9: if rBuff has room then

10: numSenti = numInnovativei + numRedundanti

11:

action =Qlearni(numSeen, numSeeni,

numInnovativei, CWNDi, numRedundanti,

RTTi, numSenti)
12: if action is send an innovative packet then
13: numInnovativei + +
14: Create an innovative packet p = Σαipi
15: else
16: numRedundanti + +
17: Create a redundant packet p = Σαipi
18: end if
19: Add packet p to send buffer
20: Send packet p to IP layer
21: end if
22: end while
23: end if
24: else if SACK arrives from the receiver then
25: Update numSacked as numSeen
26: Update each numSackedi as numSeeni
27: Dequeue send buffer up to numSacked
28: if Duplicate SACK arrives then
29: retransmit the missing packets
30: end if
31: end if
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is the destination address bound with sub-flowi, CWNDi is the congestion window of

sub-flowi, and rBuff is the receive buffer size for the entire association.

Q-learning agent

Each sub-flow within the CMT-SCTP association is equipped with a stand alone Q-learning

agent that monitors the path features such as RTT, number of seen packets so far, number

of sent packets so far, and the congestion window size of the path. The learning agent

considers the network as an MDP with two states: decodable and non-decodable (Figure

3.1).

decodable
non- 

decodable
redundant 

P2

innovative 
P1

redundant, P4

redundant 
P6

innovative 
P5

innovative, P3

Figure 3.1: Markov Decision Process of coded CMT-SCTP. When the transition probabil-
ities P1, P2, ..., P6 are unknown, Q-learning is used to learn the reward on each state-action
pair.

In the decodable state, there are enough coded packets (independent linear equations)

for the receiver to recover the original packets and the receiver is able to decode the coded

packets. In the non-decodable state, due to random losses of the medium, there are not

enough coded packets (independent linear equations) for the receiver to recover the original

packets. Obviously, the proposed model is an MDP because (i) the transition probabilities

only depend on the previous state of the system and (ii) the Markovain rule holds for the

above model. We use learning agents in our coding algorithm to control the number of

redundant packets per sub-flow and to make sure that the receiver is able to decode the

packets and recover all the original packets sent. Moreover, the Q-learning agent uses a

classifier to determine the state of the system as either decodable or non-decodable. Each
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Q-learning agent uses logistic regression classifier [99] to determine the state of the system.

Then, the state of the system along with the Q-learning rule in equation (2.1) determines

the action to be taken. The Q-learning take actions by informing the coding module to

send either a redundant packet or an innovative one.

When the sender plans to transmit a packet, it makes an inquiry to the Q-learning agent

to determine whether a redundant or innovative packet has to be sent. Upon arrival of an

inquiry, the Q-learning agent determines the state of the network based on the observed

variables from the network using the logistic regression classifier. The set of observed

variables include the number of seen packets, number of sent packets so far, round trip

time, congestion window size, number of innovative and redundant packets per sub-flow and

number of seen packets for the whole association. The observed variables are accessible by

SCTP and the learning agent to classify the network into either decodable or non-decodable

state. The learning agent determines the next action (that is creating an innovative packet

or redundant packet (Figure 3.1) based on the Q-learning rule of equation (2.1) and informs

the coding module. Accordingly, the coding module creates a (redundant or innovative)

coded packet by adding coding coefficients to the original packets involved in the coding

and then sends the coded packet to the IP layer. To guarantee the orderly arrival of the

packets at the receiver, we buffer the packets at the sender in First-In First-Out (FIFO)

fashion prior to the coding process. When the sender plans to transmit another packet,

the Q-learning agent determines the new state of the system and calculates the reward of

the last action and updates the Q-matrix.

We define the reward function as a Gaussian with the parameter ds in such a way to

follow the difference between the number of innovative packets and number of seen packets

in each state and reward/penalize the agent for any changes in the gap size as in equation

(3.1). This way, the agent gets rewarded or penalized as the difference in equation (3.1)
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gets smaller or bigger, respectively.

ds = number of innovative packets− number of seen packets (3.1)

Since the learning agent is located at the sender module in the transport layer, it can

stay alive even after the SCTP association is closed. The Q-matrix of the learning agent

works as a form of memory; therefore, if a new association starts, the memory of the

learning agent already estimates the number of redundant packets precisely. Algorithm

3.2 is for the learning agent process. In Algorithm 3.2, in line 11, s is the current state,

a is the action taken in state s, s′ is the state that the agent ends up after taking action

a′. Qt(s
′, a′) is the speculation on future rewards. α and γ are the learning rate and

discount factor, respectively. We choose α = 1
(1+t)0.77

to increase the convergence rate to a

satisfactory level according to [90]. We choose γ = 0.9 according to [90] [89] to stay near

the optimal zone while encouraging the agent to explore more states.

In Algorithm 3.2, the number of redundant or innovative packets is not determined

by the actions; the action only tells the CMT-SCTP to either “send a redundant packet”

or “send an innovative packet”. However, the classifier uses the number of redundant or

innovative packets so far as a feature to determine the decodability or non-decodability

state of the system. Hence, the classifier does not change the definition or feature of any

state. As an example, an agent might be used to guide a robot to a goal state using right

or left commands as actions. Then, the MDP might use the number of right and left

commands so far as a feature to determine if the robot is moving towards the right state.

3.2.2 Receiver side

Coded CMT-SCTP at the receiver side consists of a decoding module and a slightly changed

CMT-SCTP.
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Algorithm 3.2 Learning Agent of sub-flowi

{Initialization}
1: γ = 0.9, α = 1

(1+t)0.77

2: Set matrix Qi to zero
{Execution of the Learning Agent module}

3: if first decision epoch then
4: Determine the state s, using logistic regression classifier [99]
5: Choose an action that maximizes Qt+1(s′, a′)
6: Notify CMT-SCTP on new action, i.e., redundant or innovative
7: end if
8: for each decision epoch except the first one do
9: Determine the state s, using logistic regression classifier [99]

10: Calculate the reward based on s, and the action a
11: Update Q-learning rule [89]

Qt+1(s, a) = (1− α)Qt(s, a) + α[r(s, a) + γmax
a′

Qt(s
′, a′)] (3.2)

12: Calculate all possible Qt+1(s′, a′) where s′ is the next possible state and a′ is the set of
available actions in that state.

13: Choose an action that maximizes Qt+1(s′, a′)
14: Notify CMT-SCTP on new action, i.e., redundant or innovative
15: end for

Decoding module

At the receiver side, upon arrival of a new packet from any of the paths, if the new

linear equation carried by the packet is independent of the existing equations (that is if an

innovative packet arrives) and results in “see”-ing the next packet, the packet is buffered

and the coding coefficients are retrieved from the packet header and added to the decoding

matrix as a new row. The term “seen” was first introduced by Sundararajan et al. [87].

Based on Sundararajan’s definition, packet pi is seen when the receiver admits a packet

with a linear equation in the form of pi + Σjαjpj in which j > i. After adding each new

row, a Jordan-Gaussian elimination process is deployed to the decoding matrix to retrieve

any original packet and deliver the decoded packet to the upper layer. The decoding

module, then, informs the CMT-SCTP protocol suite on the number of seen packets so

far. Algorithm 3.3 summarizes the decoding module mechanism on the receiver side.
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Algorithm 3.3 Receiver Side
{Initialization}

1: numSeen = 0
2: for each sub-flowi do
3: numSeeni=0
4: end for
{Handling Events}

5: if data packet from sender then
6: if Innovative packet arrives then
7: numSeen+ +
8: numSeeni + +

{where i is the sub-flow the innovative packets arrives from}
9: Add the packet to the receive buffer

10: Retrieve the coding header
11: Add the linear combination to the decoding matrix and perform Gauss-Jordan elimina-

tion
12: Pass any newly decoded packet to the upper layer
13: Inform CMT-SCTP suite of numSeen and each numSeeni
14: else if Redundant packet arrives then
15: Drop the packet
16: end if
17: end if

Changes to standard CMT-SCTP

Coded CMT-SCTP does not change the selective acknowledgment mechanism of standard

CMT-SCTP. However, when the receiver sends a SACK, instead of inserting the expected

TSN number, the receiver inserts the expected number of seen packets in the acknowledg-

ment field (based on Sundarajan’s degree of freedom concept) [86][87].

3.3 A Queuing Theory Based Proof on the Performance Gain

of Coded CMT-SCTP

We use a queuing theory approach to prove that network coding can effectively solve the

receive buffer blocking issue. To provide a fair comparison, we use a concept called the

virtual queue at the receiver side and compare the average number of packets in the virtual
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queue in both standard CMT-SCTP and the coded CMT-SCTP. In network coding, the

virtual queue is defined as the difference between the number of original packets involved

in the coding process and the number of seen packets so far. Virtual queue shows how

many packets are required to decode a group of original packets. Decoding at the receiver

happens every time the length of the virtual queue becomes zero. Then, the receiver

empties its receive buffer by delivering all the decoded packets to the application layer

(called unloading of receive buffer). Therefore, the average length of the virtual queue

in a coded multi-path transport layer is a reasonable metric to monitor the unloading of

receive buffer. We adapted the virtual queue concept to the standard CMT-SCTP and

coded CMT-SCTP (called it re-sequencing queue) to make the comparison possible. We

defined the re-sequencing queue as the difference between the string sent by the sender side

and the one received at the receiver side. Imagine that sender has the following packets

in the buffer with TSNs of 1,2,3,4,5,6. The sender transmits the packets and the receiver

gets the following string 1,2,4,5,6. Although the receiver has all the packets except 3, the

transport layer can only deliver packets 1 and 2 to the application layer and packets 4,5,6

have to stay in the receive buffer. Comparing the sender string and the receiver string,

there is a difference of 1 between the two strings (packet 3 is missing) and the difference

causes the receiver to stall other packets in the buffer. When the difference between the

sender string and receiver string is 0, i.e., there is no difference between the receiver and

sender string, then the receive buffer gets emptied.

3.3.1 Virtual queue in the coded multi-path transport layer

We use the findings of [100] to calculate the virtual queue characteristics. We assume that

packets arrive to the sender with a Bernoulli process at rate λ. This is a safe assumption

considering the fact that most of network queuing theory modeling assumes a Poisson

arrival process which is the continuous form of Bernoulli distribution. In concurrent multi-
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path data transfer, we have multiple transmission paths between the sender and receiver; if

we assume the ith transmission path delivers the data with probability of µi in each time slot

(exponential distribution by definition), then all transmission paths hold an exponential

distribution with mean service rate of µ =
∑
µi in coded CMT-SCTP. The Markov chain

for the length of the virtual queue is presented in Figure 3.2.

0 1 2

λµ̄

µλ̄

λµ+λ̄

λµ+µ̄λ̄ λµ+µ̄λ̄
λµ̄ λµ̄

µλ̄ µλ̄

Figure 3.2: Markov chain for the length of virtual queue in coded CMT-SCTP.

If ρ = λ
µ
< 1, then the chain is positive recurrent and the steady state probability of

the virtual queue is πi = (1−α)αi [101], where α = λ(1−µ)
µ(1−λ)

. Consequently, the steady state

expected length of the virtual queue (E{qv(t)}) is calculated as in equation (3.3):

E{qv(t)} =
∞∑
i=0

i.πi = (1− µ)
ρ

1− ρ
(3.3)

Then, the average time it takes for the receive buffer to unload is proportional to the

steady state expected length of the virtual queue in equation (3.3).

3.3.2 Re-sequencing queue in standard multi-path transport layer

Based on [102], the orderly transmission of the packets over a channel can be depicted as a

tandem network as in Figure 3.3. The first server represents the channel behavior and the

second server represents the re-sequencing behavior of the receive buffer. The first queue

associated with the first server is basically representing all the different paths between

the sender and the receiver. Because we assume an exponential distribution for the ith

36



Chapter 3. Receive Buffer in CMT-SCTP

transmission path erasure behavior, multiple queues can be substituted with one queue

with an exponential behavior. We know the arrival rate of the first queue, but not the

arrival rate of the second queue which is equal to the departure rate of the first queue. The

Burke’s theorem [102] offers a great solution for sequential queues. According to Burke’s

theorem, for a M/M/1 queue, M/M/c or M/M/∞ queue in a steady state, the arrival rate

is the same as the departure rate [102]. Using Burke’s theorem [102], the arrival rate of the

second queue is λ; that is, same as the departure rate of the first queue and is independent

of the service rate of the first queue. As such, we can analyze the behavior of both queues

separately.

λ µ

server 1 server 2

ξ

Figure 3.3: Queuing schematic for the re-sequencing process in standard multi-path data
transfer; server 1 models the channel behavior while server 2 models the re-sequencing
behavior of receive buffer.

The Markov chain of the first queue in Figure 3.3 is exactly the same as that in Figure

3.2. If we assume that the service rate of the second queue is ξ, i.e., in-order packet arrivals

have the probability of ξ and out of order packet arrivals have the probability of 1 − ξ,

then the Markov chain for the re-sequencing behavior of the receive buffer (i.e., the second

queue in Figure 3.3) looks like that in Figure 3.4.

0 1 2

λξ̄

λ̄ξ

λξ+λ̄

λξ+λ̄ξ̄
λξ̄ λξ̄

λ̄ξ λ̄ξ

λξ+λ̄ξ̄

Figure 3.4: Markov chain for the re-sequencing behavior of the receive buffer.

If ρ1 = λ
µ

associates with the first queue and ρ2 = λ
ξ

associates with the second queue,
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then based on [101], the steady state probability of each queue can be calculated as equation

(3.4) and (3.5), respectively.

π1
i = (1− α1)αi1, α1 = λ(1−µ)

µ(1−λ)
(3.4)

π2
i = (1− α2)αi2, α2 = λ(1−ξ)

ξ(1−λ)
(3.5)

Because the behavior of the two queues are independent of each other, the total number

of re-sequenced packets (E{qr(t)}) can be calculated according to equation (3.6).

E{qr(t)} = E{size of queue1}+ E{size of queue2}

=
∞∑
i=0

i.π1
i +

∞∑
j=0

j.π2
j

= (1− µ)
ρ1

1− ρ1

+ (1− ξ) ρ2

1− ρ2

(3.6)

E{qr(t)} shows the average amount of difference between the actual sequence transmitted

by the sender and the one that arrives at the receiver. A higher E{qr(t)} results in higher

receive buffer occupancy rate and longer waiting time for the packets to be transfered to

the upper layer. Comparing equations (3.3) and (3.6), one can easily conclude E{qr(t)} >

E{qv(t)}. That is, on average the receive buffer of the coded transport layer unloads more

frequently and the wait times of the packets are less as compared to those of the standard

CMT-SCTP. Therefore, we conclude that the probability of receive buffer blocking issue

in the coded CMT-SCTP is smaller as compared to in the standard CMT-SCTP.
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3.4 Testbed Experiments For Accuracy Analysis Of The

Q-learning Algorithm

In our earlier work [1], we used a naive Bayes classifier with the Q-learning agent to

determine the state of the network. However, the performance of the naive Bayes classifier

can be compromised because of the unrealistic assumption that all features are equally

important and independent given the value of the class. To increase the accuracy of each

Q-learning agent in determining the state of the system, naive Bayes classifier is substituted

by logistic regression [99]. Although logistic regression is not as biased as naive Bayes

towards the features, it suffers from over-fitting. We propose using logistic regression

classifier with some correction to the prior estimation and data sampling to prevent the

over-fitting behavior. In this section, a comparison between the performance of the naive

Bayes classifier and logistic regression classifier is studied via testbed experiments.

A

B

C
D

E

F
G

Raspberry Pi
wireless interface on channel 1
wireless interface on channel 6
wireless interface on channel 11
wired interface
laptop used for pinging

Figure 3.5: Testbed topology - showing multiple data paths for CMT-SCTP.

For evaluation purposes, we used the testbed setup described in 2.3 and Figure 3.5. In

terms of the data traffic, we created two multi-homed CMT-SCTP associations between

nodes B-G and C-G. In addition, we created a single-homed CMT-SCTP association be-

tween nodes A-G. Nodes A, B, and C each send 10,000 SCTP packets to node G during

the experiment. Each SCTP packet carries 1000 bytes of application data. The data paths
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are as follows:

• node A: A-D-G

• node B: B-D-G and B-F-D-E-G

• node C: C-D-G and C-F-D-E-G

To guarantee path discrepancies, we created two types of interference traffic in the

network. One interference traffic is generated by the two CMT-SCTP associations set

up between nodes A-G and C-G to create path discrepancies between the sub-flows of

the CMT-SCTP associations between nodes B-G and C-G. Nodes A and C send SCTP

packets carrying 1000 bytes of application data to node G during the experiment. The

other interference traffic is generated by a laptop with a wireless interface on channel 11.

The laptop pings the wireless interface of node E at different rates of 10, 20, 30, 40, 50 ping

packets per second. Ping packets contribute as a controllable source of interference traffic

to create path discrepancies for the sub-flows of the CMT-SCTP association between nodes

B-G.

Because we investigated the accuracy of the classifier within the learning agent which

is in charge of determining the state of the packet transmission over the path as either lost

or received, we collected the training data and label them based on the receiver (node G)

output on the status of each packet.

The accuracy of a machine learning algorithm is defined as in equation (3.7). However,

accuracy is not the only factor in choosing the right learning algorithm for a data set.

Another important factor is the sensitivity of the machine learning mechanism to the

positive class incidents, especially when dealing with data sets of rare positive class. In

a data set with a rare positive class population, the learning algorithm might have a

high accuracy due to over-fitting and classifying all samples as negative class or the large
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number of negative class samples. As such, another factor has to be measured to show the

sensitivity of the learning algorithm towards the positive class incidents. The sensitivity

of a learning mechanism is defined as in equation (3.8).

Accuracy =
number of correct predictions

sample size
(3.7)

Sensitivity =
correct predictions of the positive class

total number of prediction of positive class
(3.8)

Although naive Bayes holds a reasonable accuracy, the sensitivity of the learner to the

the rare positive incidents is very low. Logistic regression on the other hand, when used

over an endogenous data set, holds a very high accuracy and sensitivity measure. The

strategy for endogenous selections is to collect the instances of the positive class and then

choose randomly from within the negative class instances. Reference [99] suggests to choose

as many as positive class within the samples from the negative class to create a balance

training set. Logistic regression classifier with prior correction uses the pre-knowledge

about the positive class to adjust its prediction. Both prior correction and endogenous

sampling are methods to increase the sensitivity of the logistic regression classifier.

For our Q-learning mechanism which is responsible for the timely transmission of the

redundant packets to guarantee the solvability of the coding process at the receiver side, the

sensitivity of the classifier is crucial. For a coding process, not only it is important to send

enough redundant packets to cover for all the random losses, but also it is crucial to send

the redundant packets timely, to avoid any unwanted delay for decoding at the receiver.

To show different levels of accuracy, we run naive Bayes, standard logistic regression,

and logistic regression with prior correction (our proposal in this chapter) over a random

sampling training set and over an endogenous training set.

All data sets collected from the testbed in Figure 3.5 are presented in Table 3.1 which
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Classifier Training set type Accuracy Sensitivity
Naive Bayes random sampling 60% 1%
Naive Bayes endogenous sam-

pling
69% 45%

Standard logistic regression random sampling 99% 13%
Standard logistic regression endogenous sam-

pling
95% 70%

Logistic regression with prior correc-
tion

random sampling 99% 13%

Logistic regression with prior correc-
tion

endogenous sam-
pling

95% 75%

Table 3.1: Performance comparison between naive Bayes and logistic regression classifiers.

summarizes the different accuracy and sensitivity levels of naive Bayes, standard logistic

regression, and logistic regression with prior estimation correction. As shown in Table 3.1,

logistic regression with prior correction is the logical choice that can satisfy both sensitivity

and accuracy needs. Thus, we used logistic regression with prior correction in Q-learning

agents’ classifiers for the performance studies in Section 3.5 and 3.6.

3.5 Simulations For The Performance Of Coded CMT-SCTP

We used QualNet 7.1 [103] for our simulations. The standard CMT-SCTP module in

QualNet was developed by Ilknar Aydin [74]. We used this CMT-SCTP module to develop

our coded CMT-SCTP module in QualNet as well.

1 2 3 4 5

path of sub-flow 1

1 2 3 4 5

Chain A

Chain B

path of sub-flow 2

wireless interface on channel 1

path of interference  
traffic

wireless interface on channel 6

Figure 3.6: Simulation topology - Actual data flow is over chain A, while interference traffic
is over chain B.
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We set up a multi-hop wireless network of 5 multi-homed nodes located in a chain

topology (Figure 3.6, Chain A). Each multi-homed node in the chain is equipped with two

IEEE 802.11b wireless network interfaces tuned to two different channels (1 and 6) to avoid

any interference among the CMT-SCTP sub-flows. The data rate for IEEE 802.11b is 2

Mbps and the RTS/CTS mechanism is on. The transmission range is around 370 meters,

the interference range is around 812 meters, and the carrier sensing range is around 520

meters for both of the wireless interfaces. Neighboring nodes in the chain are 300 meters

apart. A data source over CMT-SCTP is located at node 1 of chain A and continuously

transmits data to node 5 of chain A. CMT-SCTP uses RTX-CWND as the re-transmission

policy. Each SCTP data chunk carries 1000 bytes of application data.

As we are interested in the performance of coded vs. standard CMT-SCTP in the

presence of severe path discrepancies between the CMT-SCTP sub-flows, we set up a

second chain of nodes in the network (Figure 3.6, Chain B). The number of nodes in chain

B is the same as the number of nodes in chain A. However, each node in chain B has only

one IEEE 802.11b wireless interface operating on channel 1 and with the same wireless

properties as the first wireless interface of the nodes in chain A. Chain B is located 450

meters away from the chain A. To create background traffic (i.e., interference and hence

loss) for the CMT-SCTP sub-flow running on path 1 of chain A, we set up CBR (Constant

Bit Rate) traffic on chain B for the entire simulation time. Each CBR packet carries 1000

bytes of data. We vary the CBR traffic rate as 0, 4, 8, 16, 24, 50, 60, 70, and 80 packets

per second to create different levels of background traffic in path 1 of chain A.

Each simulation configuration is run 30 times and average values are calculated with

95% confidence intervals. The simulation time is 7 minutes and the measurements are done

from 2nd to 6th minute to ensure stable results. To show that coded CMT-SCTP effectively

handles receive buffer limitations, we tested our scheme with different receive buffer sizes.
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Our goal is to show that receive buffer limitation does not have a substantial effect on the

performance of coded CMT-SCTP unlike the standard CMT-SCTP. Based on the findings

of Aydin et al. [71], a small receive buffer size (less than 128KB) causes performance

degradation in standard CMT-SCTP. Therefore, we ran simulations for unlimited buffer

size as well as 16 KB and 8 KB receive buffer sizes.

Note that, our simulation results over the topology of Figure 3.6 can be generalized

to real life multi-hop wireless networks. In real life scenarios, different number of hops

or more complicated network topologies would only contribute to the path discrepancies

of the sub-flows of CMT-SCTP; therefore, the simulation results based on the simulation

set up we used provides a strong evidence for the validity of our coding scheme over more

generalized scenarios.

We measured the number of bytes delivered to the receiving application over time

(goodput) of standard CMT-SCTP vs. coded CMT-SCTP to show the effectiveness of our

network coding algorithms in a multi-hop wireless setting.

Figures 3.7(a), 3.7(b), and 3.7(c) compare the performance of coded CMT-SCTP vs.

standard CMT-SCTP when the receive buffer size is unlimited, rBuf = 16K, and

rBuf = 8K. The rule of thumb to choose receiver buffer size is that the size has to be

at least the bandwidth-delay product of the path (Round trip time multiply by the link

capacity). For our simulation setup, the link has a data rate of 2Mbps; with a RTT of

10 to 20ms, the bandwidth-delay product of the network is roughly around 2.5K to 5K

bytes. Thus the receive buffer sizes of 8K or 16K are large enough, yet under 128K to see

the receive buffer blocking issue.

As depicted in Figure 3.7, both coded CMT-SCTP and standard CMT-SCTP perform

similarly with an unlimited receive buffer. However, when the receive buffer size is de-

creased to 16KB, the performance of standard CMT-SCTP degrades drastically while the
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Figure 3.7: Goodput of standard CMT-SCTP vs. coded CMT-SCTP (proposed in this
chapter) vs. coded CMT-SCTP ver. 1 [1] with different receive buffer (rBuf) sizes, in
simulation.

coded CMT-SCTP performs as if the receive buffer size is unlimited. Our results show

that coded CMT-SCTP outperforms the standard CMT-SCTP by a factor of 20% to 47%.

When the receive buffer size is decreased to 8KB, the performances of both standard and

coded CMT-SCTP suffer; however, coded CMT-SCTP still out performs the standard

CMT-SCTP by a factor of 22% to 62%. Note that, the performance of coded CMT-CMT

stays close to the ideal performance (when the buffer size is unlimited) as the receive buffer

size gets smaller, showing the effectiveness of coded CMT-SCTP to solve the receive buffer

blocking problem in the standard CMT-SCTP.

We also measured the performance of (the older) version 1 of our coded CMT-SCTP

proposal in [1] for comparison and included the results in Figure 8. Older coded CMT-
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SCTP uses a single Q-learning agent for the entire CMT-SCTP association while our

current coded CMT-SCTP proposal in this chapter has a group of learning agents (one

agent per sub-flow of the CMT-SCTP association). Expectedly, the performance of older

and those of current versions of coded CMT-SCTP are similar when the sub-flow paths have

similar loss rates (both paths have low interference). However as the discrepancy in the loss

rates of the two sub-flow paths increases, the performance of older version of coded CMT-

SCTP gets worse. In the presence of severe path discrepancies, the older version of coded

CMT-SCTP association stalls because of over-estimating the required number of coded

packets and hence flooding the network with redundant packets. However, the current

coded CMT-SCTP proposal estimates the number of coded packets independently and

more correctly for each sub-flow path and does not send as much unnecessary redundant

packets to the network.

3.6 Testbed Experiments For Performance Of Coded

CMT-SCTP

In this section we investigate the performance of our coded CMT-SCTP using the wireless

testbed in Figure 3.5. The experiment configuration and data and interference traffic set

up are all the same as described in Section 3.4. The objective of the experiments is to

compare the performance of our coded CMT-SCTP with the standard CMT-SCTP and

CMT-SCTP with buffer splitting [2] scheme.

Our main claim is that coded CMT-SCTP enhances the performance by eliminating the

receive buffer blocking in presence of path discrepancies. As such, a testbed with dissimilar

independent paths for each sub-flows within an CMT-SCTP association is a prefect set up

for proof of concept. We measured the space left in the receive buffer of node G which is

data receiver of SCTP association between nodes B and G. Each experiment is repeated 10
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times with the same set of parameters to make sure that the results are accurate. Figure

3.8 shows the percentage of packets that experience receive buffer blocking during the data

transmission versus the ping message rate to node E. Note that the ping messages are used

to create interference and hence loss in one of the sub-flows of the B-G association.
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Figure 3.8: Percentage of packets in CMT-SCTP association that experience receive buffer
blocking for standard CMT-SCTP vs. coded CMT-SCTP.

As depicted in Figure 3.8, as the receive buffer (rBuf) size decreases, the percentage

of packets experiencing rBuf blocking increases for the standard CMT-SCTP. Note that,

the percentage of the rBuf blocking incidents increase by 6 times for rBuf size of 8 KB

as compared to the unlimited rBuf size for the standard CMT-SCTP. On the other hand,

coded CMT-SCTP packets experienced no rBuf blocking during the experiment. (See the

coded CMT-SCTP curves laying at zero on the x-axis in Figure 3.8)

We also measured the goodput (amount of bytes delivered to the receiving application

over the experiment time) of the CMT-SCTP associations (see Figure 3.9).

Coded CMT-SCTP effectively increases the goodput by a factor of 50% as compared

to the standard CMT-SCTP and CMT-SCTP with buffer split [2] when the receive buffer

size is set to max. size in Linux. The goodput of coded CMT-SCTP becomes 40% better
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Figure 3.9: Goodput of the standard CMT-SCTP vs. CMT-SCTP with buffer splitting [2]
vs. coded CMT-SCTP with different rBuf sizes, over the testbed.

than the standard CMT-SCTP and CMT-SCTP with buffer splitting when the buffer

size gets reduced to 16 KB. These results show the effectiveness of coded CMT-SCTP.

However, when the receive buffer size becomes 8 KB, coded CMT-SCTP seems to lose its

effectiveness as compared to the other two schemes. The reason is that the receive buffer

eventually becomes too small to handle overhead caused by the redundant packets. When

using CMT-SCTP, the out of order packet arrivals, not only triggers the receive buffer

blocking, but also causes unnecessary retransmission of packets. The CMT-SCTP with

buffer splitting seems to handle the packet retransmissions better for really small receive

buffer sizes. Comparing Figure 3.9(c) with its simulation counterpart, coded CMT-SCTP

seems to perform worse than the standard CMT-SCTP in the testbed experiment while

it performs better than the standard CMT-SCTP in simulation results for rBuf size of
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8 KB. The reason behind this behavior in the testbed is the CPU cycle of Raspberry Pi.

Raspberry Pi has a “limited CPU cycle” [104]; as such in computationally demanding tasks,

the performance of the buffer becomes a bottleneck on the overall performance as buffer

size gets smaller [104]. According to Raspberry Pi Foundation, the overall performance of

the Pi’s processor is comparable with a PC using an Intel Pentium 2 processor clocked at

300MHz which introduces some limitation for computationally demanding tasks.

3.7 Discussion

In this section, we discuss the delay overhead of coded CMT-SCTP and also how it can

be integrated into more general networking scenarios, particularly to the heterogeneous

networks. Network coding increases the complexity of the mechanism by combining the

packets instead of simply forwarding the packets. The decoding delay at the receiver

depends greatly on the coding method at the sender. Because we used random linear

network coding, the decoding delay is in the order of O( 1
1−ρ) where ρ = λ

µ
is the network

load. λ is the arrival rate for the traffic and µ is the service rate of the channel [105–107].

In terms of integrating coded CMT-SCTP into the legacy networks, a transport pro-

tocol’s end points negotiate the options of the connection during handshake and can load

the necessary end-to-end modules to support wireless links. Similarly, coded CMT-SCTP

option can be negotiated during handshake to work in harmony with the other legacy proto-

cols in the network. In terms of the use of coded CMT-SCTP in heterogeneous networks,

there are two main approaches in designing a transport protocol that supports wireless

links in the network. The first approach is a transport connection which is established

over the end-to-end path that may have wireless links [108]. The second approach is to

deploy a gateway to separate the wireless and wired portions of the network [109]. Our

coded CMT-SCTP can be adapted to work with both of these approaches. For the first
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approach, the proof of concept is already provided in this chapter with the experiments

using the heterogeneous testbed in Figure 3.5. However, more in-depth investigation is

needed to fine-tune the Q-learning algorithm to choose features that fully represent the

mixed network characteristics. The second approach is more practical, as the wireless part

of the network can benefit from the better performance of the network while it is shielded

from the wired part of the network. The proxy gateway basically creates a shield between

the two parts and provides the necessary changes from one protocol to another when the

packet passes through the gateway.

3.8 Conclusion

Network coding is shown to enhance the capacity of multi-hop wireless networks. In this

work, we showed that network coding can also be used as a tool to eliminate the inherent

receive buffer blocking issue during the concurrent multi-path transfer of data and hence

improve throughput. We proposed an adaptive network coding scheme for CMT-SCTP,

called coded CMT-SCTP, and used an adaptive Q-learning algorithm to control the num-

ber of redundant packets to effectively recover the lost packets. Our coded CMT-SCTP

is highly effective in alleviating the receive buffer blocking. Our coded CMT-SCTP out-

performs the standard CMT-SCTP in terms of throughput up to 62% depending on the

receive buffer size and path dissimilarities. Testbed findings support the simulation and

theoretical results.
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A Smart Fairness Mechanism for Concurrent

Multipath Transfer in SCTP over Wireless Multi-hop

Networks

4.1 Introduction

In this chapter, we studied the fairness behavior of CMT-SCTP on a multi-hop wireless

testbed. We introduced a Q-learning distributed mechanism to enhance fairness in SCTP

association. The proposed method uses RL mechanism to acquire knowledge about the

dynamics of the network. Consequently, the acquired knowledge is used to choose the best

action to improve the fairness index of the network. We evaluated our proposal against the

standard CMT-SCTP and resource pool CMT-SCTP (CMT/RP-SCTP). Our proposal

outperforms the available fairness mechanisms for CMT-SCTP by a significant margin.

Fairness of CMT-SCTP is still an open issue and well under discussion as there exists so

many unanswered questions on this topic. Our investigation contributes to the field in

three ways:

(a) It is a known fact that the window based transport protocols are not designed for the

imperfections of the wireless multi-hop network and tend to act unfairly against flows

coming from nodes farther away from the gateway [110], [48], [55]. SCTP is not an

exception as well; however, when using CMT-SCTP, the goal is not to compromise

fairness of the base protocol to get a higher bandwidth utilization or throughput.
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As such, fairness consideration has to be integrated within any adds-on algorithm

in multipath transport protocols. The above unaddressed concern motivated us to

evaluate the fairness of CMT-SCTP against non-CMT flows that are coming from

farther away hops in a multi-hop wireless environment. Our investigation reveals

that CMT-SCTP is indeed unfair towards flows coming from farther away hops.

(b) We used our findings to develop a dynamic distributed fairness mechanism which

alleviates the aggressive behavior of CMT-SCTP towards non-CMT flows coming

from farther away hops.

(c) Our state of the art fairness mechanism, Q-learning CMT-SCTP, enhances the fair-

ness behavior of CMT-SCTP tremendously. We compare the performance of our

proposal with the standard CMT-SCTP and CMT/RP-SCTP; the comparison con-

firms that Q-learning CMT-SCTP significantly outperforms the available fairness

mechanisms. Moreover, Q-learning CMT-SCTP is capable of supporting different

levels of quality of service (QoS) based on user demand.

The present chapter is divided into the following parts: Section 4.2 presents the results

of investigation and measurements of CMT-SCTP in different scenarios ( part (a) of the

contribution ). In Section 4.3, the proposed dynamic distributed fairness mechanism is

explained elaborately. The evaluation of the proposed algorithm and a brief discussion on

comparable available mechanisms is presented in Section 4.4. Section 4.6 concludes this

chapter.

4.2 Study of CMT-SCTP Fairness

To investigate the fairness of CMT-SCTP and compare it with SCTP, we set up a multi-

hop wireless testbed and measured the average throughput of flows in different scenarios
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(refer to Section 2.3 for testbed setup details). To create a test-bench for comparison,

the average throughput of node B is measured when sending data over SCTP. Then, the

average throughput of node B is measured when sending data over CMT-SCTP. Comparing

the two values gives us a good insight on how aggressive CMT-SCTP is compared to its

based protocol SCTP.

A

B

C

D

E

F

G

Raspberry Pi
Flow 1: ABDG

Flow 2: BDG, BEDFG
Flow 3: CDG, CEDFG

Figure 4.1: Testbed topology.

Figure 4.1 shows the testbed topology. Node A has only one wireless interface; while

each of nodes B, C, and G has two wireless interfaces. Node D is a forwarder node that

has one wireless interface. Each of nodes E and F has one wireless interface. The testbed

is setup in a way that the first interface of nodes B, C and G communicates with node

D. The second interface of nodes B and C communicates with node E, while the second

interface of node G communicates with node F. The data collections took place in different

hours of the day to make sure that all possible outcomes are covered in our data set.

We measured network statistics in 5 different scenarios:

• scenario 1: all source nodes use TCP

• scenario 2: all source nodes use TCP, node B uses single-homed SCTP

• scenario 3: all source nodes use TCP, node B uses CMT-SCTP with two interfaces
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• scenario 4: all source nodes use single-homed SCTP

• scenario 5: all source nodes use single-homed SCTP, node B uses CMT-SCTP

Scenario 1 is designed to act as a benchmark to get a better insight on fairness behavior

of CMT-SCTP as compared to SCTP and TCP. Scenario 2 is designed to reveal the dif-

ference between TCP and SCTP performance over a wireless multi-hop setting. Scenario

3 is designed to reveal any unfairness in CMT-SCTP in comparison to its base protocol

SCTP in scenario 2. In each of these scenarios, we only changed one parameter on one

node to make sure that any changes in the result is caused by the transport layer perfor-

mance. Scenarios 4 and 5 are designed to monitor the fairness behavior of CMT-SCTP

against single-homed SCTP. The measurement results from the above experiments provide

us with enough evidence on CMT-SCTP fairness. All scenarios are run for 50 times to

create an acceptable result within the 95% percentile confidence interval.

To compare performance of difference scenarios, we measured the throughput of each

flow in kbps and Jain’s fairness index in each scenario. Jain’s fairness index is defined as

[111]:

J(x1, x2, ..., xn) =
(Σn

i=1xi)
2

nΣn
i=1x

2
i

(4.1)

where xi is the data rate of the ith flow. The measurement results of the above scenarios

are presented in Table 4.1.

Table 4.1 represents the average throughput of the competing flows in the above sce-

narios. Looking into the first column of Table 4.1, when both nodes A and B use TCP

to transfer data, node B which is located in a closer hop-count from node G, i.e. desti-

nation, has a higher throughput. We are not going to elaborate on why TCP is not fair

to flows with different number of hops to destination as there exist sufficient literature on

the reasons behind this behavior. The measurements in scenario 1 and scenario 2 show

that TCP and single-homed SCTP have similar fairness behavior when it comes to the
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source scenario scenario scenario scenario scenario
node 1 2 3 4 5

A 1050.54 822.55 225.94 396.68 120.33

B 4304.12 2892.51 3370.45 2962.86 2398.18

Table 4.1: Throughput comparison of different scenarios. In scenario 1 of Figure 4.1, nodes
A and B send data using TCP. In scenario 2, all sources except node B use TCP; node
B uses SCTP. Scenario 3 is similar to scenario 2; however, node B uses CMT-SCTP. In
scenario 4, all nodes use SCTP. Scenario 5, all nodes use SCTP, node B uses CMT-SCTP.
All the above numbers are measured in kbps.

flows coming from farther away nodes. SCTP and TCP share similar congestion control

mechanism, as such similar results are expected in scenario 1 and 2. However, as stated in

Table 4.1, SCTP on node B has lower throughput as compared to TCP in scenario 1. The

reason behind the drop in throughput of SCTP is the processing power of Raspberry Pi.

SCTP uses more CPU cycle per transfer as compared to TCP [112]; therefore, the SCTP

throughput takes a plunge in scenario 2. Our measurements showed that when there are

no other flows in the testbed, TCP source on node A can have an average throughput of

1443 kbps, which is 30% more than the throughput of node A in scenario 1.

Measurements of scenario 2 show that there is not a huge difference between perfor-

mance of single-homed SCTP and TCP in terms of fairness towards flows coming from

nodes farther away from destination. The measurement results in Table 4.1 confirms that

CMT-SCTP (scenarios 3 and 5) starves flow A more as compared to single-homed SCTP

(scenarios 2 and 4). The third column in Table 4.1 shows that the average throughput

of CMT-SCTP in node B is 16% higher than the average throughput of SCTP in node B

in scenario 2. Having more than one interface provides node B with more opportunities

and eventually a higher share of network resources, which causes an 80% drop in average

throughput of node A as compared to scenario 1, and a 70% drop when compared to sce-

nario 2. It is fair to conclude that CMT-SCTP has a more aggressive congestion control
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mechanism as compared to SCTP when it interacts with non-CMT flows. In scenario 4, all

source nodes use single-homed SCTP to send data. Measurement results depicted in Table

4.1 for scenario 4 show that the SCTP congestion control mechanism is more aggressive

towards other SCTP flows that are coming from farther away hops as compared to TCP.

Scenario 5 shows that CMT-SCTP is even more aggressive towards other non-CMT flows

as compared to SCTP and TCP.
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Figure 4.2: Fairness comparison of different scenarios. In scenario 1, node A and B in
Figure 4.1 send data using TCP. In scenario 2, all sources except node B use TCP; node
B uses SCTP. Scenario 3 is similar to scenario 2; however, node B uses CMT-SCTP. In
scenario 4, all nodes use SCTP. Scenario 5 is similar to 4 except for node B that uses
CMT-SCTP.

Figure 4.2 depicts Jain’s fairness index for different scenarios; the Jain’s fairness index

has not changed drastically from scenario 1 to scenario 2. Scenario 3 reveals the impact of

CMT-SCTP in comparison with SCTP.

To take a closer look into the factors that contribute to the unfair behavior of CMT-

SCTP, we monitor some of the parameters of the transport layer and realize that the size

of congestion control window plays a crucial role in the outcome, as shown in Figure 4.3.

The congestion window size of the SCTP association on node B in scenarios 2, 3, 4, and 5

is monitored in all experiments via sampling. The average congestion window size is then
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calculated for the experiments in scenarios 2, 3, 4, and 5 and graphed for each experiment

(we only include 40 experiments on the x axis). The solid lines in Figure 4.3 show the

average congestion window size of node B when using CMT-SCTP in scenarios 3 and 5,

while the dashed lines represent the average congestion window size of node B when using

SCTP in scenarios 2 and 4. The difference between the solid and dashed lines shows the

aggressive behavior of CMT-SCTP as compared to SCTP in presence of non-CMT flows.
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Figure 4.3: Comparison of the average congestion window size of node B in scenario 2 and
3 of Figure 4.1. The solid line shows the average window size of node B when all sources
are using TCP and node B used CMT-SCTP; while the dashed line shows the average
window size of node B when all source nodes are using TCP and node B uses SCTP.

It is expected that utilizing multiple paths in CMT-SCTP provides the user with higher

throughput; however, the aggregate throughput on all interfaces has to be comparable with

a single-homed SCTP to maintain fairness among the flows. Based on our findings in this

section, CMT-SCTP aggressive congestion control window behavior in maximizing the

aggregate bandwidth causes other non-CMT flows coming from farther away hops to suffer

and struggle for bandwidth. The results of our investigation motivated us to propose a

dynamic mechanism to control the maximum congestion window size as an effective tool
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to alleviate the aggressive behavior of CMT-SCTP against other transport layer protocols.

4.3 Q-learning CMT-SCTP

The investigation in Section 4.2 shows that CMT-SCTP is unfair to non-CMT flows in

a multi-hop wireless environment, especially to those farther away from the destination.

Considering that CMT-SCTP on each node deals with an unpredictable environment over

the wireless multi-hop network, a dynamic fairness solution is required to address the unfair

behavior of CMT-SCTP. Reinforcement learning methods are the best candidate for an

interactive solution capable of adjusting with the changes of the environment as the system

runs. Among various reinforcement learning methods, Q-learning fits our needs the best,

as it is a model-free technique that can be used to find an optimal action-selection policy

for any given finite state MDP.

In this section, we go over our dynamic distributed fairness mechanism, Q-learning

CMT-SCTP, which uses machine learning and network statistics to determine fairness

of CMT-SCTP. Our distributed fairness mechanism controls the aggressive behavior of

CMT-SCTP by using a dynamic damp on the SCTP maximum congestion window.

4.3.1 Features and states

At the beginning of each decision epoch, the learning agent in the CMT-SCTP source

node receives transport layer statistics including round trip time (RTTi), congestion control

window size (cwndi), retransmission timeout (RTOi), and flight size (FLi) on all interfaces.

RTTi, RTOi, cwndi, and FLi are the statistics of the ith interface that are fed to the

learning agent. Subsequently, the agent uses a Bayes classifier to determine the state of

the network as the source node sees it. The MDP inside each CMT-SCTP source node has

the following four states, as shown in Figure 4.4:
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• state 1: the network condition is classified as (fair,unfair) in decision epoch (t− 1,t).

• state 2: the network condition is classified as (unfair,fair) in decision epoch (t− 1,t).

• state 3: the network condition is classified as (unfair,unfair) in decision epoch (t−1,t).

• state 4: the network condition is classified as (fair,fair) in decision epoch (t− 1,t).
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Figure 4.4: The MDP of CMT-SCTP Q-learning agent. The learning agent can choose
one of the actions in each state based on the Q-learning rule.

At the beginning of the learning process, the learning agent does not know the transition

probabilities of the MDP and the associated reward with each transition. To find the

transition probabilities of the MDP, we use the Q-learning algorithm [88].

4.3.2 Actions

After the agent determines the state of the network in each decision epoch, the CMT-SCTP

learning agent chooses an action from the action set A = {decWin(), incWin(), stay()}

and informs CMT-SCTP to adjust the maximum congestion window size. The functions

in the action set A are the tools for communicating the learning agent policies to the
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transport layer. decWin() decreases the maximum congestion window size of the CMT-

SCTP association to half of its current size. incWin() increases the maximum congestion

window size of the CMT-SCTP association to 1.5 times of its current size. stay() maintains

the maximum congestion window size at its current value.

4.3.3 Reward function

The learning agent uses a reward function to receive feedback on the consequences of taking

an action. In the next decision epoch, the environment responds with the new state. Based

on the new state of the MDP, the learning agent inside CMT-SCTP receives a reward. The

reward function is in form of Eq. (4.2):

rt = e
tpt−T
σ (4.2)

where tpt is the throughput of the CMT-SCTP association during decision epoch t. T is

the estimated threshold for fair bandwidth share of CMT-SCTP association.

The reward function plays an important role in the convergence rate of the Q-learning,

and studies suggest that Gaussian reward functions can effectively increase the convergence

rate of the learning while directing the agent toward the goal state [91]. As such, we

choose the reward function in the form of equation (2). Moreover, the chosen action set

in subsection 4.3 provides the agent with the enough tools to control the transport layer

dynamically based on the characteristics of the network. Choosing the right action set is

very critical in the design of the underlying MDP. Providing the Q-learning agent with

a large set of actions in each state results in a prolong convergence time. As such, we

chose to have three actions in each state to shorten the optimization period (increase the

convergence rate) while finding the right maximum congestion window size for CMT-SCTP

to act fairly toward other flows.
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The learning process continues as long as the network is up and running; it basically

works as a memory that can be adjusted according to network changes. Algorithm 4.1 is

the pseudo code of the distributed learning mechanism.

Algorithm 4.1 CMT-SCTP learning algorithm

1: action set ={decWin(), incWin(), stay()}
2: inputs = {RTTi, cwndi, RTOi, FLi}
3: output = {ai ∈ action set}
4: while have packets to send at each decision epoch do
5: get RTTi, cwndi, RTOi, FLi for all interfaces
6: cwnd = Σicwndi
7: RTT =

Σni RTTi
n

8: FL = ΣiFLi
9: RTO =

Σni RTOi
n

10: determine the state of the MDP, st, using the Bayes classifier
11: calculate the reward rt
12: update the Q matrix using Eq. (5.2)
13: choose the action with maximum Q value
14: inform the transport layer to change the maximum congestion window size
15: end while

As time passes, the learning agent develops a memory of all the events and creates a

map of actions; therefore, any changes in the environment can be handled instantaneously

by the agent.

4.3.4 Architecture

Each CMT-SCTP source is equipped with a Q-learning agent. The Q-learning agent sits

in the transport layer. At each decision epoch, the transport layer provides the Q-learning

agent with its statistics. The agent uses the Bayes classifier to determine if the source

node is fair within the decision epoch. Based on the state of the system, Q-learning agent

chooses an action and informs the transport layer about the action. In the next decision

epoch, the Q-learning agent receives the new statistics which reflects the effectiveness of

the taken action. The Q-learning agent uses the outcome to bestow a reward or penalty
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to the action and stores the state-action reward in its memory for future use. The cycle

continues until the Q-learning agent calculates all state-action transition probabilities.

To provide the Bayes classifier with training data, the agent inside each source node

starts to collect data as soon as the node starts transmitting. Because all flows within the

wireless domain pass through the gateway to access the rest of the network, the gateway

has almost an inclusive knowledge of the flow rates within the wireless domain; therefore,

it can determine if a node is being fair to other nodes or not based on its share of network

bandwidth. At the beginning of the learning process, the gateway monitors the average

throughput of incoming flows and labels the flows as fair or unfair using Jain’s fairness

index in Eq. (4.1) and sets a bit in the shut down message of the transport layer. The shut

down message in a CMT-SCTP association is used to notify the sender that the destination

is closing the association and does not accept any new packets. The source node, on the

other hand, monitors the average congestion window size, RTT, RTO, and the flight size

on all interfaces and labels the collected data using the set bit in the shut down message.

After collecting n data points, the Bayes classifier uses the data set for training and there

is no need for the gateway shutdown message feedback. The Q-learning agent starts its

learning after the Bayes classifier has enough data point to classify new observations. The

above design does not add any overhead to the network while providing each node with

an accurate correlation between its local parameters and the global fairness index. We use

Bayes classifier because it is highly scalable and the empirical results shows that it performs

surprisingly well in many domains even the ones containing clear attribute dependences

[113].
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4.4 Evaluation

To evaluate the performance of Q-learning CMT-SCTP, we implemented the Q-learning

mechanism as a Python suite, based on the algorithm 4.1. The Python suite communicates

with transport layer congestion mechanism via action functions (Section 4.2) to tune the

maximum congestion window damp based on the network dynamics in real-time. The

current and new maximum congestion window sizes are accessible and tunable via socket

functions. In our approach, each CMT-SCTP source is equipped with a learning agent

(Python suite). The learning agent monitors the transport layer dynamics in real-time

and determines the state of the MDP in each decision epoch. Based on the current state

of the system, the learning agent decides to take an action via changing CMT-SCTP

maximum window size. To find the optimum maximum window size for CMT-SCTP, the

learning agent uses a reward function which is implemented as a Python suit. As such

the whole agent sits on top of the Kernel and communicates with the Kernel regarding

the necessary actions.s We chose to implement the Q-learning agent on top of the Kernel

to facilitated integration of Q-learning SCTP into standard SCTP on any machine. The

current design does not require any changes to the Kernel which normally exists within

the manufacturer setting; however, it can be added on top of the manufacturer setting for

any machine.

We used the same scenarios as in Section 4.2 to evaluate the performance of our learning

mechanism. We collected 1000 data points as our training set to train the Bayes classifier

and a test set of 1000 points to check the sanity of our classifier. The prediction accuracy

of the Bayes classifier is 79%.

To evaluate the performance of our distributed fairness mechanism, we collected data

over the scenarios presented in Table 4.2. Moreover, we compared the performance against

the standard CMT-SCTP, and CMT/RP-SCTP in scenario 9. To investigate the effec-
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scenario description
1 TCP on node A, standard SCTP on node B
2 TCP on node A, standard CMT-SCTP on node B
3 SCTP on node A, standard SCTP on node B
4 SCTP on node A, standard CMT-SCTP on node B
5 TCP on node A, Q-learning SCTP on node B
6 TCP on node A, Q-learning CMT-SCTP on node B
7 SCTP on node A, Q-learning SCTP on node B
8 SCTP on node A, Q-learning CMT-SCTP on node B
9 SCTP on node A, CMT/RP-SCTP on node B

Table 4.2: Evaluation scenarios

tiveness of our proposal on the standard SCTP, we implemented the Q-learning fairness

mechanism in single-homed SCTP as well and measured the performance of Q-learning

SCTP against standard SCTP and TCP in scenarios 5 and 7. The measurement results

from scenarios 5 and 7 demonstrate that our proposed fairness mechanism can be adopted

to other transport layer protocols.
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Figure 4.5: The Jain’s fairness index of Q-learning SCTP and CMT-SCTP in comparison
with standard SCTP and CMT-SCTP in different scenarios of Table 4.2

Figure 4.5 shows that the Q-learning mechanism boosts the fairness index drastically,

i.e., the Jain’s fairness index of the network rises very close to 1 in scenarios in which Q-

learning CMT-SCTP or Q-learning SCTP is used on node B (the gray bars, scenarios 5, 6,

7, and 8). The dynamic damp on congestion window size does not interfere with congestion
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control mechanism of SCTP; instead, it creates a virtual limit for the available bandwidth

of the source node. Therefore, the dynamic damp controls the number of packets poured

into the channel by slowing down the transport layer and provides other nodes with more

opportunities for transmission. Following a decrease in the number of packets poured to

the channel by an aggressive node, nodes located in farther away hops from the gateway

start to utilize the channel more efficiently.
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Figure 4.6: Average throughput of different scenarios (kbps) in different scenarios of Table
4.2. Scenarios 1,2,3 and 4 are the standard SCTP and CMT-SCTP, while scenarios 5, 6,
7, and 8 are the Q-learning SCTP and CMT-SCTP. Scenario 9 shows the measurement
results of CMT/RP-SCTP.

Figure 4.6 depicts the throughput of the flow coming from node A (bars with the white

background) as compared to the flow coming from node B (bars with the gray background)

in different scenarios. The powerful effect of Q-learning CMT-SCTP in suppressing the

aggressive behavior of the standard CMT-SCTP is obvious when comparing scenario 2 with

6 in Figure 4.6. Although the average throughout of CMT-SCTP on node B decreases in

scenario 6, the throughput of node A increases drastically (5 times as compared to scenario

2). The same trend can be seen for scenario 4 vs. 8 where node B compromises throughput
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to contribute to network fairness. Both scenarios 6 and 8 reveal the effectiveness of our

algorithm in a real life wireless multi-hop setting and in presence of interferences and other

sources of noise.

We used our algorithm with single-homed SCTP as well to investigate the effect of our

fairness mechanism on SCTP. The measurements in Figure 4.6 show that the distributed

fairness mechanism is in fact effective even in single-homed SCTP ( scenario 1 vs. scenario

5 and scenario 3 vs. scenario 7).

4.5 Discussion and Comparison

To propose an effective fairness solution for CMT-SCTP over wireless multi-hop networks,

one has to consider the dynamic nature of the environment as an important design fac-

tor. That is, a dynamic solution that changes strategy based on the network condition

is required. Therefore, the effective solution requires two characteristics: (a) monitor-

ing/learning network conditions, and (b) choosing the correct strategy based on the per-

ceived condition. Reinforcement learning methods meet the design characteristics in (a)

and (b). Among various reinforcement learning methods, Q-learning fits our needs the

best, as it is a model-free technique. Q-learning can be used to find an optimal strategy-

selection policy for any given finite state Markov decision process. The above reasoning

justifies our choice of the fairness solution for CMT-SCTP over wireless multi-hop settings.

The main purpose of Q-learning in our proposed mechanism is to decide which action

to take in the next time slot, i.e., increase, decrease or maintain the maximum congestion

window size. Note that the best application of Q-learning is to learn action-reward func-

tions for stationary settings, which can be proved to converge. It is true that Q-learning

can still get results in the non-stationary environment, such as wireless settings, but the

Q-learning agent will take more time to be aware of the changes. Due to the time-varying
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network conditions, sometimes rapidly, the stationary assumption cannot always hold and

it can make Q-learning less suitable for wireless networks. However, there are ways to make

sure that the convergence rate stays within an acceptable range for dynamic environments.

Using a learning rate of α = 1
(1+t)0.77

brings down the convergence rate to a polynomial in

1
(1−γ)

, where γ is the discount factor [90]. We use a learning rate of α = 1
(1+t)0.77

to ensure

that our proposal complies with the dynamic nature of the environment.

Another consideration while using Q-learning for any scenario is the computational

overhead. Assuming that in a specific scenario action ai alleviates the aggressive behavior

of a specific flow while keeping the throughput at its maximum possible, and τ iteration

is needed before the algorithm converges, then, the overhead of the action to the learning

node is:

Overhead =
1

2
Στ
t=1Σ3

i=1,i 6=jPi(t)O(ai) (4.3)

where Pi(t) is the probability of choosing action i at iteration t and depends on the values

in the Q matrix, and the reward function. O(ai) is the overhead of performing action ai

and τ is the convergence time. Based on [90], in a Q-learning scenario with a polynomial

learning rate, the convergence time depends on covering time L. Covering time indicates

the number of iterations needed to visit all action-state pairs with the probability of at

least 0.5 starting from any pair. The convergence time τ depends on covering time with

the order of Ω(L2+ 1
ω + L

1
1−ω ) with the smallest amount at ω = 0.77. In our experiments,

the covering time is tractable as we have only 4 states and in each state we have 3 actions.

Therefore, the action-state pair space is as large as 81 which leads to a small covering time

and a small convergence time τ . Small convergence time, τ , decreases the accumulation of

terms in equation (4.3) and thus leads to a small overhead.

One of the great advantages of our proposal is the ability to support different levels of

service. Our proposal can offer flexibility to service providers for setting a minimum or a
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Figure 4.7: Average throughput of flows with different level of QoS using Q-learning fairness
mechanism.

maximum for the dynamic damp, and to create different levels of QoS for costumers based

on their demand. To show the flexibility of our Q-learning fairness mechanism in offering

different levels of QoS to costumers who are willing to pay more to gain a bigger share

of bandwidth, we set the maximum congestion window size of node B in favor of node

A and evaluate the performance of our proposed mechanism by measuring the average

throughput. The result confirms our claim that the Q-learning mechanism is capable of

providing different levels of QoS and can be biased towards different flows. In Figure 4.7,

the middle bar shows the result of applying the Q-learning mechanism without any bias

towards any node, the first bar from the left shows the measurement results of using no

fairness mechanism and the third bar from the left reports the effect of a biased Q-learning

mechanism. Tuning the coefficient in the reward function and also assigning limits to the

dynamic damp in the congestion control mechanism can give the provider the flexibility

of offering different amounts of bandwidth share. Figure 4.7 shows that even though the

Q-learning agent is suppressing source B in favor of node A, Jain’s fairness index remains

in the desirable range.
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flavors of link-centric network-centric
CMT-SCTP fairness fairness

CMT-QA [75] not fair in loaded wireless scenarios not explored

Q-learning CMT yes yes

CMT/RP-SCTP [18] yes is not explored

Table 4.3: Brief comparison on different flavors of CMT-SCTP

A brief comparison of available CMT-SCTP flavors has been provided in Table 4.3.

Network-centric fairness is measured using the Jain’s fairness index in Eq. (5.1) and link-

centric fairness is a local measure of fairness over a bottleneck link. Table 4.3 summarizes

the comparison of Q-learning CMT-SCTP with other available mechanisms. Although

CMT/RP-SCTP increases the fairness of CMT-SCTP over a shared bottleneck, the results

of the study of [18] were collected in a highly controlled simulated environment and over a

very simple topology, offering no insight on the behavior of CMT-SCTP in more realistic

settings or wireless networks. Besides, the algorithm offers the service provider with no

say on bandwidth allocation, which is crucial when dealing with scenarios in which the

costumer pays more to access to a higher share of bandwidth. As stated in Table 4.3,

Q-learning CMT-SCTP offers more in terms of both fairness and throughput. Q-learning

CMT-SCTP only needs to be implemented at the sender side and does not require any

changes in the infrastructure. Further, it gives the provider the ability to offer different

levels of QoS to costumers based on their demand, making it a lucrative candidate for the

transport layer of multihomed devices.

4.6 Conclusion

We investigated the fairness behavior of CMT-SCTP against non-CMT flows (both TCP

and SCTP) coming from nodes farther away from the gateway over a testbed in an office
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area network. Our measurements showed that CMT-SCTP is highly aggressive towards

single-homed flows coming from farther away hops. We proposed a distributed fairness

mechanism that uses Q-learning to tune the maximum congestion window size of the

CMT-SCTP association based on the statistics of transport layer to alleviate the aggressive

behavior. We implemented our mechanism in FreeBSD over raspberry pi and tested the

effectiveness of our mechanism in a testbed of raspberry pi’s. Our measurements proved

that the proposed Q-learning fairness mechanism improves the Jain fairness index up to

30% which is a significant increase of average throughput for a starving flow. Moreover, we

used our Q-learning mechanism on single-homed SCTP to investigate whether the fairness

mechanism has any effect on fairness of single-home SCTP against other flows coming from

farther away hops. Our measurements showed that the Q-learning mechanism effectively

increases the fairness of single-homed SCTP towards farther away nodes. The proposed

mechanism needs to be only implemented at the sender side and does not require any

changes in the infrastructure. Moreover, it gives the provider the ability to offer different

levels of QoS to costumers based on their demand which makes it a lucrative candidate.
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How Network Monitoring and Reinforcement

Learning Can Improve TCP Fairness in Wireless

Multi-Hop Networks

In this chapter, we aim to adopt the fairness mechanism designed in Chapter 4 to TCP.

Our proposal uses a distributed mechanism to monitor the network anomalies in resource

allocation and tune TCP parameters accordingly. Each TCP source models the state of

the system as an MDP and uses Q-learning to learn the transition probabilities of the

proposed MDP based on the observed variables. To maximize TCP fairness, each node

hosting a TCP source takes actions according to the recommendations of the Q-learning

algorithm and adjusts TCP parameters autonomously. Our algorithm preserves autonomy

of each node in decision making process and does not require a central control mechanism

or control message exchange among nodes. Unlike the existing machine learning solutions,

i.e. TCP ex Machina, our proposal is compatible with the computational capacity of the

current infrastructure. We call our approach Q-learning TCP. The contributions of this

chapter can be summarized as:

• Modeling the multi-hop network as an MDP in each TCP source and using Q-learning

algorithm to monitor and learn the dynamics of the network and the proposed MDP.

• Finding a cross-layer distributed and scalable solution for TCP fairness over multi-

hop networks with no extra overhead. Our proposal enhances TCP fairness over

multi-hop networks in favor of flows traversing a longer number of hops with negli-
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gible impact on flows with a shorter number of hops via changing TCP parameters

cooperatively based on the recommendation of the Q-learning algorithm

• Enhancing TCP fairness by a factor of 10% to 20% without any feedback messaging

and no incurred overhead to the medium

The rest of this chapter is organized as follows: Section 5.1 is a detailed description

of our algorithm followed by the implementation specifics in Section 5.2. Performance

evaluation of our proposed algorithm is presented in Section 5.3 via extensive simulation

and testbed experimentation. A discussion on implications of Q-learning TCP along with

a comparison with available fairness techniques is presented in Section 5.4. Section 5.5

concludes this chapter.

5.1 Q-learning TCP Architecture

In our approach, each TCP source is equipped with a Q-learning agent that sees the world

as an MDP. In each decision epoch, the agent receives network statistics in the form of

state space variables. The agent uses the received information to determine the state of the

MDP; then, the agent takes an action via fine tuning TCP parameters. In the next decision

epoch, the environment responds with the new state. The learning agent uses a reward

function to receive feedback on the consequences of the taken action on TCP fairness. The

learning process continues as long as the network is up and running; it basically works as

a memory that can be adjusted according to network changes.

In the following sub-sections, we present a detailed overview of the key factors of Q-

learning TCP including states, action set, reward function, and transition probabilities.
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5.1.1 States

The state space of our proposed Q-learning algorithm in each TCP source is in the form of

S = (fairness index, aggressiveness index). To measure fairness index in each decision

interval, the agent uses Jain’s fairness index as in equation (5.1) [111]:

J tk(x1, x2, ..., xn) =
(Σi=n

i=1xi)
2

n× Σi=n
i=1x

2
i

, (5.1)

where xi is the data rate of flow i, n is the number of flows that are originated from or

forwarded by node k, and J tk is the Jain’s fairness index at node k at decision epoch t. The

Jain’s fairness index is a continuous number that varies between 0 and 1; with 0 the worst

fairness index and 1 an absolute best fairness condition. To tailor the Jain’s fairness for a

discrete state space, we divided the [0, 1] interval to p sub-intervals [0, f1], (f1, f2], ..., (fp−1, 1].

Instead of using a continuous fairness index, we quantize it to have manageable number of

states. Number of states is important in convergence of the learning algorithm.

The aggressiveness of each TCP source in each decision epoch is measured as in equation

(5.2):

G(i) =
number of packets originated from node i

total number of packets forwarded by node i
. (5.2)

The aggressiveness index is a continuous amount that varies between 0 and 1. To tailor the

aggressiveness index for discrete state space, we divided the [0, 1] interval to q sub-intervals

[0, g1], (g1, g2], ..., (gq−1, 1]. As such, the state space of the MDP is in the form of equation

(5.3) with the size of p× q.

S = {(ft, gt)|ft ∈ {0, f1, ..., fp} and gt ∈ {0, g1, ..., gq}} (5.3)

Choosing a suitable value for p and q is a critical task. A small p or q shrinks the state
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space and positively affects the convergence rate; however, larger quantization intervals

disturb the transparency of the changes in the system to the reward function. Reward

function uses the state of the system as a decision criterion to reward or penalize the

latest (state, action) pair. Our extensive simulations and testbed experimentation show

that choosing 3 ≤ q ≤ 4 and 3 ≤ p ≤ 4 provides the Q-learning TCP with enough number

of states to significantly increase the fairness index of the network and convergence rate.

Fairness index obviously is a good indicator of how well the Q-learning TCP is doing in

terms of enhancing the fairness. However, fairness index is not enough to make a decision

on fairness of the TCP source. Therefore, we define aggressiveness index to indicate if a

TCP source is fair to other TCP sources or not. The aggressiveness index calculates the

share of the TCP source located on a specific node in the outgoing throughput of the node.

A high aggressiveness index along with a low fairness index in a TCP source triggers the

learning agent to make changes to the TCP parameters and to force the TCP source to

be more hospitable towards other flows. The desirable state for the learning agent is the

state with a high fairness index and an aggressiveness index of Tfair. Tfair is the fairness

threshold of the node. The fairness threshold depends on the number of flows originating

and passing through the node and the priority of each flow. As an example, if 3 flows are

passing via a node, and 2 other flows are originating from the node, assuming the same

priority for all 5 flows, the fair share of the node from network resources and the fairness

threshold is 2
5
. Any aggressiveness index above fairness threshold is an indication of the

unfair resource allocation by the TCP source on the node.

Both fairness index and aggressiveness index are calculated based on the number of

packets received or transmitted in each decision epoch in the TCP source. As such, both

variables are accessible in each node and there is no need to get a feedback from other

nodes. Let’s emphasize that the objective of our MDP is to enhance TCP fairness co-
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operatively and accomplish this objective via moving towards the goal state; therefore,

choosing fairness index and aggressiveness index as state variables of our MDP is justified.

5.1.2 Action set

The Q-learning agent uses the action set to constrain TCP aggressive behavior. Findings of

[114] suggested that the maximum TCP congestion window size plays a crucial role in the

aggressive behavior of TCP. However, putting a static clamp on TCP congestion window

size might cause an under-utilization of the network resources. Therefore, to avoid any

under/over-utilization of network resources, we use a dynamic clamp on TCP congestion

window size. The learning agent dynamically changes the maximum congestion window

size of TCP without interfering with the congestion control mechanism via the action

set. As such, TCP uses the standard congestion control mechanism along with a dynamic

clamp on the congestion window to limit any aggressive window increase. The agent uses

the action functions in Algorithm 5.1 to change TCP parameters in each decision epoch.

Algorithm 5.1 Q-learning action set
1: if action = decrease then
2: δ = 50%
3: decreases the TCP maximum window size by δ
4: else if action = increase then
5: increases the TCP maximum window size by δ
6: else
7: no change to maximum congestion window size
8: end if

The Q-learning TCP does not interfere with the congestion control mechanism of TCP,

only changes the maximum TCP window size; the maximum window size can be de-

creased up to slow start threshold. In our algorithm, we used δ as 50% of the latest

increase/decrease of the current TCP maximum window size. The above action set, which

resembles a binary search behavior, serves perfectly in a dynamic environment. At the be-
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ginning of the learning process, the maximum congestion window size is set either to 65536

bytes [115] or the amount allowed by the system. The learning agent starts searching for

the optimized maximum TCP window size by halving the current maximum TCP window

size. As such, the search space decreases into half. The agent chooses either half randomly

due to the random nature of the search algorithm in the beginning of the learning process.

The agent starts swiping the search space using the decrease( ), increase( ), and stay( )

functions and uses the reward function as the guide to the optimum state. During the

learning process, the agent develops a memory and uses its memory after convergence as

a series of policies to handle any changes in the dynamics of the system. As a result,

in any state, the learning agent knows how to find its way to the optimum clamp. The

Q-learning agent converges when all the available action series and their associated reward

are discovered.

5.1.3 Transition probabilities

In our proposal, the state space is in the form of S = (fairness index, aggressiveness index).

Both fairness and aggressiveness indices depend on the number of packets transmitted or

received in the most recent decision epoch. Therefore, any state transition only depends

on the latest state of the system. As such, all states are Markovian. We use Q-learning to

obtain the transition probabilities of the proposed MDP.

5.1.4 Reward function

According to [93], an efficient reward function should have the following conditions:

• the reward function has a uniform distribution for states far from the goal state.

• the reward function points in the direction of the greatest rate of increase of reward

in a zone around the goal state.
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The reward function that we use for our model is in the form of equation (5.4), which is a

summation of fairness reward function and network utilization reward function.

R(s, a) = βue
− d(us,us∗ )

2

2σ2u + βfe
− d(fs,fs∗ )

2

2σ2
f (5.4)

us and us∗ are the the network utilization factor in states s and s∗. Network utilization

factor is the accumulative throughput of all the incoming and outgoing flows in a node. fs

and fs∗ are the Jain’s fairness index in states s and s∗. s∗ is the goal state.

There is always a trade off between fairness and the throughput/efficiency of the net-

work. In a highly effective network, the utility function is focused on maximizing the

aggregated throughput of the network which might not be optimized based on fairness. In

our scheme, we optimize TCP performance based on both fairness and throughput. To cre-

ate a balance between the two, we use the aggressiveness index (throughput control factor)

and fairness index (fairness control factor). The aggressive nodes have to compromise the

throughput in favor of starved nodes to increase the fairness index of the network. In our

mechanism, the reward function includes both fairness and throughput. One has to keep

in mind that optimizing TCP performance based on both fairness and throughput results

in some compromise on throughput to increase the fairness. Moreover, Quality of service

(QoS) can be added to our scheme via the reward function. Putting different weights on

either throughput or fairness via changing the coefficients in reward function (βu,βf ,σu,σf )

can result in different levels of QoS.

5.2 Integration of Q-learning Agent and TCP

As depicted in algorithm 5.2, the MAC layer collects the number of sent packets of each

flow passing through the node and sends them to the learning agent which is located in
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TCP source every t seconds (t is the length of decision epoch). The learning agent uses

the latest information to calculate the aggressiveness and fairness index and determines

the current state of the system. The reward function module uses the current state of

the system, previous state of the system, and the latest action to calculate the immediate

reward of the agent based on the latest (state, action) pair. When the agent obtains the

immediate reward, it updates the Q-matrix based on the Ballard equation (See 2.2.3).

Finally, the agent chooses an action based on the recent Q-matrix and informs TCP to

adjust its maximum window size based on the chosen action. We are using a delayed

reward system because the agent has to wait for the system to settle down in a specific

state to figure out the instant reward.

Algorithm 5.2 Q-learning TCP algorithm of node i

1: action set ={decrease,increase,stay}
2: absorbing state = (fgoal, ggoal)
3: while not in goal state do
4: for every t seconds do
5: get the number of sent packets by node i
6: for each flow being forwarded by node i do
7: get the number of sent packets
8: end for
9: calculate the fairness index ft, based on (5.1)

10: calculate the aggressiveness index gt, based on (5.2)
11: determine the state according to (5.3)
12: calculate the reward rt based on (5.4)
13: update the Q matrix according to (2.1)
14: choose the action with maximum Q value
15: take the action (inform TCP)
16: end for
17: end while

5.3 Performance Evaluations

Q-learning TCP is specifically aimed for the wireless mesh network environment; as such, all

the simulations and testbed are designed to present the interaction of TCP and the unique
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characteristics of the wireless mesh setting. In this section, we present the numerical results

of our proposed method and demonstrate the effectiveness of our fairness mechanism as

compared to TCP, TCP-AP, and TCP ex Machina.

We first evaluate the performance of the Q-learning TCP in a multi-hop setting in which

all the nodes are located in the same wireless domain and participate in the optimization

process in section 5.3.1. Section 5.3.3 presents the performance of Q-learning TCP over a

testbed with real data in an office environment.

5.3.1 Chain topology

The chain topology is a good scenario to evaluate the effectiveness of Q-learning TCP over

Wireless mesh networks (WMN), because it can create a competitive environment for flows

with different number of hops which is the main feature of each wireless mesh topology.

We use Jain’s fairness index and the flow throughput as the comparison metric parameters.

We set up a multi-hop network of 3 nodes located in a chain topology with 150 meters

spacing between neighboring nodes, as shown in Figure 5.1. Each node is equipped with a
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Figure 5.1: Chain topology - 3 nodes, 2 flows

802.11b network interface. Nodes 1 and 2 are equipped with an FTP source that transmits

packets to node 3. The transmission range is around 250 meters, and the carrier sensing

range is around 550 meters for each wireless interface. The data rate for IEEE 802.11b

is 2 Mbps and the RTS/CTS mechanism is on. Each TCP packet carries 1024 bytes of

application data.

For the Q-learning scheme, we had to determine the state space of the system and the
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reward function. As mentioned in section 5.1, the fairness index and aggressiveness index

have values between 0 and 1. For fairness index, we divided the [0, 1] interval into four sub-

intervals, f = {[0, 0.5), [0.5, 0.8), [0.8, 0.95), [0.95, 1]}. For the aggressiveness index, we split

[0, 1] interval into three sub-intervals, g = {[0, 0.5), [0.5, 0.8), [0.8, 1]}. We can split both the

fairness index and aggressiveness index into smaller sub-intervals and provide more control

for the learning agent to tune TCP parameters for more desirable results. Although having

smaller intervals facilitates the learning agent decision making, an increase in number of

intervals increases the state space size and slows down the learning process convergence

rate. After the quantization, the state space reduces to (5.5):

s = {(f, g)|f = {0, 0.5, 0.8, 0.95} , g = {0, 0.5, 0.8}} (5.5)

The above state space provides each node in the network with a realistic understanding

of the resource allocation of the neighboring nodes. The immediate reward function that

we used for our Q-learning TCP is in the form of equation (5.4). We ran each simulation

for 30 times for 95% confidence interval. The length of each simulation is 1000 seconds.
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Figure 5.2: Throughput changes of the flows in the chain topology of Figure 5.1. Each
cycle is equivalent of 40 seconds
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Figure 5.2 shows the throughput changes during the learning process. At the beginning

of the learning process, the Q values are all zero; therefore, the agent starts a systematic

search to determine the effect of each action on the state of the system. Because we choose

a Gaussian reward function, the Q-learning agent gradually moves to states adjacent to

the goal state. The systematic search behavior exists during the simulation, but the range

of the search circle diminishes as the learning process converges to the goal state. As

depicted in Figure 5.2, at the beginning of the learning process, the throughput of both

flows fluctuates. As time goes by, the fluctuation of both flows dwindles to negligible

amount. As the learning process progresses, the agent visits each state sufficient number

of times to find the best policy (the best maximum TCP window size) to maximize its

acquired rewards. Eventually the learning agent in node 2 converges to s = (0.95, 0.5),

where 0.95 is the fairness index and 0.5 is the aggressiveness index.
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Figure 5.3: Learning rate (proof of convergence) in topology of Figure 5.1. Each learning
cycle consists of 40 seconds.

To investigate the convergence of the learning algorithm, we calculated the average

learning rate, as shown in Figure 5.3. The average learning rate of the process is calculated

as 1
(E{n(s,a)}) , where E{n(s, a)} is the average number of times each (state, action) pair

visited by the agent. According to [89], a deceasing average learning rate is an indication
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of the Q-learning convergence process. Figure 5.3 shows that the learning rate approaches

0 which guarantees the convergence of the learning algorithm.

Figure 5.4 shows the changes of network utilization factor as the learning progress. As

depicted in Figure 5.4, the network utility factor fluctuates widely at the beginning of the

learning process. However, the network utility factor settles to a value within the desirable

range when the learning process converges.
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Figure 5.4: Network utilization factor (kbytes/sec) for the topology shown in Figure 5.1.
Each learning cycle consists of 40 seconds.

As the learning process converges to the desirable state, the Jain’s fairness index of the

network settles and the fluctuations become negligible, as demonstrated in Figure 5.5.

We compared our scheme with TCP-AP [51] and TCP ex Machina [68]. We imple-

mented TCP-AP based on the algorithm in [51]. In TCP-AP, the sending rate is limited

based on the changes in RTT.

Figure 5.6 graphs the performance of TCP-AP, TCP, Q-learning TCP, and TCP ex

Machina. TCP-AP performs closely to our learning method in terms of the fairness index of

the network. However, the fair resource allocation in TCP-AP comes at the cost of network

utility. The drop in the network utility factor in TCP-AP is caused by the frequent pauses

in data transmission. TCP ex Machina, on the other hand, performs similar to standard
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Figure 5.5: Jain’s fairness index in the chain topology of Figure 5.1. Each cycle is equivalent
of 40 seconds

TCP; the reason behind this behavior of TCP ex Machina over the multi-hop wireless

setting is that the learning mechanism in TCP ex Machina is optimized for wired settings

and the re-learning process requires a great deal of computational resources which almost

is impossible to be done on the current wireless nodes within a reasonable amount of time.

Table 5.3.1 summarizes the comparison of Q-learning with TCP-AP and TCP ex Machina.

Table 5.1: Network metrics parameters for different TCP variations of Figure 5.1

TCP variation Jain’s fairness index Network utility
Legacy TCP 89% 509 Kbps

TCP-AP 99% 83 Kbps
TCP ex Machina 84% 694 Kbps
Q-learning TCP 99% 468 Kbps

5.3.2 Larger scale WMN

To evaluate our proposed algorithm further with non-static traffic pattern and a random

mesh topology, we generated a random topology in ns2, as illustrated in Figure 5.7. There

exist 6 flows in the network; all flows are destined towards node 0 and are originated from
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Figure 5.6: Performance comparison between legacy TCP, Q-learning TCP, TCP-AP, and
TCP ex Machina

nodes 8, 3, 5, 7, 1, and 4. To study the performance of Q-learning TCP under non-static

data traffic, we programmed all the sources to generate data for random length intervals

and intermittently.

  
0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

Node 0

Node 1

Node 2

Node 4
Node 3

Node 5

Node 6

Node 7

Node 8

Node 9

y-
ax

is
 

x-axis 

Figure 5.7: Random network topology - 10 nodes

As depicted in Figure 5.8, the resource allocation in the legacy TCP is severely unfair

as nodes 8, 1, and 4 are starved while nodes 3 and 7 aggressively consume the bandwidth.

However, the Q-learning TCP pushes node 3 to decrease its network share and provide

more transmission chance for other nodes. The learning agent of node 5 also indicates
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Figure 5.8: TCP flow throughput and network utility in kbytes/sec for scenario of Figure
5.7

an unfair resource allocation and forces node 5 to slow down the data sending rate. On

the other hand, node 8 experiences an undergrowth of the congestion window size and

starts to increase the sending rate as node 5 decreases the sending rate. Node 3 and node

5 cooperatively provide other nodes with more sending opportunities by decreasing the

sending rate which results in an increase in node 8’s sending rate. On the other side of

the network, node 7 consumes a bigger portion of the bandwidth as compared to node 1;

therefore, the Q-learning TCP forces node 7 to decrease its sending rate and provide other

nodes with more sending opportunities. A comparison of TCP, TCP-AP, TCP ex Machina

and Q-learning TCP is presented in Table 5.3.2.

TCP-AP outperforms both TCP and Q-learning TCP in fair resource allocation in the

scenario of Figure 5.7. However, the high fairness index of TCP-AP comes at the cost of

drastic decrease in network utilization by a factor of 50%. The reason behind the extreme

decrease in network utility factor in TCP-AP is the over-estimation of RTTs and excessive

overhead caused by feedback messages. TCP ex Machina performs as poor as legacy TCP

and causes one of the flows to starve completely.

To investigate the convergence of the learning process, we graphed the learning rate of
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Figure 5.9: Learning rate of nodes 3, 5, and 7 in scenario of Figure 5.7

the learning process for nodes 3, 5, and 7 in Figure 5.9. The agent learning rate for all

three nodes converges to 0 as the learning process progresses. The learning rate of node

3 is higher that the two other nodes because node 3 has to make more changes to get to

the optimum state. More changes translate into more state transitions and consequently

a higher convergence rate.

Table 5.2: Network metrics parameters for different TCP variations of scenario 5.7

TCP variation Jain’s fairness index Network utility
Legacy TCP 75% 430 Kbps

TCP-AP 97% 240 Kbps
TCP ex Machina 71% 436 Kbps
Q-learning TCP 83% 403 Kbps

5.3.3 Testbed

To evaluate the performance of Q-learning TCP, we use the testbed setup in Section 2.3

and 2.3.2 (Figure 5.10). The data paths are as follows:

• flow A: AR1BR2C
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• flow B: BR2C

We implemented the Q-learning mechanism as a python suite based on algorithm 4.1 in

node B and node A. The Q-learning mechanism communicates with the transport layer

via action functions in Section 5.1.2 in order to tune TCP maximum congestion window

size. While all the users over the network continue their day to day activity.

gateway
router
wireless nodes
sample wireless nodes
forwarder/wireless nodes

A

B C

R1

R2

Figure 5.10: Testbed topology.

To generate real-world traffic profile over the testbed, we use findings of Brownlee et

al. [116]. According to measurements of [116] over two real-life networks, Internet streams

can be classified into two groups: dragonflies and tortoises. Dragonflies are session with

lifetime of less than 2 seconds while the tortoises are the sessions with long lifetimes,

normally over 15 minutes. Authors of [116] showed that although the lifetime of sessions

varies; the lifetime distribution shape is the same for both Tortoise and dragonflies and it

does not not experience rapid changes over time. Findings of [116] are critical to the design

of Q-learning TCP and its interaction in real world; the fact that the distribution of the

lifetime of the streams does not change rapidly over time fits well with the characteristics

of Q-learning. Based on [116], 45% of the streams have a lifetime of less than 2 seconds,

53% have a lifetime between 2 seconds and 15 minutes, and the rest has life times more

than 15 minutes (usually in the order of hours). We use these findings to generate traffic

on node A and B along with the other existing day-to-day traffic within the office network.
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Table 5.3 shows the result of our measurements over the testbed of Figure 5.10. TCP

Q-learning outperforms TCP Reno on node A with the big margin of 85% of increase

in the average throughput. Node B which acts as a source and a forwarder node has to

compromise its throughput to enhance the fairness of the network. The average throughput

of node B decreases by 3% to accommodate a 85% boost in throughput of node A which

is a drastic increase with a minimal compromise.

Table 5.3: A comparison between Q-learning TCP and TCP Reno

TCP variation Source Throughput (Kbits/sec) 95% Confidence interval (Kbits/sec)
TCP Reno node A 883 less than 100
TCP Reno node B 4003 less than 400

Q-learning TCP node A 1549 less than 400
Q-learning TCP node B 3877 less than 1000

The larger confidence interval in Q-learning TCP is caused by the changes of the max-

imum congestion window size according to the optimal policy of Q-learning during the

discovery.

5.4 Discussion and Comparison

Comparing Q-learning TCP with other well-known existing fairness methods [117][48][51],

Q-learning TCP does not incur any overhead to the network with the expense of extra

computation at each node. The focus of LRED [117] is on enhancing TCP throughput

over WMN and fairness enhancement is not one of the design objectives. However, the

pacing mechanism of LRED enhances the fairness as a side-effect at the cost of excessive

transmission delay. The extra transmission delay in LRED pacing mechanism alleviates

the hidden terminal issue; however, the imposed delay is fixed in size and is not adjustable

to the dynamic nature of the WMN. NRED uses a dropping mechanism to decrease the
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competition and provide more resources for the starved flows. However, the dropping

probabilities are calculated and broadcasted constantly, thus incurring a heavy overhead

to the shared medium. TCP-AP uses the received signal strength indicator (RSSI) to infer

information regarding the hidden terminal issue; however, RSSI causes an over-estimation

of transmission delay in its pacing mechanism and decreases the TCP throughput drasti-

cally. As such, TCP-AP still requires feedback messaging from the neighboring nodes for

hidden terminal distance calculations. TCP ex Machina, another comparable mechanism,

requires excessive computational resources for its congestion control mechanism optimiza-

tion which is not compatible with current network infrastructure resources. Our method

achieves the fairness enhancement of TCP at a cost of reasonable extra computation of the

machine learning approach in each node. In WMN that the shared medium is extremely

valuable, flooding the network with excessive feedback messages or under-utilizing the links

with excessive non-dynamic transmission delays to enhance the fairness is not very cost

efficient. However, Q-learning TCP trades the computational simplicity in each node for

TCP fairness. In a mesh setting, since the mobility of each node is very minimal, increasing

the computational capacity of the nodes is not very costly. A brief comparison of LRED,

NRED, TCP-AP, TCP ex Machina and Q-learning TCP is presented in Table 5.4.

Note that the complexity of Q-learning TCP is polynomial with the number of states

and the convergence rate is tractable with a suitable state space size as confirmed with the

simulation and testbed experiments.

Our findings confirm that in a wireless multi-hop setting, each TCP source has to

cooperate with others to ensure a fair share of network resources for all end-users. TCP

allocates resources with the assumption of an inclusive knowledge of the network topology

and a reliable permanent access to the medium for all the end-users. However, in a wireless

mesh setting, the end-user knowledge of the network topology is partial and the access to
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the medium is intermittent. As such, TCP needs to collect information about other nodes

to compensate for the short comings of the underneath layers. The learning agent provides

the TCP source with insight on existing competition for network resources from other

nodes. The insight provided by the learning agent compensates for the unfair behavior of

the MAC and TCP in the wireless multi-hop environment by suppressing the aggressive

response of TCP. Note that Q-learning TCP inter-works well with any variation of TCP

on the other end-point because the changes to the TCP protocol stack are only in the

sender side and the learning mechanism does not need any feedback from the receiver.

The Q-learning TCP only relies on the information collected by the learning agent.

5.5 Conclusion

We have proposed a cross-layer monitoring and learning mechanism for fair resource alloca-

tion of TCP over WMN that uses the information obtained from the MAC layer to optimize

TCP parameter to enhance the end to end fairness within a network. The learning agent

uses the local fairness index and the aggressiveness index of each node to decide if the node

is starving or abusing the network resources. We have used a reward function to guide the

learning agent in taking correct actions that eventually allows us to solve the fairness prob-

lem in a distributed manner. We have compared our learning method with legacy TCP

and TCP-AP, and TCP ex Machina via extensive ns2 simulations. Simulation results have

demonstrated the superiority of our proposed method within wireless networks. Moreover,

we have studied the performance of Q-learning TCP in a testbed. Testbed measurements

have proved that Q-learning TCP can be a great candidate for transport protocol over

current wireless multi-hop networks with minimal changes only in TCP source.
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Table 5.4: A comparison between Q-learning TCP and other well-known TCP solutions.
The throughput and fairness enhancement of each TCP flavor is compared against the
standard TCP. As such, when a decrease/increase is mentioned, it is relative to standard
TCP.

fairness
solution

fairness enhancement throughput
enhancement

disadvantage

LRED
[117]

slight increase 5% to 30% in-
crease

overhead caused
by broadcast
messages and
fixed transmis-
sion delay

NRED [48] effective increase
(Jain’s fairness index
of 99% in a chain
topology)

up to 12% in-
crease

excessive over-
head caused
by broadcast
messages (over
60%)

TCP-AP
[51]

effective increase
(Jain’s fairness index
of 99% in a chain
topology)

drastic decrease
(up to 50%)

reliance on RSSI
and excessive
transmission
delay

TCP ex-
Machina
[68]

decrease (Jain’s fair-
ness index of 84% in a
chain topology)

slight increase excessive learn-
ing time and
computational
resource require-
ment

Q-learning
TCP

effective increase
(Jain’s fairness index
of 99% in a chain
topology)

slight decrease medium com-
putational
overhead
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize the results and highlight the contributions of this thesis.

We also suggest several topics for future work.

6.1 Research Contributions

In the present thesis, we have identified two main challenges of CMT-SCTP over wireless

multi-hop networks: receive buffer blocking and unfair resource allocation while competing

with single-homed flows. We have proposed novel dynamic schemes using the RL algorithm

to address both challenges in Chapters 3 and 4. We have applied our findings on fairness

improvement to TCP to demonstrate the adaptability of our state-of-the-art proposal in

Chapter 5.

• In Chapter 3, we proposed a dynamic network coding mechanism for CMT-SCTP to

address receive buffer blocking in a multipath transport data transfer in a wireless

multi-hop environment. The network coding helps the transport layer to eliminate

the reliance of the congestion control algorithm on the packet’s transmission sequence

number by sending a combination of packets instead of simply forwarding them. The

network coding mechanism uses redundant packets to mask the random losses of

network. We used a Q-learning mechanism within the network coding algorithm to

estimate the number of redundant packets based on the dynamics of the network.

The Q-learning module in the design adjusts to the dynamic nature of the wireless
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environment and minimizes the number of redundant packets required to mask the

random losses of network. As such, the algorithm proves to be effective in alleviating

the receive buffer blocking and improving the throughput of CMT-SCTP. Our coded

CMT-SCTP scheme outperforms the original CMT-SCTP with a high margin (up

to 62% depending on the path dissimilarities and receive buffer size).

• In Chapter 4, we proposed a distributed fairness mechanism for CMT-SCTP over

wireless multi-hop environment to address the unfair behavior of CMT-SCTP against

non-CMT flows coming over form farther away hops. We used Q-learning to model

the environment as an MDP and find the transition probabilities for the MDP to

take suitable actions and adjust the CMT-SCTP congestion window. Our proposed

mechanism enhances the fairness behavior of CMT-SCTP over wireless multi-hop

networks by constantly changing the maximum congestion window size on each sub-

flow. The dynamic damp on the maximum congestion window size creates a co-

operative resource share in CMT-SCTP and provides the starved flows with more

transmission opportunities.

• In Chapter 5, we proposed a distributed fairness mechanism for TCP over wireless

multi-hop environment to address the unfair behavior of TCP against flows coming

from the farther away hops. The algorithm uses reinforcement learning to monitor

the dynamics of the networks and fine tunes TCP parameters to enhance the fairness

of the network. Our mechanism uses the dynamic damp on maximum congestion

window size of TCP to alleviate the aggressive behavior of TCP against flows coming

from farther away hops. Our mechanism proves to enhance the fairness index of the

network drastically. The adaptation of our proposed CMT-SCTP fairness mechanism

to TCP demonstrates the powerful tool of machine learning in dealing with ever-

changing environment such as wireless multi-hop networks.
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6.2 Suggestions For Future Work

In the following, we discus several possibilities for extension of the current work.

1. Network coding Q-learning mechanism for heterogeneous network In Chap-

ter 3, the Q-learning network coding is fully explored as a potential solution for receive

buffer blocking over wireless mesh networks. One of the great directions to extend

the existing work is to explore the performance of the algorithm in a heterogeneous

environment. Most of the time, a multi-home device is connected over two different

network such as cellular and wi-fi, i.e., smart phones; as such, one has to investigate

the cons and pros of using our coded mechanism over heterogeneous environments to

paint a comprehensive picture of the Q-learning mechanism.

2. Distributed fairness algorithm for backbone network: In Chapter 4 and 5, we

proposed a distributed fairness mechanism for small to medium size network before

the traffic hits the backbone. Our mechanism can be deployed in the backbone with

some modifications. One of the advantages of using our mechanism before traffic

hits the backbone is that the algorithm has access to the source. However, if the

algorithm were to be used in the backbone, the algorithm has to be equipped with

cross-layer functions. Moreover, the fairness mechanism needs to be re-designed with

new action functions as the backbone network does not have access to the traffic

source to be able to change the the parameters of the transport layer. As such, new

control parameters needs to be found that changing those parameters has a direct

effect of fairness performance of the backbone nodes. Introducing feedback messages

to keep the old action functions is an easy fix to the problem; however, it defies the

main advantage of the distributed mechanism which is the “no feedback” policy. The

proposed mechanism has great potentials for commercialization.
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3. Centralized learning vs. distributed learning: another approach in using learn-

ing mechanisms to fine tune the performance of the transport layer is to collect the

data at the node and send the collected data to a nearby central gateway/data center

to do the learning off-line and then load the result on each node. However, to im-

plement a centralized off-line approach, one has to consider the delay and the extra

messaging overhead induced by the approach versus the gain in less computational

overhead for each node within the network.

4. Distributed fairness algorithm over bigger size networks: the proposed mech-

anisms in Chapter 4 and 5 create computational overhead for the nodes using the

algorithm. As such, when the network size and the number of flows involved in the

optimization process grows, it might have a negative impact on the convergence time

of the learning mechanism. One way to adjust our mechanism for larger area net-

works is to break down the network into smaller clusters and uses the mechanism

within each cluster. Clustering the network into smaller groups decreases the con-

vergence time while improving the fairness effectively. However, the idea needs to be

fully investigated to make sure all aspects of the design is delicately considered while

using the mechanism along with clustering.
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