
Tackling Small-Scale Fluid Features in Large Domains
for Computer Graphics

by

Xinxin Zhang

B. Information and Computation Science, Zhejiang University City College, 2009

M. Computer Science, New York University, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

April 2017

c© Xinxin Zhang, 2017

Abstract

Turbulent gaseous phenomena, often visually characterized by their swirling na-

ture, are mostly dominated by the evolution of vorticity. Small scale vortex struc-

tures are essential to the look of smoke, fire, and related effects, whether pro-

duced by vortex interactions, jumps in density across interfaces (baroclinity), or

viscous boundary layers. Classic Eulerian fluid solvers do not cost-effectively cap-

ture these small-scale features in large domains. Lagrangian vortex methods show

great promise from turbulence modelling, but face significant challenges in han-

dling boundary conditions, making them less attractive for computer graphics ap-

plications. This thesis proposes several novel solutions for the efficient simulation

of small scale vortex features both in Eulerian and Lagrangian frameworks, ex-

tending robust Eulerian simulations with new algorithms inspired by Lagrangian

vortex methods.

ii

Preface

This thesis incorporates three published papers as separate chapters:

• Chapter 2: X. Zhang, M. Li, and R. Bridson. 2016. Resolving fluid boundary

layers with particle strength exchange and weak adaptivity. ACM Trans.

Graph. 35,4(Proc. SIGGRAPH), Article 76.

• Chapter 3: X. Zhang, R. Bridson, and C. Greif. 2015. Restoring the miss-

ing vorticity in advection-projection fluid solvers, ACM Trans. Graph. 34, 4

(Proc. SIGGRAPH), Article 52.

• Chapter 4: X. Zhang and R. Bridson. 2014. A PPPM fast summation method

for fluids and beyond. ACM Trans. Graph. 33, 6 (Proc. SIGGRAPH Asia),

Article 206.

Apart from the usual supervision roles by Dr. Robert Bridson and Dr. Chen

Greif, the single-scattering particle renderer used for images and animations was

provided by Dr. Bridson, and help from Minchen Li in testing simulation examples

for Chapter 2, all work is mine.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

Acknowledgments . xiv

1 Introduction . 1

2 Resolving Fluid Boundary Layers with Particle Strength Exchange
and Weak Adaptivity . 4
2.1 Introduction . 4

2.2 Related work . 7

2.3 VFLIP and weakly higher resolution regional projection (WHIRP). 10

2.3.1 Solving the convection-diffusion equation with ghost par-

ticles . 11

2.3.2 Regional projection for particle velocity correction 13

2.3.3 Our pressure solver . 14

2.3.4 Seeding and deleting particles 15

2.4 Results and discussion . 16

2.5 Conclusions, limitations, and future work 20

iv

3 Restoring the Missing Vorticity in Advection Projection Fluid Solvers 23
3.1 Introduction . 24

3.2 Related work . 26

3.3 The IVOCK scheme . 29

3.3.1 Vortex dynamics on grids 31

3.3.2 Discussion . 34

3.4 Applications and results . 37

3.4.1 Smoke . 37

3.4.2 Liquids . 39

3.4.3 Fire . 40

3.5 Conclusion . 42

4 A PPPM Fast Summation Method for Fluids and Beyond 44
4.1 Introduction . 44

4.2 Related work . 48

4.3 Particle-particle particle-mesh method(PPPM) 49

4.3.1 Particle-mesh step in open space 51

4.3.2 Cancelling local influences in the grid 53

4.3.3 Velocity evaluation . 56

4.3.4 PPPM discussion . 57

4.4 Vortex-Particle Smoke . 60

4.4.1 Vortex segment, vortex stretching and stability issue . . . 61

4.4.2 Solid boundaries and vortex shedding 64

4.5 Results and conclusions . 67

4.5.1 PPPM for vortex flow . 67

4.5.2 Applying PPPM to Poisson surface reconstruction 69

4.6 Limitations . 71

4.7 Future work . 72

5 Conclusion . 73
5.1 Summary . 73

5.2 Future work . 74

Bibliography . 77

v

List of Tables

Table 2.1 Symbol abbreviations used throughout this paper. 7

Table 2.2 The Semi-AMGPCG solver applied to a Poisson problem with

single impulse, in a unit cube domain with a zero Neumann

boundary condition along a sphere with diameter 0.2 in the cen-

ter, and zero Dirichlet boundary conditions at the edges of the

cube. The number of iterations required to reduce the residual

by a factor of 10−10 is essentially independent of the grid size,

providing one extra digit of accuracy per iteration. 15

Table 2.3 Vortex shedding frequency statistics from numerical simulations 18

Table 2.4 Timings of various simulations associated with this paper, mea-

sured on a desktop machine with Intel(R) Core(TM) i7-3930K

CPU and 32 GB RAM. 20

Table 2.5 Timings of flow past sphere simulations with only differences

in outer and inner grid sizes, measured on a desktop machine

with Intel(R) Core(TM) i7-3930K CPU and 32 GB RAM. . . . 20

Table 3.1 Algorithm abbreviations used through out this paper. 23

Table 3.2 Performance comparison of IVOCK augmenting different schemes,

for a smoke simulation at 128x256x128 grid resolution, running

on an Intel(R) Core(TM) i7-3630QM 2.40GHz CPU. 39

Table 4.1 Common symbols used throughout the paper. 45

Table 4.2 Accuracy of different method with and without the monopole

B.C. 60

vi

List of Figures

Figure 1.1 The chaotic motion of eddies produced by the storms in the

atmosphere of Jupiter. Courtesy NASA/JPL-Caltech. 2

Figure 2.1 Simulation of a rotating fan in wind, Re ≈ 105, visualized

with smoke marker particles. Large scale motion and detailed

boundary layer dynamics are cheaply and easily coupled using

our method, producing high quality fluid animations at low

cost. Top: top view of fan wake at frames 80, 120 and 200.

Bottom: side view at frame 300. 5

Figure 2.2 Vortex shedding from a cylinder in 2D at Re=15000, zoom-

in view near the boundary. Left column: simulation results at

low resolution (approximately 50×50 grid cells shown). Mid-

dle column: simulation obtained with 4× resolution. Right

column: simulation obtained with our method, with the same

coarse grid but a 4× refined grid overlaid just around the solid.

Our method produces results visually consistent with the high

resolution reference because only the boundary layer needs

that resolving power. 6

Figure 2.3 Our method captures the velocity field near the boundary effi-

ciently and with high apparent fidelity. Left: zoom-in near the

boundary flow. Right: the entire simulation, Re=15000. 7

vii

Figure 2.4 A typical domain construction used in our method. Ω indicates

the global Eulerian domain where fluid motion is loosely cap-

tured. Eulerian subdomains with finer resolution can be placed

anywhere to enhance the simulation quality locally, such as the

green domain(Ωsub,1) for near-boundary turbulence and the red

domain (Ωsub,2) where the camera was placed. Particles are

seeded to fill the space; within gray areas, particles are seeded

at higher density to track finer details. 9

Figure 2.5 Overview of our algorithm. At the beginning of each time step,

the velocity of each particle is known, the convection-diffusion

part of Navier-Stokes equation is solved by a PSE method

(§2.3.1). We then splat the particle velocity to the coarse grid,

and make the resulting field divergence-free §2.3.2. The veloc-

ity change is interpolated to all particles for divergence correc-

tion. Then, for any subdomain Ωsub,i in the field, the corrected

particle momentum is splatted to the grid again and made lo-

cally divergence-free. Any particle within a subdomain Ωsub,i

is considered a small-scale particle and collects its momentum

correction from the corresponding domain. 10

Figure 2.6 Impulsively started flow past a sphere at Re=15000 simulated

using our solver . 16

Figure 2.7 Vortex shedding in impulsively started flow around a 2m di-

ameter sphere at Re=20000. Left: naïve grid-based viscosity

model with h= 0.0625. Middle: naïve solver with h= 0.03125

(twice the resolution). Right: our model using a coarse grid

of h = 0.125 and a refined grid around the sphere with h =

0.03125. The computation time for the left and right simula-

tions are roughly equal. 17

viii

Figure 2.8 For a flow past cylinder simulation at Re = 800, inflow speed

U = 5m/s, and cylinder diameter D = 1.6m, the experimental

model predicts a Strouhal number of around 0.2 [35], hence a

shedding frequency of around 0.625. The above pictures are

from frame 754 and frame 920 of our simulation with ∆t =

0.01, where vortices shed off the same side just reach the end

of the domain; this gives a shedding frequency just over 0.6. . 17

Figure 2.9 Our method on the same scenario as Fig. 2.7 with different

resolutions. Left: coarse simulation (global h= 0.25, inner h=

0.0625). Middle: 2× refinement for both (global h = 0.125,

inner h= 0.03125). Right: only the inner grid is refined (global

h = 0.25, inner h = 0.03125). Important fluid features can be

cheaply captured by increasing just the inner grid resolution. 18

Figure 2.10 Rotating fan (each blade is 1.3m long, rotating at one cycle

per second) in a constant wind of 2m/s, with ν = 10−4, giving

Re ≈ 105. The refined grid has h = 0.005m. Left: zoom-in

view at the fan blades. Right: the entire simulation. 19

Figure 2.11 Smoke rising around a sphere of diameter 0.3m, with ν = 10−4

and the inner grid h = 0.005m, Re ≈ 103. Left: simulation

with a uniform FLIP solver. Right: simulation using our solver

with a coarser global grid and a 4× refined grid around the

sphere. With approximately the same computation time, our

solver captures structures in the boundary disturbances over

the bottom of the sphere more sharply. 19

Figure 3.1 Rising smoke simulations with and without IVOCK (Integrated

Vorticity of Convective Kinematics). From top left to bot-

tom right,: Stable Fluids, Stable Fluids with IVOCK; BFECC,

BFECC with IVOCK; MacCormack, MacCormack with IVOCK;

FLIP, FLIP with IVOCK. 24

ix

Figure 3.2 Self-advection maps the original velocity field into a rotational

part and a divergent part, indicated by red and blue arrows re-

spectively. Pressure projection removes the blue arrows, leav-

ing the rotational part, and illustrating how angular momentum

has already been lost. 25

Figure 3.3 Vorticity confinement (VC) vs. IVOCK. Top row: frame 54

of a rising smoke scenario. From left to right, VC parame-

ter ε1 = 0.125, ε2 = 0.25, ε3 = 0.5, and SL3-IVOCK. Bottom

row: frame 162. Vorticity confinement tends to create high-

frequency noise everywhere, while IVOCK produces a natural

transition from laminar to turbulent flow with realistic vortex

structures along the way. 28

Figure 3.4 Vorticity and streamfunction components are stored in a stag-

gered fashion on cell edges in 3D (red line), while velocity

components are stored on face centers. This permits a natural

curl finite difference stencil, as indicated by the orange arrows. 31

Figure 3.5 Barnes-Hut summation [5] for the boundary values demon-

strated in 2D: we construct the monopoles of tree nodes from

bottom-up (left), and then for an evaluation voxel (black) in the

ghost boundary region (grey), we travel down the tree, accu-

mulating the far-field influence by the monopoles (blue nodes),

and do direct summation only with close enough red cells (right). 32

Figure 3.6 Two sequences from 3D rising smoke simulations. Top row:

MC-IVOCK with vortex stretching. Bottom row: MC-IVOCK

with vortex stretching switched off. With vortex stretching,

vortex rings change their radius under the influence of other

vortex rings, these process can easily perturb the shape of vor-

tex rings, breaking them to form new vortex structures, which

brings rich turbulence into the flow field. 35

Figure 3.7 Left: 2D buoyancy flow simulated with SF. Right: the same

with SF-IVOCK. The resolution and time step were the same;

the IVOCK scheme produces a more richly detailed result. . . 36

x

Figure 3.8 Vortex stretching enhances vortical motion, captured more ac-

curately with IVOCK. Transparent renderings illustrate the in-

ternal structures. Left and middle-lfet: FLIP. Middle-right and

right most: FLIP-IVOCK. 36

Figure 3.9 Left: Frame 150 of an IVOCK simulation with only one multi-

grid V-cycle. Right: Frame 150 of an IVOCK simulation where

multigrid V-cycles are taken reduce the residual by 10−6. . . . 36

Figure 3.10 Rising vortex pair initialized by a heat source. Left column: SF

with ∆t = 0.01. Middle column: SF with ∆t = 0.0025. Right

column: SF-IVOCK with ∆t = 0.01. Notice IVOCK preserves

vorticity best and produces the highest final position among

the three. 38

Figure 3.11 Vorticity vs. time curve of the 2D vortex pair simulation. While

IVOCK does not conserve vorticity exactly due to approxima-

tions in advection and the streamfunction computation, it still

preserves significantly more. 38

Figure 3.12 IVOCK can be cheaper and higher quality then taking small

time steps. Left and mid-left: BFECC. Mid-right and right:

BFECC-IVOCK with twice as large a time step, computed in

much less time. 39

Figure 3.13 Rising smoke hitting a spherical obstacle: the velocity bound-

ary condition is handled entirely by the pressure solve, and

doesn’t enter into the IVOCK scheme at all. This example in-

cludes a small additional amount of vorticity confinement to

illustrate how the methods can be trivially combined. 40

Figure 3.14 IVOCK applied to liquids. Top row: dam break simulations

obtained with FLIP (left) and FLIP-IVOCK (right). Bottom

row: moving paddle in a water tank, simulated with FLIP (left)

and FLIP-IVOCK (right). In these and several other cases we

tested, FLIP-IVOCK is not a significant improvement, presum-

ably because interior vorticity is either not present (irrotional

flow) or not visually important. 41

xi

Figure 3.15 Fire simulations making use of our combustion model. Top

row: BFECC. Bottom row: BFECC augmented with IVOCK

using SL3 for vorticity and scalar fields. The temperature is

visualized simply by colouring the smoke according to tem-

perature. 43

Figure 4.1 Vortices of raising smoke hitting a moving ball (ball not ren-

dered). 44

Figure 4.2 An overview of our PPPM algorithm, which consists of a far-

field construction step and a velocity evaluation step. 50

Figure 4.3 Relationship between inverse of finite difference operator and

Green’s function. Left: the local inverse matrix defined by A.

Middle: the local inverse matrix G constructed using Green’s

function and the diagonal terms from A. Right: one row of the

inverse of G, almost revealed the 7-point stencil. 55

Figure 4.4 Performance of the PPPM fast summation. Computation time

grows linearly with the number of computational elements. . 58

Figure 4.5 Accuracy statistics of the PPPM fast summation. 59

Figure 4.6 We switch to a vortex segment representation of vortex parti-

cles at the beginning of each time step, move both ends of the

vortex segment in the flow, then switch back to vortex blobs. . 62

Figure 4.7 Sudden discontinuous motion of vortex segments introduces

and amplifies numerical error, which is reduced then by smooth-

ing the stretching terms. 63

Figure 4.8 Vortex shedding process. In our approach, the vorticity strength

is explicitly determined. 66

Figure 4.9 Rising smoke using different number of vortex particles. Left,

2049 particles: middle, 16384 particles; right, 130K particles. 67

Figure 4.10 Without the far-field motion, direct summation using a cut-off

kernel results in wrong animation. Left: simulation uses cut-

off direct summation after 180 time steps. Right: simulation

uses PPPM summation after 180 time steps. 68

xii

Figure 4.11 Comparison of VIC and PPPM. Top row, sequence of 643 VIC

simulation; bottom row: PPPM using the same resolution grid.

Notice that the large scale motion of the two simulation matches

before the point where turbulent motion becomes dominant. . 68

Figure 4.12 Moving objects in slightly viscous flow generate turbulent wakes.

Top row: vortex shedding from a moving ball. Bottom row: a

moving bunny. 70

Figure 4.13 PPPM Poisson surface reconstruction of: left) a bunny, right)

a dragon. 71

Figure 5.1 3D simulation of flow past sphere at Re=8000. Top: one frame

from the simulated result. Middle: zoom-in of the wake pat-

tern. Bottom: near-boundary flow is captured accurately with

the vFLIP solver and seamlessly coupled with the free-space

solution. 75

xiii

Acknowledgments

I would like to thank my supervisors Dr. Chen Greif and Dr. Robert Bridson. They

fed me with interesting questions and provided me helpful insights to my proposed

solutions. I will also thank Dr. Mark Stock: his online summary of vortex methods

literature has been a great resource for me when I was first exposed to this amazing

numerical method. I also thank Yufeng Zhu, Essex Edwards, and Todd Keeler

for being excellent group-mates, and for the discussions we’ve had to technical

problems. I also would like to thank all the professors of the IMAGER lab at UBC,

for making this lab a great place for computer graphics researches.

Thanks also go to my parents for their support; they haven’t been to a college

for their life and they don’t know science, yet they supported me to pursue my

interests. Thanks go to my friends, too: Yingsai Dong has been my close friend for

many years since I started at UBC, we played sports and watched movies together,

we celebrated to share happiness and back each other when short for money; he

left Vancouver to work for facebook last year, and I miss him. Thanks go to my

girlfriend, who hasn’t been showing up in my life until recently: you are very very

cute.

I would also like to thank NSERC (Natural Sciences and Engineering Research

Council of Canada) for funding me to do the published research.

xiv

Chapter 1

Introduction

Be formless, shapeless, like water. — Bruce Lee.

In computer graphics, the animation of fluid such as smoke, fire and water

is usually obtained by numerically advancing fluid quantities with the parameters

provided by artists. To make the numerical techniques a useful tool for users with

a minimal mathematical background, unconditionally stable methods [53], despite

their numerical diffusion, have been widely adopted, trading off the quality of sim-

ulations.

Fluid motion is simply visually interesting: shear motions in a fluid generate

eddies, these eddies merge and split, and move according to each other. These type

of small-scale rotational structures, being highly noticeable in flow (see Fig.1.1),

however, are often intractable to capture with the classic semi-Lagrangian fluid

solvers due to numerical diffusion.

To combat the numerical diffusion problem, many methods have been proposed

even just within computer graphics, such as higher order advection solvers [31,

50], momentum-conserving advection [34], and the non-diffusive Fluid Implicit

Particle (FLIP) method [68].

As an alternative to these velocity-pressure schemes, researchers in and out-

side graphics field have been using vortex methods to track the turbulent motion of

fluids. Vorticity is highly related to the swirling motion of flows; tracking the evo-

lution of vorticity directly can often better generate and preserve detailed fluid fea-

1

Figure 1.1: The chaotic motion of eddies produced by the storms in the at-
mosphere of Jupiter. Courtesy NASA/JPL-Caltech.

tures, with less computational elements than a typical computer graphics velocity-

pressure fluid solver might require.

An early milestone in computer graphics used the vortex method and the Vortex-

in-Cell (VIC) computation to reproduce the turbulent eddies on Jupiter [65]. Later,

Park and Kim demonstrated that complex fluid motions can be simulated with

only 8K vortex particles [44]. Vortex methods have also been used to study high

Reynolds number flows [12, 55, 57].

However, many disadvantages of the vortex methods have also been observed.

Calculating the flow velocity from vorticity requires O(N2) computations for N

vortex elements with a straightforward application of the Biot-Savart law. The

number of vortex elements might grow exponentially during an entire simulation,

making the computation intractable even when O(N) fast summation is used. Last

but not least, boundary conditions in vortex methods require non-trivial treatment,

and as a result, very limited boundary conditions have been applied in classical

vortex method simulations.

We observe that the creation, evolution and interaction of vorticity elements is

2

highly related to the turbulent, swirling feature of flow motions, but certain trade-

offs have to be made to the vortex method for its efficient, flexible and robust appli-

cation in computer graphics. This thesis discusses the success we have achieved in

adapting the vortex method regarding the three aspects, and points the way forward

to further improvements.

3

Chapter 2

Resolving Fluid Boundary Layers
with Particle Strength Exchange
and Weak Adaptivity

2.1 Introduction
In computer graphics, the incompressible Navier-Stokes equations are often used

to produce realistic fluid animation. Storing fluid quantities on a Cartesian grid

and performing pressure projection to handle incompressibility and boundary con-

ditions, Eulerian approaches have proved their merit in scalably handling complex

boundary shapes and maintaining stability with large time steps [7].

Despite the ease of use and implementation of Eulerian approaches, their abil-

ity to simulate high Reynolds flow remains a problem. In this type of flow, fluid

motion is often strongly influenced by boundary layer dynamics. A boundary

layer of vanishing thickness usually cannot be resolved at practical grid resolu-

tions, making the no-stick or no-slip boundary conditions both diverge from phys-

ical predictability. Besides the possibility of producing inconsistent results under

grid refinement, the flow motion is poorly or not at all controlled by changing the

Reynolds number, as shown in Fig. 2.2: simulations at low resolution, which don’t

resolve the boundary layer, cannot hope to resemble the results produced by high

4

Figure 2.1: Simulation of a rotating fan in wind, Re ≈ 105, visualized with
smoke marker particles. Large scale motion and detailed boundary layer
dynamics are cheaply and easily coupled using our method, producing
high quality fluid animations at low cost. Top: top view of fan wake at
frames 80, 120 and 200. Bottom: side view at frame 300.

resolution simulations.

Fluid-structure interactions in slightly viscous flow has been successfully mod-

eled by vortex methods [9, 56]. Boundaries are viewed as generators of vorticity in

vortex methods. However, solving the boundary integral equation for general ge-

ometry in 3D is non-trivial, and concerns also remain about how to reliably achieve

stability with 3D vortex stretching [20, 66]: we have found it hard in practice to

generally adopt vortex methods for computer graphics.

On the other hand, while the variational framework [6] with FLIP advection

[68] is capable of simulating free-slip boundaries nicely, with insufficient grid res-

olution the momentum exchange near (more physical) no-slip boundaries is only

poorly resolved.

To capture near-boundary flow accurately without incurring the same expense

for the domain as a whole, adaptive methods have been proposed for graphics by

many researchers, e.g. using adaptive grids [2, 37, 51] or domain decomposition

[21]. While the former category has advantages in more smoothly varying the

degree of refinement, there is extra overhead in mesh generation and memory in-

dexing. On the other hand, domain decomposition solvers require extra iterations

per time-step to couple the solutions between different domains.

5

Figure 2.2: Vortex shedding from a cylinder in 2D at Re=15000, zoom-in
view near the boundary. Left column: simulation results at low resolu-
tion (approximately 50× 50 grid cells shown). Middle column: simu-
lation obtained with 4× resolution. Right column: simulation obtained
with our method, with the same coarse grid but a 4× refined grid over-
laid just around the solid. Our method produces results visually consis-
tent with the high resolution reference because only the boundary layer
needs that resolving power.

We take inspiration from how, in FLIP, the particles carry flow velocities and

move with the flow, while an Eulerian grid is used to adjust the particle velocities

to a divergence-free state. In this paper, we extend this philosophy to arrive at an

efficient, easy to implement, highly adaptive fluid solver:

• The classic FLIP scheme is augmented with a particle strength exchange

(PSE) method [39] to solve the convection-diffusion part of the Navier-

Stokes equations.

• By seeding extra ghost boundary particles at the boundary, our solver cap-

tures the boundary layer dynamics more accurately, producing results visu-

ally consistent with higher resolution simulations (cf. Fig. 2.2).

• Our time integration weakly couples the regionally refined solutions effi-

ciently, alleviating the need for sophisticated global solvers.

• The regional refinements can be placed arbitrarily, even overlapping each

6

Table 2.1: Symbol abbreviations used throughout this paper.

ν Kinematic viscosity of the fluid
up,i Velocity stored on particle i
xi Position of particle i
ug(x) Velocity sampled on grid at position x
Ω Fluid domain
Ωsub,i ith Sub-domain with particle-mesh refinement
Wh(x) Kernel used to spread a particle quantity to the grid
Hτ(x) Heat kernel for particle momentum exchange
h Local grid cell spacing

Figure 2.3: Our method captures the velocity field near the boundary effi-
ciently and with high apparent fidelity. Left: zoom-in near the boundary
flow. Right: the entire simulation, Re=15000.

other, without any geometric operations to merge them together, simplifying

mesh generation for spatially adaptive solvers.

2.2 Related work
Boundary layers are often the source of turbulence in high Reynolds number flows.

Pfaff et al. [45] attempted to capture this effect by seeding vortex particles from a

precomputed artificial boundary layer to enhance a coarse simulation. However,

their approach is limited to static boundaries and may be less physically plausible

than desired as the vortex particles are seeded by chance. In contrast, our method

aims to solve the viscous dynamics at the right scale, alleviating the limitation to

static boundaries and improving direct physical control of the result.

When modelling fluid motion with vortex elements, vorticity can be seeded

near the boundary by diffusing the boundary vortex sheet [44, 56]. In these ap-

proaches, the unknown vortex sheet strength is determined by solving boundary

7

integral equations. Besides the expense of the GMRES solve for the vortex street

strength, there are questions of solvability of the equations themselves for arbi-

trary topology under general motion, which is significant for computer graphics

applications.

Particles, along with Eulerian velocity projections, have been widely used in

computer graphics to capture fluid features which may fall between grid samples

and be smoothed away by purely Eulerian solvers, e.g. FLIP [68], or derivative par-

ticles [52] and the closely related APIC [29]. We further extend this concept: in our

method, particles are used to represent the change of flow momentum due to diffu-

sion and external forces, while multiple-resolution Eulerian grids bounding differ-

ent subregions are used to project particle momentum towards their divergence-free

state (along with a global coarse grid).

Our scheme is related to the Iterated Orthogonal Projection (IOP) framework

proposed by Molemaker et al. [41] but differs in two aspects: instead of re-projecting

the field solution globally in consecutive iterations, our projection is only applied

to a set of locally refined sub-domains; during each projection our pressure dis-

cretization respects the solid boundary conditions as per Batty et al. [6], while in

IOP, boundary conditions are only imposed in a separate step of the iteration.

Chimera grids proposed by English et al. [15] are a promising tool for adap-

tive, large-scale fluid computations, but require nontrivial domain discretization to

merge grids together, and a relatively expensive global solver. While the global

solve may be critical for water simulations, in this paper we focus our attention on

purely gaseous phenomena and demonstrate a faster and simpler weak coupling of

grids is effective.

Domain decomposition schemes have been used as preconditioners for iterative

linear solvers within pressure projection (e.g. [13]), or as a useful tool to decouple

fluid features with different solution methods [21]. Our method also makes use

of domain decomposition concepts: we solve the convection-diffusion and force

calculation part on particles, and use multiple Eulerian grids as an auxiliary tool

to perform velocity projection to obtain an adaptive refined and weakly coupled

solution in the fluid domain.

Stock et al. [57] proposed an efficient one-way coupling to simulate rotor wake.

The fluid state is first updated with a vortex particle time step, which provides the

8

Ω

Ω ,2

Ω ,1

Figure 2.4: A typical domain construction used in our method. Ω indicates
the global Eulerian domain where fluid motion is loosely captured. Eu-
lerian subdomains with finer resolution can be placed anywhere to en-
hance the simulation quality locally, such as the green domain(Ωsub,1)
for near-boundary turbulence and the red domain (Ωsub,2) where the
camera was placed. Particles are seeded to fill the space; within gray
areas, particles are seeded at higher density to track finer details.

velocity boundary condition for the Eulerian sub-domain to advance itself. Vor-

tex particles in the Eulerian sub-domain can then interpolate vorticity changes for

the next time-step. In contrast, our space-filling Lagrangian particles carry fluid

momentum instead of vorticity, to avoid the potential complexities associated with

vortex stretching and viscous boundary conditions in general three-dimensional

flows.

Multigrid solvers are becoming increasingly popular in graphics to accelerate

the pressure solve (e.g. [18, 40], [3]) We likewise use multigrid for the various

grids in our solver.

While Lentine et al. [33] used multi-level grids to obtain detailed fluid anima-

tions efficiently, their algorithm is limited to purely Eulerian schemes, whereas our

solver is designed for hybrid particle-mesh methods like FLIP, which offer less

numerical diffusion.

A common technique in industry is to inject additional detail with vorticity

confinement [16, 54]) or post-process turbulence synthesis (e.g. [32, 48]). We did

not use such methods, focusing on a more direct approach of better solving the

9

Figure 2.5: Overview of our algorithm. At the beginning of each time step,
the velocity of each particle is known, the convection-diffusion part of
Navier-Stokes equation is solved by a PSE method (§2.3.1). We then
splat the particle velocity to the coarse grid, and make the resulting field
divergence-free §2.3.2. The velocity change is interpolated to all par-
ticles for divergence correction. Then, for any subdomain Ωsub,i in the
field, the corrected particle momentum is splatted to the grid again and
made locally divergence-free. Any particle within a subdomain Ωsub,i is
considered a small-scale particle and collects its momentum correction
from the corresponding domain.

Navier-Stokes equations at higher Reynolds numbers, where the look can be con-

trolled primarily with actual physical parameters. However, procedural techniques

like these could be added as an additional layer to our method to produce even

greater details.

2.3 VFLIP and weakly higher resolution regional
projection (WHIRP).

The incompressible Navier-Stokes equations we approximately solve are:

∂u
∂ t

+(u ·∇)u =− 1
ρ

∇p+ν∆u+ f ,

∇ ·u = 0.
(2.1)

We adopt the usual FLIP framework to handle the material derivative Du/Dt on

the left hand side, storing velocity on particles which are moved in a grid-based

velocity field. The pressure gradient and incompressibility condition (together

with boundary conditions) are handled by a separate pressure projection step, aug-

mented in this paper with multiple grids (see figure 2.4). We use particle strength

exchange (PSE) for the viscous term, and integrate body forces f with an Euler

10

step split from the rest of the time integration as usual.

An overview of our algorithm is given in Fig. 2.5, while each subroutine called

in a time step is listed in Alg. 1. Technical details of each subroutine are given in

the corresponding subsections, §2.3.1, §2.3.2,§2.3.3 and §2.3.4.

Algorithm 1 TimeStep(∆t)
1: // Convection-diffusion §2.3.1
2: For each particle i
3: up,i = PSE(∆tν);
4: xi = ForwardTrace(ug, ∆t, xi)
5: // Hierarchical projection §2.3.2
6: In fluid domain Ω

7: particles = Collect particles in Ω

8: DivergenceFreeUpdate(particles)
9: For each sub-domain Ωsub,i in dx descending order

10: particles = Collect particles in Ωsub,i
11: DivergenceFreeUpdate(particles)
12: SeedAndDeleteParticles // §2.3.4

Algorithm 2 DivergenceFreeUpdate(particles)
1: u∗g = Splat particle velocities to grid cells
2: ug = Project(u∗g)
3: δu = ug−u∗g
4: For each particle i
5: up,i = up,i +δu(xi)

2.3.1 Solving the convection-diffusion equation with ghost particles

Given particles and their velocity at time step n, the convection-diffusion part of

the Navier-Stokes equation,
Du
Dt

= ν∆u, (2.2)

can be solved efficiently with a so-called Particle Strength Exchange method. To

deal with boundary objects, at each time step we seed ghost particles randomly in a

2h band inside the boundary (where h is the spacing of the grid covering the solid,

and with the same density as regular FLIP particle seeding), and set their velocity

11

to that of the solid object. Given particle velocity up,i, the updated particle strength

is then calculated using the stable formula

un+1
p,i = un

p,i +
∑ j∈η(up, j−up,i)Hτ(xi− x j)

∑ j∈η Hτ(xi− x j)
(2.3)

where η is the neighborhood in which we look for particles (a box of size 2h), and

Hτ(x) is the heat kernel with τ = νδ t, which reads

Hνδ t(x) =
1

(4πνδ t)d/2 exp
(
−‖x‖2

4νδ t

)
(2.4)

The (4πνδ t)−d/2 factor can be elided due to the normalization in Equation 2.3.

Once the particle velocites have been diffused, particles are passively advected

through the divergence-free flow field. We used Ralston’s 3rd order Runge-Kutta

time integrator [47], as the most efficient optimal RK scheme with a stability region

overlapping the pure imaginary axis (for rotations):

u′i = SampleVelocity(xi)

u′′i = SampleVelocity(xi +0.5∆tu′i)

u′′′i = SampleVelocity(xi +0.75∆tu′′i)

xn+1
i = xn

i +
2
9

∆tu′+
3
9

∆tu′′+
4
9

∆tu′′′

(2.5)

When sampling velocity from the velocity buffer, we use trilinear interpolation.

In the case where multiple overlapping grids are detected, we take the grid with

the finest resolution. While this sounds overly simple, and potentially introduces

discontinuities at the edges of grids, we have not observed any noticeable artifacts

as typically the velocity jumps would be small, and it is only the integral in time of

the velocity (the particle trajectories) which we observe. It would not be difficult to

use a partition-of-unity blend to get a smoother velocity at grid edges if for some

reason this was necessary. After advection, we further update the particle velocities

with forcing terms such as buoyancy before pressure projection.

12

2.3.2 Regional projection for particle velocity correction

Once the post advection particle velocities are known, we use a regional projection

method to correct the velocity field to an approximately divergence-free state. Fol-

lowing Batty et al. [6], finding the inviscid divergence-free projection of an input

velocity field u∗ is equivalent to a minimization problem:

min
p

ˆ
Ω

1
2

ρ‖u∗− ∆t
ρ

∇p‖2−
ˆ

Ω

1
2

ρ‖u∗‖2 +

ˆ
S

pn̂ ·∆tupre, (2.6)

where upre is typically a prescribed velocity at solid or fluid domain boundaries S.

As outlined in Alg. 2, in our regional projection, we first splat all particle veloc-

ities to the Eulerian domain Ω with a wide kernel Wh(x), as if we were computing

the large eddy filtered version of the velocity field:

ug(x) =
∑ j u jWh(x− x j)

∑ j Wh(x− x j)
. (2.7)

Here x is a fixed grid cell position, and x j and u j are the the position and velocity

of particle j respectively.

In our implementation, the usual bi-/trilinear hat function kernel was used:

Wh(x) =
d

∏
θ=1

φ

(xθ

h

)
,with

φ (r) =

1−|r|, r ∈ [−1,1) ,

0, else,

(2.8)

where d = 2,3 is the spatial dimension, h is the kernel width which simply equals

the grid spacing, and xθ is the θ th component of vector x.

After we splat the particle velocity to the grid, the velocity field on the grid

is made divergence-free by pressure projection. Our projection uses a standard

staggered grid and face-weighted pressure discretization similar to Batty et al. [6].

The velocity change is then interpolated to the particles to correct their velocities.

At this stage the velocity defined on the particles is (approximately) divergence-

free at the coarse scale. To increase the flow fidelity in regions of interest (near

boundaries or cameras, for example), further projections with higher resolution

13

in each subdomain are performed with essentially the same procedure. We splat

the coarse-corrected particle velocity to the corresponding refined domain using

the kernel Wh(x) with the smaller refined h, make the grid-based velocity field

divergence-free, and interpolate the velocity change back to the particles in that

region. In each subdomain projection, at the domain boundaries we restrict the

normal component of velocity not to change (as established by splatting from the

particles). We repeat this process until all the regional refined domains are pro-

cessed.

During each projection, the Poisson equation for pressure is solved with a

multi-grid preconditioned conjugate gradient method, whose implementation de-

tails are given in §2.3.3.

2.3.3 Our pressure solver

Similar to McAdams et al. [40] and Setaluri et al. [51], we use a multigrid precon-

ditioned Krylov solver for our pressure Poisson equation. Our multigrid solver is

constructed semi-algebraically: we construct RL (the restriction matrix mapping

the residual of level L to a coarser level) and PL (the prolongation matrix used

to add coarse level corrections back to the level L solution) using geometric infor-

mation given by the fluid domain, but use matrix multiplications to construct the

coefficient matrix AL+1 of each coarsening level L+1 (Alg. 3).

Algorithm 3 MultiGridCoarsening(AL,PL,RL, AL+1)
1: for each cell in coarse level
2: i← index of this cell
3: for each sub cell in fine level
4: j← index of this sub cell
5: if AL(j, j) 6= 0
6: RL(i, j) = 1/2d //d = 2,3 dimension of the problem
7: PL(j, i) = 1.0
8: AL+1← 0.5RLALPL

As shown in Alg. 3, our restriction and prolongation matrices are transposes

of each other, up to a scale factor, with restriction equivalent to simply averaging

residuals across the fine level grid cells covered by a coarse grid cell, and prolon-

gation equivalent to taking the nearest neighbour coarse value (i.e. ”parent” value);

14

this is a ”aggregation”-style multigrid with constant weights. For pure multigrid,

this does not produce optimal convergence; we improve the scheme by applying a

scaling of 1
2 to the coarse level coefficient matrix, which, away from solid bound-

aries, gives exactly the same coefficient matrix as if we were to rediscretize the

PDE on the coarse grid. For cases with solid boundaries, this coarsening strat-

egy acts as a volume weighted rediscretization at the coarse level. Our coarsening

strategy doesn’t increase the size of the discrete Poisson stencil: a coarse cell has at

most six neighbors with non-zero coefficients. This in turn allows for the usual red-

black ordering to parallelize Gauss-Seidel sweeps, and in general makes smoothing

far more efficient. For other implementation details of multigrid-preconditioned

Krylov solvers, please refer to McAdams et al. [40].

In all our experiments, the multigrid-preconditioned conjugate gradient solver

appeared to converge with a constant rate of approximately 0.1 per iteration, as

shown in Table 2.2, though more complex schemes may be necessary for extremely

complex solid geometry.

Table 2.2: The Semi-AMGPCG solver applied to a Poisson problem with sin-
gle impulse, in a unit cube domain with a zero Neumann boundary con-
dition along a sphere with diameter 0.2 in the center, and zero Dirichlet
boundary conditions at the edges of the cube. The number of iterations
required to reduce the residual by a factor of 10−10 is essentially indepen-
dent of the grid size, providing one extra digit of accuracy per iteration.

Convergence rate of the AMGPCG solver
Resolution 643 963 1283 1923 2563

Convergence criterion 10−10||r.h.s||∞
of iterations 10 11 11 11 11

2.3.4 Seeding and deleting particles

At the end of each time step, particles are seeded and deleted as necessary to main-

tain reasonable sampling of the fluid in each grid cell, according to the highest

resolution grid nearby. Newly seeded particles take their velocity by interpolation

from the finest available grid. We delete particles randomly from cells where the

count exceeds a threshold (16 in our examples), and seed new particles where the

15

Figure 2.6: Impulsively started flow past a sphere at Re=15000 simulated us-
ing our solver

count is below another threshold (8 in our examples).

Referring to figure 2.4, the grey areas surrounding (but not inside) refined sub-

domains are treated with the finer grid spacing: we maintain a higher particle den-

sity in the grey areas as there is a chance that the fluid in the grey region will be

advected into the refined subdomain during the course of the next time step. For

our examples we used a bandwidth of 3h, where h is the refined grid spacing, for

this intermediate zone but it could of course be determined more dynamically and

frugally based on the local velocity and the time step size.

As an alternative to avoid higher particle counts, we have experimented with

only seeding extra particles in the refined regions, not the grey neighborhoods, but

widening the support of the particle-to-grid kernel near the edge of the refined grid

to avoid gaps in the data. This exchanges more work for less storage, which may

be preferable in some cases, though the results are similar.

2.4 Results and discussion
We parallelized the proposed methods on a desktop machine with an Intel(R)

Core(TM) i7-3930K CPU and 32 GB RAM. We compared our new solver to a typ-

ical inviscid FLIP solver as used in graphics, as well as a “naïve” viscous Navier-

Stokes solver where viscosity is added with an explicit-in-time finite difference

(since we are interested in very high Reynolds numbers, this explicit step was al-

ways stable). Simulations were visualized by judiciously injecting smoke marker

particles which are passively advected with the grid velocity field. The accompa-

nying video shows comparisons between the methods for different resolutions and

different Reynolds numbers in a variety of examples.

In Fig. 2.6, we show a flow simulation frame obtained with our solver at

16

Figure 2.7: Vortex shedding in impulsively started flow around a 2m diameter
sphere at Re=20000. Left: naïve grid-based viscosity model with h =
0.0625. Middle: naïve solver with h = 0.03125 (twice the resolution).
Right: our model using a coarse grid of h = 0.125 and a refined grid
around the sphere with h = 0.03125. The computation time for the left
and right simulations are roughly equal.

Figure 2.8: For a flow past cylinder simulation at Re= 800, inflow speed U=
5m/s, and cylinder diameter D = 1.6m, the experimental model predicts
a Strouhal number of around 0.2 [35], hence a shedding frequency of
around 0.625. The above pictures are from frame 754 and frame 920
of our simulation with ∆t = 0.01, where vortices shed off the same side
just reach the end of the domain; this gives a shedding frequency just
over 0.6.

Reynolds number of 15000: the flow separates from the boundary at small an-

gle, it remains laminar with structured vortices for about one diameter, and then

becomes turbulent. This is similar to figure 55 on page 34 of An Album of Fluid

Motion [61].

As shown in Fig. 2.7, with the naïve uniform-resolution grid-based viscosity

model, a much higher resolution is necessary to capture important fluid motions

such as vorticity detaching from the boundary layer. With our sub-grid particle-

based viscosity model and regional refinement, the characteristic vortex shedding

can be achieved at much lower cost.

In Fig. 2.8 we performed a 2D flow past cylinder simulation. The cylinder

is only about 12 cells wide in the coarse grid; a 4× local refinement is applied

to resolve the boundary layer. The shedding frequency produced by our solver

17

Table 2.3: Vortex shedding frequency statistics from numerical simulations

Vortex shedding frequency fν of
a flow-past-sphere simulation in 2D with various Strouhal numbers
Reynolds number 400 1600 16,000
Strouhal number 0.188 0.195 0.197
Ground truth fν 0.117 0.122 0.62
Numerical fν 0.114 0.121 0.611

Figure 2.9: Our method on the same scenario as Fig. 2.7 with different res-
olutions. Left: coarse simulation (global h = 0.25, inner h = 0.0625).
Middle: 2× refinement for both (global h = 0.125, inner h = 0.03125).
Right: only the inner grid is refined (global h = 0.25, inner h =
0.03125). Important fluid features can be cheaply captured by increas-
ing just the inner grid resolution.

matches the experimental model. We also studied this type of flow with various

Strouhal numbers: results are given in Table 2.3.

In Fig. 2.9 we take the same scenario (impulsively started flow around a sphere

at Re = 20,000) but look at changing global and inner grid resolution in our

method. Vortex shedding is largely dominated by how well a solid boundary is

resolved. Our method can resolve some sub-grid scale viscosity effects, but it fails

to predict the near-boundary behavior when the refined grid is too coarse to resolve

it. However, increasing the resolution of the local grid just around the boundary

improves the simulation quality greatly without requiring refinement in the rest of

the domain.

When the resolution of the coarse domain isn’t enough to represent the solid

object, our regional refinement may still be enough to capture the solid boundary

well (Fig. 2.1, Fig. 2.10). Vortex shedding from solid objects is essential to fluid

animation in these scenarios, which can be faithfully captured by our method.

Our method makes it much cheaper to adequately resolve the viscous bound-

ary layer, locally and on-the-fly, alleviating the limitation to parametrize boundary

18

Figure 2.10: Rotating fan (each blade is 1.3m long, rotating at one cycle per
second) in a constant wind of 2m/s, with ν = 10−4, giving Re ≈ 105.
The refined grid has h = 0.005m. Left: zoom-in view at the fan blades.
Right: the entire simulation.

Figure 2.11: Smoke rising around a sphere of diameter 0.3m, with ν = 10−4

and the inner grid h = 0.005m, Re≈ 103. Left: simulation with a uni-
form FLIP solver. Right: simulation using our solver with a coarser
global grid and a 4× refined grid around the sphere. With approxi-
mately the same computation time, our solver captures structures in
the boundary disturbances over the bottom of the sphere more sharply.

layer with far field flow motions as in Pfaff et al. [45]. It is thus suitable for more

general simulation scenarios, e.g. buoyancy-driven plumes as shown in Fig. 2.11.

In Table 2.5, we notice that for the inner grid of 2003, the simulation time is

very close while the outer grid size varies from 100x50x50 to 150x75x75. This is

due to the reason that in our experiments, as the resolution of inner grid increases,

the particles assigned for the inner domain increases, as a result, the computation

time became dominated by the viscous diffusion part, where each particle’s veloc-

ity is adjusted by the kernel summation. In practice, diffusion only needs to be

resolved up to a narrow band near the boundary, hence, the cost function can be

quantified as

T = c1Ng + c2Nb (2.9)

where, Ng is the total number of grid cells in the entire domain, including the coarse

19

Table 2.4: Timings of various simulations associated with this paper, mea-
sured on a desktop machine with Intel(R) Core(TM) i7-3930K CPU and
32 GB RAM.

Reynolds Simulation Time
Example Method ∆t Outer Grid Size Inner Grid Size Number (seconds per frame)

Flow past sphere

Naïve solver
0.03 0.0625 N/A 1,000 12.52
0.03 0.03125 N/A 20,000 73.46

Our method
0.03 0.125 0.0625 1,000 11.21
0.03 0.0625 0.03125 20,000 70.76
0.03 0.125 0.03125 15,000 56.07

Rotating fan in wind
Our method

0.03 0.041 0.02 ≈ 105 120.40
Rising smoke plume 0.05 0.1 0.03 ≈ 103 79.10

Flow past sphere

FLIP 0.03 0.0625 N/A N/A 11.31
FLIP + WHIRP 0.03 0.125 0.0625 N/A 4.06

VFLIP 0.03 0.0625 N/A N/A 15.41
VFLIP + WHIRP 0.03 0.125 0.0625 N/A 4.20

Table 2.5: Timings of flow past sphere simulations with only differences in
outer and inner grid sizes, measured on a desktop machine with Intel(R)
Core(TM) i7-3930K CPU and 32 GB RAM.

Simulation Time
(seconds per frame)

Outer Grid Size
100x50x50 150x75x75 200x100x100

Inner
Grid
Size

66x66x66 12.19 19.71 34.36
100x100x100 28.99 35.46 50.52
200x200x200 166.14 168.64 185.57

and subdomains, as the fluid advection and projection operations shall take similar

cost for every grid cell. On the other hand, the diffusion scales linearly with the

number of voxels in a narrow band near the boundary. We fitted our experimental

data to get c1 = 0.0000126 and c2 = 0.000120. This shows that the particle diffu-

sion time becomes dominant for highly refined simulations. We believe that rather

than the current CPU parallelizeed code, a GPU parallelized code could be used

to significantly reduce the computation time for the particle diffusion, as we did in

our 2D examples.

2.5 Conclusions, limitations, and future work
We extended incompressible FLIP in two ways, with a particle-based viscosity

model that can resolve momentum exchange at higher resolution than the grid, and

with an extremely simple regional projection method (together with particle seed-

20

ing/deletion rules) to adaptively refine in important areas, without needing more

complex grid or mesh structures to globally couple different resolutions. Very little

extra code beyond a standard FLIP simulator is required to implement this paper.

Moreover we showed that matching the qualitative look of some high Reynolds

numbers scenarios hinges just on resolving the viscous boundary layer, even while

the rest of the domain can use a coarse grid.

The typical inviscid solver used in graphics doesn’t take viscosity into account

at all, and for example can only lead to vortex shedding through numerical errors

related to grid size and time step. Both the naïve method and our method will fail

to give characteristic results when the boundary layer isn’t resolved, again leading

to simulations whose look is more controlled by numerical errors related to grid

size and time step than physical parameters. However, our method allows for re-

solving boundary layers much more efficiently, at which point physical parameters

are at last a useful control and further refinement will reliably give similar but more

detailed results, as artists generally hope for.

Our solver is still limited formally to first order accuracy in time, and the PSE

approach is likely only first order in space: while we feel it’s valuable for coarse

grids and large time steps, it is not an efficient approach for convergence to a fully

accurate solution. The PSE part is also inappropriate for highly viscous flows,

where an implicit grid-based solver is almost certainly the better option.

The global time step is also a limitation of this approach to spatial-only adaptiv-

ity. The time step selected in graphics simulations, when multiple steps per frame

are taken, is frequently determined by restricting the CFL number, i.e. limiting the

number of grid cells a fluid particle may travel through in one time step. In refined

subdomains with smaller grid cells, this is a much more stringent restriction than

is needed for the coarse global grid, wasting some computational effort.

We have not considered fluid phenomena beyond simple smoke scenarios. Fire

and explosions, where nonzero divergence may be prescribed by the pressure pro-

jection, would require some adjustment to our regional projection scheme. Free

surface liquids, such as commonly used for water, would require even more thought

if regional grids overlap the free surface.

There are several other avenues for further research. The convection-diffusion

part we currently handle with PSE might be improved with other ideas from grid-

21

free methods; we could also look at using an effective eddy viscosity to better

model unresolved turbulence. Our regional projection is not limited to regular

grids, but could also use unstructured tetrahedral meshes to conform more accu-

rately to solid boundaries (while avoiding the need for a global, conforming, tetra-

hedral mesh, which could be a useful savings for simulations involving moving

rigid bodies). Last but not least, it is possible to also track the vorticity on each

particle to correct the missing angular momentum during particle advection, simi-

lar to Zhang et al. [67]; replacing the FLIP framework with APIC [29] might also

allow for better tracking of vorticity.

22

Chapter 3

Restoring the Missing Vorticity in
Advection Projection Fluid
Solvers

Table 3.1: Algorithm abbreviations used through out this paper.

IVOCK The computational routine (Alg.4) correcting
vorticity for advection

SF Classic Stable Fluids advection [53]
SF-IVOCK IVOCK with SF advection
SL3 Semi-Lagrangian with RK3 path tracing

and clamped cubic interpolation
BFECC Kim et al.’s scheme [31], with

extrema clamping([50])
BFECC-IVOCK IVOCK with BFECC advection
MC Selle et al.’s MacCormack method [50]
MC-IVOCK IVOCK with MacCormack
FLIP Zhu and Bridson’s incompressible variant

of FLIP [68]
FLIP-IVOCK FLIP advection of velocity and density,

SL3 for vorticity in IVOCK.

23

Figure 3.1: Rising smoke simulations with and without IVOCK (Integrated
Vorticity of Convective Kinematics). From top left to bottom right,:
Stable Fluids, Stable Fluids with IVOCK; BFECC, BFECC with
IVOCK; MacCormack, MacCormack with IVOCK; FLIP, FLIP with
IVOCK.

3.1 Introduction
In computer graphics, incompressible fluid dynamics are often solved with fluid

variables stored on a fixed Cartesian grid, known as an Eulerian approach [53].

The advantages of pressure projection on a regular grid and the ease of treating

smooth quantities undergoing large deformations help explain its success in a wide

range of phenomena, such as liquids [19], smoke [16] and fire [43]. Bridson’s text

provides a good background [7].

In Eulerian simulations, the fluid state is often solved with a time splitting

method: given the incompressible Euler equation,

∂u
∂ t

+(u ·∇)u =− 1
ρ

∇p+ f

∇ ·u = 0
(3.1)

fluid states are advanced by self-advection and incompressible projection. First

24

Original velocity fieldOriginal velocity field Velocity field after
advection

Velocity field after
advection

Velocity field after
pressure projection
Velocity field after

pressure projection

Figure 3.2: Self-advection maps the original velocity field into a rotational
part and a divergent part, indicated by red and blue arrows respectively.
Pressure projection removes the blue arrows, leaving the rotational part,
and illustrating how angular momentum has already been lost.

one solves the advection equation

Du
Dt

= 0 (3.2)

to obtain an intermediate velocity field ũ, which is then projected to be divergence-

free by subtracting ∇p, derived by a Poisson solve from ũ itself. We formally

denote this as un+1 = Proj(ũ).

Self-advection of velocity, without continuous application of the pressure gra-

dient as is typical of the first-order time-splitting schemes used in graphics, dis-

regards the divergence-free constraint, allowing some of the kinetic energy of the

flow to be transferred into divergent modes which are lost in pressure projection.

We focus in particular on rotational motion: self-advection can sometimes cause a

noticeable violation of conservation of angular momentum, as illustrated in Fig.3.2.

Despite many published solutions in improving the accuracy of advection scheme

in an Eulerian framework (e.g. [34, 50]), or reducing the numerical diffusion with

hybrid particle-in-cell solvers [68], even with higher-order integration [13], only a

few papers have addressed this particular type of numerical dissipation.

Retaining the velocity-pressure approach but changing the time integration to

a symplectic scheme, Mullen et al. [42] were able to discretely conserve energy

when simulating fluids. However, the expense of their non-linear solver for Crank-

Nicolson-style integration, and the potential for spurious oscillations arising from

non-upwinded advection, raise questions about its practicality in general.

Another branch of fluid solvers take the vorticity-velocity form of the Navier-

25

Stokes equation, exploiting the fact that the velocity field induced from vorticity is

always divergence free. These solvers advect the vorticity instead of the velocity of

the fluid, preserving circulation during the simulation. Vorticity is usually tracked

by Lagrangian elements such as vortex particles [44], vortex filaments [64] or vor-

tex sheets [8]. Apart from the fact that the computational cost of these methods

can be a lot more expensive per-time-step than a grid-based solver (three accu-

rate Poisson solves are required instead of just one), there remain difficulties in

handling solid boundaries and free surfaces (for liquids), and users may find it

less intuitive working with vorticity rather than velocity in crafting controls for art

direction. However, researchers have observed that vortex methods can better cap-

ture important visual details when running with the same time step and advection

scheme [65].

In this paper, we combine our observation from vortex methods with Eulerian

grid-based velocity-pressure solvers to arrive at a novel vorticity error compensa-

tion scheme. Our contributions include:

• A new scheme we dub IVOCK (Integrated Vorticity of Convective Kinemat-

ics), that tracks and approximately restores the dissipated vorticity during

advection, independent of the advection method or other fluid dynamics in

play (boundary conditions, forcing terms) being used.

• A set of novel techniques to store and advance vortex dynamics on a fixed

spatial grid, maximizing the accuracy while minimizing the computational

effort of IVOCK.

• Upgraded classic fluid solvers with IVOCK scheme, documenting the com-

bination of IVOCK with different advection methods and different types of

fluids.

• A new vortex stretching model in a non-divergence-free environment for

compressible vortex flows occuring in volumetric combustion.

3.2 Related work
Stam’s seminal Stable Fluids method [53] introduced a backward velocity trac-

ing scheme to solve advection equation, making physically based fluid animation

26

highly practical for computer graphics. With its unconditional stability, trading

accuracy for larger time step, it provided a basis for most subsequent grid-based

fluid solvers in graphics, for fluid phenomena such as smoke [16], water [19], thin

flames [43], and volumetric combustion [17].

However, the first order accuracy in both time and space of Stable Fluids man-

ifests in strong numerical diffusion/dissipation. Many researchers have taken it as

a basic routine to build higher-order advection schemes. Kim et al. [31] proposed

the BFECC scheme to achieve higher-order approximation by advecting the field

back and forth, measuring and correcting errors. Selle et al. [50] eliminated the

last advection step of BFECC to arrive at a cheaper MacCormack-type method,

and also introduced extrema clamping in BFECC and MacCormack to attain un-

conditional stability, at the cost of discontinuities in velocity which can sometimes

cause visual artifacts. In this paper, we use these advection schemes as examples

to which we apply IVOCK, and show improvements with the IVOCK scheme for

smoke and volumetric combustion simulations.

Hybrid particle-grid methods have been introduced to further reduce numer-

ical diffusion in adection, notably Zhu and Bridson’s adaptation of FLIP to in-

compressible flow [68]. Although FLIP is almost non-diffusive for advection, the

velocity-pressure solver nevertheless may dissipate rotational motion as shown in

figure 3.2, regardless of the accuracy of advection. FLIP cannot address this issue;

in this paper we show our FLIP-IVOCK scheme outperforms FLIP in enhancing

rotational motions for smoke.

Resolution plays an important role in fluid animations. McAdams et al. [40]

proposed multigrid methods to efficiently solve the Poisson equation at a uniform

high resolution. Losasso et al. [37] introduced a fluid solver running on an octree

data structure to adaptively increase resolution where desired, while Setaluri et

al. [51] adopted a sparse data approach. In our work, multigrid is employed for the

vorticity-stream function solver while an octree code is used to impose domain-

boundary values using Barnes-Hut summation.

Vortex dynamics has proved a powerful approach to simulating turbulence. La-

grangian vortex elements such as vortex particles [44], vortex filaments [64], or

vortex sheets ([8], [46]) have been used to effectively model the underlying vor-

ticity field. Recently, Zhang and Bridson [66] proposed a fast summation method

27

Figure 3.3: Vorticity confinement (VC) vs. IVOCK. Top row: frame 54 of
a rising smoke scenario. From left to right, VC parameter ε1 = 0.125,
ε2 = 0.25, ε3 = 0.5, and SL3-IVOCK. Bottom row: frame 162. Vortic-
ity confinement tends to create high-frequency noise everywhere, while
IVOCK produces a natural transition from laminar to turbulent flow
with realistic vortex structures along the way.

to reduce the computational burden for Biot-Savart summation, in an attempt to

make these methods more practical for production. Unfortunately, these methods

are less intuitive for artists (velocity can’t be modified directly), tend to be more

expensive (finding velocity from vorticity requires the equivalent of three Poisson

solves), and continue to pose problems in formulating good boundary conditions.

We were nevertheless inspired by the mechanism to induce velocity from vorticity,

and constructed our IVOCK scheme as a way to bring some of the advantages of

vortex methods to more practical velocity-pressure solvers.

To balance the trade-off between pure grid-based methods and pure Lagrangian

vortex methods, researchers have incorporated vorticity-derived forces in Eulerian

simulations. Foremost among these is the vorticity confinement approach [54],

where a force field is derived from the current vorticity field to boost it. Selle

at al. [49] refined this by tracing “vortex particles”, source terms for vorticity con-

finement tracked with the flow which provides better artistic control over the added

turbulence. Unfortunately, vorticity confinement relies on a non-physical parame-

ter which must be tuned by the artist. As we can clearly see in figure 3.3, too small

a parameter doesn’t produce interesting motion for the early frames of a smoke ani-

28

mation, while still turning the smoke into incoherent noise in later frames. IVOCK

on the other hand is built in a more principled way upon vortex dynamics, par-

tially correcting the truncation error in velocity-pressure time-splitting, and pro-

duces natural swirling motions without any parameters to tune. In addition, it is

orthogonal to vorticity confinement (viewed as an art direction tool) and can hence

be used together (figure 3.13).

Turbulence can also be added to the flow as a post-simulation process, such as

with wavelet turbulence [32]. In particular, the wavelet up-sampling scheme relies

on a good original velocity field to produce visually pleasing animations; IVOCK

is again orthogonal to this and could be adopted to enhance the basic simulation.

3.3 The IVOCK scheme
When solving Navier-Stokes, the fluid velocity is usually advanced to an interme-

diate state ignoring the incompressibility constraint:

ũ = Advect(un) , (3.3)

˜̃u = ũ+∆t f , (3.4)

where un is the divergence-free velocity field from the previous time-step and f is

a given force field which may include buoyancy, diffusion, vorticity confinement,

and artistically controlled wind or motion objects.

From this intermediate velocity field ˜̃u one can construct the final divergence-

free velocity un+1 with pressure projection, which is usually the place where bound-

ary conditions are also handled:

un+1 = Proj
(

˜̃u
)
. (3.5)

We observe that in vortex dynamics, the intermediate velocity field ũ of equa-

tion 3.3 is analogously solved using the velocity-vorticity (u−ω) formula:

1. given ωn, solve
Dω

Dt
= ω ·∇u (3.6)

to get ω̃;

29

2. deduce the intermediate velocity field ũ from ω̃ .

Equation 3.6 is the advection-stretching equation for vorticity in 3D, and step

2 of this (u−ω) formula is usually solved using a Biot-Savart summation, or

equivalently by finding a streamfunction Ψ (vector-valued in 3D), which satisfies

∇2Ψ =−ω , and readily obtaining the velocity ũ from ũ = ∇×Ψ .

Equation 3.6 suggests the post-advection vorticity field ω∗ = ∇× ũ should ide-

ally equal the stretched and advected vorticity field ω̃ , but due to the simple nature

of self-advection of velocity ignoring pressure, there will be an error related to the

time step size.

We therefore define a vorticity correction δω = ω̃−ω∗, from which we deduce

the IVOCK velocity correction δu and add this amount to the intermediate velocity

ũ. Algorithm 4 provides an outline of the IVOCK computation before we discuss

the details.

Algorithm 4 IVOCKAdvection(∆t,un, ũ)
1: ωn← ∇×un

2: ω̃ ← stretch(ωn)
3: ω̃ ← advect(∆t, ω̃)
4: ũ ← advect(∆t, un)
5: ω∗← ∇× ũ
6: δω ← ω̃−ω∗

7: δu← VelocityFromVorticity(δω)
8: ũ ← ũ+δu

In essence, IVOCK upgrades the self-advection of velocity to match self-advection

of vorticity, yet retains most of the efficiency and all of the flexibility of a velocity-

pressure simulator. In particular, IVOCK doesn’t change the pressure computation

(as the divergence of the curl of the correcting streamfunction is identically zero,

hence the right-hand-side of the pressure projection is unchanged by IVOCK), but

simply improves the resolution of rotational motion for large time steps, which we

earlier saw was hurt by velocity self-advection.

30

Figure 3.4: Vorticity and streamfunction components are stored in a stag-
gered fashion on cell edges in 3D (red line), while velocity components
are stored on face centers. This permits a natural curl finite difference
stencil, as indicated by the orange arrows.

3.3.1 Vortex dynamics on grids

Data storage

Extending the classic MAC grid [25] widely adopted by computer graphics re-

searchers for fluid simulation, we store vorticity and streamfunction components

on cell edges in a staggered fashion, so that the curl operator can be implemented

more naturally, as illustrated in figure 3.4. For example, if the grid cell size is h,

the z-component of vorticity on the z-aligned edge centred at (ih, jh,(k+ 1
2)h) is

approximated as

ωz(i, j,k+
1
2
) =

1
h

[(
v(i+0.5, j,k)− v(i−0.5, j,k)

)
−
(

u(i, j+0.5,k)−u(i, j−0.5,k)
)]

. (3.7)

Vortex stretching and advection on grid

In 3D flow, when a vortex element is advected by the velocity field, it is also

stretched, changing the vorticity field.

We solve equation 3.6 on an Eulerian grid using splitting; we solve

∂ω

∂ t
= ω ·∇u, (3.8)

to arrive at an intermediate vorticity field ωn+ 1
2 , which is then advected by the

31

Figure 3.5: Barnes-Hut summation [5] for the boundary values demonstrated
in 2D: we construct the monopoles of tree nodes from bottom-up (left),
and then for an evaluation voxel (black) in the ghost boundary region
(grey), we travel down the tree, accumulating the far-field influence by
the monopoles (blue nodes), and do direct summation only with close
enough red cells (right).

velocity field as
Dω

Dt
= 0. (3.9)

When discretizing equation 3.8 on an Eulerian grid, a geometrically-based

choice would be to compute the update with the Jacobian matrix of u:

ω
n+ 1

2 = ω
n +∆tJ (u)ω

n. (3.10)

Constructing the Jacobian matrix and computing the matrix vector multiplica-

tion involves a lot of arithmetic, so we simplified this computation by using

ω ·∇u =
∂u
∂ω

= lim
ε→0

u(x+0.5εω)−u(x−0.5εω)

ε
. (3.11)

In our computation, with h the grid cell width, we choose ε = h
‖ω‖2

, which can

be seen as sampling the velocity at the two ends of a grid-cell-sized vortex segment

and evaluating how this segment is stretched by the velocity field.

Once the vorticity field is stretched, it is advected by any chosen scheme intro-

duced in §3.2 to get ω̃ .

32

Obtaining δu from δω

To deduce the velocity correction from the vorticity difference, we solve the Pois-

son equation for the stream function:

∇
2
Ψ =−δω (3.12)

We solve each component of the vector stream function separately: Let sub-

script x indicate the x-component of the vector function, we have

∇
2
Ψx =−δωx, (3.13)

The equations for y and z components can be obtained in a similar fashion.

In vortex dynamics, it is important for this Poisson equation to be solved in

open space to get natural motion, without artifacts from the edges of the finite grid.

The open space solution of Poisson’s equation can be found by a kernel summation

with the corresponding fundamental solution. Consider the scalar Poisson problem,

∇
2
Ψx =−δωx

Ψx(p) = 0, p→ ∞,
(3.14)

Its solution, in a discrete sense, is given by the N-body summation

Ψx(pi)≈ ∑
all j, j 6=i

δωx jv j

4πri, j
, (3.15)

where δωx j, v j are the vortex source strength (component-wise) and volume of

each sample point (voxel), respectively, pi is the evaluation position, and ri j is the

distance between the ith and jth sample positions. With M evaluation points (on

the six faces of the domain boundary) and N source points (the number of voxels),

the direct N-body summation has an O(MN) cost. However, once an evaluation

position pi is far from a cloud of s sources, the summation of the influence of each

individual source can be accurately approximated by the influence of the monopole

33

of those sources:

s

∑
j=1

δωx jv j

4π‖pi− p j‖
≈ 1

4π‖pi− pc‖

s

∑
j=1

δωx jv j, (3.16)

where pc is the center of mass of the cloud, and ∑
s
j=1 δωx jv j is the so-called

monopole. Defining an octree on the voxels, akin to multigrid, we construct from

bottom-up the monopoles of clusters of voxels, and then for each evaluation po-

sition, we traverse the tree top-down as far as needed to accurately and efficiently

approximate the N-body summation, as illustrated in Fig. 3.5. Similarly to Liu and

Doorly [36], we apply this summation scheme at the M ∝ N
2
3 boundary cells to

approximate the open-space boundary values at an O(N
2
3 log(N)) cost, which we

then use as boundary conditions on a more conventional Poisson solve.

We discretize the Poisson equation with a standard 7-point finite difference

stencil. Because the vorticity difference is small (one can view it as a truncation er-

ror proportional to the time step), we can get away with applying a single multigrid

V-cycle to solve for each component of the stream function. Recall this is not the

stream function for the complete velocity field of the flow, just the much smaller ve-

locity correction to the intermediate self-advected velocity! One V-cycle provides

adequate accuracy and global coupling across the grid at a computational cost of

only about 20 basic red-black Gauss-Seidel iterations. This is cheaper than the

pressure solve, which requires more than three V-cycles for the required accuracy,

and is also substantially cheaper than a vorticity-velocity solver which requires

three accurate Poisson solves.

Once the approximate streamfunction is determined, the velocity correction is

computed as δu = ∇×Ψ.

3.3.2 Discussion

Vortex stretching

Before proceeding to the 3D applications of the IVOCK scheme for smoke §3.4.1,

water §3.4.2 and combustion §3.4.3, we present a few examples illustrating the

effect of vortex stretching.

34

Figure 3.6: Two sequences from 3D rising smoke simulations. Top row: MC-
IVOCK with vortex stretching. Bottom row: MC-IVOCK with vortex
stretching switched off. With vortex stretching, vortex rings change
their radius under the influence of other vortex rings, these process can
easily perturb the shape of vortex rings, breaking them to form new
vortex structures, which brings rich turbulence into the flow field.

In 2D flows, vortex stretching doesn’t take place, hence one need only advect

the vorticity field. Figure 3.7 compares SF and SF-IVOCK in 2D.

In 3D flows, vortex stretching plays an important role. Rising vortex rings

leapfrogging each other is a physically unstable structure: the vortex rings break

up under small perturbations and form new vortex structures. However, due to the

added complexity of implementing the vortex stretching term, and earlier questions

about it stability, practitioners are often tempted to simply drop it, despite this not

being consistent with the fluid equations. Figure 3.6 illustrates that IVOCK without

vortex stretching produces, at large time steps, visibly wrong results. In figure 3.8,

we show that the ability of the IVOCK method to capture vortex stretching can

bring more turbulence to the flow, such as wrinkles on the smoke front, again with

relatively large time steps.

Additional forces

IVOCK is only a correction to the self-advection part of a standard velocity-pressure

solver. As such, we do not need to take into account how additional force terms

such as buoyancy, viscosity, and artist controls will interact with vorticity. These

forces are incorporated into the velocity directly in a different step.

35

Figure 3.7: Left: 2D buoyancy flow simulated with SF. Right: the same with
SF-IVOCK. The resolution and time step were the same; the IVOCK
scheme produces a more richly detailed result.

Figure 3.8: Vortex stretching enhances vortical motion, captured more accu-
rately with IVOCK. Transparent renderings illustrate the internal struc-
tures. Left and middle-lfet: FLIP. Middle-right and right most: FLIP-
IVOCK.

Accuracy vs. performance

While more multigrid V-cycles can be performed to improve the accuracy of the

stream function solver, we observe the visual improvement is minor. In our ex-

periments, more than 60% extra computation time was required for the solver to

converge to a relative residual reduction of 10−6, which is probably not worthwhile.

Fig. 3.9 shows two simulations obtained with different convergence criteria.

Figure 3.9: Left: Frame 150 of an IVOCK simulation with only one multigrid
V-cycle. Right: Frame 150 of an IVOCK simulation where multigrid V-
cycles are taken reduce the residual by 10−6.

36

Boundary conditions

While solving IVOCK dynamics, we don’t take boundaries into account at all: we

pose the vorticity-velocity equation in open space, and allow the subsequent pres-

sure projection to handle boundaries. However, in some simulations with a strong

shear layer along a viscous boundary, we found IVOCK could cause instability;

this was cured easily by zeroing out δω within a few grid cells of the boundary.

We hypothesize the root cause of this problem is that the inviscid fluid equations

we numerically solve predict free-slip boundary conditions at solids, allowing es-

sentially an arbitrary O(1) jump in tangential velocity across a solid boundary;

evaluating vorticity with a stencil which also includes a voxel with solid velocity

then results in an unphysical O(1/h) singular spike, causing instability. Unless

viscosity is taken into account and the viscous boundary layer is sufficiently re-

solved on the grid, evaluating vorticity near a solid is almost certainly numerically

ill-advised.

It is worth noting that velocity-pressure solvers in general, and IVOCK in par-

ticular, rely on the numerical diffusion of the advection to produce vortex shedding

along boundaries (which are otherwise not predicted by the fully inviscid equa-

tions). Figure 3.13 shows an example where rising smoke collides with an obstacle;

the velocity boundary condition is handled by the pressure solver, and no special

treatment is needed for the IVOCK streamfunction computation.

3.4 Applications and results

3.4.1 Smoke

The clearest application of IVOCK is in enriching smoke simulations, where vortex

features are of crucial importance visually.

In 2D, we initialized a raising vortex pair from a heat source. With SF, this

vortex pair all but vanishes after 100 time steps; SF-IVOCK preserves the vortic-

ity much better, as shown in figure 3.10. We recorded the total vortex strength

(enstrophy) at each time step, plotted in figure 3.11.

In 3D, we applied IVOCK to different advection schemes. Figure 3.1 illus-

trates the qualitative improvements to all of them. For large time steps, IVOCK

37

Figure 3.10: Rising vortex pair initialized by a heat source. Left column: SF
with ∆t = 0.01. Middle column: SF with ∆t = 0.0025. Right column:
SF-IVOCK with ∆t = 0.01. Notice IVOCK preserves vorticity best
and produces the highest final position among the three.

significantly enhances the rotational motion and structures before turbulence fully

develops.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time

∫ Ω
||ω

|| 2 d
x

Vorticity−time curve

IVOCKstab dt = 0.01

Advectstab dt = 0.01

Advectstab dt = 0.0025

Buoyancy force
removed

Figure 3.11: Vorticity vs. time curve of the 2D vortex pair simulation. While
IVOCK does not conserve vorticity exactly due to approximations in
advection and the streamfunction computation, it still preserves signif-
icantly more.

Computationally speaking, the overhead for IVOCK includes the stretching

computation, vorticity evaluation, vorticity advection, and three V-cycles to ap-

proximate the vorticity streamfunction. These operations add about 10% to 25%

extra runtime to the original method as a whole: see table 3.2 for sample per-

38

Figure 3.12: IVOCK can be cheaper and higher quality then taking small
time steps. Left and mid-left: BFECC. Mid-right and right: BFECC-
IVOCK with twice as large a time step, computed in much less time.

formance numbers. Alternatively put, the runtime overhead of IVOCK could be

equivalent to improving the original method with about 0.94×∆x in spatial resolu-

tion, or taking about 0.83× smaller time steps. Figure 3.12 illustrates that running

IVOCK produces better results than even a simulation with half the time step size,

despite running much faster.

Table 3.2: Performance comparison of IVOCK augmenting different
schemes, for a smoke simulation at 128x256x128 grid resolution, run-
ning on an Intel(R) Core(TM) i7-3630QM 2.40GHz CPU.

Method sec /time step % overhead
SF 26.6
SF-IVOCK 30.5 14%
SL3 27.7
SL3-IVOCK 32.6 17%
BFECC 31.8
BFECC-IVOCK 39.9 28%
MC 27.9
MC-IVOCK 35.4 26%
FLIP 45.5
FLIP-IVOCK 51.4 12%

3.4.2 Liquids

We also implemented IVOCK for liquids solved as free surface flow (see figure

3.14), with a solver based on Batty et al.’s [6]. In this case we only compute the

vorticity correction δω inside the liquid, sufficiently below the free surface so that

39

Figure 3.13: Rising smoke hitting a spherical obstacle: the velocity bound-
ary condition is handled entirely by the pressure solve, and doesn’t
enter into the IVOCK scheme at all. This example includes a small ad-
ditional amount of vorticity confinement to illustrate how the methods
can be trivially combined.

extrapolated velocities are not involved in the vorticity stencil, as otherwise we

found stability issues. We solve for the velocity correction with a global solve as

before, disregarding boundaries.

Interestingly, we found IVOCK made little difference to the common water

scenarios we tested, even ones where we made sure to generate visible vortex

structures (e.g. trailing from a paddle pushing through water). We note first that

typically the only visible part of a liquid simulation is the free surface itself, un-

like smoke and fire, so interesting vortex motions under the surface are relatively

unimportant. We also hypothesize that most visually interesting liquid phenomena

has to do with largely ballistic motion (splashes) or irrotional motion (as in ocean

waves), chiefly determined by gravity, so internal vorticity is of lesser importance.

While potential flow can be modeled with a vortex sheet along the free surface, we

leave capturing this stably in IVOCK to future work.

3.4.3 Fire

For combustion, the velocity field is not always divergence-free due to expansions

from chemical reactions and intense heating. We subsequently modify the vortex

stretching term, noting that ω/ρ is the appropriate quantity to track [58]:

d
dt

(
ω

ρ

)
=

(
ω

ρ

)
·∇u. (3.17)

40

Figure 3.14: IVOCK applied to liquids. Top row: dam break simulations ob-
tained with FLIP (left) and FLIP-IVOCK (right). Bottom row: moving
paddle in a water tank, simulated with FLIP (left) and FLIP-IVOCK
(right). In these and several other cases we tested, FLIP-IVOCK is
not a significant improvement, presumably because interior vorticity
is either not present (irrotional flow) or not visually important.

We discretize equation 3.17 with Forward Euler,

1
∆t

(
ωn+1

ρn+1 −
ωn

ρn

)
=

(
ωn

ρn

)
·∇un (3.18)

which implies that

ω
n+1 =

(
ρn+1

ρn

)
(ωn +∆tωn ·∇un) . (3.19)

Therefore the new strength of a vortex element, after being stretched and advected,

shall be scaled by ρn+1

ρn .

In compressible flow, mass conservation can be written as

∂ρ

∂ t
+∇ · (ρu) =

Dρ

Dt
+ρ∇ ·u = 0. (3.20)

Rewriting equation 3.20 gives

1
ρ

Dρ

Dt
=

Dlnρ

Dt
=−∇ ·u, (3.21)

41

and by using Forward Euler again we get

ρn+1

ρn = exp(−∆t∇ ·u) . (3.22)

Plugging equation 3.22 into equation 3.17, we observe that in compressible

flow, the vorticity field after being stretched and advected, should be scaled by a

factor of exp(−∆t∇ ·u). This scaling is the only change we make to IVOCK for

compressible flow. We combined the modified IVOCK scheme with traditional

volumetric combustion models described by Feldman et al. [17]; figure 3.15 shows

example frames from such an animation.

3.5 Conclusion
We argue IVOCK is an interesting stand-alone method to cheaply enrich the highly

flexible grid-based velocity-pressure framework with much better resolved vortic-

ity at large time steps, and which can be applied to a variety of advection schemes

and fluid phenomena. We believe it brings many of the advantages of vortex solvers

to velocity-pressure schemes, but with only 10∼ 25% extra computation and with-

out the complexity of handling boundary conditions etc. in a vorticity formulation.

However, there are some limitations and areas for future work we would highlight.

Currently IVOCK is limited to fluid simulations on uniform grids. A version

for adaptive grid or tetrahedral mesh solvers doesn’t appear intrinsically difficult,

as it could reuse the solver’s Poisson infrastructure. Fully Lagrangian velocity-

pressure particle methods, especially those that already require some form of vor-

ticity confinement to combat intrinsic numerical smoothing, such as position-based

fluids [38], may also benefit from the IVOCK idea.

The presented IVOCK scheme doesn’t exactly recover total circulation (or en-

ergy) as Mullen et al.’s symplectic integrator does [42], nor does it reproduce tur-

bulent flow quite as well as Lagrangian vortex methods. We also have at present

little more than numerical evidence to argue for its stability, and we haven’t thor-

oughly investigated the trade-offs of using just an approximate multigrid solution

for the vorticity-velocity step. It could be worthwhile to enhance the stability by

exploring Elcott et al.’s circulation preserving method [14].

42

Figure 3.15: Fire simulations making use of our combustion model. Top row:
BFECC. Bottom row: BFECC augmented with IVOCK using SL3 for
vorticity and scalar fields. The temperature is visualized simply by
colouring the smoke according to temperature.

The IVOCK scheme alone doesn’t provide any insight into boundary layer

models or unresolved subgrid details, hence one possible future project could be to

combine it with subgrid turbulence models, for post-processing [32] or on-the-fly

synthesis [45]. However, we did observe stability problems with IVOCK compen-

sation active in strongly shearing boundary layers; until a better understanding of

boundary layers is reached, we recommend only including the vorticity difference

driving IVOCK at some distance away from boundary layers.

43

Chapter 4

A PPPM Fast Summation
Method for Fluids and Beyond

Figure 4.1: Vortices of raising smoke hitting a moving ball (ball not ren-
dered).

4.1 Introduction
A common numerical problem in and outside of graphics is solving the Poisson

equation ∇2 f = −ρ whose exact solution (assuming zero boundary conditions at

infinity for now) can be expressed as an integral with the fundamental solution

kernel, in 3D:

44

Table 4.1: Common symbols used throughout the paper.

xi position of ith Lagrangian element
X position of a grid cell’s center

u(x) velocity evaluated for Lagrangian elements
u(X) velocity evaluated at grid cells
u f ar the velocity introduced by far field vorticity

unear the velocity introduced by near field vorticity
uω rotational part of the flow velocity
uφ irrotational, divergence free part of the flow velocity
u∞ velocity at infinity, such as the speed at which the

reference frame is moving
ω 3D vector valued vorticity strength
σ scalar valued charge density per unit area
h width of the grid cell
K K = 0,1,2,3, ... the local correction range
Ψ a vector valued stream function
Φ scalar valued potential function

ωL the local vorticity field defined on nearby cells
ΨL the local stream function with source term ωL

uL velocity introduced by ωL

f (x) =
ˆ

ρ(x′)
1

4π‖x− x′‖
dx′. (4.1)

(In other dimensions, the kernel is of course a little different).

In many physics applications, ρ(x) is a sum of point sources at positions x j and

strengths ρ j, or can be approximated as such: ρ(x) = ∑ j ρ jδ (x− x j) (e.g. vortex

blobs [9]). In astrophysics, calculating the gravitational force by summing over

all masses is essentially solving the Poisson problem with the density distribution

as the right-hand side [27]. The same Poisson problem appears in electrostatics

with a charge distribution on particles (or charge panels), with a recent interesting

application in graphics [63]. A more thorough review regarding the Poisson prob-

lem and N-body dynamics can be found in Hockney and Eastwood’s work [27]. In

those simulations, the solution is usually obtained by

45

f (x) = ∑
j:x 6=x j

ρ jv j

4π‖x− x j‖
. (4.2)

With N particles and M locations to evaluate, often at the N particles them-

selves, this takes O(MN) time, which scales poorly.

The Poisson problem or its solution as a summation over particles has appeared

in diverse graphics papers. For example, Kazhdan et al. [30] solve a Poisson prob-

lem to reconstruct a surface from point samples; Jacobson et al. [28] segment the

inside from the outside of triangle soup by constructing a harmonic function from

sources on triangle faces, again using a summation approach; many fluid solvers

(e.g. [16, 53]) solve a Poisson problem every time step for pressure projection; and

Lagrangian vorticity-based fluid solvers (e.g. [44]) evaluate the velocity field by

summing over vortex sources with the Biot-Savart law, which is just the curl of

equation (4.2).

While sometimes it is natural to discretize the Poisson equation on a grid with

finite differences, and impose some boundary condition on the edges of the grid,

often we want to solve the “free space” problem with boundaries only at infinity,

or with sources or boundaries distributed arbitrarily through space: on particles, on

contours, on the triangles of a mesh, etc. Here the integral or summation approach

would shine but for the cost of directly evaluating the sum.

Alternative methods exist to accelerate the expensive summation. Foremost

among these is the Fast Multipole Method (FMM) [23], which can reduce the cost

from O(MN) to O(M+N). Probably due to implementation complexity and (typi-

cally) a large overhead in runtime, the FMM has not been widely adopted in graph-

ics: parallelized direct summation can easily outperform FMM for N up to 100,000

in our experience.

Vortex-in-cell (VIC) methods [12] have also been adopted to efficiently al-

beit roughly approximate the velocity field. VIC splats the right-hand side of the

Poisson problem to a fine grid, solves the PDE on the grid with finite differences

or similar, and interpolates the solution back from the grid. The computational

complexity is typically dominated by an efficient grid solve. However, VIC loses

accuracy when the vorticity fields are under-resolved on the grid resolution; trans-

ferring values back and forth between grid and particles forms a major source of

46

numerical diffusion.

A more promising approach, in our view, is the Particle-Particle Particle-Mesh

(PPPM) method [1]. The Particle-Mesh component of PPPM approximates the

smooth long-range interactions by splatting the particles on to a grid (mesh), using

a fast solver for a finite-difference version of the Poisson problem on that grid, and

then interpolating back to evaluation points, just like VIC. The Particle-Particle

component greatly enhances the accuracy by including the kernel summation just

for very close pairs of particles, whose interactions aren’t properly captured with

the grid. Assuming the distribution of particles is such that a moderate resolu-

tion grid exists with a small number of particles per cell, the particle operations

in PPPM are O(M +N) and the overall runtime is determined by the grid solver

(which traditionally has been O(N logN) with an FFT solver). Moreover, opera-

tions such as splatting to or interpolating from a grid are easy to implement with

little overhead. That said, prior PPPM methods have had trouble achieving linear

runtime (due to the fast solver used) and full accuracy (due to boundary condi-

tions at the edges of the grid, and errors associated with near-field interactions as

computed on the grid).

This paper first extends PPPM with two significant algorithm improvements:

• a new “monopole” grid boundary condition to accurately simulate unbounded

domains,

• and a new error correction for nearby particle contributions in the grid solve

that is simple, fast, and accurate.

We also upgrade the traditional fast solver to linear-time multigrid, and parallelize

it all on the GPU for exceptional performance.

In the second part we turn to applications of our new PPPM, in particular a

new vortex particle smoke solver. Lagrangian vortex methods succinctly represent

richly detailed flow, and suffer no numerical diffusion or projection-related dis-

sipation as other solvers may. Their central step is reconstructing velocity from

vorticity via the Biot-Savart law, essentially the curl of equation (4.2),

u(x) = ∑
j:x 6=x j

∇
1

4π‖x− x j‖
×ω j (4.3)

47

or equivalently solving a Poisson problem for a potential Ψ and taking its curl

to get the velocity. Inviscid solid boundary conditions can be implemented via a

potental flow correction to this velocity field, which through a boundary integral

discretization with an iterative linear solve likewise relies on an N-body summation

/ Poisson solve. We use our new PPPM method in each case to achieve a high

performance, high quality smoke simulation. The greater accuracy of our PPPM

approach gives visually superior results than simpler techniques such as Vortex-in-

Cell and truncated kernels.

Apart from the challenge of efficient N-body summation, prior vortex particle

methods in graphics have had difficulties with the vortex stretching term (necessary

for conservation of angular momentum and the characteristic look of developing

turbulence) and vortex shedding from solid boundaries. We propose solutions:

• an easy-to-implement vortex-segment-derived treatment of vortex stretching

with automatic conservation properties,

• and a simple boundary layer treatment to shed vortices from solids, based

on injecting vortex particles to boost the potential flow no-stick boundary

condition to a no-slip boundary.

We also show that PPPM can be exploited for non-physics-related problems in

graphics, such as Poisson surface reconstruction.

4.2 Related work
Vortex methods are popular for high Reynolds number computational fluid dynam-

ics [11], very efficiently capturing turbulent details; as vorticity in particular is vi-

sually very important, many graphics researchers have adopted vortex approaches.

Yaeger et al. [65] began the trend with a VIC solver to produce the realistic look

of atmospheric flow on Jupiter. Angelidis and Neyret [4] used Lagrangian vortex

primitives for their flexibility; Selle et al. [49] used vortex particles to augment a

more traditional Eulerian velocity-pressure simulation. Pfaff et al. [45] used vortex

particles from pre-processed boundary layers to synthesize turbulence. Weißmann

and Pinkall [64] used Biot-Savart summation for vortex rings.

48

Brochu et al. [8] captured vorticity with a Lagrangian mesh, including its gener-

ation from buoyancy, and used FMM for linear-time Biot-Savart summation. Pfaff

et al. [46] used the same vortex sheet representation to generate and evolve small

scale details, but accelerated summation with a truncated kernel, relying on a coarse

grid simulation to account for global effects. Pfaff et al.’s hybrid use of a grid and

nearfield vortex summation is reminiscent of PPPM, but lacks the error correction

stage we develop, and suffers from the numerical dissipation of the pressure pro-

jection on the grid. Both Brochu et al. and Pfaff et al. also pay a high cost in mesh

operations to maintain the deforming vortex sheet, which we avoid by tracking

density and calculating buoyancy with unconnected particles.

Despite their attraction for turbulence, vortex methods have not been widely

aopted in the graphics industry, perhaps because of the difficulty in accelerating

Biot-Savart summation, or boundary condition challenges, or the intricacies of vor-

tex shedding. Addressing these problem motivates this paper.

Many graphics applications outside fluids also solve the Poisson problem. In

Poisson surface reconstruction [30], the solution is important only around a narrow

band of the input, but the associated Poisson problem is most naturally posed on

an infinite domain, making an awkward fit for traditional voxel approaches.

Gumerov and Duraiswami [24] demonstrated a high-performance GPU imple-

ment of FMM, reporting 1.4s to sum N = 106 particles on an NVIDIA GeForce

8800 GTX. Our PPPM code runs the same problem on an NVIDIA GeForce GT

650M (laptop) in 0.7s. More subjectively, our experience is that implementing a

fast PPPM is vastly easier than even basic FMM.

We use multigrid as our fast grid solver as have many other graphics papers

(e.g. [18, 40, 41]), though we should note that Henderson suggests on shared mem-

ory multiprocessors FFT still may be faster [26].

4.3 Particle-particle particle-mesh method(PPPM)
In this section we take Biot-Savart summation as an example to explain the PPPM

algorithm in detail. See figure 4.2 for an overview.

Given the vorticity ω =∇×u of an incompressible flow, and ignoring boundary

conditions for now, we can reconstruct velocity (up to addition of the gradient of

49

Find bounding box of vortexFind bounding box of vortex Determine the
global domain
Determine the
global domain

Assign particle values to
grid, compute B.C.

Assign particle values to
grid, compute B.C.

Solve Poisson system to
get global velocity field

Solve Poisson system to
get global velocity field

For each gridcell, cancel the
short range contribution

For each gridcell, cancel the
short range contribution

Far field construction

uglobal
ufar ufar

ufinal

Velocity evaluation

Get far field velocity
by interpolation

Get far field velocity
by interpolation

Add near field direct sum-
mation to get final velocity
Add near field direct sum-
mation to get final velocity

Figure 4.2: An overview of our PPPM algorithm, which consists of a far-field
construction step and a velocity evaluation step.

a harmonic scalar potential) by solving for a streamfunction Ψ whose curl is the

velocity: ∇2Ψ =−ω

Ψ(x) = 0 x→ ∞

(4.4)

In the case where the right hand side of this Poisson system is given by a sum

of n vortex elements, each carrying a vortex strength of ω i, Ψ can be found by

summation (c.f. equation 4.2). The velocity is just the curl of this sum (equation

4.3), further expressed as

u(xi) =
1

4π

n

∑
j=1, j 6=i

ω j× (xi− x j)∣∣xi− x j
∣∣3 , (4.5)

which is known as Biot-Savart summation.

When evaluating at a specific point, we decompose this velocity as u = u f ar +

unear, where unear is the contribution from nearby vortices and u f ar gathers influ-

ences from the rest.

Due to the singularity of the kernel, unear varies rapidly in space and is related

to the small scale motion (turbulence), while u f ar is smooth and captures the large

scale motion.

Realizing that multigrid Poisson solvers are excellent for smooth, large scale

motions, while particle-particle direct summations are promising for the turbulent

small scale motions, PPPM first estimates u f ar for each grid cell using a particle-

mesh solver (§4.3.1) and local-cancellation (§4.3.2). After that, PPPM interpolates

50

u f ar for each vortex element and evaluates unear using direct summation. Details

of the computational steps in the PPPM Biot-Savart summation are outlined in

Algorithm 5, where the subscript p indicates the quantity is carried by a particle,

and the subscript g indicates the quantity is defined on a grid.

Algorithm 5 PPPMBiotSavartSummation(ω p, vp, xp, N, up)
1: BB←GetBoundingBox(xp)
2: DetermineComputationDomain //3×BB
3: ωg←ParticleToMesh(ω p)
4: ComputeMonopoleDirichletBoundaryCondition
5: Ψ←ParallelMultigridSolvePoisson
6: ug←Curl(Ψ)
7: for each grid cell in parallel
8: Subtract near field estimate to get far field component
9: endfor

10: for each particle i in parallel
11: up,i← InterpolateFarField
12: endfor
13: for each particle i in parallel
14: Sum over particles in neighborhood η(i) of i:

(evaluating an accurate near field component)

15: ∆u← ∑ j∈η(i)
ω p, j×(xp,i−xp, j)

4π|xp,i−xp, j|3

(
1− exp

(
|x−x j|

α

)3
)

16: up,i← up,i +∆u
17: endfor

4.3.1 Particle-mesh step in open space

In the particle-mesh step, we determine the large scale flow motion by solving a

Poisson equation with Dirichlet condition(on domain boundary):∇2Ψ =−ω in Ω

Ψ = g on ∂Ω

(4.6)

The imposition of an artificial boundary at the edge of the grid is necessary

for the solve, but makes approximation of the open space (infinite domain) prob-

lem tricky. We propose two special advances in our discretization to gain higher

51

accuracy for the large scale motion in open space, compared to prior PPPM meth-

ods which use periodic boundaries or a homogenous Dirichlet condition. First, we

use a computational domain that is three times as large as the bounding box of the

vortex particles, giving us an effective padding region: the artificial boundary is

distant from all sources in the problem. In open space the true solution Ψ at any

evaluation point xb on the boundary is exactly

Ψ(xb) =
N

∑
i=1

ω (xi)h3

4π |xi− xb|
. (4.7)

Computing these values to be used as the Dirichlet boundary condition g would

give, up to truncation error, the exact open space solution. However evaluating

equation 4.7 directly is too costly: instead, we compute the cheap monopole ap-

proximation of the particle quantities, replacing equation 4.7 with

Ψ(xb) =
N

∑
i=1

ω (xi)h3

4π |xi− xb|
≈ ∑

N
i=1 ω (xi)h3

4π |xc− xb|
=

m(xc)

4π |xc− xb|
(4.8)

where xc is the center of all the vortex particles. The monopole is accurate when

all the vortex particles are far away from the domain boundary, which we guarantee

by our domain construction. We dub this the “monopole boundary condition” (line

4 in Algorithm 5), which experimentally we found doubles the accuracy of PPPM.

After we set up the computation domain and construct the boundary condition,

the particle values are splatted to the grid using

ω (X) =
1
h3 ∑

i
viω (xi)

(
∏

θ=1,2,3
wθ

(
Xθ − xi,θ

h

))
(4.9)

where subscript θ = 1,2,3 indicates the corresponding component of a 3D

vector, h the size of the grid cell, v the volume of a vortex blob, i the index of a

vortex blob, and w the splat kernel.

For the choice of w, we simply use nearest grid point (NGP) assignment, mean-

ing each grid cell gathers the total strength of the vortex particles inside it:

wθ (r) =

1, r ∈ [−0.5,0.5) ,

0, else,
(4.10)

52

In our implementation, we accelerate the process by parallelizing for each grid

cell to gather vortex values around it, using spatial hashing [59] for efficient neigh-

bour finding, following Green’s implementation [22].

We then discretize the vector Poisson system using the seven-point second

order finite difference scheme, arriving at three scalar Poisson systems, one for

each component. We solve the resulting linear system for the streamfunction using

multigrid, following Cohen et al.’s implementation [10].

Once we have found the streamfunction, we take its curl to get a velocity field

upm. upm is then used to derive the far field approximation for each grid cell, using

the procedure in the next section.

4.3.2 Cancelling local influences in the grid

To cancel the (relatively inaccurate) local contributions from nearby grid cells, we

need to estimate a local stream function ΨL that solves

∇
2
ΨL =−ωL (4.11)

in open space, where ωL is the near-field vorticity only from the nearby grid

cells.

Conceptually, we can achieve this by putting ωL back in the global domain(grid),

and solving the Poisson system again. (However, as we need a different estimate

for each grid cell containing particles, in practice this would be far too expensive.)

More formally, putting ωL back to the global domain is a prolongation, PωL.

The global Poisson solve can be denoted as Ψ = L −1PωL. Reading back ΨL is

a restriction of Ψ, R
(
L −1PωL

)
. Finally, the local velocity field due to ωL is

readily R
(
L −1PωL

)
.

The accuracy and efficiency of local cancellation depends on fast localized

solutions for ΨL, say, expressed as a linear operator A:

ΨL = Ah2
ωL, (4.12)

with A≈ 1
h2 RL −1P .

Theuns [60] approximated A with an open space Green’s function. however,

53

this is quite different from the inverse of the grid-based operator, as the Green’s

function is singular at r→ 0 where the grid-based inverse is bounded; this renders

it unable to evaluate the local contribution made by a grid value to itself. Walther

[62] proposed a more accurate estimate at the cost of a pre-computation stage: with

a local correction window of size K, the method stores a O
(
K6
)

matrix A which

solves ΨL = AωL. This computation is coupled to the grid resolution, restricting

the simulation to static grids.

We instead make entries of A dimensionless quantities, allowing us to adapt

the computation domain with more flexibility. We uncover a more accurate rela-

tionship between A and the open space Green’s function. For instance, with the

Green’s function approach, one has

ΨL =Gh2
ωL (4.13)

where Gi, j =
h

4π|Xi−X j| for i 6= j. (Observe that
∣∣Xi−X j

∣∣ is of order h, making

Gi, j dimensionless.)

Our observation is that the off-diagonal coefficients Ai, j are very close to Gi, j,

the open space Green’s function evaluated at different grid cell centres. For diago-

nal terms, instead of being 0, we find Ai,i→ 0.25 for large domains. This diagonal

constant responds to the contribution made by a grid cell to itself.

Furthermore, if we replace the diagonal of G with this constant and compute

its inverse, the seven-point finite difference stencil is essentially revealed. While

we do not yet have a full derivation, we provide our evidence in figure 4.3. These

numerical findings give us a new formulation to compute ΨL from ωL. We outline

this procedure in Algorithm 6.

After we obtain ΨL, we can proceed to compute uL by taking the finite differ-

ence curl of ΨL

uL = ∇h×ΨL (4.14)

Following this naively requires each grid cell to have a small buffer for the

spatial varying function ΨL, making parallelizing impractical for GPU’s memory

limitation. Instead, we return to the construction of ΨL, first looking at off-diagonal

contributions:

54

0

20

40

60

80

100

120

140
0 20 40 60 80 100 120 140

0.05

0.1

0.15

0.2

0.25

Visualization of −AL
−1

0

20

40

60

80

100

120

140
0 20 40 60 80 100 120 140

0.05

0.1

0.15

0.2

0.25

visualization of G

0 20 40 60 80 100 120 140
−6

−5

−4

−3

−2

−1

0

1

Row 64 of G−1

Figure 4.3: Relationship between inverse of finite difference operator and
Green’s function. Left: the local inverse matrix defined by A. Mid-
dle: the local inverse matrix G constructed using Green’s function and
the diagonal terms from A. Right: one row of the inverse of G, almost
revealed the 7-point stencil.

Algorithm 6 Local_inverse(ωL)
1: ΨL← 0
2: for i, j,k ∈ L //L = {i2, j2,k2|i2 ∈ [i−K, i+K], j2 ∈ [j−K, j+K],k2 ∈ [k−

K,k+K]}
3: X1← X i, j,k
4: if i2, j2,k2 ∈ L, i2, j2,k2 6= i, j,k
5: X2← X i2, j2,k2

6: ΨL (X1)←ΨL (X1)+
h3ωL(X2)

4π|X1−X2|
//using Green’s function

7:

8: else //i2, j2,k2 = i, j,k
9: ΨL (X1)←ΨL (X1)+0.25h2ωL (X2)//notice X2 = X1 where, 0.25h2 is the

diagonal constant
10: endelse
11: endfor

∇X ,h×ΨL = ∇X ,h× ∑
X ′ 6=X

h3ωL (X ′)
4π |X−X ′|

= ∑
X 6=X ′

h3
ωL
(
X ′
)
×
(
−∇X ,h

1
4π |X−X ′|

)
(4.15)

where ∇X ,h
1

4π|X−X j| denotes a discrete gradient operator to the Green’s func-

55

tion at X . Let e1 be the unit vector (1,0,0); we have

(
∂

∂x

)
X ,h

1
4π |X−X ′|

=
1

2h

(
1

4π |X +he1−X ′|
− 1

4π |X−he1−X ′|

)
. (4.16)

When X±hek−X ′ = 0, 1
4π|X+hek−X ′| is set to be 0.

We then compute a streamfunction buffer from the diagonal contributions,

Ψd = 0.25h2
ωg (4.17)

We then take the discrete curl of Ψd to get ud . The velocity introduced by the

near field grid is consequently obtained via

uL (X)

= ∑
j 6=i

h3
ωL
(
X ′
)
×
(
−∇X ,h

1
4π |X−X ′|

)
+ud (4.18)

The new procedure overcomes the memory overflow issues with the naive ap-

proach, is a lot faster and more scalable, while giving exact same output (up to

round-off) as the direct implementation.

4.3.3 Velocity evaluation

The far field influence at any given grid position X can be readily obtained via:

u f ar (X) = upm (X)−uL (X) (4.19)

where uL is determined by equation 4.18 in §4.3.2.

To evaluate the velocity for an arbitrary evaluation position xi, we first interpo-

late from the far field buffer using trilinear interpolation,

u f ar (x)← TriInterpolate(u f ar, x) (4.20)

56

and then select all the nearby vortex elements within a cube CL of size (2K +1)h

centred at x for near-field direct summation.

u(x) = u f ar

+ ∑
x j∈CL,x j 6=x

ω j× (x− x j)

4π
∣∣x− x j

∣∣3
1− exp

(∣∣x− x j
∣∣

α

)3
 (4.21)

4.3.4 PPPM discussion

For analysis, we assume a reasonably uniform distribution of vortex particles in

the computational domain. In the case where vortices were initialized on a surface

sheet, the turbulent motion quickly breaks this sheet into many small blobs to make

the vorticity distribution roughly uniform.

We divide the domain into equal sized grid cells so that each cell contains s

particles on average, hence the number of cells is proportional to N
s . Transforming

the particle quantities to the grid takes O (N) time; applying the monopole bound-

ary condition takes O
(

N +
(N

s

)2/3
)

operations; the multigrid Poisson solver with
N
s unknowns takes O

(N
s

)
operations to get a solution; computing the discrete curl

or gradient of the field requires also O
(N

s

)
operations; interpolating from the grid

quantity back to particles takes O (N) operations; and finally direct summation

with nearby particles takes O (N) time.

To evaluate the velocity at some other m points, the runtime analysis is similar,

only replacing the interpolating and local correction procedures in the aforemen-

tioned pipeline, hence we end up with O (m+n) complexity as claimed.

We tested the PPPM summation code for a random distribution of vortex parti-

cles, comparing the PPPM results with direct summation, and looked at the error in

a weighted average manner (particles with a vanishing velocity get small weights),

As we can see from figure 4.5, the PPPM solution gets closer to direct summa-

tion when larger local correction (LC) windows are used. With a window size of

K = 3, we obtained an error under 1%. Furthermore, since we bound the number

of particles per cell, with 16384 vortex particles the cell size h is half the size used

57

10
2

10
3

10
4

10
5

10
6

10
7

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

number of N−bodies

tim
gi

ng
Performance of the PPPM fast summation method

measured performance
O(N)

O(N 2)

Figure 4.4: Performance of the PPPM fast summation. Computation time
grows linearly with the number of computational elements.

for 2048 vortex particles. Therefore for the same K we have smaller physical LC

radius in the 16384 case, but the accuracy doesn’t decrease because one has better

grid resolution to resolve the near field physics.

The performance of the PPPM summation is shown in figure 4.4. The compu-

tation time in our experiment grows linearly with respect to the number of vortex

particles.

In table 4.2 we use direct summation as the reference solution to measure the

accuracy of different approximations. We compare between our Monopole B.C.

(MBC) and prior work’s homogeneous B.C. We can see clearly that the MBC

58

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

Local correction range K

av
er

ag
e

er
ro

r c
om

pa
re

 to
 d

ire
ct

 s
um

m
at

io
n

accuracy of PPPM summation

256 vortex particle
2048 vortex particle
16384 vortex particle

less than 1%

Figure 4.5: Accuracy statistics of the PPPM fast summation.

enhances the approximation in either case, while our PPPM method, being able

to cancel the grid cell self-influence, gives approximation an order of magnitude

higher than Theuns [60]. On the other hand, the particle-mesh method alone, even

at higher cost, gives a poor approximation to direct summation.

59

Table 4.2: Accuracy of different method with and without the monopole B.C.

Method K w/ MBC w/o MBC
PPPM 643 3 0.46% 1.13%
PM 1283 N/A 6.19% 6.38%

PPPM 643 w/o diagonal
cancellation [60] 3 2.78% 2.86%

4.4 Vortex-Particle Smoke
In vortex methods, given the vorticity distribution and boundary geometry, the ve-

locity at any position x can be found as [11]

u(x) = uω +uφ +u∞ (4.22)

which is a combination of a rotational flow uω from the vorticity, a potential flow

uφ determined by the solid objects §4.4.2, and a prescribed velocity field u∞ defined

by an artist (it is better for u∞ to be divergence-free, otherwise, we suggest using

∇×u∞ as a force field).

Ignoring viscosity, the dynamics of vorticity can be modeled from the curl of

the inviscid momentum equation,

Dω

Dt
= (ω ·∇)u+β∇ρ×g. (4.23)

A vortex blob moves according to the combined velocity u of equation. 4.22, with

vortex stretching((ω ·∇)u) due to flow deformation in 3D and baroclinic vorticity

generation β∇ρ×g concentrated on the density interface.

In the presence of solid objects, an irrotational divergence-free flow field uφ

can be found to cancel flow penetration at solid boundaries. Apart from modelling

solid objects as boundary conditions in the vorticity solver, solid objects also can

serve as a single layer source of “charge distribution” that introduces a harmonic

potential whose gradient removes boundary penetration. More details about how

to determine and use this "electrostatic" field can be found in §4.4.2.

We discretize the flow using a set of vortex blobs, with position xi, volume vi,

density ρi, velocity ui, and vortex density ω i. At each time step, we compute uω

60

with Biot-Savart,

uω (x)

= ∑
all j, j 6=i

v jω j× (x− x j)

4π
∣∣x− x j

∣∣3
1− exp

(∣∣x− x j
∣∣

α

)3
 , (4.24)

using PPPM fast summation. Notice we mollify the Green’s function kernel to

desingularize the summation, a common necessity for vortex particle codes.

Subdividing the surface of solid objects into many small panels, the potential

part of velocity, uφ , can be determined by

uφ (x)

= ∑
all j, j 6=i

A jσ j (x j− x)

4π
∣∣x− x j

∣∣3
1− exp

(∣∣x− x j
∣∣

α

)3
 (4.25)

where A j is the area of jth panel, σ j is the potential source strength per unit area

found on the single layer, and x j is the centroid of the jth panel.

At each time step, the strengths and positions of vortex blobs are updated by:

1. Initialize a vortex segment for each vortex blob based on the input vortex

strength. §4.4.1

2. Update the position of each end of the vortex segment with the velocity de-

termined by equation 4.22, hence, the vortex segment is stretched automati-

cally. §4.4.1

3. Reduce instabilities introduced by vortex stretching.§4.4.1

4. Add baroclinic vorticity generation to the vorticity field.

5. Add vorticity due to vortex shedding.4.4.2

4.4.1 Vortex segment, vortex stretching and stability issue

This section describes the way to model vortex stretching using vortex segments.

Vortex stretching introduces instability in some situations, which we address with

61

Vortex blob to vortex segment Vortex blob to vortex segment Vortex segment being stretched Vortex segment being stretched

Back to vortex blob representationBack to vortex blob representation

Figure 4.6: We switch to a vortex segment representation of vortex particles
at the beginning of each time step, move both ends of the vortex segment
in the flow, then switch back to vortex blobs.

a geometry-inspired filtering approach.

Vortex segments

Vortex stretching is the rate-of-change of vorticity due to the deformation of fluid.

This step is naturally handled by vortex ring or sheet representations: the stretching

of the geometric elements automatically captures the vortex stretching term. This

does not extent to vortex particles with no geometric extent. An obvious solution

could be updating the vortex strength using

ω
n+1 = ω

n +ω
n ·∇un (4.26)

It is unwise to take this approach because evaluating the gradient of velocity re-

quires the second derivative of the Green’s function. The singularity of this func-

tion introduces large numerical instabilities. Furthermore, computing the dot prod-

uct is expensive.

We instead use a vortex-segment approach. A vortex segment is a small spin-

ning cylinder whose central axis is aligned with the vorticity direction, with two

ends xa and xb, length h, and constant circulation κ . A vortex blob with vorticity

strength viω i can be translated to a vortex segment of length hi, with unit direction

t̂i = ω i√
‖ω i‖2 , and circulation κi = ω i/(hit̂i). We translate our vortex blob into such

62

Vortex segment being stretched in a non-
smooth way generates numerical error

Vortex segment being stretched in a non-
smooth way generates numerical error

Improve stability by forcing the change made by
stretching to be smooth without actually diffuse ω
Improve stability by forcing the change made by
stretching to be smooth without actually diffuse ω

Figure 4.7: Sudden discontinuous motion of vortex segments introduces and
amplifies numerical error, which is reduced then by smoothing the
stretching terms.

vortex segments at the beginning of each time step, evaluate the velocity according

to equation 4.22 for each end of the vortex segment, and move each end of the

vortex segment according to

xn+1
i,a = xn

i,a +∆tun
i,a

xn+1
i,b = xn

i,b +∆tun
i,b. (4.27)

When both ends of the vortex segment are updated, the vortex segment is stretched

and we transform it back to a vortex blob with vortex strength,

viω i = κi

(
xn+1

i,b − xn+1
i,a

)
. (4.28)

Notice the circulation is conserved. This whole process is illustrated in figure 4.6.

Stability issues

Vortex stretching is potentially unstable. Without addressing this sensitivity, our

simulation quickly diverges even with small time-steps. We noticed that in tur-

bulent flow, even when the magnitude of the velocity is small, the gradient of the

velocity field can be very large, which makes ω ·∇u large and drives the numer-

ical instabilities. To address this problem, we realized that in the physical world,

the rate of change of vorticity due to vortex stretching has some smoothness. We

63

therefore compute the rate of change of vorticity due to stretching by

(ω ·∇u)n
i =

κi

(
xn+1

i,b − xn+1
i,a

)
−ωn

∆t
(4.29)

and then apply a Gaussian filter to smooth (ω ·∇u)n in the domain to get ˜(ω ·∇u)n
i

for each particle. Vorticity is updated by

ω
n+1
i = ω

n
i +∆t ˜(ω ·∇u)n

i . (4.30)

This approach is effectively a geometric repairing that forces the deformation of

a vortex segment to be consistent with nearby vortex segments, as illustrated in

figure 4.7. With this approach, we stabilized the simulation and reliably achieved

long simulations when using a constant large time step. Notice that in this scheme,

we smooth the update instead of the quantity itself to preserve sharp features as

much as possible, similar in spirit to FLIP [68].

4.4.2 Solid boundaries and vortex shedding

We incorporate boundary conditions by introducing an irrotational, divergence free

flow field uφ that cancels the normal velocity flux on the boundary made by uω +

u∞. We define uφ as the gradient of a scalar potential function Φ, solved with

boundary integral equations. After enforcing the no-through boundary condition,

we compute a vortex sheet on the surface heuristically [9], and merge this surface

vorticity into the vorticity field.

No-through boundary condition

The no-through boundary condition can be enforced by solving for a scalar poten-

tial field that satisfies Laplace’s equation with Neumann boundary condition[8]

∆Φ = 0
∂Φ

∂n
=

(
usolid−u f luid

)
·n (4.31)

We write this function as a single layer potential, with a continuous source

64

distribution σ on the solid boundary,

Φ(x) =
ˆ

∂Ω

σ (y)
4π |x− y|

dS (y) . (4.32)

Taking the normal derivative of Φ and substituting it into equation 4.31 gives a

Fredholm equation of the second kind,

b(x) =−σ (x)
2

+

ˆ

∂Ω

σ (y)
∂

∂nx

1
4π |x− y|

dS (y) (4.33)

where f (x) =
(
usolid (x)−u f luid (x)

)
·n(x).

We discretize this equation on a set of M boundary elements using mid-point

rule to arrive at

bi =−
σi

2
+ ∑

all j

∂

∂ni

σ jA j

4π
∣∣xi− x j

∣∣ (4.34)

where A j is the area of j’th surface element, and xi and x j are the mid-points of

corresponding boundary elements.

In practise, this equation gives a linear system for σ that is very well-conditioned:

iterative solvers like BiCGSTAB converge in O (1) iterations. However, the M×M

coefficient matrix is dense and evaluating the matrix vector product is M2. To over-

come this challenge, we reformulate equation 4.34 using the PPPM framework.

Given a source distribution σ , with proper reordering, the off-diagonal part sum-

mation is exactly

bo f f−diag
i = ni ·

(
∑

all j 6=i

σ jA j (x j− xi)

4π
∣∣xi− x j

∣∣3
)

(4.35)

which takes the same form of evaluating a gravitational force based on mass parti-

cles, where, the “mass” of the particle here are defined as σ jA j. Hence our PPPM-

accelerated evaluation of the matrix vector multiplication directly follows the rou-

tines described in Algorithm 7.

PPPM is used in two different places here. During the iteration, we use PPPM

to compute the force based on the current estimate (line 7 of algorithm 7), and

when the iteration is terminated we use PPPM to compute uφ based on the single

65

Vorticity fomation on the surfaceVorticity fomation on the surface

ε
γ

v tangent

Figure 4.8: Vortex shedding process. In our approach, the vorticity strength
is explicitly determined.

layer density.

Algorithm 7 PPPM_accelerated_Ax(b, σ , p, A, n, M)

1: f ← 0
2: b← 0
3: m← 0
4: for i=1:M in parallel
5: mi = Ai ∗σi

6: endfor
7: f ←PPPM_Compute_Gravity(m, p, M)
8: for i=1:M in parallel
9: bi← ni · f i−0.5∗σi

10: endfor

Vortex shedding

The inviscid assumption breaks down near boundaries, because it never introduces

vorticity into the flow field. In reality fluid viscosity, no matter how small, gener-

ates vorticity concentrated along a thin boundary layer along solid surfaces. In high

Reynolds number flows, this thin viscous boundary layer doesn’t affect the validity

of inviscid approximation being made elsewhere in the flow, but rather serves as a

source emitting vorticity into the flow.

Chorin [9] modelled this process heuristically. in 2D. He assumed a constant

vorticity strength on the boundary element and determined the vortex strength

based on the tangential velocity slip. Extending this idea to 3D, we determine the

66

Figure 4.9: Rising smoke using different number of vortex particles. Left,
2049 particles: middle, 16384 particles; right, 130K particles.

surface vorticity direction based on the tangential velocity and the surface normal:

vorticity is required to be perpendicular to these two vectors, its strength is deter-

mined so that at a position in the normal direction, ε away from the surface, the

velocity introduced by this vorticity matches the tangential slip. In other words,

if we put a vortex of strength A jγ j at the position ε away from the surface, the

velocity it introduces cancels the tangential slip at the boundary. This process is

illustrated in figure 4.8.

Once the concentrated vorticity strength is determined, we release it to the

flow field by adding some amount of its value to the nearest vortex blob around the

surface or release them to a position at a small distance away from j’th boundary

element. The amount to be released is determined as

∆ω = ∆tcA jγ j (4.36)

4.5 Results and conclusions

4.5.1 PPPM for vortex flow

We implemented the PPPM algorithm on the GPU (nVidia GeForce GT 650m).

As we can see in figure 4.4, the performance of PPPM scales linearly with the

computational elements involved. On our machine, simulations are still running

interactively with even 16K vortex particles on a single laptop GPU. We generate

a preview simulation with a small amount of tracer particles (16K) at interactive

67

Figure 4.10: Without the far-field motion, direct summation using a cut-off
kernel results in wrong animation. Left: simulation uses cut-off di-
rect summation after 180 time steps. Right: simulation uses PPPM
summation after 180 time steps.

Figure 4.11: Comparison of VIC and PPPM. Top row, sequence of 643 VIC
simulation; bottom row: PPPM using the same resolution grid. Notice
that the large scale motion of the two simulation matches before the
point where turbulent motion becomes dominant.

rates, and then produce an enhanced result by just using more particle tracers (6M).

Figure 4.9 illustrates rich turbulent phenomena even with a small number of

vortex particles.

To achieve our final results, we are not simply interpolating velocity to the

tracer particles, but rather computing the velocity of each tracer particles with the

full-influence Biot-Savart summation from vortex particles. It is only with fast

68

summation that it is feasible to produce the results in figure 4.1, where 130K vortex

particle and 6 million tracers were used. Each time step takes 100 sec to process

on a laptop with nVidia’s Geforce GT 650M graphics card.

We also observed that in our computation, local direct summation dominates

the computation time. However, with only this near field direct summation (trun-

cating the kernel to finite support), one obtains unrealistic animations. Figure 4.10,

a cut-off direct summation uses the same cut-off range as the PPPM summation

uses, takes almost same computation time as PPPM takes, but the smoke fails to

rise.

On the other hand, the PPPM code without local correction is reduced to a VIC

solver, which fails to produce small scale motions because of numerical smoothing.

VIC running at higher resolution, to produce turbulent animations similar to PPPM,

takes 64 times the memory cost and 10 times the simulation time every time step.

Figure 4.11 shows representation frames.

Counter-intuitively solving for the tracer particle motion takes more time in a

2563 VIC simulation, even though this is just interpolation, whereas in 643 PPPM

there is a far-field interpolation followed by a more costly near field direct summa-

tion. We suspect this is because memory access with larger velocity buffer is less

efficient.

Our no-stick boundary condition and vortex shedding model handles different

boundary geometry robustly and produces visually plausible animations. We left

the shedding coefficient as an artist controlled parameter. In the example shown

in figure 4.12, we used a shedding coefficient c = 0.6, set the size of the moving

object to one unit length, and let it move at a speed of 4 unit lengths/sec. The vortex

shedding model is able to produce complex turbulent wake patterns.

4.5.2 Applying PPPM to Poisson surface reconstruction

Given a set of n sample points at position {x |x = xi, i = 1,2,3 . . .n}, with normals

n̂i at xi, the Poisson surface reconstruction [30] algorithm reconstructs the surface

of the geometry in two steps:

1 Seek a scalar field φ whose gradient best matches the vector field V defined

69

Figure 4.12: Moving objects in slightly viscous flow generate turbulent
wakes. Top row: vortex shedding from a moving ball. Bottom row:
a moving bunny.

by the input, i.e., find φ that solves

∇
2
φ = ∇ ·V (4.37)

2 Determine a constant c s.t. the isosurface defined by φ (x) = c is a good

match of the geometry to be reconstructed. Here, c = 1
n ∑i φ (xi) (average of

φ at input positions).

A detailed discussion of this algorithm is beyond the scope of this paper. Here we

emphasize the computation. In the original paper, an adaptive Poisson solve on

an octree was used. In our approach, we only need to define the right-hand-side

on a narrow band of voxels near the input point clouds, and we can evaluate φ by

summation.

More precisely, we obtain ∇ ·V in the narrow band, then solve for φ with

φ (xi) =
n

∑
j=1, j 6=i

h3 f j

4π‖xi− x j‖
(4.38)

here, f j = −(∇ ·V) j on voxel j, xi and x j the position of i’th and j’th voxel, re-

spectively. Those voxels and f j’s are then viewed as particles with mass, allowing

us to use PPPM to calculate the summation.

We tested PPPM surface reconstruction on a bunny and a dragon, shown in

figure 4.13. While quality surface reconstruction is not the focus of this paper, we

argue this shows the potential of PPPM for other branches of graphics. We are

neither using super high resolution sparse voxels nor taking any effort in choosing

70

Figure 4.13: PPPM Poisson surface reconstruction of: left) a bunny, right) a
dragon.

a good Gaussian kernel when splatting normals to construct the vector field V . For

the dragon case we reconstructed, the voxel size is determined to be 1
256 of the

longest dimension. Since the computation involves only those sparse voxels, the

summation approach became more suitable; it would be difficult for typical finite

difference approaches to impose useful boundary conditions on the boundary cells

of the narrow band.

4.6 Limitations
Unlike FMM, where one can get a desired accuracy by taking enough multipole

expansions, in PPPM, further accuracy can not be achieved for local correction

range greater than 7 grid cells. Not only is the local cancellation imperfect, but

also, interpolating the far field has limits to its accuracy.

The proposed PPPM focuses only on the N-body problem with particles, or

boundary elements that can be viewed as particles. Extending the PPPM sum-

mation framework to non-particles such as higher-order surface sheet or boundary

elements should nonetheless be straightforward. One could switch to higher-order

quadrature rules (or even exact integrals) for near field elements, or for each ele-

ment generate samples based on quadrature rule, interpolate the value and scale it

with the quadrature weights.

In FMM, one tracks adaptively distributed computational elements with adap-

tive data structure, whereas PPPM use uniform background grids and uniform

space hash. This greatly simplifies the implementation and reduces computational

overhead, but limits PPPM scalability for sparse data. Adaptive Poisson solvers

[37] might address this problem.

71

4.7 Future work
Algorithmically, many improvements can be made to the proposed PPPM. higher

order finite element solvers for the PM part and dipoles instead of monopole for

ghost boundary would improve the accuracy further, potentially with a smaller

grid making for even faster performance. For very large problems, with billions of

particles, there may be interesting wrinkles in making a distributed version.

The PPPM philosophy could also be extended to higher-order boundary in-

tegrals, or diffusion kernels, potentially to accelerate applications in and outside

fluids: preconditioning or posing sub-domain B.C. in large scale domain decom-

position solvers, extending Eulerian simulation to open space, fast image and ge-

ometry processing techniques.

72

Chapter 5

Conclusion

Velocity-pressure and vorticity-velocity equations are different yet equivalent forms

of the Navier-Stokes equations, and it is true that with adequately accurate numer-

ical methods, no significant difference should be observed when solving either of

the two forms. However, in practice we have observed that the vorticity-velocity

approach is much more successful in cheaply resolving vorticity-rich phenomena,

while the velocity-pressure formulation lends itself more easily to resolving bound-

ary layers. Classifying and tracking physical phenomena with different characteris-

tics using different formulations promises to be an efficient way to obtain solutions

not possible by dealing with only one form.

5.1 Summary
In Chapter 2, a pure Eulerian solver was used to both resolve the boundary layer

velocity field and the wake. In such flows what happens at the boundary domi-

nates the dynamics off the boundary. The proposed method captures such flows

accurately and cheaply.

In Chapter 3, we augment velocity-pressure solvers with a correction from the

vorticity-velocity formulation. This easy-to-integrate procedure is able to enhance

a wide variety of existing Eulerian solvers in computer graphics, enabling them

to capture vortex structures with coarser grids and much larger time steps than

possible with other known solvers.

73

In Chapter 4, a pure vorticity-velocity solver is demonstrated with a PPPM

scheme to reduce the N-Body summation from O(N2) to O(N). Besides the com-

putational power of the PPPM method, its ease of implementation also stands out

among existing sophisticated fast summation schemes.

5.2 Future work
The question remains if there are more convenient and efficient ways to bring the

advantages of vorticity-velocity methods to the velocity-pressure schemes favoured

in computer graphics. IVOCK demonstrates there is potential for such schemes,

but was prone to stability problems near solid boundaries at high Reynolds number

which weren’t satisfactorily resolved.

One of the advantages of Lagrangian vortex methods is efficiently capturing

flows in which vorticity is sparse, i.e. zero almost everywhere except on a lower

dimensional set. This suggests that even for Eulerian velocity-pressure schemes,

adaptive grids where vorticity drives grid refinement may be attractive.

A vorticity-velocity method could also be combined with a velocity-pressure

scheme to resolve complex flows in a large scale, each handling the part of flow to

which they are best suited. We have already achieved some results in this direction,

as shown in Fig. 5.1. In this simulation, the vFLIP solver was used to handle com-

plex flows near the object boundaries, which is cheaply and weakly coupled with

a Vortex-In-Cell (VIC) solver for the off-boundary flows in open space. The VIC

computation was constructed on sparse grid cells reflecting the sparse nature of vor-

ticity, constructed as a collection of small fixed-sized cubic tiles of voxels, taken

from a conceptually infinite grid but only instantiated where vorticity is present.

This hybrid solver is by far the most efficient solver considered in the course of

this thesis for capturing small-scale dynamics in a large domain, with minimum

loss of detail.

Finally, while free surface boundary conditions are especially difficult to in-

corporate into vortex methods, compared to velocity-pressure schemes, there are

many cases in water simulation where vorticity is concentrated only on the sur-

face. Potential flow schemes in particular have been extremely successful for mod-

eling moderate ocean waves, while falling short of being able to properly handle

74

Figure 5.1: 3D simulation of flow past sphere at Re=8000. Top: one frame
from the simulated result. Middle: zoom-in of the wake pattern. Bot-
tom: near-boundary flow is captured accurately with the vFLIP solver
and seamlessly coupled with the free-space solution.

75

overturning waves and more involved solid-interaction with splashing etc. We sus-

pect hybrid solvers where a sparse vortex approach handles the deep water and a

velocity-pressure method handles the free surface, may provide a solution.

76

Bibliography

[1] C. R. Anderson. A method of local corrections for computing the velocity
field due to a distribution of vortex blobs. J. Comp. Physics, 62:111–123,
1986. → pages 47

[2] R. Ando, N. Thürey, and C. Wojtan. Highly adaptive liquid simulations on
tetrahedral meshes. ACM Trans. Graph. (Proc. SIGGRAPH 2013), July
2013. → pages 5

[3] R. Ando, N. Thürey, and C. Wojtan. A dimension-reduced pressure solver
for liquid simulations. EUROGRAPHICS 2015, 2015. → pages 9

[4] A. Angelidis and F. Neyret. Simulation of smoke based on vortex filament
primitives. In Symposium on Computer Animation, pages 87–96, 2005. →
pages 48

[5] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm.
Nature, 324:446–449, 1986. → pages x, 32

[6] C. Batty, F. Bertails, and R. Bridson. A fast variational framework for
accurate solid-fluid coupling. ACM Trans. Graph. (Proc. SIGGRAPH), 26
(3):100, 2007. → pages 5, 8, 13, 39

[7] R. Bridson. Fluid Simulation for Computer Graphics. A K Peters / CRC
Press, 2008. → pages 4, 24

[8] T. Brochu, T. Keeler, and R. Bridson. Linear-time smoke animation with
vortex sheet meshes. In Proc. ACM SIGGRAPH / Eurographics Symp.
Comp. Animation, pages 87–95, 2012. → pages 26, 27, 49, 64

[9] A. J. Chorin. Numerical study of slightly viscous flow. Journal of Fluid
Mechanics Digital Archive, 57(04):785–796, 1973. → pages 5, 45, 64, 66

77

[10] J. M. Cohen, S. Tariq, and S. Green. Interactive fluid-particle simulation
using translating Eulerian grids. In ACM Symp. I3D, pages 15–22, 2010. →
pages 53

[11] G.-H. Cottet and P. Koumoutsakos. Vortex methods - theory and practice.
Cambridge University Press, 2000. → pages 48, 60

[12] B. Couet, O. Buneman, and A. Leonard. Simulation of three-dimensional
incompressible flows with a vortex-in-cell method. Journal of
Computational Physics, 39(2):305 – 328, 1981. ISSN 0021-9991. → pages
2, 46

[13] E. Edwards and R. Bridson. Detailed water with coarse grids: combining
surface meshes and adaptive discontinuous Galerkin. ACM Trans. Graph.
(Proc. SIGGRAPH), 33(4):136:1–9, 2014. → pages 8, 25

[14] S. Elcott, Y. Tong, E. Kanso, P. Schröder, and M. Desbrun. Stable,
circulation-preserving, simplicial fluids. ACM Trans. Graph., 26(1), Jan.
2007. ISSN 0730-0301. → pages 42

[15] R. E. English, L. Qiu, Y. Yu, and R. Fedkiw. Chimera grids for water
simulation. In Proceedings of the 12th ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’13, pages 85–94, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2132-7. → pages 8

[16] R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. In Proc.
ACM SIGGRAPH, pages 15–22, 2001. → pages 9, 24, 27, 46

[17] B. E. Feldman, J. F. O’Brien, and O. Arikan. Animating suspended particle
explosions. ACM Trans. Graph. (Proc. SIGGRAPH), 22(3):708–715, 2003.
→ pages 27, 42

[18] F. Ferstl, R. Westermann, and C. Dick. Large-scale liquid simulation on
adaptive hexahedral grids. Visualization and Computer Graphics, IEEE
Transactions on, PP(99):1–1, 2014. ISSN 1077-2626. → pages 9, 49

[19] N. Foster and R. Fedkiw. Practical animation of liquids. In Proc. ACM
SIGGRAPH, pages 23–30, 2001. → pages 24, 27

[20] M. N. Gamito, P. F. Lopes, and M. R. Gomes. Two-dimensional simulation
of gaseous phenomena using vortex particles. In Computer Animation and
Simulation ’95, Eurographics, pages 3–15. Springer Vienna, 1995. → pages
5

78

[21] A. Golas, R. Narain, J. Sewall, P. Krajcevski, P. Dubey, and M. Lin.
Large-scale fluid simulation using velocity-vorticity domain decomposition.
ACM Transactions on Graphics (TOG), 31(6):148, 2012. → pages 5, 8

[22] S. Green. Cuda particles. nVidia Whitepaper, 2(3.2):1, 2008. → pages 53

[23] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J.
Comp. Physics, 73:325–348, 1987. → pages 46

[24] N. A. Gumerov and R. Duraiswami. Fast multipole methods on graphics
processors. Journal of Computational Physics, 227:8290 – 8313,
2008/09/10/ 2008. → pages 49

[25] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent
viscous incompressible flow of fluid with free surfaces. Physics of fluids, 8:
2182–2189, 1965. → pages 31

[26] R. D. Henderson. Scalable fluid simulation in linear time on shared memory
multiprocessors. In Proceedings of the Digital Production Symposium,
DigiPro ’12, pages 43–52, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1649-1. → pages 49

[27] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles.
Taylor & Francis, Jan. 1989. ISBN 0852743920. → pages 45

[28] A. Jacobson, L. Kavan, , and O. Sorkine-Hornung. Robust inside-outside
segmentation using generalized winding numbers. ACM Trans. Graph., 32
(4):33:1–33:12, 2013. → pages 46

[29] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. The affine
particle-in-cell method. ACM Trans. Graph., 34(4):51:1–51:10, July 2015.
ISSN 0730-0301. → pages 8, 22

[30] M. M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction.
In Symp. Geometry Processing, pages 61–70, 2006. → pages 46, 49, 69

[31] B. Kim, Y. Liu, I. Llamas, and J. Rossignac. FlowFixer: Using BFECC for
fluid simulation. In Proc. First Eurographics Conf. on Natural Phenomena,
NPH’05, pages 51–56, 2005. → pages 1, 23, 27

[32] T. Kim, N. Thurey, D. James, and M. H. Gross. Wavelet turbulence for fluid
simulation. ACM Trans. Graph. (Proc. SIGGRAPH), 27(3):50, 2008. →
pages 9, 29, 43

79

[33] M. Lentine, W. Zheng, and R. Fedkiw. A novel algorithm for incompressible
flow using only a coarse grid projection. ACM Trans. Graph., 29(4):
114:1–114:9, July 2010. ISSN 0730-0301. → pages 9

[34] M. Lentine, M. Aanjaneya, and R. Fedkiw. Mass and momentum
conservation for fluid simulation. In Proc. ACM SIGGRAPH / Eurographics
Symp. Comp. Anim., pages 91–100, 2011. → pages 1, 25

[35] J. Lienhard. Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid
Circular Cylinders. Bulletin (Washington State University. College of
Engineering. Research Division). Technical Extension Service, Washington
State University, 1966. → pages ix, 17

[36] C. H. Liu and D. J. Doorly. Vortex particle-in-cell method for
three-dimensional viscous unbounded flow computations. International
Journal for Numerical Methods in Fluids, 32(1):23–42, 2000. ISSN
1097-0363. → pages 34

[37] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an
octree data structure. ACM Trans. Graph. (Proc. SIGGRAPH), 23(3):
457–462, 2004. → pages 5, 27, 71

[38] M. Macklin and M. Müller. Position based fluids. ACM Trans. Graph.
(Proc. SIGGRAPH), 32(4):104, 2013. → pages 42

[39] S. Mas-Gallic. Particle approximation of a linear convection-diffusion
problem with neumann boundary conditions. SIAM J. Numer. Anal., 32(4):
1098–1125, Aug. 1995. ISSN 0036-1429. → pages 6

[40] A. McAdams, E. Sifakis, and J. Teran. A parallel multigrid poisson solver
for fluids simulation on large grids. In Proc. ACM SIGGRAPH /
Eurographics Symp. Comp. Anim., pages 65–74, 2010. → pages 9, 14, 15,
27, 49

[41] J. Molemaker, J. M. Cohen, S. Patel, and J. Noh. Low viscosity flow
simulations for animation. In SCA ’08: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages 9–18.
Eurographics Association, 2008. → pages 8, 49

[42] P. Mullen, K. Crane, D. Pavlov, Y. Tong, and M. Desbrun.
Energy-preserving integrators for fluid animation. ACM Trans. Graph.
(Proc. SIGGRAPH), 28(3):38:1–38:8, 2009. → pages 25, 42

80

[43] D. Q. Nguyen, R. Fedkiw, and H. W. Jensen. Physically based modeling and
animation of fire. ACM Trans. Graph. (Proc. SIGGRAPH), 21(3):721–728,
2002. → pages 24, 27

[44] S. I. Park and M.-J. Kim. Vortex fluid for gaseous phenomena. In Proc.
ACM SIGGRAPH / Eurographics Symp. Comp. Animation, pages 261–270,
2005. → pages 2, 7, 26, 27, 46

[45] T. Pfaff, N. Thuerey, A. Selle, and M. Gross. Synthetic turbulence using
artificial boundary layers. ACM Trans. Graph., 28(5):121, 2009. → pages 7,
19, 43, 48

[46] T. Pfaff, N. Thuerey, and M. Gross. Lagrangian vortex sheets for animating
fluids. ACM Trans. Graph. (Proc. SIGGRAPH), 31(4):112:1–8, 2012. →
pages 27, 49

[47] A. Ralston. Runge-Kutta methods with minimum error bounds.
Mathematics of Computation, 16(80):431–437, 1962. → pages 12

[48] H. Schechter and R. Bridson. Evolving sub-grid turbulence for smoke
animation. In Proceedings of the 2008 ACM/Eurographics Symposium on
Computer Animation, 2008. → pages 9

[49] A. Selle, N. Rasmussen, and R. Fedkiw. A vortex particle method for
smoke, water and explosions. ACM Trans. Graph. (Proc. SIGGRAPH), 24
(3):910–914, 2005. → pages 28, 48

[50] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac. An Unconditionally
Stable MacCormack Method. J. Scientific Computing, 35(2–3):350–371,
2008. → pages 1, 23, 25, 27

[51] R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis. SPGrid: A sparse paged
grid structure applied to adaptive smoke simulation. ACM Trans. Graph.
(Proc. SIGGRAPH Asia), 33(6):205:1–205:12, 2014. → pages 5, 14, 27

[52] O.-y. Song, D. Kim, and H.-S. Ko. Derivative particles for simulating
detailed movements of fluids. IEEE Trans. Vis. Comp. Graph., 13(4):
711–719, 2007. → pages 8

[53] J. Stam. Stable fluids. In Proc. ACM SIGGRAPH, pages 121–128, 1999. →
pages 1, 23, 24, 26, 46

[54] J. Steinhoff and D. Underhill. Modification of the Euler equations for
“vorticity confinement”: Application to the computation of interacting
vortex rings. Physics of Fluids, 6:2738–2744, 1994. → pages 9, 28

81

[55] M. J. Stock and A. Gharakhani. Toward efficient GPU-accelerated N-body
simulations. AIAA paper, 608:7–10, 2008. → pages 2

[56] M. J. Stock and A. Gharakhani. A GPU-accelerated boundary element
method and vortex particle method. In AIAA 40th Fluid Dynamics
Conference and Exhibit (July 2010), page 1, 2010. → pages 5, 7

[57] M. J. Stock, A. Gharakhani, and C. P. Stone. Modeling rotor wakes with a
hybrid OVERFLOW-vortex method on a GPU cluster. In 28th AIAA Applied
Aerodynamics Conference, volume 20, 2010. → pages 2, 8

[58] E. G. Tabak. Vortex stretching in incompressible and compressible fluids.
Courant Institute, Lecture Notes (Fluid Dynamics II), 2002. → pages 40

[59] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and M. Gross.
Optimized spatial hashing for collision detection of deformable objects. In
Proc. VMV, pages 47–54, 2003. → pages 53

[60] T. Theuns. Parallel PPPM with exact calculation of short range forces.
Computer Physics Commun., 78(3):238 – 246, 1994. ISSN 0010-4655. →
pages 53, 59, 60

[61] M. Van Dyke. An album of fluid motion. Parabolic Press, 1982. → pages 17

[62] J. H. Walther. An influence matrix particle-particle particle-mesh algorithm
with exact particle-particle correction. J. Comp. Physics, 184:670–678,
2003. → pages 54

[63] H. Wang, K. A. Sidorov, P. Sandilands, and T. Komura. Harmonic
parameterization by electrostatics. ACM Trans. Graph., 32(5):155:1–155:12,
Oct. 2013. ISSN 0730-0301. → pages 45

[64] S. Weißmann and U. Pinkall. Filament-based smoke with vortex shedding
and variational reconnection. ACM Trans. Graph. (Proc. SIGGRAPH), 29
(4):115, 2010. → pages 26, 27, 48

[65] L. Yaeger, C. Upson, and R. Myers. Combining physical and visual
simulation–creation of the planet Jupiter for the film “2010”. Proc.
SIGGRAPH, 20(4):85–93, Aug. 1986. ISSN 0097-8930. → pages 2, 26, 48

[66] X. Zhang and R. Bridson. A PPPM fast summation method for fluids and
beyond. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 33(6):206:1–11,
2014. → pages 5, 27

82

[67] X. Zhang, R. Bridson, and C. Greif. Restoring the missing vorticity in
advection-projection fluid solvers. ACM Trans. Graph., 34(4):52:1–52:8,
July 2015. ISSN 0730-0301. → pages 22

[68] Y. Zhu and R. Bridson. Animating sand as a fluid. ACM Trans. Graph.
(Proc. SIGGRAPH), 24(3):965–972, 2005. → pages 1, 5, 8, 23, 25, 27, 64

83

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	2 Resolving Fluid Boundary Layers with Particle Strength Exchange and Weak Adaptivity
	2.1 Introduction
	2.2 Related work
	2.3 VFLIP and weakly higher resolution regional projection (WHIRP).
	2.3.1 Solving the convection-diffusion equation with ghost particles
	2.3.2 Regional projection for particle velocity correction
	2.3.3 Our pressure solver
	2.3.4 Seeding and deleting particles

	2.4 Results and discussion
	2.5 Conclusions, limitations, and future work

	3 Restoring the Missing Vorticity in Advection Projection Fluid Solvers
	3.1 Introduction
	3.2 Related work
	3.3 The IVOCK scheme
	3.3.1 Vortex dynamics on grids
	3.3.2 Discussion

	3.4 Applications and results
	3.4.1 Smoke
	3.4.2 Liquids
	3.4.3 Fire

	3.5 Conclusion

	4 A PPPM Fast Summation Method for Fluids and Beyond
	4.1 Introduction
	4.2 Related work
	4.3 Particle-particle particle-mesh method(PPPM)
	4.3.1 Particle-mesh step in open space
	4.3.2 Cancelling local influences in the grid
	4.3.3 Velocity evaluation
	4.3.4 PPPM discussion

	4.4 Vortex-Particle Smoke
	4.4.1 Vortex segment, vortex stretching and stability issue
	4.4.2 Solid boundaries and vortex shedding

	4.5 Results and conclusions
	4.5.1 PPPM for vortex flow
	4.5.2 Applying PPPM to Poisson surface reconstruction

	4.6 Limitations
	4.7 Future work

	5 Conclusion
	5.1 Summary
	5.2 Future work

	Bibliography

